

Southcentral Regional Office CLEAN WATER PROGRAM

Application Type	Renewal
Facility Type	Municipal
Major / Minor	Major

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

Application No.	PA0026620
APS ID	18
Authorization ID	1079810

Applicant and Facility Information									
Applicant Name	Millersville Borough	Facility Name	Millersville Borough WWTP						
Applicant Address	100 Municipal Drive	Facility Address	100 Municipal Drive						
	Millersville, PA 17551		Millersville, PA 17551						
Applicant Contact	Edward Arnold	Facility Contact	Les McMullen						
Applicant Phone	(717) 872-4645	Facility Phone	(717) 872-5323						
Client ID	66615	Site ID	271423						
Ch 94 Load Status	Not Overloaded	Municipality	Millersville Borough						
Connection Status	No Limitations	County	Lancaster						
Date Application Rece	eived July 2, 2015	EPA Waived?	No						
Date Application Acce	pted July 8, 2015	If No, Reason	Major Facility, Significant CB Discharge						
Purpose of Application	n NPDES Renewal.								

Summary of Review

Millersville Borough has applied to the Pennsylvania Department of Environmental Protection (DEP) for reissuance of its National Pollutant Discharge Elimination System (NPDES) permit. The permit was issued on December 17, 2010 and became effective on January 1, 2011, authorizing discharge of treated sewage from the existing wastewater treatment plant (WWTP) located in Millersville Borough, Lancaster County into Conestoga River. The existing permit expiration date was December 31, 2015, and the permit has been administratively extended since that time.

Per the previous fact sheet, this WWTP serves the Millersville Borough which includes the University of Millersville, a development (Crossgates – less than 1% of total flow), and a small portion of Lancaster Township (less than 1% of total flow).

Changes to renewal permit: Fecal coliform IMAX limits have been added to the permit. E. Coli monitoring has been added. Total Aluminum and Total Copper monitoring was added. TN monitoring has been increased to 2/week.

Sludge use and disposal description and location(s): Class B land applied or disposed of at offsite landfill.

Supplemental information has been attached to this fact sheet.

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request

Approve	Deny	Signatures	Date
Х		Benjamin Lockwood Benjamin R. Lockwood / Environmental Engineering Specialist	May 5, 2021
Х		Maria D. Bebenek for Daniel W. Martin Daniel W. Martin, P.E. / Environmental Engineer Manager	May 12, 2021
Х		Maria D. Bebenek Maria D. Bebenek, P.E. / Program Manager	May 12, 2021

Summary of Review
or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the <i>Pennsylvania Bulletin</i> at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Discharge, Receiving Wate	rs and Water Supply Inform	mation	
Outfall No. 001		Design Flow (MGD)	1.85
Latitude 39° 59' 7"	_	Longitude	76º 20' 49"
Quad Name Conestog	a	Quad Code	1935
Wastewater Description:	Sewage Effluent		
Receiving Waters Cone	estoga River (WWF)	Stream Code	07548
NHD Com ID 5746	5803	RMI	7.6
Drainage Area 395 r	ni ²	Yield (cfs/mi²)	0.12
Q ₇₋₁₀ Flow (cfs) 47.4		Q ₇₋₁₀ Basis	USGS Gage #01576500
Elevation (ft) 197		Slope (ft/ft)	
Watershed No. 7-J		Chapter 93 Class.	WWF
Existing Use N/A		Existing Use Qualifier	N/A
Exceptions to Use N/A		Exceptions to Criteria	N/A
Assessment Status	Impaired		
Cause(s) of Impairment	Pathogens, Pathogens		
Source(s) of Impairment	Agriculture, Urban Runoff,	/Storm Sewers	
TMDL Status	N/A	Name N/A	
Nearest Downstream Pub	lic Water Supply Intake	Holtwood Power Plant	
PWS Waters Susque	hanna River	_ Flow at Intake (cfs)	
PWS RMI		Distance from Outfall (mi)	17.7

Streamflows: A drainage area of 395 mi² and a Q_{7-10} flow of 47.4 cubic feet per second (cfs) were determined by establishing a correlation to the yield of USGS Gage Station #01576500 on the Conestoga River. The Q_{7-10} and drainage area at the gage are 38.6 cfs and 324 mi², respectively. These values are taken from the USGS document "Selected Streamflow Statistics for Streamgage Locations in and near Pennsylvania". The Q_{7-10} runoff rate at the gage station was calculated as follows:

Yield = $(38.6 \text{ cfs})/324 \text{ mi}^2 = 0.12 \text{ cfs/mi}^2$

The drainage area at the discharge point, taken from USGS PA StreamStats = 395 mi²

The Q_{7-10} at the discharge point = 395 mi² x 0.12 cfs/mi² = 47.4 cfs

Discharge, Receiving Wate	rs and Water Supply Infor	mation	
Outfall No. 002		Design Flow (MGD)	Variable (Stormwater)
Latitude 39° 59' 6"		Longitude	76° 20' 53"
Quad Name Conestog	a	Quad Code	1935
Wastewater Description:	Stormwater		
Receiving Waters Cone	estoga River (WWF)	Stream Code	07548
NHD Com ID 5746	5803	RMI	7.6
Drainage Area 395 ı	mi ²	Yield (cfs/mi²)	0.12
Q ₇₋₁₀ Flow (cfs) 47.4		Q ₇₋₁₀ Basis	USGS Gage #01576500
Elevation (ft) 197		Slope (ft/ft)	
Watershed No. 7-J		Chapter 93 Class.	_WWF
Existing Use N/A		Existing Use Qualifier	N/A
Exceptions to Use N/A		Exceptions to Criteria	N/A
Assessment Status	Impaired		
Cause(s) of Impairment	Pathogens, Pathogens		
Source(s) of Impairment	Agriculture, Urban Runoff,	Storm Sewers	
TMDL Status	N/A	Name N/A	
Nearest Downstream Pub	lic Water Supply Intake	Holtwood Power Plant	
PWS Waters Susque	hanna River	_ Flow at Intake (cfs)	
PWS RMI		Distance from Outfall (mi)	17.7

Other Comments: None

Discharge, Receiving Wate	rs and Water Supply Inform	mation	
Outfall No. 003		Design Flow (MGD)	Variable (Stormwater)
Latitude 39° 59' 6"		Longitude	76° 20' 54"
Quad Name Conestog	a	Quad Code	1935
Wastewater Description:	Stormwater		
			-
Receiving Waters Cone	estoga River (WWF)	Stream Code	07548
NHD Com ID 5746	5799	RMI	7.6
Drainage Area 395 r	mi ²	Yield (cfs/mi²)	0.12
Q ₇₋₁₀ Flow (cfs) 47.4		Q ₇₋₁₀ Basis	USGS Gage #01576500
Elevation (ft) 197		Slope (ft/ft)	
Watershed No. 7-J		Chapter 93 Class.	WWF
Existing Use N/A		Existing Use Qualifier	N/A
Exceptions to Use N/A		Exceptions to Criteria	N/A
Assessment Status	Impaired		
Cause(s) of Impairment	Pathogens, Pathogens		
Source(s) of Impairment	Agriculture, Urban Runoff,	/Storm Sewers	
TMDL Status	N/A	Name N/A	
Nearest Downstream Publ	ic Water Supply Intake	Holtwood Power Plant	
PWS Waters Susque	hanna River	_ Flow at Intake (cfs)	
PWS RMI		Distance from Outfall (mi)	17.7

Other Comments: None

	Treatment Facility Summary									
Waste Type	Degree of Treatment	Process Type	Disinfection	Avg Annual Flow (MGD)						
Sewage	Secondary	Sequencing Batch Reactor	Gas Chlorine	1.85						
	•									
Hydraulic Capacity	Organic Capacity			Biosolids						
(MGD)	(lbs/day)	Load Status	Biosolids Treatment	Use/Disposal						
			Aerobic Digestion w/							
			Dewatering & Lime	Class B Land						
1.85	3.860	Not Overloaded	Treatment	Applied Off Site						

Other Comments: The treatment process is as follows: Screening – Primary Clarification – Activated Sludge SBR Process – Phosphorus Removal Using Alum – Chlorine Gas Disinfection – Aerobic Digesters - Outfall 001 to Conestoga River

Compliance History							
Summary of DMRs:	A summary of past DMR effluent data is presented on the next page of this fact sheet.						
Summary of Inspections:	6/2/2011: A routine inspection was conducted. It was noted that the WWTP operation looked good, all treatment units were operating properly, and the WWTP effluent was clear.						
	7/10/2012: A routine inspection was conducted. It was noted that the air lines to the grit chamber were broken, and were expected to be replaced in mid-August. The SBR #2 had a leaking effluent pipe which was recommended to be fixed. The air lines to digesters # 3 and 4 were also broken. All 4 digesters were still being aerated.						
	2/13/2013: A brief inspection was conducted. The broken air lines had been replaced and are now above ground. The operator was still having issued with leaking alum valves for the SBRs. The operator was hoping to replace the blowers and utilize VFDs. No other issues were noted.						
	9/12/2013: A routine inspection was conducted. No issues were noted at the WWTP.						
	7/13/2014: A routine inspection was conducted. No issues were noted at the WWTP.						
	9/16/2014: A follow up inspection was conducted to re-sample the WWTP effluent. Field readings were within permitted limits. Upstream and downstream of Outfall 001 appeared ok/normal.						
	9/15/2015: A routine inspection was conducted. The EQ tank had very little floatables or grease. The SBRs had good aeration and mixing. The decant to the chlorine contact tank was clear. The effluent was clear at Outfall 001, with no water quality concerns. Field readings were within permitted limits.						
	3/15/2016: A routine inspection was conducted. All treatment units were online, but the WWTP was not discharging at the time of inspection. Field readings were within permitted limits.						
	2/21/2018: A routine inspection was conducted. It was noted that the primary clarifier would be refurbished in 2018. No other issues were noted. Field readings were within permitted limits.						
	3/28/2019: A routine inspection was conducted. The chlorine contact tanks appeared clear with a slight green tint. The effluent appeared clear. Field readings were within permitted limits. A high flow event was reported on 3/22/2019, when the WWTP entered storm-mode and had higher effluent TSS. No other issues were noted.						
	6/5/2020: An administrative inspection was conducted. The primary clarifier was taken out of service on 4/22/2020 due to decreased flows. The tank is typically taken offline when schools are out for summer. All treatment units were operable. The WWTP had not experienced any emergency conditions. No other outstanding issues or needs were noted.						

Other Comments: There are currently no open violations associated with the permittee or facility.

Compliance History

DMR Data for Outfall 001 (from February 1, 2020 to January 31, 2021)

Parameter	JAN-21	DEC-20	NOV-20	OCT-20	SEP-20	AUG-20	JUL-20	JUN-20	MAY-20	APR-20	MAR-20	FEB-20
Flow (MGD)												
Average Monthly	0.558	0.503	0.459	0.464	0.477	0.506	0.447	0.518	0.581	0.563	0.547	0.624
Flow (MGD)												
Daily Maximum	0.684	1.033	0.698	0.677	0.627	0.865	0.551	0.653	0.747	1.021	0.712	0.737
pH (S.U.)												
Minimum	6.7	6.6	6.7	6.8	6.9	7.0	7.0	7.0	7.0	6.8	6.8	6.9
pH (S.U.)												
Maximum	7.0	7.0	7.2	7.1	7.1	7.3	7.3	7.2	7.2	7.1	7.2	7.1
DO (mg/L)												
Minimum	7.3	7.2	7.0	6.9	6.4	6.1	6.2	6.4	6.5	7.0	7.2	7.2
TRC (mg/L)												
Average Monthly	0.25	0.2	0.2	0.2	0.2	0.1	0.2	0.2	0.2	0.2	0.2	0.2
TRC (mg/L)												
Instantaneous												
Maximum	0.32	0.4	0.3	0.3	0.2	0.2	0.3	0.3	0.3	0.3	0.4	0.2
CBOD5 (lbs/day)												
Average Monthly	20	8	8	8	8.2	8.0	7.8	9.2	9.5	10.1	9	15
CBOD5 (lbs/day)												
Weekly Average	52	8	11	10	9.3	8.9	9.4	10.2	12.8	10.1	10	26
CBOD5 (mg/L)												
Average Monthly	< 4	2	2	2	2.0	2.0	2.1	2.0	2	2.0	2	3
CBOD5 (mg/L)												
Weekly Average	12	2	2	2	2.0	2.0	2.4	2.0	2	2.0	2	5
BOD5 (lbs/day)												
Raw Sewage Influent												
 Average												
Monthly	838	794	793	771	832	648	675	894	709	786	840	1054
BOD5 (mg/L)												
Raw Sewage Influent												
 Average	407	044	000	007	000	470	404	007	4.47	450	470	405
Monthly	187	211	206	207	209	170	184	207	147	156	179	195
TSS (lbs/day)	40	4.5	40	40	40.4	40.0	45.0	40.0	40	00.4	40	00
Average Monthly	18	15	16	16	16.4	16.0	15.6	18.3	19	20.1	18	22
TSS (lbs/day)												
Raw Sewage Influent												
 Average	704	007	000	000	000	4040	000	700	700	000	004	005
Monthly	761	637	800	830	829	1212	692	766	723	899	864	965

		1	1		1	T	T	T	•	T	1	,
TSS (lbs/day)												
Weekly Average	19	16	22	19	18.5	17.8	18.6	20.5	25.6	20.1	19	23
TSS (mg/L)												
Average Monthly	< 4	4	4	4	4.0	4.0	4.2	4.0	4	4.0	4	4
TSS (mg/L)												
Raw Sewage Influent												
 br/> Average												
Monthly	170	169	209	221	209	327	188	176	149	178	184	178
TSS (mg/L)												
Weekly Average	< 4	4	4	4	4.0	4.0	4.8	4.0	4	4.0	4	4
Fecal Coliform												
(CFU/100 ml)												
Geometric Mean	2	1.8	1.6	2.9	3.4	6.7	5.8	3.5	3.3	3	2	3
Nitrate-Nitrite (mg/L)												
Average Monthly	10.84	12.4	11.1	10.5	9.8	3.2	2.0	1.7	3.3	7.7	6.1	7.8
Nitrate-Nitrite (lbs)												
Total Monthly `	1541	1510	1319	1230	1132	382	238	233	504	1159	849	1231
Total Nitrogen (mg/L)												
Average Monthly	11.34	13.0	11.8	11.1	10.3	3.9	2.7	2.5	4.0	8.5	6.9	8.4
Total Nitrogen (lbs)												
Effluent Net 												
Total Monthly	1612	1579	1404	1305	1199	471	319	338	604	1280	956	1328
Total Nitrogen (lbs)												
Total Monthly	1612	1579	1404	1305	1199	471	319	338	604	1280	956	1328
Total Nitrogen (lbs)												
Effluent Net 												
Total Annual					12457							
Total Nitrogen (lbs)												
Total Annual					12457							
Ammonia (mg/L)					12.01							
Average Monthly	< 0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Ammonia (lbs)	7 0.1	0	0	0	0.1	0	0	0	0	0	0.1	0.1
Total Monthly	14	12	12	12	12	12	12	14	15	15	14	16
Ammonia (lbs)	17	12	12	12	12	12	12	1-7	10	10	17	10
Total Annual					165							
TKN (mg/L)					100							
Average Monthly	< 0.5	0.6	0.7	0.6	0.6	0.7	0.7	0.8	0.7	0.8	0.8	0.6
TKN (lbs)	\ 0.5	0.0	0.7	0.0	0.0	0.7	0.7	0.0	0.7	0.0	0.0	0.0
Total Monthly	72	69	86	75	66	89	81	105	101	121	107	97
Total Phosphorus	12	09	00	73	00	09	01	105	101	141	107	91
(lbs/day)												
Average Monthly	1	1.45	2.87	1.98	2.56	2.25	1.98	2.09	2	2.0	3	3
	1	1.45	2.81	1.98	∠.50	2.25	1.98	2.09		∠.∪	3	3
Total Phosphorus												
(mg/L)	0.0	0.00	0.05	0.50	0.00	0.50	0.50	0.40	0.07	0.0	0.0	0.5
Average Monthly	0.2	0.38	0.65	0.50	0.63	0.56	0.53	0.46	0.37	0.3	0.6	0.5

NPDES Permit No. PA0026620

Total Phosphorus (lbs) Effluent Net 												
Total Monthly	33	45	86	61	77	70	61	63	55	47	84	84
Total Phosphorus (lbs)												
Total Monthly	33	45	86	61	77	70	61	63	55	47	84	84
Total Phosphorus (lbs)												
Effluent Net 												
Total Annual					849							
Total Phosphorus (lbs)												
Total Annual					849							

Existing Effluent Limitations and Monitoring Requirements

The tables below summarize the effluent limits and monitoring requirements implemented in the existing NPDES permit.

Outfall 001

			imitations			Monitoring Requirements		
Parameter	Mass Unit	s (lbs/day)		Concentrati	ions (mg/L)		Minimum	Required
r ai ainetei	Average Monthly	Weekly Average	Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report Daily Max	XXX	XXX	XXX	XXX	Continuous	Measured
pH (S.U.)	XXX	XXX	6.0 Inst Min	XXX	XXX	9.0	1/day	Grab
DO	XXX	XXX	5.0 Inst Min	XXX	XXX	XXX	1/day	Grab
TRC	XXX	XXX	XXX	0.5	XXX	1.6	1/day	Grab
CBOD5	386	617	XXX	25	40	50	2/week	24-Hr Composite
BOD5 Raw Sewage Influent	Report	XXX	XXX	Report	XXX	XXX	2/week	24-Hr Composite
TSS Raw Sewage Influent	Report	XXX	XXX	Report	XXX	XXX	2/week	24-Hr Composite
TSS	463	694	XXX	30	45	60	2/week	24-Hr Composite
Fecal Coliform (No./100 ml) May 1 - Sep 30	XXX	XXX	XXX	200 Geo Mean	XXX	XXX	2/week	Grab
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	XXX	XXX	XXX	2,000 Geo Mean	XXX	XXX	2/week	Grab
Ammonia-Nitrogen	XXX	XXX	XXX	Report	XXX	XXX	1/week	24-Hr Composite
Total Phosphorus	9.7	XXX	XXX	2.0	XXX	4.0	2/week	24-Hr Composite

Outfall 001, continued

		Chesapea	Monitoring Requirements				
Discharge Parameter	Mass U	nits (lbs)	Co	ncentrations (m			
Discharge Farameter	Monthly	Annual	Monthly Minimum Average Maximum		Maximum	Monitoring Frequency	Sample Type
Ammonia-N	Report	Report	XXX	Report	XXX	1/week	24-Hr Composite
Kjeldahl-N	Report	XXX	XXX	Report	XXX	1/week	24-Hr Composite
Nitrate-Nitrite as N	Report	XXX	XXX	Report	XXX	1/week	24-Hr Composite
Total Nitrogen	Report	Report	XXX	Report	XXX	1/month	Calculation
Total Phosphorus	Report	Report	XXX	Report	XXX	2/week	24-Hr Composite
Net Total Nitrogen	Report	33,790	XXX	XXX	XXX	1/month	Calculation
Net Total Phosphorus	Report	4,505	XXX	XXX	XXX	1/month	Calculation

Development of Effluent Limitations									
Outfall No.	001		Design Flow (MGD)	1.85					
Latitude	39° 59' 7"		Longitude	76º 20' 49"					
Wastewater Description: Sewage Effluent		·							

Technology-Based Limitations

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Pollutant	Limit (mg/l)	SBC	Federal Regulation	State Regulation
CBOD ₅	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
CBOD5	40	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)
Total Suspended	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
Solids	45	Average Weekly	133.102(b)(2)	92a.47(a)(2)
рН	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform				
(5/1 - 9/30)	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
Fecal Coliform				
(5/1 - 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform				
(10/1 - 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
Fecal Coliform				
(10/1 - 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)
Total Residual Chlorine	0.5	Average Monthly	-	92a.48(b)(2)

Water Quality-Based Limitations

CBOD₅ & NH₃-N.

Pursuant to 40 CFR § 122.44(d)(1)(i), more stringent requirements should be considered when pollutants are discharged at the levels which have the reasonable potential to cause or contribute to excursions above water quality standards.

WQM 7.0 ver. 1.1b is a water quality model designed to assist DEP in determining appropriate water quality based effluent limits (WQBELs) for carbonaceous biochemical oxygen demand (CBOD $_5$), ammonia (NH $_3$ -N) and dissolved oxygen (D.O.) The model simulates two basic processes: In the NH $_3$ -N module, the model simulates the mixing and degradation of NH $_3$ -N in the stream and compares calculated instream NH $_3$ -N concentrations to NH $_3$ -N water quality criteria. In the D.O. module, the model simulates the mixing and consumption of D.O. in the stream due to the degradation of CBOD $_5$ and NH $_3$ -N and compares calculated instream D.O. concentrations to D.O. water quality criteria. The model then determines the highest pollutant loadings that the stream can assimilate while still meeting water quality criteria under design conditions. The model was utilized for this permit application. The flow data used to run the model was acquired from USGS PA StreamStats and USGS Gage # 01576500, and is included in the attachment. Default discharge temperature and pH values were used. The model output indicated a CBOD $_5$ average monthly limit of 25 mg/l, a NH $_3$ -N average monthly limit of 25 mg/l, and a D.O. minimum limit of 5.0 mg/l were protective of water quality. The CBOD $_5$ limit is the same as the existing permit limit, which will remain in the renewal permit. DEP's SOP No. BCW-PMT-033 states that for existing discharges, if WQM modeling results for summer indicates that an average monthly limit of 25 mg/l is acceptable, a year-round monitoring requirement for NH $_3$ -N should generally be established, at a minimum. The existing permit has a year-round monitoring requirement for NH $_3$ -N, which is consistent with this statement.

Toxics

Effluent sample results for toxic pollutants reported on the renewal application were entered into DEP's Toxics Management Spreadsheet Version 1.3 to develop appropriate permit requirements for toxic pollutants of concern. The Toxics Management Spreadsheet combines the functions of PENTOXSD and DEP's Toxics Screening Analysis. Based on effluent sample results reported on the application, the Toxics Management Spreadsheet recommended monitoring for Total Aluminum and Total Copper.

This data was analyzed based on the guidelines found in DEP's Water Quality Toxics Management Strategy (Document No. 361-0100-003) and DEP's SOP No. BPNPSM-PMT-033. The results are attached to this fact sheet. The Toxics Management Spreadsheet uses the following logic:

- a. Establish average monthly and instantaneous maximum (IMAX) limits in the draft permit where the maximum reported concentration exceeds 50% of the WQBEL.
- b. For non-conservative pollutants, establish monitoring requirements where the maximum reported concentration is between 25% 50% of the WQBEL.
- c. For conservative pollutants, establish monitoring requirements where the maximum reported concentration is between 10%-50% of the WQBEL.

Since the reported maximum concentrations for Total Aluminum and Total Copper were greater than 10% of their respective WQBELs, per DEP's SOP No. BPNPSM-PMT-033, a monitoring requirement will be added to the permit for Total Aluminum and Total Copper. A measurement frequency of 1/quarter will be used.

Total Residual Chlorine

The attached computer printout utilizes the equations and calculations as presented in the Department's May 1, 2003 Implementation Guidance for Total Residual Chlorine (TRC) (ID No. 391-2000-015) for developing chlorine limitations. The Guidance references Chapter 92, Section 92.2d (3) which establishes a standard BAT limit of 0.5 mg/l unless a facility-specific BAT has been developed. The attached printout indicates that a water quality limit of 0.5 mg/l would be needed to prevent toxicity concerns. It is recommended that a TRC limit of 0.5 mg/l monthly average and 1.6 mg/l instantaneous maximum be applied this permit cycle, the same as the existing permit.

Best Professional Judgement (BPJ) Limitations

Dissolved Oxygen

A minimum D.O. limit of 5.0 mg/L is a D.O. water quality criterion found in 25 Pa. Code § 93.7(a). This is the existing permit limit, and it is recommended that it remain in the permit to ensure that the facility continues to achieve compliance with water quality standards.

Total Phosphorus

Historically, a Total Phosphorus (TP) effluent limit of 2.0 mg/l was established in the permit when it was determined that the facility was expected to contribute 0.25% or more of the total point source phosphorus loading at the point of discharge. This determination was based on the Department's *Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams* (Guidance No. 391-2000-018). DEP previously determined that the Millersville Borough WWTP met this criteria, and phosphorus limitations were required in the permit. The TP average monthly limit of 2.0 mg/l and instantaneous maximum (IMAX) limit of 4.0 mg/l will remain in the permit to protect the local watershed.

Additional Considerations

Chesapeake Bay Total Maximum Daily Load (TMDL)

DEP developed a strategy to comply with the EPA and Chesapeake Bay Foundation requirements by reducing point source loadings of Total Nitrogen (TN) and Total Phosphorus (TP). This strategy can be located in the *Pennsylvania Chesapeake Watershed Implementation Plan* (WIP), dated January 11, 2011. Subsequently, an update to the WIP was published as the Phase 2 WIP. As part of the Phase 2 WIP, a *Phase 2 Watershed Implementation Plan Wastewater Supplement* (Phase 2 Supplement) was developed, providing an update on TMDL implementation for point sources and DEP's current implementation strategy for wastewater. A new update to the WIP was published as the Phase 3 WIP in August 2019. As part of the Phase 3 WIP, a *Phase 3 Watershed Implementation Plan Wastewater Supplement* (Phase 3 Supplement) was developed, and was most recently revised on December 17, 2019, and is the basis for the development of any Chesapeake Bay related permit parameters. Sewage discharges have been prioritized based on their design flow to the Bay. The highest priority (Phases 1, 2, and 3) dischargers will receive annual Cap Loads based on their design flow on August 29, 2005 and concentrations of 6 mg/l TN and 0.8 mg/l TP. These limits may be achieved through a combination of treatment technology, credits, or offsets. For Phase 4 and 5 facilities, Cap Loads are not currently being implemented for renewed or amended permits for facilities that do not increase design flow. For new Phase 4 and 5 sewage dischargers, in general DEP will issue new permits containing Cap Loads of "0" and new facilities will be expected to purchase credits and/or apply offsets to achieve compliance.

Millersville Borough WWTP is a Phase 3 significant discharger. The facility's waste load allocation (WLA) is tracked under an individual WLA as a significant discharger in the Phase 3 Supplement. The following Cap Loads specified in the current Phase 3 Supplement will be included in the draft permit:

NPDES Permit No.	Phase	Facility	Latest Permit Issuance Date	Permit Expiration Date	Cap Load Complian ce Start Date	TN Cap Load (lbs/yr)	TN Offsets Included in Cap Load (lbs/yr)	TP Cap Load (lbs/yr)	TN Delivery Ratio	TP Delivery Ratio
		Millersville								
PA0026620	3	Borough	12/17/2010	12/31/2015	10/1/2013	33,790	-	4,505	0.891	0.436

The Cap Loads are unchanged from the existing permit. DEP's SOP for New and Reissuance Sewage Individual NPDES Permit Applications recommends that Significant Chesapeake Bay sewage discharges should monitor for nutrients at a minimum of 1/week as 24-hour composites. The Phase 3 Supplement states that "the minimum monitoring frequency for TN species and TP in new or renewed NPDES permits for significant sewage dischargers will be 2/week." Therefore, the monitoring frequency for all Chesapeake Bay parameters has been increased to 2/week. DEP no longer offers any tools to calculate monthly loads for Net TN and Net TP, and it is no longer needed since offsets and credits are applied annually. Therefore, this reporting requirement is no longer needed and will be removed from the permit.

Total Dissolved Solids (TDS)

Total Dissolved Solids and its major constituents including Bromide, Chloride, and Sulfate have become statewide pollutants of concern and threats to DEP's mission to prevent violations of water quality standards. The requirement to monitor these pollutants is necessary under the following DEP Central Office directive:

For point source discharges and upon issuance or reissuance of an individual NPDES permit:

- Where the concentration of TDS in the discharge exceeds 1,000 mg/L, or the net TDS load from a discharge exceeds 20,000 lbs/day, and the discharge flow exceeds 0.1 MGD, Part A of the permit should include monitor and report for TDS, sulfate, chloride, and bromide. Discharges of 0.1 MGD or less should monitor and report for TDS, sulfate, chloride, and bromide if the concentration of TDS in the discharge exceeds 5,000 mg/L.
- Where the concentration of bromide in a discharge exceeds 1 mg/L and the discharge flow exceeds 0.1 MGD, Part
 A of the permit should include monitor and report for bromide. Discharges of 0.1 MGD or less should monitor and
 report for bromide if the concentration of bromide in the discharge exceeds 10 mg/L.
- Where the concentration of 1,4-dioxane (CAS 123-91-1) in a discharge exceeds 10 μg/l and the discharge flow exceeds 0.1 mgd, Part A of the permit should include monitor and report for 1,4-dioxane. Discharges of 0.1 mgd or less should monitor and report for 1,4-dioxane if the concentration of 1,4-dioxane in the discharge exceeds 100 μg/l.

Based on the sampling data provided in the application, the maximum TDS concentration was 679 mg/l, and the maximum Bromide concentration was <1.00 mg/l. Therefore, monitoring requirements for these parameters will not be required.

Fecal Coliform

PA Code § 92a.47.(a)(4) requires a monthly average limit of 200/100 mL as a geometric mean and an instantaneous maximum limit not greater than 1,000/100 mL from May through September for fecal coliform. PA Code § 92a.47.(a)(5) requires a monthly average limit of 2,000/100 mL as a geometric mean and an instantaneous maximum limit not greater than 10,000/100 mL from October through April for fecal coliform. The instantaneous maximum fecal coliform limits have been included in the renewal permit.

E. Coli

PA Code § 92a.61 requires IMAX reporting of E. Coli. Per DEP's SOP No. BCW-PMT-033, sewage dischargers with a design flow of >= 1 mgd will include E. Coli monitoring with a frequency of 1/month. This parameter has been added to the renewal permit.

Sampling Frequency & Sample Type

The monitoring requirements were established based on the BPJ and/or Table 6-3 of DEP's technical guidance No. 362-0400-001.

Flow Monitoring

Flow monitoring is recommended by DEP's technical guidance and is also required by 25 PA Code §§ 92a.27 and 92a.61.

Influent BOD₅ and Total Suspended Solids (TSS) Monitoring

As a result of negotiation with US EPA, influent monitoring of TSS and BOD₅ are required for any publicly owned treatment works (POTWs); therefore, influent sampling of BOD₅ and TSS will be included in the permit. A 24-hr composite sample type will be required to be consistent with the proposed sampling frequency for effluent TSS and CBOD₅.

Mass Loading Limitation

All mass loading effluent limitations recommended in the draft permit are concentration-based, calculated using a formula: design flow (MGD) x concentration limit (mg/l) x conversion factor of 8.34.

Anti-Degradation

The effluent limits for this discharge have been developed to ensure that existing instream water uses and the level of water quality necessary to protect the existing uses are maintained and protected. No High Quality Waters are impacted by this discharge. No Exceptional Value Waters are impacted by this discharge.

303(d) Listed Streams

The discharge is located on a stream segment that is designated on the 303(d) list as impaired. There is a recreational impairment due to pathogens from agriculture and urban runoff/storm sewers. There is an existing fecal coliform limit in the permit, and an E. Coli monitoring requirement has been added.

Class A Wild Trout Fisheries

No Class A Wild Trout Fisheries are impacted by this discharge.

	Development of Effluent Limitations								
Outfall No.	002, 003	Design Flow (MGD)	Variable (Stormwater)						
	39° 59′ 6″ (002)		76° 20' 53" (002)						
Latitude	39° 59' 6" (003)	Longitude	76° 20' 54" (003)						
Wastewater I	Description: Stormwater								

Stormwater Limitations

The application lists two (2) stormwater outfalls for this facility, Outfall 002 and Outfall 003. No monitoring is needed for the stormwater outfalls since the SIC Code does not dictate NPDES coverage. Part C requirements for stormwater outfalls will be included in the permit.

	Whole Effluent Toxicity (WET)							
For Out	fall 001, Acute Chronic WET Testing was completed:							
	For the permit renewal application (4 tests). Quarterly throughout the permit term. Quarterly throughout the permit term and a TIE/TRE was conducted. Other:							

The dilution series used for the tests was: 100%, 60%, 30%, 5%, and 2%. The Target Instream Waste Concentration (TIWC) to be used for analysis of the results is: 5.

Summary of Four Most Recent Test Results

(NOTE - Enter results into one table, depending on which data analysis method was used).

NOEC/LC50 Data Analysis

	Ceriodaph	nia Results (% E	ffluent)	Pimephale	Effluent)		
	NOEC	NOEC		NOEC	NOEC		
Test Date	Survival	Reproduction	LC50	Survival	Growth	LC50	Pass? *
.8/4/2014	100	100	100	100	100	100	Yes
10/13/2014	100	100	100	100	100	100	Yes
2/23/2015	100	100	100	60	60	82.2	Yes
4/27/2015	100	100	100	100	100	100	Yes

^{*} A "passing" result is that which is greater than or equal to the TIWC value.

Is there reasonable potential for an excursion above water quality standards based on the results of these tests? (NOTE – In general, reasonable potential is determined anytime there is at least one test failure in the previous four tests).

☐ YES ⊠ NO

Comments: All of the endpoint results were greater than the TIWC.

Evaluation of Test Type, IWC and Dilution Series for Renewed Permit

Acute Partial Mix Factor (PMFa): **0.157** Chronic Partial Mix Factor (PMFc): **1**

1. Determine IWC - Acute (IWCa):

 $(Q_d \times 1.547) / ((Q_{7-10} \times PMFa) + (Q_d \times 1.547))$

 $[(1.85 \text{ MGD x } 1.547) / ((47.4 \text{ cfs x } 0.157) + (1.85 \text{ MGD x } 1.547))] \times 100 = 27.8\%$

Is IWCa < 1%? ☐ YES ☒ NO (YES - Acute Tests Required OR NO - Chronic Tests Required)

If the discharge is to the tidal portion of the Delaware River, indicate how the type of test was determined:

N/A

Type of Test for Permit Renewal: Chronic

2a. Determine Target IWCa (If Acute Tests Required)

TIWCa = N/A

2b. Determine Target IWCc (If Chronic Tests Required)

$$(Q_d \times 1.547) / (Q_{7-10} \times PMFc) + (Q_d \times 1.547)$$

 $[(1.85 \text{ MGD} \times 1.547) / ((47.4 \text{ cfs} \times 1) + (1.85 \text{ MGD} \times 1.547))] \times 100 =$ **5.69%**

3. Determine Dilution Series

(NOTE – check Attachment C of WET SOP for dilution series based on TIWCa or TIWCc, whichever applies). Dilution Series = 100%, 60%, 30%, 6%, and 3%.

WET Limits

Has reasonable potential been determined? ☐ YES ☒ NO
Will WET limits be established in the permit? ☐ YES ☒ NO
If WET limits will be established, identify the species and the limit values for the permit (TU)

N/A

If WET limits will not be established, but reasonable potential was determined, indicate the rationale for not establishing WET limits:

N/A

Proposed Effluent Limitations and Monitoring Requirements

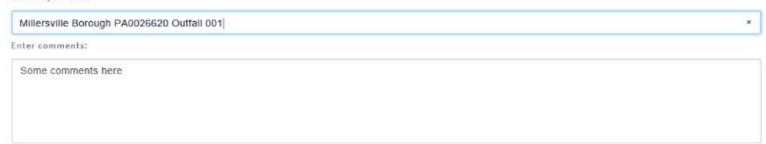
The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

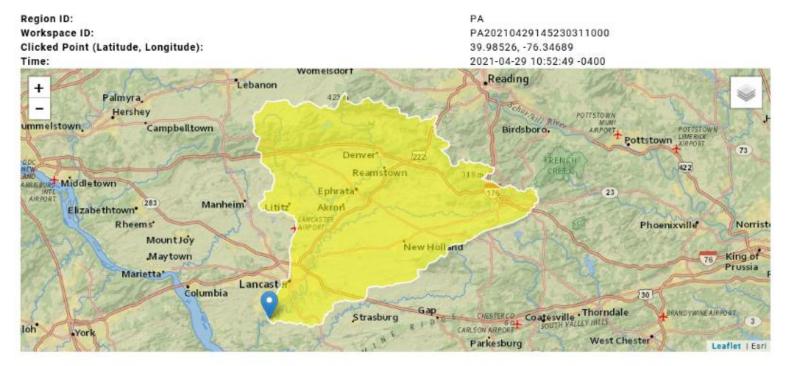
			Effluent L	imitations			Monitoring Requirements	
Parameter	Mass Unit	s (lbs/day)		Concentrat	ions (mg/L)		Minimum	Required
Farameter	Average Monthly	Weekly Average	Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report Daily Max	XXX	XXX	XXX	XXX	Continuous	Measured
pH (S.U.)	XXX	XXX	6.0 Inst Min	XXX	XXX	9.0	1/day	Grab
DO	XXX	XXX	5.0 Inst Min	XXX	XXX	XXX	1/day	Grab
TRC	XXX	XXX	XXX	0.5	XXX	1.6	1/day	Grab
CBOD5	386	617	XXX	25	40	50	2/week	24-Hr Composite
BOD5 Raw Sewage Influent	Report	XXX	XXX	Report	XXX	XXX	2/week	24-Hr Composite
TSS Raw Sewage Influent	Report	XXX	XXX	Report	XXX	XXX	2/week	24-Hr Composite
TSS	463	694	XXX	30	45	60	2/week	24-Hr Composite
Fecal Coliform (No./100 ml) May 1 - Sep 30	XXX	XXX	XXX	200 Geo Mean	XXX	1,000	2/week	Grab
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	XXX	XXX	XXX	2,000 Geo Mean	XXX	10,000	2/week	Grab
E. Coli (No./100 ml)	XXX	XXX	XXX	XXX	XXX	Report	1/month	Grab
Ammonia-Nitrogen	XXX	XXX	XXX	Report	XXX	XXX	1/week	24-Hr Composite
Total Phosphorus	31	XXX	XXX	2.0	XXX	4.0	2/week	24-Hr Composite
Total Aluminum	XXX	XXX	XXX	Report Daily Max	XXX	XXX	1/quarter	24-Hr Composite
Total Copper	XXX	XXX	XXX	Report Daily Max	XXX	XXX	1/quarter	24-Hr Composite

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, to comply with Pennsylvania's Chesapeake Bay Tributary Strategy.


Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

		Chesa	peake Bay Efflue	nt Limitations		Monitoring Requirements		
Discharge Parameter	Mass Units (lbs)			Concentrations				
Discharge Farameter	Monthly	Annual	Minimum	Monthly Average	Maximum	Monitoring Frequency	Sample Type	
Ammonia-N	Report	Report	XXX	Report	XXX	1/week	24-Hr Composite	
Kjeldahl-N	Report	XXX	XXX	Report	XXX	2/week	24-Hr Composite	
Nitrate-Nitrite as N	Report	XXX	XXX	Report	XXX	2/week	24-Hr Composite	
Total Nitrogen	Report	Report	XXX	Report	XXX	1/month	Calculation	
Total Phosphorus	Report	Report	XXX	Report	XXX	2/week	24-Hr Composite	
Net Total Nitrogen	XXX	33,790	XXX	XXX	XXX	1/year	Calculation	
Net Total Phosphorus	XXX	4,505	XXX	XXX	XXX	1/year	Calculation	


	Tools and References Used to Develop Permit
	Tought on the second of the se
	WQM for Windows Model (see Attachment)
	Toxics Management Spreadsheet (see Attachment)
	TRC Model Spreadsheet (see Attachment)
	Temperature Model Spreadsheet (see Attachment)
	Water Quality Toxics Management Strategy, 361-0100-003, 4/06.
	Technical Guidance for the Development and Specification of Effluent Limitations, 362-0400-001, 10/97.
	Policy for Permitting Surface Water Diversions, 362-2000-003, 3/98.
	Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 362-2000-008, 11/96.
	Technology-Based Control Requirements for Water Treatment Plant Wastes, 362-2183-003, 10/97.
	Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 362-2183-004, 12/97.
	Pennsylvania CSO Policy, 385-2000-011, 9/08.
	Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03.
	Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 391-2000-002, 4/97.
\boxtimes	Determining Water Quality-Based Effluent Limits, 391-2000-003, 12/97.
	Implementation Guidance Design Conditions, 391-2000-006, 9/97.
	Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen, Version 1.0, 391-2000-007, 6/2004.
	Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 391-2000-008, 10/1997.
	Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments, 391-2000-010, 3/99.
	Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 391-2000-011, 5/2004.
	Implementation Guidance for Section 93.7 Ammonia Criteria, 391-2000-013, 11/97.
	Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 391-2000-014, 4/2008.
	Implementation Guidance Total Residual Chlorine (TRC) Regulation, 391-2000-015, 11/1994.
	Implementation Guidance for Temperature Criteria, 391-2000-017, 4/09.
	Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 391-2000-018, 10/97.
	Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 391-2000-019, 10/97.
	Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 391-2000-021, 3/99.
	Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 391-2000-022, 3/1999.
	Design Stream Flows, 391-2000-023, 9/98.
	Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 391-2000-024, 10/98.
	Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 391-3200-013, 6/97.
	Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07.
	SOP: SOP No. BCW-PMT-033
	Other:

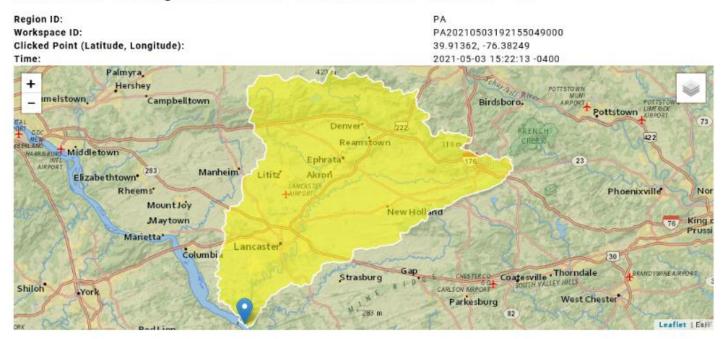
Enter report title:

Millersville Borough PA0026620 Outfall 001

Basin Characteristics			
Parameter Code	Parameter Description	Value	Unit
DRNAREA	Area that drains to a point on a stream	395	square miles
BSLOPD	Mean basin slope measured in degrees	4.1071	degrees
ROCKDEP	Depth to rock	5	feet
URBAN	Percentage of basin with urban development	9.539	percent

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
RNAREA	Drainage Area	395	square miles	4.78	1150
SLOPD	Mean Basin Slope degrees	4.1071	degrees	1.7	6.4
OCKDEP	Depth to Rock	5	feet	4.13	5.21
II: Prediction Interval-Lower, l Statistic	Percent Urban 9.9 Percent (394 square miles) Low Flow Region 1] Plu: Prediction Interval-Upper, SEp: Standard Error	Value	Unit	0 SE	89 SEp
ow-Flow Statistics Flow Report [99	9.9 Percent (394 square miles) Low Flow Region 1]	of Prediction, SE: Standard Error (o	ther see report)		
ow-Flow Statistics Flow Report [99 II: Prediction Interval-Lower, I statistic Day 2 Year Low Flow	9.9 Percent (394 square miles) Low Flow Region 1]	of Prediction, SE: Standard Error (o Value 103	ther see report) Unit ft^3/s	SE 46	SEp 46
ow-Flow Statistics Flow Report [99 I: Prediction Interval-Lower, I tatistic Day 2 Year Low Flow	9.9 Percent (394 square miles) Low Flow Region 1]	of Prediction, SE: Standard Error (o Value	ther see report) Unit	SE	SEp
ow-Flow Statistics Flow Report [99 II: Prediction Interval-Lower, statistic Day 2 Year Low Flow 0 Day 2 Year Low Flow	9.9 Percent (394 square miles) Low Flow Region 1]	of Prediction, SE: Standard Error (o Value 103	ther see report) Unit ft^3/s	SE 46	SEp 46
ow-Flow Statistics Flow Report [99	9.9 Percent (394 square miles) Low Flow Region 1]	of Prediction, SE: Standard Error (o Value 103 129	ther see report) Unit ft*3/s ft*3/s	SE 46 38	SE p 46 38

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.


USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the functionality of the software and related material nor shall the fact of release constitute any such warranty. Furthermore, the software is released on condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized use.

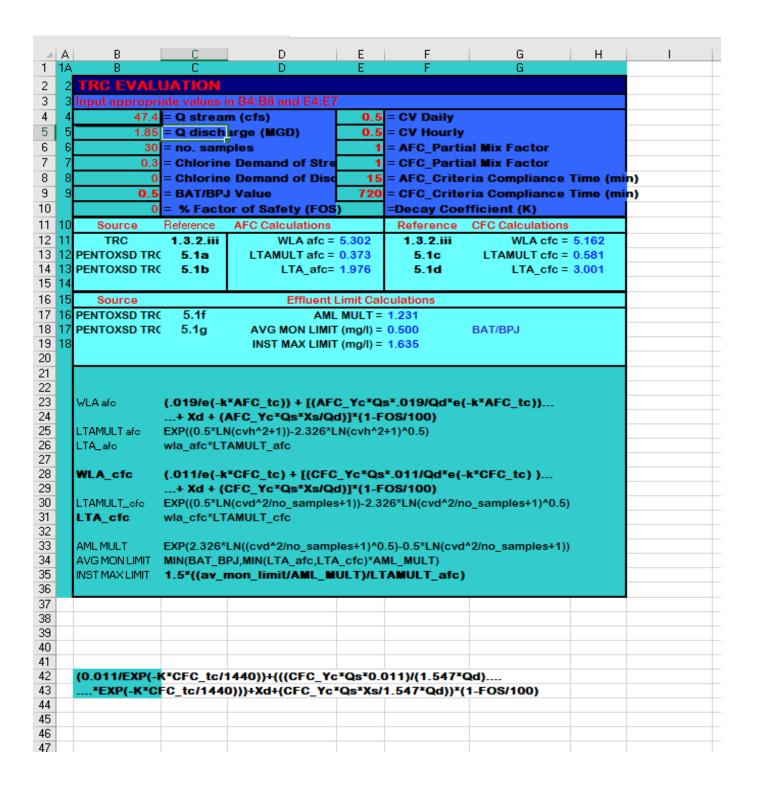
USGS Product Names Disclaimer. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Application Version: 4.5.2 StreamStata Services Version: 1.2.22 NSS Services Version: 2.1.1

Enter report title: Millersville Borough PA0026620 Downstream Point RMI = 0.0 Enter comments: Some comments here

Millersville Borough PA0026620 Downstream Point RMI = 0.0

Parameter Code Para	ameter Description	Value	Unit
DRNAREA Area	a that drains to a point on a stream	476	square miles
BSLOPD Mea	an basin slope measured in degrees	3.9912	degrees
ROCKDEP Dept	oth to rock	5	feet
URBAN Perc	centage of basin with urban development	11.4489	percent


arameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	476	square miles	4.78	1150
BSLOPD	Mean Basin Slope degrees	3.9912	degrees	1.7	6.4
ROCKDEP	Depth to Rock	5	feet	4.13	5.21
JRBAN	Percent Urban	11.4489	percent	0	89
Low-Flow Statistics Flow Report PII: Prediction Interval-Lowe Statistic	[99.9 Percent (476 square miles) Low Flow Region 1] er, Plu: Prediction Interval-Upper, SEp: Standard	Value	Unit	SE	SEp
Low-Flow Statistics Flow Report				SE 46	SEp 46
.ow-Flow Statistics Flow Report III: Prediction Interval-Lowe Statistic		Value	Unit		•
ow-Flow Statistics Flow Report II: Prediction Interval-Lowe Statistic 'Day 2 Year Low Flow IO Day 2 Year Low Flow		Value 124	Unit ft*3/s	46	46
.ow-Flow Statistics Flow Report II: Prediction Interval-Lowe Statistic 7 Day 2 Year Low Flow		Value 124 156	Unit ft^3/s ft^3/s	46 38	46 38
ow-Flow Statistics Flow Report II: Prediction Interval-Lowe Statistic 7 Day 2 Year Low Flow 10 Day 2 Year Low Flow 7 Day 10 Year Low Flow 7 Day 10 Year Low Flow		Value 124 156 71.8	Unit ft*3/s ft*3/s ft*3/s	46 38 51	46 38 51

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the functionality of the software and related material nor shall the fact of release constitute any such warranty. Furthermore, the software is released on condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized use.

USGS Product Names Disclaimer: Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Application Version: 4.5.2 StreamState Services Version: 1.2.22 NSS Services Version: 2.1.1

Input Data WQM 7.0

	SWP Basin			Stre	eam Name		RMI		vation (ft)	Drainage Area (sq mi)	Slope (ft/ft)	PW Withd (mg	irawal	Apply FC
	07J	75	548 CONE	STOGA F	RIVER (form	nerly CREE	7.6	00	197.00	395.00	0.0000	D	0.00	v
					St	ream Data	1							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth		Tributary p pH	Те	<u>Strean</u> mp	n pH	
Conta.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)	(°	C)		
Q7-10 Q1-10 Q30-10	0.100	0.00 0.00 0.00	0.00	0.000 0.000 0.000		0.0	0.00	0.0	0 2	0.00 7.	00	0.00	0.00	
					Di	ischarge [)ata]	
			Name	Per	mit Number	Existing Disc r Flow (mgd)	Permitt Disc Flow (mgd)	Dis Flo	c Res w Fa	Dis erve Ten ctor (°C	np	Disc pH		
		Miller	rsville	PA	0026620	1.8500	1.850	00 1.8	500 (0.000 2	25.00	7.00		
					Pa	arameter [)ata							
				Paramete	r Name	Di: Co		Trib Conc	Stream Conc	Fate Coef				
				aramete	rvame	(m	g/L) (r	ng/L)	(mg/L)	(1/days)				
			CBOD5			2	25.00	2.00	0.00	1.50				
			Dissolved	Oxygen			5.00	8.24	0.00	0.00				
			NH3-N				25.00	0.00	0.00	0.70				

Input Data WQM 7.0

	SWP Basin			Stre	eam Name		RMI		vation (ft)	Drainage Area (sq mi)	Slope (ft/ft)	PW Withd (mg	rawal	Apply FC
	07J	7	548 CONE	STOGA F	RIVER (form	erly CREE	0.0	00	168.00	476.00	0.00000)	0.00	y
					St	ream Data	ı							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth		Tributary p pH	Ter	<u>Strean</u> mp	n pH	
Cond.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)	(°(C)		
Q7-10 Q1-10 Q30-10	0.100	0.00 0.00 0.00	57.10 0.00 0.00	0.000 0.000 0.000		0.0	0.00	0.0	00 2	0.00 7.	.00	0.00	0.00	
					Di	scharge D)ata						1	
			Name	Per	rmit Number	Existing Disc Flow (mgd)	Permitt Disc Flow (mgd)	Dis Flo	ic Res	Di erve Ter ctor (°()isc pH		
						0.0000	0.000	0.0	0000	0.000	0.00	7.00		
					Pa	rameter [
				Paramete	r Name	Dis Co		Trib Conc	Stream Conc	Fate Coef				
				didirecto	reame	(mg	g/L) (r	mg/L)	(mg/L)	(1/days)				
			CBOD5			2	25.00	2.00	0.00	1.50				
			Dissolved	Oxygen			3.00	8.24	0.00	0.00				
			NH3-N			2	25.00	0.00	0.00	0.70				

WQM 7.0 Hydrodynamic Outputs

	SW	P Basin	Strea	m Code				Stream	Name			
		07J	7	7548		CON	NESTOG.	A RIVER	(formerly	y CREEK)	
RMI	Stream Flow	PWS With	Net Stream Flow	Disc Analysis Flow	Reach Slope	Depth	Width	W/D Ratio	Velocity	Reach Trav Time	Analysis Temp	Analysis pH
	(cfs)	(cfs)	(cfs)	(cfs)	(ft/ft)	(ft)	(ft)		(fps)	(days)	(°C)	
Q7-10	0 Flow											
7.600	47.40	0.00	47.40	2.8619	0.00072	1.003	116.39	116.08	0.43	1.078	20.28	7.00
Q1-1	0 Flow											
7.600	37.92	0.00	37.92	2.8619	0.00072	NA	NA	NA	0.38	1.212	20.35	7.00
Q30-	10 Flow	,										
7.600	66.36	0.00	66.36	2.8619	0.00072	NA	NA	NA	0.52	0.901	20.21	7.00

Monday, May 3, 2021 Version 1.1 Page 1 of 1

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	~
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.8	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.4	Temperature Adjust Kr	v
D.O. Saturation	90.00%	Use Balanced Technology	~
D.O. Goal	5		

Monday, May 3, 2021 Version 1.1 Page 1 of 1

7.60 Millersville

WQM 7.0 Wasteload Allocations

	SWP Basin Str 07J	eam <u>Code</u> 7548	C		ream Name RIVER (forme	rly CREEK)	
NH3-N	Acute Allocatio	ns						
RMI	Discharge Nam	Baseline e Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction	1
7.60	00 Millersville	16.28	50	16.28	50	0	0	_
NH3-N	Chronic Alloca Discharge Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction	_
7.60	00 Millersville	1.86	25	1.86	25	0	0	
Dissolve	ed Oxygen Allo	cations						_
RMI	Discharge Na	-				ved Oxygen ne Multiple) (mg/L)	Critical	Percent Reductio

33

WQM 7.0 D.O.Simulation

SWP Basin Str	eam Code			Stream Nam	<u>ie</u>	
07J	7548	С	ONESTO	A RIVER (for	merly CRE	EK)
RMI	Total Discharge	Flow (mgd) Anal	ysis Tempera	ture (°C)	Analysis pH
7.600	1.850)		20.285	7.000	
Reach Width (ft)	Reach Dep	oth (ft)		Reach WDRa	atio	Reach Velocity (fps)
116.392	1.003	3		116.076		0.431
Reach CBOD5 (mg/L)	Reach Kc (1/days)	R	each NH3-N (i	mg/L)	Reach Kn (1/days)
3.31	0.389			1.42		0.716
Reach DO (mg/L)	Reach Kr (Kr Equation	_	Reach DO Goal (mg/L)
8.058	1.462	2		Tsivoglou		5
Reach Travel Time (days)		Subreach	Results			
1.078	TravTime	CBOD5	NH3-N	D.O.		
	(days)	(mg/L)	(mg/L)	(mg/L)		
	0.108	3.17	1.32	7.57		
	0.216	3.04	1.22	7.20		
	0.324	2.91	1.13	6.92		
	0.431	2.79	1.05	6.72		
	0.539	2.68	0.97	6.58		
	0.647	2.56	0.90	6.49		
	0.755	2.46	0.83	6.44		
	0.863	2.35	0.77	6.43		
	0.971	2.26	0.71	6.44		
	1.078	2.16	0.66	6.48		

Monday, May 3, 2021 Version 1.1 Page 1 of 1

WQM 7.0 Effluent Limits

07J	75.40					
	7548	CONE	ESTOGA RIVER (form	nerly CREEK)		
Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)		Effl. Limit Minimum (mg/L)
Millersville	PA0026620	1.850	CBOD5	25		
			NH3-N	25	50	
			Dissolved Oxygen			5
		Number	Name Permit Flow Number (mgd)	Name Permit Number Flow (mgd) Parameter Millersville PA0026620 1.850 CBOD5 NH3-N	Name Permit Number Flow (mgd) Parameter 30-day Ave. (mg/L) Millersville PA0026620 1.850 CBOD5 25 NH3-N 25	Name Permit Number Flow (mgd) Parameter 30-day Ave. (mg/L) Maximum (mg/L) Millersville PA0026620 1.850 CBOD5 25 NH3-N 25 50

Monday, May 3, 2021 Version 1.1 Page 1 of 1

Toxics Management Spreadsheet Version 1.3, March 2021

Discharge Information

Instructions Disc	harge Stream		
Facility: Millers	sville Borough	NPDES Permit No.: PA0026620	Outfall No.: 001
Evaluation Type:	Major Sewage / Industrial Waste	Wastewater Description: Sewage Effluent	

Discharge Characteristics									
Design Flow (MGD)*	Hardness (mg/l)*	-U (CID+	Partial Mix Factors (PMFs)				Complete Mix Times (min)		
		pH (SU)*	AFC	CFC	THH	CRL	Q ₇₋₁₀	Qh	
1.85	260	8.4							

				0 if left blank (0.5 If left blank		0 if left blank		1 if left blank			
	Discharge Pollutant	Units	Ma	x Discharge Conc	Trib Conc	Stream Conc	Daily CV	Hourly CV	Strea m CV	Fate Coeff	FOS		Chem Transl
Group 1	Total Dissolved Solids (PWS)	mg/L		679									
	Chloride (PWS)	mg/L		243									
	Bromide	mg/L	٧	1									
ō	Sulfate (PWS)	mg/L		112									
	Fluoride (PWS)	mg/L											
	Total Aluminum	μg/L		196									
	Total Antimony	μg/L	٧	0.4									
	Total Arsenic	μg/L	٧	1									
	Total Barium	μg/L		16									
	Total Beryllium	μg/L	٧	0.4									
	Total Boron	μg/L		191									
	Total Cadmium	μg/L		0.1									
	Total Chromium (III)	μg/L	٧	1									
	Hexavalent Chromium	μg/L	<	0.1									
	Total Cobalt	μg/L	٧	1									
	Total Copper	μg/L		25									
2	Free Cyanide	μg/L	<	5									
Group	Total Cyanide	μg/L	٧	5									
5	Dissolved Iron	μg/L		12									
	Total Iron	μg/L		26									
	Total Lead	μg/L	٧	1									
	Total Manganese	μg/L		16									
	Total Mercury	μg/L	٧	0.2									
	Total Nickel	μg/L		3									
	Total Phenols (Phenolics) (PWS)	μg/L	٧	50									
	Total Selenium	μg/L	۸	2									
	Total Silver	μg/L		0.067									
	Total Thallium	μg/L	٧	0.4									
	Total Zinc	μg/L		59									
	Total Molybdenum	μg/L		2									
	Acrolein	μg/L	٧	0.5									
	Acrylamide	μg/L	<										
	Acrylonitrile	μg/L	٧	0.5									
	Benzene	μg/L	<	0.5									
	Bromoform	μg/L	٧	0.5									

Discharge Information 5/5/2021 Page 1

		_	_			_						
	Carbon Tetrachloride	μg/L	<	0.5								
	Chlorobenzene	μg/L		0.5	Ц		L					
	Chlorodibromomethane	μg/L		1.1	H	Ŧ	F					
	Chloroethane	µg/L	<	0.5	H	7	H					
	2-Chloroethyl Vinyl Ether	μg/L	<	0.5	Ħ	+	t					
	Chloroform			3.2	H	+	۳					
		µg/L	\vdash		H	÷	÷					
	Dichlorobromomethane	μg/L		2.8			Έ					
	1,1-Dichloroethane	μg/L	<	0.5								
က	1,2-Dichloroethane	μg/L	<	0.5	Ц	4	Ļ					
₽	1,1-Dichloroethylene	μg/L	<	0.5	H	7	F					
Group	1,2-Dichloropropane	µg/L	<	0.5	H	+	H					
ō	1,3-Dichloropropylene	μg/L	<	0.5	Ħ	+	t					
	1.4-Dioxane		<	0.5	H	+	٠				_	
	•	μg/L	-		Ħ	+	Ħ					
	Ethylbenzene	μg/L	<	0.5		7	Π					
	Methyl Bromide	μg/L	<	0.5			П					
	Methyl Chloride	μg/L	<	0.5	Ц	4	Ļ					
	Methylene Chloride	μg/L		2.6	\Box	#	Ļ					
	1,1,2,2-Tetrachloroethane	μg/L	<	0.5	Ħ	+	÷					
		_	<	0.5	H	+	÷					
	Tetrachloroethylene	μg/L	-		H	+	H					
	Toluene	μg/L	<	0.5		+						
	1,2-trans-Dichloroethylene	μg/L	<	0.5								
	1,1,1-Trichloroethane	μg/L	<	0.5								
	1,1,2-Trichloroethane	μg/L	<	0.5								
	Trichloroethylene	µg/L	<	0.5			Е					
	Vinyl Chloride		<	0.5								
⊢	-	μg/L	-		H	+	Ļ					+
	2-Chlorophenol	μg/L	<	1	H	+	Ł					
	2,4-Dichlorophenol	μg/L	<	1	\vdash	+	Ł					++++
	2,4-Dimethylphenol	μg/L	٧	1	H	Ŧ	F					
	4,6-Dinitro-o-Cresol	µg/L	<	1	Ħ	7	t					
4	2,4-Dinitrophenol	μg/L	<	3.1	H	_	۳					
₽		_	<	1	Ħ	+	Ħ	 				
Group	2-Nitrophenol	μg/L	-			-	Ξ					
Ō	4-Nitrophenol	μg/L	<	1	П	\perp						
	p-Chloro-m-Cresol	μg/L	<	1	Ц	4	Ļ					
	Pentachlorophenol	μg/L	<	1	H	7	F					
	Phenol	µg/L	<	5.2	H	+	H					
	2,4,6-Trichlorophenol	μg/L	<	1	H	+	t					
\vdash			<	1	Ħ	+	÷					
	Acenaphthene	μg/L	-		Ħ	+	Ĥ					
	Acenaphthylene	μg/L	<	1			Ι					
	Anthracene	μg/L	<	1								
	Benzidine	μg/L	<	5.2	Н	4	Ļ					
	Benzo(a)Anthracene	μg/L	<	1	H	7	F					
	Benzo(a)Pyrene	µg/L	<	1	Ħ	7	H					
	3,4-Benzofluoranthene		<	1	Н	+	Н					
		μg/L	<	0.2	H	+	÷					
	Benzo(ghi)Perylene	μg/L	-		Ħ	#	Ħ					
	Benzo(k)Fluoranthene	μg/L	<	1			Ϊ					
	Bis(2-Chloroethoxy)Methane	μg/L	<	1								
	Bis(2-Chloroethyl)Ether	μg/L	<	1	П	Ţ	Į					
	Bis(2-Chloroisopropyl)Ether	µg/L	<	1	H	-	Þ					
	Bis(2-Ethylhexyl)Phthalate	μg/L	<	3.1	H	+						
	4-Bromophenyl Phenyl Ether	_	<	1	H	-						
		μg/L	-		H	+	H					
	Butyl Benzyl Phthalate	μg/L	<	1								
	2-Chloronaphthalene	μg/L	<	1			İ					
	4-Chlorophenyl Phenyl Ether	μg/L	<	1								
	Chrysene	μg/L	<	1								
	Dibenzo(a,h)Anthrancene	μg/L	<	0.4	Ħ							
			-			+	H					
	1,2-Dichlorobenzene	μg/L	<	0.5								
	1,3-Dichlorobenzene	μg/L	<	0.5	\vdash	+						
40	1,4-Dichlorobenzene	μg/L	<	0.5	H	+						
9	3,3-Dichlorobenzidine	μg/L	<	1	H		F					
_	Diethyl Phthalate	μg/L	<	1	\Box							
ອັ	Dimethyl Phthalate	µg/L	<	1								
			_									
	Di-n-Butyl Phthalate	μg/L		1.36		T						
	2,4-Dinitrotoluene	μg/L	<	1	Ш							
			-									

	2,6-Dinitrotoluene	ua/l	<	1		_	-	-	1			I		
		µg/L	~	1	H	4	+	-					₩	+
	Di-n-Octyl Phthalate 1,2-Diphenylhydrazine	μg/L	<	1	H	4	+	-					H	++
		μg/L	_			=	#	_					\Rightarrow	\Rightarrow
	Fluoranthene	μg/L	<	1	H	4	4						\rightrightarrows	+
	Fluorene	μg/L	<	1	H	4	4	-					\vdash	+
	Hexachlorobenzene	μg/L	<	1	H	4	4	-					\dashv	$\Rightarrow \Rightarrow$
	Hexachlorobutadiene	μg/L	<	0.4	Ħ	7	_						\Box	\Rightarrow
	Hexachlorocyclopentadiene	μg/L	<	1										
	Hexachloroethane	μg/L	<	0.6	Ц	4	4						Щ	\perp
	Indeno(1,2,3-cd)Pyrene	μg/L	٧	1	H	\dashv	\dashv						\exists	\rightarrow
	Isophorone	μg/L	٧	1	H	7	7							
	Naphthalene	µg/L	<	0.1	Πì	T	T						П	$\neg \neg$
	Nitrobenzene	μg/L	<	1	П	Į	_						\Box	\Box
	n-Nitrosodimethylamine	µg/L	<	1	H	7	7						\Box	\dashv
	n-Nitrosodi-n-Propylamine	μg/L	<	1	Ħ	₹	7						Ħ	++
	n-Nitrosodiphenylamine	μg/L	<	1	Н	1	$^{+}$						Н	+
	Phenanthrene	μg/L	<	1			=							
			<	1	H	4	#	-					\bowtie	\Rightarrow
	Pyrene 1,2,4-Trichlorobenzene	µg/L	<	0.1	H	4	+	-					₩	+
	1,2,4-1 nchioropenzene Aldrin	µg/L	<	0.1	H	+	+						+	++
		μg/L	<		H									++
	alpha-BHC	μg/L	_			j								
	beta-BHC	μg/L	<		H	4	4						\vdash	
	gamma-BHC	μg/L	<		H		4							
	delta BHC	μg/L	<		Ħ	4	_							
	Chlordane	μg/L	<											
	4,4-DDT	μg/L	٧		Ц	4	4						\rightrightarrows	
	4,4-DDE	μg/L	٧		H	4	4						7	\dashv
	4,4-DDD	μg/L	<		H	7	7						\Box	
	Dieldrin	μg/L	<		Ħ	T	T						Ħ	
	alpha-Endosulfan	μg/L	<		\Box	Į	Į						\square	
	beta-Endosulfan	μg/L	<		H	7	7						\square	\dashv
9	Endosulfan Sulfate	μg/L	<		Ħ	₹	7						Ħ	77
Group	Endrin	μg/L	<		Н	1	$^{+}$						Н	
Ë	Endrin Aldehyde	μg/L	<		Ħ	3	#							
0	Heptachlor	µg/L	<		H	4	#	-					\bowtie	##
	Heptachlor Epoxide	µg/L	~		H	4	+	_					₩	\rightarrow
			~		H	7	+	_					H	
	PCB-1016 PCB-1221	µg/L	_		Ħ	7	7	_					$\overrightarrow{\Box}$	
		μg/L	<			4	4	-					\Box	\blacksquare
	PCB-1232	μg/L	<		Н	4	+	_					Н	++
	PCB-1242	µg/L	<		H	4	\Rightarrow						\dashv	\rightarrow
	PCB-1248	μg/L	<		H	4	\Rightarrow							
	PCB-1254	μg/L	<			I	I							
	PCB-1260	μg/L	٧		Ц	Ų	4						\exists	
	PCBs, Total	μg/L	٧		H		-						\square	
	Toxaphene	μg/L	<		H		T							
	2,3,7,8-TCDD	ng/L	<			j								
	Gross Alpha	pCi/L											Ш	
7	Total Beta	pCi/L	<		H		7							-
0	Radium 226/228	pCi/L	<		H		+							-
Group	Total Strontium	μg/L	<											
Ō	Total Uranium	μg/L	<											
	Osmotic Pressure	mOs/kg			H		1							
	Slotto i ressure	osng			H		-							
					H	+	+	_					_	
					H		Ţ							
					H		-							
					H	4	4							
							J							
					Ы		J							
					H		T							
						=	-							
										l				

Toxics Management Spreadsheet Version 1.3, March 2021

Stream / Surface Water Information

Millersville Borough, NPDES Permit No. PA0026620, Outfall 001

Instructions Disch	arge Str	ream													
Receiving Surface W	ater Name:	Conestoga	River				No. Rea	ches to I	Model:		_	tewide Criteri at Lakes Crit			
Location	Stream Co	de* RMI	Elevati	DA (mi	²)* SI	ope (ft/ft)		Withdraw MGD)	al Apply F Criter		OR	SANCO Crite	eria		
Point of Discharge	007548	7.6	197	395					Yes	5					
End of Reach 1	007548	0	168	476					Yes	;					
Q 7-10	RMI	LFY	Flow	(cfs)	W/D	Width	Depth	Velocit	Time	Tributary	у	Stream	m	Analys	is
Location	ISMI	(cfs/mi ²)*	Stream	Tributary	Ratio	(ft)	(ft)	y (fps)	(days)	Hardness	pН	Hardness*	pH*	Hardness	рН
Point of Discharge	7.6	0.1	47.4									270	8.4		
End of Reach 1	0	0.1	57.1									270	8.4		
Qn															
Location	RMI	LFY	Flow	(cfs)	W/D	Width	Depth	Velocit	Time	Tributar	у	Stream	m	Analys	is
Location	1 (1011	(cfs/mi ²)	Stream	Tributary	Ratio	(ft)	(ft)	y (fps)	(days)	Hardness	pН	Hardness	pН	Hardness	pН
Point of Discharge	7.6														
End of Reach 1	0														

Toxics Management Spreadsheet Version 1.3, March 2021

Model Results

Millersville Borough, NPDES Permit No. PA0026620, Outfall 001

Instructions Results	RETURN	TO INPU	тѕ	SAVE AS	PDF	PRINT	r	II O Inputs	Results
☐ Hydrodynamics☑ Wasteload Allocations									
☑ AFC CC	CT (min):	15	PMF:	0.157	Ana	lysis Hardne	ss (mg/l):	267.22	Analysis pH: 8.40
Pollutants	Conc	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)		Comments
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A		
Chloride (PWS)	0	0		0	N/A	N/A	N/A		
Sulfate (PWS)	0	0		0	N/A	N/A	N/A		
Total Aluminum	0	0		0	750	750	2,695		
Total Antimony	0	0		0	1,100	1,100	3,953		
Total Arsenic	0	0		0	340	340	1,222		Chem Translator of 1 applied
Total Barium	0	0		0	21,000	21,000	75,460		
Total Boron	0	0		0	8,100	8,100	29,106		
Total Cadmium	0	0		0	5.231	5.79	20.8		Chem Translator of 0.903 applied
Total Chromium (III)	0	0		0	1274.373	4,033	14,491		Chem Translator of 0.316 applied
Hexavalent Chromium	0	0		0	16	16.3	58.5		Chem Translator of 0.982 applied
Total Cobalt	0	0		0	95	95.0	341		
Total Copper	0	0		0	33.928	35.3	127		Chem Translator of 0.96 applied
Free Cyanide	0	0		0	22	22.0	79.1		
Dissolved Iron	0	0		0	N/A	N/A	N/A		
Total Iron	0	0		0	N/A	N/A	N/A		
Total Lead	0	0		0	184.824	285	1,025		Chem Translator of 0.648 applied
Total Manganese	0	0		0	N/A	N/A	N/A		
Total Mercury	0	0		0	1.400	1.65	5.92		Chem Translator of 0.85 applied
Total Nickel	0	0		0	1075.454	1,078	3,872		Chem Translator of 0.998 applied
Total Phenols (Phenolics) (PWS)	0	0		0	N/A	N/A	N/A		
Total Selenium	0	0		0	N/A	N/A	N/A		Chem Translator of 0.922 applied
Total Silver	0	0		0	17.443	20.5	73.7		Chem Translator of 0.85 applied
Total Thallium	0	0		0	65	65.0	234		
Total Zinc	0	0		0	269.487	276	990		Chem Translator of 0.978 applied
Acrolein	0	0		0	3	3.0	10.8		

Acrylonitrile	0	0				0	650	650	2.336	
Benzene	0	0		+		0	640	640	2,300	
Bromoform	0	0		+		0	1.800	1.800	6.468	
Carbon Tetrachloride	0	0				0	2,800	2,800	10.081	
Chlorobenzene	0	0		+		0	1,200	1,200	4.312	
Chlorodibromomethane	0	0	Н	+	++-	0	N/A	N/A	N/A	
2-Chloroethyl Vinyl Ether	0	0	H	\pm	++	0	18.000	18.000	64.680	
Chloroform	0	0		#		0	1.900	1.900	6,827	
Dichlorobromomethane	0	0	Н	+	++	0	N/A	N/A	0,627 N/A	
	_	0	Н	+	++-	_				
1,2-Dichloroethane	0			\Rightarrow	++-	0	15,000	15,000 7.500	53,900 26,950	
1,1-Dichloroethylene	0	0		#		0	7,500			
1,2-Dichloropropane	_	_	Ш	+	++-	0	11,000	11,000	39,527	
1,3-Dichloropropylene	0	0	Н	+	++	0	310	310	1,114	
Ethylbenzene	0	0		\Rightarrow		0	2,900	2,900	10,421	
Methyl Bromide	0	0		4		0	550	550	1,976	
Methyl Chloride	0	0		4	-	0	28,000	28,000	100,614	
Methylene Chloride	0	0	Н	\pm	#	0	12,000	12,000	43,120	
1,1,2,2-Tetrachloroethane	0	0		\Rightarrow		0	1,000	1,000	3,593	
Tetrachloroethylene	0	0		_		0	700	700	2,515	
Toluene	0	0	Щ	4	44	0	1,700	1,700	6,109	
1,2-trans-Dichloroethylene	0	0	\mathbb{H}	\pm		0	6,800	6,800	24,435	
1,1,1-Trichloroethane	0	0				0	3,000	3,000	10,780	
1,1,2-Trichloroethane	0	0	\Box	T		0	3,400	3,400	12,217	
Trichloroethylene	0	0	Ш	4	+-	0	2,300	2,300	8,265	
Vinyl Chloride	0	0	\mathbb{H}	\rightarrow		0	N/A	N/A	N/A	
2-Chlorophenol	0	0	Н	\top		0	560	560	2,012	
2,4-Dichlorophenol	0	0				0	1,700	1,700	6,109	
2,4-Dimethylphenol	0	0	\square	7		0	660	660	2,372	
4,6-Dinitro-o-Cresol	0	0	H	7		0	80	80.0	287	
2,4-Dinitrophenol	0	0	П	T		0	660	660	2,372	
2-Nitrophenol	0	0				0	8,000	8,000	28,747	
4-Nitrophenol	0	0		7		0	2,300	2,300	8,265	
p-Chloro-m-Cresol	0	0				0	160	160	575	
Pentachlorophenol	0	0				0	35.623	35.6	128	
Phenol	0	0				0	N/A	N/A	N/A	
2,4,6-Trichlorophenol	0	0				0	460	460	1,653	
Acenaphthene	0	0		+		0	83	83.0	298	
Anthracene	0	0				0	N/A	N/A	N/A	
Benzidine	0	0				0	300	300	1,078	
Benzo(a)Anthracene	0	0		+		0	0.5	0.5	1.8	
Benzo(a)Pyrene	0	0	H	+	+	0	N/A	N/A	N/A	
3.4-Benzofluoranthene	0	0				0	N/A	N/A	N/A	
Benzo(k)Fluoranthene	0	0				0	N/A	N/A	N/A	
Bis(2-Chloroethyl)Ether	0	0		+		0	30.000	30.000	107.800	
Bis(2-Chloroisopropyl)Ether	0	0	H	+	++-	0	N/A	N/A	N/A	
Bis(2-Ethylhexyl)Phthalate	0	0		+	#	0	4,500	4,500	16,170	
4-Bromophenyl Phenyl Ether	0	0				0	270	270	970	
Butyl Benzyl Phthalate	0	0		+	+	0	140	140	503	
Butyl Benzyl Enthalate	U	U				U	140	140	503	

Model Results 5/5/2021 Page 6

2-Chloronaphthalene	0	0	0	N/A	N/A	N/A	
•	0	0	0	N/A	N/A	N/A	
Chrysene							
Dibenzo(a,h)Anthrancene	0	0	0	N/A	N/A	N/A	
1,2-Dichlorobenzene	0	0	0	820	820	2,947	
1,3-Dichlorobenzene	0	0	0	350	350	1,258	
1,4-Dichlorobenzene	0	0	0	730	730	2,623	
3,3-Dichlorobenzidine	0	0	0	N/A	N/A	N/A	
Diethyl Phthalate	0	0	0	4,000	4,000	14,373	
Dimethyl Phthalate	0	0	0	2,500	2,500	8,983	
Di-n-Butyl Phthalate	0	0	0	110	110	395	
2,4-Dinitrotoluene	0	0	0	1,600	1,600	5,749	
2,6-Dinitrotoluene	0	0	0	990	990	3,557	
1,2-Diphenylhydrazine	0	0	0	15	15.0	53.9	
Fluoranthene	0	0	0	200	200	719	
Fluorene	0	0	0	N/A	N/A	N/A	
Hexachlorobenzene	0	0	0	N/A	N/A	N/A	
Hexachlorobutadiene	0	0	0	10	10.0	35.9	
Hexachlorocyclopentadiene	0	0	0	5	5.0	18.0	
Hexachloroethane	0	0	0	60	60.0	216	
Indeno(1,2,3-cd)Pyrene	0	0	0	N/A	N/A	N/A	
Isophorone	0	0	0	10,000	10,000	35,933	
Naphthalene	0	0	0	140	140	503	
Nitrobenzene	0	0	0	4,000	4,000	14,373	
n-Nitrosodimethylamine	0	0	0	17,000	17,000	61,087	
n-Nitrosodi-n-Propylamine	0	0	0	N/A	N/A	N/A	
n-Nitrosodiphenylamine	0	0	0	300	300	1,078	
Phenanthrene	0	0	0	5	5.0	18.0	
Pyrene	0	0	0	N/A	N/A	N/A	
1,2,4-Trichlorobenzene	0	0	0	130	130	467	

·/	CFC CCT (min)	######	PMF:	1	Analysis Hardness (mg/l):	269.43	Analysis pH:	8.40	I
----	---------------	--------	------	---	---------------------------	--------	--------------	------	---

	Stream	Stream	Trib Conc	Fate	WQC	WQ Obj		
Pollutants	Conc	CV	(µg/L)	Coef	(µg/L)	(µg/L)	WLA (µg/L)	Comments
	(un/L)	CV	(Pg/L)	COE	(Pg/L)	(µg/L)		
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A	
Chloride (PWS)	0	0		0	N/A	N/A	N/A	
Sulfate (PWS)	0	0		0	N/A	N/A	N/A	
Total Aluminum	0	0		0	N/A	N/A	N/A	
Total Antimony	0	0		0	220	220	3,864	
Total Arsenic	0	0		0	150	150	2,634	Chem Translator of 1 applied
Total Barium	0	0		0	4,100	4,100	72,005	
Total Boron	0	0		0	1,600	1,600	28,099	
Total Cadmium	0	0		0	0.489	0.56	9.91	Chem Translator of 0.868 applied
Total Chromium (III)	0	0		0	166.893	194	3,408	Chem Translator of 0.86 applied
Hexavalent Chromium	0	0		0	10	10.4	183	Chem Translator of 0.962 applied
Total Cobalt	0	0		0	19	19.0	334	
Total Copper	0	0		0	20.889	21.8	382	Chem Translator of 0.98 applied

Model Results 5/5/2021 Page 7

Free Cyanide	0	0		0	5.2	5.2	91.3	
Dissolved Iron	0	0		0	N/A	N/A	N/A	
Total Iron	0	0		0	1,500	1,500	26,343	WQC = 30 day average; PMF = 1
Total Lead	0	0		0	7.265	11.2	197	Chem Translator of 0.647 applied
Total Manganese	0	0		0	N/A	N/A	N/A	
Total Mercury	0	0		0	0.770	0.91	15.9	Chem Translator of 0.85 applied
Total Nickel	0	0		0	120.286	121	2,119	Chem Translator of 0.997 applied
Total Phenols (Phenolics) (PWS)	0	0		0	N/A	N/A	N/A	
Total Selenium	0	0		0	4.600	4.99	87.6	Chem Translator of 0.922 applied
Total Silver	0	0		0	N/A	N/A	N/A	Chem Translator of 1 applied
Total Thallium	0	0		0	13	13.0	228	
Total Zinc	0	0		0	273.597	277	4,873	Chem Translator of 0.986 applied
Acrolein	0	0		0	3	3.0	52.7	
Acrylonitrile	0	0		0	130	130	2,283	
Benzene	0	0		0	130	130	2,283	
Bromoform	0	0		0	370	370	6,498	
Carbon Tetrachloride	0	0		0	560	560	9,835	
Chlorobenzene	0	0		0	240	240	4,215	
Chlorodibromomethane	0	0		0	N/A	N/A	N/A	
2-Chloroethyl Vinyl Ether	0	0		0	3,500	3,500	61,467	
Chloroform	0	0		0	390	390	6,849	
Dichlorobromomethane	0	0		0	N/A	N/A	N/A	
1,2-Dichloroethane	0	0		0	3,100	3,100	54,443	
1,1-Dichloroethylene	0	0		0	1,500	1,500	26,343	
1,2-Dichloropropane	0	0		0	2,200	2,200	38,637	
1,3-Dichloropropylene	0	0		0	61	61.0	1,071	
Ethylbenzene	0	0		0	580	580	10,186	
Methyl Bromide	0	0		0	110	110	1,932	
Methyl Chloride	0	0		0	5,500	5,500	96,592	
Methylene Chloride	0	0		0	2,400	2,400	42,149	
1,1,2,2-Tetrachloroethane	0	0		0	210	210	3,688	
Tetrachloroethylene	0	0		0	140	140	2,459	
Toluene	0	0		0	330	330	5,796	
1,2-trans-Dichloroethylene	0	0		0	1,400	1,400	24,587	
1,1,1-Trichloroethane	0	0		0	610	610	10,713	
1,1,2-Trichloroethane	0	0		0	680	680	11,942	
Trichloroethylene	0	0		0	450	450	7,903	
Vinyl Chloride	0	0		0	N/A	N/A	N/A	
2-Chlorophenol	0	0		0	110	110	1,932	
2,4-Dichlorophenol	0	0		0	340	340	5,971	
2,4-Dimethylphenol	0	0		0	130	130	2,283	
4,6-Dinitro-o-Cresol	0	0		0	16	16.0	281	
2,4-Dinitrophenol	0	0		0	130	130	2,283	
2-Nitrophenol	0	0		0	1,600	1,600	28,099	
4-Nitrophenol	0	0		0	470	470	8,254	
			 					•

Pentalidrorphenol								
Phenol	p-Chloro-m-Cresol	0	0	0	500	500	8,781	
2.4.6-Tricklorophenol	Pentachlorophenol	0	0	0	27.330	27.3	480	
Anthrosene	Phenol	0	0	0	N/A	N/A	N/A	
Anthrasene	2,4,6-Trichlorophenol	0	0	0	91	91.0	1,598	
Benzola/Anthracene	Acenaphthene	0	0	0	17	17.0	299	
Benzo(a)Anthracene	Anthracene	0	0	0	N/A	N/A	N/A	
Benzo(a)Pyrene	Benzidine	0	0	0	59	59.0	1,036	
3,4-Benzofluoranthene	Benzo(a)Anthracene	0	0	0	0.1	0.1	1.76	
Benzolk)Fluorathene	Benzo(a)Pyrene	0	0	0	N/A	N/A	N/A	
Bis(2-Chlorosepty)Ether	3,4-Benzofluoranthene	0	0	0	N/A	N/A	N/A	
Bis(2-Chloroisopropy)Ether	Benzo(k)Fluoranthene	0	0	0	N/A	N/A	N/A	
Bis(2-Ethylhexyl)Phthalate	Bis(2-Chloroethyl)Ether	0	0	0	6,000	6,000	105,373	
4-Bromophenyl Phenyl Ether	Bis(2-Chloroisopropyl)Ether	0	0	0	N/A	N/A	N/A	
Butyl Benzyl Phthalate	Bis(2-Ethylhexyl)Phthalate	0	0	0	910	910	15,982	
2-Chloronaphthalene	4-Bromophenyl Phenyl Ether	0	0	0	54	54.0	948	
Chrysene	Butyl Benzyl Phthalate	0	0	0	35	35.0	615	
Dibenzo(a,h)Anthrancene	2-Chloronaphthalene	0	0	0	N/A	N/A	N/A	
1,2-Dichlorobenzene	Chrysene	0	0	0	N/A	N/A	N/A	
1,3-Dichlorobenzene 0 0 69 69.0 1,212 1,4-Dichlorobenzene 0 0 150 150 2,634 3,3-Dichlorobenzidine 0 0 N/A N/A N/A Dientyl Phthalate 0 0 800 800 14,050 Dimethyl Phthalate 0 0 500 500 8,781 Di-n-Butyl Phthalate 0 0 0 320 369 2,4-Dinitrotoluene 0 0 320 320 5,620 2,6-Dinitrotoluene 0 0 33 3.0 52.7 Fluoranthene 0 0 0 40 40.0 702 Fluorene 0 0 0 N/A N/A N/A N/A Hexachlorobenzene 0 0 0 N/A N/A N/A N/A Hexachlorobutadiene 0 0 0 1 1.0 17.6 Hexachlorobutadiene 0 <t< td=""><td>Dibenzo(a,h)Anthrancene</td><td>0</td><td>0</td><td>0</td><td>N/A</td><td>N/A</td><td>N/A</td><td></td></t<>	Dibenzo(a,h)Anthrancene	0	0	0	N/A	N/A	N/A	
1,4-Dichlorobenzene 0 0 150 150 2,634 3,3-Dichlorobenzidine 0 0 N/A N/A N/A Diethyl Phthalate 0 0 800 800 14,050 Dimethyl Phthalate 0 0 500 500 8,781 Di-n-Butyl Phthalate 0 0 21 21.0 389 2,4-Dinitrotoluene 0 0 320 320 5,620 2,8-Dinitrotoluene 0 0 200 200 3,512 1,2-Diphenylhydrazine 0 0 3 3.0 52.7 Fluoranthene 0 0 40 40.0 702 Fluoranthene 0 0 0 N/A N/A N/A Hexachlorobutadiene 0 0 0 N/A N/A N/A Hexachlorocytopentadiene 0 0 0 1 1.0 17.6 Hexachlorocytopentadiene 0 0 0<	1,2-Dichlorobenzene	0	0	0	160	160	2,810	
3,3-Dichlorobenzidine	1,3-Dichlorobenzene	0	0	0	69	69.0	1,212	
Diethyl Phthalate	1,4-Dichlorobenzene	0	0	0	150	150	2,634	
Dimethyl Phthalate	3,3-Dichlorobenzidine	0	0	0	N/A	N/A	N/A	
Di-n-Butyl Phthalate	Diethyl Phthalate	0	0	0	800	800	14,050	
2,4-Dinitrotoluene 0 0 320 320 5,620 2,6-Dinitrotoluene 0 0 200 200 3,512 1,2-Diphenylhydrazine 0 0 3 3.0 52.7 Fluoranthene 0 0 0 40 40.0 702 Fluorene 0 0 0 N/A N/A N/A Hexachlorobenzene 0 0 0 N/A N/A N/A Hexachlorobutadiene 0 0 0 1 1.0 17.6 Hexachlorocyclopentadiene 0 0 0 1 1.0 17.6 Hexachloroethane 0 0 0 12 12.0 211 Indeno(1,2,3-cd)Pyrene 0 0 0 N/A N/A N/A Isophorone 0 0 0 1,10 3,800 Naphthalene 0 0 0 43 43.0 755 Nitrobenzene <td>Dimethyl Phthalate</td> <td>0</td> <td>0</td> <td>0</td> <td>500</td> <td>500</td> <td>8,781</td> <td></td>	Dimethyl Phthalate	0	0	0	500	500	8,781	
2,6-Dinitrotoluene 0 0 200 200 3,512 1,2-Diphenylhydrazine 0 0 3 3.0 52.7 Fluoranthene 0 0 40 40.0 702 Fluorene 0 0 0 N/A N/A N/A Hexachlorobenzene 0 0 0 N/A N/A N/A Hexachlorobutadiene 0 0 0 1 1.0 17.6 Hexachloroethane 0 0 0 12 12.0 211 Indeno(1,2,3-ed)Pyrene 0 0 0 N/A N/A N/A Naphthalene 0 0 0 43 43.0 755 Nitrobenzene 0 0 0 3,400 3,400 59,711 n-Nitrosodin-Propylamine 0 0 0 59 59.0 1,036 Phenanthrene 0 0 0 N/A N/A N/A	Di-n-Butyl Phthalate	0	0	0	21	21.0	369	
1,2-Diphenylhydrazine 0 0 3 3.0 52.7 Fluoranthene 0 0 40 40.0 702 Fluorene 0 0 0 N/A N/A N/A Hexachlorobenzene 0 0 0 N/A N/A N/A Hexachlorobutadiene 0 0 0 2 2.0 35.1 Hexachloroethane 0 0 0 1 1.0 17.6 Hexachloroethane 0 0 0 12 12.0 211 Indeno(1,2,3-od)Pyrene 0 0 0 N/A N/A N/A Indeno(1,2,3-od)Pyrene 0 0 0 1,10 17.6 Indeno(1,2,3-od)Pyrene 0 0 0 1,10 36,880 Naphthalene 0 0 43 43.0 755 Nitrobenzene 0 0 0 810 810 14,225 n-Nitrosodin-Propylamine	2,4-Dinitrotoluene	0	0	0	320	320	5,620	
Fluoranthene	2,6-Dinitrotoluene	0	0	0	200	200	3,512	
Fluorene	1,2-Diphenylhydrazine	0	0	0	3	3.0	52.7	
Hexachlorobenzene 0 0 N/A N/A N/A Hexachlorobutadiene 0 0 0 2 2.0 35.1 Hexachlorocyclopentadiene 0 0 1 1.0 17.6 Hexachloroethane 0 0 0 12 12.0 211 Indeno(1,2,3-od)Pyrene 0 0 N/A N/A N/A Isophorone 0 0 0 2,100 2,100 36,880 Naphthalene 0 0 0 43 43.0 755 Nitrobenzene 0 0 0 810 810 14,225 n-Nitrosodimethylamine 0 0 0 3,400 3,400 59,711 n-Nitrosodiphenylamine 0 0 N/A N/A N/A Phenanthrene 0 0 0 1 1.0 17.8 Pyrene 0 0 N/A N/A N/A N/A	Fluoranthene	0	0	0	40	40.0	702	
Hexachlorobutadiene 0 0 2 2.0 35.1 Hexachlorocyclopentadiene 0 0 1 1.0 17.6 Hexachloroethane 0 0 12 12.0 211 Indeno(1,2,3-cd)Pyrene 0 0 N/A N/A N/A Isophorone 0 0 0 2,100 2,100 36,880 Naphthalene 0 0 0 43 43.0 755 Nitrobenzene 0 0 0 810 810 14,225 n-Nitrosodimethylamine 0 0 0 3,400 3,400 59,711 n-Nitrosodi-n-Propylamine 0 0 N/A N/A N/A n-Nitrosodiphenylamine 0 0 0 59 59.0 1,036 Phenanthrene 0 0 0 N/A N/A N/A Pyrene 0 0 N/A N/A N/A	Fluorene	0	0	0	N/A	N/A	N/A	
Hexachlorocyclopentadiene 0 0 1 1.0 17.6 Hexachloroethane 0 0 12 12.0 211 Indeno(1,2,3-cd)Pyrene 0 0 0 N/A N/A N/A Isophorone 0 0 0 2,100 2,100 36,880 Naphthalene 0 0 43 43.0 755 Nitrobenzene 0 0 810 810 14,225 n-Nitrosodimethylamine 0 0 3,400 3,400 59,711 n-Nitrosodiphenylamine 0 0 N/A N/A N/A Phenanthrene 0 0 0 1 1.0 17.6 Pyrene 0 0 N/A N/A N/A N/A	Hexachlorobenzene							
Hexachloroethane	Hexachlorobutadiene	0	0	0	2	2.0		
Indeno(1,2,3-od)Pyrene	Hexachlorocyclopentadiene							
Isophorone		_						
Naphthalene 0 0 43 43.0 755 Nitrobenzene 0 0 0 810 810 14,225 n-Nitrosodimethylamine 0 0 0 3,400 3,400 59,711 n-Nitrosodi-n-Propylamine 0 0 N/A N/A N/A n-Nitrosodiphenylamine 0 0 59 59.0 1,036 Phenanthrene 0 0 1 1.0 17.6 Pyrene 0 0 N/A N/A N/A	Indeno(1,2,3-cd)Pyrene	0	0	0	N/A			
Nitrobenzene 0 0 810 810 14,225 n-Nitrosodimethylamine 0 0 3,400 3,400 59,711 n-Nitrosodi-n-Propylamine 0 0 N/A N/A N/A n-Nitrosodiphenylamine 0 0 59 59.0 1,036 Phenanthrene 0 0 1 1.0 17.6 Pyrene 0 0 N/A N/A N/A	Isophorone	0	0	0	2,100	2,100		
n-Nitrosodimethylamine 0 0 3,400 3,400 59,711 n-Nitrosodi-n-Propylamine 0 0 N/A N/A N/A n-Nitrosodiphenylamine 0 0 59 59.0 1,036 Phenanthrene 0 0 1 1.0 17.8 Pyrene 0 0 N/A N/A N/A	Naphthalene			0				
n-Nitrosodi-n-Propylamine 0 0 N/A N/A N/A n-Nitrosodiphenylamine 0 0 59 59.0 1,036 Phenanthrene 0 0 1 1.0 17.6 Pyrene 0 0 N/A N/A N/A	Nitrobenzene	0	0	0	810	810		
n-Nitrosodiphenylamine 0 0 59 59.0 1,036 Phenanthrene 0 0 1 1.0 17.8 Pyrene 0 0 N/A N/A N/A	n-Nitrosodimethylamine	0	0	0	3,400	3,400	59,711	
Phenanthrene 0 0 1 1.0 17.6 Pyrene 0 0 N/A N/A N/A	n-Nitrosodi-n-Propylamine	0	0	0	N/A	N/A		
Pyrene 0 0 N/A N/A N/A	n-Nitrosodiphenylamine	0	0	0	59	59.0	1,036	
7,200	Phenanthrene	0	0	0	1	1.0	17.6	
1.2.4 Trichlershorzens 0 0 0 0 28 29.0 457	Pyrene	0	0	0	N/A	N/A	N/A	
1,2,1-11Idiliotoberizene 0 0 0 0 0 407	1,2,4-Trichlorobenzene	0	0	0	26	26.0	457	

⊘ тнн сс	T (min): ###	*****	PMF:	1	•	alysis Hardne	ss (mg/l):	N/A Analysis pH: N/A
Pollutants	Conc	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	(ug/L)	0	(1-0)	0	500.000	500,000	N/A	
Chloride (PWS)	0	0		0	250,000	250,000	N/A	
Sulfate (PWS)	0	0		0	250,000	250,000	N/A	
Total Aluminum	0	0		0	N/A	N/A	N/A	
Total Antimony	0	0		0	5.6	5.6	98.3	
Total Arsenic	0	0		0	10	10.0	176	
Total Barium	0	0		0	2,400	2.400	42,149	
Total Boron	0	0		0	3,100	3,100	54,443	
Total Cadmium	0	0		0	N/A	N/A	N/A	
Total Chromium (III)	0	0		0	N/A	N/A	N/A	
Hexavalent Chromium	0	0		0	N/A	N/A	N/A	
Total Cobalt	0	0		0	N/A	N/A	N/A	
Total Copper	0	0		0	N/A	N/A	N/A	
Free Cyanide	0	0		0	4	4.0	70.2	
Dissolved Iron	0	0		0	300	300	5,269	
Total Iron	0	0		0	N/A	N/A	N/A	
Total Lead	0	0		0	N/A	N/A	N/A	
Total Manganese	0	0		0	1,000	1,000	17,582	
Total Mercury	0	0		0	0.050	0.05	0.88	
Total Nickel	0	0		0	610	610	10,713	
Total Phenols (Phenolics) (PWS)	0	0		0	5	5.0	N/A	
Total Selenium	0	0		0	N/A	N/A	N/A	
Total Silver	0	0	 	0	N/A	N/A	N/A	
Total Thallium	0	0		0	0.24	0.24	4.21	
Total Zinc	0	0		0	N/A	N/A	N/A	
Acrolein	0	0		0	3	3.0	52.7	
Acrylonitrile	0	0		0	N/A	N/A	N/A	
Benzene	0	0		0	N/A	N/A	N/A	
Bromoform	0	0		0	N/A	N/A	N/A	
Carbon Tetrachloride	0	0		0	N/A	N/A	N/A	
Chlorobenzene	0	0		0	100	100.0	1,756	
Chlorodibromomethane	0	0		0	N/A	N/A	N/A	
2-Chloroethyl Vinyl Ether	0	0		0	N/A	N/A	N/A	
Chloroform	0	0		0	N/A	N/A	N/A	
Dichlorobromomethane	0	0		0	N/A	N/A	N/A	
1,2-Dichloroethane	0	0		0	N/A	N/A	N/A	
1,1-Dichloroethylene	0	0		0	33	33.0	580	
1,2-Dichloropropane	0	0		0	N/A	N/A	N/A	
1,3-Dichloropropylene	0	0		0	N/A	N/A	N/A	
Ethylbenzene	0	0		0	68	68.0	1,194	

Methyl Bromide	0	0	0	100	100.0	1,756	
Methyl Chloride	0	0	0	N/A	N/A	N/A	
Methylene Chloride	0	0	0	N/A	N/A	N/A	
1,1,2,2-Tetrachloroethane	0	0	0	N/A	N/A	N/A	
Tetrachloroethylene	0	0	0	N/A	N/A	N/A	
Toluene	0	0	0	57	57.0	1,001	
1,2-trans-Dichloroethylene	0	0	0	100	100.0	1,756	
1,1,1-Trichloroethane	0	0	0	10,000	10,000	175,621	
1,1,2-Trichloroethane	0	0	0	N/A	N/A	N/A	
Trichloroethylene	0	0	0	N/A	N/A	N/A	
Vinyl Chloride	0	0	0	N/A	N/A	N/A	
2-Chlorophenol	0	0	0	30	30.0	527	
2,4-Dichlorophenol	0	0	0	10	10.0	176	
2,4-Dimethylphenol	0	0	0	100	100.0	1,756	
4,6-Dinitro-o-Cresol	0	0	0	2	2.0	35.1	
2,4-Dinitrophenol	0	0	0	10	10.0	176	
2-Nitrophenol	0	0	0	N/A	N/A	N/A	
4-Nitrophenol	0	0	0	N/A	N/A	N/A	
p-Chloro-m-Cresol	0	0	0	N/A	N/A	N/A	
Pentachlorophenol	0	0	0	N/A	N/A	N/A	
Phenol	0	0	0	4,000	4,000	70,249	
2,4,6-Trichlorophenol	0	0	0	N/A	N/A	N/A	
Acenaphthene	0	0	- 0	70	70.0	1,229	
Anthracene	0	0	0	300	300	5,269	
Benzidine	0	0	0	N/A	N/A	N/A	
Benzo(a)Anthracene	0	0	0	N/A	N/A	N/A	
Benzo(a)Pyrene	0	0	0	N/A	N/A	N/A	
3,4-Benzofluoranthene	0	0	0	N/A	N/A	N/A	
Benzo(k)Fluoranthene	0	0	0	N/A	N/A	N/A	
Bis(2-Chloroethyl)Ether	0	0	0	N/A	N/A	N/A	
Bis(2-Chloroisopropyl)Ether	0	0	0	200	200	3,512	
Bis(2-Ethylhexyl)Phthalate	0	0	0	N/A	N/A	N/A	
4-Bromophenyl Phenyl Ether	0	0	0	N/A	N/A	N/A	
Butyl Benzyl Phthalate	0	0	0	0.1	0.1	1.76	
2-Chloronaphthalene	0	0	0	800	800	14,050	
Chrysene	0	0	0	N/A	N/A	N/A	
Dibenzo(a,h)Anthrancene	0	0	0	N/A	N/A	N/A	
1,2-Dichlorobenzene	0	0	0	1,000	1,000	17,562	
1,3-Dichlorobenzene	0	0	0	7	7.0	123	
1,4-Dichlorobenzene	0	0	0	300	300	5,269	
3,3-Dichlorobenzidine	0	0	0	N/A	N/A	N/A	
Diethyl Phthalate	0	0	0	600	600	10,537	
Dimethyl Phthalate	0	0	0	2,000	2,000	35,124	
Di-n-Butyl Phthalate	0	0	0	20	20.0	351	
2.4-Dinitrotoluene	0	0	 0	N/A	N/A	N/A	

2,6-Dinitrotoluene	0	0	0	N/A	N/A	N/A	
1,2-Diphenylhydrazine	0	0	0	N/A	N/A	N/A	
Fluoranthene	0	0	0	20	20.0	351	
Fluorene	0	0	0	50	50.0	878	
Hexachlorobenzene	0	0	0	N/A	N/A	N/A	
Hexachlorobutadiene	0	0	0	N/A	N/A	N/A	
Hexachlorocyclopentadiene	0	0	0	4	4.0	70.2	
Hexachloroethane	0	0	0	N/A	N/A	N/A	
Indeno(1,2,3-cd)Pyrene	0	0	0	N/A	N/A	N/A	
Isophorone	0	0	0	34	34.0	597	
Naphthalene	0	0	0	N/A	N/A	N/A	
Nitrobenzene	0	0	0	10	10.0	176	
n-Nitrosodimethylamine	0	0	0	N/A	N/A	N/A	
n-Nitrosodi-n-Propylamine	0	0	0	N/A	N/A	N/A	
n-Nitrosodiphenylamine	0	0	0	N/A	N/A	N/A	
Phenanthrene	0	0	0	N/A	N/A	N/A	
Pyrene	0	0	0	20	20.0	351	
1,2,4-Trichlorobenzene	0	0	0	0.07	0.07	1.23	

☑ CRL C	CCT (min): ##	****	PMF:	1	Ana	alysis Hardne	ss (mg/l):	N/A Analysis pH: N/A
Pollutants	Conc	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A	
Chloride (PWS)	0	0		0	N/A	N/A	N/A	
Sulfate (PWS)	0	0		0	N/A	N/A	N/A	
Total Aluminum	0	0		0	N/A	N/A	N/A	
Total Antimony	0	0		0	N/A	N/A	N/A	
Total Arsenic	0	0		0	N/A	N/A	N/A	
Total Barium	0	0		0	N/A	N/A	N/A	
Total Boron	0	0		0	N/A	N/A	N/A	
Total Cadmium	0	0		0	N/A	N/A	N/A	
Total Chromium (III)	0	0		0	N/A	N/A	N/A	
Hexavalent Chromium	0	0		0	N/A	N/A	N/A	
Total Cobalt	0	0		0	N/A	N/A	N/A	
Total Copper	0	0		0	N/A	N/A	N/A	
Free Cyanide	0	0		0	N/A	N/A	N/A	
Dissolved Iron	0	0		0	N/A	N/A	N/A	
Total Iron	0	0		0	N/A	N/A	N/A	
Total Lead	0	0		0	N/A	N/A	N/A	
Total Manganese	0	0		0	N/A	N/A	N/A	
Total Mercury	0	0		0	N/A	N/A	N/A	
Total Nickel	0	0		0	N/A	N/A	N/A	
Total Phenols (Phenolics) (PWS) 0	0		0	N/A	N/A	N/A	
Total Selenium	0	0		0	N/A	N/A	N/A	

Total Silver	0	0	0	N/A	N/A	N/A	
Total Thallium	0	0	0	N/A	N/A	N/A	
Total Zinc	0	0	0	N/A	N/A	N/A	
Acrolein	0	0	0	N/A	N/A	N/A	
Acrylonitrile	0	0	0	0.06	0.06	4.6	
Benzene	0	0	0	0.58	0.58	44.5	
Bromoform	0	0	0	7	7.0	537	
Carbon Tetrachloride	0	0	0	0.4	0.4	30.7	
Chlorobenzene	0	0	0	N/A	N/A	N/A	
Chlorodibromomethane	0	0	0	0.8	0.8	61.3	
2-Chloroethyl Vinyl Ether	0	0	0	N/A	N/A	N/A	
Chloroform	0	0	0	5.7	5.7	437	
Dichlorobromomethane	0	0	0	0.95	0.95	72.8	
1,2-Dichloroethane	0	0	0	9.9	9.9	759	
1,1-Dichloroethylene	0	0	0	N/A	N/A	N/A	
1,2-Dichloropropane	0	0	0	0.9	0.9	69.0	
1,3-Dichloropropylene	0	0	0	0.27	0.27	20.7	
Ethylbenzene	0	0	0	N/A	N/A	N/A	
Methyl Bromide	0	0	0	N/A	N/A	N/A	
Methyl Chloride	0	0	0	N/A	N/A	N/A	
Methylene Chloride	0	0	0	20	20.0	1,534	
1,1,2,2-Tetrachloroethane	0	0	0	0.2	0.2	15.3	
Tetrachloroethylene	0	0	0	10	10.0	767	
Toluene	0	0	0	N/A	N/A	N/A	
1,2-trans-Dichloroethylene	0	0	0	N/A	N/A	N/A	
1,1,1-Trichloroethane	0	0	0	N/A	N/A	N/A	
1,1,2-Trichloroethane	0	0	0	0.55	0.55	42.2	
Trichloroethylene	0	0	0	0.6	0.6	46.0	
Vinyl Chloride	0	0	0	0.02	0.02	1.53	
2-Chlorophenol	0	0	0	N/A	N/A	N/A	
2,4-Dichlorophenol	0	0	0	N/A	N/A	N/A	
2,4-Dimethylphenol	0	0	0	N/A	N/A	N/A	
4,6-Dinitro-o-Cresol	0	0	0	N/A	N/A	N/A	
2,4-Dinitrophenol	0	0	0	N/A	N/A	N/A	
2-Nitrophenol	0	0	0	N/A	N/A	N/A	
4-Nitrophenol	0	0	0	N/A	N/A	N/A	
p-Chloro-m-Cresol	0	0	0	N/A	N/A	N/A	
Pentachlorophenol	0	0	0	0.030	0.03	2.3	
Phenol	0	0	0	N/A	N/A	N/A	
2,4,6-Trichlorophenol	0	0	0	1.5	1.5	115	
Acenaphthene	0	0	0	N/A	N/A	N/A	
Anthracene	0	0	0	N/A	N/A	N/A	
Benzidine	0	0	0	0.0001	0.0001	0.008	
Benzo(a)Anthracene	0	0	0	0.001	0.001	0.077	
Benzo(a)Pyrene	0	0	0	0.0001	0.0001	0.008	

3,4-Benzofluoranthene	0	0	- 0	0.001	0.001	0.077	
Benzo(k)Fluoranthene	0	0	0	0.01	0.01	0.77	
Bis(2-Chloroethyl)Ether	0	0	0	0.03	0.03	2.3	
Bis(2-Chloroisopropyl)Ether	0	0	0	N/A	N/A	N/A	
Bis(2-Ethylhexyl)Phthalate	0	0	0	0.32	0.32	24.5	
4-Bromophenyl Phenyl Ether	0	0	- 0	N/A	N/A	N/A	
Butyl Benzyl Phthalate	0	0	0	N/A	N/A	N/A	
2-Chloronaphthalene	0	0	0	N/A	N/A	N/A	
Chrysene	0	0	- 0	0.12	0.12	9.2	
Dibenzo(a,h)Anthrancene	0	0	0	0.0001	0.0001	0.008	
1,2-Dichlorobenzene	0	0	0	N/A	N/A	N/A	
1,3-Dichlorobenzene	0	0	- 0	N/A	N/A	N/A	
1,4-Dichlorobenzene	0	0	0	N/A	N/A	N/A	
3,3-Dichlorobenzidine	0	0	0	0.05	0.05	3.83	
Diethyl Phthalate	0	0	0	N/A	N/A	N/A	
Dimethyl Phthalate	0	0	0	N/A	N/A	N/A	
Di-n-Butyl Phthalate	0	0	0	N/A	N/A	N/A	
2,4-Dinitrotoluene	0	0	0	0.05	0.05	3.83	
2,6-Dinitrotoluene	0	0	0	0.05	0.05	3.83	
1,2-Diphenylhydrazine	0	0	- 0	0.03	0.03	2.3	
Fluoranthene	0	0	- 0	N/A	N/A	N/A	
Fluorene	0	0	0	N/A	N/A	N/A	
Hexachlorobenzene	0	0	- 0	0.00008	0.00008	0.006	
Hexachlorobutadiene	0	0	0	0.01	0.01	0.77	
Hexachlorocyclopentadiene	0	0	0	N/A	N/A	N/A	
Hexachloroethane	0	0	- 0	0.1	0.1	7.67	
Indeno(1,2,3-cd)Pyrene	0	0	0	0.001	0.001	0.077	
Isophorone	0	0	0	N/A	N/A	N/A	
Naphthalene	0	0	- 0	N/A	N/A	N/A	
Nitrobenzene	0	0	0	N/A	N/A	N/A	
n-Nitrosodimethylamine	0	0	0	0.0007	0.0007	0.054	
n-Nitrosodi-n-Propylamine	0	0	- 0	0.005	0.005	0.38	
n-Nitrosodiphenylamine	0	0	0	3.3	3.3	253	
Phenanthrene	0	0	0	N/A	N/A	N/A	
Pyrene	0	0	- 0	N/A	N/A	N/A	
1,2,4-Trichlorobenzene	0	0	0	N/A	N/A	N/A	

☑ Recommended WQBELs & Monitoring Requirements

No. Samples/Month: 4

	Mass	Limits		Concentra	tion Limits				
Pollutants	AML (lbs/day)	MDL (lbs/day)	AML	MDL	IMAX	Units	Governing WQBEL	WQBEL Basis	Comments
Total Aluminum	Report	Report	Report	Report	Report	μg/L	1,727	AFC	Discharge Conc > 10% WQBEL (no RP)

Total Copper	Report	Report	Report	Report	Report	μg/L	81.4	AFC	Discharge Conc > 10% WQBEL (no RP)

☑ Other Pollutants without Limits or Monitoring

The following pollutants do not require effluent limits or monitoring based on water quality because reasonable potential to exceed water quality criteria was not determined and the discharge concentration was less than thresholds for monitoring, or the pollutant was not detected and a sufficiently sensitive analytical method was used (e.g., <= Target QL).

Pollutants	Governing WQBEL	Units	Comments
Total Dissolved Solids (PWS)	N/A	N/A	PWS Not Applicable
Chloride (PWS)	N/A	N/A	PWS Not Applicable
Bromide	N/A	N/A	No WQS
Sulfate (PWS)	N/A	N/A	PWS Not Applicable
Total Antimony	N/A	N/A	Discharge Conc < TQL
Total Arsenic	N/A	N/A	Discharge Conc < TQL
Total Barium	42,149	μg/L	Discharge Conc ≤ 10% WQBEL
Total Beryllium	N/A	N/A	No WQS
Total Boron	18,656	μg/L	Discharge Conc ≤ 10% WQBEL
Total Cadmium	9.91	μg/L	Discharge Conc ≤ 10% WQBEL
Total Chromium (III)	3,408	μg/L	Discharge Conc < TQL
Hexavalent Chromium	37.5	μg/L	Discharge Conc < TQL
Total Cobalt	219	μg/L	Discharge Conc < TQL
Free Cyanide	50.7	μg/L	Discharge Conc ≤ 25% WQBEL
Total Cyanide	N/A	N/A	No WQS
Dissolved Iron	5,269	μg/L	Discharge Conc ≤ 10% WQBEL
Total Iron	26,343	μg/L	Discharge Conc ≤ 10% WQBEL
Total Lead	197	μg/L	Discharge Conc < TQL
Total Manganese	17,562	μg/L	Discharge Conc ≤ 10% WQBEL
Total Mercury	0.88	μg/L	Discharge Conc < TQL
Total Nickel	2,119	μg/L	Discharge Conc ≤ 10% WQBEL
Total Phenols (Phenolics) (PWS)		μg/L	PWS Not Applicable
Total Selenium	87.6	μg/L	Discharge Conc < TQL
Total Silver	47.3	μg/L	Discharge Conc ≤ 10% WQBEL
Total Thallium	4.21	μg/L	Discharge Conc < TQL
Total Zinc	635	μg/L	Discharge Conc ≤ 10% WQBEL
Total Molybdenum	N/A	N/A	No WQS
Acrolein	6.91	μg/L	Discharge Conc < TQL
Acrylonitrile	4.6	μg/L	Discharge Conc < TQL
Benzene	44.5	μg/L	Discharge Conc < TQL
Bromoform	537	μg/L	Discharge Conc < TQL
Carbon Tetrachloride	30.7	μg/L	Discharge Conc < TQL
Chlorobenzene	1,756	μg/L	Discharge Conc ≤ 25% WQBEL
Chlorodibromomethane	61.3	μg/L	Discharge Conc ≤ 25% WQBEL
Chloroethane	N/A	N/A	No WQS
2-Chloroethyl Vinyl Ether	41,457	μg/L	Discharge Conc < TQL

Model Results 5/5/2021 Page 15

211 (407		D: 1 0 40FW WORK
Chloroform	437	μg/L	Discharge Conc ≤ 25% WQBEL
Dichlorobromomethane	72.8	µg/L	Discharge Conc ≤ 25% WQBEL
1,1-Dichloroethane	N/A	N/A	No WQS
1,2-Dichloroethane	759	μg/L	Discharge Conc < TQL
1,1-Dichloroethylene	580	μg/L	Discharge Conc < TQL
1,2-Dichloropropane	69.0	μg/L	Discharge Conc < TQL
1,3-Dichloropropylene	20.7	μg/L	Discharge Conc < TQL
1,4-Dioxane	N/A	N/A	No WQS
Ethylbenzene	1,194	μg/L	Discharge Conc < TQL
Methyl Bromide	1,267	μg/L	Discharge Conc < TQL
Methyl Chloride	64,489	μg/L	Discharge Conc < TQL
Methylene Chloride	1,534	μg/L	Discharge Conc ≤ 25% WQBEL
1,1,2,2-Tetrachloroethane	15.3	μg/L	Discharge Conc < TQL
Tetrachloroethylene	767	μg/L	Discharge Conc < TQL
Toluene	1,001	μg/L	Discharge Conc < TQL
1,2-trans-Dichloroethylene	1,756	μg/L	Discharge Conc < TQL
1,1,1-Trichloroethane	6,910	μg/L	Discharge Conc < TQL
1,1,2-Trichloroethane	42.2	μg/L	Discharge Conc < TQL
Trichloroethylene	46.0	μg/L	Discharge Conc < TQL
Vinyl Chloride	1.53	μg/L	Discharge Conc < TQL
2-Chlorophenol	527	μg/L	Discharge Conc < TQL
2,4-Dichlorophenol	176	μg/L	Discharge Conc < TQL
2,4-Dimethylphenol	1,520	μg/L	Discharge Conc < TQL
4,6-Dinitro-o-Cresol	35.1	μg/L	Discharge Conc < TQL
2,4-Dinitrophenol	176	μg/L	Discharge Conc < TQL
2-Nitrophenol	18,426	μg/L	Discharge Conc < TQL
4-Nitrophenol	5,297	μg/L	Discharge Conc < TQL
p-Chloro-m-Cresol	369	μg/L	Discharge Conc < TQL
Pentachlorophenol	2.3	μg/L	Discharge Conc < TQL
Phenol	70,249	μg/L	Discharge Conc < TQL
2,4,6-Trichlorophenol	115	μg/L	Discharge Conc < TQL
Acenaphthene	191	μg/L	Discharge Conc < TQL
Acenaphthylene	N/A	N/A	No WQS
Anthracene	5,269	μg/L	Discharge Conc < TQL
Benzidine	0.008	μg/L	Discharge Conc < TQL
Benzo(a)Anthracene	0.077	μg/L	Discharge Conc < TQL
Benzo(a)Pyrene	0.008	μg/L	Discharge Conc < TQL
3,4-Benzofluoranthene	0.077	μg/L	Discharge Conc < TQL
Benzo(ghi)Perylene	N/A	N/A	No WQS
Benzo(k)Fluoranthene	0.77	μg/L	Discharge Conc < TQL
Bis(2-Chloroethoxy)Methane	N/A	N/A	No WQS
Bis(2-Chloroethyl)Ether	2.3	μg/L	Discharge Conc < TQL
Bis(2-Chloroisopropyl)Ether	3,512	µg/L	Discharge Conc < TQL
Bis(2-Ethylhexyl)Phthalate	24.5	µg/L	Discharge Conc < TQL
4-Bromophenyl Phenyl Ether	622	µg/L	Discharge Conc < TQL
4-bromophenyr Frienyr Euler	022	μg/L	Discharge Cond < TQL

Butyl Benzyl Phthalate	1.76	μg/L	Discharge Conc < TQL
2-Chloronaphthalene	14,050	μg/L	Discharge Conc < TQL
4-Chlorophenyl Phenyl Ether	N/A	N/A	No WQS
Chrysene	9.2	μg/L	Discharge Conc < TQL
Dibenzo(a,h)Anthrancene	0.008	μg/L	Discharge Conc < TQL
1,2-Dichlorobenzene	1,889	μg/L	Discharge Conc < TQL
1,3-Dichlorobenzene	123	μg/L	Discharge Conc < TQL
1,4-Dichlorobenzene	1,681	μg/L	Discharge Conc < TQL
3,3-Dichlorobenzidine	3.83	μg/L	Discharge Conc < TQL
Diethyl Phthalate	9,213	μg/L	Discharge Conc < TQL
Dimethyl Phthalate	5,758	μg/L	Discharge Conc < TQL
Di-n-Butyl Phthalate	253	μg/L	Discharge Conc ≤ 25% WQBEL
2,4-Dinitrotoluene	3.83	μg/L	Discharge Conc < TQL
2,6-Dinitrotoluene	3.83	μg/L	Discharge Conc < TQL
Di-n-Octyl Phthalate	N/A	N/A	No WQS
1,2-Diphenylhydrazine	2.3	μg/L	Discharge Conc < TQL
Fluoranthene	351	μg/L	Discharge Conc < TQL
Fluorene	878	μg/L	Discharge Conc < TQL
Hexachlorobenzene	0.006	μg/L	Discharge Conc < TQL
Hexachlorobutadiene	0.77	μg/L	Discharge Conc < TQL
Hexachlorocyclopentadiene	11.5	μg/L	Discharge Conc < TQL
Hexachloroethane	7.67	μg/L	Discharge Conc < TQL
Indeno(1,2,3-cd)Pyrene	0.077	μg/L	Discharge Conc < TQL
Isophorone	597	μg/L	Discharge Conc < TQL
Naphthalene	322	μg/L	Discharge Conc < TQL
Nitrobenzene	176	μg/L	Discharge Conc < TQL
n-Nitrosodimethylamine	0.054	μg/L	Discharge Conc < TQL
n-Nitrosodi-n-Propylamine	0.38	μg/L	Discharge Conc < TQL
n-Nitrosodiphenylamine	253	μg/L	Discharge Conc < TQL
Phenanthrene	11.5	μg/L	Discharge Conc < TQL
Pyrene	351	μg/L	Discharge Conc < TQL
1,2,4-Trichlorobenzene	1.23	μg/L	Discharge Conc < TQL