

Southwest Regional Office CLEAN WATER PROGRAM

Application Type	Renewal
Facility Type	Municipal
Major / Minor	Major

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

Application No.	PA0026255				
APS ID	716713				
Authorization ID	1275428				

	Applicant and Fa	cility Information			
Applicant Name	Allegheny Valley Joint Sewer Authority	Facility Name	Allegheny Valley Joint Sewer Authority STP		
Applicant Address	PO Box 158	Facility Address	2400 Freeport Road		
	Cheswick, PA 15024-0158		Cheswick, PA 15024		
Applicant Contact	Tim Kephart	Facility Contact	Same as Applicant		
Applicant Phone	(412) 828-7227	Facility Phone	Same as Applicant		
Client ID	82759	Site ID	714426		
Ch 94 Load Status	Not Overloaded	Municipality	Harmar Township		
Connection Status	No Limitations	County	Allegheny		
Date Application Rece		EPA Waived?	No		
Date Application Accepted June 4, 2019		If No, Reason	Major Facility, Pretreatment		

Summary of Review

The permittee has applied for a renewal of NPDES Permit No. PA0026255. NPDES Permit No. PA0026255 was previously issued by the PA Department of Environmental Protection (DEP) on October 11, 2014. That permit expired on October 31, 2019. The permit was submitted in a timely manner, and therefore was granted an administrative extension.

Sewage from this facility is treated with screening, grit removal, primary clarification, aeration, final clarification, and chlorine disinfection prior to discharge into the Allegheny River.

The receiving stream, Allegheny River, is classified as a WWF and is located in State Watershed No. 18-A.

The applicant has complied with Act 14 Notifications and no comments were received.

The applicant is currently enrolled in and will continue to use eDMR.

Sewage Sludge is treated using aerobic digestion, anaerobic digestion, and sludge thickening prior to being disposed of in the Monroeville Landfill.

The facility receives additional sludge from several sources.

There are no permitted stormwater outfalls at this facility.

Allegheny Valley Joint Sewer Authority is currently under a Consent Order and Agreement with DEP and Allegheny County Heath Department to expand the WWTP and pumping stations to eliminate existing SSO bypasses.

Approve	Deny	Signatures	Date
X		It al	
		Stephanie Conrad / Environmental Engineering Specialist	June 2, 2021
Y		James Vanek	
^		James M. Vanek, P.E. / Environmental Engineer Manager	June 16, 2021

Summary of Review

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Discharge, Receiving Waters and Water Supply Information	mation	
Outfall No. 001	Design Flow (MGD)	5.5
Latitude <u>40° 31' 48"</u>	Longitude	-79° 50' 53"
Quad Name New Kensington West	Quad Code	
Wastewater Description: Treated Sewage		_
Receiving Waters Allegheny River	Stream Code	42122
NHD Com ID 123972840	RMI	12.9
Drainage Area 11600	Yield (cfs/mi²)	0.206
Q ₇₋₁₀ Flow (cfs) 2,390	Q ₇₋₁₀ Basis	US Army Corp of Engineers
Elevation (ft) 721	Slope (ft/ft)	0.001
Watershed No. 18-A	Chapter 93 Class.	WWF
Existing Use	Existing Use Qualifier	
Exceptions to Use	Exceptions to Criteria	
Assessment Status Impaired	Exceptions to Criteria	
	CATION, METALS, NUTRIENTS	S. SILTATION, TOTAL
Cause(s) of Impairment DISSOLVED SOLIDS (TD	DS), TOTAL DISSOLVED SOLID	S (TDS), TURBIDITY
·	CONSTRUCTION, SOURCE UI	NKNOWN, SUBSURFACE
Source(s) of Impairment (HARDROCK) MINING	News	_
TMDL Status	Name	-
Packground/Ambient Date	Data Source	
Background/Ambient Data	Data Source	
pH (SU)		
Temperature (°F)		
Hardness (mg/L)		
Other:		
Nearest Downstream Public Water Supply Intake	Wilkinsburg-Penn Joint Water	· Authority
PWS Waters Allegheny River	Flow at Intake (cfs)	
PWS RMI 8.72	Distance from Outfall (mi)	4.18

Changes Since Last Permit Issuance: None

Other Comments:

Treatment Facility Summary Treatment Facility Name: Allegheny Valley Joint Sewer Authority STP **WQM Permit No. Issuance Date** 05/12/1977 0276461 Degree of Avg Annual **Waste Type** Treatment Disinfection Flow (MGD) **Process Type** Activated Sludge With Sewage Secondary Solids Removal Chlorination 5.5 **Biosolids**

Hydraulic Capacity (MGD)

(Ibs/day)

Load Status

Biosolids Treatment
Use/Disposal

Disposed of in Monroeville

5.5

12100

Not Overloaded

Biosolids Treatment

Anaerobic and aerobic digestion

Landfill

Changes Since Last Permit Issuance:

Other Comments:

Compliance History

DMR Data for Outfall 001 (from May 1, 2020 to April 30, 2021)

Flow (MGD) 3.805 5.627 4.714 4.908 5.159 3.387 3.111 2.903 2.931 2.895 3.026 4.277	Parameter	APR-21	MAR-21	FEB-21	JAN-21	DEC-20	NOV-20	OCT-20	SEP-20	AUG-20	JUL-20	JUN-20	MAY-20
Flow (MGD)	Flow (MGD)												
Daily Maximum 6.636 15.094 8.498 10.333 14.372 4.566 6.788 4.862 7.365 4.249 3.620 9.798 PH (S.U.) Minimum 6.82 6.62 6.8 6.63 6.7 6.94 6.89 6.63 6.66 6.84 6.64 6.55 PH (S.U.) Minimum 7.12 7.16 7.07 7.04 7.18 7.23 7.2 7.17 7.31 7.16 7.24 7.16 DO (mg/L) Minimum 7.81 7.2 6.8 6.09 7.42 7.12 6.97 6.56 6.84 7.1 7.11 7.46 TRC (mg/L) Minimum 7.81 7.2 6.8 6.09 7.42 7.12 6.97 6.56 6.84 7.1 7.11 7.46 TRC (mg/L) Minimum 0.19 0.03 <0.1 0.05 0.03 0.1 <0.03 0.04 0.04 0.1 <0.1 0.03 <0.2 TRC (mg/L) Instantaneous Maximum 0.19 0.32 0.18 0.16 2.2 0.08 0.11 0.07 0.25 0.27 0.07 1.08 CBOD5 (lbs/day) Average Monthly 209 750 309 308 207 147 154 121 116 158 124 252 CBOD5 (lbs/day) Average Monthly 6 12 7 7 5 5 6 6 5 5 7 5 7 CBOD5 (mg/L) Average Monthly 6 12 7 7 5 5 6 6 5 5 8 6 8 6 8 6 8 BOD5 (mg/L) Raw Sewage Influent <0.15	Average Monthly	3.805	5.627	4.714	4.908	5.159	3.387	3.111	2.903	2.931	2.895	3.026	4.277
PH (S.U.) Minimum 6.82 6.62 6.8 6.63 6.7 6.94 6.89 6.63 6.66 6.84 6.64 6.55 PH (S.U.) Maximum 7.12 7.16 7.07 7.04 7.18 7.23 7.2 7.17 7.31 7.16 7.24 7.16 DO (mg/L.) Minimum 7.81 7.2 6.8 6.09 7.42 7.12 6.97 6.56 6.84 7.1 7.11 7.46 TRC (mg/L.) Morimum 7.81 7.2 6.8 6.09 7.42 7.12 6.97 6.56 6.84 7.1 7.11 7.46 TRC (mg/L.) Maximum 7.81 7.2 6.8 6.09 7.42 7.12 6.97 6.56 6.84 7.1 7.11 7.46 TRC (mg/L.) Morimum 7.81 7.2 6.8 6.09 7.42 7.12 6.97 6.56 6.84 7.1 7.11 7.46 TRC (mg/L.) Morimum 7.81 7.2 6.8 6.09 7.42 7.12 6.97 6.56 6.84 7.1 7.11 7.46 TRC (mg/L.) Morimum 7.81 7.2 6.8 6.09 7.42 7.12 6.97 6.56 6.84 7.1 7.11 7.46 TRC (mg/L.) Morimum 7.81 7.2 6.8 6.09 7.42 7.12 6.97 6.56 6.84 7.1 7.11 7.46 TRC (mg/L.) Morimum 7.81 7.2 6.8 6.09 7.42 7.12 6.97 6.56 6.84 7.1 7.11 7.46 TRC (mg/L.) Morimum 7.81 7.2 6.8 6.09 7.42 7.12 6.97 6.56 6.84 7.1 7.11 7.46 TRC (mg/L.) Morimum 7.81 7.2 6.8 6.09 7.42 7.12 6.97 6.56 6.84 7.1 7.11 7.16 7.16 TRC (mg/L.) Morimum 7.81 7.2 7.10	Flow (MGD)												
Minimum 6.82 6.62 6.8 6.63 6.7 6.94 6.89 6.63 6.66 6.84 6.64 6.55 PH (S.U.)	Daily Maximum	6.636	15.094	8.498	10.333	14.372	4.566	6.788	4.862	7.365	4.249	3.620	9.798
PH (S.U.) Maximum 7.12 7.16 7.07 7.04 7.18 7.23 7.2 7.17 7.31 7.16 7.24 7.16 DO (mg/L) Minimum 7.81 7.2 6.8 6.09 7.42 7.12 6.97 6.56 6.84 7.1 7.11 7.46 TRC (mg/L) Average Monthly 0.03 <0.1 0.05 0.03 0.1 <0.03 0.04 0.04 0.1 <0.1 0.03 <0.2 TRC (mg/L) Instantaneous Maximum 0.19 0.32 0.18 0.16 2.2 0.08 0.11 0.07 0.25 0.27 0.07 1.08 CBOD5 (lbs/day) Average Monthly 209 750 309 308 207 147 154 121 116 158 124 252 CBOD5 (mg/L) Average Monthly 209 750 309 308 207 223 205 144 140 178 143 289 CBOD5 (mg/L) Average Monthly 6 12 7 7 5 5 6 5 5 7 5 7 CBOD5 (mg/L) Average Monthly 407 225 300 302 253 357 427 401 413 365 403 271 TSS (lbs/day) Average Monthly 273 1321 465 552 518 213 230 402 153 214 189 345 TSS (lbs/day) Average Monthly 8 18 11 11 9 7 9 17 6 9 8 9 TSS (mg/L) Raw Sewage Influent Average Monthly 8 18 11 11 9 7 9 17 6 9 8 9 TSS (mg/L) Raw Sewage Monthly 8 18 11 11 9 7 9 17 6 9 8 9 TSS (mg/L) Raw Sewage Monthly 8 18 11 11 9 7 9 17 6 9 8 9 TSS (mg/L) Raw Sewage Influent Average Monthly 8 18 11 11 9 7 9 17 6 9 8 9 TSS (mg/L) Raw Sewage Influent Average Monthly 8 18 11 11 9 7 9 17 6 9 8 9 TSS (mg/L) Raw Sewage Influent Average Monthly 8 18 11 11 9 7 9 17 6 9 8 9 TSS (mg/L) Raw Sewage Influent Average Monthly 8 18 11 11 9 7 9 17 6 9 8 9 TSS (mg/L) Raw Sewage Influent Average Monthly 8 18 11 11 9 7 9 17 6 9 8 9 TSS (mg/L) Raw Sewage Influent Average Monthly 8 18 11 11 9 7 9 17 6 9 8 9 TSS (mg/L) Raw Sewage Influent Average Monthly 8 18 11 11 11 11 11 11	pH (S.U.)												
Maximum		6.82	6.62	6.8	6.63	6.7	6.94	6.89	6.63	6.66	6.84	6.64	6.55
DO (mg/L) T.81 T.2 6.8 6.09 T.42 T.12 6.97 6.56 6.84 T.1 T.11 T.46 TRC (mg/L) Average Monthly 0.03 < 0.1 0.05 0.03 0.1 < 0.03 0.04 0.04 0.1 < 0.1 0.03 < 0.2 CRO (mg/L) Instantaneous Maximum 0.19 0.32 0.18 0.16 2.2 0.08 0.11 0.07 0.25 0.27 0.07 1.08 CRO (SIDS (Ibs/day) Veekly Average Monthly 209 750 309 308 207 147 154 121 116 158 124 252 CRO (SIDS (Ibs/day) Veekly Average 259 1308 477 383 520 223 205 144 140 178 143 289 CRO (SIDS (mg/L) Veekly Average T. 15 T. 10 8 8 7 6 6 5 5 7 5 7 7 7 7 7 7													
Minimum		7.12	7.16	7.07	7.04	7.18	7.23	7.2	7.17	7.31	7.16	7.24	7.16
TRC (mg/L)													
Average Monthly Quantificial Comp/L Comp/L		7.81	7.2	6.8	6.09	7.42	7.12	6.97	6.56	6.84	7.1	7.11	7.46
TRC (mg/L) Instantaneous Naximum 0.19 0.32 0.18 0.16 2.2 0.08 0.11 0.07 0.25 0.27 0.07 1.08													
Instantaneous Maximum 0.19 0.32 0.18 0.16 2.2 0.08 0.11 0.07 0.25 0.27 0.07 1.08 Maximum 0.19 0.32 0.18 0.16 2.2 0.08 0.11 0.07 0.25 0.27 0.07 1.08 CBOD5 (lbs/day) 209 750 309 308 207 147 154 121 116 158 124 252 CBOD5 (lbs/day) 259 1308 477 383 520 223 205 144 140 178 143 289 CBOD5 (mg/L) 259 1308 477 383 520 223 205 144 140 178 143 289 CBOD5 (mg/L) 250 250 250 250 250 250 250 250 CBOD5 (mg/L) 250 250 250 250 250 250 CBOD5 (mg/L) 250 250 250 250 250 250 CBOD5 (mg/L) 250 250 250 250 250 CBOD5 (mg/L) 250 250 250 250 250 250 CBOD5 (mg/L) 250 250 250 250 250 250 CBOD5 (mg/L) 250 250 250 250 250 250 250 CBOD5 (mg/L) 250 250 250 250 250 250 250 CBOD5 (mg/L) 250 250 250 250 250 250 250 250 250 CBOD5 (mg/L) 250 250 250 250 250 250 250 250 CBOD5 (mg/L) 250 250 250 250 250 250 250 250 250 250 250 250 250 CBOD5 (mg/L) 250		0.03	< 0.1	0.05	0.03	0.1	< 0.03	0.04	0.04	0.1	< 0.1	0.03	< 0.2
Maximum 0.19 0.32 0.18 0.16 2.2 0.08 0.11 0.07 0.25 0.27 0.07 1.08													
CBOD5 (lbs/day)													
Average Monthly 209 750 309 308 207 147 154 121 116 158 124 252 CBOD5 (lbs/day) Weekly Average 259 1308 477 383 520 223 205 144 140 178 143 289 CBOD5 (mg/L) Average Monthly 6 12 7 7 5 5 6 5 7 5 7 CBOD5 (mg/L) Weekly Average 7 15 10 8 8 7 6 6 6 5 8 6 8 6 8 BOD5 (mg/L) Raw Sewage Influent Abr/s Average Monthly 273 1321 465 552 518 213 230 402 153 214 189 345 TSS (lbs/day) Weekly Average 372 2546 812 802 1336 293 340 1012 251 261 200 484 TSS (mg/L) Average Monthly 8 18 11 11 9 7 9 9 17 6 9 8 9 TSS (mg/L) Raw Sewage Influent Average Monthly 8 18 11 11 9 7 9 9 17 6 9 8 9 TSS (mg/L) Raw Sewage Influent Average Monthly 8 8 18 11 11 9 7 9 7 9 17 6 9 8 9		0.19	0.32	0.18	0.16	2.2	0.08	0.11	0.07	0.25	0.27	0.07	1.08
CBOD5 (ibs/day)													
Weekly Average 259 1308 477 383 520 223 205 144 140 178 143 289		209	750	309	308	207	147	154	121	116	158	124	252
CBOD5 (mg/L)													
Average Monthly 6 12 7 7 5 5 6 5 5 7 5 7 CBOD5 (mg/L) Weekly Average 7 15 10 8 8 7 6 6 5 8 6 8 BOD5 (mg/L) Raw Sewage Influent		259	1308	477	383	520	223	205	144	140	178	143	289
CBOD5 (mg/L) Weekly Average 7 15 10 8 8 7 6 6 5 8 6 8 BOD5 (mg/L) Raw Sewage Influent Average Monthly 273 1321 465 552 518 213 230 402 153 214 189 345 TSS (lbs/day) Weekly Average 372 2546 812 802 1336 293 340 1012 251 261 200 484 TSS (mg/L) Average Monthly 8 18 11 11 9 7 9 17 6 9 8 9 TSS (mg/L) Raw Sewage Influent Average Monthly 8 9 18 11 11 9 7 9 17 6 9 8 9		_		_	_	_	_	_	_	_	_	_	_
Weekly Average 7 15 10 8 8 7 6 6 5 8 6 8 BOD5 (mg/L) Raw Sewage Influent Fix Price 100 (mg/L) 		6	12	7	7	5	5	6	5	5	7	5	7
BOD5 (mg/L) Raw Sewage Influent Raw Sewage Influent Raw Sewage Influent Raw Sewage Influent Raw Sewage Influent <b< td=""><td></td><td>_</td><td></td><td>4.0</td><td></td><td></td><td>_</td><td></td><td></td><td>_</td><td></td><td></td><td></td></b<>		_		4.0			_			_			
Raw Sewage Influent		/	15	10	8	8	/	6	6	5	8	6	8
Obr/> Average Average Monthly 407 225 300 302 253 357 427 401 413 365 403 271 TSS (lbs/day) Average Monthly 273 1321 465 552 518 213 230 402 153 214 189 345 TSS (lbs/day) Weekly Average 372 2546 812 802 1336 293 340 1012 251 261 200 484 TSS (mg/L) Average Monthly 8 18 11 11 9 7 9 17 6 9 8 9 TSS (mg/L) Raw Sewage Influent Average 4 <td></td>													
Monthly 407 225 300 302 253 357 427 401 413 365 403 271 TSS (lbs/day) Average Monthly 273 1321 465 552 518 213 230 402 153 214 189 345 TSS (lbs/day) Weekly Average 372 2546 812 802 1336 293 340 1012 251 261 200 484 TSS (mg/L) Average Monthly 8 18 11 11 9 7 9 17 6 9 8 9 TSS (mg/L) Raw Sewage Influent 													
TSS (lbs/day) 273 1321 465 552 518 213 230 402 153 214 189 345 TSS (lbs/day) Weekly Average 372 2546 812 802 1336 293 340 1012 251 261 200 484 TSS (mg/L) Average Monthly 8 18 11 11 9 7 9 17 6 9 8 9 TSS (mg/L) Raw Sewage Influent 		407	005	200	200	050	0.57	407	404	440	205	400	074
Average Monthly 273 1321 465 552 518 213 230 402 153 214 189 345 TSS (lbs/day) Weekly Average 372 2546 812 802 1336 293 340 1012 251 261 200 484 TSS (mg/L) Average Monthly 8 18 11 11 9 7 9 17 6 9 8 9 TSS (mg/L) Raw Sewage Influent 		407	225	300	302	253	357	427	401	413	365	403	2/1
TSS (lbs/day) Weekly Average 372 2546 812 802 1336 293 340 1012 251 261 200 484 TSS (mg/L) Average Monthly 8 18 11 11 9 7 9 17 6 9 8 9 TSS (mg/L) Raw Sewage Influent 		272	1221	165	552	510	212	220	402	152	21.4	100	245
Weekly Average 372 2546 812 802 1336 293 340 1012 251 261 200 484 TSS (mg/L) Average Monthly 8 18 11 11 9 7 9 17 6 9 8 9 TSS (mg/L) Raw Sewage Influent 		213	1321	400	55∠	310	213	230	40∠	100	Z14	109	343
TSS (mg/L) Average Monthly		372	2546	Q12	802	1336	203	340	1012	251	261	200	121
Average Monthly 8 18 11 11 9 7 9 17 6 9 8 9 TSS (mg/L) Raw Sewage Influent		312	2040	012	002	1330	293	340	1012	201	201	200	404
TSS (mg/L) Raw Sewage Influent Average		R	18	11	11	٥	7	a	17	6	a	g.	a
Raw Sewage Influent		U	10	11	11	3	,	9	17	0	9	0	3
 Average													
	Monthly	328	218	250	252	234	374	351	415	389	359	361	283

NPDES Permit No. PA0026255

TSS (mg/L) Weekly Average	9	27	16	13	16	9	10	43	6	12	8	12
Fecal Coliform												
(CFU/100 ml)												
Geometric Mean	6	27	8	< 8	27	14	7	8	9	9	8	6
Fecal Coliform												
(CFU/100 ml)												
Instantaneous												
Maximum	235.9	1986.3	1413.6	344.8	727	686.7	231	1046.2	686.7	98.7	579.4	95.9
Total Nitrogen (mg/L)												
Daily Maximum		7.6			30.7			27.1			24.2	
Ammonia (mg/L)												
Average Monthly	19.42	13.55	16.7	13.84	16.69	21.8	22.1	16.49	22.2	17.88	17.23	19.82
Total Phosphorus												
(mg/L)												
Daily Maximum		2.4			1.1			1.8			2.9	

	Compliance History						
Summary of DMRs:	Between June 2016 and June 2021, the facility has complied with submittal of Discharge Maintenance Reports. In addition to the violations mentioned below, 58 effluent violations were noted in eDMR, six of which occurred in 2020. The majority of the violations were for load and effluent concentration of TSS or effluent concentration of fecal coliform. Exceedances for the last year are reported in the table below.						
Summary of Inspections:	During this review period, 10 inspections resulted in 17 violations. Eight of these violations were for unauthorized bypasses while the remaining 9 were for exceedance of effluent limitations.						

Other Comments:

Compliance History

Effluent Violations for Outfall 001, from: June 1, 2020 To: April 30, 2021

Parameter	Date	SBC	DMR Value	Units	Limit Value	Units
TRC	12/31/20	IMAX	2.2	mg/L	1.6	mg/L
TSS	03/31/21	Wkly Avg	2546	lbs/day	2064	lbs/day
Fecal Coliform	09/30/20	IMAX	1046.2	CFU/100 ml	1000	CFU/100 ml

Other Comments:

Development of Effluent Limitations									
Outfall No.	001	Design Flow (MGD)	5.5						
Latitude	40° 31' 48.00"	Longitude	-79° 50' 53.00"						
Wastewater Description: Effluen									

Technology-Based Limitations

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Pollutant	Limit (mg/l)	SBC	Federal Regulation	State Regulation
CBOD ₅	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
CBOD5	40	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)
Total Suspended	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
Solids	45	Average Weekly	133.102(b)(2)	92a.47(a)(2)
рН	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform				
(5/1 - 9/30)	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
Fecal Coliform				
(5/1 - 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform				
(10/1 - 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
Fecal Coliform				
(10/1 - 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)
Total Residual Chlorine	0.5	Average Monthly	-	92a.48(b)(2)

Comments:

Water Quality-Based Limitations

Water Quality Analysis Modeling for CBOD5, DO, and Ammonia-Nitrogen is not necessary, and Federal Minimum Secondary Effluent Limitations will again be imposed due to the large dilution available in the Allegheny River. Q7-10 flow of the Allegheny River at the point of discharge is 2,390 cfs. The instream to wasteflow dilution ration = total stream flow (2,390 cfs) / discharge flow (10.22 cfs) = 234/1.

WQBELs for DO, CBOD5, and Ammonia-Nitrogen will not be imposed on this facility during this permit cycle.

Total Residual Chlorine was modeled using the TRC Spreadsheet, which verified that the BAT limits are appropriate for this facility.

No limitations were determined through water quality modeling using the DEP toxics management spreadsheet (output file attached), and no WQBELs for toxics will be imposed on this facility during this permit cycle.

Best Professional Judgment (BPJ) Limitations

A Dissolved Oxygen minimum limitation of 4.0 mg/L will be implemented based on the standard in 25 PA Code Chapter 93 and best professional judgment.

Anti-Backsliding

Section 402(o) of the Clean Water Act (CWA), enacted in the Water Quality Act of 1987, establishes anti-backsliding rules governing two situations. The first situation occurs when a permittee seeks to revise a Technology-Based effluent limitation based on BPJ to reflect a subsequently promulgated effluent guideline which is less stringent. The second situation addressed by Section 402(o) arises when a permittee seeks relaxation of an effluent limitation which is based upon a State treatment standard of water quality standard.

Previous limits can be used pursuant to EPA's anti-backsliding regulation 40 CFR 122.44 (I) Reissued permits. (1) Except as provided in paragraph (I)(2) of this section when a permit is renewed or reissued. Interim effluent limitations, standards or conditions must be at least as stringent as the final effluent limitations, standards, or conditions in the previous permit (unless the circumstances on which the previous permit was based have materially and substantially changed since the time the permit was issued and would constitute cause for permit modification or revocation and reissuance under §122.62). (2) In the case of effluent limitations established on the basis of Section 402(a)(1)(B) of the CWA, a permit may not be renewed, reissued, or modified on the basis of effluent guidelines promulgated under section 304(b) subsequent to the original issuance of such permit, to contain effluent limitations which are less stringent than the comparable effluent limitations in the previous permit.

The facility is not seeking to revise the previously permitted effluent limits.

Additional Considerations:

Sewage discharges will include monitoring, at a minimum, for *E. coli*, in new and reissued permits, with a monitoring frequency of 1/month for design flows >= 1 MGD per Chapter 92.a.61.

For pH, Dissolved Oxygen (DO), CBOD5, Raw Sewage Influent BOD5, TSS, Raw Sewage Influent TSS, Fecal Coliform, and Ammonia-Nitrogen, a monitoring frequency 1/day has been imposed. In general, less frequent monitoring may be established only when the permittee demonstrates that there will be no discharge on days where monitoring is not required.

Nutrient monitoring is required to establish the nutrient load from the wastewater treatment facility and the impacts that load may have on the quality of the receiving stream(s). A 1/quarter monitor and report requirement for Total N & Total P has been added to the permit as per Chapter 92.a.61.

Due to the large dilution ration discussed above, it was assumed that a monthly warm period limit of 25 mg/L is acceptable for ammonia-nitrogen and a year-round monitoring requirement was imposed for ammonia-nitrogen that is consistent with Table 6-3 of the Permit Writers Manual. Application data for Outfall # 001 indicates that long-term average ammonia-nitrogen concentration in the discharge is 25.1mg/L.

For POTWs with design flows greater than 2,000 GPD influent BOD₅ and TSS monitoring must be established in the permit, and the monitoring should be consistent with the same frequency and sample type as is used for other effluent parameters.

Monitoring frequency for the proposed effluent limits are based upon Table 6-3, Self-Monitoring Requirements for Sewage Dischargers, from the Departments Technical Guidance for the Development and Specification of Effluent Limitations. Please note that Monitoring Requirements were changed for Flow to 1/week Metered to be consistent with the guidance.

The permit application does not list any CIUs in the service area and there have been no compliance issues attributed to IW discharges causing NPDES permit effluent violations. Part C language, Pretreatment Program Development, has not been added to the permit. The EPA, in a letter dated March 27, 1992, has exempted the AVJSA from the requirement to develop and implement a pretreatment program.

Mass Loading

Mass loading limits are applicable for publicly owned treatment works. Current policy requires average monthly mass loading limits be established for CBOD5, TSS, and NH₃-N and average weekly mass loading limits be established for CBOD5 and TSS. Average monthly mass loading limits (lbs/day) are based on the formula: design flow (MGD) x concentration limit (mg/L) x conversion factor (8.34).

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

		Monitoring Requirements						
Parameter	Mass Units	(lbs/day) ⁽¹⁾		Concentrat		Minimum ⁽²⁾	Required	
i didilicici	Average Monthly	Weekly Average	Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report Daily Max	XXX	XXX	XXX	XXX	1/day	Metered
Tiow (MOD)	Report	Daily Wax	6.0	XXX	XXX	XXX	17day	Metered
pH (S.U.)	XXX	XXX	Inst Min	XXX	XXX	9.0	1/day	Grab
DO	XXX	XXX	4.0 Inst Min	XXX	XXX	XXX	1/day	Grab
TRC	XXX	XXX	XXX	0.5	XXX	1.6	1/shift	Grab
CBOD5	1145	1830	XXX	25.0	40.0	50	1/day	24-Hr Composite
BOD5	1111				1070		.,,	24-Hr
Raw Sewage Influent	Report	Report	XXX	Report	XXX	XXX	1/day	Composite
TSS	•			•				24-Hr
Raw Sewage Influent	Report	Report	XXX	Report	XXX	XXX	1/day	Composite
TSS	1375	2060	XXX	30.0	45.0	60	1/day	24-Hr Composite
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	XXX	XXX	XXX	2000 Geo Mean	XXX	10000	1/day	Grab
Fecal Coliform (No./100 ml) May 1 - Sep 30	XXX	XXX	XXX	200 Geo Mean	XXX	1000	1/day	Grab
Way 1 - Sep 30	XXX	XXX	XXX	Geo Mean	XXX	1000	17day	Grab
E. Coli (No./100 ml)	XXX	XXX	XXX	XXX	XXX	Report	1/month	Grab
Total Nitrogen	XXX	XXX	XXX	XXX	Report Daily Max	XXX	1/quarter	24-Hr Composite
Ammonia	XXX	XXX	XXX	Report	XXX	XXX	1/day	24-Hr Composite
Total Phosphorus	XXX	XXX	XXX	XXX	Report Daily Max	XXX	1/quarter	24-Hr Composite

NPDES Permit No. PA0026255

Compliance Sampling Location: Outfall #001

Other Comments:

Allegheny Valley	/ Joint Sewer Authority S	STP		
		Whole Effluent Toxicity (V	VET)	
For Outfall #001,	☐ Acute ⊠ Chronic W	ET Testing was completed:		
Quarterly	ermit renewal application throughout the permit ten throughout the permit ten		cted.	
	es used for the tests was d for analysis of the result	: 100%, 60%, 30%, 2%, and s is: 2%.	1%. The Target Instru	eam Waste Concentration
Summary of Fou	ır Most Recent Test Res	<u>ults</u>		
TST Data Analysi	is			
		low the application manager	may attach the DED W	TT Analysis Caroodahaat
(NOTE - III lieu o	ir recording information be	low, the application manager	may allach the DEP Wi	ET Arialysis Spreadsneet).
		Results (Pass/Fail)		esults (Pass/Fail)
Test Date	Survival	Reproduction	Survival	Growth
8/25-9/1/15	PASS	PASS	PASS	PASS
8/23-8/30/16	PASS	PASS	PASS	PASS
8/15-8/22/17 8/28-9/4/18	PASS PASS	PASS PASS	PASS PASS	PASS PASS
exhibited when the t value ("T-Test Res	calculated t value ("T-Test Result") is less than the critical to the potential for an excursion	ate data for the TIWC is not sta esult") is greater than the critical to value. On above water quality standa nined anytime there is at least	t value. A "failing" result is ards based on the result	exhibited when the calculated as of these tests? (NOTE
\square YES \boxtimes NO				
Comments:				
Evaluation of Te	st Type, IWC and Dilutio	n Series for Renewed Perm	<u>iit</u>	
Acute Partial Mix	Factor (PMFa): 0.088	Chronic Partial Mix Fac	tor (PMFc): 0.607	
1. Determine IV	VC – Acute (IWCa):			
(Q _d x 1.547) /	((Q ₇₋₁₀ x PMFa) + (Q _d x 1	.547))		
[(5.5 MGD x ²	1.547) / ((2930 cfs x 0.088) + (5.5 MGD x 1.547))] x 100) = 13.01%	
Is IWCa < 1%	5? ☐ YES ⊠ NO (YES	- Acute Tests Required OR	NO - Chronic Tests Re	equired)

N/A

Type of Test for Permit Renewal: Chronic

2a. Determine Target IWCa (If Acute Tests Required)

TIWCa = 0.0390/ 0.3 = 13.01%

If the discharge is to the tidal portion of the Delaware River, indicate how the type of test was determined:

2b. Determine Target IWCc (If Chronic Tests Required)

$$(Q_d \times 1.547) / (Q_{7-10} \times PMFc) + (Q_d \times 1.547)$$

[(5.5MGD x 1.547) / ((2390 cfs x 0.607) + (5.5 MGD x 1.547))] x 100 = **1%**

3. Determine Dilution Series

(NOTE – check Attachment C of WET SOP for dilution series based on TIWCa or TIWCc, whichever applies). Dilution Series = 100%, 60%, 30%, 2%, and 1%.

WET Limits

Has reasonable potential been determined? ☐ YES ☒ NO
Will WET limits be established in the permit? ☐ YES ☒ NO

If WET limits will be established, identify the species and the limit values for the permit (TU).

N/A

If WET limits will not be established, but reasonable potential was determined, indicate the rationale for not establishing WET limits:

N/A

Copy of TRC_CALC.xls

TRC EVALUATION											
Input appropria	te values in /	A3:A9 and D3:D9									
2390	= Q stream (cfs)	0.5	= CV Daily							
5.5	= Q discharg	e (MGD)	0.5	= CV Hourly							
30	= no. sample	s	1	= AFC_Partial N	lix Factor						
0.3	= Chlorine D	emand of Stream	1	= CFC_Partial N	lix Factor						
0	= Chlorine D	emand of Discharge	15	= AFC_Criteria	Compliance Time (min)						
0.5	= BAT/BPJ V	alue	720	= CFC_Criteria	Compliance Time (min)						
0	= % Factor o	of Safety (FOS)		=Decay Coeffic	ent (K)						
Source	Reference	AFC Calculations		Reference	CFC Calculations						
TRC	1.3.2.iii	WLA afc =	89.625	1.3.2.iii	WLA cfc = 87.370						
PENTOXSD TRG	5.1a	LTAMULT afc =	0.373	5.1c	LTAMULT cfc = 0.581						
PENTOXSD TRG	5.1b	LTA_afc=	33.396	5.1d	LTA_cfc = 50.793						
		500									
Source PENTOXSD TRG	5.1f	Effluer	nt Limit Calcul								
PENTOXSD TRG	5.11 5.1g	AVC MON	AML MULT =		BAT/BPJ						
PENTOASD ING	5. Ig		LIMIT (mg/l) = LIMIT (mg/l) =		BAT/BPJ						
l		THO I MAKE	Limit (mg/l) =	1.000							
l											
WLA afc	(.019/e(-k*AF	FC_tc)) + [(AFC_Yc*Qs*.019/	Qd*e(-k*AFC_	tc))							
l		C_Yc*Qs*Xs/Qd)]*(1-FOS/100	•								
LTAMULT afc	EXP((0.5*LN)	(cvh^2+1))-2.326*LN(cvh^2+	1)^0.5)								
LTA_afc	wla_afc*LTA	MULT_afc									
WI A of	/ 044/a/ k*05	C +=\ + (/CEC V=*O=* 044//	odta/ ktoro	h-))							
WLA_cfc		FC_tc) + [(CFC_Yc*Qs*.011/0 C_Yc*Qs*Xs/Qd)]*(1-FOS/100		(C) J							
LTAMULT_cfc		cvd^2/no_samples+1))-2.32	-	o samples+1\^0	.5)						
LTA_cfc	wla_cfc*LTA		- Injeria Em		,						
	_										
AML MULT	EXP(2.326*L	N((cvd^2/no_samples+1)^0.5	5)-0.5*LN(cvd	^2/no_samples+	1))						
AVG MON LIMIT	MIN(BAT_BP	J,MIN(LTA_afc,LTA_cfc)*AM	L_MULT)								
INST MAX LIMIT	1.5*((av_mor	_limit/AML_MULT)/LTAMUL	T_afc)								

Toxics Management Spreadsheet Version 1.3, March 2021

Discharge Information

Instructions Disc	charge Stream		
Facility: Allegh	neny Valley JSA WWTP	NPDES Permit No.: PA0026255	Outfall No.: 001
Evaluation Type:	Major Sewage / Industrial Waste	Wastewater Description: Treated Effluent	

	Discharge Characteristics													
Design Flow	Hardness (mg/l)*	pH (SU)*	P	artial Mix Fa	actors (PMF	5)	Complete Mix	x Times (min)						
(MGD)*	naroness (mg/l)	pn (50)*	AFC	CFC	THH	CRL	Q ₇₋₁₀	Qh						
5.5	180.3	7.035												

					0 If let	ft blank	0.5 17 16	eft blank	0) If left blan	k	1 If lef	t blank
	Discharge Pollutant	Units	Ma	x Discharge Conc	Trib Conc	Stream Conc	Daily CV	Hourly CV	Strea m CV	Fate Coeff	FOS	Criteri a Mod	Chem Transl
	Total Dissolved Solids (PWS)	mg/L		524									
7	Chloride (PWS)	mg/L		163									
l ē	Bromide	mg/L		0.133	$\rightarrow \rightarrow \rightarrow$	-							
Group	Sulfate (PWS)	mg/L		80.3									
	Fluoride (PWS)	mg/L											
	Total Aluminum	μg/L		26									
1	Total Antimony	μg/L		0.36	$\rightarrow \rightarrow \rightarrow$	-							
1	Total Arsenic	μg/L		0.86									
1	Total Barium	μg/L		67									
1	Total Beryllium	μg/L	<	0.3									
1	Total Boron	μg/L		304									
1	Total Cadmium	μg/L	<	0.16		-							
1	Total Chromium (III)	μg/L		1									
1	Hexavalent Chromium	μg/L	<	5									
	Total Cobalt	μg/L		1									
	Total Copper	μg/L		23									
2	Free Cyanide	μg/L		11									
ΙĒ	Total Cyanide	μg/L		9									
Group	Dissolved Iron	μg/L		107									
	Total Iron	μg/L		90									
	Total Lead	μg/L		0.45									
	Total Manganese	μg/L		118		-							
1	Total Mercury	μg/L		0.04									
1	Total Nickel	μg/L		4									
1	Total Phenols (Phenolics) (PWS)	μg/L	<	2									
1	Total Selenium	μg/L	<	0.66									
1	Total Silver	μg/L	<	0.33									
1	Total Thallium	µg/L	<	0.16									
1	Total Zinc	μg/L		45									
	Total Molybdenum	µg/L		5									
	Acrolein	µg/L	<	1.9									
	Acrylamide	μg/L	<										
	Acrylonitrile	μg/L	<	1.2									
	Benzene	μg/L	<	0.23									
	Bromoform	μg/L	<	0.4									

1	Carbon Tetrachloride	/!	_	0.24	_		-							$\overline{}$	
		μg/L	<	0.31	₽		7	1					\exists	4	\mp
	Chlorobenzene	μg/L	<	0.19	┿	H	+						\dashv	+	+
	Chlorodibromomethane	μg/L	<	0.45	+	H	+						-	4	4
	Chloroethane	μg/L	<	0.33	+	H	\Rightarrow						\Rightarrow	\Rightarrow	\dashv
	2-Chloroethyl Vinyl Ether	μg/L	<	0.38	+	H	\Rightarrow						\Rightarrow	\Rightarrow	\Rightarrow
	Chloroform	μg/L		1.6	+	\Box	\Rightarrow						\Rightarrow	\Rightarrow	\Rightarrow
	Dichlorobromomethane	μg/L	<	0.27											
	1,1-Dichloroethane	μg/L	<	0.28		Ш	_							Ц	
e	1,2-Dichloroethane	μg/L	<	0.32	\vdash	H	4						-	4	4
Group	1,1-Dichloroethylene	μg/L	<	0.29	\vdash	\square	7						\dashv	\exists	\dashv
2	1,2-Dichloropropane	μg/L	<	0.24	Е	Н	7						\exists	7	\mp
ဖ	1,3-Dichloropropylene	μg/L	<	0.27	Т	Ħ	Ŧ						Ħ	7	\exists
	1,4-Dioxane	μg/L	<	58.9	T	П	\top							\exists	\Box
	Ethylbenzene	μg/L	<	0.34	T		I							耳	\Box
	Methyl Bromide	μg/L	<	0.39	+	Ħ	#						⇉	\Rightarrow	⇉
	Methyl Chloride	μg/L	<	0.31	t	H	+						Ħ	7	∄
	Methylene Chloride	µg/L		1.5	۰	H	+						Ħ	+	Ħ
	1,1,2,2-Tetrachloroethane	µg/L	<	0.34	٠	H	+						H	+	\dashv
	Tetrachloroethylene		<	0.35	╆	Ħ	+	_					Ħ	\Rightarrow	Ħ
	•	μg/L	_	0.33	+									Ť	\exists
	Toluene	μg/L	<		F		1							4	4
	1,2-trans-Dichloroethylene	μg/L	<	0.26	+	H	_						H	4	4
	1,1,1-Trichloroethane	μg/L	<	0.22	+	H	-							4	4
	1,1,2-Trichloroethane	μg/L	<	0.33	+		+							+	+
	Trichloroethylene	μg/L	<	0.33	+										+
$oxed{oxed}$	Vinyl Chloride	μg/L	<	0.3		Ħ	\Rightarrow								\Rightarrow
	2-Chlorophenol	μg/L	<	0.32				1					Ì		
	2,4-Dichlorophenol	μg/L	<	0.31		Ц	Į.						\Box	Į	
	2,4-Dimethylphenol	μg/L	<	0.2		\square	7						\dashv	\neg	ightarrow
	4,6-Dinitro-o-Cresol	μg/L	<	0.32	F	H	7						\dashv	7	\mp
4	2,4-Dinitrophenol	μg/L	<	2.4	Ŧ	Ħ	7						Ħ	寸	干
Group	2-Nitrophenol	μg/L	<	0.44	\dagger	Ħ	\neg						Ħ	寸	$\overline{}$
Ιĕ	4-Nitrophenol	μg/L	<	1	\top	П	\top							\top	\top
-	p-Chloro-m-Cresol	μg/L	<	0.18	f		#							耳	#
	Pentachlorophenol	μg/L	<	1.2	+	Ħ	#						⇉	\Rightarrow	#
	Phenol	μg/L	<	0.22	+	H	+						=	#	#
	2,4,6-Trichlorophenol	µg/L	<	0.55	+	₩	+	 					Н	+	₩
누			Ь_		÷	岩	=	-				-	H	=	#
	Acenaphthene	μg/L	<	0.15	+	\vdash	H	-			 		 H	H	4
	Acenaphthylene	μg/L	<	0.18	+										\Rightarrow
	Anthracene	μg/L	<	0.15	+										
	Benzidine	μg/L	<	3											
	Benzo(a)Anthracene	μg/L	<	0.17											
	Benzo(a)Pyrene	μg/L	<	0.21	T	Į.	\Box								\Box
	3,4-Benzofluoranthene	μg/L	<	0.13	Ŧ	\vdash	H	-					Е	\Box	7
	Benzo(ghi)Perylene	μg/L	<	0.21	-								H	F	7
	Benzo(k)Fluoranthene	μg/L	<	0.18	1		Ħ						F	Ħ	7
	Bis (2-Chloroethoxy)Methane	μg/L	<	0.2	1										
	Bis(2-Chloroethyl)Ether	μg/L	<	0.18	1										
	Bis(2-Chloroisopropyl)Ether	μg/L	<	0.27											
	Bis(2-Ethylhexyl)Phthalate	µg/L		1.2	+		H						H		#
	4-Bromophenyl Phenyl Ether	µg/L	<	0.17	+		H							H	+
	Butyl Benzyl Phthalate	μg/L	<	0.17	+		-							H	-
			<	0.12	+								F	Ħ	7
	2-Chloronaphthalene	µg/L	-		+										
	4-Chlorophenyl Phenyl Ether	µg/L	<	0.14	-										4
	Chrysene	μg/L	<	0.115	+		Щ							Щ	4
	Dibenzo(a,h)Anthrancene	μg/L	<	0.2	+	H	H								4
	1,2-Dichlorobenzene	μg/L	<	0.38	-										4
	1,3-Dichlorobenzene	μg/L	<	0.25	+										
40	1,4-Dichlorobenzene	μg/L	<	0.27	-										
Group	3,3-Dichlorobenzidine	μg/L	<	0.47											
2	Diethyl Phthalate	μg/L		25.2											
O	Dimethyl Phthalate	μg/L	<	0.14	J										Ţ
	Di-n-Butyl Phthalate	μg/L		0.33	F		H	-						H	7
	2,4-Dinitrotoluene	μg/L	<	0.13	-								F	Ħ	7
			+		-		_	-	-	-	 	_	 -	_	_

	2,6-Dinitrotoluene	μg/L	<	0.2			4					
	Di-n-Octyl Phthalate	μg/L	<	0.097	ŧ	H	÷					
	1,2-Diphenylhydrazine	µg/L	<	0.25	t	H	÷					
	Fluoranthene	µg/L	<	0.23	٠	++	+					
			<		۰	Ħ	÷				 	
	Fluorene	µg/L	<	0.19	ŧ		Ť					
	Hexachlorobenzene	μg/L	<	0.22	F		+					
	Hexachlorobutadiene	μg/L		0.18	+	₩	+					\vdash
	Hexachlorocyclopentadiene	μg/L	<	0.17	╄	++	+					
	Hexachloroethane	μg/L	<	0.29	F	#	+					
	Indeno(1,2,3-cd)Pyrene	μg/L	<	0.12	+		*					
	Isophorone	μg/L	<	0.15			Ŧ					
	Naphthalene	μg/L	<	0.17								
	Nitrobenzene	μg/L	<	0.27		Щ	4					
	n-Nitrosodimethylamine	μg/L	<	0.62		4	\downarrow					
	n-Nitrosodi-n-Propylamine	μg/L	٧	0.23			\pm					
	n-Nitrosodiphenylamine	μg/L	٧	0.17			\dagger					
	Phenanthrene	μg/L	<	0.13			j					
	Pyrene	μg/L	<	0.16		Ш	Ţ					
	1,2,4-Trichlorobenzene	μg/L	<	0.16			Ŧ					
	Aldrin	μg/L	<	0.0048	F	H	Ŧ					
	alpha-BHC	μg/L	<	0.0019	Ħ	Ħ	Ť					
	beta-BHC	μg/L	<	0.0076	۲		Ť					
	gamma-BHC	μg/L	<	0.0029	т	\Box	Τ					
	delta BHC	μg/L		0.0074	E		Ŧ					
	Chlordane	µg/L	<	0.033	t	H	ŧ					
	4,4-DDT	µg/L	<	0.0057	t	H	+					
	4.4-DDE	µg/L	<	0.0087	+	Н	+				 	
	4.4-DDD	µg/L	<	0.0067	۰	H	÷				 	
	Dieldrin		<	0.0029	ŧ	Ħ	Ť			_	 	
	alpha-Endosulfan	μg/L	<	0.0029	F	\Box	Ŧ					
	beta-Endosulfan	μg/L	<	0.0029	╄	₩	+				 	\vdash
,		μg/L			+	Н	+				 	
-	Endosulfan Sulfate	μg/L	<	0.0038	÷	H	÷					
,	Endrin	μg/L	<	0.0076	F	#	+					
•	Endrin Aldehyde	μg/L	<	0.0095	F		Ť				 	
	Heptachlor	μg/L	<	0.0029		Щ	Ţ					
	Heptachlor Epoxide	μg/L	<	0.0038	L	Щ.	4					
	PCB-1016	μg/L	<		-	H	+					
	PCB-1221	μg/L	<				+					
	PCB-1232	μg/L	<				1					
	PCB-1242	μg/L	٧									
	PCB-1248	μg/L	<									
	PCB-1254	μg/L	٧		Ē	H	Ţ					
	PCB-1260	μg/L	٧		F		F					
	PCBs, Total	μg/L	<		F	H	Ŧ					
	Toxaphene	μg/L	<	0.18			Ť					
	2,3,7,8-TCDD	ng/L	<									
	Gross Alpha	pCi/L			Ī		Ţ					
	Total Beta	pCi/L	<		+							
	Radium 226/228	pCi/L	<		F		+					
4000	Total Strontium	µg/L	<		+		+					
,	Total Uranium	µg/L	<		+		+					
	Osmotic Pressure	_	-		+		+					
	OSHIOLIC FIESSURE	mOs/kg					T					

Stream / Surface Water Information

Allegheny Valley JSA WWTP, NPDES Permit No. PA0026255, Outfall 001

Instructions	Discharg	ge Stre	eam												
Receiving Surfa	ace Wat	er Name:	Allegheny	River			No. F	Reaches to I	Model:	1		tewide Criteri at Lakes Crit			
Location	s	tream Cod	le* RM	Elevati	DA (mi	²)* Slop	e (ft/ft) PW	S Withdraw	al Apply F			SANCO Crite			
Point of Discha	arge	042122	12	.9 721	11600	0 0	.001		Yes	5					
End of Read	h 1	042122	12	.6 720	1160	1 0	.001		Yes	5					
Q 7-10															
Location		RMI	LFY	Flow	(cfs)	W/D	Width Dep	th Velocit	Time	Tributa	ıry	Stream	m	Analys	is
			(cfs/mi ²)*	Stream	Tributary	Ratio	(ft) (ft)	2 11 2	(days)	Hardness	pН	Hardness*	pH*	Hardness	pН
Point of Disch	_	12.9	0.1	2390			1372.8 12					100	7		
End of Read	h 1	12.6	0.1	2390											
Qh									rraver						
Location		RMI	LFY	Flow		W/D	Width Dep		Time	Tributa	•	Stream		Analys	
D : 1 (D: 1		40.0	(cfs/mi*)	Stream	Tributary	Ratio	(ft) (ft)	y (fps)	(days)	Hardness	pН	Hardness	pН	Hardness	pН
Point of Disch	_	12.9													
Model R	tesul	ts						Allegheny	Valley JSA	WWTP, NPDE	S Permit	No. PA0026	255, Out	fall 001	
Instructions			Corre	IDA TO INDUST					¬						
mstructions	Results		RETU	JRN TO INPUT	5) (SA	VE AS PD	DF [PRINT) ⊚ All	○ Inputs	○ Res	sults 🔾 Lir	nits		
☑ Hydrodyna	amics							PRINT) ⊕ All	○ Inputs					
☑ Hydrodyna Q ₇₋₁₀ RMI S	amics Stream low (cfs)	PWS W	RETU /ithdrawal sfs)	Net Stream Flow (cfs)	Discharge Flow	: Analysis (cfs)	Slope (ft/ft)	Depth (ft)	Width (ft)	W/D Ratio	Veloc (fps	ity Time	, c	Complete Mix T (min)	īme
✓ Hydrodyna Q ₇₋₁₀ RMI S FI 12.9	amics Stream low (cfs) 2,390	PWS W	/ithdrawal	Net Stream Flow (cfs) 2,390	Discharge	: Analysis (cfs)					Veloc	ity Time	C		īme
✓ Hydrodyna Q ₇₋₁₀ RMI 5 FI 12.9	amics Stream low (cfs)	PWS W	/ithdrawal	Net Stream Flow (cfs)	Discharge Flow	: Analysis (cfs)	Slope (ft/ft)	Depth (ft)	Width (ft)	W/D Ratio	Veloc (fps	ity Time	C	(min)	īme
✓ Hydrodyna Q ₇₋₁₀ RMI 5 12.9 12.6 Q _h	amics Stream low (cfs) 2,390 2,390	PWS W	fithdrawal cfs)	Net Stream Flow (cfs) 2,390 2,390	Discharge Flow 8.5	: Analysis (cfs) 09	Slope (ft/ft) 0.001	Depth (ft)	Width (ft)	W/D Ratio	Veloc (fps) 0.14	Time (days	C	(min) 1951.118	
✓ Hydrodyna Q ₇₋₁₀ RMI 5 12.9 12.6 Q _h RMI 5	amics Stream low (cfs) 2,390 2,390 Stream low (cfs)	PWS W	/ithdrawal	Net Stream Flow (cfs) 2,390 2,390 Net Stream Flow (cfs)	Discharge Flow 8.5	Analysis (cfs) 09	Slope (ft/ft) 0.001	Depth (ft) 12. Depth (ft)	Width (ft)	W/D Ratio	Veloc (fps) 0.14	ity Time (dause 6 0.126	C	(min) 1951.118 Complete Mix T (min)	
☐ Hydrodyna Q ₇₋₁₀ RMI	amics Stream low (cfs) 2,390 2,390 Stream	PWS W	fithdrawal	Net Stream Flow (cfs) 2,390 2,390 Net Stream	Discharge Flow 8.5	Analysis (cfs) 09	Slope (ft/ft) 0.001	Depth (ft)	Width (ft)	W/D Ratio	Veloc (fps) 0.14	ity Time (dause 6 0.126	C	(min) 1951.118 Complete Mix T	

[☑] Wasteload Allocations

Model Results

Allegheny Valley JSA WWTP, NPDES Permit No. PA0026255, Outfall 001

nstructions Results	RETURN	TO INPU	тѕ		SAVE AS	PDF)	PRINT	г ⊕ А	All Inputs Results Limits
Hydrodynamics									
✓ Wasteload Allocations									
Wasteload Allocations									
☑ AFC CC	T (min):	15	PI	MF:	0.088	Ana	lysis Hardne	ss (mg/l):	103.13 Analysis pH: 7.00
Pollutants	Conc	Stream CV		Conc g/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0			0	N/A	N/A	N/A	
Chloride (PWS)	0	0			0	N/A	N/A	N/A	
Sulfate (PWS)	0	0		77	0	N/A	N/A	N/A	
Total Aluminum	0	0			0	750	750	19,222	
Total Antimony	0	0			0	1,100	1,100	28,192	
Total Arsenic	0	0			0	340	340	8,714	Chem Translator of 1 applied
Total Barium	0	0			0	21,000	21,000	538,211	
Total Boron	0	0			0	8,100	8,100	207,596	
Total Cadmium	0	0			0	2.075	2.2	56.4	Chem Translator of 0.943 applied
Total Chromium (III)	0	0			0	584.343	1,849	47,393	Chem Translator of 0.316 applied
Hexavalent Chromium	0	0			0	16	16.3	418	Chem Translator of 0.982 applied
Total Cobalt	0	0			0	95	95.0	2,435	
Total Copper	0	0		77	0	13.835	14.4	369	Chem Translator of 0.98 applied
Free Cyanide	0	0		$\dashv \vdash$	0	22	22.0	564	
Dissolved Iron	0	0			0	N/A	N/A	N/A	
Total Iron	0	0			0	N/A	N/A	N/A	
Total Lead	0	0			0	66.786	84.9	2,176	Chem Translator of 0.787 applied
Total Manganese	0	0		77	0	N/A	N/A	N/A	
Total Mercury	0	0			0	1.400	1.65	42.2	Chem Translator of 0.85 applied
Total Nickel	0	0			0	480.617	482	12,342	Chem Translator of 0.998 applied
Total Phenols (Phenolics) (PWS)	0	0		\Rightarrow	0	N/A	N/A	N/A	
Total Selenium	0	0			0	N/A	N/A	N/A	Chem Translator of 0.922 applied
Total Silver	0	0		-	0	3.392	3.99	102	Chem Translator of 0.85 applied
Total Thallium	0	0			0	65	65.0	1,666	
Total Zinc	0	0			0	120.284	123	3,152	Chem Translator of 0.978 applied
Acrolein	0	0			0	3	3.0	76.9	

Acrylonitrile	0	0	- 0	650	650	16,659	
Benzene	0	0	0	640	640	16,403	
Bromoform	0	0	0	1,800	1,800	46,132	
Carbon Tetrachloride	0	0	0	2,800	2,800	71,762	
Chlorobenzene	0	0	0	1,200	1,200	30,755	
Chlorodibromomethane	0	0	- 0	N/A	N/A	N/A	
2-Chloroethyl Vinyl Ether	0	0	0	18,000	18,000	461,324	
Chloroform	0	0	0	1,900	1,900	48,695	
Dichlorobromomethane	0	0	0	N/A	N/A	N/A	
1,2-Dichloroethane	0	0	0	15,000	15,000	384,437	
1,1-Dichloroethylene	0	0	- 0	7,500	7,500	192,218	
1,2-Dichloropropane	0	0	0	11,000	11,000	281,920	
1,3-Dichloropropylene	0	0	0	310	310	7,945	
Ethylbenzene	0	0	0	2,900	2,900	74,324	
Methyl Bromide	0	0	0	550	550	14,096	
Methyl Chloride	0	0	0	28.000	28.000	717.615	
Methylene Chloride	0	0	0	12.000	12.000	307,549	
1,1,2,2-Tetrachloroethane	0	0	1 0	1.000	1.000	25.629	
Tetrachloroethylene	0	0	1 0	700	700	17.940	
Toluene	0	0	0	1,700	1,700	43,569	
1,2-trans-Dichloroethylene	0	0	Ö	6.800	6,800	174,278	
1.1.1-Trichloroethane	0	0	H ö	3.000	3,000	76.887	
1.1.2-Trichloroethane	0	0	H 0	3,400	3,400	87,139	
Trichloroethylene	0	0	1 0	2,300	2,300	58.947	
Vinyl Chloride	0	0	0	N/A	N/A	N/A	
2-Chlorophenol	0	0	0	560	560	14.352	
2.4-Dichlorophenol	0	0	0	1,700	1,700	43,569	
		0	_	1,700	660		
2,4-Dimethylphenol	0 0		0			16,915	
4,6-Dinitro-o-Cresol	0	0	0	80	80.0	2,050	
2,4-Dinitrophenol	0	0	0	660	660	16,915	
2-Nitrophenol	0	0	0	8,000	8,000	205,033	
4-Nitrophenol	0	0	0	2,300	2,300	58,947	
p-Chloro-m-Cresol	0	0	0	160	160	4,101	
Pentachlorophenol	0	0	0	8.735	8.73	224	
Phenol	0	0	- 0	N/A	N/A	N/A	
2,4,6-Trichlorophenol	0	0	- 0	460	460	11,789	
Acenaphthene	0	0	0	83	83.0	2,127	
Anthracene	0	0	0	N/A	N/A	N/A	
Benzidine	0	0	. 0	300	300	7,689	
Benzo(a)Anthracene	0	0	0	0.5	0.5	12.8	
Benzo(a)Pyrene	0	0	0	N/A	N/A	N/A	
3,4-Benzofluoranthene	0	0	0	N/A	N/A	N/A	
Benzo(k)Fluoranthene	0	0	0	N/A	N/A	N/A	
Bis(2-Chloroethyl)Ether	0	0	0	30.000	30,000	768.873	
Bis(2-Chloroisopropyl)Ether	0	0	0	N/A	N/A	N/A	
Bis(2-Ethylhexyl)Phthalate	0	0	0	4,500	4,500	115.331	
4-Bromophenyl Phenyl Ether	0	0	0	270	270	6,920	
Butyl Benzyl Phthalate	0	0	0	140	140	3,588	
2 Styl Denzyl i Indianate			-	110		0,000	

2-Chloronaphthalene	0	0	₩ 0	N/A	N/A	N/A	
2-Unioronaphinalene Chrysene	0	0	0	N/A	N/A N/A	N/A N/A	
Dibenzo(a,h)Anthrancene	0	0	0	N/A	N/A	N/A	
1.2-Dichlorobenzene	0	0	0	820	820	21.016	
	_	_	_				
1,3-Dichlorobenzene	0	0	0	350 730	350	8,970	
1,4-Dichlorobenzene	0	0	0		730	18,709	
3,3-Dichlorobenzidine	0	0	0	N/A	N/A	N/A	
Diethyl Phthalate	0	0	0	4,000	4,000	102,516	
Dimethyl Phthalate	0	0	0	2,500	2,500	64,073	
Di-n-Butyl Phthalate	0	0	0	110	110	2,819	
2,4-Dinitrotoluene	0	0	0	1,600	1,600	41,007	
2,6-Dinitrotoluene	0	0	0	990	990	25,373	
1,2-Diphenylhydrazine	0	0	0	15	15.0	384	
Fluoranthene	0	0	0	200	200	5,126	
Fluorene	0	0	- 0	N/A	N/A	N/A	
Hexachlorobenzene	0	0	0	N/A	N/A	N/A	
Hexachlorobutadiene	0	0	0	10	10.0	256	
Hexachlorocyclopentadiene	0	0	0	5	5.0	128	
Hexachloroethane	0	0	0	60	60.0	1,538	
Indeno(1,2,3-cd)Pyrene	0	0	0	N/A	N/A	N/A	
Isophorone	0	0	0	10,000	10,000	256,291	
Naphthalene	0	0	0	140	140	3,588	
Nitrobenzene	0	0	0	4,000	4,000	102,516	
n-Nitrosodimethylamine	0	0	0	17,000	17,000	435,695	
n-Nitrosodi-n-Propylamine	0	0	0	N/A	N/A	N/A	
n-Nitrosodiphenylamine	0	0	0	300	300	7,689	
Phenanthrene	0	0	0	5	5.0	128	
Pyrene	0	0	0	N/A	N/A	N/A	
1,2,4-Trichlorobenzene	0	0	0	130	130	3,332	
Aldrin	0	0	0	3	3.0	76.9	
alpha-BHC	0	0	0	N/A	N/A	N/A	
beta-BHC	0	0	0	N/A	N/A	N/A	
gamma-BHC	0	0	0	0.95	0.95	24.3	
Chlordane	0	0	0	2.4	2.4	61.5	
4.4-DDT	0	0	0	1.1	1.1	28.2	
4.4-DDE	0	0	0	1.1	1.1	28.2	
4,4-DDD	0	0	0	1.1	1.1	28.2	
Dieldrin	0	0	0	0.24	0.24	6.15	
alpha-Endosulfan	0	0	0	0.22	0.22	5.64	
beta-Endosulfan	0	0	Ö	0.22	0.22	5.64	
Endosulfan Sulfate	0	0	0	N/A	N/A	N/A	
Endrin	0	0	0	0.086	0.086	2.2	
Endrin Aldehyde	0	0	0	N/A	N/A	N/A	
Heptachlor	0	0	0	0.52	0.52	13.3	
	0	0	0	0.52	0.52	13.3	
Heptachlor Epoxide	0	0		0.5	0.5	12.8	
Toxaphene	U	U	0	0.73	0.73	18./	

 ✓ CFC
 CCT (min):
 720
 PMF:
 0.607
 Analysis Hardness (mg/l):
 100.47
 Analysis pH:
 7.00

	Sueam	Stream	Trib Cond	Fate	WQC	WQ Obi		
Pollutants	Conc	CV	(µg/L)	Coef	(µg/L)	(µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	(ua/L)	0		0	N/A	N/A	N/A	
Chloride (PWS)	0	0		0	N/A	N/A	N/A	
Sulfate (PWS)	0	0		0	N/A	N/A	N/A	
Total Aluminum	0	0		0	N/A	N/A	N/A	
Total Antimony	0	0		0	220	220	37,760	
Total Arsenic	0	0		0	150	150	25,745	Chem Translator of 1 applied
Total Barium	0	0		0	4,100	4,100	703,706	
Total Boron	0	0		0	1,600	1,600	274,617	
Total Cadmium	0	0		- 0	0.247	0.27	46.6	Chem Translator of 0.909 applied
Total Chromium (III)	0	0		0	74.398	86.5	14,848	Chem Translator of 0.86 applied
Hexavalent Chromium	0	0		0	10	10.4	1.784	Chem Translator of 0.982 applied
Total Cobalt	0	0		0	19	19.0	3,261	
Total Copper	0	0		0	8.992	9.37	1,608	Chem Translator of 0.98 applied
Free Cyanide	0	0		0	5.2	5.2	893	
Dissolved Iron	0	0		0	N/A	N/A	N/A	
Total Iron	0	0		0	1,500	1,500	422,843	WQC = 30 day average; PMF = 1
Total Lead	0	0		- 0	2.529	3.2	549	Chem Translator of 0.79 applied
Total Manganese	0	0		0	N/A	N/A	N/A	
Total Mercury	0	0		0	0.770	0.91	155	Chem Translator of 0.85 applied
Total Nickel	0	0		0	52.212	52.4	8.988	Chem Translator of 0.997 applied
Total Phenols (Phenolics) (PWS)	0	0		0	N/A	N/A	N/A	
Total Selenium	0	0		0	4.600	4.99	856	Chem Translator of 0.922 applied
Total Silver	0	0		0	N/A	N/A	N/A	Chem Translator of 1 applied
Total Thallium	0	0		0	13	13.0	2,231	•
Total Zinc	0	0		0	118.607	120	20,646	Chem Translator of 0.988 applied
Acrolein	0	0		0	3	3.0	515	
Acrylonitrile	0	0		0	130	130	22.313	
Benzene	0	0		0	130	130	22,313	
Bromoform	0	0		0	370	370	63,505	
Carbon Tetrachloride	0	0		0	560	560	96,116	
Chlorobenzene	0	0		0	240	240	41,193	
Chlorodibromomethane	0	0		0	N/A	N/A	N/A	
2-Chloroethyl Vinyl Ether	0	0		0	3,500	3,500	600,724	
Chloroform	0	0		0	390	390	66,938	
Dichlorobromomethane	0	0		0	N/A	N/A	N/A	
1,2-Dichloroethane	0	0		0	3,100	3,100	532,070	
1,1-Dichloroethylene	0	0		0	1,500	1,500	257,453	
1,2-Dichloropropane	0	0		0	2,200	2,200	377,598	
1,3-Dichloropropylene	0	0		0	61	61.0	10,470	
Ethylbenzene	0	0		0	580	580	99,549	
Methyl Bromide	0	0		0	110	110	18,880	
Methyl Chloride	0	0		0	5,500	5,500	943,995	

Methylene Chloride	0	0		_		0	2,400	2,400	411,925	
1.1.2.2-Tetrachloroethane	0	0		+	+	0	210	210	38.043	
Tetrachloroethylene	0	0	₩	+	++	0	140	140	24,029	
Toluene	0	0	₩	┿	++	0	330	330	56.640	
1,2-trans-Dichloroethylene	0	0		+		0	1,400	1,400	240,290	
1.1.1-Trichloroethane	0	0	₩	+	++	0	610	610	104.698	
1,1,2-Trichloroethane	0	0	₩	+	++	0	680	680	116,712	
Trichloroethylene	0	0	₩	+	+	0	450	450	77.236	
Vinyl Chloride	0	0		#	\square	0	N/A	N/A	N/A	
2-Chlorophenol	0	0	₩	+	++	0	110	110	18.880	
2,4-Dichlorophenol	0	0	₩	+	++-	0	340	340	58.356	
2,4-Dimethylphenol	0	0		+	++	0	130	130	22,313	
4,6-Dinitro-o-Cresol	0	0		+		0	18	16.0	2,748	
		0	₩	+	++	_	130	130	22,740	
2,4-Dinitrophenol	0	_	₩	+	₩	0				
2-Nitrophenol	0	0		+		0	1,600 470	1,600 470	274,617 80.669	
4-Nitrophenol	0					_				
p-Chloro-m-Cresol	0	0		1		0	500	500	85,818	
Pentachlorophenol	0	0	₩	+	₩	0	6.701	6.7	1,150	
Phenol	0	0		\pm	#	0	N/A	N/A	N/A	
2,4,6-Trichlorophenol	0	0		\perp		0	91	91.0	15,619	
Acenaphthene	0	0		Ţ	Щ	0	17	17.0	2,918	
Anthracene	0	0	₩	+	4	0	N/A	N/A	N/A	
Benzidine	0	0		+		0	59	59.0	10,126	
Benzo(a)Anthracene	0	0		$^{\perp}$		0	0.1	0.1	17.2	
Benzo(a)Pyrene	0	0				0	N/A	N/A	N/A	
3,4-Benzofluoranthene	0	0	\sqcup	4		0	N/A	N/A	N/A	
Benzo(k)Fluoranthene	0	0	+	\pm		0	N/A	N/A	N/A	
Bis(2-Chloroethyl)Ether	0	0				0	6,000	6,000	1,029,813	
Bis(2-Chloroisopropyl)Ether	0	0		T		0	N/A	N/A	N/A	
Bis(2-Ethylhexyl)Phthalate	0	0	\Box	Ţ	\Box	0	910	910	156,188	
4-Bromophenyl Phenyl Ether	0	0				0	54	54.0	9,268	
Butyl Benzyl Phthalate	0	0				0	35	35.0	6,007	
2-Chloronaphthalene	0	0		T		0	N/A	N/A	N/A	
Chrysene	0	0		T		0	N/A	N/A	N/A	
Dibenzo(a,h)Anthrancene	0	0		+		0	N/A	N/A	N/A	
1,2-Dichlorobenzene	0	0	H			0	160	160	27,462	
1,3-Dichlorobenzene	0	0				0	69	69.0	11,843	
1,4-Dichlorobenzene	0	0		Ţ	\Box	0	150	150	25,745	
3,3-Dichlorobenzidine	0	0				0	N/A	N/A	N/A	
Diethyl Phthalate	0	0				0	800	800	137,308	
Dimethyl Phthalate	0	0				0	500	500	85,818	
Di-n-Butyl Phthalate	0	0				0	21	21.0	3,604	
2,4-Dinitrotoluene	0	0				0	320	320	54,923	
				_	-					
2.6-Dinitrotoluene	0	0	ii ii			0	200	200	34,327	

Fluoranthene Fluorene	0	0	0	40	40.0	6,865	
Elupropo			_	40	70.0	0,000	
Fluorene	0	0	0	N/A	N/A	N/A	
Hexachlorobenzene	0	0	0	N/A	N/A	N/A	
Hexachlorobutadiene	0	0	0	2	2.0	343	
Hexachlorocyclopentadiene	0	0	0	1	1.0	172	
Hexachloroethane	0	0	0	12	12.0	2,060	
Indeno(1,2,3-cd)Pyrene	0	0	0	N/A	N/A	N/A	
Isophorone	0	0 -	0	2,100	2,100	360,435	
Naphthalene	0	0	0	43	43.0	7,380	
Nitrobenzene	0	0	0	810	810	139,025	
n-Nitrosodimethylamine	0	0 .	0	3,400	3,400	583,561	
n-Nitrosodi-n-Propylamine	0	0	0	N/A	N/A	N/A	
n-Nitrosodiphenylamine	0	0	0	59	59.0	10,126	
Phenanthrene	0	0	0	1	1.0	172	
Pyrene	0	0 .	0	N/A	N/A	N/A	
1,2,4-Trichlorobenzene	0	0 -	0	26	26.0	4,463	
Aldrin	0	0	0	0.1	0.1	17.2	
alpha-BHC	0	0	0	N/A	N/A	N/A	
beta-BHC	0	0 .	0	N/A	N/A	N/A	
gamma-BHC	0	0	0	N/A	N/A	N/A	
Chlordane	0	0	0	0.0043	0.004	0.74	
4,4-DDT	0	0	0	0.001	0.001	0.17	
4,4-DDE	0	0	0	0.001	0.001	0.17	
4,4-DDD	0	0	0	0.001	0.001	0.17	
Dieldrin	0	0	0	0.056	0.056	9.61	
alpha-Endosulfan	0	0	0	0.056	0.056	9.61	
beta-Endosulfan	0	0	0	0.056	0.056	9.61	
Endosulfan Sulfate	0	0	0	N/A	N/A	N/A	
Endrin	0	0	0	0.036	0.036	6.18	
Endrin Aldehyde	0	0	0	N/A	N/A	N/A	
Heptachlor	0	0	0	0.0038	0.004	0.65	
Heptachlor Epoxide	0	0	0	0.0038	0.004	0.65	
Toxaphene	0	0	0	0.0002	0.0002	0.034	

✓ THH CCT (min)	720	PMF:	0.607	Analysis Hardness (mg/l):	N/A	Analysis pH:	N/A	
-----------------	-----	------	-------	---------------------------	-----	--------------	-----	--

Pollutants	Conc (ug/L)	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0		0	500,000	500,000	N/A	
Chloride (PWS)	0	0		0	250,000	250,000	N/A	
Sulfate (PWS)	0	0		0	250,000	250,000	N/A	
Total Aluminum	0	0		0	N/A	N/A	N/A	
Total Antimony	0	0		0	5.6	5.6	961	
Total Arsenic	0	0		0	10	10.0	1,716	
Total Barium	0	0		0	2,400	2.400	411,925	

Total Boron	0	0		0	3,100	3,100	532,070	
Total Cadmium	0	0		0	N/A	N/A	N/A	
Total Chromium (III)	0	0		0	N/A	N/A	N/A	
Hexavalent Chromium	0	0		0	N/A	N/A	N/A	
Total Cobalt	0	0		0	N/A	N/A	N/A	
Total Copper	0	0		0	N/A	N/A	N/A	
Free Cyanide	0	0		0	4	4.0	687	
Dissolved Iron	0	0		0	300	300	51,491	
Total Iron	0	0		0	N/A	N/A	N/A	
Total Lead	0	0		0	N/A	N/A	N/A	
Total Manganese	0	0		0	1,000	1,000	171,635	
Total Mercury	0	0		0	0.050	0.05	8.58	
Total Nickel	0	0		0	610	610	104,698	
Total Phenols (Phenolics) (PWS)	0	0		0	5	5.0	N/A	
Total Selenium	0	0		0	N/A	N/A	N/A	
Total Silver	0	0		0	N/A	N/A	N/A	
Total Thallium	0	0		0	0.24	0.24	41.2	
Total Zinc	0	0		0	N/A	N/A	N/A	
Acrolein	0	0		0	3	3.0	515	
Acrylonitrile	0	0		0	N/A	N/A	N/A	
Benzene	0	0		0	N/A	N/A	N/A	
Bromoform	0	0		0	N/A	N/A	N/A	
Carbon Tetrachloride	0	0		0	N/A	N/A	N/A	
Chlorobenzene	0	0		0	100	100.0	17,164	
Chlorodibromomethane	0	0		0	N/A	N/A	N/A	
2-Chloroethyl Vinyl Ether	0	0		0	N/A	N/A	N/A	
Chloroform	0	0		0	N/A	N/A	N/A	
Dichlorobromomethane	0	0		0	N/A	N/A	N/A	
1,2-Dichloroethane	0	0		0	N/A	N/A	N/A	
1,1-Dichloroethylene	0	0		0	33	33.0	5,664	
1,2-Dichloropropane	0	0		0	N/A	N/A	N/A	
1,3-Dichloropropylene	0	0		0	N/A	N/A	N/A	
Ethylbenzene	0	0		0	68	68.0	11,671	
Methyl Bromide	0	0		0	100	100.0	17,164	
Methyl Chloride	0	0		0	N/A	N/A	N/A	
Methylene Chloride	0	0		0	N/A	N/A	N/A	
1,1,2,2-Tetrachloroethane	0	0		0	N/A	N/A	N/A	
Tetrachloroethylene	0	0		. 0	N/A	N/A	N/A	
Toluene	0	0		0	57	57.0	9,783	
1,2-trans-Dichloroethylene	0	0		0	100	100.0	17,164	
1,1,1-Trichloroethane	0	0		0	10,000	10,000	1,716,355	
1,1,2-Trichloroethane	0	0		0	N/A	N/A	N/A	
Trichloroethylene	0	0		0	N/A	N/A	N/A	
Vinyl Chloride	0	0		0	N/A	N/A	N/A	
2-Chlorophenol	0	0		0	30	30.0	5,149	

2,4-Dichlorophenol	0	0	0	10	10.0	1,716	
2,4-Dimethylphenol	0	0	0	100	100.0	17,164	
4,6-Dinitro-o-Cresol	0	0	0	2	2.0	343	
2,4-Dinitrophenol	0	0	0	10	10.0	1,716	
2-Nitrophenol	0	0	0	N/A	N/A	N/A	
4-Nitrophenol	0	0	0	N/A	N/A	N/A	
p-Chloro-m-Cresol	0	0	0	N/A	N/A	N/A	
Pentachlorophenol	0	0	0	N/A	N/A	N/A	
Phenol	0	0	0	4,000	4,000	686,542	
2,4,6-Trichlorophenol	0	0	0	N/A	N/A	N/A	
Acenaphthene	0	0	0	70	70.0	12,014	
Anthracene	0	0	0	300	300	51,491	
Benzidine	0	0	0	N/A	N/A	N/A	
Benzo(a)Anthracene	0	0	0	N/A	N/A	N/A	
Benzo(a)Pyrene	0	0	0	N/A	N/A	N/A	
3,4-Benzofluoranthene	0	0	0	N/A	N/A	N/A	
Benzo(k)Fluoranthene	0	0	0	N/A	N/A	N/A	
Bis(2-Chloroethyl)Ether	0	0	0	N/A	N/A	N/A	
Bis(2-Chloroisopropyl)Ether	0	0	0	200	200	34,327	
Bis(2-Ethylhexyl)Phthalate	0	0	0	N/A	N/A	N/A	
4-Bromophenyl Phenyl Ether	0	0	0	N/A	N/A	N/A	
Butyl Benzyl Phthalate	0	0	0	0.1	0.1	17.2	
2-Chloronaphthalene	0	0	0	800	800	137,308	
Chrysene	0	0	0	N/A	N/A	N/A	
Dibenzo(a,h)Anthrancene	0	0	0	N/A	N/A	N/A	
1,2-Dichlorobenzene	0	0	0	1,000	1,000	171,635	
1,3-Dichlorobenzene	0	0	0	7	7.0	1,201	
1,4-Dichlorobenzene	0	0	0	300	300	51,491	
3,3-Dichlorobenzidine	0	0	0	N/A	N/A	N/A	
Diethyl Phthalate	0	0	0	600	600	102,981	
Dimethyl Phthalate	0	0	0	2,000	2,000	343,271	
Di-n-Butyl Phthalate	0	0	0	20	20.0	3,433	
2,4-Dinitrotoluene	0	0	0	N/A	N/A	N/A	
2,6-Dinitrotoluene	0	0	0	N/A	N/A	N/A	
1,2-Diphenylhydrazine	0	0	0	N/A	N/A	N/A	
Fluoranthene	0	0	0	20	20.0	3,433	
Fluorene	0	0	0	50	50.0	8,582	
Hexachlorobenzene	0	0	0	N/A	N/A	N/A	
Hexachlorobutadiene	0	0	0	N/A	N/A	N/A	
Hexachlorocyclopentadiene	0	0	0	4	4.0	687	
Hexachloroethane	0	0	0	N/A	N/A	N/A	
Indeno(1,2,3-cd)Pyrene	0	0	0	N/A	N/A	N/A	
Isophorone	0	0	0	34	34.0	5,836	
Naphthalene	0	0	0	N/A	N/A	N/A	
Nitrobenzene	0	0	0	10	10.0	1,716	

0	0		0	N/A	N/A	N/A	
0	0		0	N/A	N/A	N/A	
0	0		0	N/A	N/A	N/A	
0	0		0	N/A	N/A	N/A	
0	0		0	20	20.0	3,433	
0	0		0	0.07	0.07	12.0	
0	0		0	N/A	N/A	N/A	
0	0		- 0	N/A	N/A	N/A	
0	0		0	N/A	N/A	N/A	
0	0		0	4.2	4.2	721	
0	0		0	N/A	N/A	N/A	
0	0		0	N/A	N/A	N/A	
0	0		0	N/A	N/A	N/A	
0	0		0	N/A	N/A	N/A	
0	0		0	N/A	N/A	N/A	
0	0		0	20	20.0	3,433	
0	0		0	20	20.0	3,433	
0	0		0	20	20.0	3,433	
0	0		0	0.03	0.03	5.15	
0	0		0	1	1.0	172	
0	0		0	N/A	N/A	N/A	
0	0		0	N/A	N/A	N/A	
0	0		0	N/A	N/A	N/A	
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			0 0 0 0 N/A 0 0 0 N/A 0 0 0 N/A 0 0 0 N/A 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 N/A 0 0 0 0 N/A 0 0 0 N/A	0 0 0 N/A N/A 0 0 0 N/A N/A 0 0 0 N/A N/A 0 0 0 0 20 20.0 0 0 0 0.07 0.07 0.07 0 0 0 0 N/A N/A 0 0 0 N/A N/A N/A 0 0 0 0 N/A N/A N/A 0 0 0 0 N/A N/A <t< td=""><td>0 0 0 N/A N/A N/A N/A 0 0 0 N/A N/A N/A N/A 0 0 0 N/A N/A N/A N/A 0 0 0 0 0.07 0.07 12.0 0 0 0 0.07 0.07 12.0 0 0 0 0.07 0.07 12.0 0 0 0 N/A N/A N/A N/A 0 0 0 N/A N/A N/A N/A</td></t<>	0 0 0 N/A N/A N/A N/A 0 0 0 N/A N/A N/A N/A 0 0 0 N/A N/A N/A N/A 0 0 0 0 0.07 0.07 12.0 0 0 0 0.07 0.07 12.0 0 0 0 0.07 0.07 12.0 0 0 0 N/A N/A N/A N/A 0 0 0 N/A N/A N/A N/A

☑ CRL C	CT (min): 7:	20	PMF:	0.849	Ana	alysis Hardne	ess (mg/l):	N/A Analysis pH: N/A
Pollutants	Conc	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A	
Chloride (PWS)	0	0		0	N/A	N/A	N/A	
Sulfate (PWS)	0	0		0	N/A	N/A	N/A	
Total Aluminum	0	0		0	N/A	N/A	N/A	
Total Antimony	0	0		0	N/A	N/A	N/A	
Total Arsenic	0	0		0	N/A	N/A	N/A	
Total Barium	0	0		0	N/A	N/A	N/A	
Total Boron	0	0		0	N/A	N/A	N/A	
Total Cadmium	0	0		0	N/A	N/A	N/A	
Total Chromium (III)	0	0		0	N/A	N/A	N/A	
Hexavalent Chromium	0	0		0	N/A	N/A	N/A	
Total Cobalt	0	0		0	N/A	N/A	N/A	
Total Copper	0	0		0	N/A	N/A	N/A	
Free Cyanide	0	0		0	N/A	N/A	N/A	
Dissolved Iron	0	0		0	N/A	N/A	N/A	
Total Iron	0	0		0	N/A	N/A	N/A	
Total Lead	0	0		0	N/A	N/A	N/A	

Total Manganese	0	0		0	N/A	N/A	N/A	T
Total Mercury	0	0		0	N/A N/A	N/A N/A	N/A N/A	
-		_						
Total Nickel	0	0		0	N/A	N/A	N/A	
Total Phenols (Phenolics) (PWS)	0	0		0	N/A	N/A	N/A	
Total Selenium	0	0		0	N/A	N/A	N/A	
Total Silver	0	0		0	N/A	N/A	N/A	
Total Thallium	0	0		0	N/A	N/A	N/A	
Total Zinc	0	0		0	N/A	N/A	N/A	
Acrolein	0	0		0	N/A	N/A	N/A	
Acrylonitrile	0	0		0	0.06	0.06	40.0	
Benzene	0	0		0	0.58	0.58	386	
Bromoform	0	0		0	7	7.0	4,664	
Carbon Tetrachloride	0	0		0	0.4	0.4	267	
Chlorobenzene	0	0		0	N/A	N/A	N/A	
Chlorodibromomethane	0	0		0	0.8	0.8	533	
2-Chloroethyl Vinyl Ether	0	0		0	N/A	N/A	N/A	
Chloroform	0	0		0	5.7	5.7	3,798	
Dichlorobromomethane	0	0		0	0.95	0.95	633	
1,2-Dichloroethane	0	0		0	9.9	9.9	6,596	
1,1-Dichloroethylene	0	0		0	N/A	N/A	N/A	
1,2-Dichloropropane	0	0		0	0.9	0.9	600	
1,3-Dichloropropylene	0	0		0	0.27	0.27	180	
Ethylbenzene	0	0		0	N/A	N/A	N/A	
Methyl Bromide	0	0		0	N/A	N/A	N/A	
Methyl Chloride	0	0		0	N/A	N/A	N/A	
Methylene Chloride	0	0		0	20	20.0	13,326	
1,1,2,2-Tetrachloroethane	0	0		0	0.2	0.2	133	
Tetrachloroethylene	0	0		0	10	10.0	6,663	
Toluene	0	0		0	N/A	N/A	N/A	
1,2-trans-Dichloroethylene	0	0		0	N/A	N/A	N/A	
1.1.1-Trichloroethane	0	0		0	N/A	N/A	N/A	
1,1,2-Trichloroethane	0	0		0	0.55	0.55	366	
Trichloroethylene	0	0		0	0.6	0.6	400	
Vinyl Chloride	0	0		0	0.02	0.02	13.3	
2-Chlorophenol	0	0		0	N/A	N/A	N/A	
2,4-Dichlorophenol	0	0		0	N/A	N/A	N/A	
2,4-Dimethylphenol	0	0		0	N/A	N/A	N/A	
4.6-Dinitro-o-Cresol	0	0		0	N/A	N/A	N/A	
2,4-Dinitrophenol	0	0		0	N/A	N/A	N/A	
2-Nitrophenol	0	0		0	N/A	N/A	N/A	
4-Nitrophenol	0	0		0	N/A	N/A	N/A	
p-Chloro-m-Cresol	0	0		0	N/A	N/A	N/A	
Pentachlorophenol	0	0		0	0.030	0.03	20.0	
Phenol	0	0		0	0.030 N/A	N/A	20.0 N/A	
2,4,6-Trichlorophenol	0	0		0	1.5	1.5	999	
2,4,0-Trichlorophenol	U	U	-	U	1.0	1.0	888	

Acenaphthene	0	0	0	N/A	N/A	N/A	
Anthracene	0	0	0	N/A	N/A	N/A	
Benzidine	0	0	0	0.0001	0.0001	0.067	
Benzo(a)Anthracene	0	0	- 0	0.001	0.001	0.67	
Benzo(a)Pyrene	0	0	0	0.0001	0.0001	0.067	
3,4-Benzofluoranthene	0	0	0	0.001	0.001	0.67	
Benzo(k)Fluoranthene	0	0	0	0.01	0.01	6.66	
Bis(2-Chloroethyl)Ether	0	0	0	0.03	0.03	20.0	
Bis(2-Chloroisopropyl)Ether	0	0	0	N/A	N/A	N/A	
Bis(2-Ethylhexyl)Phthalate	0	0	0	0.32	0.32	213	
4-Bromophenyl Phenyl Ether	0	0	0	N/A	N/A	N/A	
Butyl Benzyl Phthalate	0	0	0	N/A	N/A	N/A	
2-Chloronaphthalene	0	0	0	N/A	N/A	N/A	
Chrysene	0	0	0	0.12	0.12	80.0	
Dibenzo(a,h)Anthrancene	0	0	0	0.0001	0.0001	0.067	
1,2-Dichlorobenzene	0	0	0	N/A	N/A	N/A	
1,3-Dichlorobenzene	0	0	0	N/A	N/A	N/A	
1,4-Dichlorobenzene	0	0	0	N/A	N/A	N/A	
3,3-Dichlorobenzidine	0	0	0	0.05	0.05	33.3	
Diethyl Phthalate	0	0	0	N/A	N/A	N/A	
Dimethyl Phthalate	0	0	0	N/A	N/A	N/A	
Di-n-Butyl Phthalate	0	0	0	N/A	N/A	N/A	
2,4-Dinitrotoluene	0	0	0	0.05	0.05	33.3	
2,6-Dinitrotoluene	0	0	0	0.05	0.05	33.3	
1,2-Diphenylhydrazine	0	0	0	0.03	0.03	20.0	
Fluoranthene	0	0	0	N/A	N/A	N/A	
Fluorene	0	0	0	N/A	N/A	N/A	
Hexachlorobenzene	0	0	0	0.00008	0.00008	0.053	
Hexachlorobutadiene	0	0	0	0.01	0.01	6.66	
Hexachlorocyclopentadiene	0	0	0	N/A	N/A	N/A	
Hexachloroethane	0	0	0	0.1	0.1	66.6	
Indeno(1,2,3-cd)Pyrene	0	0	0	0.001	0.001	0.67	
Isophorone	0	0	0	N/A	N/A	N/A	
Naphthalene	0	0	0	N/A	N/A	N/A	
Nitrobenzene	0	0	0	N/A	N/A	N/A	
n-Nitrosodimethylamine	0	0	0	0.0007	0.0007	0.47	
n-Nitrosodi-n-Propylamine	0	0	0	0.005	0.005	3.33	
n-Nitrosodiphenylamine	0	0	0	3.3	3.3	2,199	
Phenanthrene	0	0	- 0	N/A	N/A	N/A	
Pyrene	0	0	0	N/A	N/A	N/A	
1,2,4-Trichlorobenzene	0	0	0	N/A	N/A	N/A	
Aldrin	0	0	0	0.0000008	8.00E-07	0.0005	
alpha-BHC	0	0	0	0.0004	0.0004	0.27	
beta-BHC	0	0	0	0.008	0.008	5.33	
gamma-BHC	0	0	0	N/A	N/A	N/A	

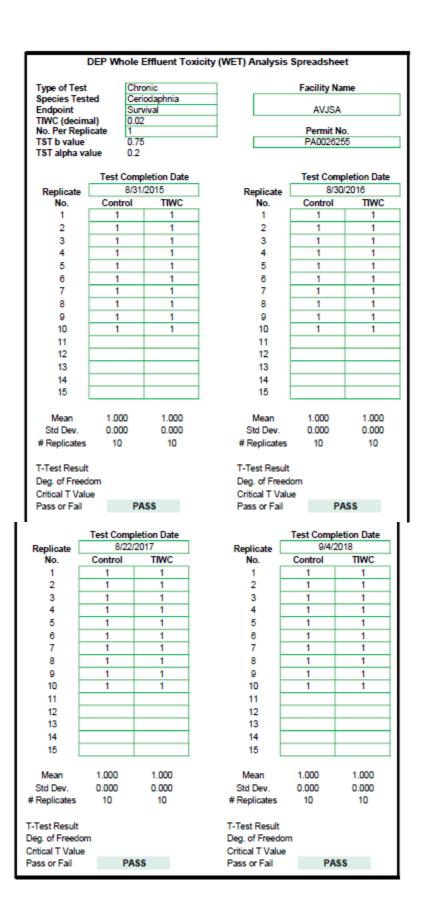
Chlordane	0	0	0	0.0003	0.0003	0.2	
4,4-DDT	0	0	0	0.00003	0.00003	0.02	
4,4-DDE	0	0	0	0.00002	0.00002	0.013	
4,4-DDD	0	0	0	0.0001	0.0001	0.067	
Dieldrin	0	0	0	0.000001	0.000001	0.0007	
alpha-Endosulfan	0	0	0	N/A	N/A	N/A	
beta-Endosulfan	0	0	0	N/A	N/A	N/A	
Endosulfan Sulfate	0	0	0	N/A	N/A	N/A	
Endrin	0	0	0	N/A	N/A	N/A	
Endrin Aldehyde	0	0	0	N/A	N/A	N/A	
Heptachlor	0	0	0	0.000006	0.000006	0.004	
Heptachlor Epoxide	0	0	0	0.00003	0.00003	0.02	
Toxaphene	0	0	0	0.0007	0.0007	0.47	

☑ Recommended WQBELs & Monitoring Requirements

No. Samples/Month: 4

	Mass	Limits	Concentration Limits						
Pollutants	AML (lbs/day)	MDL (lbs/day)	AML	MDL	IMAX	Units	Governing WQBEL	WQBEL Basis	Comments

☑ Other Pollutants without Limits or Monitoring


The following pollutants do not require effluent limits or monitoring based on water quality because reasonable potential to exceed water quality criteria was not determined and the discharge concentration was less than thresholds for monitoring, or the pollutant was not detected and a sufficiently sensitive analytical method was used (e.g., <= Target QL).

Pollutants	Governing WQBEL	Units	Comments
Total Dissolved Solids (PWS)	N/A	N/A	PWS Not Applicable
Chloride (PWS)	N/A	N/A	PWS Not Applicable
Bromide	N/A	N/A	No WQS
Sulfate (PWS)	N/A	N/A	PWS Not Applicable
Total Aluminum	12,320	μg/L	Discharge Conc ≤ 10% WQBEL
Total Antimony	961	μg/L	Discharge Conc ≤ 10% WQBEL
Total Arsenic	1,716	μg/L	Discharge Conc ≤ 10% WQBEL
Total Barium	344,972	μg/L	Discharge Conc ≤ 10% WQBEL
Total Beryllium	N/A	N/A	No WQS
Total Boron	133,061	μg/L	Discharge Conc ≤ 10% WQBEL
Total Cadmium	36.2	μg/L	Discharge Conc < TQL
Total Chromium (III)	14,848	μg/L	Discharge Conc ≤ 10% WQBEL
Hexavalent Chromium	268	μg/L	Discharge Conc ≤ 10% WQBEL
Total Cobalt	1,561	μg/L	Discharge Conc ≤ 10% WQBEL
Total Copper	237	μg/L	Discharge Conc ≤ 10% WQBEL
Free Cyanide	361	μg/L	Discharge Conc ≤ 25% WQBEL

Total Cyanide	N/A	N/A	No WQS
Dissolved Iron	51,491	μg/L	Discharge Conc ≤ 10% WQBEL
Total Iron	422,843	μg/L	Discharge Conc ≤ 10% WQBEL
Total Lead	549	μg/L	Discharge Conc ≤ 10% WQBEL
Total Manganese	171,635	μg/L	Discharge Conc ≤ 10% WQBEL
Total Mercury	8.58	μg/L	Discharge Conc ≤ 10% WQBEL
Total Nickel	7,911	μg/L	Discharge Conc ≤ 10% WQBEL
Total Phenols (Phenolics) (PWS)		μg/L	Discharge Conc < TQL
Total Selenium	856	μg/L	Discharge Conc < TQL
Total Silver	65.6	μg/L	Discharge Conc < TQL
Total Thallium	41.2	μg/L	Discharge Conc < TQL
Total Zinc	2,020	μg/L	Discharge Conc ≤ 10% WQBEL
Total Molybdenum	N/A	N/A	No WQS
Acrolein	49.3	μg/L	Discharge Conc < TQL
Acrylonitrile	40.0	μg/L	Discharge Conc < TQL
Benzene	386	μg/L	Discharge Conc < TQL
Bromoform	4,664	μg/L	Discharge Conc < TQL
Carbon Tetrachloride	267	μg/L	Discharge Conc < TQL
Chlorobenzene	17,164	μg/L	Discharge Conc < TQL
Chlorodibromomethane	533	μg/L	Discharge Conc < TQL
Chloroethane	N/A	N/A	No WQS
2-Chloroethyl Vinyl Ether	295,690	μg/L	Discharge Conc < TQL
Chloroform	3.798	μg/L	Discharge Conc ≤ 25% WQBEL
Dichlorobromomethane	633	μg/L	Discharge Conc < TQL
1,1-Dichloroethane	N/A	N/A	No WQS
1,2-Dichloroethane	6,596	μg/L	Discharge Conc < TQL
1,1-Dichloroethylene	5,664	μg/L	Discharge Conc < TQL
1,2-Dichloropropane	600	μg/L	Discharge Conc < TQL
1,3-Dichloropropylene	180	μg/L	Discharge Conc < TQL
1,4-Dioxane	N/A	N/A	No WQS
Ethylbenzene	11,671	μg/L	Discharge Conc < TQL
Methyl Bromide	9.035	μg/L	Discharge Conc < TQL
Methyl Chloride	459,962	μg/L	Discharge Conc < TQL
Methylene Chloride	13,326	μg/L	Discharge Conc ≤ 25% WQBEL
1,1,2,2-Tetrachloroethane	133	μg/L	Discharge Conc < TQL
Tetrachloroethylene	6,663	μg/L	Discharge Conc < TQL
Toluene	9.783	μg/L	Discharge Conc < TQL
1,2-trans-Dichloroethylene	17,164	μg/L	Discharge Conc < TQL
1,1,1-Trichloroethane	49,282	μg/L	Discharge Conc < TQL
1.1.2-Trichloroethane	366	μg/L	Discharge Conc < TQL
Trichloroethylene	400	μg/L	Discharge Conc < TQL
Vinyl Chloride	13.3	μg/L	Discharge Conc < TQL
2-Chlorophenol	5,149	μg/L	Discharge Conc < TQL
2,4-Dichlorophenol	1,716	μg/L	Discharge Conc < TQL
	-,,,,,	F-9-	Discharge Conc < TQL

4,6-Dinitro-o-Cresol	343	μg/L	Discharge Conc < TQL
2,4-Dinitrophenol	1,716	μg/L	Discharge Conc < TQL
2-Nitrophenol	131,418	μg/L	Discharge Conc < TQL
4-Nitrophenol	37,783	μg/L	Discharge Conc < TQL
p-Chloro-m-Cresol	2,628	μg/L	Discharge Conc < TQL
Pentachlorophenol	20.0	μg/L	Discharge Conc < TQL
Phenol	686,542	μg/L	Discharge Conc < TQL
2,4,6-Trichlorophenol	999	μg/L	Discharge Conc < TQL
Acenaphthene	1,363	μg/L	Discharge Conc < TQL
Acenaphthylene	N/A	N/A	No WQS
Anthracene	51,491	μg/L	Discharge Conc < TQL
Benzidine	0.067	μg/L	Discharge Conc < TQL
Benzo(a)Anthracene	0.67	μg/L	Discharge Conc < TQL
Benzo(a)Pyrene	0.067	μg/L	Discharge Conc < TQL
3,4-Benzofluoranthene	0.67	μg/L	Discharge Conc < TQL
Benzo(ghi)Perylene	N/A	N/A	No WQS
Benzo(k)Fluoranthene	6.66	μg/L	Discharge Conc < TQL
Bis(2-Chloroethoxy)Methane	N/A	N/A	No WQS
Bis(2-Chloroethyl)Ether	20.0	μg/L	Discharge Conc < TQL
Bis(2-Chloroisopropyl)Ether	34,327	μg/L	Discharge Conc < TQL
Bis(2-Ethylhexyl)Phthalate	213	μg/L	Discharge Conc ≤ 25% WQBEL
4-Bromophenyl Phenyl Ether	4,435	μg/L	Discharge Conc < TQL
Butyl Benzyl Phthalate	17.2	μg/L	Discharge Conc < TQL
2-Chloronaphthalene	137,308	μg/L	Discharge Conc < TQL
4-Chlorophenyl Phenyl Ether	N/A	N/A	No WQS
Chrysene	80.0	μg/L	Discharge Conc < TQL
Dibenzo(a,h)Anthrancene	0.067	μg/L	Discharge Conc < TQL
1,2-Dichlorobenzene	13,470	μg/L	Discharge Conc < TQL
1,3-Dichlorobenzene	1,201	μg/L	Discharge Conc < TQL
1,4-Dichlorobenzene	11,992	μg/L	Discharge Conc < TQL
3,3-Dichlorobenzidine	33.3	μg/L	Discharge Conc < TQL
Diethyl Phthalate	65,709	μg/L	Discharge Conc ≤ 25% WQBEL
Dimethyl Phthalate	41,068	μg/L	Discharge Conc < TQL
Di-n-Butyl Phthalate	1,807	μg/L	Discharge Conc ≤ 25% WQBEL
2,4-Dinitrotoluene	33.3	μg/L	Discharge Conc < TQL
2,6-Dinitrotoluene	33.3	μg/L	Discharge Conc < TQL
Di-n-Octyl Phthalate	N/A	N/A	No WQS
1,2-Diphenylhydrazine	20.0	μg/L	Discharge Conc < TQL
Fluoranthene	3,285	μg/L	Discharge Conc < TQL
Fluorene	8.582	μg/L	Discharge Conc < TQL
Hexachlorobenzene	0.053	μg/L	Discharge Conc < TQL
Hexachlorobutadiene	6.66	μg/L	Discharge Conc < TQL
Hexachlorocyclopentadiene	82.1	μg/L	Discharge Conc < TQL
Hexachloroethane	66.6	μg/L	Discharge Conc < TQL
		F-0-	

Isophorone	5,836	μg/L	Discharge Conc < TQL
Naphthalene	2,300	μg/L	Discharge Conc < TQL
Nitrobenzene	1,716	μg/L	Discharge Conc < TQL
n-Nitrosodimethylamine	0.47	μg/L	Discharge Conc < TQL
n-Nitrosodi-n-Propylamine	3.33	μg/L	Discharge Conc < TQL
n-Nitrosodiphenylamine	2,199	μg/L	Discharge Conc < TQL
Phenanthrene	82.1	μg/L	Discharge Conc < TQL
Pyrene	3,433	μg/L	Discharge Conc < TQL
1,2,4-Trichlorobenzene	12.0	μg/L	Discharge Conc < TQL
Aldrin	0.0005	μg/L	Discharge Conc < TQL
alpha-BHC	0.27	μg/L	Discharge Conc < TQL
beta-BHC	5.33	μg/L	Discharge Conc < TQL
gamma-BHC	15.6	μg/L	Discharge Conc < TQL
delta BHC	N/A	N/A	No WQS
Chlordane	0.2	μg/L	Discharge Conc < TQL
4,4-DDT	0.02	μg/L	Discharge Conc < TQL
4,4-DDE	0.013	μg/L	Discharge Conc < TQL
4,4-DDD	0.067	μg/L	Discharge Conc < TQL
Dieldrin	0.0007	μg/L	Discharge Conc < TQL
alpha-Endosulfan	3.61	μg/L	Discharge Conc < TQL
beta-Endosulfan	3.61	μg/L	Discharge Conc < TQL
Endosulfan Sulfate	3,433	μg/L	Discharge Conc < TQL
Endrin	1.41	μg/L	Discharge Conc < TQL
Endrin Aldehyde	172	μg/L	Discharge Conc < TQL
Heptachlor	0.004	μg/L	Discharge Conc < TQL
Heptachlor Epoxide	0.02	μg/L	Discharge Conc < TQL
Toxaphene	0.034	μg/L	Discharge Conc < TQL

	DEP Whole	e Effluent Tox	icity (WET) Analysis	Spreadshee	et
Type of Test	C	hronic		Facility Na	me
Species Test	ted C	eriodaphnia			
Endpoint		eproduction		AVJSA	
TIWC (decim No. Per Repl	icate 1	02	_	Permit N	0
TST b value		75		PA002625	
TST alpha va	ilue 0.	2			
		mpletion Date			oletion Date
Replicate		31/2015	Replicate		/2016
No.	Control		No.	Control	TIWC
1	37	5	1	38	29
2	25	16	2	35	25
3	18	29	3	31	27
4	30	33	4	30	19
5	25	37	5	32	30
6 7	33 29	31	6 7	36 36	30 25
8	29	30	8	37	33
9	4	32	9	41	34
10	34	43	10	37	33
11	- 37	73	11	31	33
12		+	12		
13			13		
14		_	14		
15			15		
			1		
Mean	26.400	28.900	Mean	35.300	28.500
Std Dev.	9.524	10.806	Std Dev.	3.401	4.625
# Replicates	10	10	# Replicates	10	10
T-Test Result		2.2216	T-Test Result	12	124
Deg. of Freed		16	Deg. of Freed		15
Critical T Valu		0.8647	Critical T Valu		8662
Pass or Fail		PASS	Pass or Fail		ASS
		pletion Date	_	Test Comp	
Replicate		2/2017	Replicate	9/4/2	
No.	Control	TIWC	No.	Control	TIWC
1	24	29	1	34	30
2	33	30	2	29	29
3	33	33	3	35	26
4	30	27	4	26	30
5	33	33	5	28	28
6 7	29 30	32 38	6 7	27 33	32
8	31	30	8	30	15 33
9	31	30	9	25	22
10	30	34	10	21	17
11	30	34	11	21	17
12		+	12		
13		+	13		
14		+	14		
15			15		
			Mean	28.800	26.200
	20.400	24 800			
Mean	30.400	31.600			
Mean Std Dev.	2.675	2.633	Std Dev.	4.367	6.215
Mean					
Mean Std Dev.	2.675 10	2.633	Std Dev.	4.367	6.215 10

Deg. of Freedom

Critical T Value

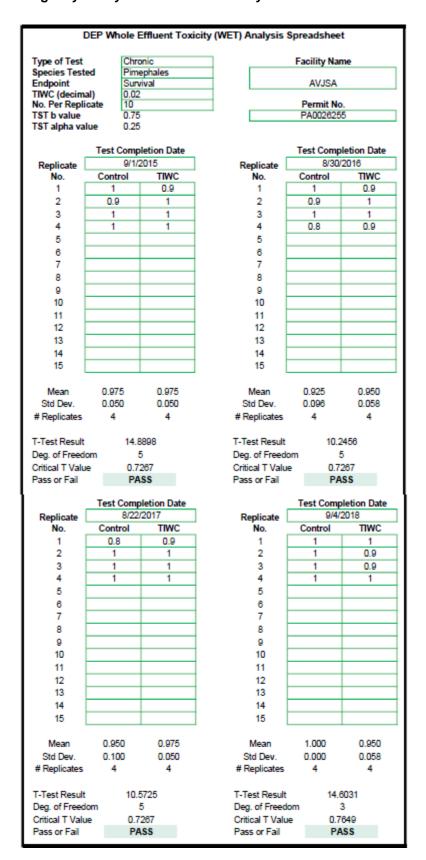
Pass or Fail

16

0.8647

PASS

Deg. of Freedom


Critical T Value

Pass or Fail

15

0.8662

PASS

	DEP Whole	Effluent Toxic	ity (WET) Analysis	Spreadshee	t
Type of Test		onic		Facility Nar	
Species Test		ephales		r donney real	
Endpoint		with		AVJSA	
TIWC (decim No. Per Repli		2	_	Permit No	
TST b value	0.75	5		PA002625	
TST alpha va				171002020	~
		oletion Date		Test Comp	letion Date
Replicate	9/1/	2015	Replicate	8/30/	2016
No.	Control	TIWC	No.	Control	TIWC
1	0.352	0.304	1	0.427	0.387
2	0.298	0.385	2	0.397	0.401
3	0.356	0.386	3	0.459	0.478
4	0.356	0.351	4	0.451	0.48
5			5		
6			6		
7			7		
8			8		
9			9		
10			10		
11 12			11 12		
12			12		
14			14		
15			15		
15			10		
Mean	0.340	0.357	Mean	0.434	0.437
Std Dev.	0.029	0.039	Std Dev.	0.028	0.049
# Replicates	4	4	# Replicates	4	4
# replicates			" reprodies		
T-Test Result	4.5	671	T-Test Result	4.1	516
T-Test Result Dea. of Freed		6671 5			516 4
T-Test Result Deg. of Freed Critical T Valu	lom		T-Test Result Deg. of Freed Critical T Valu	om 4	
Deg. of Freed	lom ue 0.7	5	Deg. of Freed	om 6	4
Deg. of Freed Critical T Valu	lom ue 0.7	5 '267	Deg. of Freed Critical T Valu	om 6	4 407
Deg. of Freed Critical T Valu	lom ue 0.7 P#	5 2267 ASS	Deg. of Freed Critical T Valu	om 4 e 0.7 PA	4 407 ASS
Deg. of Freed Critical T Valu Pass or Fail	om je 0.7 P#	5 2267 ASS	Deg. of Freed Critical T Valu Pass or Fail	om 4 e 0.7 PA	4 407 SS pletion Date
Deg. of Freed Critical T Valu Pass or Fail Replicate	om ie 0.7 P/ Test Com 8/22	5 2267 ASS pletion Date	Deg. of Freed Critical T Valu Pass or Fail Replicate	om .7 e 0.7 PA Test Comp	4 407 USS Diletion Date 2018
Deg. of Freed Critical T Valu Pass or Fail Replicate No.	Test Com 8/22 Control	5 (287 ASS pletion Date //2017 TIWC	Deg. of Freed Critical T Valu Pass or Fail Replicate No.	e 0.7 PA Test Comp 9/4/ Control	4 407 ISS Deletion Date 2018
Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1	om ie 0.7 P/ Test Com 8/22	5 (287 ASS pletion Date //2017 TIWC 0.253	Deg. of Freed Critical T Valu Pass or Fail Replicate No.	Test Comp 9/4/ Control 0.284	4 407 (SS) oletion Date 2018 TIWC 0.25
Deg. of Freed Critical T Valu Pass or Fail Replicate No.	Test Comp 8/22 Control 0.322	5 (287 ASS pletion Date //2017 TIWC	Deg. of Freed Critical T Valu Pass or Fail Replicate No.	e 0.7 PA Test Comp 9/4/ Control	4 407 ISS Deletion Date 2018
Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1	Test Com 8/22 Control 0.322 0.342	5 2267 ASS Pletion Date	Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1	om	4 407 ASS oletion Date 2018 TIWC 0.25 0.238
Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3	Test Com 8/22 Control 0.322 0.342 0.384	5 2267 ASS pletion Date //2017 TIWC 0.253 0.301 0.315	Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3	om	4 407 ASS oletion Date 2018 TIWC 0.25 0.238 0.23
Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4	Test Com 8/22 Control 0.322 0.342 0.384	5 2267 ASS pletion Date //2017 TIWC 0.253 0.301 0.315	Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4	om	4 407 ASS oletion Date 2018 TIWC 0.25 0.238 0.23
Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5	Test Com 8/22 Control 0.322 0.342 0.384	5 2267 ASS pletion Date //2017 TIWC 0.253 0.301 0.315	Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5	om	4 407 ASS oletion Date 2018 TIWC 0.25 0.238 0.23
Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5	Test Com 8/22 Control 0.322 0.342 0.384	5 2267 ASS pletion Date //2017 TIWC 0.253 0.301 0.315	Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5	om	4 407 ASS oletion Date 2018 TIWC 0.25 0.238 0.23
Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7	Test Com 8/22 Control 0.322 0.342 0.384	5 2267 ASS pletion Date //2017 TIWC 0.253 0.301 0.315	Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7	om	4 407 ASS oletion Date 2018 TIWC 0.25 0.238 0.23
Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7	Test Com 8/22 Control 0.322 0.342 0.384	5 2267 ASS pletion Date //2017 TIWC 0.253 0.301 0.315	Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7	om	4 407 ASS oletion Date 2018 TIWC 0.25 0.238 0.23
Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7	Test Com 8/22 Control 0.322 0.342 0.384	5 2267 ASS pletion Date //2017 TIWC 0.253 0.301 0.315	Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7	om	4 407 ASS oletion Date 2018 TIWC 0.25 0.238 0.23
Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10	Test Com 8/22 Control 0.322 0.342 0.384	5 2267 ASS pletion Date //2017 TIWC 0.253 0.301 0.315	Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9	om	4 407 ASS oletion Date 2018 TIWC 0.25 0.238 0.23
Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11	Test Com 8/22 Control 0.322 0.342 0.384	5 2267 ASS pletion Date //2017 TIWC 0.253 0.301 0.315	Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10	om	4 407 ASS oletion Date 2018 TIWC 0.25 0.238 0.23
Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12	Test Com 8/22 Control 0.322 0.342 0.384	5 2267 ASS pletion Date //2017 TIWC 0.253 0.301 0.315	Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11	om	4 407 ASS oletion Date 2018 TIWC 0.25 0.238 0.23
Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13	Test Com 8/22 Control 0.322 0.342 0.384	5 2267 ASS pletion Date //2017 TIWC 0.253 0.301 0.315	Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13	om	4 407 ASS oletion Date 2018 TIWC 0.25 0.238 0.23
Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14	Test Com 8/22 Control 0.322 0.342 0.384	5 (287 ASS) Pletion Date (72017 TIWC 0.253 0.301 0.315 0.3278	Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13	Test Comp 9/4/ Control 0.284 0.261 0.236 0.222	4 407 ASS oletion Date 2018 TIWC 0.25 0.238 0.23
Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14	Test Com 8/22 Control 0.322 0.342 0.384	5 2267 ASS pletion Date //2017 TIWC 0.253 0.301 0.315	Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	om	0letion Date 2018 TIWC 0.25 0.23 0.212
Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	Test Com 8/22 Control 0.322 0.342 0.384 0.38	5 (287 ASS) Pletion Date (72017 TIWC) 0.253	Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev.	De 0.77 PA Test Comp 9/4/ Control 0.284 0.261 0.236 0.222 0.251 0.027	0.233 0.233 0.016
Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean	Test Com 8/22 Control 0.322 0.342 0.384 0.38	5 (287 ASS) Pletion Date (72017 TIWC 0.253 0.301 0.315 0.3278)	Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	om	0letion Date 2018 TIWC 0.25 0.23 0.212
Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates	Test Com 8/22 Control 0.322 0.342 0.384 0.38	5 (287 ASS) pletion Date (72017 TIWC) 0.253	Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates	De 0.7 PA Test Comp 9/4/ Control 0.284 0.261 0.236 0.222 0.251 0.027 4	0.233 0.233 0.016 4
Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result	Test Com 8/22 Control 0.322 0.342 0.384 0.38	5 7287 ASS pletion Date 7/2017 TIWC 0.253 0.301 0.315 0.3278 0.32	Deg. of Freed Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result	De 0.7 PA Test Comp 9/4/ Control 0.284 0.261 0.236 0.222 0.251 0.027 4	0.233 0.016 4 407 4407 4407 4407 4407 4407 4407 440
Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates	Test Com 8/22 Control 0.322 0.342 0.384 0.38 0.367 0.030 4	5 (287 ASS) pletion Date (72017 TIWC) 0.253	Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates	De 0.7 PA Test Comp 9/4/ Control 0.284 0.261 0.236 0.222 0.251 0.027 4 3.4 om	0.233 0.233 0.016 4
Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result Deg. of Freed	Test Com 8/22 Control 0.322 0.342 0.384 0.38 0.357 0.030 4 1.5 dom ue 0.7	5 7287 ASS pletion Date 7/2017 TIWC 0.253 0.301 0.315 0.3278 0.3278 0.3278 0.3278 0.3278 0.3278 0.333 4	Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result Deg. of Freed	De 0.7 PA Test Comp 9/4/ Control 0.284 0.261 0.236 0.222 0.251 0.027 4 3.4 om ie 0.7	0.233 0.016 4 407 407 408 50 0.018 71WC 0.25 0.238 0.23 0.212

WET Summary and Evaluation

Facility Name
Permit No.
Design Flow (MGD)
Q₇₋₁₀ Flow (cfs)
PMF_a

PMF_c

AVJSA STP PA0026255 5.5 2390 0.088 0.607

		Test Results (Pass/Fail)			
		Test Date	Test Date	Test Date	Test Date
Species	Endpoint	8/31/15	8/30/16	8/22/17	9/4/18
Ceriodaphnia	Survival	PASS	PASS	PASS	PASS

		Test Results (Pass/Fail)			
	l [Test Date	Test Date	Test Date	Test Date
Species	Endpoint	8/31/15	8/30/16	8/22/17	9/4/18
Ceriodaphnia	Reproduction	PASS	PASS	PASS	PASS

		Test Results (Pass/Fail)			
		Test Date	Test Date	Test Date	Test Date
Species	Endpoint	9/1/15	8/30/16	8/22/17	9/4/18
Pimephales	Survival	PASS	PASS	PASS	PASS

		Test Results (Pass/Fail)			
		Test Date	Test Date	Test Date	Test Date
Species	Endpoint	9/1/15	8/30/16	8/22/17	9/4/18
Pimephales	Growth	PASS	PASS	PASS	PASS

Reasonable Potential? NO

Permit Recommendations

Test Type Chronic

TIWC 1 % Effluent

Dilution Series 1, 2, 30, 60, 100 % Effluent

Permit Limit None

Permit Limit Species

StreamStats Report

At discharge

Region ID: P

Workspace ID: PA20210521155250187000

Clicked Point (Latitude, Longitude): 40.52737, -79.84610

Time: 2021-05-21 11:53:12 -0400

Parameter Code	Parameter Description	Value	Unit
DRNAREA	Area that drains to a point on a stream	11600	square miles
ELEV	Mean Basin Elevation	1596	feet
PRECIP	Mean Annual Precipitation	44	inches