

# Southwest Regional Office CLEAN WATER PROGRAM

Application Type
Facility Type
Major / Minor

Major

# NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

 Application No.
 PA0026328

 APS ID
 736726

 Authorization ID
 1210097

|                           | Applicant and Facility Information |                               |                    |                      |  |
|---------------------------|------------------------------------|-------------------------------|--------------------|----------------------|--|
| Applicant Name            | Норе                               | well Township                 | Facility Name      | Raccoon Creek STP    |  |
| Applicant Address         | 1700                               | Clark Boulevard               | Facility Address   | 103 Pollack Lane     |  |
|                           | Aliqui                             | ppa, PA 15001-4205            |                    | Alliquippa, PA 15001 |  |
| Applicant Contact         | Harry                              | ry Thompson Facility Contact  |                    |                      |  |
| Applicant Phone           | (724)                              | 378-4875                      | Facility Phone     |                      |  |
| Client ID                 | 11059                              | 90                            | Site ID            | 237440               |  |
| Ch 94 Load Status         | Not C                              | verloaded                     | Municipality       | Hopewell Township    |  |
| Connection Status         | No Li                              | mitations                     | County             | Beaver               |  |
| Date Application Rece     | eived                              | November 1, 2017              | EPA Waived?        | No                   |  |
| Date Application Accepted |                                    | December 13, 2017             | If No, Reason      | Major Facility       |  |
| Purpose of Application    |                                    | Renewal application to discha | rge treated sewage |                      |  |

### **Summary of Review**

This review is in response to a renewal application received on November 1, 2017. Hopewell Township owns and operates the Raccoon Creek Sewage Treatment Plant in Hopewell Township, Beaver County. Sewage from Hopewell Township is collected and treated with activated sludge and sequencing batch reactors, settling and chlorination before discharging to Raccoon Creek through outfall 011.

### **Public Participation**

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

| Approve | Deny | Signatures                                             | Date              |
|---------|------|--------------------------------------------------------|-------------------|
| X       |      | James M. Vanek                                         |                   |
|         |      | James M. Vanek, P.E. / Environmental Engineer          | February 9, 2021  |
| X       |      | Donald J. Leone                                        |                   |
| ^       |      | Donald J. Leone, P.E. / Environmental Engineer Manager | February 10, 2021 |

| Discharge, Receiving Waters and Water Supply Info | rmation                    |                           |
|---------------------------------------------------|----------------------------|---------------------------|
|                                                   |                            |                           |
| Outfall No. 011                                   | Design Flow (MGD)          | 2.5                       |
| Latitude 40° 36' 24.84"                           | Longitude                  | 80° 18' 6.48"             |
| Quad Name Aliquippa                               | Quad Code                  | 1403                      |
| Wastewater Description: Sewage Effluent           |                            |                           |
|                                                   |                            |                           |
| Receiving Waters Raccoon Creek (WWF)              | Stream Code                | 33564                     |
| NHD Com ID 99681726                               | RMI                        | 11.14                     |
| Drainage Area 172 mi <sup>2</sup>                 | Yield (cfs/mi²)            | 0.034                     |
| Q <sub>7-10</sub> Flow (cfs) <u>5.85</u>          | Q <sub>7-10</sub> Basis    | Previous pollution report |
| Elevation (ft) 760                                | Slope (ft/ft)              | 0.0012                    |
| Watershed No. 20-D                                | Chapter 93 Class.          | WWF                       |
| Existing Use                                      | Existing Use Qualifier     |                           |
| Exceptions to Use none                            | Exceptions to Criteria     | none                      |
| Assessment Status Attaining Use(s)                |                            |                           |
| Cause(s) of Impairment                            |                            |                           |
| Source(s) of Impairment                           |                            |                           |
| TMDL Status Final                                 | Name Raccoon Cre           | eek Watershed             |
|                                                   |                            |                           |
| Background/Ambient Data                           | Data Source                |                           |
| pH (SU)                                           |                            |                           |
| Temperature (°F)                                  |                            |                           |
| Hardness (mg/L)                                   |                            |                           |
| Other:                                            |                            |                           |
|                                                   |                            |                           |
| Nearest Downstream Public Water Supply Intake     | Midland Borough            |                           |
| PWS Waters Ohio River                             | Flow at Intake (cfs)       | 5400                      |
| PWS RMI                                           | Distance from Outfall (mi) | 16                        |

Changes Since Last Permit Issuance: none

| Discharge, Receiving Waters and Water Supply Infor | rmation                    |                 |
|----------------------------------------------------|----------------------------|-----------------|
|                                                    |                            |                 |
| Outfall No. 012                                    | Design Flow (MGD)          | 0               |
| Latitude 40° 36′ 32.04″                            | Longitude                  | -80° 18' 21.41" |
| Quad Name                                          | Quad Code                  | 1403            |
| Wastewater Description: Storm water                |                            |                 |
|                                                    |                            |                 |
| Receiving Waters Raccoon Creek (WWF)               | Stream Code                | 33564           |
| NHD Com ID 99681726                                | RMI                        |                 |
| Drainage Area                                      | Yield (cfs/mi²)            |                 |
| Q <sub>7-10</sub> Flow (cfs)                       | Q <sub>7-10</sub> Basis    |                 |
| Elevation (ft)                                     | Slope (ft/ft)              |                 |
| Watershed No. 20-D                                 | Chapter 93 Class.          | WWF             |
| Existing Use                                       | Existing Use Qualifier     |                 |
| Exceptions to Use                                  | Exceptions to Criteria     |                 |
| Assessment StatusAttaining Use(s)                  |                            |                 |
| Cause(s) of Impairment                             |                            | ·               |
| Source(s) of Impairment                            |                            |                 |
| TMDL Status Final                                  | Name Raccoon Cre           | eek Watershed   |
|                                                    |                            |                 |
| Background/Ambient Data                            | Data Source                |                 |
| pH (SU)                                            |                            |                 |
| Temperature (°F)                                   |                            |                 |
| Hardness (mg/L)                                    |                            |                 |
| Other:                                             |                            |                 |
|                                                    |                            |                 |
| Nearest Downstream Public Water Supply Intake      |                            |                 |
| PWS Waters                                         | Flow at Intake (cfs)       |                 |
| PWS RMI                                            | Distance from Outfall (mi) |                 |

Changes Since Last Permit Issuance:

| Discharge, Receiving Waters and Water Supply Infor | mation                       |
|----------------------------------------------------|------------------------------|
| -                                                  |                              |
| Outfall No. 013                                    | Design Flow (MGD) 0          |
| Latitude 40° 36′ 24.84″                            | Longitude -80° 18' 6.48"     |
| Quad Name Aliquippa                                | Quad Code 1403               |
| Wastewater Description: Storm water                |                              |
|                                                    |                              |
| Receiving Waters Raccoon Creek (WWF)               | Stream Code 33564            |
| NHD Com ID 99681726                                | RMI                          |
| Drainage Area                                      | Yield (cfs/mi²)              |
| Q <sub>7-10</sub> Flow (cfs)                       | Q <sub>7-10</sub> Basis      |
| Elevation (ft)                                     | Slope (ft/ft)                |
| Watershed No. 20-D                                 | Chapter 93 Class. WWF        |
| Existing Use                                       | Existing Use Qualifier       |
| Exceptions to Use                                  | Exceptions to Criteria       |
| Assessment Status Attaining Use(s)                 |                              |
| Cause(s) of Impairment                             |                              |
| Source(s) of Impairment                            |                              |
| TMDL Status Final                                  | Name Raccoon Creek Watershed |
|                                                    |                              |
| Background/Ambient Data                            | Data Source                  |
| pH (SU)                                            |                              |
| Temperature (°F)                                   |                              |
| Hardness (mg/L)                                    |                              |
| Other:                                             |                              |
|                                                    |                              |
| Nearest Downstream Public Water Supply Intake      |                              |
| PWS Waters                                         | Flow at Intake (cfs)         |
| PWS RMI                                            | Distance from Outfall (mi)   |

Changes Since Last Permit Issuance:

| NQM Permit No.     | Issuance Date                    |                  |                       |             |
|--------------------|----------------------------------|------------------|-----------------------|-------------|
| 0471408            | 6/2/1971                         |                  |                       |             |
| 0471408 A-2        | 10/16/2002                       |                  |                       |             |
| 0407402            | 3/6/2008                         |                  |                       |             |
|                    |                                  |                  |                       |             |
|                    | Degree of                        |                  |                       | Avg Annua   |
| Waste Type         | Treatment                        | Process Type     | Disinfection          | Flow (MGD)  |
|                    | Secondary with NH <sub>3</sub> N | -                |                       | •           |
| Sewage             | Reduction                        | Activated Sludge | Chlorine gas          | 1.23        |
|                    | ·                                |                  | -                     |             |
|                    |                                  |                  |                       |             |
| lydraulic Capacity | Organic Capacity                 |                  |                       | Biosolids   |
|                    | /11 / 1                          | Load Status      | Biosolids Treatment   | Hea/Dienes  |
| (MGD)              | (lbs/day)                        | Load Status      | Diosolius Treatilient | Use/Disposa |

Changes Since Last Permit Issuance:

### **Compliance History**

### **DMR Data for Outfall 011 (from July 1, 2019 to June 30, 2020)**

| Parameter                    | JUN-20 | MAY-20 | APR-20 | MAR-20 | FEB-20 | JAN-20 | DEC-19 | NOV-19 | OCT-19 | SEP-19 | AUG-19 | JUL-19 |
|------------------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| Flow (MGD)                   |        |        |        |        |        |        |        |        |        |        |        |        |
| Average Monthly              | 0.84   | 1.21   | 1.87   | 2.66   | 2.16   | 2.05   | 1.76   | 1.38   | 1.35   | 1.20   | 0.91   | 1.75   |
| Flow (MGD)                   |        |        |        |        |        |        |        |        |        |        |        |        |
| Daily Maximum                | 1.05   | 2.82   | 5.03   | 10.6   | 5.1    | 4.80   | 3.51   | 2.88   | 6.85   | 5.81   | 1.46   | 6.84   |
| pH (S.U.)                    |        |        |        |        |        |        |        |        |        |        |        |        |
| Minimum                      | 6.68   | 6.66   | 6.73   | 6.75   | 6.98   | 6.69   | 6.73   | 6.71   | 6.66   | 6.65   | 6.78   | 6.62   |
| pH (S.U.)                    |        |        |        |        |        |        |        |        |        |        |        |        |
| Maximum                      | 6.95   | 6.95   | 7.08   | 6.97   | 6.72   | 6.81   | 7.11   | 7.01   | 6.92   | 6.99   | 6.90   | 6.98   |
| DO (mg/L)                    |        |        |        |        |        |        |        |        |        |        |        |        |
| Minimum                      | 5.7    | 5.5    | 6.7    | 6.3    | 7.4    | 6.2    | 6.4    | 5.6    | 5.7    | 5.7    | 5.3    | 5.5    |
| TRC (mg/L)                   |        |        |        |        |        |        |        |        |        |        |        |        |
| Average Monthly              | 0.174  | 0.193  | 0.173  | 0.181  | 0.182  | 0.087  | 0.156  | 0.176  | 0.169  | 0.203  | 0.190  | 0.157  |
| TRC (mg/L)                   |        |        |        |        |        |        |        |        |        |        |        |        |
| Instantaneous                |        |        |        |        |        |        |        |        |        |        |        |        |
| Maximum                      | 0.28   | 0.28   | 0.29   | 0.29   | 0.28   | 0.16   | 0.28   | 0.27   | 0.29   | 0.28   | 0.28   | 0.26   |
| CBOD5 (lbs/day)              |        |        |        |        |        |        |        |        |        |        |        |        |
| Average Monthly              | 18     | 26     | 36     | 42     | 52     | 35     | 51     | 30     | 29     | 18     | 18     | 29     |
| CBOD5 (lbs/day)              |        |        |        |        |        |        |        |        |        |        |        |        |
| Weekly Average               | 21     | 32     | 44     | 68     | 107    | 46     | 70     | 34     | 55     | 28     | 22     | 49     |
| CBOD5 (mg/L)                 | _      | _      | _      | _      | _      | _      | _      | _      | _      | _      |        |        |
| Average Monthly              | 2      | 3      | 2      | 3      | 3      | 2      | 3      | 3      | 3      | 2      | 2.0    | 2.0    |
| CBOD5 (mg/L)                 |        |        |        |        |        |        | _      |        | 4.0    |        |        |        |
| Weekly Average               | 3.0    | 3.0    | 2      | 4      | 3      | 3      | 4      | 3      | 4.0    | 2.0    | 3.0    | 3.0    |
| BOD5 (lbs/day)               |        |        |        |        |        |        |        |        |        |        |        |        |
| Raw Sewage Influent          |        |        |        |        |        |        |        |        |        |        |        |        |
| <br><br>Average Monthly      | 1246   | 1320   | 1601   | 1407   | 1184   | 1032   | 1470   | 1342   | 1194   | 1099   | 1446   | 973    |
| BOD5 (lbs/day)               | 1246   | 1320   | 1601   | 1407   | 1184   | 1032   | 1470   | 1342   | 1194   | 1099   | 1446   | 973    |
| Raw Sewage Influent          |        |        |        |        |        |        |        |        |        |        |        |        |
| <pre><br/></pre>             | 1672   | 1839   | 2709   | 2060   | 4846   | 1576   | 5006   | 1797   | 2381   | 1374   | 1821   | 1597   |
| BOD5 (mg/L)                  | 10/2   | 1038   | 2109   | 2000   | 4040   | 13/0   | 3000   | 1131   | 2301   | 13/4   | 1021   | 1981   |
| Raw Sewage Influent          |        |        |        |        |        |        |        |        |        |        |        |        |
| <pre><br/><br/>Average</pre> |        |        |        |        |        |        |        |        |        |        |        |        |
| Monthly                      | 176    | 142    | 106.3  | 95     | 51.8   | 77     | 79     | 126    | 129    | 140    | 185    | 79.64  |
| TSS (lbs/day)                | 170    | 172    | 100.0  | - 55   | 01.0   | ,,,    | ,,,    | 120    | 120    | 140    | 100    | 70.04  |
| Average Monthly              | 14     | 20     | 31     | 40     | 44     | 29     | 48     | 24     | 28     | 18     | 17     | 30     |

# NPDES Permit Fact Sheet Raccoon Creek STP

### NPDES Permit No. PA0026328

| TSS (lbs/day)          |       |       |       |       |      |       |       |      |       |       |       |       |
|------------------------|-------|-------|-------|-------|------|-------|-------|------|-------|-------|-------|-------|
| Raw Sewage Influent    |       |       |       |       |      |       |       |      |       |       |       |       |
| <br>br/> Average       |       |       |       |       |      |       |       |      |       |       |       |       |
| Monthly                | 1363  | 1398  | 1832  | 1451  | 1523 | 1167  | 1815  | 1557 | 1482  | 1290  | 1651  | 1630  |
| TSS (lbs/day)          |       |       |       |       |      |       |       |      |       |       |       |       |
| Raw Sewage Influent    |       |       |       |       |      |       |       |      |       |       |       |       |
| <br>br/> Daily Maximum | 2004  | 1673  | 3370  | 2774  | 2088 | 1417  | 6557  | 2507 | 2966  | 1491  | 2094  | 3251  |
| TSS (lbs/day)          |       |       |       |       |      |       |       |      |       |       |       |       |
| Weekly Average         | 16    | 24    | 38    | 50    | 95   | 37    | 72    | 31   | 56    | 29    | 20    | 60    |
| TSS (mg/L)             |       |       |       |       |      |       |       |      |       |       |       |       |
| Average Monthly        | 2     | 2     | 2     | 2     | 2    | 2     | 3     | 2    | 3     | 2     | 2     | 2     |
| TSS (mg/L)             |       |       |       |       |      |       |       |      |       |       |       |       |
| Raw Sewage Influent    |       |       |       |       |      |       |       |      |       |       |       |       |
| <br>br/> Average       |       |       |       |       |      |       |       |      |       |       |       |       |
| Monthly                | 191   | 147   | 122   | 101   | 108  | 87    | 96    | 144  | 156   | 162   | 210   | 135   |
| TSS (mg/L)             |       |       |       |       |      |       |       |      |       |       |       |       |
| Weekly Average         | 2     | 2     | 2     | 3     | 3    | 3     | 4     | 2    | 4     | 2     | 3     | 3     |
| Fecal Coliform         |       |       |       |       |      |       |       |      |       |       |       |       |
| (CFU/100 ml)           |       |       |       |       |      |       |       |      |       |       |       |       |
| Geometric Mean         | 29    | 24    | 39    | 24    | 48   | 75    | 36    | 35   | 36    | 21    | 38    | 48    |
| Fecal Coliform         |       |       |       |       |      |       |       |      |       |       |       |       |
| (CFU/100 ml)           |       |       |       |       |      |       |       |      |       |       |       |       |
| Instantaneous          |       |       |       |       |      |       |       |      |       |       |       |       |
| Maximum                | 59    | 64    | 120   | 120   | 130  | 140   | 110   | 110  | 69    | 46    | 67    | 97    |
| Ammonia (lbs/day)      |       |       |       |       |      |       |       |      |       |       |       |       |
| Average Monthly        | 2     | 2     | 5     | 5     | 8    | 5     | 5     | 6    | 3     | 2     | 2     | 2     |
| Ammonia (lbs/day)      | _     |       |       |       |      | _     |       |      | _     | _     | _     | _     |
| Weekly Average         | 6     | 4     | 12    | 13    | 12   | 9     | 12    | 15   | 6     | 2     | 5     | 3     |
| Ammonia (mg/L)         |       |       |       |       |      |       |       | _    |       |       |       |       |
| Average Monthly        | 0.264 | 0.252 | 0.308 | 0.296 | 1    | 0.360 | 0.316 | 1    | 0.285 | 0.237 | 0.241 | 0.195 |
| Ammonia (mg/L)         |       |       |       |       |      |       |       |      |       |       |       |       |
| Weekly Average         | 1     | 0.496 | 1     | 1     | 1    | 0.613 | 0.541 | 1    | 0.478 | 0.485 | 0.456 | 0.356 |

| Development of Effluent Limitations |                              |                   |                 |  |
|-------------------------------------|------------------------------|-------------------|-----------------|--|
| Outfall No.                         | 011                          | Design Flow (MGD) | 2.5             |  |
| Latitude                            | 40° 36' 26.00"               | Longitude         | -80° 18' 10.00" |  |
| Wastewater D                        | Description: Sewage Effluent | <del>-</del>      |                 |  |

#### **Technology-Based Limitations**

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

| Pollutant                       | Limit (mg/l)    | SBC             | Federal Regulation | State Regulation |
|---------------------------------|-----------------|-----------------|--------------------|------------------|
| CPOD-                           | 25              | Average Monthly | 133.102(a)(4)(i)   | 92a.47(a)(1)     |
| CBOD₅                           | 40              | Average Weekly  | 133.102(a)(4)(ii)  | 92a.47(a)(2)     |
| Total Suspended                 | 30              | Average Monthly | 133.102(b)(1)      | 92a.47(a)(1)     |
| Solids                          | 45              | Average Weekly  | 133.102(b)(2)      | 92a.47(a)(2)     |
| pH                              | 6.0 – 9.0 S.U.  | Min – Max       | 133.102(c)         | 95.2(1)          |
| Fecal Coliform (5/1 – 9/30)     | 200 / 100 ml    | Geo Mean        | -                  | 92a.47(a)(4)     |
| Fecal Coliform<br>(5/1 – 9/30)  | 1,000 / 100 ml  | IMAX            | -                  | 92a.47(a)(4)     |
| Fecal Coliform<br>(10/1 – 4/30) | 2,000 / 100 ml  | Geo Mean        | -                  | 92a.47(a)(5)     |
| Fecal Coliform<br>(10/1 – 4/30) | 10,000 / 100 ml | IMAX            | -                  | 92a.47(a)(5)     |
| Total Residual Chlorine         | 0.5             | Average Monthly | -                  | 92a.48(b)(2)     |

Comments:

### **Water Quality-Based Limitations**

The following limitations were determined through water quality modeling (output files attached):

| Parameter               | Limit (mg/l) | SBC               | Model                         |
|-------------------------|--------------|-------------------|-------------------------------|
| Copper, total           | M/R          | Average Monthly   | Toxics Management Spreadsheet |
| Free Available Cyanide  | M/R          | Average Monthly   | Toxics Management Spreadsheet |
| NH <sub>3</sub> N       | 4.0          | Average Monthly   | WQM7.0                        |
| CBOD <sub>5</sub>       | 15.0         | Average Monthly   | WQM7.0                        |
| Dissolved oxygen        | 5.0          | Instantaneous Min | WQM7.0                        |
| Total Residual Chlorine | 0.311        | Average Monthly   | TRC Spreadsheet               |

The discharge was modeled using WQM 7.0 to evaluate the CBOD<sub>5</sub>, Ammonia Nitrogen and Dissolved Oxygen parameters. The results are attached to this fact sheet. The modeling results require CBOD<sub>5</sub> limitations that more stringent than technology to meet the streams dissolved oxygen criterion. The modeling results also confirm that Ammonia-Nitrogen and Dissolved Oxygen limitations are necessary to meet in-stream water quality criterion.

The Toxics Management Spreadsheet was used to evaluate the need for water quality-based limits for toxic pollutants. The effluent data included with the renewal application were set as discharge concentrations for the Toxics Management Spreadsheet. The model calculates water quality-based effluent limits and compares those WQBEL's to the discharge concentrations. If the discharge concentration is greater than or equal to 50% of the WQBEL, the numeric WQBEL will be placed into the permit. For conservative pollutants, the model recommends monitoring if the discharge concentration is greater than 10% of the recommended WQBEL. For non-conservative pollutants, the model recommends monitoring if the discharge concentration is greater than 25% of the WQBEL. For this sewage plant, the model recommends monitoring for free available cyanide and total copper. Free available cyanide is a non-conservative pollutant. The reported discharge concentration of 5.2 is greater than 25% of the WQBEL of 13.1 ug/l. Total copper is a conservative pollutant. The discharge concentration of 27 ug/l is greater than 10% of the WQBEL of 134 ug/l.

### **Best Professional Judgment (BPJ) Limitations**

The BPJ limit of 4.0 mg/l for dissolved oxygen was less stringent than the water quality based limit of 5.0 mg/l.

#### **Anti-Backsliding**

The average weekly limits for NH<sub>3</sub>N will remain in the permit due to anti-backsliding.

#### Disinfection

The Average Monthly and Instantaneous Maximum Total Residual Chlorine (TRC) effluent limitations imposed in the previous NPDES permit were 0.311 mg/l and 0.5 mg/l, respectively. Those water quality-based values were considered BAT limitations for the TRC spreadsheet because the plant has shown the capability of achieving the limit throughout the permit cycle. The limit of 0.311 mg/l is more restrictive than the recommended water quality-based effluent limit of 0.4 mg/l. The technology limit of 0.311 will remain in the permit.

#### **Mass Loadings**

Mass loading limits are applicable for publicly owned treatment works. Current policy requires average monthly mass loading limits be established for CBOD5 and TSS, and average weekly mass loading limits be established for CBOD5 and TSS.

Average monthly mass loading limits (lbs/day) are based on the formula: design flow (MGD) x concentration limit (mg/L) x conversion factor (8.34).

### Total Dissolved Solids (TDS) and its Major Constituents

Total Dissolved Solids (TDS) and its major constituents including sulfate, chloride, and bromide have emerged as pollutants of concern in several major watersheds in the Commonwealth. The conservative nature of these solids allows them to accumulate in surface waters and they may remain a concern even if the immediate downstream public water supply is not directly impacted. Bromide has been linked to formation of disinfection byproducts at increased levels in public water systems. As a consequence of actions associated with Triennial Review 13, the Environmental Quality Board has directed DEP to collect additional data. Facilities withdesign flows greater than or equal to 0.1 mgd are required to report at least one sample analyzed for these parameters. Furthermore, in an August 2013 letter from Jon Capacasa of the Region III Water Protection Program to DEP, EPA has expressed concern related to bromide and the importance of monitoring all point sources for bromide when it may be present.

The permit does not include a monitor and report requirement for TDS, sulfate, chloride, and bromide because the concentration of TDS in the discharge does not exceed 1,000 mg/l and the concentration of bromide is less than 1 mg/l.

#### **Total Nitrogen and Total Phosphorus Monitoring**

Nutrient monitoring is required to establish the nutrient load from the wastewater treatment facility and the impacts that load may have on the quality of the receiving stream(s). Sewage discharges with design flows > 2,000 gpd require monitoring, at a minimum, for Total Nitrogen and Total Phosphorus in new and reissued permits. Quarterly monitoring is imposed for discharges with an average design flow that exceeds 1.0 MGD.

### **Monitoring Frequency Considerations**

For pH, Dissolved Oxygen (DO) and Total Residual Chlorine (TRC), a monitoring frequency of 1/day has been imposed. The daily monitoring frequencies are consistent with current policy and Table 6-3 of DEP's Technical Guidance for the Development and Specification of Effluent Limitations. An explanation why increase monitoring is imposed is explained in the draft cover letter. The remaining monitoring frequencies are consistent with Table 6-3.

#### **Sample Types**

The permit previously required 8-hour composite sample types. That is not consistent with table 6-3. So the sample types for free available cyanide, total copper, CBOD, BOD, NH<sub>3</sub>N, TSS, nitrogen and phosphorus will be changed to 24-hour composite sample types. Fecal coliform, TRC, DO and pH are grab sample types. Flow remains as continuous recorded sample type.

### **Influent Monitoring**

For POTWs with design flows greater than 2,000 GPD, influent BOD₅ and TSS monitoring must be established in the permit, and the monitoring should be consistent with the same frequency and sample type as is used for other effluent parameters.

#### **Industrial Users**

The application indicates that this sewage treatment plant does not have any industrial users contributing wastewater to the collection system.

|        | Whole Effluent Toxicity (WET)                                                                                                                                |  |  |  |  |  |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| For Ou | For Outfall 011,  Acute Chronic WET Testing was completed:                                                                                                   |  |  |  |  |  |
|        | For the permit renewal application (4 tests). Quarterly throughout the permit term. Quarterly throughout the permit term and a TIE/TRE was conducted. Other: |  |  |  |  |  |

The dilution series used for the tests was: 100%, 60%, 30%, 5%, and 2%. The Target Instream Waste Concentration (TIWC) to be used for analysis of the results is: 40%.

### **Summary of Four Most Recent Test Results**

(NOTE - Enter results into one table, depending on which data analysis method was used).

### NOEC/LC50 Data Analysis

|            | Ceriodaph        | nnia Results (% E    | ffluent) | Pimephale        |                |       |         |
|------------|------------------|----------------------|----------|------------------|----------------|-------|---------|
| Test Date  | NOEC<br>Survival | NOEC<br>Reproduction | LC50     | NOEC<br>Survival | NOEC<br>Growth | LC50  | Pass? * |
| 10/14/2013 | 100%             | 100%                 | >100%    | 100%             | 100%           | >100% | yes     |
| 10/28/2015 | 100%             | 100%                 | >100%    | 100%             | 100%           | >100% | yes     |
| 10/20/2016 | 100%             | 100%                 | >100%    | 100%             | 100%           | >100% | yes     |
| 9/24/2017  | 100%             | 100%                 | >100%    | 100%             | 100%           | >100% | yes     |

<sup>\*</sup> A "passing" result is that which is greater than or equal to the TIWC value.

| Is there reasonable potential for an excursion above water quality standards based on the results of these tests?      | (NOTE |
|------------------------------------------------------------------------------------------------------------------------|-------|
| - In general, reasonable potential is determined anytime there is at least one test failure in the previous four tests | ).    |

☐ YES ⊠ NO

**Comments:** The WET testing will be performed annually. The applicant only submitted the cover page of the WET tests as part of the application.

### **Evaluation of Test Type, IWC and Dilution Series for Renewed Permit**

Acute Partial Mix Factor (PMFa): 0.81

Chronic Partial Mix Factor (PMFc): 1.0

1. Determine IWC – Acute (IWCa):

$$(Q_d \times 1.547) / ((Q_{7-10} \times PMFa) + (Q_d \times 1.547))$$

$$[(2.5 \text{ MGD x } 1.547) / ((5.85 \text{ cfs x } 0.81) + (2.5 \text{ MGD x } 1.547))] \times 100 = 44.94\%$$

Is IWCa < 1%? ☐ YES ☒ NO

Type of Test for Permit Renewal: Chronic

2. Determine Target IWCc (If Chronic Tests Required)

$$(Q_d \times 1.547) / (Q_{7-10} \times PMFc) + (Q_d \times 1.547)$$

$$[(2.5 \text{ MGD x } 1.547) / ((5.85 \text{ cfs x } 1.0) + (2.5 \text{ MGD x } 1.547))] \times 100 = 39.79\%$$

3. Determine Dilution Series

(NOTE - check Attachment C of WET SOP for dilution series based on TIWCa or TIWCc, whichever applies).

Dilution Series = 100%, 70%, 39%, 20%, and 10%.

### **WET Limits**

Has reasonable potential been determined? ☐ YES ☒ NO

Will WET limits be established in the permit? ☐ YES ☒ NO

### **Proposed Effluent Limitations and Monitoring Requirements**

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

### Outfall 011, Effective Period: Permit Effective Date through Permit Expiration Date.

|                             |            |               | Effluent L | imitations |             |          | Monitoring Re          | quirements |
|-----------------------------|------------|---------------|------------|------------|-------------|----------|------------------------|------------|
| Parameter                   | Mass Units | (lbs/day) (1) |            | Concentrat | ions (mg/L) |          | Minimum <sup>(2)</sup> | Required   |
| Farailleter                 | Average    | Weekly        |            | Average    | Weekly      | Instant. | Measurement            | Sample     |
|                             | Monthly    | Average       | Minimum    | Monthly    | Average     | Maximum  | Frequency              | Type       |
|                             |            | Report        |            |            |             |          |                        | Recorded   |
| Flow (MGD)                  | Report     | Daily Max     | XXX        | XXX        | XXX         | XXX      | Continuous             | Daily Flow |
|                             |            |               | 6.0        |            |             |          |                        |            |
| pH (S.U.)                   | XXX        | XXX           | Inst Min   | XXX        | XXX         | 9.0      | 1/day                  | Grab       |
|                             |            |               | 5.0        |            |             |          |                        |            |
| DO                          | XXX        | XXX           | Inst Min   | XXX        | XXX         | XXX      | 1/day                  | Grab       |
|                             |            |               |            |            |             |          |                        | _          |
| TRC                         | XXX        | XXX           | XXX        | 0.311      | XXX         | 0.5      | 1/day                  | Grab       |
| CBOD5                       |            |               |            |            |             |          | -,                     | 24-Hr      |
| Nov 1 - Apr 30              | 521        | 792           | XXX        | 25         | 38          | XXX      | 2/week                 | Composite  |
| CBOD5                       |            |               |            |            |             |          |                        | 24-Hr      |
| May 1 - Oct 31              | 313        | 469           | XXX        | 15         | 22.5        | XXX      | 2/week                 | Composite  |
| BOD5                        |            | _             |            | _          | _           |          | - ,                    | 24-Hr      |
| Raw Sewage Influent         | Report     | Report        | XXX        | Report     | Report      | XXX      | 2/week                 | Composite  |
|                             |            |               |            |            |             |          | -,                     | 24-Hr      |
| TSS                         | 626        | 938           | XXX        | 30         | 45          | XXX      | 2/week                 | Composite  |
| TSS                         |            | _             |            | _          | _           |          | - ,                    | 24-Hr      |
| Raw Sewage Influent         | Report     | Report        | XXX        | Report     | Report      | XXX      | 2/week                 | Composite  |
| Fecal Coliform (No./100 ml) |            |               |            | 2000       |             |          |                        | _          |
| Oct 1 - Apr 30              | XXX        | XXX           | XXX        | Geo Mean   | XXX         | 10000    | 2/week                 | Grab       |
| Fecal Coliform (No./100 ml) |            |               |            | 200        |             |          | _,_                    |            |
| May 1 - Sep 30              | XXX        | XXX           | XXX        | Geo Mean   | XXX         | 1000     | 2/week                 | Grab       |
|                             |            | Report        |            |            | Report      |          |                        | 24-Hr      |
| Total Nitrogen              | XXX        | Daily Max     | XXX        | XXX        | Daily Max   | XXX      | 1/quarter              | Composite  |

Outfall 011, Continued (from Permit Effective Date through Permit Expiration Date)

|                        |                    |                          | Effluent L | imitations         |                        |                     | Monitoring Requirements  |                |  |
|------------------------|--------------------|--------------------------|------------|--------------------|------------------------|---------------------|--------------------------|----------------|--|
| Parameter              | Mass Units         | (lbs/day) <sup>(1)</sup> |            | Concentra          | Minimum <sup>(2)</sup> | Required            |                          |                |  |
| raiametei              | Average<br>Monthly | Weekly<br>Average        | Minimum    | Average<br>Monthly | Weekly<br>Average      | Instant.<br>Maximum | Measurement<br>Frequency | Sample<br>Type |  |
| Ammonia                |                    |                          |            |                    |                        |                     |                          | 24-Hr          |  |
| Nov 1 - Apr 30         | 250                | 375                      | XXX        | 12                 | 18                     | XXX                 | 2/week                   | Composite      |  |
| Ammonia                |                    |                          |            |                    |                        |                     |                          | 24-Hr          |  |
| May 1 - Oct 31         | 84                 | 125                      | XXX        | 4                  | 6                      | XXX                 | 2/week                   | Composite      |  |
|                        |                    | Report                   |            |                    | Report                 |                     |                          | 24-Hr          |  |
| Total Phosphorus       | XXX                | Daily Max                | XXX        | XXX                | Daily Max              | XXX                 | 1/quarter                | Composite      |  |
|                        |                    |                          |            |                    | Report                 |                     |                          | 24-Hr          |  |
| Total Copper           | Report             | XXX                      | XXX        | Report             | Daily Max              | XXX                 | 1/week                   | Composite      |  |
|                        |                    |                          |            |                    | Report                 |                     |                          | 24-Hr          |  |
| Free Available Cyanide | Report             | XXX                      | XXX        | Report             | Daily Max              | XXX                 | 1/week                   | Composite      |  |

Compliance Sampling Location: outfall 011

# **WQM7.0 Modeling Results**

|                 | SWP<br>Basin | Strea<br>Cod |                | Stre                | eam Name        |                 | RMI            | Elevat                   | ion         | Drainage<br>Area<br>(sq mi) | Slop<br>(ft/ft | Witho          | /S<br>Irawal<br>gd) | Apply<br>FC |
|-----------------|--------------|--------------|----------------|---------------------|-----------------|-----------------|----------------|--------------------------|-------------|-----------------------------|----------------|----------------|---------------------|-------------|
|                 | 20D          | 335          | 64 RACC        | OON CRE             | EK              |                 | 11.14          | 40 7                     | 60.00       | 172.0                       | 0.0            | 0120           | 0.00                | <b>✓</b>    |
|                 |              |              |                |                     | St              | ream Dat        | a              |                          |             |                             |                |                |                     |             |
| Design<br>Cond. | LFY          | Trib<br>Flow | Stream<br>Flow | Rch<br>Trav<br>Time | Rch<br>Velocity | WD<br>Ratio     | Rch<br>Width   | Rch<br>Depth             | Tem         | Tributary<br>p p            | н              | Stream<br>Temp | pH                  |             |
| oona.           | (cfsm)       | (cfs)        | (cfs)          | (days)              | (fps)           |                 | (ft)           | (ft)                     | (°C)        |                             |                | (°C)           |                     |             |
| Q7-10           | 0.034        | 0.00         | 0.00           | 0.000               | 0.000           | 40.0            | 40.00          | 1.00                     | 2           | 0.00                        | 7.00           | 0.00           | 0.00                |             |
| Q1-10           |              | 0.00         | 0.00           | 0.000               | 0.000           |                 |                |                          |             |                             |                |                |                     |             |
| 230-10          |              | 0.00         | 0.00           | 0.000               | 0.000           |                 |                |                          |             |                             |                |                |                     |             |
|                 |              |              |                |                     | Dis             | scharge D       | ata            |                          |             |                             |                |                | _                   |             |
|                 |              |              | Name           | Per                 | mit Number      |                 | Disc<br>Flow   | d Design<br>Disc<br>Flow | Rese<br>Fac | tor                         | emp            | Disc<br>pH     |                     |             |
|                 |              | Норе         | well STP       | PAC                 | 0026328         | (mgd)<br>2.5000 | (mgd)<br>2.500 | (mgd)<br>00 2.5000       | ) 0         | .000                        | C)<br>25.00    | 7.00           |                     |             |
|                 |              |              |                |                     | Pa              | rameter D       | ata            |                          |             |                             |                |                |                     |             |
|                 |              |              |                | Paramete            | r Name          | Dis<br>Co       |                |                          | ream<br>onc | Fate<br>Coef                |                |                |                     |             |
|                 |              |              |                | aramete             | · radiiic       | (mg             | g/L) (mg       | g/L) (n                  | ng/L)       | (1/days)                    |                |                |                     |             |
|                 | _            |              | CBOD5          |                     |                 |                 | 25.00          | 2.00                     | 0.00        | 1.50                        |                |                |                     |             |
|                 |              |              | Dissolved      | l Oxygen            |                 |                 | 3.00           | 8.24                     | 0.00        | 0.00                        |                |                |                     |             |
|                 |              |              | NH3-N          |                     |                 |                 | 25.00          | 0.00                     | 0.00        | 0.70                        |                |                |                     |             |

|                 | SWP<br>Basin | Strea<br>Cod |                | Str                 | eam Name        |                          | RMI                      | Elevat                   |            | Orainage<br>Area<br>(sq mi) | Slope<br>(ft/ft) | PV<br>Withd<br>(m | Irawal  | Apply<br>FC |
|-----------------|--------------|--------------|----------------|---------------------|-----------------|--------------------------|--------------------------|--------------------------|------------|-----------------------------|------------------|-------------------|---------|-------------|
|                 | 20D          | 33           | 3564 RAC       | COON CR             | EEK             |                          | 7.89                     | 90 73                    | 8.30       | 202.00                      | 0.001            | 20                | 0.00    | <b>✓</b>    |
|                 |              |              |                |                     | St              | ream Dat                 | а                        |                          |            |                             |                  |                   |         |             |
| Design<br>Cond. | LFY          | Trib<br>Flow | Stream<br>Flow | Rch<br>Trav<br>Time | Rch<br>Velocity | WD<br>Ratio              | Rch<br>Width             | Rch<br>Depth             | Temp       | Tributary<br>pH             | Т                | Stream<br>emp     | _<br>pH |             |
| oona.           | (cfsm)       | (cfs)        | (cfs)          | (days)              | (fps)           |                          | (ft)                     | (ft)                     | (°C)       |                             | (                | °C)               |         |             |
| Q7-10           | 0.034        | 0.00         | 0.00           | 0.000               | 0.000           | 40.0                     | 40.00                    | 1.00                     | 20.        | .00 7.0                     | 00               | 0.00              | 0.00    |             |
| Q1-10           |              | 0.00         | 0.00           | 0.000               | 0.000           |                          |                          |                          |            |                             |                  |                   |         |             |
| Q30-10          |              | 0.00         | 0.00           | 0.000               | 0.000           |                          |                          |                          |            |                             |                  |                   |         |             |
|                 |              |              |                |                     | Dis             | charge D                 | ata                      |                          |            |                             |                  |                   | _       |             |
|                 |              |              | Name           | Dorr                | nit Number      | Existing<br>Disc<br>Flow | Permitte<br>Disc<br>Flow | d Design<br>Disc<br>Flow | Reserv     |                             |                  | Disc<br>pH        |         |             |
|                 |              |              | Name           | 1 611               | ilit Nullibei   | (mgd)                    | (mgd)                    | (mgd)                    | i acti     | (°C)                        |                  |                   |         |             |
|                 |              |              |                |                     |                 | 0.0000                   | 0.000                    | 0.0000                   | 0.0        | 000 2                       | 5.00             | 7.00              |         |             |
|                 |              |              |                |                     | Pai             | rameter D                | ata                      |                          |            |                             |                  |                   |         |             |
|                 |              |              |                | Paramete            | ar Name         | Dis<br>Co                | sc Tri<br>onc Co         |                          | eam<br>onc | Fate<br>Coef                |                  |                   |         |             |
|                 |              |              |                | i aramet            | i Haine         | (mg                      | ɪ/L) (mg                 | g/L) (m                  | g/L) (     | (1/days)                    |                  |                   |         |             |
|                 |              |              | CBOD5          |                     |                 |                          | 25.00                    | 2.00                     | 0.00       | 1.50                        |                  | _                 |         |             |
|                 |              |              | Dissolved      | d Oxygen            |                 |                          | 3.00                     | 8.24                     | 0.00       | 0.00                        |                  |                   |         |             |
|                 |              |              | NH3-N          |                     |                 |                          | 25.00                    | 0.00                     | 0.00       | 0.70                        |                  |                   |         |             |

# WQM 7.0 Hydrodynamic Outputs

|        | SWP Basin Stream Code  |             |                       |                         |                  |       |               | Stream       | Name     |                       |                  |                |
|--------|------------------------|-------------|-----------------------|-------------------------|------------------|-------|---------------|--------------|----------|-----------------------|------------------|----------------|
|        |                        | 20D         | 3                     | 3564                    |                  |       | RACCOON CREEK |              |          |                       |                  |                |
| RMI    | Stream<br>Flow         | PWS<br>With | Net<br>Stream<br>Flow | Disc<br>Analysi<br>Flow | Reach<br>s Slope | Depth | Width         | W/D<br>Ratio | Velocity | Reach<br>Trav<br>Time | Analysis<br>Temp | Analysis<br>pH |
|        | (cfs)                  | (cfs)       | (cfs)                 | (cfs)                   | (ft/ft)          | (ft)  | (ft)          |              | (fps)    | (days)                | (°C)             |                |
|        | Q7-10<br>Flow          |             |                       |                         |                  |       |               |              |          |                       |                  |                |
| 11.140 | 5.85<br><b>Q1-10</b>   | 0.00        | 5.85                  | 3.8675                  | 0.00120          | 1     | 40            | 40           | 0.24     | 0.818                 | 21.99            | 7.00           |
| 11.140 | Flow<br>3.74<br>230-10 |             | 3.74                  | 3.8675                  | 0.00120          | NA    | NA            | N.A          | 0.19     | 1.044                 | 22.54            | 7.00           |
| 11.140 | Flow<br>7.95           | 0.00        | 7.95                  | 3.8675                  | 0.00120          | NA    | NA            | N.A          | 0.30     | 0.672                 | 21.64            | 7.00           |

# WQM 7.0 D.O.Simulation

| SWP Basin               | Stream Code     |                |         | Stream Name        |          |               |
|-------------------------|-----------------|----------------|---------|--------------------|----------|---------------|
| 20D                     | 33564           |                | R       | ACCOON CREEK       |          |               |
| RMI                     | Total Discharge | Flow (mgd)     | Anal    | ysis Temperature ( | (ºC) Ana | lysis pH      |
| 11.140                  | 2.500           |                |         | 21.990             |          | .000          |
| Reach Width (ft)        | Reach Dep       |                |         | Reach WDRatio      |          | elocity (fps) |
| 40.000                  | 1.000           |                |         | 40.000             | 0        | .243          |
| Reach CBOD5 (mg/L)      | Reach Kc (      | 1/days)        | Re      | each NH3-N (mg/L   | ) Reach  | Kn (1/days)   |
| 7.16                    | 0.686           |                |         | 1.77               |          | .816          |
| Reach DO (mg/L)         | Reach Kr (      | <u>1/days)</u> |         | Kr Equation        | Reach DO | O Goal (mg/L) |
| 6.156                   | 2.903           |                |         | Tsivoglou          |          | 5             |
| Reach Travel Time (days | <u>)</u>        | Subreach       | Results |                    |          |               |
| 0.818                   | TravTime        | CBOD5          | NH3-N   | D.O.               |          |               |
|                         | (days)          | (mg/L)         | (mg/L)  | (mg/L)             |          |               |
|                         |                 |                |         |                    |          |               |
|                         | 0.082           | 6.73           | 1.66    | 5.69               |          |               |
|                         | 0.164           | 6.33           | 1.55    | 5.38               |          |               |
|                         | 0.245           | 5.95           | 1.45    | 5.20               |          |               |
|                         | 0.327           | 5.59           | 1.36    | 5.11               |          |               |
|                         | 0.409           | 5.26           | 1.27    | 5.10               |          |               |
|                         | 0.491           | 4.95           | 1.19    | 5.13               |          |               |
|                         | 0.572           | 4.65           | 1.11    | 5.21               |          |               |
|                         | 0.654           | 4.37           | 1.04    | 5.31               |          |               |
|                         | 0.736           | 4.11           | 0.97    | 5.44               |          |               |
|                         | 0.818           | 3.87           | 0.91    | 5.57               |          |               |
|                         |                 |                |         |                    |          |               |

## **WQM 7.0 Wasteload Allocations**

 SWP Basin
 Stream Code
 Stream Name

 20D
 33564
 RACCOON CREEK

| NH3-N | l Acute A | Allocations |
|-------|-----------|-------------|
|-------|-----------|-------------|

| RMI      | Discharge Name | Baseline<br>Criterion<br>(mg/L) | Criterion WLA |      | Multiple<br>WLA<br>(mg/L) | Critical<br>Reach | Percent<br>Reduction |
|----------|----------------|---------------------------------|---------------|------|---------------------------|-------------------|----------------------|
| 11.140 H | Hopewell STP   | 8.05                            | 15.85         | 8.05 | 15.85                     | 0                 | 0                    |

### **NH3-N Chronic Allocations**

| RMI Discharge Name  | Baseline<br>Criterion<br>(mg/L) | Baseline<br>WLA<br>(mg/L) | Multiple<br>Criterion<br>(mg/L) | Multiple<br>WLA<br>(mg/L) | Critical<br>Reach | Percent<br>Reduction |
|---------------------|---------------------------------|---------------------------|---------------------------------|---------------------------|-------------------|----------------------|
| 11.140 Hopewell STP | 1.7                             | 5.21                      | 1.7                             | 5.21                      | 0                 | 0                    |

### **Dissolved Oxygen Allocations**

|         |                | CBOD5              |                    | NH3-N              |          | Dissolve | d Oxygen | Critical | Percent   |
|---------|----------------|--------------------|--------------------|--------------------|----------|----------|----------|----------|-----------|
| RMI     | Discharge Name | Baseline<br>(mg/L) | Multiple<br>(mg/L) | Baseline<br>(mg/L) | Multiple |          | Multiple |          | Reduction |
| 11.14 F | Honewell STP   | 14.95              | 14.95              | 4.46               | 4.46     | 3        | 3        | 0        | 0         |

# **WQM 7.0 Effluent Limits**

|        | SWP Basin Strea | m Code           |                       |                  |                                      |                                  |                                  |
|--------|-----------------|------------------|-----------------------|------------------|--------------------------------------|----------------------------------|----------------------------------|
|        | 20D             | 33564            |                       | RACCOON CRE      | EK                                   |                                  |                                  |
| RMI    | Name            | Permit<br>Number | Disc<br>Flow<br>(mgd) | Parameter        | Effl. Limit<br>30-day Ave.<br>(mg/L) | Effl. Limit<br>Maximum<br>(mg/L) | Effl. Limit<br>Minimum<br>(mg/L) |
| 11.140 | Hopewell STP    | PA0026328        | 2.500                 | CBOD5            | 14.95                                |                                  |                                  |
|        |                 |                  |                       | NH3-N            | 4.46                                 | 8.92                             |                                  |
|        |                 |                  |                       | Dissolved Oxygen |                                      |                                  | 3                                |

|                 | SWP<br>Basin | Strea<br>Cod |                | Stre                | eam Name        |                          | RMI                               | Elevat                            | ion         | Drainage<br>Area<br>(sq mi) | Slope<br>(ft/ft) | PV<br>Withd<br>(m | Irawal         | Apply<br>FC |
|-----------------|--------------|--------------|----------------|---------------------|-----------------|--------------------------|-----------------------------------|-----------------------------------|-------------|-----------------------------|------------------|-------------------|----------------|-------------|
|                 | 20D          | 335          | 64 RACC        | OON CRE             | EK              |                          | 11.14                             | 40 7                              | 60.00       | 172.00                      | 0.001            | 20                | 0.00           | <b>✓</b>    |
|                 |              |              |                |                     | St              | ream Dat                 | а                                 |                                   |             |                             |                  |                   |                |             |
| Design<br>Cond. | LFY          | Trib<br>Flow | Stream<br>Flow | Rch<br>Trav<br>Time | Rch<br>Velocity | WD<br>Ratio              | Rch<br>Width                      | Rch<br>Depth                      | Temp        | Tributary<br>pH             | To               | Stream<br>emp     | <u>l</u><br>pH |             |
| Contai          | (cfsm)       | (cfs)        | (cfs)          | (days)              | (fps)           |                          | (ft)                              | (ft)                              | (°C)        |                             | (                | °C)               |                |             |
| Q7-10           | 0.068        | 0.00         | 0.00           | 0.000               | 0.000           | 40.0                     | 40.00                             | 1.00                              | 5           | .00 7.0                     | 00               | 0.00              | 0.00           |             |
| Q1-10           |              | 0.00         | 0.00           | 0.000               | 0.000           |                          |                                   |                                   |             |                             |                  |                   |                |             |
| Q30-10          |              | 0.00         | 0.00           | 0.000               | 0.000           |                          |                                   |                                   |             |                             |                  |                   |                |             |
|                 |              |              |                |                     | Dis             | scharge D                | ata                               |                                   |             |                             |                  |                   | -              |             |
|                 |              |              | Name           | Per                 | mit Number      | Existing Disc Flow (mgd) | Permitte<br>Disc<br>Flow<br>(mgd) | d Design<br>Disc<br>Flow<br>(mgd) | Rese<br>Fac |                             | р                | Disc<br>pH        |                |             |
|                 |              | Норе         | well STP       | PAC                 | 026328          | 2.5000                   | ,                                 | 0 2.5000                          | ) 0.        |                             | 5.00             | 7.00              |                |             |
|                 |              |              |                |                     | Pa              | rameter D                | ata                               |                                   |             |                             |                  |                   |                |             |
|                 |              |              | ı              | Paramete            | r Name          | Dis<br>Co                |                                   |                                   | ream<br>onc | Fate<br>Coef                |                  |                   |                |             |
|                 |              |              | '              | aramete             | Hame            | (mg                      | ı/L) (mç                          | g/L) (n                           | ng/L)       | (1/days)                    |                  |                   |                |             |
|                 |              |              | CBOD5          |                     |                 |                          | 25.00                             | 2.00                              | 0.00        | 1.50                        |                  | =                 |                |             |
|                 |              |              | Dissolved      | l Oxygen            |                 |                          | 3.00                              | 8.24                              | 0.00        | 0.00                        |                  |                   |                |             |
|                 |              |              | NH3-N          |                     |                 |                          | 25.00                             | 0.00                              | 0.00        | 0.70                        |                  |                   |                |             |

|                 | SWP<br>Basin | Strea<br>Cod   |                | Str                 | eam Name        |                          | RMI                      | Elevat<br>(ft)           |            | rainage<br>Area<br>(sq mi) | Slope<br>(ft/ft) |               | VS<br>drawal<br>gd) | Apply<br>FC |
|-----------------|--------------|----------------|----------------|---------------------|-----------------|--------------------------|--------------------------|--------------------------|------------|----------------------------|------------------|---------------|---------------------|-------------|
|                 | 20D          | 33             | 3564 RAC       | COON CR             | EEK             |                          | 7.89                     | 90 73                    | 8.30       | 202.00                     | 0.001            | 20            | 0.00                | <b>✓</b>    |
|                 |              |                |                |                     | St              | ream Dat                 | а                        |                          |            |                            |                  |               |                     |             |
| Design<br>Cond. | LFY          | Trib<br>Flow   | Stream<br>Flow | Rch<br>Trav<br>Time | Rch<br>Velocity | WD<br>Ratio              | Rch<br>Width             | Rch<br>Depth             |            | ributary<br>pH             | т                | Stream<br>emp | <u>n</u><br>pH      |             |
| oona.           | (cfsm)       | (cfs)          | (cfs)          | (days)              | (fps)           |                          | (ft)                     | (ft)                     | (°C)       |                            | (                | (°C)          |                     |             |
| Q7-10           | 0.068        | 0.00           | 0.00           | 0.000               | 0.000           | 40.0                     | 40.00                    | 1.00                     | 5.0        | 0 7.0                      | 00               | 0.00          | 0.00                |             |
| Q1-10           |              | 0.00           | 0.00           | 0.000               | 0.000           |                          |                          |                          |            |                            |                  |               |                     |             |
| Q30-10          |              | 0.00           | 0.00           | 0.000               | 0.000           |                          |                          |                          |            |                            |                  |               |                     |             |
|                 |              | Discharge Data |                |                     |                 |                          |                          |                          |            |                            |                  | _             |                     |             |
|                 |              |                | Name           | Perr                | nit Number      | Existing<br>Disc<br>Flow | Permitte<br>Disc<br>Flow | d Design<br>Disc<br>Flow | Reserv     |                            |                  | Disc<br>pH    |                     |             |
|                 |              |                |                |                     |                 | (mgd)                    | (mgd)                    | (mgd)                    |            | (°C)                       |                  |               |                     |             |
|                 |              |                |                |                     |                 | 0.0000                   | 0.000                    | 0.0000                   | 0.0        | 00 2                       | 5.00             | 7.00          |                     |             |
|                 |              |                |                |                     | Pai             | rameter D                | ata                      |                          |            |                            |                  |               |                     |             |
|                 |              |                |                | Paramete            | er Name         | Dis<br>Co                |                          |                          | eam<br>onc | Fate<br>Coef               |                  |               |                     |             |
|                 |              |                |                | T diamete           | i Haine         | (mg                      | ı/L) (mg                 | g/L) (m                  | g/L) (     | 1/days)                    |                  |               |                     |             |
|                 | _            |                | CBOD5          |                     |                 |                          | 25.00                    | 2.00                     | 0.00       | 1.50                       |                  | _             |                     |             |
|                 |              |                | Dissolved      | d Oxygen            |                 |                          | 3.00                     | 8.24                     | 0.00       | 0.00                       |                  |               |                     |             |
|                 |              |                | NH3-N          |                     |                 |                          | 25.00                    | 0.00                     | 0.00       | 0.70                       |                  |               |                     |             |

|                 | SWP<br>Basin | Strea<br>Cod |                | Stre                | eam Name        |                 | RMI            | Elevat                            | ion         | Drainage<br>Area<br>(sq mi) | Slope<br>(ft/ft) | Withd                 | rawal | Apply<br>FC |
|-----------------|--------------|--------------|----------------|---------------------|-----------------|-----------------|----------------|-----------------------------------|-------------|-----------------------------|------------------|-----------------------|-------|-------------|
|                 | 20D          | 335          | 64 RACC        | OON CRE             | EK              |                 | 11.14          | 40 7                              | 60.00       | 172.00                      | 0.00             | 120                   | 0.00  | <b>✓</b>    |
|                 |              |              |                |                     | St              | ream Dat        | a              |                                   |             |                             |                  |                       |       |             |
| Design<br>Cond. | LFY          | Trib<br>Flow | Stream<br>Flow | Rch<br>Trav<br>Time | Rch<br>Velocity | WD<br>Ratio     | Rch<br>Width   | Rch<br>Depth                      | Tem         | Tributary<br>pH             | -                | <u>Stream</u><br>Temp | рH    |             |
| oona.           | (cfsm)       | (cfs)        | (cfs)          | (days)              | (fps)           |                 | (ft)           | (ft)                              | (°C)        |                             |                  | (°C)                  |       |             |
| Q7-10           | 0.068        | 0.00         | 0.00           | 0.000               | 0.000           | 40.0            | 40.00          | 1.00                              | 5           | .00 7.0                     | 00               | 0.00                  | 0.00  |             |
| Q1-10           |              | 0.00         | 0.00           | 0.000               | 0.000           |                 |                |                                   |             |                             |                  |                       |       |             |
| 230-10          |              | 0.00         | 0.00           | 0.000               | 0.000           |                 |                |                                   |             |                             |                  |                       |       |             |
|                 |              |              |                |                     | Dis             | scharge D       | ata            |                                   |             |                             |                  |                       | -     |             |
|                 |              |              | Name           | Per                 | mit Number      |                 | Disc<br>Flow   | d Design<br>Disc<br>Flow<br>(mgd) | Rese<br>Fac |                             | p                | Disc<br>pH            |       |             |
|                 |              | Норе         | well STP       | PAC                 | 026328          | (mgd)<br>2.5000 | (mgd)<br>2.500 | (iligu)<br>00 2.5000              | ) 0.        |                             | 25.00            | 7.00                  |       |             |
|                 |              |              |                |                     | Pa              | rameter D       | ata            |                                   |             |                             |                  |                       |       |             |
|                 |              |              |                | Paramete            | r Name          | Dis<br>Co       |                |                                   | ream<br>onc | Fate<br>Coef                |                  |                       |       |             |
|                 |              |              |                | aramete             | Nume            | (mg             | g/L) (mg       | g/L) (n                           | ng/L)       | (1/days)                    |                  |                       |       |             |
|                 | _            |              | CBOD5          |                     |                 |                 | 25.00          | 2.00                              | 0.00        | 1.50                        |                  | <del>_</del>          |       |             |
|                 |              |              | Dissolved      | l Oxygen            |                 |                 | 3.00           | 8.24                              | 0.00        | 0.00                        |                  |                       |       |             |
|                 |              |              | NH3-N          |                     |                 |                 | 25.00          | 0.00                              | 0.00        | 0.70                        |                  |                       |       |             |

|                 | SWP<br>Basin | Strea<br>Cod   |                | Str                 | eam Name        |                          | RMI                      | Elevat<br>(ft)           |            | rainage<br>Area<br>(sq mi) | Slope<br>(ft/ft) |               | VS<br>drawal<br>gd) | Apply<br>FC |
|-----------------|--------------|----------------|----------------|---------------------|-----------------|--------------------------|--------------------------|--------------------------|------------|----------------------------|------------------|---------------|---------------------|-------------|
|                 | 20D          | 33             | 3564 RAC       | COON CR             | EEK             |                          | 7.89                     | 90 73                    | 8.30       | 202.00                     | 0.001            | 20            | 0.00                | <b>✓</b>    |
|                 |              |                |                |                     | St              | ream Dat                 | а                        |                          |            |                            |                  |               |                     |             |
| Design<br>Cond. | LFY          | Trib<br>Flow   | Stream<br>Flow | Rch<br>Trav<br>Time | Rch<br>Velocity | WD<br>Ratio              | Rch<br>Width             | Rch<br>Depth             |            | ributary<br>pH             | т                | Stream<br>emp | <u>n</u><br>pH      |             |
| oona.           | (cfsm)       | (cfs)          | (cfs)          | (days)              | (fps)           |                          | (ft)                     | (ft)                     | (°C)       |                            | (                | (°C)          |                     |             |
| Q7-10           | 0.068        | 0.00           | 0.00           | 0.000               | 0.000           | 40.0                     | 40.00                    | 1.00                     | 5.0        | 0 7.0                      | 00               | 0.00          | 0.00                |             |
| Q1-10           |              | 0.00           | 0.00           | 0.000               | 0.000           |                          |                          |                          |            |                            |                  |               |                     |             |
| Q30-10          |              | 0.00           | 0.00           | 0.000               | 0.000           |                          |                          |                          |            |                            |                  |               |                     |             |
|                 |              | Discharge Data |                |                     |                 |                          |                          |                          |            |                            |                  | _             |                     |             |
|                 |              |                | Name           | Perr                | nit Number      | Existing<br>Disc<br>Flow | Permitte<br>Disc<br>Flow | d Design<br>Disc<br>Flow | Reserv     |                            |                  | Disc<br>pH    |                     |             |
|                 |              |                |                |                     |                 | (mgd)                    | (mgd)                    | (mgd)                    |            | (°C)                       |                  |               |                     |             |
|                 |              |                |                |                     |                 | 0.0000                   | 0.000                    | 0.0000                   | 0.0        | 00 2                       | 5.00             | 7.00          |                     |             |
|                 |              |                |                |                     | Pai             | rameter D                | ata                      |                          |            |                            |                  |               |                     |             |
|                 |              |                |                | Paramete            | er Name         | Dis<br>Co                |                          |                          | eam<br>onc | Fate<br>Coef               |                  |               |                     |             |
|                 |              |                |                | T diamete           | i Haine         | (mg                      | ı/L) (mg                 | g/L) (m                  | g/L) (     | 1/days)                    |                  |               |                     |             |
|                 | _            |                | CBOD5          |                     |                 |                          | 25.00                    | 2.00                     | 0.00       | 1.50                       |                  | _             |                     |             |
|                 |              |                | Dissolved      | d Oxygen            |                 |                          | 3.00                     | 8.24                     | 0.00       | 0.00                       |                  |               |                     |             |
|                 |              |                | NH3-N          |                     |                 |                          | 25.00                    | 0.00                     | 0.00       | 0.70                       |                  |               |                     |             |

# WQM 7.0 Hydrodynamic Outputs

|             | SWP Basin Stream Code  |             |                       |                  |                  |       |       | Stream       | Name     |                       |                  |                |
|-------------|------------------------|-------------|-----------------------|------------------|------------------|-------|-------|--------------|----------|-----------------------|------------------|----------------|
|             |                        | 20D         | 3                     | 3564             |                  |       | RA    | CCOON        | I CREEK  |                       |                  |                |
| RMI         | Stream<br>Flow         | PWS<br>With | Net<br>Stream<br>Flow | Disc<br>Analysis | Reach<br>s Slope | Depth | Width | W/D<br>Ratio | Velocity | Reach<br>Trav<br>Time | Analysis<br>Temp | Analysis<br>pH |
|             | (cfs)                  | (cfs)       | (cfs)                 | (cfs)            | (ft/ft)          | (ft)  | (ft)  |              | (fps)    | (days)                | (°C)             |                |
|             | Q7-10<br>Flow          |             |                       |                  |                  |       |       |              |          |                       |                  |                |
| 11.140      | 11.70<br>Q1-10<br>Flow | 0.00        | 11.70                 | 3.8675           | 0.00120          | 1     | 40    | 40           | 0.39     | 0.510                 | 9.97             | 7.00           |
| 11.140<br>( |                        | 0.00        | 7.49                  | 3.8675           | 0.00120          | NA    | NA    | N.A          | 0.28     | 0.700                 | 11.81            | 7.00           |
| 11.140      | 15.91                  | 0.00        | 15.91                 | 3.8675           | 0.00120          | NA    | NA    | N/           | 0.49     | 0.402                 | 8.91             | 7.00           |

# WQM 7.0 D.O.Simulation

| SWP Basin S              | tream Code      |          |         | Stream Na  | <u>ame</u>  |                      |
|--------------------------|-----------------|----------|---------|------------|-------------|----------------------|
| 20D                      | 33564           |          | RA      | ACCOON C   | REEK        |                      |
| <u>RMI</u>               | Total Discharge |          | Analy   | sis Tempe  | rature (°C) | Analysis pH          |
| 11.140                   | 2.500           |          |         | 9.970      |             | 7.000                |
| Reach Width (ft)         | Reach Dep       | th (ft)  |         | Reach WD   | Ratio       | Reach Velocity (fps) |
| 40.000                   | 1.000           |          |         | 40.000     |             | 0.389                |
| Reach CBOD5 (mg/L)       | Reach Kc (*     | 1/days)  | Re      | each NH3-N | l (mg/L)    | Reach Kn (1/days)    |
| 7.72                     | 1.145           |          |         | 5.18       |             | 0.323                |
| Reach DO (mg/L)          | Reach Kr (1     | I/days)  |         | Kr Equat   | ion         | Reach DO Goal (mg/L) |
| 6.940                    | 2.512           |          |         | Tsivogle   | ou          | 5                    |
| Reach Travel Time (days) | ı               | Subreach | Results |            |             |                      |
| 0.510                    | TravTime        | CBOD5    | NH3-N   | D.O.       |             |                      |
|                          | (days)          | (mg/L)   | (mg/L)  | (mg/L)     |             |                      |
|                          | 0.051           | 7.44     | 5.10    | 6.70       |             |                      |
|                          | 0.102           | 7.17     | 5.02    | 6.52       |             |                      |
|                          | 0.153           | 6.91     | 4.93    | 6.37       |             |                      |
|                          | 0.204           | 6.66     | 4.85    | 6.26       |             |                      |
|                          | 0.255           | 6.42     | 4.77    | 6.19       |             |                      |
|                          | 0.306           | 6.18     | 4.70    | 6.14       |             |                      |
|                          | 0.357           | 5.96     | 4.62    | 6.11       |             |                      |

0.408

0.459

0.510

5.74

5.54

5.34

4.54

4.47

4.40

6.10

6.11

6.14

# **WQM 7.0 Wasteload Allocations**

| SWP Basin | Stream Code | Stream Name   |
|-----------|-------------|---------------|
| 20D       | 33564       | RACCOON CREEK |

4.08

| NH3-N | Acute Alloca   | tions                           |                           |                                 |                           |                   |                      |
|-------|----------------|---------------------------------|---------------------------|---------------------------------|---------------------------|-------------------|----------------------|
| RMI   | Discharge Name | Baseline<br>Criterion<br>(mg/L) | Baseline<br>WLA<br>(mg/L) | Multiple<br>Criterion<br>(mg/L) | Multiple<br>WLA<br>(mg/L) | Critical<br>Reach | Percent<br>Reduction |
| 11.14 | 0 Hopewell STP | 17.87                           | 50                        | 17.87                           | 50                        | 0                 | 0                    |
| NH3-N | Chronic Allo   | cations                         |                           |                                 |                           |                   |                      |
| RMI   | Discharge Name | Baseline<br>Criterion<br>(mg/L) | Baseline<br>WLA<br>(mg/L) | Multiple<br>Criterion<br>(mg/L) | Multiple<br>WLA<br>(mg/L) | Critical<br>Reach | Percent<br>Reduction |

20.86

### **Dissolved Oxygen Allocations**

11.140 Hopewell STP

|       |                | CBOD5              |                    | NH3-N              |          | Dissolve | d Oxygen | Critical | Percent   |
|-------|----------------|--------------------|--------------------|--------------------|----------|----------|----------|----------|-----------|
| RMI   | Discharge Name | Baseline<br>(mg/L) | Multiple<br>(mg/L) | Baseline<br>(mg/L) | Multiple | Baseline | Multiple | Reach    | Reduction |
| 11.14 | Hopewell STP   | 25                 | 25                 | 20.86              | 20.86    | 3        | 3        | 0        | 0         |

20.86

0

4.08

# **WQM 7.0 Effluent Limits**

|        | SWP Basin Stream | ım Code          |                       |                  |                                      |                                  |                                  |
|--------|------------------|------------------|-----------------------|------------------|--------------------------------------|----------------------------------|----------------------------------|
|        | 20D              | 33564            |                       | RACCOON CRE      | EEK                                  |                                  |                                  |
| RMI    | Name             | Permit<br>Number | Disc<br>Flow<br>(mgd) | Parameter        | Effl. Limit<br>30-day Ave.<br>(mg/L) | Effl. Limit<br>Maximum<br>(mg/L) | Effl. Limit<br>Minimum<br>(mg/L) |
| 11.140 | Hopewell STP     | PA0026328        | 2.500                 | CBOD5            | 25                                   |                                  |                                  |
|        |                  |                  |                       | NH3-N            | 20.86                                | 41.72                            |                                  |
|        |                  |                  |                       | Dissolved Oxygen |                                      |                                  | 3                                |

# **TRC Spreadsheet Output**

## TRC\_CALC\_2021\_renewal

| 1A        | В          | С                | D                 | E          | F                  | G                    |
|-----------|------------|------------------|-------------------|------------|--------------------|----------------------|
| 2TI       | RC EVALUA  | ATION            |                   | Ente       | r Facility Nam     | e in E3              |
| <u>In</u> | put approp | riate values     | in B4:B8 and      |            |                    |                      |
| _         | 4:E7       |                  |                   | Racco      | oon Creek STP PA   | 0026328              |
| 4         | 5.85       | = Q stream (cfs  | s)                | 0.034      | = CV Daily         |                      |
| 5         | 2.5        | = Q discharge    | (MGD)             | 0.034      | = CV Hourly        |                      |
| 6         | 4          | = no. samples    |                   | 0.         | 81 = AFC_Partial I | Mix Factor           |
| 7         | 0.3        | = Chlorine Den   | nand of Stream    |            | 1 = CFC_Partial I  | Mix Factor           |
| 8         |            | = Chlorine Den   | nand of Discharge |            | = AFC_Criteria C   | ompliance Time (min) |
| 9         | 0.311 =    | = BAT/BPJ Valι   | ıe                |            | = CFC_Criteria C   | ompliance Time (min) |
|           |            | = % Factor of \$ | • • •             |            | =Decay Coefficie   | ent (K)              |
| 10        | Source     | Reference        | AFC Calculations  |            | Reference          | CFC Calculations     |
| 11        | TRC        | 1.3.2.iii        | WLA afc           | = 0.410    | 1.3.2.iii          | WLA cfc = $0.481$    |
|           | NTOXSD TRG | 5.1a             | LTAMULT afc       | = 0.925    | 5.1c               | LTAMULT cfc = 0.961  |
|           | NTOXSD TRG | 5.1b             | LTA_af            | c= 0.379   | 5.1d               | $LTA\_cfc = 0.463$   |
| 14        |            |                  |                   |            |                    |                      |
| 15        | Source     |                  | Efflue            | nt Limit C | alculations        |                      |
|           | NTOXSD TRG | 5.1f             | A                 | ML MUL     | Γ = 1.040          |                      |
|           | NTOXSD TRG | 5.1g             | AVG MON LI        | MIT (mg/   | ) = 0.311          | BAT/BPJ              |
| 18        |            |                  | INST MAX LI       | MIT (mg/   | ) = 0.485          |                      |

| WLA afc               | (.019/e(-k*AFC_tc)) + [(AFC_Yc*Qs*.019/Qd*e(-k*AFC_tc))<br>+ Xd + (AFC_Yc*Qs*Xs/Qd)]*(1-FOS/100) |
|-----------------------|--------------------------------------------------------------------------------------------------|
| LTAMULT afc           | EXP((0.5*LN(cvh^2+1))-2.326*LN(cvh^2+1)^0.5)                                                     |
| LTA_afc               | wla_afc*LTAMULT_afc                                                                              |
| WLA_cfc               | (.011/e(-k*CFC_tc) + [(CFC_Yc*Qs*.011/Qd*e(-k*CFC_tc) )<br>+ Xd + (CFC_Yc*Qs*Xs/Qd)]*(1-FOS/100) |
| LTAMULT_cfc           | EXP((0.5*LN(cvd^2/no_samples+1))-2.326*LN(cvd^2/no_samples+1)^0.5)                               |
| LTA_cfc               | wla_cfc*LTAMULT_cfc                                                                              |
| AML MULT              | EXP(2.326*LN((cvd^2/no_samples+1)^0.5)-0.5*LN(cvd^2/no_samples+1))                               |
| AVG MON LIMIT         | MIN(BAT_BPJ,MIN(LTA_afc,LTA_cfc)*AML_MULT)                                                       |
| <b>INST MAX LIMIT</b> | 1.5*((av_mon_limit/AML_MULT)/LTAMULT_afc)                                                        |

# **Toxics Management Spreadsheet**



Toxics Management Spreadsheet Version 1.0, July 2020

### **Model Results**

Hopewell STP, NPDES Permit No. PA0026328, Outfall 011

Analysis pH: 7.00

| Instruction    | Results              | RETU                 | IRN TO INPUTS            | SAVE AS PDI                      | •) (          | PRINT      | ) <b>⊚</b> All | O Inputs  | O Results         | O Limits              |                            |
|----------------|----------------------|----------------------|--------------------------|----------------------------------|---------------|------------|----------------|-----------|-------------------|-----------------------|----------------------------|
| ☑ Hydrod       | dynamics             |                      |                          |                                  |               |            |                |           |                   |                       |                            |
| RMI            | Stream<br>Flow (cfs) | PWS Withdrawal (cfs) | Net Stream<br>Flow (cfs) | Discharge Analysis<br>Flow (cfs) | Slope (ft/ft) | Depth (ft) | Width (ft)     | W/D Ratio | Velocity<br>(fps) | Travel Time<br>(days) | Complete Mix Time (min)    |
| 11.14          | 5.85                 |                      | 5.85                     | 3.868                            | 0.001         | 1.         | 40.            | 40.       | 0.243             | 0.818                 | 22.937                     |
| 7.89           | 6.87                 |                      | 6.868                    |                                  |               |            |                |           |                   |                       |                            |
| Q <sub>h</sub> |                      |                      |                          |                                  |               |            |                |           |                   |                       |                            |
| RMI            | Stream<br>Flow (cfs) | PWS Withdrawal (cfs) | Net Stream<br>Flow (cfs) | Discharge Analysis<br>Flow (cfs) | Slope (ft/ft) | Depth (ft) | Width (ft)     | W/D Ratio | Velocity<br>(fps) | Travel Time<br>(days) | Complete Mix Time<br>(min) |
| 11.14          | 34.78                |                      | 34.78                    | 3.868                            | 0.001         | 1.836      | 40.            | 21.787    | 0.526             | 0.377                 | 20.611                     |

| ✓ | Wasteload Allocations |
|---|-----------------------|
|---|-----------------------|

40.029

40.03

PMF: 0.809

CCT (min): 15

7.89

☑ AFC

|                              | . ,                   |              |                     |              | ı             |                  | , , ,      |                                  |
|------------------------------|-----------------------|--------------|---------------------|--------------|---------------|------------------|------------|----------------------------------|
| Pollutants                   | Stream<br>Conc (µg/L) | Stream<br>CV | Trib Conc<br>(µg/L) | Fate<br>Coef | WQC<br>(µg/L) | WQ Obj<br>(µg/L) | WLA (μg/L) | Comments                         |
| Total Dissolved Solids (PWS) | 0                     | 0            |                     | 0            | N/A           | N/A              | N/A        |                                  |
| Total Aluminum               | 0                     | 0            |                     | 0            | 750           | 750              | 1,667      |                                  |
| Total Antimony               | 0                     | 0            |                     | 0            | 1,100         | 1,100            | 2,445      |                                  |
| Total Arsenic                | 0                     | 0            |                     | 0            | 340           | 340              | 756        | Chem Translator of 1 applied     |
| Total Barium                 | 0                     | 0            |                     | 0            | 21,000        | 21,000           | 46,679     |                                  |
| Total Boron                  | 0                     | 0            |                     | 0            | 8,100         | 8,100            | 18,005     |                                  |
| Total Cadmium                | 0                     | 0            |                     | 0            | 9.082         | 10.3             | 23.0       | Chem Translator of 0.879 applied |
| Total Chromium (III)         | 0                     | 0            |                     | 0            | 2030.734      | 6,426            | 14,284     | Chem Translator of 0.316 applied |
| Hexavalent Chromium          | 0                     | 0            |                     | 0            | 16            | 16.3             | 36.2       | Chem Translator of 0.982 applied |
| Total Cobalt                 | 0                     | 0            |                     | 0            | 95            | 95.0             | 211        |                                  |
| Total Copper                 | 0                     | 0            |                     | 0            | 57.991        | 60.4             | 134        | Chem Translator of 0.96 applied  |
| Free Available Cyanide       | 0                     | 0            |                     | 0            | 22            | 22.0             | 48.9       |                                  |
| Dissolved Iron               | 0                     | 0            |                     | 0            | N/A           | N/A              | N/A        |                                  |
| Total Iron                   | 0                     | 0            |                     | 0            | N/A           | N/A              | N/A        |                                  |

Analysis Hardness (mg/l): 472

| Total Lead                      | 0 | Ι 0 | 0 | 332.520  | 589    | 1,308  | Chem Translator of 0.565 applied    |
|---------------------------------|---|-----|---|----------|--------|--------|-------------------------------------|
| Total Manganese                 | 0 | 0   | 0 | N/A      | N/A    | N/A    | Chair Haileater of Close applied    |
| Total Mercury                   | 0 | 0   | 0 | 1.400    | 1.65   | 3.66   | Chem Translator of 0.85 applied     |
| Total Nickel                    | 0 | 0   | 0 | 1740.282 | 1,744  | 3,876  | Chem Translator of 0.998 applied    |
| Total Phenols (Phenolics) (PWS) | 0 | 0   | 0 | N/A      | N/A    | N/A    | Chair Hardater of Close approx      |
| Total Selenium                  | 0 | 0   | 0 | N/A      | N/A    | N/A    | Chem Translator of 0.922 applied    |
| Total Silver                    | 0 | 0   | 0 | 46.409   | 54.6   | 121    | Chem Translator of 0.85 applied     |
| Total Thallium                  | 0 | 0   | 0 | 65       | 65.0   | 144    | Citotii Transiator or c.co applica  |
| Total Zinc                      | 0 | 0   | 0 | 436.401  | 446    | 992    | Chem Translator of 0.978 applied    |
| Acrolein                        | 0 | 0   | 0 | 3        | 3.0    | 6.67   | Official Production of Core applied |
| Acrylonitrile                   | 0 | 0   | 0 | 650      | 650    | 1,445  |                                     |
| Benzene                         | 0 | 0   | 0 | 640      | 640    | 1,423  |                                     |
| Bromoform                       | 0 | 0   | 0 | 1,800    | 1,800  | 4,001  |                                     |
| Carbon Tetrachloride            | 0 | 0   | 0 | 2,800    | 2,800  | 6,224  |                                     |
| Chlorobenzene                   | 0 | 0   | 0 | 1,200    | 1,200  | 2,667  |                                     |
| Chlorodibromomethane            | 0 | 0   | 0 | N/A      | N/A    | N/A    |                                     |
| 2-Chloroethyl Vinyl Ether       | 0 | 0   | 0 | 18,000   | 18,000 | 40,010 |                                     |
| Chloroform                      | 0 | 0   | 0 | 1,900    | 1,900  | 4,223  |                                     |
| Dichlorobromomethane            | 0 | 0   | 0 | N/A      | N/A    | N/A    |                                     |
| 1.2-Dichloroethane              | 0 | 0   | 0 | 15,000   | 15,000 | 33,342 |                                     |
| 1,1-Dichloroethylene            | 0 | 0   | 0 | 7,500    | 7,500  | 16,671 |                                     |
| 1,2-Dichloropropane             | 0 | 0   | 0 | 11,000   | 11,000 | 24,451 |                                     |
| 1,3-Dichloropropylene           | 0 | 0   | 0 | 310      | 310    | 689    |                                     |
| Ethylbenzene                    | 0 | 0   | 0 | 2,900    | 2,900  | 6,446  |                                     |
| Methyl Bromide                  | 0 | 0   | 0 | 550      | 550    | 1,223  |                                     |
| Methyl Chloride                 | 0 | 0   | 0 | 28,000   | 28,000 | 62,238 |                                     |
| Methylene Chloride              | 0 | 0   | 0 | 12,000   | 12,000 | 26,673 |                                     |
| 1,1,2,2-Tetrachloroethane       | 0 | 0   | 0 | 1,000    | 1,000  | 2,223  |                                     |
| Tetrachloroethylene             | 0 | 0   | 0 | 700      | 700    | 1,556  |                                     |
| Toluene                         | 0 | 0   | 0 | 1,700    | 1,700  | 3,779  |                                     |
| 1,2-trans-Dichloroethylene      | 0 | 0   | 0 | 6.800    | 6.800  | 15,115 |                                     |
| 1,1,1-Trichloroethane           | 0 | 0   | 0 | 3,000    | 3,000  | 6,668  |                                     |
| 1,1,2-Trichloroethane           | 0 | 0   | 0 | 3,400    | 3,400  | 7,557  |                                     |
| Trichloroethylene               | 0 | 0   | 0 | 2,300    | 2,300  | 5,112  |                                     |
| Vinyl Chloride                  | 0 | 0   | 0 | N/A      | N/A    | N/A    |                                     |
| 2-Chlorophenol                  | 0 | 0   | 0 | 560      | 560    | 1,245  |                                     |
| 2,4-Dichlorophenol              | 0 | 0   | 0 | 1,700    | 1,700  | 3,779  |                                     |
| 2,4-Dimethylphenol              | 0 | 0   | 0 | 660      | 660    | 1,467  |                                     |
| 4,6-Dinitro-o-Cresol            | 0 | 0   | 0 | 80       | 80.0   | 178    |                                     |
| 2,4-Dinitrophenol               | 0 | 0   | 0 | 660      | 660    | 1,467  |                                     |
| 2-Nitrophenol                   | 0 | 0   | 0 | 8,000    | 8,000  | 17,782 |                                     |
| 4-Nitrophenol                   | 0 | 0   | 0 | 2,300    | 2,300  | 5,112  |                                     |
| p-Chloro-m-Cresol               | 0 | 0   | 0 | 160      | 160    | 356    |                                     |
| Pentachlorophenol               | 0 | 0   | 0 | 8.723    | 8.72   | 19.4   |                                     |
| Phenol                          | 0 | 0   | 0 | N/A      | N/A    | N/A    |                                     |
| 2,4,6-Trichlorophenol           | 0 | 1 0 | 0 | 460      | 460    | 1,022  |                                     |
| Acenaphthene                    | 0 | 0   | 0 | 83       | 83.0   | 184    |                                     |
| Anthracene                      | 0 | 0   | 0 | N/A      | N/A    | N/A    |                                     |
| 300110                          |   |     |   |          |        |        | 1                                   |

| Benzidine                        | 0             | 0   |          | 0 | 300        | 300           | 667         |                            |
|----------------------------------|---------------|-----|----------|---|------------|---------------|-------------|----------------------------|
| Benzo(a)Anthracene               | 0             | 0   |          | 0 | 0.5        | 0.5           | 1.11        |                            |
| Benzo(a)Pyrene                   | 0             | 0   |          | 0 | N/A        | N/A           | N/A         |                            |
| 3.4-Benzofluoranthene            | 0             | 0   |          | 0 | N/A        | N/A           | N/A         |                            |
| Benzo(k)Fluoranthene             | 0             | 0   |          | 0 | N/A        | N/A           | N/A         |                            |
| Bis(2-Chloroethyl)Ether          | 0             | 0   |          | 0 | 30,000     | 30,000        | 66,684      |                            |
| Bis(2-Chloroisopropyl)Ether      | 0             | 0   |          | 0 | N/A        | N/A           | N/A         |                            |
| Bis(2-Ethylhexyl)Phthalate       | 0             | 0   |          | 0 | 4,500      | 4,500         | 10,003      |                            |
| 4-Bromophenyl Phenyl Ether       | 0             | 0   |          | 0 | 270        | 270           | 600         |                            |
| Butyl Benzyl Phthalate           | 0             | 0   |          | 0 | 140        | 140           | 311         |                            |
| 2-Chloronaphthalene              | 0             | 0   |          | 0 | N/A        | N/A           | N/A         |                            |
| Chrysene                         | 0             | 0   |          | 0 | N/A        | N/A           | N/A         |                            |
| Dibenzo(a,h)Anthrancene          | 0             | 0   |          | 0 | N/A        | N/A           | N/A         |                            |
| 1,2-Dichlorobenzene              | 0             | 0   |          | 0 | 820        | 820           | 1,823       |                            |
| 1,3-Dichlorobenzene              | 0             | 0   |          | 0 | 350        | 350           | 778         |                            |
| 1,4-Dichlorobenzene              | 0             | 0   |          | 0 | 730        | 730           | 1,623       |                            |
| 3,3-Dichlorobenzidine            | 0             | 0   |          | 0 | N/A        | N/A           | N/A         |                            |
| Diethyl Phthalate                | 0             | 0   |          | 0 | 4,000      | 4,000         | 8,891       |                            |
| Dimethyl Phthalate               | 0             | 0   |          | 0 | 2,500      | 2,500         | 5,557       |                            |
| Di-n-Butyl Phthalate             | 0             | 0   |          | 0 | 110        | 110           | 245         |                            |
| 2,4-Dinitrotoluene               | 0             | 0   |          | 0 | 1,600      | 1,600         | 3,556       |                            |
| 2,6-Dinitrotoluene               | 0             | 0   |          | 0 | 990        | 990           | 2,201       |                            |
| 1,2-Diphenylhydrazine            | 0             | 0   |          | 0 | 15         | 15.0          | 33.3        |                            |
| Fluoranthene                     | 0             | 0   |          | 0 | 200        | 200           | 445         |                            |
| Fluorene                         | 0             | 0   |          | 0 | N/A        | N/A           | N/A         |                            |
| Hexachlorobenzene                | 0             | 0   |          | 0 | N/A        | N/A           | N/A         |                            |
| Hexachlorobutadiene              | 0             | 0   |          | 0 | 10         | 10.0          | 22.2        |                            |
| Hexachlorocyclopentadiene        | 0             | 0   |          | 0 | 5          | 5.0           | 11.1        |                            |
| Hexachloroethane                 | 0             | 0   |          | 0 | 60         | 60.0          | 133         |                            |
| Indeno(1,2,3-cd)Pyrene           | 0             | 0   |          | 0 | N/A        | N/A           | N/A         |                            |
| Isophorone                       | 0             | 0   |          | 0 | 10,000     | 10,000        | 22,228      |                            |
| Naphthalene                      | 0             | 0   |          | 0 | 140        | 140           | 311         |                            |
|                                  | 0             | 0   |          |   |            |               |             |                            |
| Nitrobenzene                     | 0             | 0   |          | 0 | 4,000      | 4,000         | 8,891       |                            |
| n-Nitrosodimethylamine           |               |     |          | 0 | 17,000     | 17,000        | 37,787      |                            |
| n-Nitrosodi-n-Propylamine        | 0             | 0   |          |   | N/A<br>300 | N/A<br>300    | N/A<br>667  |                            |
| n-Nitrosodiphenylamine           | 0             | 0   |          | 0 | 300<br>5   | 5.0           | 11.1        |                            |
| Phenanthrene                     | 0             | 0   |          | 0 | N/A        | 5.0<br>N/A    | 11.1<br>N/A |                            |
| Pyrene<br>1,2,4-Trichlorobenzene | 0             | 0   |          | 0 | 130        | 130           | 289         |                            |
| 1,2,4-THCHIOTODENZENE            | U U           | U   |          | U | 130        | 130           | 209         |                            |
|                                  |               |     |          |   |            |               |             |                            |
|                                  |               |     |          |   |            |               |             |                            |
|                                  |               |     |          |   |            |               |             |                            |
|                                  |               |     |          |   |            |               |             |                            |
| <b>☑ CFC</b> CC                  | T (min): 22.  | 937 | PMF:     | 1 | Δna        | lysis Hardnes | ss (ma/l).  | 472 Analysis pH: 7.00      |
| E 0/0                            | (11111). [22. | 001 | I IVII . |   | 73110      | iyoo Hulullo  | 55 (mg/i).  | 7112 / 711diyələ pri. 1.00 |
|                                  |               |     |          |   |            |               |             |                            |

| Model Results | 2/9/2021 | Page 3 |
|---------------|----------|--------|

WQ Obj

(µg/L)

WLA (µg/L)

Comments

WQC

(µg/L)

Fate

Coef

Stream Stream Trib Conc

(µg/L)

Conc (µg/L) CV

Pollutants

| Total Dissolved Solids (PWS)    | 0 | 0   | 0 | N/A          | N/A          | N/A    |                                                                |
|---------------------------------|---|-----|---|--------------|--------------|--------|----------------------------------------------------------------|
| Total Aluminum                  | 0 | 0   | 0 | N/A          | N/A          | N/A    |                                                                |
| Total Antimony                  | 0 | 0   | 0 | 220          | 220          | 553    |                                                                |
| Total Arsenic                   | 0 | 0   | 0 | 150          | 150          | 377    | Chem Translator of 1 applied                                   |
| Total Barium                    | 0 | 0   | 0 | 4,100        | 4,100        | 10,300 | Onom Translator of Fappiloa                                    |
| Total Boron                     | 0 | 0   | 0 | 1,600        | 1,600        | 4,019  |                                                                |
| Total Cadmium                   | 0 | 0   | 0 | 0.721        | 0.85         | 2.15   | Chem Translator of 0.844 applied                               |
| Total Chromium (III)            | 0 | 0   | 0 | 264.157      | 307          | 772    | Chem Translator of 0.86 applied                                |
| Hexavalent Chromium             | 0 | 0   | 0 | 10           | 10.4         | 26.1   | Chem Translator of 0.962 applied                               |
| Total Cobalt                    | 0 | 0   | 0 | 19           | 19.0         | 47.7   | Short Translator of 0.002 applied                              |
| Total Copper                    | 0 | 0   | 0 | 33.728       | 35.1         | 88.3   | Chem Translator of 0.96 applied                                |
| Free Available Cyanide          | 0 | 0   | 0 | 5.2          | 5.2          | 13.1   | Choin Hansacor of 0.00 applied                                 |
| Dissolved Iron                  | 0 | 0   | 0 | N/A          | N/A          | N/A    |                                                                |
| Total Iron                      | 0 | 0   | 0 | 1.500        | 1,500        | 3,768  | WQC = 30 day average; PMF = 1                                  |
| Total Lead                      | 0 | 0   | 0 | 12.958       | 22.9         | 57.6   | Chem Translator of 0.565 applied                               |
| Total Manganese                 | 0 | 0   | 0 | N/A          | N/A          | N/A    | Chorn Translator of 0.000 applied                              |
| Total Mercury                   | 0 | 0   | 0 | 0.770        | 0.91         | 2.28   | Chem Translator of 0.85 applied                                |
| Total Nickel                    | 0 | 0   | 0 | 193.292      | 194          | 487    | Chem Translator of 0.997 applied                               |
| Total Phenols (Phenolics) (PWS) | 0 | 0   | 0 | N/A          | N/A          | N/A    | Cheff Hanslator of 0.997 applied                               |
| Total Selenium                  | 0 | 0   | 0 | 4.600        | 4.99         | 12.5   | Chem Translator of 0.922 applied                               |
| Total Silver                    | 0 | 0   | 0 | N/A          | N/A          | N/A    | Chem Translator of 0.322 applied  Chem Translator of 1 applied |
| Total Thallium                  | 0 | 0   | 0 | 13           | 13.0         | 32.7   | Offerti Translator of Fapplied                                 |
| Total Zinc                      | 0 | 0   | 0 | 439.971      | 446          | 1,121  | Chem Translator of 0.986 applied                               |
| Acrolein                        | 0 | 0   | 0 | 3            | 3.0          | 7.54   | Chem translator or 0.900 applied                               |
| Acrylonitrile                   | 0 | 0   | 0 | 130          | 130          | 327    |                                                                |
| Benzene                         | 0 | 0   | 0 | 130          | 130          | 327    |                                                                |
| Bromoform                       | 0 | 0   | 0 | 370          | 370          | 929    |                                                                |
| Carbon Tetrachloride            | 0 | 0   | 0 | 560          | 560          | 1,407  |                                                                |
| Chlorobenzene                   | 0 | 0   | 0 | 240          | 240          | 603    |                                                                |
| Chlorodibromomethane            | 0 | 0   | 0 | N/A          | N/A          | N/A    |                                                                |
| 2-Chloroethyl Vinyl Ether       | 0 | 0   | 0 | 3.500        | 3,500        | 8,792  |                                                                |
| Chloroform                      | 0 | 0   | 0 | 390          | 390          | 980    |                                                                |
| Dichlorobromomethane            | 0 | 0   | 0 | N/A          | N/A          | N/A    |                                                                |
| 1,2-Dichloroethane              | 0 | 0   | 0 | 3,100        | 3,100        | 7,787  |                                                                |
| 1,1-Dichloroethylene            | 0 | 0   | 0 | 1,500        | 1,500        | 3,768  |                                                                |
| 1,2-Dichloropropane             | 0 | 0   | 0 | 2.200        | 2,200        | 5,527  |                                                                |
| 1,3-Dichloropropylene           | 0 | 0   | 0 | 61           | 61.0         | 153    |                                                                |
| Ethylbenzene                    | 0 | 0   | 0 | 580          | 580          | 1,457  |                                                                |
| Methyl Bromide                  | 0 | 0   | 0 | 110          | 110          | 276    |                                                                |
| Methyl Chloride                 | 0 | 0   | 0 | 5,500        | 5,500        | 13,816 |                                                                |
| Methylene Chloride              | 0 | 0   | 0 | 2,400        | 2,400        | 6,029  |                                                                |
| 1,1,2,2-Tetrachloroethane       | 0 | 0   | 0 | 2,400        | 2,400        | 528    |                                                                |
|                                 | 0 | 0   | 0 | 140          | 140          | 352    |                                                                |
| Tetrachloroethylene<br>Toluene  | 0 | 0   | 0 | 330          | 330          | 829    |                                                                |
|                                 | 0 | 0   | 0 |              |              | 3,517  |                                                                |
| 1,2-trans-Dichloroethylene      | 0 | 0   | 0 | 1,400<br>610 | 1,400<br>610 | 1,532  |                                                                |
| 1,1,1-Trichloroethane           | U | 1 0 | U | UTO          | UΙσ          | 1,032  |                                                                |

| 1,1,2-Trichloroethane                               | 0 | 0 | 0 | 680   | 680   | 1,708       |  |
|-----------------------------------------------------|---|---|---|-------|-------|-------------|--|
| Trichloroethylene                                   | 0 | 0 | 0 | 450   | 450   | 1,130       |  |
| Vinyl Chloride                                      | 0 | 0 | 0 | N/A   | N/A   | N/A         |  |
| 2-Chlorophenol                                      | 0 | 0 | 0 | 110   | 110   | 276         |  |
| 2,4-Dichlorophenol                                  | 0 | 0 | 0 | 340   | 340   | 854         |  |
| 2,4-Dimethylphenol                                  | 0 | 0 | 0 | 130   | 130   | 327         |  |
| 4,6-Dinitro-o-Cresol                                | 0 | 0 | 0 | 16    | 16.0  | 40.2        |  |
| 2,4-Dinitrophenol                                   | 0 | 0 | 0 | 130   | 130   | 327         |  |
| 2-Nitrophenol                                       | 0 | 0 | 0 | 1,600 | 1,600 | 4,019       |  |
| 4-Nitrophenol                                       | 0 | 0 | 0 | 470   | 470   | 1,181       |  |
| p-Chloro-m-Cresol                                   | 0 | 0 | 0 | 30    | 30.0  | 75.4        |  |
| Pentachlorophenol                                   | 0 | 0 | 0 | 6.693 | 6.69  | 16.8        |  |
| Phenol                                              | 0 | 0 | 0 | N/A   | N/A   | N/A         |  |
| 2,4,6-Trichlorophenol                               | 0 | 0 | 0 | 91    | 91.0  | 229         |  |
| Acenaphthene                                        | 0 | 0 | 0 | 17    | 17.0  | 42.7        |  |
| Anthracene                                          | 0 | 0 | 0 | N/A   | N/A   | N/A         |  |
| Benzidine                                           | 0 | 0 | 0 | 59    | 59.0  | 148         |  |
| Benzo(a)Anthracene                                  | 0 | 0 | 0 | 0.1   | 0.1   | 0.25        |  |
| Benzo(a)Pyrene                                      | 0 | 0 | 0 | N/A   | N/A   | 0.23<br>N/A |  |
| 3,4-Benzofluoranthene                               | 0 | 0 | 0 | N/A   | N/A   | N/A         |  |
| Benzo(k)Fluoranthene                                | 0 | 0 | 0 | N/A   | N/A   | N/A         |  |
|                                                     | 0 | 0 | 0 | 6,000 | 6,000 | 15,073      |  |
| Bis(2-Chloroethyl)Ether Bis(2-Chloroisopropyl)Ether | 0 | 0 | 0 | N/A   | N/A   | N/A         |  |
|                                                     |   |   |   |       |       |             |  |
| Bis(2-Ethylhexyl)Phthalate                          | 0 | 0 | 0 | 910   | 910   | 2,286       |  |
| 4-Bromophenyl Phenyl Ether                          | 0 | 0 | 0 | 54    | 54.0  | 136         |  |
| Butyl Benzyl Phthalate                              | 0 | 0 | 0 | 35    | 35.0  | 87.9        |  |
| 2-Chloronaphthalene                                 | 0 | 0 | 0 | N/A   | N/A   | N/A         |  |
| Chrysene                                            | 0 | 0 | 0 | N/A   | N/A   | N/A         |  |
| Dibenzo(a,h)Anthrancene                             | 0 | 0 | 0 | N/A   | N/A   | N/A         |  |
| 1,2-Dichlorobenzene                                 | 0 | 0 | 0 | 160   | 160   | 402         |  |
| 1,3-Dichlorobenzene                                 | 0 | 0 | 0 | 69    | 69.0  | 173         |  |
| 1,4-Dichlorobenzene                                 | 0 | 0 | 0 | 150   | 150   | 377         |  |
| 3,3-Dichlorobenzidine                               | 0 | 0 | 0 | N/A   | N/A   | N/A         |  |
| Diethyl Phthalate                                   | 0 | 0 | 0 | 800   | 800   | 2,010       |  |
| Dimethyl Phthalate                                  | 0 | 0 | 0 | 500   | 500   | 1,256       |  |
| Di-n-Butyl Phthalate                                | 0 | 0 | 0 | 21    | 21.0  | 52.8        |  |
| 2,4-Dinitrotoluene                                  | 0 | 0 | 0 | 320   | 320   | 804         |  |
| 2,6-Dinitrotoluene                                  | 0 | 0 | 0 | 200   | 200   | 502         |  |
| 1,2-Diphenylhydrazine                               | 0 | 0 | 0 | 3     | 3.0   | 7.54        |  |
| Fluoranthene                                        | 0 | 0 | 0 | 40    | 40.0  | 100         |  |
| Fluorene                                            | 0 | 0 | 0 | N/A   | N/A   | N/A         |  |
| Hexachlorobenzene                                   | 0 | 0 | 0 | N/A   | N/A   | N/A         |  |
| Hexachlorobutadiene                                 | 0 | 0 | 0 | 2     | 2.0   | 5.02        |  |
| Hexachlorocyclopentadiene                           | 0 | 0 | 0 | 1     | 1.0   | 2.51        |  |
| Hexachloroethane                                    | 0 | 0 | 0 | 12    | 12.0  | 30.1        |  |
| Indeno(1,2,3-cd)Pyrene                              | 0 | 0 | 0 | N/A   | N/A   | N/A         |  |

| Isophorone                | 0 | 0 | 0 | 2,100 | 2,100 | 5,275 |  |
|---------------------------|---|---|---|-------|-------|-------|--|
| Naphthalene               | 0 | 0 | 0 | 43    | 43.0  | 108   |  |
| Nitrobenzene              | 0 | 0 | 0 | 810   | 810   | 2,035 |  |
| n-Nitrosodimethylamine    | 0 | 0 | 0 | 3,400 | 3,400 | 8,541 |  |
| n-Nitrosodi-n-Propylamine | 0 | 0 | 0 | N/A   | N/A   | N/A   |  |
| n-Nitrosodiphenylamine    | 0 | 0 | 0 | 59    | 59.0  | 148   |  |
| Phenanthrene              | 0 | 0 | 0 | 1     | 1.0   | 2.51  |  |
| Pyrene                    | 0 | 0 | 0 | N/A   | N/A   | N/A   |  |
| 1,2,4-Trichlorobenzene    | 0 | 0 | 0 | 26    | 26.0  | 65.3  |  |
|                           |   |   |   |       |       |       |  |
|                           |   |   |   |       |       |       |  |
|                           |   |   |   |       |       |       |  |
|                           |   |   |   |       |       |       |  |

| <b>☑</b> THH | CCT (min): 22.937 | PMF: | 1 | Analysis Hardness (mg/l): | N/A | Analysis pH: | N/A |  |
|--------------|-------------------|------|---|---------------------------|-----|--------------|-----|--|
|--------------|-------------------|------|---|---------------------------|-----|--------------|-----|--|

| Pollutants                      | Stream<br>Conc (µg/L) | Stream<br>CV | Trib Conc<br>(µg/L) | Fate<br>Coef | WQC<br>(µg/L) | WQ Obj<br>(µg/L) | WLA (µg/L) | Comments |
|---------------------------------|-----------------------|--------------|---------------------|--------------|---------------|------------------|------------|----------|
| Total Dissolved Solids (PWS)    | 0                     | 0            |                     | 0            | 500,000       | 500,000          | N/A        |          |
| Total Aluminum                  | 0                     | 0            |                     | 0            | N/A           | N/A              | N/A        |          |
| Total Antimony                  | 0                     | 0            |                     | 0            | 5.6           | 5.6              | 14.1       |          |
| Total Arsenic                   | 0                     | 0            |                     | 0            | 10            | 10.0             | 25.1       |          |
| Total Barium                    | 0                     | 0            |                     | 0            | 2,400         | 2,400            | 6,029      |          |
| Total Boron                     | 0                     | 0            |                     | 0            | 3,100         | 3,100            | 7,787      |          |
| Total Cadmium                   | 0                     | 0            |                     | 0            | N/A           | N/A              | N/A        |          |
| Total Chromium (III)            | 0                     | 0            |                     | 0            | N/A           | N/A              | N/A        |          |
| Hexavalent Chromium             | 0                     | 0            |                     | 0            | N/A           | N/A              | N/A        |          |
| Total Cobalt                    | 0                     | 0            |                     | 0            | N/A           | N/A              | N/A        |          |
| Total Copper                    | 0                     | 0            |                     | 0            | N/A           | N/A              | N/A        |          |
| Free Available Cyanide          | 0                     | 0            |                     | 0            | 140           | 140              | 352        |          |
| Dissolved Iron                  | 0                     | 0            |                     | 0            | 300           | 300              | 754        |          |
| Total Iron                      | 0                     | 0            |                     | 0            | N/A           | N/A              | N/A        |          |
| Total Lead                      | 0                     | 0            |                     | 0            | N/A           | N/A              | N/A        |          |
| Total Manganese                 | 0                     | 0            |                     | 0            | 1,000         | 1,000            | 2,512      |          |
| Total Mercury                   | 0                     | 0            |                     | 0            | 0.050         | 0.05             | 0.13       |          |
| Total Nickel                    | 0                     | 0            |                     | 0            | 610           | 610              | 1,532      |          |
| Total Phenols (Phenolics) (PWS) | 0                     | 0            |                     | 0            | 5             | 5.0              | N/A        |          |
| Total Selenium                  | 0                     | 0            |                     | 0            | N/A           | N/A              | N/A        |          |
| Total Silver                    | 0                     | 0            |                     | 0            | N/A           | N/A              | N/A        |          |
| Total Thallium                  | 0                     | 0            |                     | 0            | 0.24          | 0.24             | 0.6        |          |
| Total Zinc                      | 0                     | 0            |                     | 0            | N/A           | N/A              | N/A        |          |
| Acrolein                        | 0                     | 0            |                     | 0            | 6             | 6.0              | 15.1       |          |
| Acrylonitrile                   | 0                     | 0            |                     | 0            | N/A           | N/A              | N/A        |          |
| Benzene                         | 0                     | 0            |                     | 0            | N/A           | N/A              | N/A        |          |
| Bromoform                       | 0                     | 0            |                     | 0            | N/A           | N/A              | N/A        |          |
| Carbon Tetrachloride            | 0                     | 0            |                     | 0            | N/A           | N/A              | N/A        |          |

| Chlorobenzene               | 0 | 0 | 0 | 130    | 130    | 327    |  |
|-----------------------------|---|---|---|--------|--------|--------|--|
| Chlorodibromomethane        | 0 | 0 | 0 | N/A    | N/A    | N/A    |  |
| 2-Chloroethyl Vinyl Ether   | 0 | 0 | 0 | N/A    | N/A    | N/A    |  |
| Chloroform                  | 0 | 0 | 0 | N/A    | N/A    | N/A    |  |
| Dichlorobromomethane        | 0 | 0 | 0 | N/A    | N/A    | N/A    |  |
| 1,2-Dichloroethane          | 0 | 0 | 0 | N/A    | N/A    | N/A    |  |
| 1,1-Dichloroethylene        | 0 | 0 | 0 | 33     | 33.0   | 82.9   |  |
| 1,2-Dichloropropane         | 0 | 0 | 0 | N/A    | N/A    | N/A    |  |
| 1,3-Dichloropropylene       | 0 | 0 | 0 | N/A    | N/A    | N/A    |  |
| Ethylbenzene                | 0 | 0 | 0 | 530    | 530    | 1,331  |  |
| Methyl Bromide              | 0 | 0 | 0 | 47     | 47.0   | 118    |  |
| Methyl Chloride             | 0 | 0 | 0 | N/A    | N/A    | N/A    |  |
| Methylene Chloride          | 0 | 0 | 0 | N/A    | N/A    | N/A    |  |
| 1,1,2,2-Tetrachloroethane   | 0 | 0 | 0 | N/A    | N/A    | N/A    |  |
| Tetrachloroethylene         | 0 | 0 | 0 | N/A    | N/A    | N/A    |  |
| Toluene                     | 0 | 0 | 0 | 1,300  | 1,300  | 3,266  |  |
| 1,2-trans-Dichloroethylene  | 0 | 0 | 0 | 140    | 140    | 352    |  |
| 1,1,1-Trichloroethane       | 0 | 0 | 0 | N/A    | N/A    | N/A    |  |
| 1,1,2-Trichloroethane       | 0 | 0 | 0 | N/A    | N/A    | N/A    |  |
| Trichloroethylene           | 0 | 0 | 0 | N/A    | N/A    | N/A    |  |
| Vinyl Chloride              | 0 | 0 | 0 | N/A    | N/A    | N/A    |  |
| 2-Chlorophenol              | 0 | 0 | 0 | 81     | 81.0   | 203    |  |
| 2,4-Dichlorophenol          | 0 | 0 | 0 | 77     | 77.0   | 193    |  |
| 2,4-Dimethylphenol          | 0 | 0 | 0 | 380    | 380    | 955    |  |
| 4,6-Dinitro-o-Cresol        | 0 | 0 | 0 | 13     | 13.0   | 32.7   |  |
| 2,4-Dinitrophenol           | 0 | 0 | 0 | 69     | 69.0   | 173    |  |
| 2-Nitrophenol               | 0 | 0 | 0 | N/A    | N/A    | N/A    |  |
| 4-Nitrophenol               | 0 | 0 | 0 | N/A    | N/A    | N/A    |  |
| p-Chloro-m-Cresol           | 0 | 0 | 0 | N/A    | N/A    | N/A    |  |
| Pentachlorophenol           | 0 | 0 | 0 | N/A    | N/A    | N/A    |  |
| Phenol                      | 0 | 0 | 0 | 10,400 | 10,400 | 26,126 |  |
| 2,4,6-Trichlorophenol       | 0 | 0 | 0 | N/A    | N/A    | N/A    |  |
| Acenaphthene                | 0 | 0 | 0 | 670    | 670    | 1,683  |  |
| Anthracene                  | 0 | 0 | 0 | 8,300  | 8,300  | 20,850 |  |
| Benzidine                   | 0 | 0 | 0 | N/A    | N/A    | N/A    |  |
| Benzo(a)Anthracene          | 0 | 0 | 0 | N/A    | N/A    | N/A    |  |
| Benzo(a)Pyrene              | 0 | 0 | 0 | N/A    | N/A    | N/A    |  |
| 3,4-Benzofluoranthene       | 0 | 0 | 0 | N/A    | N/A    | N/A    |  |
| Benzo(k)Fluoranthene        | 0 | 0 | 0 | N/A    | N/A    | N/A    |  |
| Bis(2-Chloroethyl)Ether     | 0 | 0 | 0 | N/A    | N/A    | N/A    |  |
| Bis(2-Chloroisopropyl)Ether | 0 | 0 | 0 | 1,400  | 1,400  | 3,517  |  |
| Bis(2-Ethylhexyl)Phthalate  | 0 | 0 | 0 | N/A    | N/A    | N/A    |  |
| 4-Bromophenyl Phenyl Ether  | 0 | 0 | 0 | N/A    | N/A    | N/A    |  |
| Butyl Benzyl Phthalate      | 0 | 0 | 0 | 150    | 150    | 377    |  |
| 2-Chloronaphthalene         | 0 | 0 | 0 | 1,000  | 1,000  | 2,512  |  |
| Chrysene                    | 0 | 0 | 0 | N/A    | N/A    | N/A    |  |

| Dibenzo(a,h)Anthrancene   | 0 | 0 | 0 | N/A     | N/A     | N/A     |  |
|---------------------------|---|---|---|---------|---------|---------|--|
| 1,2-Dichlorobenzene       | 0 | 0 | 0 | 420     | 420     | 1,055   |  |
| 1,3-Dichlorobenzene       | 0 | 0 | 0 | 420     | 420     | 1,055   |  |
| 1,4-Dichlorobenzene       | 0 | 0 | 0 | 420     | 420     | 1,055   |  |
| 3,3-Dichlorobenzidine     | 0 | 0 | 0 | N/A     | N/A     | N/A     |  |
| Diethyl Phthalate         | 0 | 0 | 0 | 17,000  | 17,000  | 42,705  |  |
| Dimethyl Phthalate        | 0 | 0 | 0 | 270,000 | 270,000 | 678,264 |  |
| Di-n-Butyl Phthalate      | 0 | 0 | 0 | 2,000   | 2,000   | 5,024   |  |
| 2,4-Dinitrotoluene        | 0 | 0 | 0 | N/A     | N/A     | N/A     |  |
| 2,6-Dinitrotoluene        | 0 | 0 | 0 | N/A     | N/A     | N/A     |  |
| 1,2-Diphenylhydrazine     | 0 | 0 | 0 | N/A     | N/A     | N/A     |  |
| Fluoranthene              | 0 | 0 | 0 | 130     | 130     | 327     |  |
| Fluorene                  | 0 | 0 | 0 | 1,100   | 1,100   | 2,763   |  |
| Hexachlorobenzene         | 0 | 0 | 0 | N/A     | N/A     | N/A     |  |
| Hexachlorobutadiene       | 0 | 0 | 0 | N/A     | N/A     | N/A     |  |
| Hexachlorocyclopentadiene | 0 | 0 | 0 | 40      | 40.0    | 100     |  |
| Hexachloroethane          | 0 | 0 | 0 | N/A     | N/A     | N/A     |  |
| Indeno(1,2,3-cd)Pyrene    | 0 | 0 | 0 | 0.0038  | 0.004   | 0.01    |  |
| Isophorone                | 0 | 0 | 0 | 35      | 35.0    | 87.9    |  |
| Naphthalene               | 0 | 0 | 0 | N/A     | N/A     | N/A     |  |
| Nitrobenzene              | 0 | 0 | 0 | 17      | 17.0    | 42.7    |  |
| n-Nitrosodimethylamine    | 0 | 0 | 0 | N/A     | N/A     | N/A     |  |
| n-Nitrosodi-n-Propylamine | 0 | 0 | 0 | N/A     | N/A     | N/A     |  |
| n-Nitrosodiphenylamine    | 0 | 0 | 0 | N/A     | N/A     | N/A     |  |
| Phenanthrene              | 0 | 0 | 0 | N/A     | N/A     | N/A     |  |
| Pyrene                    | 0 | 0 | 0 | 830     | 830     | 2,085   |  |
| 1,2,4-Trichlorobenzene    | 0 | 0 | 0 | 35      | 35.0    | 87.9    |  |
|                           |   |   |   |         |         |         |  |
|                           |   |   |   |         |         |         |  |
|                           |   |   |   |         |         |         |  |
|                           |   |   |   |         |         |         |  |

| ☑ CRL C | CCT (min): 20. | 611 PMF: | 1 | Analysis Hardness (mg/l): | N/A | Analysis pH: | N/A | ١ |
|---------|----------------|----------|---|---------------------------|-----|--------------|-----|---|
|---------|----------------|----------|---|---------------------------|-----|--------------|-----|---|

| Pollutants                   | Stream<br>Conc (µg/L) | Stream<br>CV | Trib Conc<br>(µg/L) | Fate<br>Coef | WQC<br>(µg/L) | WQ Obj<br>(µg/L) | WLA (μg/L) | Comments |
|------------------------------|-----------------------|--------------|---------------------|--------------|---------------|------------------|------------|----------|
| Total Dissolved Solids (PWS) | 0                     | 0            |                     | 0            | N/A           | N/A              | N/A        |          |
| Total Aluminum               | 0                     | 0            |                     | 0            | N/A           | N/A              | N/A        |          |
| Total Antimony               | 0                     | 0            |                     | 0            | N/A           | N/A              | N/A        |          |
| Total Arsenic                | 0                     | 0            |                     | 0            | N/A           | N/A              | N/A        |          |
| Total Barium                 | 0                     | 0            |                     | 0            | N/A           | N/A              | N/A        |          |
| Total Boron                  | 0                     | 0            |                     | 0            | N/A           | N/A              | N/A        |          |
| Total Cadmium                | 0                     | 0            |                     | 0            | N/A           | N/A              | N/A        |          |
| Total Chromium (III)         | 0                     | 0            |                     | 0            | N/A           | N/A              | N/A        |          |
| Hexavalent Chromium          | 0                     | 0            |                     | 0            | N/A           | N/A              | N/A        |          |
| Total Cobalt                 | 0                     | 0            |                     | 0            | N/A           | N/A              | N/A        |          |

| Total Copper                    | 0 | T 0 | 0 | N/A        | N/A    | N/A  |  |
|---------------------------------|---|-----|---|------------|--------|------|--|
| Free Available Cyanide          | 0 | 0   | 0 | N/A        | N/A    | N/A  |  |
| Dissolved Iron                  | 0 | 0   | 0 | N/A        | N/A    | N/A  |  |
| Total Iron                      | 0 | 0   | 0 | N/A        | N/A    | N/A  |  |
| Total Lead                      | 0 | 0   | 0 | N/A        | N/A    | N/A  |  |
| Total Manganese                 | 0 | 0   | 0 | N/A        | N/A    | N/A  |  |
| Total Mercury                   | 0 | 0   | 0 | N/A        | N/A    | N/A  |  |
| Total Nickel                    | 0 | 0   | 0 | N/A        | N/A    | N/A  |  |
| Total Phenols (Phenolics) (PWS) | 0 | 0   | 0 | N/A        | N/A    | N/A  |  |
| Total Selenium                  | 0 | 0   | 0 | N/A        | N/A    | N/A  |  |
| Total Silver                    | 0 | 0   | 0 | N/A<br>N/A | N/A    | N/A  |  |
|                                 |   |     |   |            |        |      |  |
| Total Thallium                  | 0 | 0   | 0 | N/A        | N/A    | N/A  |  |
| Total Zinc                      | 0 | 0   | 0 | N/A        | N/A    | N/A  |  |
| Acrolein                        | 0 | 0   | 0 | N/A        | N/A    | N/A  |  |
| Acrylonitrile                   | 0 | 0   | 0 | 0.051      | 0.051  | 0.51 |  |
| Benzene                         | 0 | 0   | 0 | 1.2        | 1.2    | 12.0 |  |
| Bromoform                       | 0 | 0   | 0 | 4.3        | 4.3    | 43.0 |  |
| Carbon Tetrachloride            | 0 | 0   | 0 | 0.23       | 0.23   | 2.3  |  |
| Chlorobenzene                   | 0 | 0   | 0 | N/A        | N/A    | N/A  |  |
| Chlorodibromomethane            | 0 | 0   | 0 | 0.4        | 0.4    | 4.0  |  |
| 2-Chloroethyl Vinyl Ether       | 0 | 0   | 0 | N/A        | N/A    | N/A  |  |
| Chloroform                      | 0 | 0   | 0 | 5.7        | 5.7    | 57.0 |  |
| Dichlorobromomethane            | 0 | 0   | 0 | 0.55       | 0.55   | 5.5  |  |
| 1,2-Dichloroethane              | 0 | 0   | 0 | 0.38       | 0.38   | 3.8  |  |
| 1,1-Dichloroethylene            | 0 | 0   | 0 | N/A        | N/A    | N/A  |  |
| 1,2-Dichloropropane             | 0 | 0   | 0 | N/A        | N/A    | N/A  |  |
| 1,3-Dichloropropylene           | 0 | 0   | 0 | 0.34       | 0.34   | 3.4  |  |
| Ethylbenzene                    | 0 | 0   | 0 | N/A        | N/A    | N/A  |  |
| Methyl Bromide                  | 0 | 0   | 0 | N/A        | N/A    | N/A  |  |
| Methyl Chloride                 | 0 | 0   | 0 | N/A        | N/A    | N/A  |  |
| Methylene Chloride              | 0 | 0   | 0 | 4.6        | 4.6    | 46.0 |  |
| 1,1,2,2-Tetrachloroethane       | 0 | 0   | 0 | 0.17       | 0.17   | 1.7  |  |
| Tetrachloroethylene             | 0 | 0   | 0 | 0.69       | 0.69   | 6.9  |  |
| Toluene                         | 0 | 0   | 0 | N/A        | N/A    | N/A  |  |
| 1,2-trans-Dichloroethylene      | 0 | 0   | 0 | N/A        | N/A    | N/A  |  |
| 1,1,1-Trichloroethane           | 0 | 0   | 0 | N/A        | N/A    | N/A  |  |
| 1,1,2-Trichloroethane           | 0 | 0   | 0 | 0.59       | 0.59   | 5.9  |  |
| Trichloroethylene               | 0 | 0   | 0 | 2.5        | 2.5    | 25.0 |  |
| Vinyl Chloride                  | 0 | 0   | 0 | 0.025      | 0.025  | 0.25 |  |
| 2-Chlorophenol                  | 0 | 0   | 0 | N/A        | N/A    | N/A  |  |
| 2,4-Dichlorophenol              | 0 | 0   | 0 | N/A        | N/A    | N/A  |  |
| 2,4-Dimethylphenol              | 0 | 0   | 0 | N/A        | N/A    | N/A  |  |
| 4,6-Dinitro-o-Cresol            | 0 | 0   | 0 | N/A        | N/A    | N/A  |  |
| 2,4-Dinitrophenol               | 0 | 0   | 0 | N/A        | N/A    | N/A  |  |
| 2-Nitrophenol                   | 0 | 0   | 0 | N/A        | N/A    | N/A  |  |
| 4-Nitrophenol                   | 0 | 0   | 0 | N/A        | N/A    | N/A  |  |
| 4-Microphenoi                   | U | U   | U | IN/A       | I IV/A | IV/A |  |

| p-Chloro-m-Cresol                       | 0 | 0 | 0 | N/A        | N/A     | N/A        |  |
|-----------------------------------------|---|---|---|------------|---------|------------|--|
| Pentachlorophenol                       | 0 | 0 | 0 | 0.270      | 0.27    | 2.7        |  |
| Phenol                                  | 0 | 0 | 0 | N/A        | N/A     | N/A        |  |
| 2,4,6-Trichlorophenol                   | 0 | 0 | 0 | 1.4        | 1.4     | 14.0       |  |
| Acenaphthene                            | 0 | 0 | 0 | N/A        | N/A     | N/A        |  |
| Anthracene                              | 0 | 0 | 0 | N/A        | N/A     | N/A        |  |
| Benzidine                               | 0 | 0 | 0 | 0.000086   | 0.00009 | 0.0009     |  |
| Benzo(a)Anthracene                      | 0 | 0 | 0 | 0.0038     | 0.004   | 0.038      |  |
| Benzo(a)Pyrene                          | 0 | 0 | 0 | 0.0038     | 0.004   | 0.038      |  |
| 3,4-Benzofluoranthene                   | 0 | 0 | 0 | 0.0038     | 0.004   | 0.038      |  |
| Benzo(k)Fluoranthene                    | 0 | 0 | 0 | 0.0038     | 0.004   | 0.038      |  |
| Bis(2-Chloroethyl)Ether                 | 0 | 0 | 0 | 0.03       | 0.03    | 0.3        |  |
| Bis(2-Chloroisopropyl)Ether             | 0 | 0 | 0 | N/A        | N/A     | N/A        |  |
| Bis(2-Ethylhexyl)Phthalate              | 0 | 0 | 0 | 1.2        | 1.2     | 12.0       |  |
| 4-Bromophenyl Phenyl Ether              | 0 | 0 | 0 | N/A        | N/A     | N/A        |  |
| Butyl Benzyl Phthalate                  | 0 | 0 | 0 | N/A        | N/A     | N/A        |  |
| 2-Chloronaphthalene                     | 0 | 0 | 0 | N/A        | N/A     | N/A        |  |
| Chrysene                                | 0 | 0 | 0 | 0.0038     | 0.004   | 0.038      |  |
| Dibenzo(a,h)Anthrancene                 | 0 | 0 | 0 | 0.0038     | 0.004   | 0.038      |  |
| 1,2-Dichlorobenzene                     | 0 | 0 | 0 | N/A        | N/A     | N/A        |  |
| 1,3-Dichlorobenzene                     | 0 | 0 | 0 | N/A        | N/A     | N/A        |  |
| 1,4-Dichlorobenzene                     | 0 | 0 | 0 | N/A        | N/A     | N/A        |  |
| ,                                       | 0 | 0 | 0 | 0.021      |         |            |  |
| 3,3-Dichlorobenzidine Diethyl Phthalate |   | 0 | 0 | N/A        | 0.021   | 0.21       |  |
| Diethyl Phthalate                       | 0 |   | 0 | N/A<br>N/A | N/A     | N/A<br>N/A |  |
|                                         | 0 | 0 |   |            | N/A     |            |  |
| Di-n-Butyl Phthalate                    | 0 | 0 | 0 | N/A        | N/A     | N/A        |  |
| 2,4-Dinitrotoluene                      | 0 | 0 | 0 | 0.05       | 0.05    | 0.5        |  |
| 2,6-Dinitrotoluene                      | 0 | 0 | 0 | 0.05       | 0.05    | 0.5        |  |
| 1,2-Diphenylhydrazine                   | 0 | 0 | 0 | 0.036      | 0.036   | 0.36       |  |
| Fluoranthene                            | 0 | 0 | 0 | N/A        | N/A     | N/A        |  |
| Fluorene                                | 0 | 0 | 0 | N/A        | N/A     | N/A        |  |
| Hexachlorobenzene                       | 0 | 0 | 0 | 0.00028    | 0.0003  | 0.003      |  |
| Hexachlorobutadiene                     | 0 | 0 | 0 | 0.44       | 0.44    | 4.4        |  |
| Hexachlorocyclopentadiene               | 0 | 0 | 0 | N/A        | N/A     | N/A        |  |
| Hexachloroethane                        | 0 | 0 | 0 | 1.4        | 1.4     | 14.0       |  |
| Indeno(1,2,3-cd)Pyrene                  | 0 | 0 | 0 | N/A        | N/A     | N/A        |  |
| Isophorone                              | 0 | 0 | 0 | N/A        | N/A     | N/A        |  |
| Naphthalene                             | 0 | 0 | 0 | N/A        | N/A     | N/A        |  |
| Nitrobenzene                            | 0 | 0 | 0 | N/A        | N/A     | N/A        |  |
| n-Nitrosodimethylamine                  | 0 | 0 | 0 | 0.00069    | 0.0007  | 0.007      |  |
| n-Nitrosodi-n-Propylamine               | 0 | 0 | 0 | 0.005      | 0.005   | 0.05       |  |
| n-Nitrosodiphenylamine                  | 0 | 0 | 0 | 3.3        | 3.3     | 33.0       |  |
| Phenanthrene                            | 0 | 0 | 0 | N/A        | N/A     | N/A        |  |
| Pyrene                                  | 0 | 0 | 0 | N/A        | N/A     | N/A        |  |
| 1,2,4-Trichlorobenzene                  | 0 | 0 | 0 | N/A        | N/A     | N/A        |  |
|                                         |   |   |   |            |         |            |  |

#### ☑ Recommended WQBELs & Monitoring Requirements

No. Samples/Month: 4

|                        | Mass             | Limits           | Concentration Limits |        |        |       |                    |                |                                    |
|------------------------|------------------|------------------|----------------------|--------|--------|-------|--------------------|----------------|------------------------------------|
| Pollutants             | AML<br>(lbs/day) | MDL<br>(lbs/day) | AML                  | MDL    | IMAX   | Units | Governing<br>WQBEL | WQBEL<br>Basis | Comments                           |
| Total Copper           | Report           | Report           | Report               | Report | Report | μg/L  | 86.1               | AFC            | Discharge Conc > 10% WQBEL (no RP) |
| Free Available Cyanide | Report           | Report           | Report               | Report | Report | μg/L  | 13.1               | CFC            | Discharge Conc > 25% WQBEL (no RP) |
|                        |                  |                  |                      |        |        |       |                    |                |                                    |
|                        |                  |                  |                      |        |        |       |                    |                |                                    |
|                        |                  |                  |                      |        |        |       |                    |                |                                    |
|                        |                  |                  |                      |        |        |       |                    |                |                                    |
|                        |                  |                  |                      |        |        |       |                    |                |                                    |
|                        |                  |                  |                      |        |        |       |                    |                |                                    |
|                        |                  |                  |                      |        |        |       |                    |                |                                    |
|                        |                  |                  |                      |        |        |       |                    |                |                                    |
|                        |                  |                  |                      |        |        |       |                    |                |                                    |
|                        |                  |                  |                      |        |        |       |                    |                |                                    |
|                        |                  |                  |                      |        |        |       |                    |                |                                    |
|                        |                  |                  |                      |        |        |       |                    |                |                                    |
|                        |                  |                  |                      |        |        |       |                    |                |                                    |

#### ☑ Other Pollutants without Limits or Monitoring

The following pollutants do not require effluent limits or monitoring based on water quality because reasonable potential to exceed water quality criteria was not determined and the discharge concentration was less than thresholds for monitoring, or the pollutant was not detected and a sufficiently sensitive analytical method was used (e.g., <= Target QL).

| Pollutants                   | Governing WQBEL | Units | Comments                   |
|------------------------------|-----------------|-------|----------------------------|
| Total Dissolved Solids (PWS) | N/A             | N/A   | PWS Not Applicable         |
| Total Aluminum               | 1,069           | μg/L  | Discharge Conc ≤ 10% WQBEL |
| Bromide                      | N/A             | N/A   | No WQS                     |
| Total Barium                 | 6,029           | μg/L  | Discharge Conc ≤ 10% WQBEL |
| Total Boron                  | 4,019           | μg/L  | Discharge Conc ≤ 10% WQBEL |
| Total Antimony               | N/A             | N/A   | Discharge Conc < TQL       |
| Total Arsenic                | N/A             | N/A   | Discharge Conc < TQL       |
| Total Beryllium              | N/A             | N/A   | No WQS                     |
| Total Cadmium                | 2.15            | μg/L  | Discharge Conc < TQL       |
| Dissolved Iron               | 754             | μg/L  | Discharge Conc ≤ 10% WQBEL |
| Hexavalent Chromium          | 23.2            | μg/L  | Discharge Conc < TQL       |

| Total Cobalt                    | 47.7   | μg/L | Discharge Conc < TQL       |
|---------------------------------|--------|------|----------------------------|
| Total Manganese                 | 2,512  | μg/L | Discharge Conc ≤ 10% WQBEL |
| Total Cyanide                   | N/A    | N/A  | No WQS                     |
| Total Phenols (Phenolics) (PWS) |        | μg/L | PWS Not Applicable         |
| Total Silver                    | 77.8   | μg/L | Discharge Conc ≤ 10% WQBEL |
| Total Mercury                   | 0.13   | μg/L | Discharge Conc < TQL       |
| Total Selenium                  | 12.5   | μg/L | Discharge Conc < TQL       |
| Bromoform                       | 43.0   | μg/L | Discharge Conc ≤ 25% WQBEL |
| Total Thallium                  | 0.6    | μg/L | Discharge Conc < TQL       |
| Total Molybdenum                | N/A    | N/A  | No WQS                     |
| Acrolein                        | 4.27   | μg/L | Discharge Conc < TQL       |
| Chloroform                      | 57.0   | μg/L | Discharge Conc ≤ 25% WQBEL |
| Acrylonitrile                   | 0.51   | μg/L | Discharge Conc < TQL       |
| Carbon Tetrachloride            | 2.3    | μg/L | Discharge Conc < TQL       |
| Chlorobenzene                   | 327    | μg/L | Discharge Conc < TQL       |
| Chlorodibromomethane            | 4.0    | μg/L | Discharge Conc < TQL       |
| Chloroethane                    | N/A    | N/A  | No WQS                     |
| 2-Chloroethyl Vinyl Ether       | 8,792  | μg/L | Discharge Conc < TQL       |
| Methylene Chloride              | 46.0   | μg/L | Discharge Conc ≤ 25% WQBEL |
| 1,1-Dichloroethane              | N/A    | N/A  | No WQS                     |
| 1,2-Dichloroethane              | 3.8    | μg/L | Discharge Conc < TQL       |
| 1,1-Dichloroethylene            | 82.9   | μg/L | Discharge Conc < TQL       |
| 1,2-Dichloropropane             | 5,527  | μg/L | Discharge Conc < TQL       |
| 1,3-Dichloropropylene           | 3.4    | μg/L | Discharge Conc < TQL       |
| 1,4-Dioxane                     | N/A    | N/A  | No WQS                     |
| 1,1,2,2-Tetrachloroethane       | 1.7    | μg/L | Discharge Conc < TQL       |
| Vinyl Chloride                  | 0.25   | μg/L | Discharge Conc < TQL       |
| 2-Chlorophenol                  | 203    | μg/L | Discharge Conc < TQL       |
| 2,4-Dichlorophenol              | 193    | μg/L | Discharge Conc < TQL       |
| 2,4-Dimethylphenol              | 327    | μg/L | Discharge Conc < TQL       |
| 4,6-Dinitro-o-Cresol            | 32.7   | μg/L | Discharge Conc < TQL       |
| 2,4-Dinitrophenol               | 173    | μg/L | Discharge Conc < TQL       |
| 2-Nitrophenol                   | 4,019  | μg/L | Discharge Conc < TQL       |
| 4-Nitrophenol                   | 1,181  | μg/L | Discharge Conc < TQL       |
| p-Chloro-m-Cresol               | 75.4   | μg/L | Discharge Conc < TQL       |
| Pentachlorophenol               | 2.7    | μg/L | Discharge Conc < TQL       |
| Phenol                          | 26,126 | μg/L | Discharge Conc < TQL       |
| 2,4,6-Trichlorophenol           | 14.0   | μg/L | Discharge Conc < TQL       |
| Acenaphthene                    | 42.7   | μg/L | Discharge Conc < TQL       |
| Acenaphthylene                  | N/A    | N/A  | No WQS                     |
| Anthracene                      | 20,850 | μg/L | Discharge Conc < TQL       |
| Benzidine                       | 0.0009 | μg/L | Discharge Conc < TQL       |
| Benzo(a)Anthracene              | 0.038  | μg/L | Discharge Conc < TQL       |
| Benzo(a)Pyrene                  | 0.038  | μg/L | Discharge Conc < TQL       |
| 3,4-Benzofluoranthene           | 0.038  | μg/L | Discharge Conc < TQL       |
| Benzo(ghi)Perylene              | N/A    | N/A  | No WQS                     |

| Benzo(k)Fluoranthene        | 0.038 | μg/L | Discharge Conc < TQL |
|-----------------------------|-------|------|----------------------|
|                             |       |      |                      |
| Bis(2-Chloroethoxy)Methane  | N/A   | N/A  | No WQS               |
| Bis(2-Chloroethyl)Ether     | 0.3   | μg/L | Discharge Conc < TQL |
| Bis(2-Chloroisopropyl)Ether | 3,517 | μg/L | Discharge Conc < TQL |
| Bis(2-Ethylhexyl)Phthalate  | 12.0  | μg/L | Discharge Conc < TQL |
| 4-Bromophenyl Phenyl Ether  | 136   | μg/L | Discharge Conc < TQL |
| Butyl Benzyl Phthalate      | 87.9  | μg/L | Discharge Conc < TQL |
| 2-Chloronaphthalene         | 2,512 | μg/L | Discharge Conc < TQL |
| 4-Chlorophenyl Phenyl Ether | N/A   | N/A  | No WQS               |
| Chrysene                    | 0.038 | μg/L | Discharge Conc < TQL |
| Dibenzo(a,h)Anthrancene     | 0.038 | μg/L | Discharge Conc < TQL |
| 3,3-Dichlorobenzidine       | 0.21  | μg/L | Discharge Conc < TQL |
| Diethyl Phthalate           | 2,010 | μg/L | Discharge Conc < TQL |
| Dimethyl Phthalate          | 1,256 | μg/L | Discharge Conc < TQL |
| Di-n-Butyl Phthalate        | 52.8  | μg/L | Discharge Conc < TQL |
| 2,4-Dinitrotoluene          | 0.5   | μg/L | Discharge Conc < TQL |
| 2,6-Dinitrotoluene          | 0.5   | μg/L | Discharge Conc < TQL |
| Di-n-Octyl Phthalate        | N/A   | N/A  | No WQS               |
| 1,2-Diphenylhydrazine       | 0.36  | μg/L | Discharge Conc < TQL |
| Fluoranthene                | 100   | μg/L | Discharge Conc < TQL |
| Fluorene                    | 2,763 | μg/L | Discharge Conc < TQL |
| Hexachlorobenzene           | 0.003 | μg/L | Discharge Conc < TQL |
| Hexachlorocyclopentadiene   | 2.51  | μg/L | Discharge Conc < TQL |
| Hexachloroethane            | 14.0  | μg/L | Discharge Conc < TQL |
| Indeno(1,2,3-cd)Pyrene      | 0.01  | μg/L | Discharge Conc < TQL |
| Isophorone                  | 87.9  | μg/L | Discharge Conc < TQL |
| Nitrobenzene                | 42.7  | μg/L | Discharge Conc < TQL |
| n-Nitrosodimethylamine      | 0.007 | μg/L | Discharge Conc < TQL |
| n-Nitrosodi-n-Propylamine   | 0.05  | μg/L | Discharge Conc < TQL |
| n-Nitrosodiphenylamine      | 33.0  | μg/L | Discharge Conc < TQL |
| Phenanthrene                | 2.51  | μg/L | Discharge Conc < TQL |
|                             |       |      | -                    |
|                             |       |      |                      |
|                             |       |      |                      |
|                             |       |      |                      |
|                             |       |      |                      |
|                             |       |      |                      |
|                             |       |      |                      |
|                             |       |      |                      |
|                             |       |      |                      |
|                             |       |      |                      |