

 Application Type
 Renewal

 Facility Type
 Municipal

 Major / Minor
 Major

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

Application No.PA0026735APS ID66Authorization ID1307794

Applicant and Facility Information

Applicant Name	Swatar	a Township Authority	Facility Name	Swatara Township STP
Applicant Address	PO Box	4920	Facility Address	8675 Paxton Street
	Harrisb	urg, PA 17111-0920		Hummelstown, PA 17036-8673
Applicant Contact	George	Moppin	Facility Contact	George Moppin
Applicant Phone	(717) 50	66-3361	Facility Phone	(717) 566-3361
Client ID	2359		Site ID	257273
Ch 94 Load Status	Not Ove	erloaded	Municipality	Swatara Township
Connection Status	No Exc	eptions Allowed	County	Dauphin
Date Application Recei	ved	February 28, 2020	EPA Waived?	No
Date Application Accepted		March 12, 2020	If No, Reason	Major Facility, Pretreatment, Significant CB Discharge
Purpose of Application		NPDES permit renewal for disc	charge of treated sewage	

Summary of Review

1.0 General Discussion

This factsheet supports the renewal of an existing NPDES permit for discharge of treated domestic wastewater from Swatara Township Authority (Authority) wastewater treatment plant. The Authority owns, operates, and maintains the wastewater treatment plant located in Hummelstown, Dauphin County. The facility receives flows from Swatara Township (25.492%), Lower Paxton (60.238%), Hummelstown (9.762%) and South Hanover (0.508%). The facility is designed to provide biological nutrient removal using vertical loop reactors in conjunction with alternate anoxic/oxic treatment process. The facility discharges treated municipal wastewater to Swatara Creek, which is classified for warm water fishes and migratory fishes. The collection system has no combined sewers. The facility has a design average annual flow of 6.3 MGD with a hydraulic design capacity of 8.95 MGD and has organic design capacity of 10,508 lbs BOD5/day. The existing NPDES permit was issued on August 19, 2015 with an effective date of September 1, 2015 and expiration date of August 31, 2020. The applicant submitted a timely NPDES renewal application to the Department and is currently operating under the terms and conditions in the existing permit under administrative extension provisions pending Department action on the renewal application. A topographic map showing the discharge location is presented in attachment A.

1.1 Sludge use and disposal description and location(s):

Sludge is pumped from either the sludge holding tank or the gravity thickener to a centrifuge in the solids handling building for dewatering. Dewatered sludge is sent to the dryer to produce Class A Biosolids which land is applied at Oelig Farms under a beneficial use permit PAG07-3521 issued on November 1, 2017. Sludge is also disposed at Capital Region Water Authority WWTP, Kline's Services treatment facility, Manheim Area Water & Sewer Authority and Derry Township WWTP for further processing.

Approve	Deny	Signatures	Date
х		J. Pascal Kwedza J. Pascal Kwedza, P.E. / Environmental Engineer	November 04, 2021
х		Daniel W. Martin Daniel W. Martin, P.E. / Environmental Engineer Manager	November 14, 2021

Summary of Review

1.2 Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

1.3 Changes to Existing Permit

Weekly monitoring of Total Zinc and monthly monitoring of E.Coli have been added.

1.4 Existing Limit and Monitoring Requirements

			Monitoring Requirements					
Discharge Parameter	Mass Ur	nits (Ibs/day)		Concent	trations (mg	/L)	Minimum	Required
	Monthly Average	Weekly Average	Minimum	Monthly Average	Weekly Average	Instantaneous Maximum	Measurement Frequency	Sample Type
Flow (mgd)	Report	Report Daily Max	XXX	XXX	XXX	XXX	Continuous	Measured
pH (S.U.)	XXX	XXX	6.0	XXX	XXX	9.0	1/Day	Grab
Dissolved Oxygen	XXX	XXX	5.0	XXX	XXX	XXX	1/Day	Grab
Total Residual Chlorine	XXX	XXX	0.5	XXX	XXX	1.6	1/Day	Grab
TSS	1576	2364	XXX	30	45	60	3/week	24-hr comp
CBOD ₅ (5/1 to 10/31)	998	1576	XXX	19	30	38	3/week	24-hr comp
CBOD ₅ (11/1 to 4/30)	1313	2101	XXX	25	40	50	3/week	24-hr comp
NH3-N (5/1 to 10/31)	338	XXX	XXX	6	xxx	12	3/week	24-hr comp
NH3-N (11/1 to 4/30)	900	XXX	XXX	18	XXX	36	3/week	24-hr comp
Total Phosphorus	105	XXX	XXX	2.0	XXX	4.0	3/week	24-hr comp
Fecal Coliform (5/1 to 9/30) ⁽⁵⁾	XXX	XXX	XXX	200	XXX	1000	3/week	Grab
Fecal Coliform (10/1 to 4/30)	XXX	XXX	xxx	2,000	XXX	10,0000	3/week	Grab

1.4.1 Chesapeake Bay Permit Requirements

		Effluent I	Monitoring R	equirements			
	Mass Lo	oad(lbs)	Cor	centrations (ng/l)		
Discharge Parameter	Monthly	Annual	Minimum	Monthly Average	Maximum	Minimum Measurement Frequency	Required Sample Type
AmmoniaN	Report	Report	xxx	Report	xxx	3/week	24-hr Comp
KjeldahlN	Report	xxx	xxx	Report	xxx	2/Week	24-hr Comp
Nitrate-Nitrite as N	Report	xxx	xxx	Report	xxx	2/Week	24-hr Comp
Total Nitrogen	Report	Report	xxx	Report	xxx	1/Month	Calculate
Total Phosphorus	Report	Report	xxx	Report	xxx	3/week	24-hr Comp
Net Total Nitrogen	Report	118,339	xxx	XXX	xxx	1/Month	Calculate
Net Total Phos.	Report	15,866	xxx	xxx	xxx	1/Month	Calculate

1.5 Discharge, Receiving V	Vaters and Water Supply Inform	nation			
Outfall No. 001	Design Flow (MGD)	6.3			
Latitude40° 15' 33.26"	_ Longitude	76° 43' 45.18"			
Quad Name Hershey	_ Quad Code	1632			
Wastewater Description: Sewage					
Receiving Waters _ Swatara Creek	Stream Code	09361			
NHD Com ID 56402353	RMI	9.1			
Drainage Area 549	Yield (cfs/mi ²)	0.14			
Q ₇₋₁₀ Flow (cfs) 76.86	Q ₇₋₁₀ Basis	USGS gage station			
Elevation (ft)	Slope (ft/ft)				
Watershed No. 7-D	Chapter 93 Class.	WWF			
Existing Use	Existing Use Qualifier				
Exceptions to Use	Exceptions to Criteria				
Assessment Status Attaining Use(s)					
Cause(s) of Impairment					
Source(s) of Impairment					
TMDL Status	Name				
Background/Ambient Data	Data Source				
pH (SU)					
Temperature (°F)					
Hardness (mg/L)					
Other:					
Nearest Downstream Public Water Supply Intake	Colombia Water Company				
PWS Waters Susquehanna River	Flow at Intake (cfs)				
PWS RMI	Distance from Outfall (mi)	26			

1.5.1 Water Supply Intake

The nearest downstream water supply intake is approximately 26 miles downstream by Colombia Water Company on Susquehanna River in York County. Due to the distance and dilution, no impact is expected from this discharge.

1.6 Discharge, Receiving V	Vaters and Water Supply Inform	nation			
Outfall No. 002	Design Flow (MGD)	0.00			
Latitude40° 15' 32.15"	_ Longitude	76° 43' 46.34"			
Quad Name Hershey	Quad Code	1632			
Wastewater Description: Storm water					
Receiving Waters _ Swatara Creek	Stream Code	09361			
NHD Com ID 56402353	RMI				
Drainage Area	Yield (cfs/mi ²)				
Q ₇₋₁₀ Flow (cfs)	Q7-10 Basis				
Elevation (ft)	Slope (ft/ft)				
Watershed No. 7-D	Chapter 93 Class.	WWF			
Existing Use	Existing Use Qualifier				
Exceptions to Use	Exceptions to Criteria				
Assessment Status					
Cause(s) of Impairment					
Source(s) of Impairment					
TMDL Status	Name				
Background/Ambient Data pH (SU)	Data Source				
Temperature (°F)					
Hardness (mg/L)					
Other:					
Nearest Downstream Public Water Supply Intake					
PWS Waters	Flow at Intake (cfs)				
PWS RMI	Distance from Outfall (mi)				

1.6.1 Other comments

This outfall receives storm water from the treatment plant site, effluent limit not required. See section 4.4.10 of the report for further details.

1.7 Discharge, Receiving W	aters and Water Supply Inform	nation			
Outfall No. 003	Design Flow (MGD)	0.00			
Latitude40° 15' 30.80"	Longitude	76° 43' 48.40"			
Quad Name Hershey	Quad Code	1632			
Wastewater Description: Storm water					
Receiving Waters Swatara Creek	Stream Code	09361			
NHD Com ID 56402353	RMI				
Drainage Area	Yield (cfs/mi ²)				
Q ₇₋₁₀ Flow (cfs)	Q7-10 Basis				
Elevation (ft)	Slope (ft/ft)				
Watershed No. 7-D	Chapter 93 Class.	WWF			
Existing Use	Existing Use Qualifier				
Exceptions to Use	Exceptions to Criteria				
Assessment Status					
Cause(s) of Impairment					
Source(s) of Impairment					
TMDL Status	Name				
Background/Ambient Data pH (SU)	Data Source				
Temperature (°F)					
Hardness (mg/L)					
Other:					
Nearest Downstream Public Water Supply Intake					
PWS Waters	Flow at Intake (cfs)				
PWS RMI	Distance from Outfall (mi)				

1.7.1 Other comments

This outfall receives storm water from the treatment plant site, effluent limit not required. See section 4.4.10 of the report for further details.

	2.0 Tr	eatment Facility Sumn	nary	
Freatment Facility Na	me: Swatara Township S	TP		
WQM Permit No.	Issuance Date			
2285409	January, 1986			
2208407	October 15, 2008			
Waste Type	Degree of Treatment	Process Type	Disinfection	Avg Annual Flow (MGD)
Sewage	Tertiary	Modified BNR	Hypochlorite	6.300000
Hydraulic Capacity (MGD)	Organic Capacity (Ibs/day)	Load Status	Biosolids Treatment	Biosolids Use/Disposal
8.950000	10508.00	Not Overloaded	Combination	Combination o methods

2.1 Treatment Facility Description

The treatment facility consists of 2 bar screens, 1 comminutor, influent wet well, influent pump station, 2 mechanical fine screens, 1 grit removal, 2 anaerobic tanks, 4 vertical loop rectors, 2 fine bubble tanks (with 3 aerobic zones and 2 anoxic zones), 4 final clarifies, 4 chlorine contact tanks, 1 sludge thickener, 2 sludge holding tanks, 1 centrifuge and 1 sludge dyer. The system is designed to operate in two parallel trains with an internal mix liquor pump to return nitrified mix liquor to the head of the anoxic zones.

2.2 Treatment Chemicals

- Sodium Hypochlorite for disinfection.
- Ferrous Chloride for Phosphorus removal.
- Polymer for sludge dewatering.
- Soda ash for alkalinity or pH adjustment.
- Methanol for carbon source if needed.

3.0 Compliance History

3.1 DMR Data for Outfall 001 (from September 1, 2020 to August 31, 2021)

Parameter	AUG-21	JUL-21	JUN-21	MAY-21	APR-21	MAR-21	FEB-21	JAN-21	DEC-20	NOV-20	OCT-20	SEP-20
Flow (MGD)												
Average Monthly	3.866	4.184	3.109	3.734	4.272	5.249	4.746	4.108	4.829	3.465	3.162	3.025
Flow (MGD)												
Daily Maximum	5.777	8.109	3.632	6.002	9.285	13.842	10.106	6.335	14.474	5.025	5.464	4.031
pH (S.U.)												
Minimum	6.9	6.8	6.8	6.8	6.7	6.7	6.7	6.7	6.6	6.8	6.9	6.9
pH (S.U.)												
Maximum	7.3	7.3	7.1	7.0	7.1	7.3	7.6	7.2	7.2	7.2	7.3	7.3
DO (mg/L)												
Minimum	7.4	7.4	7.8	8.4	9.1	9.6	9.8	9.6	8.0	7.8	7.1	7.0
TRC (mg/L)												
Average Monthly	0.33	0.37	0.31	0.35	0.31	0.32	0.35	0.27	0.28	0.28	0.26	0.3
TRC (mg/L)												
Instant. Maximum	0.61	0.58	0.46	0.53	0.46	0.51	0.75	0.42	0.54	0.52	0.41	0.4
CBOD5 (lbs/day)												
Average Monthly	< 129	< 77	< 54	< 66	< 71	< 94	< 82	< 67	< 75	< 92	< 54	< 81
CBOD5 (lbs/day)												
Weekly Average	344	< 103	< 64	< 95	< 106	< 141	< 114	< 91	< 108	< 181	< 61	< 193
CBOD5 (mg/L)												
Average Monthly	< 3	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 3	< 2	< 3
CBOD5 (mg/L)												
Weekly Average	8	< 3	< 2	< 2	< 2	< 3	< 2	< 2	< 2	< 7	< 2	< 6
BOD5 (lbs/day)												
Raw Sewage Influent												
 Ave. Monthly	6612	6885	5724	7458	4910	4902	4909	5437	5639	10017	5263	4890
BOD5 (lbs/day)												
Raw Sewage Influent	0040	40.400	7000	40500	7050	7005	5707	0507	0005	00040	7700	
 Daily Maximum	8919	12420	7209	12509	7258	7895	5797	8527	8235	23619	7700	8909
BOD5 (mg/L)												
Raw Sewage Influent			040	050	454	100	100	105	101	050	007	400
 Ave. Monthly TOO (lbs/day)	211	220	218	252	154	126	138	165	164	356	207	190
TSS (lbs/day)	07	104	. 77	06	100	. 101	. 00	60	. 00	0.1	04	00
Average Monthly	87	104	< 77	96	108	< 131	< 89	69	< 90	94	84	89
TSS (lbs/day)												
Raw Sewage Influent	0155	7410	6522	0150	E 4 9 0	4204	4107	4051	5242	0057	5022	5000
 http://www.worthly	8155	7410	6532	8153	5482	4304	4187	4251	5343	9957	5023	5090

TSS (lbs/day)												
Raw Sewage Influent	40054	44005	11050	40000	0050		5400	5 400	0070	07450	0004	0700
<pre> </pre>	13851	11295	11253	13888	8356	8896	5128	5400	8270	27452	8391	6788
TSS (lbs/day)	100	407		104	100	400	4.40	0.1	100	110	400	400
Weekly Average	120	127	96	181	180	160	148	84	120	116	129	103
TSS (mg/L)	3	3	< 3	3	3	< 3	< 2	2	< 2	3	2	4
Average Monthly TSS (mg/L)	3	3	< 3	3	3	< 3	< 2	2	< 2	3	3	4
Raw Sewage Influent												
<pre> devide initiality</pre>	259	234	249	273	171	108	116	131	152	352	195	199
TSS (mg/L)	233	234	243	215	171	100	110	151	152	552	190	135
Weekly Average	3	5	4	4	4	4	3	3	3	4	4	4
Fecal Coliform	U	5					5	5	5			
(CFU/100 ml)												
Geometric Mean	11	24	34	24	15	< 18	16	10	< 4	9	7	16
Fecal Coliform			0.									
(CFU/100 ml)												
Instant. Maximum	29	56	124	64	36	73	78	226	32	44	28	71
Nitrate-Nitrite (mg/L)												
Average Monthly	2.18	2	2.35	2.51	2.5	3.47	3.17	3.2	3.91	3.79	3.89	3.68
Nitrate-Nitrite (lbs)												
Total Monthly	2313.4	2039.8	1848.6	2477.9	2468.8	4655.3	3403.3	3215.6	4333.6	3283.8	3171.5	2800.9
Total Nitrogen (mg/L)												
Average Monthly	< 3.29	2.79	< 3.13	< 3.22	< 3.18	4.57	< 3.87	< 4.01	< 4.85	< 4.64	5.1	4.76
Total Nitrogen (lbs)												
Effluent Net 												
Total Monthly	< 3457.1	2810.1	< 2452.9	< 3236.4	< 3131.5	6046.7	< 4220.1	< 4003.4	< 5321.1	< 4028.8	4157.6	3629.7
Total Nitrogen (lbs)												
Total Monthly	< 3457.1	2810.1	< 2452.9	< 3236.4	< 3131.5	6046.7	< 4220.1	< 4003.4	< 5321.1	< 4028.8	4157.6	3629.7
Total Nitrogen (lbs)												
Effluent Net 												
Total Annual								-				< 63793
Total Nitrogen (lbs)												00700
Total Annual												< 63793
Ammonia (Ibs/day)	. 1 0	. 2. 2.4	. 2.64	2.05	. 2. 42		.0.07	. 2.50	. 4.95	. 2. 27	. 2.60	. 2.50
Average Monthly	< 4.3	< 3.34	< 2.64	3.25	< 3.43	< 11.41	< 9.97	< 3.52	< 4.85	< 3.27	< 2.60	< 2.56
Ammonia (mg/L) Average Monthly	< 0.15	< 0.1	< 0.1	< 0.1	< 0.1	< 0.25	< 0.24	< 0.11	< 0.13	< 0.11	< 0.1	< 0.1
Ammonia (lbs)	< 0.15	< 0.1	< 0.1	< 0.1	< 0.1	< 0.25	< 0.24	< 0.11	< 0.13	< 0.11	< 0.1	< 0.1
Total Monthly	< 133.3	< 103.5	< 79.1	< 100.7	< 102.9	< 353.6	< 279.2	< 109.1	< 150.5	< 98	< 80.5	< 76.7
Ammonia (lbs)	× 133.3	< 105.5	< <i>13.</i> 1	< 100.7	< 102.9	< 000.0	<u> </u>	< 109.1	< 130.5	< 30	< 00.J	< / O.1
Total Annual												< 5963
TKN (mg/L)												< 3303
Average Monthly	< 1.1	0.79	< 0.77	< 0.71	< 0.68	1.1	< 0.7	< 0.8	< 0.94	< 0.85	1.21	1.07
	× 1.1	0.19	< 0.11	< 0.7 T	< 0.00	1.1	< 0.1	< 0.0	< 0.34	< 0.05	1.41	1.07

TKN (lbs)												
Total Monthly	< 1143.7	770.3	< 604.3	< 758.5	< 662.7	1391.4	< 816.8	< 787.8	< 987.5	< 744.9	986	828.8
Total Phosphorus												
(lbs/day)												
Average Monthly	6.27	8.92	5.41	5.55	< 4.71	6.85	6.36	< 4.27	< 6.55	5.04	5.04	5.48
Total Phosphorus												
(mg/L) Ave. Monthly	0.2	0.28	0.21	0.16	< 0.14	0.16	0.16	< 0.13	< 0.18	0.18	0.2	0.22
Total Phosphorus (lbs)												
Effluent Net 												
Total Monthly	194.3	276.6	162.3	172.1	< 141.3	212.4	178.2	< 132.3	< 203.1	151.1	156.3	164.4
Total Phosphorus (lbs)												
Total Monthly	194.3	276.6	162.3	172.1	< 141.3	212.4	178.2	< 132.3	< 203.1	151.1	156.3	164.4
Total Phosphorus (lbs)												
Effluent Net 												
Total Annual												< 1916
Total Phosphorus (lbs)												
Total Annual												< 1916

3.2 Summary of Discharge Monitoring Reports (DMRs):

DMRs review for the facility for the last 12 months of operation, presented on the table above in section 3.1 indicate permit limits have been met consistently. No effluent violations noted on DMRs during the period reviewed.

3.3 Summary of Inspections:

The facility has been inspected a couple times during last permit cycle. No effluent violations identified during plant inspections. The facility has been operated and maintained well.

4.0 Development of Effluent Limitations

Outfall No.	001		Design Flow (MGD)	6.3
Latitude	40º 15' 33.26	ò"	Longitude	-76º 43' 45.18"
Wastewater D	escription:	Sewage Effluent		

4.1 Basis for Effluent Limitations

In general, the Clean Water Act(AWA) requires that the effluent limits for a particular pollutant be the more stringent of either technology-based limits or water quality-based limits. Technology-based limits are set according to the level of treatment that is achievable using available technology. A water quality-based effluent limit is designed to ensure that the water quality standards applicable to a waterbody are being met and may be more stringent than technology-based effluent limits.

4.2 Technology-Based Limitations

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Pollutant	Limit (mg/l)	SBC	Federal Regulation	State Regulation
CBOD ₅	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
CBOD5	40	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)
Total Suspended	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
Solids	45	Average Weekly	133.102(b)(2)	92a.47(a)(2)
рН	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform (5/1 – 9/30)	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
Fecal Coliform (5/1 – 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform (10/1 – 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
Fecal Coliform (10/1 – 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)
Total Residual Chlorine	0.5	Average Monthly	-	92a.48(b)(2)

4.3 Mass-Based Limits

The federal regulation at 40 CFR 122.45(f) requires that effluent limits be expressed in terms of mass, if possible. The regulation at 40 CFR 122.45(b) requires that effluent limitations for POTWs be calculated based on the design flow of the facility. The mass-based limits are expressed in pounds per day and are calculated as follows:

Mass based limit (lb/day) = concentration limit (mg/L) × design flow (mgd) × 8.34

4.4 Water Quality-Based Limitations

4.4.1 Streamflow:

The Technical Support Document for Water Quality-Based Toxics Control (TSD) (EPA, 1991) and the Pennsylvania Water Quality Standards PA WQS) recommend the flow conditions for use in calculating water quality-based effluent limits (WQBELs) using steady-state modeling. The TSD and the PA WQS state that WQBELs intended to protect aquatic life uses should be based on the lowest seven-day average flow rate expected to occur once every ten years (Q₇₋₁₀) for chronic criteria and the lowest one-day average flow rate expected to occur once every ten years (Q₁₋₁₀) for acute criteria. However, because the chronic criterion for ammonia is a 30-day average concentration not to be exceeded more than once every three years, EPA has used the Q₃₀₋₁₀ for the chronic ammonia criterion instead of the Q₇₋₁₀. The Q₃₀₋₁₀ is a biologically based design flow intended to ensure an excursion frequency of once every three years for a 30-day average flow rate. These flows were determined by correlating with the yield of USGS gage No. 01573560 on Swatara Creek near Hershey. The Q₇₋₁₀ and drainage area at the gage is 67.7ft3/s and 483mi² respectively. The resulting yields are as follows:

- Q₇₋₁₀ = (67.7ft³/s)/483 mi² = 0.14ft³/s/ mi²
- $Q_{30-10} / Q_{7-10} = 0.89$
- $Q_{1-10} / Q_{7-10} = 1.23$

The drainage area at discharge calculated by streamStats = 549 mi²

The Q_{7-10} at discharge = 549 mi² x 0.14 ft³/s/mi² = 76.86 ft³/s.

4.4.2 NH₃N Calculations

NH₃N calculations will be based on the Department's Implementation Guidance of Section 93.7 Ammonia Criteria, dated 11/4/97 (ID No. 391-2000-013). The following data is necessary to determine the instream NH₃N criteria used in the attached computer model of the stream:

- Discharge pH .
- Discharge Temperature
- Stream pH •

= 6.9 (DMR median July - Sept) = 25 ° C (Default)

- - Stream Temperature
- = 8.0 (Previous Protection Report)
- = 23 ° C (Previous Protection Report) = 0.0 (default
- Background NH₃-N
- 4.4.3 CBOD₅

The two Derry Township MA's facilities, (Clearwater and Southwest), along with Suez Water Hummelstown Plant and the Swatara Township STP were modeled together due to their proximity to each other. The attached results of the WQM 7.0 stream model presented in attachment B indicates that for Swatara Township STP discharge, a summer monthly average limit of 20 mg/I CBOD5 is required to protect the water quality of the stream. However, due to anti-backsliding restrictions, the existing summer average monthly limit(AML) of 19 mg/l, average weekly limit(AWL) of 30mg/l and IMAX of 38mg/l and 25mg/I AML, 40mg/I AWL and 50 IMAX for the winter months will remain in the permit. Past DMRs and inspection reports show the STP has been consistently achieving below 10 mg/l CBOD5. Mass limits are calculated using the equation presented in section 4.3.

4.4.4 NH₃-N

The attached results of the WQM 7.0 stream model (attachment B) also indicates a summer monthly average limit of 7.7mg/l of NH3-N is necessary to protect the aquatic life from toxicity effects. The existing summer average monthly limit of 6 mg/l and winter limit of 18mg/l will remain in the permit due to anti-backsliding restrictions. Mass limits are calculated using the equation presented in section 4.3.

4.4.5 Dissolved Oxygen

The existing permit contains a limit of 5 mg/l for Dissolved Oxygen (DO). DEP's Technical Guidance for the Development and Specification of Effluent Limitations (362-0400-001, 10/97) suggests that either the adopted minimum stream D.O. criteria for the receiving stream or the effluent level determined through water quality modeling be used for the limit. Since the WQM 7.0 model was run using a minimum D.O. of 5.0 mg/l, this limit will be continued in the renewed permit with a daily monitoring requirement.

4.4.6 Phosphorus

The limit of 2 mg/l established in the existing permit was for the protection of the Lower Susquehanna River basin. This approach has been superseded by the Chesapeake Bay Strategy, but the limit will remain in the permit due to antibacksliding. This STP was designed to remove phosphorus and contains phosphorus limits in all previous permits. Past DMRs and inspection reports show that the STP is in compliance with the phosphorus effluent limits. Mass limits are calculated using the equation presented in section 4.3.

4.4.7 Total Residual Chlorine

The attached results of TRC calculation presented in attachment D utilizes the equations and calculations as presented in the Department's May 1, 2003 Implementation Guidance for Total Residual Chlorine (TRC) (ID No. 391-2000-015) for developing chlorine limitations. The Guidance references Chapter 92a, Section 92a.48 (b) which establishes a standard BAT limit of 0.5 mg/l unless a facility-specific BAT has been developed. The attached result indicates that a technology limit of 0.5 mg/l and 1.6mg/l IMAX would be needed to prevent toxicity concerns. This is consistent with the existing permit. The facility has no problem meetings the limits.

4.3.8 Total Suspended Solids (TSS):

There is no water quality criterion for TSS. A limit of 30 mg/I AML in the existing permit which was based on the minimum level of effluent quality attainable by secondary treatment as defined in 40 CFR 133.102b(1) and 25 PA § 92a.47(a)(1) and an AWL of 45mg/I per 40CFR 133.102(b)(2) and 25 PA § 92a.47(a)(2) with associated mass limits will remain in the permit. Mass limits are calculated using the equation presented in section 4.3.

4.4.9 Toxics

A reasonable potential (RP) analysis was done for pollutants sampled in support of the permit renewal application. All pollutants that were presented in the application sampling data were entered into DEP's Toxics Management Spreadsheet (TMS) which combines the logic in the previous Toxics Screening Analysis Spreadsheet and PENTOXSD Model to calculate WQBELs. The results of the TMS presented in attachment C indicate the discharge levels for all parameters analyzed except Total Zinc were well below DEP's target quantitation limits (TQL) and calculated WQBELs, therefore no limitation or monitoring is required in the permit. Monitoring was recommended for Total Zinc. Weekly monitoring of Total Zinc is required in the permit to collect additional data for analysis at the next permit renewal.

The recommended limits follow the logic presented in DEPs SOP, to establish limits in the permit where the maximum reported concentration exceeds 50% of the WQBEL, or for non-conservative pollutants to establish monitoring requirements where the maximum reported concentration is between 25% - 50% of the WQBEL, or to establish monitoring requirements for conservative pollutants where the maximum reported concentration is between 10% - 50% of the WQBEL.

4.4.10 Influent BOD and TSS Monitoring

The permit includes influent BOD5 and TSS monitoring at the same frequency as is done for effluent in order to implement Chapter 94.12 and assess percent removal requirements.

4.4.11 Industrial Users

Swatara Township wastewater treatment plant receives wastewater from some industrial users throughout its service area. The industrial users and a brief description are as follows:

		Discha	rge Rate (G	PD)	-	Significant Industrial User?
Industrial Users*	Process	NCCW	Sanitary	Other	Total	industrial User?
Lower Paxton Township Landfill	-	-	-	70,000	70,000	Yes
Fresh Express Incorporated	330,000	-	-	-	330,000	Yes
TOTAL	330,000	-	-	70,000	400,000	-

*The facility is implementing an approved EPA pretreatment program which is expected to control discharge of pollutants and address any negative impact from these significant industrial users.

4.4.12 Pretreatment Requirements

The design annual average flow of the treatment plant is 6.3 MGD and the facility receives flow from two significant industrial users as presented in section 4.4.11. EPA requires development and implementation of pretreatment program for this type of facility. Swatara Township Authority currently maintains and operates an EPA-approved pretreatment program. Consequently, the Department will continue to include permit conditions that dictate the operation and implementation of a pretreatment program in the permit.

4.4.13 Chesapeake Bay Strategy

The Department formulated a strategy in April 2007, to comply with the EPA and Chesapeake Bay Foundation requirements to reduce point source loadings of Total Nitrogen (TN) and Total Phosphorus (TP) to the Bay. In the Strategy, sewage dischargers have been prioritized by Central Office based on their delivered TN loadings to the Bay. The highest priority (Phases 1, 2, and 3) dischargers will receive annual loading caps based on their design flow on August 29, 2005 and concentrations of 6 mg/l TN and 0.8 mg/l TP. These limits may be achieved through a combination of treatment technology, credits, or offsets. Phase 4 (0.2 -0.4mgd) and Phase 5(below 0.2mdg) will be required to monitor and report TN and TP during permit renewal. Any facility in Phases 4 and 5 that undergoes expansion is subjected to cap load right away.

EPA published the Chesapeake Bay TMDL in December of 2010. In order to address the TMDL, Pennsylvania developed Chesapeake Watershed Implementation Plan (WIP) Phase 1, Phase 2 and currently Phase 3 WIP and a supplement to the WIPs in addition to the original Chesapeake Bay Strategy. As outlined in the current Phase 3 WIP and supplement to the WIP, re-issuing permits for significant dischargers follow the same phased approach formulated in the original Bay strategy. This facility falls in phase 1 of the strategy and is required to meet a total maximum annual Total Nitrogen Cap load of 115,367 lbs/year based on a design annual wasteflow of 6.3MGD and 6 mg/l and a TP cap load of 15,342 lbs/year based on annual wasteflow of 6.3 MGD and 0.8 mg/l total phosphorus in addition to a TN load of 3,272lbs/day and TP load of 524lbs/day transferred from Permit Number PA0087017.

Lower Paxton Township (Springford Village) 0.075MGD package plant with Permit Number PA0087017 was decommissioned and the flow is connected to the Swatara Township STP for treatment. The Cap load was transferred from the facility to Swatara Township in accordance with the Phase II WIP Wastewater Supplement, revised March 27, 2015. The loadings were calculated based on actual flow of 0.043MGD with a default TN of 25 mg/l and TP of 4mg/l. A cap load of 3,272lbs/year (0.043 x 25x 8.34 x365) TN and 524lbs/year (0.043 x4x8.34 x365) TP has been added to the original cap load of Swatara Township. The total TN and TP cap loads for Swatara Township are respectively 118,339lbs/year and 15,866lbs/year. Lower Paxton Township - Springford Village facility was previously considered non-significant, and its load has been moved from the non-significant aggregate load to the Phase 1 aggregate in the phase 3 WIP wastewater supplement.

The Department also approved a total nitrogen offset of 300lbs of nitrogen based on 12 EDUs at 25lbs/EDU for the Swatara Township Authority. The offsets are for 12 on-lot disposal systems that have been connected to the sewer conveyance system. These on-lot systems were put into use prior to January 1, 2003 and retired after January 1, 2003. The approved offsets are only for compliance purposes and are not available for trading or selling and will not be added to the base TN cap load. The permit will show the base cap load on the effluent page and show the offsets as a foot note with a language indicating the offsets may be applied throughout the compliance year or during the truing period. A complete list of addresses of the dwellings that were served by the retired on-lot systems that are now connected to the sewage conveyance system is on file.

4.4.14 Stormwater

The application identifies outfall 002 (40°15'32.19"/76°43'46.34") and outfall 003 (40°15'30.80"/76°43'48.40") as receiving stormwater runoff from the treatment plant site. To comply with stormwater requirements of 40 CFR 122.26(b)(14)(ix), part C of the permit will require the permittee to comply with the standard requirements applicable to stormwater outfalls for 002 and 003 with BMP conditions

4.4.15 Fecal Coliform and E. Coli

The existing Fecal Coliform limit is consistent with the technology limits recommended in 92a.47(a)(4) and (a)(5) and will remain in the permit. Monthly monitoring of E. Coli is required in the permit following DEP recommendation of 1/month monitoring of E. Coli at a minimum for this type of facility.

5.0 Other Requirements

5.1 Anti-backsliding

Not applicable to this permit

5.2 Anti-Degradation (93.4)

The effluent limits for this discharge have been developed to ensure that existing instream water uses and the level of water quality necessary to protect the existing uses are maintained and protected. No High-Quality Waters are impacted by this discharge. No Exceptional Value Waters are impacted by this discharge.

5.3 Class A Wild Trout Fisheries

No Class A Wild Trout Fisheries are impacted by this discharge.

5.4 303d Listed Streams

The discharge is not located on a 303d listed stream segment.

5.5 Special Permit Conditions

The permit contains the following special conditions:

 Stormwater Prohibition, Approval Contingencies, Solids Management, Restriction on receipt of hauled in waste under certain conditions, and requirement for pretreatment program implementation, Storm water requirement and WET testing requirement.

5.6 Basis for Effluent and Surface Water Monitoring

Section 308 of the CWA and federal regulation 40 CFR 122.44(i) require monitoring in permits to determine compliance with effluent limitations. Monitoring may also be required to gather effluent and surface water data to determine if additional effluent limitations are required and/or to monitor effluent impacts on receiving water quality. The permittee is responsible for conducting the monitoring and for reporting results on Discharge Monitoring Reports (DMRs).

5.7 Effluent Monitoring Frequency

Monitoring frequencies are based on the nature and effect of the pollutant, as well as a determination of the minimum sampling necessary to adequately monitor the facility's performance. Permittees have the option of taking more frequent samples than are required under the permit. These samples can be used for averaging if they are conducted using EPA-approved test methods (generally found in 40 CFR 136) and if the Method Detection Limits are less than the effluent limits. The sampling location must be after the last treatment unit and prior to discharge to the receiving water. If no discharge occurs during the reporting period, "no discharge" shall be reported on the DMR.

6.0 Whole Effluent Toxicity (WET)

Whole Effluent Toxicity (WET) is a term used to describe the aggregate toxic effect of an aqueous sample (i.e whole effluent wastewater discharge) as measured by an organism's response upon exposure to the sample (lethality, impaired growth or reproduction). WET tests replicate, to the greatest extent possible, the total effect and actual environmental exposure of aquatic life to toxic pollutants in an effluent without requiring the identification of the specific pollutants. WET testing is a vital component of the water quality standards implementation through the NPDES permitting process. EPA's promulgated WET test methods include acute and chronic tests.

6.1 For Outfall 001, Acute Chronic WET Testing was completed:

\bowtie	Fc

- For the permit renewal application (4 tests). Quarterly throughout the permit term.
- Quarterly throughout the permit term and a TIE/TRE was conducted.
- Other:

The dilution series used for the tests was: 100%, 56%, 12%, 6%, and 3%. The Target Instream Waste Concentration (TIWC) to be used for analysis of the results is: 12%.

6.2 Summary of Four Most Recent Test Results

TST Data Analysis

	WET SI	ummary and	Evaluation		
Facility Name	Swatara Town	ship Authority			
Permit No.	PA0026735	omp / tatilong			
Design Flow (MGD)	6.3				
Q7-10 Flow (cfs)	76.86				
PMF.	0.042				
PMF	0.291				
			Test Result	s (Pass/Fail)	
		Test Date	Test Date	Test Date	Test Date
Species	E ndpoint	10/2/17	9/19/18	9/16/19	10/6/20
Ceriodaphnia	Survival	PASS	PASS	PASS	PASS
		-	Test Result		
		Test Date	Test Date	Test Date	Test Date
Species	E ndpoint	10/2/17	9/19/18	9/17/19	10/6/20
Ceriodaphnia	Reproduction	PASS	PASS	PASS	PASS
<u> </u>	1 1		Teet Decult	s (Pass/Fail)	
		Test Date	Test Date	Test Date	Test Date
Species	Endpoint	10/3/17	9/20/18	9/17/19	10/6/20
Pimephales	Survival	PASS	PASS	PASS	PASS
			Test Result	s (Pass/Fail)	
		TestDate	Test Date	Test Date	Test Date
Species	E ndpoint	10/3/17	9/20/18	9/17/19	10/6/20
Pimephales	Growth	PASS	PASS	PASS	PASS
Reasonable Potentia <u>Permit Recommenda</u> Test Type TIWC	tions Chronic	% Effluent			
Dilution Series		30, 65, 100	% E ffluent		
Permit Limit	None	,,			
Permit Limit Species					

See attachment E for additional TST data analysis

* A "passing" result is that in which the replicate data for the TIWC is not statistically significant from the control condition. This is exhibited when the calculated t value ("T-Test Result") is greater than the critical t value. A "failing" result is exhibited when the calculated t value ("T-Test Result") is less than the critical t value.

Is there reasonable potential for an excursion above water quality standards based on the results of these tests? (*NOTE* – *In general, reasonable potential is determined anytime there is at least one test failure in the previous four tests*).

\Box YES \boxtimes NO

6.3 Evaluation of Test Type, IWC and Dilution Series for Renewed Permit

Acute Partial Mix Factor (PMFa): 0.042 Chronic Partial Mix Factor (PMFc): 0.291

6.3.1. Determine IWC – Acute (IWCa):

(Q_d x 1.547) / ((Q₇₋₁₀ x PMFa) + (Q_d x 1.547))

[(6.3 MGD x 1.547) / ((76.86cfs x 0.042) + (6.3 MGD x 1.547))] x 100 = 75%

Is IWCa < 1%? YES X NO (YES - Acute Tests Required OR NO - Chronic Tests Required)

If the discharge is to the tidal portion of the Delaware River, indicate how the type of test was determined:

N/A

6.3.2 Type of Test for Permit Renewal:

Chronic Test

6.3.2a. Determine Target IWCa (If Acute Tests Required)

TIWCa = IWCa / 0.3 = %

6.3.2b. Determine Target IWCc (If Chronic Tests Required)

(Q_d x 1.547) / (Q₇₋₁₀ x PMFc) + (Q_d x 1.547)

[(6.3 MGD x 1.547) / ((76.86 cfs x 0.291) + (6.3 MGD x 1.547))] x 100 = 30%

6.3.3. Determine Dilution Series

(NOTE – check Attachment C of WET SOP for dilution series based on TIWCa or TIWCc, whichever applies).

Dilution Series = 100%, 65%, 30%, 15%, and 8%.

6.4 WET Limits

Has reasonable potential been determined? YES
NO

Will WET limits be established in the permit?
YES
NO

If WET limits will be established, identify the species and the limit values for the permit (TU).

N/A

If WET limits will not be established, but reasonable potential was determined, indicate the rationale for not establishing WET limits: N/A

No WETT limit or monitoring is deemed necessary. The standard Part C condition for WET testing will be included in the permit.

7.0 Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

			Effluent L	imitations.			Monitoring Re	quirements
Parameter	Mass Units	; (lbs/day) ⁽¹⁾		Concentrati	ions (mg/L)		Minimum ⁽²⁾	Required
Farameter	Average Monthly	Weekly Average	Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report Daily Max	xxx	xxx	XXX	ххх	Continuous	Measured
pH (S.U.)	ххх	xxx	6.0 Inst Min	xxx	XXX	9.0	1/day	Grab
DO	xxx	xxx	5.0 Daily Min	xxx	XXX	xxx	1/day	Grab
TRC	xxx	xxx	xxx	0.5	XXX	1.6	1/day	Grab
CBOD5 Nov 1 - Apr 30	1313	2101	XXX	25	40	50	3/week	24-Hr Composite
CBOD5 May 1 - Oct 31	998	1576	XXX	19	30	38	3/week	24-Hr Composite
BOD5 Raw Sewage Influent	Report	Report Daily Max	xxx	Report	XXX	XXX	3/week	24-Hr Composite
TSS Raw Sewage Influent	Report	Report Daily Max	XXX	Report	XXX	xxx	3/week	24-Hr Composite
TSS	1576	2364	xxx	30	45	60	3/week	24-Hr Composite
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	ххх	xxx	xxx	2000 Geo Mean	XXX	10000	3/week	Grab
Fecal Coliform (No./100 ml) May 1 - Sep 30	ххх	xxx	xxx	200 Geo Mean	XXX	1000	3/week	Grab
E. Coli (No./100 ml)	ххх	XXX	xxx	XXX	XXX	Report	1/month	Grab
Nitrate-Nitrite	XXX	XXX	XXX	Report	XXX	xxx	2/week	24-Hr Composite

Outfall 001, Continued (from Permit Effective Date through Permit Expiration Date)

			Effluent L	imitations			Monitoring Re	quirements
Parameter	Mass Units	(lbs/day) (1)		Concentrat	ions (mg/L)		Minimum ⁽²⁾	Required
Farameter	Average Monthly	Weekly Average	Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type
	Report							
Nitrate-Nitrite (lbs)	Total Mo	XXX	XXX	XXX	XXX	XXX	1/month	Calculation
Total Nitrogen	xxx	XXX	XXX	Report	XXX	XXX	1/month	Calculation
	Report							
Total Nitrogen (lbs)	Total Mo	XXX	XXX	XXX	XXX	XXX	1/month	Calculation
Total Nitrogen (lbs) Effluent Net	Report Total Mo	XXX	XXX	xxx	xxx	XXX	1/month	Calculation
Ammonia								24-Hr
Nov 1 - Apr 30	900	XXX	XXX	18	XXX	36	3/week	Composite
Ammonia								24-Hr
May 1 - Oct 31	338	XXX	XXX	6	XXX	12	3/week	Composite
Ammonia (Ibs)	Report Total Mo	XXX	xxx	xxx	XXX	xxx	1/month	Calculation
TKN	XXX	XXX	xxx	Report	XXX	ххх	2/week	24-Hr Composite
TKN (lbs)	Report Total Mo	XXX	xxx	XXX	xxx	XXX	1/month	Calculation
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	7000	7000	7000	,,,,,,	.,	24-Hr
Total Phosphorus	105	XXX	XXX	2.0	XXX	4	3/week	Composite
Total Phosphorus (lbs)	Report							
Effluent Net	Total Mo	XXX	XXX	XXX	XXX	XXX	1/month	Calculation
	Report							
Total Phosphorus (lbs)	Total Mo	XXX	XXX	XXX	XXX	XXX	1/month	Calculation
		_						24-Hr
Zinc, Total	Report	Report	XXX	Report	Report	XXX	1/week	Composite

Compliance Sampling Location: Outfall 001

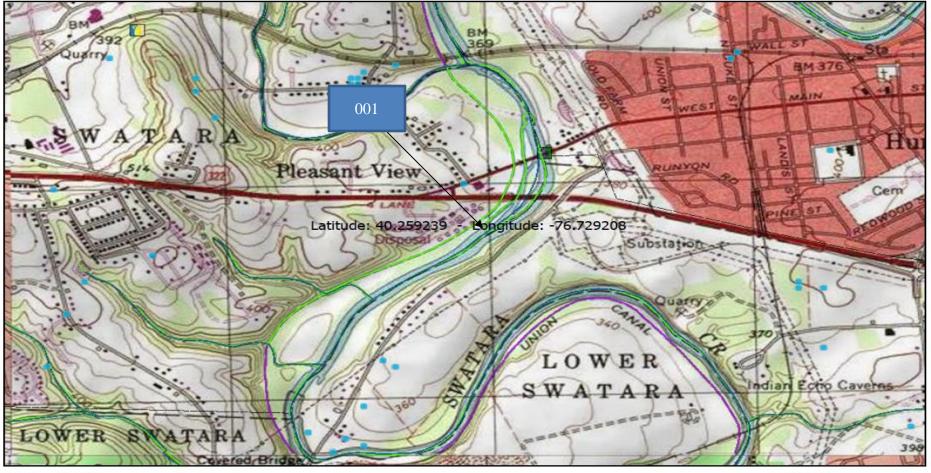
7.1 Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, to comply with Pennsylvania's Chesapeake Bay Tributary Strategy.

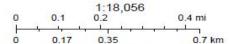
Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

			Effluent L	imitations			Monitoring Re	quirements
Parameter	Mass Unit	s (Ibs/day) ⁽¹⁾		Concentrat	Minimum ⁽²⁾	Required		
Farameter	Monthly	Annual	Monthly	Monthly Average	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Total Nitrogen* (lbs)		118339						
Effluent Net	XXX	Total Annual	XXX	XXX	XXX	XXX	1/year	Calculation
Total Nitrogen (lbs)	XXX	Report Total Annual	XXX	XXX	XXX	XXX	1/year	Calculation
Ammonia (lbs)	XXX	Report Total Annual	XXX	XXX	xxx	XXX	1/year	Calculation
Total Phosphorus (lbs) Effluent Net	XXX	15866 Total Annual	XXX	XXX	XXX	XXX	1/year	Calculation
Total Phosphorus (lbs)	ХХХ	Report Total Annual	XXX	XXX	xxx	XXX	1/year	Calculation

Compliance Sampling Location: Outfall 001


Other Comments:

*The permittee is authorized to use 300 lbs/year as Total Nitrogen (TN) offsets toward compliance with the Annual Net TN mass load limitations (Cap Loads), in accordance with Part C of this permit. These Offsets may be applied throughout the Compliance Year or during the Truing Period. The application of offsets must be reported to DEP as described in Part C. The Offsets are authorized for the following pollutant load reduction activities: Connection of 12 on-lot sewage disposal systems to the public sewer system after January 1, 2003, in which 25 lbs/year of TN offsets are granted per connection.


	8.0 Tools and References Used to Develop Permit
	WQM for Windows Model (see Attachment B)
	Toxics Management Spreadsheet (see Attachment C)
	TRC Model Spreadsheet (see Attachment D)
	Temperature Model Spreadsheet (see Attachment)
	Water Quality Toxics Management Strategy, 361-0100-003, 4/06.
	Technical Guidance for the Development and Specification of Effluent Limitations, 362-0400-001, 10/97.
	Policy for Permitting Surface Water Diversions, 362-2000-003, 3/98.
	Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 362-2000-008, 11/96.
	Technology-Based Control Requirements for Water Treatment Plant Wastes, 362-2183-003, 10/97.
	Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 362-2183-004, 12/97.
	Pennsylvania CSO Policy, 385-2000-011, 9/08.
	Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03.
	Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 391-2000-002, 4/97.
	Determining Water Quality-Based Effluent Limits, 391-2000-003, 12/97.
	Implementation Guidance Design Conditions, 391-2000-006, 9/97.
\square	Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen, Version 1.0, 391-2000-007, 6/2004.
	Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 391-2000-008, 10/1997.
	Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments, 391-2000-010, 3/99.
	Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 391-2000-011, 5/2004.
	Implementation Guidance for Section 93.7 Ammonia Criteria, 391-2000-013, 11/97.
	Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 391-2000-014, 4/2008.
	Implementation Guidance Total Residual Chlorine (TRC) Regulation, 391-2000-015, 11/1994.
	Implementation Guidance for Temperature Criteria, 391-2000-017, 4/09.
\square	Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 391-2000-018, 10/97.
	Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 391-2000-019, 10/97.
	Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 391-2000-021, 3/99.
	Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 391-2000-022, 3/1999.
	Design Stream Flows, 391-2000-023, 9/98.
	Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 391-2000-024, 10/98.
	Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 391-3200-013, 6/97.
\square	Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07.
\square	SOP: WETT, Establishing Effluent Limitations for Individual Sewage Permits
	Other:

9. Attachment

A. Topographical Map

October 28, 2021

Source: Esri, Maxar, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA, USGS, AeroGRID, IGN, and the GIS User Community, Sources: Esri,

B. WQM Model Results

	SWP Basin Stre	am Code		Stream Name	2.		
	07D	9361		SWATARA CRE	EK		
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
14.600	Derry Clearwatr	PA0026484	5.020	CBOD5	20,63		
				NH3-N	6.51	13.02	
				Dissolved Oxygen			5
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
10.100	Suez Water	PA001464	0.250	CBOD5	25		
				NH3-N	16.39	32.78	
				Dissolved Oxygen			5
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
9.100	Swatara Twp	PA0026735	6.300	CBOD5	20.26		
				NH3-N	7.74	15.48	
				Dissolved Oxygen			5
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl, Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limil Minimum (mg/L)
4.600	Derry SW	PA0082393	0.600	CBOD5	25		
				NH3-N	25	50	
				Dissolved Oxygen			5

Thursday, October 28, 2021

Version 1.1

Page 1 of 1

	SWP Basir			Stre	am Name		RMI		evation (ft)	Drainage Area (sq mi)	Slope (ft/ft)	PWS Withdra (mgd	wal	Apply FC
	07D	93	361 SWAT	ARA CRE	ΞEK		4.60	00	289.00	557.00	0.00000		0.00	\checkmark
					St	ream Dat	a			-				
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth		<u>Tributary</u> p pH	Tem	<u>Stream</u> np	рH	
oona.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C))	(°C	;)		
Q7-10 Q1-10 Q30-10	0.140	0.00 0.00 0.00		0.000 0.000 0.000	0.000 0.000 0.000	0.0	0.00	0.0	00 23	3.00 8.0	0	0.00	0.00	
					Di	scharge	Data							
			Name	Per	mit Numbei	Disc	Permitte Disc Flow (mgd)	Dis Flo	sc Res ow Fa	Dis erve Terr ctor (°C	ip p	isc bH		
		Derry	sw	PA	0082393	0.600	0 0.600	00 0.6	3000 0	0.000 2	5.00	6.90		
					Pa	arameter	Data							
			1	Paramete	Name			Frib Conc	Stream Conc	Fate Coef				
						(m	ng/L) (n	ng/L)	(mg/L)	(1/days)				
	_		CBOD5				25.00	2.00	0.00	1.50				
			Dissolved	Oxygen			5.00	8.24	0.00	00.0				
			NH3-N				25.00	0.00	0.00	0.70				

Input Data WQM 7.0

Thursday, October 28, 2021

Version 1.1

Page 4 of 5

.

	SWP Basir			Stre	am Name		RMI		vation (ft)	Draina Area (sq m	a	Slope (ft/ft)	PWS Withdra (mgd	wal	Apply FC
	07D	93	361 SWAT	ARA CRE	EK		2.30	00	277.00	56	9.00	0.00000		0.00	V
			******		S	tream Da	ta								
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Ten	<u>Tributa</u> ıp	r <u>y</u> pH	Tem	<u>Stream</u> p	pĤ	
· ·	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C	;)		(°C)		
Q7-10	0.140	0.00	0.00	0.000	0.000	0.0	0,00	0.0	0 2	3.00	8.0) I	0.00	0.00	
Q1-10		0.00	0,00	0.000	0.000										
Q30-10		0.00	0.00	0.000	0.000										

	Dis	scharge D	ata					
Name	Disc Disc Disc Disc Disc		Permitted Disc Flow (mgd)	ow Flow		erve ctor	Disc Temp (°C)	Disc pH
		0.0000	0.0000	0.0000) (0.000	0.00	7.00
	Pa	rameter D	ata					
Dor	ameter Name	Dis Co			eam onc	Fate Coef		
гai		(mg	/L) (mg	/L) (m	g/L)	(1/days))	
CBOD5		2	5.00 ;	2.00	0.00	1.5	0	
Dissolved Ox	ygen		3.00	8.24	0.00	0.0	0	
NH3-N		2	5.00 (0.00	0.00	0.7	n	

Input Data WQM 7.0

.

.

	<u>sw</u>	<u>P Basin</u>	Strea	<u>m Code</u>				<u>Stream</u>	<u>Name</u>				
		07D	9361		SWATARA CREEK								
RMI	Stream Flow	PWS With	Net Stream Flow	Disc Analysis Flow (cfs)	•	Depth	Width	W/D Ratio	Velocity	Trav Time	Analysis Temp	Analysis pH	
	(cfs)	(cfs)	(cfs)	(015)	(ft/ft)	(ft)	(ft)		(fps)	(days)	(°C)		
Q7-1) Flow												
14.600	70.70	0.00	70.70	7.7659	0.00029	1.103	153.08	138.73	0.46	0.592	23.20	7.92	
10.100	73.64	0.00	73.64	8.1527	0.00114	1.08	148.85	137.88	0.51	0.120	23.18	7.86	
9.100	76.86	0.00	76.86	17.8988	0.00067	1.096	161.96	147.71	0.53	0.515	23.36	7,60	
4.600	77.98	0.00	77.98	18.827	0.00099	1.092	161.14	147.62	0.55	0.255	23.37	7.58	
Q1-1(0 Flow												
14.600	62.92	0.00	62.92	7.7659	0.00029	NA	NA	NA	0.44	0.628	23.22	7,91	
10.100	65.54	0.00	65.54	8.1527	0.00114	NA	NA	NA	0.48	0.127	23.20	7.84	
9.100	68,41	0.00	68.41	17.8988	0.00067	NA	NA	NA	0.51	0.543	23.39	7.57	
4.600	69.40	0.00	69.40	18.827	0.00099	NA	NA	NA	0.52	0.269	23.40	7.56	
Q30-	10 Flow	,											
14.600	86.96	0.00	86.96	7.7659	0.00029	NA	NA	NA	0.52	0.533	23.16	7.93	
10.100	90.58	0.00	90.58	8.1527	0.00114	NA	NA	NA	0.57	0.108	23,15	7.88	
9.100	94.54	0.00	94.54	17.8988	0.00067	NA	NA	NA	0.59	0.468	23.30	7.64	
4.600	95.92	0.00	95.92	18.827	0.00099	NA	NA	NA	0.61	0.232	23.31	7.63	

WQM 7.0 Hydrodynamic Outputs

Version 1.1

Page 1 of 1

WQM 7.0 Modeling Specifications

Parameters		Both	Use Inputted Q1-10 and Q30-10 Flows	V .
WLA Method		EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio		0,89	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio		1.23	Temperature Adjust Kr	\checkmark
D.O. Saturation		90.00%	Use Balanced Technology	\checkmark
D.O. Goal	1	5		

Thursday, October 28, 2021

Version 1.1

Page 1 of 1

		<u>am Code</u> 9361			<u>ream Name</u> TARA CREE	ĸ	
NH3-N	Acute Allocation	IS					
RMI	Discharge Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
14.60	0 Derry Clearwatr	3.55	32.35	3.55	28.63	3	11
10.10	0 Suez Water	3,6	50	4	44.26	3	11
9.10	0 Swatara Twp	5.93	47.55	6.24	42.09	3	11
. 4.60	0 Derry SW	3.41	50	6.37	50	0	0
NH3-N (Chronic Allocat	ions					
RMI	Discharge Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
14.60	0 Derry Clearwatr	:7	8.54	.7	6.51	3	24
10.10	0 Suez Water	.7	25	.75	19.05	3	24
9,10	0 Swatara Twp	.95	10.16	.98	7.74	.3	24
4.60	0 Derry SW	.68	25	1	25	0	0
Dissolve	ed Oxygen Alloo	ations			•		÷ ,
		<u>(</u>	CBOD5	<u>NH3-N</u>	Dissol	ved Oxyger	<u>)</u> Critical F
RMI	Discharge Na		ne Multiple	Baseline Mu		ne Multiple	Reach R

RMI	Discharge Name	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple (mg/L)	Reach	Reduction
14.60	Derry Clearwatr	25	20.63	6.51	6.51	5	5	3	10
10.10	Suez Water	25	25	19.05	16,39	5	5	3	10
9.10	Swatara Twp	25	20.26	7.74	7.74	5	5	3	10
4.60	Derry SW	. 25	25	25	25	5	5	0	0

Thursday, October 28, 2021

Version 1.1

	<u>tream Code</u>			<u>Stream Name</u>	
07D	9361		S	WATARA CREEK	
RMI	Total Discharge	Flow (mgd) <u>Ana</u>	ysis Temperature (°C)	Analysis pH
14.600	5.02)		23.198	7.916
Reach Width (ft)	Reach De	oth (ft)		Reach WDRatio	Reach Velocity (fps)
153.076	1.10	3		138.733	0.465
Reach CBOD5 (mg/L)	<u>Reach Kc (</u>	1/days)	B	each NH3-N (mg/L)	Reach Kn (1/days)
3.84	• 0.52	3		0.64	0.895
Reach DO (mg/L)	<u>Reach Kr (</u>	<u>1/days)</u>		Kr Equation	<u>Reach DO Goal (mg/L)</u>
7,922	0.68	3		Tsivoglou	5
Reach Travel Time (days)	х. Х	Subreach	Deculto		
0.592	TravTime (days)		NH3-N (mg/L)	D.O. (mg/L)	
	(uays)	(mg/c)	(mg/r_)	((()g/L)	
	0.059	3.71	0.61	7.60	
	0.118	3.58	0.58	7.31	
	0.178	3.45	0.55	7.04	
	0.237	3.33	0.52	6.80	
	0.296	3.21	0.49	6.58	
	0.355	3.09	0.43	6.38	
	0.414	2,98	0.44	6.20	
	0.474	2.98		6.04	
	0.533		0.42	5.89	
	0.533	2.77 2.68	0.40 0.38	5.77	
RMI	Total Discharge) <u>Ana</u>	lysis Temperature (°C)	Analysis pH
10.100	5.27			23.176	7.857
Reach Width (ft)	Reach De			Reach WDRatio	Reach Velocity (fps)
148.849	1.08		-	137.885	0.509
Developed (()	<u>Reach Kc (</u>		<u>R</u>	<u>each NH3-N (mg/L)</u> 0.44	<u>Reach Kn (1/days)</u> 0.894
Reach CBOD5 (mg/L)	0.44	3		0.44 Kr Equation	0.894
2.76	0.41 Reach Kr.(1/daye)			Reach DO Goal (mall)
	0.41 <u>Reach Kr (</u> 2.90			Tsivoglou	<u>Reach DO Goal (mg/L)</u> 5
2.76 <u>Reach DO (mg/L)</u>	<u>Reach Kr (</u> 2.90) Results		
2.76 <u>Reach DO (mg/L)</u> 5.851	<u>Reach Kr (</u> 2.90 TravTime	9 Subreach	NH3-N	Tsivoglou D.O.	<u>Reach DO Goal (mg/L)</u> 5
2.76 <u>Reach DO (mg/L)</u> 5.851 Reach Travel Time (days)	<u>Reach Kr (</u> 2.90	9 Subreach		Tsivoglou	
2.76 <u>Reach DO (mg/L)</u> 5.851 Reach Travel Time (days)	<u>Reach Kr (</u> 2.90 TravTime	9 Subreach CBOD5	NH3-N	Tsivoglou D.O.	
2.76 <u>Reach DO (mg/L)</u> 5.851 Reach Travel Time (days)	<u>Reach Kr (</u> 2.90 TravTime (days)	9 Subreach CBOD5 (mg/L)	NH3-N (mg/L)	Tsivoglou D.O. (mg/L)	
2.76 <u>Reach DO (mg/L)</u> 5.851 Reach Travel Time (days)	Reach Kr (2.90 TravTime (days) 0.012	9 Subreach CBOD5 (mg/L) 2.74	NH3-N (mg/L) 0.44	Tsivoglou D.O. (mg/L) 5.90	
2.76 <u>Reach DO (mg/L)</u> 5.851 Reach Travel Time (days)	Reach Kr (2.90 TravTime (days) 0.012 0.024	9 Subreach CBOD5 (mg/L) 2.74 2.73	NH3-N (mg/L) 0.44 0.43	Tsivoglou D.O. (mg/L) 5.90 5.95	
2.76 <u>Reach DO (mg/L)</u> 5.851 Reach Travel Time (days)	Reach Kr (2.90 TravTime (days) 0.012 0.024 0.036 0.048	9 Subreach CBOD5 (mg/L) 2.74 2.73 2.71 2.69	NH3-N (mg/L) 0.44 0.43 0.43 0.42	Tsivoglou D.O. (mg/L) 5.90 5.95 6.00 6.05	
2.76 <u>Reach DO (mg/L)</u> 5.851 <u>Reach Travel Time (days)</u>	Reach Kr (2.90 TravTime (days) 0.012 0.024 0.036 0.048 0.060	9 Subreach CBOD5 (mg/L) 2.74 2.73 2.71 2.69 2.68	NH3-N (mg/L) 0.44 0.43 0.43 0.42 0.42	Tsivoglou D.O. (mg/L) 5.90 5.95 6.00 6.05 6.09	
2.76 <u>Reach DO (mg/L)</u> 5.851 Reach Travel Time (days)	Reach Kr (2.90 TravTime (days) 0.012 0.024 0.036 0.048 0.060 0.072	9 Subreach CBOD5 (mg/L) 2.74 2.73 2.71 2.69 2.68 2.66	NH3-N (mg/L) 0.44 0.43 0.43 0.42 0.42 0.42 0.41	Tsivoglou D.O. (mg/L) 5.90 5.95 6.00 6.05 6.09 6.14	
2.76 <u>Reach DO (mg/L)</u> 5.851 <u>Reach Travel Time (days)</u>	Reach Kr (2.90 TravTime (days) 0.012 0.024 0.036 0.048 0.060 0.072 0.084	9 Subreach CBOD5 (mg/L) 2.74 2.73 2.71 2.69 2.68 2.66 2.65	NH3-N (mg/L) 0.44 0.43 0.43 0.42 0.42 0.42 0.41 0.41	Tsivoglou D.O. (mg/L) 5.90 5.95 6.00 6.05 6.09 6.14 6.18	
2.76 <u>Reach DO (mg/L)</u> 5.851 Reach Travel Time (days)	Reach Kr (2.90 TravTime (days) 0.012 0.024 0.036 0.048 0.060 0.072 0.084 0.096	9 Subreach CBOD5 (mg/L) 2.74 2.73 2.71 2.69 2.68 2.66 2.65 2.63	NH3-N (mg/L) 0.44 0.43 0.43 0.42 0.42 0.42 0.41 0.41 0.40	Tsivoglou D.O. (mg/L) 5.90 5.95 6.00 6.05 6.09 6.14 6.18 6.22	
2.76 <u>Reach DO (mg/L)</u> 5.851 Reach Travel Time (days)	Reach Kr (2.90 TravTime (days) 0.012 0.024 0.036 0.048 0.060 0.072 0.084	9 Subreach CBOD5 (mg/L) 2.74 2.73 2.71 2.69 2.68 2.66 2.65	NH3-N (mg/L) 0.44 0.43 0.43 0.42 0.42 0.42 0.41 0.41	Tsivoglou D.O. (mg/L) 5.90 5.95 6.00 6.05 6.09 6.14 6.18	

WQM 7.0 D.O.Simulation

SWP Basin St	ream Code			Stream Name	
07D	9361		S	WATARA CREEK	
RMI	Total Discharge	Flow (mgd	<u>) Ana</u>	lysis Temperature (ºC)	Analysis pH
9.100	11.57	0		23.357	7.597
Reach Width (ft)	Reach De	pth (ft)		Reach WDRatio	Reach Velocity (fps)
161.955	1.09			147.709	0.534
Reach CBOD5 (mg/L)	<u>Reach Kc (</u>		R	each NH3-N (mg/L)	Reach Kn (1/days)
4.40	0.66			1.14 Ka Faura Vian	0.906
Reach DO (mg/L)	Reach Kr (Kr Equation	Reach DO Goal (mg/L)
6.238	1.81	D .		Tsivoglou	5
Reach Travel Time (days) 0.515	TravTime (days)	Subreach CBOD5 (mg/L)	Results NH3-N (mg/L)	D.O. (mg/L)	
	0.052	4.23	1.09	5.98	
	0.103	4.06	1.04	5.76	
	0.155	3.90	0.99	5.58	
	0.206	3.75	0.94	5.44	
	0.258	3.60	0.90	5.32	
	0.309	3.46	0.86	5.23	
	0.361	3.32	0.82	5.17	
	0.412	3.19	0.78	5.13	
	0.464	3.07	0.75	5.11	
	0.515	2.95	0.71	5.10	
<u>RM</u> 4 600	Total Discharge	Flow (mgd		lysis Temperature (°C)	Analysis pH
4.600	Total Discharge 12.17	Flow (mgd		lysis Temperature (°C) 23.369	7.584
4.600 <u>Reach Width (ft)</u>	<u>Total Discharge</u> 12.17 <u>Reach De</u>	Flow (mgd '0 pth (ft)		lysis Temperature (°C) 23.369 Reach WDRatio	7.584 <u>Reach Velocity (fps)</u>
4.600	Total Discharge 12.17	Flow (mgd '0 pth (ft) 2) <u>Ana</u>	lysis Temperature (°C) 23.369 Reach WDRatio 147.620	7.584
4.600 <u>Reach Width (ft)</u> 161.138	<u>Total Discharge</u> 12.17 <u>Reach De</u> 1.09:	Flow (mgd '0 pth (ft) 2 1/days)) <u>Ana</u>	lysis Temperature (°C) 23.369 Reach WDRatio	7.584 <u>Reach Velocity (fps)</u> 0.550 <u>Reach Kn (1/days)</u> 0.907
4.600 <u>Reach Width (ft)</u> 161.138 <u>Reach CBOD5 (mg/L)</u>	<u>Total Discharge</u> 12.17 <u>Reach De</u> 1.09 <u>Reach Kc (</u> 0.560 <u>Reach Kr (</u>	<u>Flow (mgd</u> 0 p <u>th (ft)</u> 2 1/days) 0 1/days)) <u>Ana</u>	lysis Temperature (°C) 23.369 Reach WDRatio 147.620 each NH3-N (mg/L) 0.94 Kr Equation	7.584 <u>Reach Velocity (fps)</u> 0.550 <u>Reach Kn (1/days)</u> 0.907 <u>Reach DO Goal (mg/L)</u>
4.600 <u>Reach Width (ft)</u> 161.138 <u>Reach CBOD5 (mg/L)</u> 3.15	<u>Total Discharge</u> 12.17 <u>Reach De</u> 1.09 <u>Reach Kc (</u> 0.560	<u>Flow (mgd</u> 0 p <u>th (ft)</u> 2 1/days) 0 1/days)) <u>Ana</u>	lysis Temperature (°C) 23.369 Reach WDRatio 147.620 each NH3-N (mg/L) 0.94	7.584 <u>Reach Velocity (fps)</u> 0.550 <u>Reach Kn (1/days)</u> 0.907
4.600 <u>Reach Width (ft)</u> 161.138 <u>Reach CBOD5 (mg/L)</u> 3.15 <u>Reach DO (mg/L)</u>	<u>Total Discharge</u> 12.17 <u>Reach De</u> 1.09: <u>Reach Kc (</u> 0.56(<u>Reach Kr (</u> 2.74) TravTime	Flow (mgd o pth (ft) 2 1/days) 0 1/days) 8 Subreach CBOD5	<u>) Ana</u> <u>R</u> esults NH3-N	lysis Temperature (°C) 23.369 Reach WDRatio 147.620 each NH3-N (mg/L) 0.94 Kr Equation Tsivoglou D.O.	7.584 <u>Reach Velocity (fps)</u> 0.550 <u>Reach Kn (1/days)</u> 0.907 <u>Reach DO Goal (mg/L)</u>
4.600 <u>Reach Width (ft)</u> 161.138 <u>Reach CBOD5 (mg/L)</u> 3.15 <u>Reach DO (mg/L)</u> 5.133 <u>Reach Travel Time (days)</u>	<u>Total Discharge</u> 12.17 <u>Reach De</u> 1.09 <u>Reach Kc (</u> 0.56 <u>Reach Kr (</u> 2.74	<u>Flow (mgd</u> 0 <u>pth (ft)</u> 2 1/days) 0 1/days) 8 Subreach) <u>Ana</u> <u>P</u> Results	lysis Temperature (°C) 23.369 Reach WDRatio 147.620 each NH3-N (mg/L) 0.94 Kr Equation Tsivoglou	7.584 <u>Reach Velocity (fps)</u> 0.550 <u>Reach Kn (1/davs)</u> 0.907 <u>Reach DO Goal (mg/L)</u>
4.600 <u>Reach Width (ft)</u> 161.138 <u>Reach CBOD5 (mg/L)</u> 3.15 <u>Reach DO (mg/L)</u> 5.133 <u>Reach Travel Time (days)</u>	<u>Total Discharge</u> 12.17 <u>Reach De</u> 1.09: <u>Reach Kc (</u> 0.56(<u>Reach Kr (</u> 2.74) TravTime	Flow (mgd o pth (ft) 2 1/days) 0 1/days) 8 Subreach CBOD5	<u>) Ana</u> <u>R</u> esults NH3-N	lysis Temperature (°C) 23.369 Reach WDRatio 147.620 each NH3-N (mg/L) 0.94 Kr Equation Tsivoglou D.O.	7.584 <u>Reach Velocity (fps)</u> 0.550 <u>Reach Kn (1/davs)</u> 0.907 <u>Reach DO Goal (mg/L)</u>
4.600 <u>Reach Width (ft)</u> 161.138 <u>Reach CBOD5 (mg/L)</u> 3.15 <u>Reach DO (mg/L)</u> 5.133 <u>Reach Travel Time (days)</u>	Total Discharge 12.17 <u>Reach De</u> 1.09; <u>Reach Kc (</u> 0.566 <u>Reach Kr (</u> 2.741 TravTime (days)	Flow (mgd o pth (ft) 2 1/days) 0 1/days) 8 Subreach CBOD5 (mg/L)) <u>Ana</u> <u>R</u> esults NH3-N (mg/L)	lysis Temperature (°C) 23.369 Reach WDRatio 147.620 each NH3-N (mg/L) 0.94 <u>Kr Equation</u> Tsivoglou D.O. (mg/L)	7.584 <u>Reach Velocity (fps)</u> 0.550 <u>Reach Kn (1/davs)</u> 0.907 <u>Reach DO Goal (mg/L)</u>
4.600 <u>Reach Width (ft)</u> 161.138 <u>Reach CBOD5 (mg/L)</u> 3.15 <u>Reach DO (mg/L)</u> 5.133 <u>Reach Travel Time (days)</u>	Total Discharge 12.17 <u>Reach De</u> 1.09; <u>Reach Kc (</u> 0.566 <u>Reach Kr (</u> 2.741 TravTime (days) 0.026	<u>Flow (mgd</u> 0 <u>pth (ft)</u> 2 <u>1/days)</u> 0 <u>1/days)</u> 8 Subreach CBOD5 (mg/L) 3.10	<u>) Ana</u> <u>R</u> esults NH3-N (mg/L) 0.92	lysis Temperature (°C) 23.369 Reach WDRatio 147.620 each NH3-N (mg/L) 0.94 <u>Kr Equation</u> Tsivoglou D.O. (mg/L) 5.20	7.584 <u>Reach Velocity (fps)</u> 0.550 <u>Reach Kn (1/days)</u> 0.907 <u>Reach DO Goal (mg/L)</u>
4.600 <u>Reach Width (ft)</u> 161.138 <u>Reach CBOD5 (mg/L)</u> 3.15 <u>Reach DO (mg/L)</u> 5.133 <u>Reach Travel Time (days)</u>	<u>Total Discharge</u> 12.17 <u>Reach De</u> 1.09: <u>Reach Kc (</u> 0.56(<u>Reach Kr (</u> 2.74) TravTime (days) 0.026 0.051 0.077 0.102	Flow (mgd o pth (ft) 2 1/days) 0 1/days) 8 Subreach CBOD5 (mg/L) 3.10 3.05 3.00 2.95) <u>Ana</u> <u>Results</u> NH3-N (mg/L) 0.92 0.90	lysis Temperature (°C) 23.369 Reach WDRatio 147.620 each NH3-N (mg/L) 0.94 Kr Equation Tsivoglou D.O. (mg/L) 5.20 5.20 5.26	7.584 <u>Reach Velocity (fps)</u> 0.550 <u>Reach Kn (1/davs)</u> 0.907 <u>Reach DO Goal (mg/L)</u>
4.600 <u>Reach Width (ft)</u> 161.138 <u>Reach CBOD5 (mg/L)</u> 3.15 <u>Reach DO (mg/L)</u> 5.133 <u>Reach Travel Time (days)</u>	Total Discharge 12.17 <u>Reach De</u> 1.09: <u>Reach Kc (</u> 0.56(<u>Reach Kr (</u> 2.74) TravTime (days) 0.026 0.051 0.077 0.102 0.128	Flow (mgd 0 pth (ft) 2 1/days) 0 1/days) 8 Subreach CBOD5 (mg/L) 3.10 3.05 3.00 2.95 2.90) <u>Ana</u> <u>Results</u> NH3-N (mg/L) 0.92 0.90 0.88 0.86 0.84	Ivsis Temperature (°C) 23.369 Reach WDRatio 147.620 each NH3-N (mg/L) 0.94 Kr Equation Tsivoglou D.O. (mg/L) 5.20 5.26 5.33 5.39 5.45	7.584 <u>Reach Velocity (fps)</u> 0.550 <u>Reach Kn (1/davs)</u> 0.907 <u>Reach DO Goal (mg/L)</u>
4.600 <u>Reach Width (ft)</u> 161.138 <u>Reach CBOD5 (mg/L)</u> 3.15 <u>Reach DO (mg/L)</u> 5.133 <u>Reach Travel Time (days)</u>	Total Discharge 12.17 Reach De 1.09: Reach Kc (0.56(Reach Kr (2.74) TravTime (days) 0.026 0.051 0.077 0.102 0.128 0.153	Flow (mgd 0 pth (ft) 2 1/days) 0 1/days) 8 Subreach CBOD5 (mg/L) 3.10 3.05 3.00 2.95 2.90 2.85) Ana Results NH3-N (mg/L) 0.92 0.90 0.88 0.86	Lysis Temperature (°C) 23.369 Reach WDRatio 147.620 each NH3-N (mg/L) 0.94 Kr Equation Tsivoglou D.O. (mg/L) 5.20 5.26 5.33 5.39 5.45 5.51	7.584 <u>Reach Velocity (fps)</u> 0.550 <u>Reach Kn (1/davs)</u> 0.907 <u>Reach DO Goal (mg/L)</u>
4.600 <u>Reach Width (ft)</u> 161.138 <u>Reach CBOD5 (mg/L)</u> 3.15 <u>Reach DO (mg/L)</u> 5.133 <u>Reach Travel Time (days)</u>	Total Discharge 12.17 Reach De 1.09: Reach Kc (0.56(Reach Kr (2.74) TravTime (days) 0.026 0.051 0.077 0.102 0.128 0.153 0.179	Flow (mgd 0 pth (ft) 2 1/days) 0 1/days) 8 Subreach CBOD5 (mg/L) 3.10 3.05 3.00 2.95 2.90 2.85 2.80) <u>Ana</u> <u>Results</u> NH3-N (mg/L) 0.92 0.90 0.88 0.86 0.84	Lysis Temperature (°C) 23.369 Reach WDRatio 147.620 each NH3-N (mg/L) 0.94 Kr Equation Tsivoglou D.O. (mg/L) 5.20 5.26 5.33 5.39 5.45 5.51 5.57	7.584 <u>Reach Velocity (fps)</u> 0.550 <u>Reach Kn (1/davs)</u> 0.907 <u>Reach DO Goal (mg/L)</u>
4.600 <u>Reach Width (ft)</u> 161.138 <u>Reach CBOD5 (mg/L)</u> 3.15 <u>Reach DO (mg/L)</u> 5.133 Reach Travel Time (days)	Total Discharge 12.17 Reach De 1.09: Reach Kc (0.56i Reach Kr (2.74i TravTime (days) 0.026 0.051 0.077 0.102 0.128 0.153 0.179 0.204	Flow (mgd 0 pth (ft) 2 1/days) 0 1/days) 8 Subreach CBOD5 (mg/L) 3.10 3.05 3.00 2.95 2.90 2.85 2.80 2.76) <u>Ana</u> Results NH3-N (mg/L) 0.92 0.90 0.88 0.86 0.84 0.82 0.80 0.78	Usis Temperature (°C) 23.369 Reach WDRatio 147.620 each NH3-N (mg/L) 0.94 Kr Equation Tsivoglou D.O. (mg/L) 5.20 5.26 5.33 5.39 5.45 5.51 5.57 5.63	7.584 <u>Reach Velocity (fps)</u> 0.550 <u>Reach Kn (1/davs)</u> 0.907 <u>Reach DO Goal (mg/L)</u>
4.600 <u>Reach Width (ft)</u> 161.138 <u>Reach CBOD5 (mg/L)</u> 3.15 <u>Reach DO (mg/L)</u> 5.133 <u>Reach Travel Time (days)</u>	Total Discharge 12.17 Reach De 1.09: Reach Kc (0.56(Reach Kr (2.74) TravTime (days) 0.026 0.051 0.077 0.102 0.128 0.153 0.179	Flow (mgd 0 pth (ft) 2 1/days) 0 1/days) 8 Subreach CBOD5 (mg/L) 3.10 3.05 3.00 2.95 2.90 2.85 2.80) <u>Ana</u> Results NH3-N (mg/L) 0.92 0.90 0.88 0.86 0.84 0.82 0.80	Lysis Temperature (°C) 23.369 Reach WDRatio 147.620 each NH3-N (mg/L) 0.94 Kr Equation Tsivoglou D.O. (mg/L) 5.20 5.26 5.33 5.39 5.45 5.51 5.57	7.584 <u>Reach Velocity (fps)</u> 0.550 <u>Reach Kn (1/days)</u> 0.907 <u>Reach DO Goal (mg/L)</u>

WQM 7.0 D.O.Simulation

Thursday, October 28, 2021

Page 2 of 2

C. Toxics Management Spreadsheet

Toxics Management Spreadsheet Version 1.3, March 2021

Discharge Information

Fac	tructions D allity: <u>Swa</u>	atara Twp Authority		ial Wast	e				PA0026			Outfall	No.: 001	
					Discha	rge Cha	racterist	tics						
D	esign Flow	Handrage (mail)		C11)+		Parti	al Mix Fa	actors (I	PMFs)		Com	plete Mi	x Times	(min)
	(MGD)*	Hardness (mg/l)*	рн	SU)*	AFC	:	CFC	THE	1	CRL	Q	7-10	Qh	
	6.3	151	6	.9										
						0 if let	t blank	0.5 if le	eft blank	() if left blan	k	1 if lef	t blank
	Disch	arge Pollutant	Units	Max Dis Co	icharge nc	Trib Conc	Stream Conc	Daily CV	Hourly CV	Strea m CV	Fate Coeff	FOS	Criteri a Mod	Chem Transl
	Total Dissolve	ed Solids (PWS)	mg/L		452									
5	Chloride (PW	S)	mg/L		107									
roup	Bromide		mg/L		0.2									
<u>_</u>	0.15.1.000000						8							

	Discharge Polititant	Units		Conc	Conc	Conc	CV	CV	m CV	Coeff	103	a Mod	Transl
	Total Dissolved Solids (PWS)	mg/L		452									
5	Chloride (PWS)	mg/L		107									
1 a	Bromide	mg/L		0.2									
Group	Sulfate (PWS)	mg/L		35.9									
	Fluoride (PWS)	mg/L											
	Total Aluminum	µg/L		5									
	Total Antimony	µg/L	<	0.4									
	Total Arsenic	µg/L	<	1									
	Total Barium	µg/L		56									
	Total Beryllium	µg/L	<	0.4									
	Total Boron	µg/L		145									
	Total Cadmium	µg/L	<	0.08									
	Total Chromium (III)	µg/L	<	1									
	Hexavalent Chromium	µg/L	<	0.1									
	Total Cobalt	µg/L	<	1									
	Total Copper	µg/L		2									
5	Free Cyanide	µg/L		5									
Group	Total Cyanide	µg/L		18									
5	Dissolved Iron	µg/L		25									
	Total Iron	µg/L		54									
	Total Lead	µg/L	<	1									
	Total Manganese	µg/L		37									
	Total Mercury	µg/L	<	0.2									
	Total Nickel	µg/L		2									
	Total Phenols (Phenolics) (PWS)	µg/L		22									
	Total Selenium	µg/L	<	2									
	Total Silver	µg/L		0.06									
	Total Thallium	µg/L	<	0.4									
	Total Zinc	µg/L		85									
	Total Molybdenum	µg/L	<	1									
	Acrolein	µg/L	<	1									
	Acrylamide	µg/L	<										
	Acrylonitrile	µg/L	<	0.5									
	Benzene	µg/L	<	0.5									
	Bromoform	µg/L	<	0.5									

Discharge Information

NPDES Permit Fact Sheet NPDES Permit No. PA0026735 Swatara Township STP

	Carbon Tetrachloride	µg/L	<	0.5					
	Chlorobenzene	µg/L	<	0.5					
	Chlorodibromomethane	µg/L	<	0.5					
	Chloroethane	µg/L	<	0.5			 		
	2-Chloroethyl Vinyl Ether	µg/L	<	0.5					
	Chloroform	µg/L	-	1.4		 <u> </u>	 		
	Dichlorobromomethane	µg/L	<	0.5					
	1,1-Dichloroethane	µg/L	<	0.5					
3	1,2-Dichloroethane	µg/L	<	0.5					
Group	1,1-Dichloroethylene	µg/L	<	0.5					
2	1,2-Dichloropropane	µg/L	<	0.5					
0	1,3-Dichloropropylene	µg/L	<	0.5					
	1,4-Dioxane	µg/L		0.2					
	Ethylbenzene	µg/L	<	0.5					
	Methyl Bromide	µg/L	<	0.5					
	Methyl Chloride	µg/L	<	0.5					
	Methylene Chloride		-	0.5		 <u> </u>	 		
		µg/L	<	0.5		<u> </u>			
	1,1,2,2-Tetrachloroethane	µg/L							
	Tetrachloroethylene	µg/L	<	0.5					
	Toluene	µg/L	<	0.5					
	1,2-trans-Dichloroethylene	µg/L	<	0.5					
1	1,1,1-Trichloroethane	µg/L	<	0.5					
	1,1,2-Trichloroethane	µg/L	<	0.5					
	Trichloroethylene	µg/L	<	0.5					
	Vinyl Chloride	µg/L	<	0.5					
\vdash	2-Chlorophenol	µg/L	<	0.091			 		
	2,4-Dichlorophenol	µg/L	<	0.082					
	2,4-Dimethylphenol		<	0.437					
		µg/L				<u> </u>			
4	4,6-Dinitro-o-Cresol	µg/L	<	0.118					
à	2,4-Dinitrophenol	µg/L	<	3					
Group	2-Nitrophenol	µg/L	<	0.051					
ō	4-Nitrophenol	µg/L	<	0.0486					
	p-Chloro-m-Cresol	µg/L	<	0.099					
	Pentachlorophenol	µg/L	<	0.104					
	Phenol	µg/L	<	0.099					
	2,4,6-Trichlorophenol	µg/L	<	0.099					
\vdash	Acenaphthene	µg/L	<	0.103			 		
	Acenaphthylene	µg/L	<	0.091			 		
			<	0.091		<u> </u>			
	Anthracene	µg/L							
	Benzidine	µg/L	<	5		 	 		
	Benzo(a)Anthracene	µg/L	<	0.24					
	Benzo(a)Pyrene	µg/L	<	0.072					
	3,4-Benzofluoranthene	µg/L	<	0.049					
	Benzo(ghi)Perylene	µg/L	<	0.082					
	Benzo(k)Fluoranthene	µg/L	<	0.083					
1	Bis(2-Chloroethoxy)Methane	µg/L	<	0.085					
	Bis(2-Chloroethyl)Ether	µg/L	<	0.078			 		
1	Bis(2-Chloroisopropyl)Ether	µg/L	<	0.089					
1	Bis(2-Ethylhexyl)Phthalate		<	1.18					
1	4-Bromophenyl Phenyl Ether	µg/L							
1		µg/L	<	0.108					
	Butyl Benzyl Phthalate	µg/L	<	0.066					
1	2-Chloronaphthalene	µg/L	<	0.091			 		
1	4-Chlorophenyl Phenyl Ether	µg/L	<	0.095					
1	Chrysene	µg/L		0.22					
1	Dibenzo(a,h)Anthrancene	µg/L	<	0.053					
1	1,2-Dichlorobenzene	µg/L	<	0.5					
1	1.3-Dichlorobenzene	µg/L	<	0.5					
	1,4-Dichlorobenzene	µg/L	<	0.5					
p 5	3,3-Dichlorobenzidine	µg/L	<	0.0139					
Group	Diethyl Phthalate		<	0.0135					
5	-	µg/L					 		
1	Dimethyl Phthalate	µg/L	<	0.091			 		
1	Di-n-Butyl Phthalate	µg/L		0.86			 		
1	2,4-Dinitrotoluene	µg/L	<	0.084					

Discharge Information

NPDES Permit Fact Sheet NPDES Permit No. PA0026735 Swatara Township STP

						 	 	 		-
	2,6-Dinitrotoluene	µg/L	<	0.11						
[Di-n-Octyl Phthalate	µg/L	٨	0.076						
	1,2-Diphenylhydrazine	µg/L	٨	0.118						
1	Fluoranthene	µg/L	<	0.089						
1	Fluorene	µg/L	<	0.108						
Ī	Hexachlorobenzene	µg/L	<	0.088						
t	Hexachlorobutadiene	µg/L	<	0.082						
- 1	Hexachlorocyclopentadiene	µg/L	<	0.045						
- H	Hexachloroethane	µg/L	<	0.069					<u> </u>	
- H	Indeno(1,2,3-cd)Pyrene	µg/L	<	0.058					<u> </u>	
	Isophorone	µg/L	-	0.257				<u> </u>	<u> </u>	
- 1			<						<u> </u>	
	Naphthalene	µg/L		0.064				<u> </u>	<u> </u>	
- F	Nitrobenzene	µg/L	<	0.062	ļ					
	n-Nitrosodimethylamine	µg/L	<	0.066						
	n-Nitrosodi-n-Propylamine	µg/L	<	0.092						
	n-Nitrosodiphenylamine	µg/L	<	0.21						
	Phenanthrene	µg/L	<	0.099						
	Pyrene	µg/L	<	0.092						
	1,2,4-Trichlorobenzene	µg/L	<	0.093						
T	Aldrin	µg/L	<							
ł	alpha-BHC	µg/L	<							
- H	beta-BHC	µg/L	<							
- L	gamma-BHC	µg/L	<							
- H	delta BHC	µg/L	<							
- H	Chlordane	µg/L	<							
- H	4.4-DDT		<					<u> </u>	<u> </u>	
- H		µg/L							<u> </u>	
- L	4,4-DDE	µg/L	<			 				
- H	4,4-DDD	µg/L	<							
- H	Dieldrin	µg/L	<							
	alpha-Endosulfan	µg/L	<							
	beta-Endosulfan	µg/L	<							
	Endosulfan Sulfate	µg/L	<							
	Endrin	µg/L	٨							
	Endrin Aldehyde	µg/L	٨							
1	Heptachlor	µg/L	<							
Ī	Heptachlor Epoxide	µg/L	<							
	PCB-1016	µg/L	<							
ł	PCB-1221	µg/L	<							
- H	PCB-1232	µg/L	<							
- L	PCB-1242	µg/L	<						<u> </u>	
- H	PCB-1248	µg/L	<							
- L	PCB-1254		<					<u> </u>	<u> </u>	
- H		µg/L								
- 1	PCB-1260	µg/L	<							
- H	PCBs, Total	µg/L	<							
	Toxaphene	µg/L	<			 				
-	2,3,7,8-TCDD	ng/L	<							
- H	Gross Alpha	pCi/L								
	Total Beta	pCi/L	<							
ŀ	Radium 226/228 Total Strontium Total Uranium	pCi/L	<							
	Total Strontium	µg/L	<							
' [Total Uranium	µg/L	<							
	Osmotic Pressure	mOs/kg								
1										
ł										
ł										
ł										
ł										
$\left \right $										
-										
-										
								<u> </u>		

Discharge Information

11/1/2021

Toxics Management Spreadsheet Version 1.3, March 2021

Stream / Surface Water Information

Swatara Twp Authority, NPDES Permit No. PA0026735, Outfall 001

Instructions	Discharge	Stream	

Receiving Surface Water Name: Susquehanna River

009361

009361

9.1

4.6

305

289

Stream Code*	RMI*	Elevation (ft)*	DA (mi²)*	Slope (ft/ft)	PWS Withdrawal (MGD)	Apply Fish Criteria*

549

557

Q 7-10

Location

Point of Discharge

End of Reach 1

Location	RMI	LFY	Flow	(cfs)	W/D	Width	Depth	Velocit	Time	Tributa	iry	Stream	m	Analys	sis
Location	TXIVII	(cfs/mi ²)*	Stream	Tributary	Ratio	(ft)	(ft)	y (fps)	(dave)	Hardness	рН	Hardness*	рН*	Hardness	pН
Point of Discharge	9.1	0.14	807.35									149	8		
End of Reach 1	4.6	0.14	807.38												

No. Reaches to Model:

1

Yes

Yes

Qh

Location	RMI	LFY	Flow	(cfs)	W/D	Width	Depth	Velocit	Time	Tributa	iry	Stream	m	Analys	is
Location	1 XIVII	(cfs/mi ²)	Stream	Tributary	Ratio	(ft)	(ft)	y (fps)	(dave)	Hardness	рН	Hardness	рН	Hardness	pН
Point of Discharge	9.1														
End of Reach 1	4.6														

Statewide Criteria

O Great Lakes Criteria

ORSANCO Criteria

Model Results

Swatara Twp Authority, NPDES Permit No. PA0026735, Outfall 001

	In	structions	Results	RETURN TO INPUTS	SAVE AS PDF	PRINT) All) Inputs	○ Results	() Limits	
--	----	------------	---------	------------------	-------------	-------	-------	----------	-----------	-----------	--

✓ Hydrodynamics

Q 7-10

RMI	Stream Flow (cfs)	PWS Withdrawal (cfs)	Net Stream Flow (cfs)	Discharge Analysis Flow (cfs)	Slope (ft/ft)	Depth (ft)	Width (ft)	W/D Ratio	Velocity (fps)	Time (days)	Complete Mix Time (min)
9.1	807.35		807.35	9.746	0.00067	1.073	427.233	398.345	1.783	0.154	8474.031
4.6	807.38		807.38								

Q,

RMI	Stream Flow (cfs)	PWS Withdrawal (cfs)	Net Stream Flow (cfs)	Discharge Analysis Flow (cfs)	Slope (ft/ft)	Depth (ft)	Width (ft)	W/D Ratio	Velocity (fps)	Time (days)	Complete Mix Time (min)
9.1	2580.84		2580.84	9.746	0.00067	1.782	427.233	239.753	3.403	0.081	4022.504
4.6	2580.923		2580.92								

✓ Wasteload Allocations

AFC C	CCT (min): 1	5	PMF:	0.042	Ana	lysis Hardne	ss (mg/l):	149.45 Analysis pH: 7.45
Pollutants	Conc	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A	
Chloride (PWS)	0	0		0	N/A	N/A	N/A	
Sulfate (PWS)	0	0		0	N/A	N/A	N/A	
Total Aluminum	0	0		0	750	750	3,364	
Total Antimony	0	0		0	1,100	1,100	4,934	
Total Arsenic	0	0		0	340	340	1,525	Chem Translator of 1 applied
Total Barium	0	0		0	21,000	21,000	94,190	
Total Boron	0	0		0	8,100	8,100	36,330	
Total Cadmium	0	0		0	2.976	3.21	14.4	Chem Translator of 0.927 applied
Total Chromium (III)	0	0		0	791.766	2,506	11,238	Chem Translator of 0.316 applied
Hexavalent Chromium	0	0		0	16	16.3	73.1	Chem Translator of 0.982 applied
Total Cobalt	0	0		0	95	95.0	426	
Total Copper	0	0		0	19.623	20.4	91.7	Chem Translator of 0.96 applied
Free Cyanide	0	0		0	22	22.0	98.7	

Model Results

11/1/2021

NPDES Permit Fact Sheet NPDES Permit No. PA0026735 Swatara Township STP

Dissolved Iron	0	0	0	N/A	N/A	N/A	
Total Iron	0	0	0	N/A	N/A	N/A	
Total Lead	0	0	0	99.731	136	611	Chem Translator of 0.732 applied
Total Manganese	0	0	0	N/A	N/A	N/A	
Total Mercury	0	Ő	0	1.400	1.65	7.39	Chem Translator of 0.85 applied
Total Nickel	0	0	0	657.776	659	2,956	Chem Translator of 0.998 applied
Total Phenols (Phenolics) (PWS)	0	0	0	N/A	N/A	N/A	
Total Selenium	0	0	0	N/A	N/A	N/A	Chem Translator of 0.922 applied
Total Silver	0	Ő	0	6.420	7.55	33.9	Chem Translator of 0.85 applied
Total Thallium	0	Ő	0	65	65.0	292	
Total Zinc	0	0	0	164.701	168	755	Chem Translator of 0.978 applied
Acrolein	0	Ő	0	3	3.0	13.5	Chain Handator of 0.070 applied
Acrylonitrile	0	Ő	0	650	650	2,915	
Benzene	0	Ő	0	640	640	2,871	
Bromoform	0	0	0	1,800	1,800	8,073	
Carbon Tetrachloride	0	Ő	0	2,800	2,800	12,559	
Chlorobenzene	0	0	0	1,200	1,200	5,382	
Chlorodibromomethane	0	0	0	N/A	N/A	N/A	
2-Chloroethyl Vinyl Ether	0	0	0	18,000	18,000	80,734	
Chloroform	0	Ő	0	1,900	1,900	8,522	
Dichlorobromomethane	0	0	 0	N/A	N/A	N/A	
1.2-Dichloroethane	0	0	0	15,000	15,000	67,278	
1,1-Dichloroethylene	0	0	0	7,500	7,500	33,639	
1,2-Dichloropropane	0	0	0	11,000	11,000	49,338	
1,3-Dichloropropylene	0	0	0	310	310	1,390	
Ethylbenzene	0	0	0	2,900	2,900	13,007	
Methyl Bromide	0	Ő	0	550	550	2,467	
Methyl Chloride	0	0	0	28,000	28,000	125,586	
Methylene Chloride	0	0	0	12,000	12,000	53,823	
1,1,2,2-Tetrachloroethane	0	Ő	0	1,000	1,000	4,485	
Tetrachloroethylene	0	0	0	700	700	3,140	
Toluene	0	Ő	0	1,700	1,700	7,625	
1,2-trans-Dichloroethylene	0	Ő	0	6,800	6,800	30,500	
1,1,1-Trichloroethane	0	0	0	3,000	3,000	13,456	
1,1,2-Trichloroethane	0	0	0	3,400	3,400	15,250	
Trichloroethylene	0	Ő	0	2,300	2,300	10,316	
Vinyl Chloride	0	Ő	0	N/A	N/A	N/A	
2-Chlorophenol	0	0	0	560	560	2,512	
2,4-Dichlorophenol	0	Ő	Ő	1,700	1,700	7,625	
2,4-Dimethylphenol	0	Ő	0	660	660	2,960	
4,6-Dinitro-o-Cresol	0	Ő	0	80	80.0	359	
2,4-Dinitrophenol	0	0	0	660	660	2,960	
2-Nitrophenol	0	Ő	Ő	8,000	8,000	35,882	
4-Nitrophenol	0	Ő	0	2,300	2,300	10,316	
p-Chloro-m-Cresol	0	0	0	160	160	718	
Pentachlorophenol	0	0	0	13.652	13.7	61.2	
Phenol	0	Ő	0	N/A	N/A	N/A	
2,4,6-Trichlorophenol	0	0	0	460	460	2,063	
2,4,0° monorophenol	Ŷ	v	v	400	400	2,000	

Model Results

Acenaphthene	0	0		0	83	83.0	372	
Anthracene	0	0		0	N/A	N/A	N/A	
Benzidine	0	0		0	300	300	1,346	
Benzo(a)Anthracene	0	0		0	0.5	0.5	2.24	
Benzo(a)Pyrene	0	0		0	0.5 N/A	0.5 N/A	2.24 N/A	
3,4-Benzofluoranthene	0	0		0	N/A	N/A	N/A	
Benzo(k)Fluoranthene	0	0		0	N/A	N/A	N/A	
Bis(2-Chloroethyl)Ether	0	0		0	30,000	30,000	134,557	
Bis(2-Chloroisopropyl)Ether	0	0		0	30,000 N/A	30,000 N/A	N/A	
Bis(2-Ethylhexyl)Phthalate	0	0		0	4,500	4,500	20,184	
4-Bromophenyl Phenyl Ether	-	0		0				
4-Bromophenyl Phenyl Ether Butyl Benzyl Phthalate	0	0		0	270	270	1,211	
	0	-		-	140	140	628	
2-Chloronaphthalene	0	0		0	N/A N/A	N/A N/A	N/A N/A	
Chrysene	0	-		0				
Dibenzo(a,h)Anthrancene	0	0		0	N/A	N/A	N/A	
1,2-Dichlorobenzene	0	0		0	820	820	3,678	
1,3-Dichlorobenzene	0	0		0	350	350	1,570	
1,4-Dichlorobenzene	0	0		0	730	730	3,274	
3,3-Dichlorobenzidine	0	0		0	N/A	N/A	N/A	
Diethyl Phthalate	0	0		0	4,000	4,000	17,941	
Dimethyl Phthalate	0	0		0	2,500	2,500	11,213	
Di-n-Butyl Phthalate	0	0		0	110	110	493	
2,4-Dinitrotoluene	0	0		0	1,600	1,600	7,176	
2,6-Dinitrotoluene	0	0		0	990	990	4,440	
1,2-Diphenylhydrazine	0	0		0	15	15.0	67.3	
Fluoranthene	0	0		0	200	200	897	
Fluorene	0	0		0	N/A	N/A	N/A	
Hexachlorobenzene	0	0		0	N/A	N/A	N/A	
Hexachlorobutadiene	0	0		0	10	10.0	44.9	
Hexachlorocyclopentadiene	0	0		0	5	5.0	22.4	
Hexachloroethane	0	0		0	60	60.0	269	
Indeno(1,2,3-cd)Pyrene	0	0		0	N/A	N/A	N/A	
Isophorone	0	0		0	10,000	10,000	44,852	
Naphthalene	0	0		0	140	140	628	
Nitrobenzene	0	0		0	4,000	4,000	17,941	
n-Nitrosodimethylamine	0	0		0	17,000	17,000	76,249	
n-Nitrosodi-n-Propylamine	0	0		0	N/A	N/A	N/A	
n-Nitrosodiphenylamine	0	0		0	300	300	1,346	
Phenanthrene	0	0		0	5	5.0	22.4	
Pyrene	0	0		0	N/A	N/A	N/A	
1,2,4-Trichlorobenzene	0	0		0	130	130	583	
✓ CFC CC		20	PMF:	0.291	Ana	alysis Hardne	iss (mg/l):	149.08 Analysis pH: 7.84
Pollutants	Conc (up/L)	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A	

Model Results

11/1/2021

Chloride (PWS)	0	0	0	N/A	N/A	N/A	
Sulfate (PWS)	0	0	0	N/A	N/A	N/A	
Total Aluminum	0	0	0	N/A	N/A	N/A	
Total Antimony	0	0	0	220	220	5,532	
Total Arsenic	0	0	0	150	150	3,772	Chem Translator of 1 applied
Total Barium	0	0	0	4,100	4,100	103,100	
Total Boron	0	0	 0	1,600	1,600	40,234	
Total Cadmium	0	0	0	0.325	0.36	9.15	Chem Translator of 0.892 applied
Total Chromium (III)	0	0	0	102.786	120	3,005	Chem Translator of 0.86 applied
Hexavalent Chromium	0	0	0	10	10.4	261	Chem Translator of 0.962 applied
Total Cobalt	0	0	0	19	19.0	478	
Total Copper	0	0	0	12.598	13.1	330	Chem Translator of 0.96 applied
Free Cyanide	0	0	0	5.2	5.2	131	
Dissolved Iron	0	0	0	N/A	N/A	N/A	
Total Iron	0	0	0	1,500	1,500	125,757	WQC = 30 day average; PMF = 1
Total Lead	0	0	0	3.876	5.29	133	Chem Translator of 0.733 applied
Total Manganese	0	0	0	N/A	N/A	N/A	
Total Mercury	0	0	0	0.770	0.91	22.8	Chem Translator of 0.85 applied
Total Nickel	0	0	0	72.907	73.1	1,839	Chem Translator of 0.997 applied
Total Phenols (Phenolics) (PWS)	0	0	0	N/A	N/A	N/A	
Total Selenium	0	0	0	4.600	4.99	125	Chem Translator of 0.922 applied
Total Silver	0	0	0	N/A	N/A	N/A	Chem Translator of 1 applied
Total Thallium	0	0	0	13	13.0	327	
Total Zinc	0	0	0	165.703	168	4,226	Chem Translator of 0.986 applied
Acrolein	0	0	0	3	3.0	75.4	
Acrylonitrile	0	0	0	130	130	3,269	
Benzene	0	0	0	130	130	3,269	
Bromoform	0	0	0	370	370	9,304	
Carbon Tetrachloride	0	0	0	560	560	14,082	
Chlorobenzene	0	0	0	240	240	6,035	
Chlorodibromomethane	0	0	0	N/A	N/A	N/A	
2-Chloroethyl Vinyl Ether	0	0	0	3,500	3,500	88,012	
Chloroform	0	0	0	390	390	9,807	
Dichlorobromomethane	0	0	0	N/A	N/A	N/A	
1,2-Dichloroethane	0	0	0	3,100	3,100	77,954	
1,1-Dichloroethylene	0	0	0	1,500	1,500	37,720	
1,2-Dichloropropane	0	0	0	2,200	2,200	55,322	
1,3-Dichloropropylene	0	0	0	61	61.0	1,534	
Ethylbenzene	0	0	0	580	580	14,585	
Methyl Bromide	0	0	0	110	110	2,766	
Methyl Chloride	0	0	0	5,500	5,500	138,305	
Methylene Chloride	0	0	0	2,400	2,400	60,351	
1,1,2,2-Tetrachloroethane	0	0	0	210	210	5,281	
Tetrachloroethylene	0	0	0	140	140	3,520	
Toluene	0	0	0	330	330	8,298	

Model Results

11/1/2021

1,2-trans-Dichloroethylene	0	0	0	1,400	1.400	35,205	
1,1,1-Trichloroethane	0	0	0	610	610	15,339	
1.1.2-Trichloroethane	0	0	0	680	680	17,100	
Trichloroethylene	0	0	0	450	450	11,316	
Vinyl Chloride	0	0	0	N/A	N/A	N/A	
2-Chlorophenol	0	0	0	110	110	2,766	
2,4-Dichlorophenol	0	0	0	340	340	8,550	
2,4-Dimethylphenol	0	Ő	0	130	130	3,269	
4,6-Dinitro-o-Cresol	0	0	0	16	16.0	402	
2,4-Dinitrophenol	0	0	0	130	130	3,269	
2-Nitrophenol	0	0	0	1.600	1.600	40,234	
4-Nitrophenol	0	0	0	470	470	11,819	
p-Chloro-m-Cresol	0	0	0	500	500	12,573	
Pentachlorophenol	0	0	0	10.474	10.5	263	
Phenol	0	0	0	N/A	N/A	N/A	
2,4,6-Trichlorophenol	0	0	0	91	91.0	2.288	
Acenaphthene	0	0	0	17	17.0	427	
Anthracene	0	0	0	N/A	N/A	N/A	
Benzidine	0	0	0	59	59.0	1,484	
Benzo(a)Anthracene	0	0	0	0.1	0.1	2.51	
Benzo(a)Pyrene	0	0	0	N/A	N/A	N/A	
3.4-Benzofluoranthene	0	0	0	N/A	N/A	N/A	
Benzo(k)Fluoranthene	0	0	0	N/A	N/A	N/A	
Bis(2-Chloroethyl)Ether	0	0	0	6.000	6.000	150.878	
Bis(2-Chloroisopropyl)Ether	0	0	0	N/A	N/A	N/A	
Bis(2-Ethylhexyl)Phthalate	0	0	0	910	910	22.883	
4-Bromophenyl Phenyl Ether	0	0	0	54	54.0	1,358	
Butyl Benzyl Phthalate	0	0	0	35	35.0	880	
2-Chloronaphthalene	0	0	0	N/A	N/A	N/A	
Chrysene	0	0	0	N/A	N/A	N/A	
Dibenzo(a,h)Anthrancene	0	0	0	N/A	N/A	N/A	
1.2-Dichlorobenzene	0	0	0	160	160	4.023	
1.3-Dichlorobenzene	0	0	0	69	69.0	1,735	
1.4-Dichlorobenzene	0	0	0	150	150	3,772	
3.3-Dichlorobenzidine	0	0	0	N/A	N/A	N/A	
Diethyl Phthalate	0	0	0	800	800	20,117	
Dimethyl Phthalate	0	0	0	500	500	12,573	
Di-n-Butyl Phthalate	0	0	0	21	21.0	528	
2,4-Dinitrotoluene	0	0	0	320	320	8,047	
2,6-Dinitrotoluene	0	0	0	200	200	5,029	
1,2-Diphenylhydrazine	0	0	0	3	3.0	75.4	
Fluoranthene	0	0	0	40	40.0	1,006	
Fluorene	0	0	0	N/A	N/A	N/A	
Hexachlorobenzene	0	0	0	N/A	N/A	N/A	
Hexachlorobutadiene	0	0	0	2	2.0	50.3	

Model Results

11/1/2021

	-							
Hexachlorocyclopentadiene	Ō	Ō		Ō	1	1.0	25.1	
Hexachloroethane	0	0		0	12	12.0	302	
Indeno(1,2,3-cd)Pyrene	0	0		0	N/A	N/A	N/A	
Isophorone	0	0		0	2,100	2,100	52,807	
Naphthalene	0	0		0	43	43.0	1,081	
Nitrobenzene	0	0		0	810	810	20,369	
n-Nitrosodimethylamine	0	0		0	3,400	3,400	85,498	
n-Nitrosodi-n-Propylamine	0	0		0	N/A	N/A	N/A	
n-Nitrosodiphenylamine	0	0		0	59	59.0	1,484	
Phenanthrene	0	0		0	1	1.0	25.1	
Pyrene	0	0		0	N/A	N/A	N/A	
1,2,4-Trichlorobenzene	0	0		0	26	26.0	654	
☑ THH CC		20	PMF:	0.291		alysis Hardne	ess (mg/l):	N/A Analysis pH: N/A
Pollutants	Conc (ug/L)	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0		0	500,000	500,000	N/A	
Chloride (PWS)	0	0		0	250,000	250,000	N/A	
Sulfate (PWS)	0	0		0	250,000	250,000	N/A	
Total Aluminum	0	0		0	N/A	N/A	N/A	
Total Antimony	0	0		0	5.6	5.6	141	
Total Arsenic	0	0		0	10	10.0	251	
Total Barium	0	0		0	2,400	2,400	60,351	
Total Boron	0	0		0	3,100	3,100	77,954	
Total Cadmium	0	0		0	N/A	N/A	N/A	
Total Chromium (III)	0	0		0	N/A	N/A	N/A	
Hexavalent Chromium	0	0		0	N/A	N/A	N/A	
Total Cobalt	0	0		0	N/A	N/A	N/A	
Total Copper	0	0		0	N/A	N/A	N/A	
Free Cyanide	0	0		0	4	4.0	101	
Dissolved Iron	0	0		0	300	300	7,544	
Total Iron	0	0		0	N/A	N/A	N/A	
Total Lead	0	0		0	N/A	N/A	N/A	
Total Manganese	0	0		0	1,000	1,000	25,146	
Total Mercury	0	0		0	0.050	0.05	1.26	
Total Nickel	0	0		0	610	610	15,339	
Total Phenols (Phenolics) (PWS)	0	0		0	5	5.0	N/A	
Total Selenium	0	0		0	N/A	N/A	N/A	
Total Silver	0	0		0	N/A	N/A	N/A	
Total Thallium	0	0		0	0.24	0.24	6.04	
Total Zinc	0	0		0	N/A	N/A	N/A	
Acrolein	0	0		0	3	3.0	75.4	
Acrylonitrile	0	0		0	N/A	N/A	N/A	
Benzene	0	0		0	N/A	N/A	N/A	

Model Results

11/1/2021

Bromoform	0	0	0	N/A	N/A	N/A	
Carbon Tetrachloride	0	0	ō	N/A	N/A	N/A	
Chlorobenzene	0	0	0	100	100.0	2,515	
Chlorodibromomethane	0	0	0	N/A	N/A	N/A	
2-Chloroethyl Vinyl Ether	0	0	 0	N/A	N/A	N/A	
Chloroform	0	0	0	N/A	N/A	N/A	
Dichlorobromomethane	0	0	0	N/A	N/A	N/A	
1,2-Dichloroethane	0	0	0	N/A	N/A	N/A	
1,1-Dichloroethylene	0	0	 0	33	33.0	830	
1,2-Dichloropropane	0	0	0	N/A	N/A	N/A	
1,3-Dichloropropylene	0	0	0	N/A	N/A	N/A	
Ethylbenzene	0	0	0	68	68.0	1,710	
Methyl Bromide	0	0	0	100	100.0	2,515	
Methyl Chloride	0	0	0	N/A	N/A	N/A	
Methylene Chloride	0	0	0	N/A	N/A	N/A	
1,1,2,2-Tetrachloroethane	0	0	0	N/A	N/A	N/A	
Tetrachloroethylene	0	0	0	N/A	N/A	N/A	
Toluene	0	0	 0	57	57.0	1,433	
1,2-trans-Dichloroethylene	0	0	0	100	100.0	2,515	
1,1,1-Trichloroethane	0	0	 0	10,000	10,000	251,464	
1,1,2-Trichloroethane	0	0	0	N/A	N/A	231,404 N/A	
Trichloroethylene	0	0	0	N/A	N/A	N/A	
Vinyl Chloride	0	0	0	N/A	N/A	N/A	
2-Chlorophenol	0	0	0	30	30.0	754	
2,4-Dichlorophenol	0	0	0	10	10.0	251	
2,4-Dimethylphenol	0	0	 0	100	100.0	2,515	
4,6-Dinitro-o-Cresol	0	0	0	2	2.0	50.3	
2,4-Dinitrophenol	0	0	 0	10	10.0	251	
2-Nitrophenol	0	0	ő	N/A	N/A	N/A	
4-Nitrophenol	0	0	0	N/A	N/A	N/A	
p-Chloro-m-Cresol	0	0	Ő	N/A	N/A	N/A	
Pentachlorophenol	0	0	Ő	N/A	N/A	N/A	
Phenol	0	0	0	4,000	4,000	100,586	
2,4,6-Trichlorophenol	0	0	0	N/A	N/A	N/A	
Acenaphthene	0	0	0	70	70.0	1,760	
Anthracene	0	0	Ő	300	300	7,544	
Benzidine	0	0	0	N/A	N/A	N/A	
Benzo(a)Anthracene	Ő	0	ō	N/A	N/A	N/A	
Benzo(a)Pyrene	0	0	Ő	N/A	N/A	N/A	
3,4-Benzofluoranthene	0	0	0	N/A	N/A	N/A	
Benzo(k)Fluoranthene	0	0	0	N/A	N/A	N/A	
Bis(2-Chloroethyl)Ether	0	0	0	N/A	N/A	N/A	
Bis(2-Chloroisopropyl)Ether	0	0	0	200	200	5,029	
Bis(2-Ethylhexyl)Phthalate	0	0	0	N/A	N/A	N/A	
4-Bromophenyl Phenyl Ether	0	0	0	N/A	N/A	N/A	
	*	~	Ť				ļ

Model Results

11/1/2021

Butyl Benzyl Phthalate	0	0		0	0.1	0.1	2.51	
	-	-		÷				
2-Chloronaphthalene	0	0		0	800 N/A	800 N/A	20,117 N/A	
Chrysene	0	0		0				
Dibenzo(a,h)Anthrancene	0	0		0	N/A	N/A	N/A	
1,2-Dichlorobenzene	0	0		0	1,000	1,000	25,146	
1,3-Dichlorobenzene	0	0		0	7	7.0	176	
1,4-Dichlorobenzene	0	0		0	300	300	7,544	
3,3-Dichlorobenzidine	0	0		0	N/A	N/A	N/A	
Diethyl Phthalate	0	0		0	600	600	15,088	
Dimethyl Phthalate	0	0		0	2,000	2,000	50,293	
Di-n-Butyl Phthalate	0	0		0	20	20.0	503	
2,4-Dinitrotoluene	0	0		0	N/A	N/A	N/A	
2,6-Dinitrotoluene	0	0		0	N/A	N/A	N/A	
1,2-Diphenylhydrazine	0	0		0	N/A	N/A	N/A	
Fluoranthene	0	0		0	20	20.0	503	
Fluorene	0	0		0	50	50.0	1,257	
Hexachlorobenzene	0	0		0	N/A	N/A	N/A	
Hexachlorobutadiene	0	0		0	N/A	N/A	N/A	
Hexachlorocyclopentadiene	0	0		0	4	4.0	101	
Hexachloroethane	0	0		0	N/A	N/A	N/A	
Indeno(1,2,3-cd)Pyrene	0	0		0	N/A	N/A	N/A	
Isophorone	0	0		0	34	34.0	855	
Naphthalene	0	0		0	N/A	N/A	N/A	
Nitrobenzene	0	0		0	10	10.0	251	
n-Nitrosodimethylamine	0	0		0	N/A	N/A	N/A	
n-Nitrosodi-n-Propylamine	0	0		0	N/A	N/A	N/A	
n-Nitrosodiphenylamine	0	0		0	N/A	N/A	N/A	
Phenanthrene	0	0		0	N/A	N/A	N/A	
Pyrene	0	0		0	20	20.0	503	
1,2,4-Trichlorobenzene	0	0		0	0.07	0.07	1.76	
	ÿ	Ÿ		ÿ	0.01	0.01		
CC	T (min): 7	20	PMF:	0.423	Ana	alysis Hardne	ss (mg/l):	N/A Analysis pH: N/A
Pollutants	Conc	Stream	Trib Conc	Fate	WQC	WQ Obj	WLA (µg/L)	Comments
	(ug/L)	CV	(µg/L)	Coef	(µg/L)	(µg/L)		
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A	
Chloride (PWS)	0	0		0	N/A	N/A	N/A	
Sulfate (PWS)	0	0		0	N/A	N/A	N/A	
Total Aluminum	0	0		0	N/A	N/A	N/A	
Total Antimony	0	0		0	N/A	N/A	N/A	
Total Arsenic	0	0		0	N/A	N/A	N/A	
Total Barium	0	0		0	N/A	N/A	N/A	
Total Boron	0	0		0	N/A	N/A	N/A	
Total Cadmium	0	0		0	N/A	N/A	N/A	
Total Chromium (III)	0	0		0	N/A	N/A	N/A	
rotal chrothium (iii)	U	v		v	n/A	n/A	N/A	

Model Results

11/1/2021

Hexavalent Chromium	0	0	0	N/A	N/A	N/A	
Total Cobalt	0	0	0	N/A	N/A	N/A	
Total Copper	0	0	0	N/A	N/A	N/A	
Free Cyanide	0	0	0	N/A	N/A	N/A	
Dissolved Iron	0	0	0	N/A	N/A	N/A	
Total Iron	0	0	0	N/A	N/A	N/A	
Total Lead	0	0	0	N/A	N/A	N/A	
Total Manganese	0	0	0	N/A	N/A	N/A	
Total Mercury	0	0	0	N/A	N/A	N/A	
Total Nickel	0	0	0	N/A	N/A	N/A	
Total Phenols (Phenolics) (PWS)	0	0	0	N/A	N/A	N/A	
Total Selenium	0	0	0	N/A	N/A	N/A	
Total Silver	0	0	0	N/A	N/A	N/A	
Total Thallium	0	0	0	N/A	N/A	N/A	
Total Zinc	0	0	0	N/A	N/A	N/A	
Acrolein	0	0	0	N/A	N/A	N/A	
Acrylonitrile	0	0	0	0.06	0.06	6.78	
Benzene	0	0	0	0.58	0.58	65.6	
Bromoform	0	0	0	7	7.0	791	
Carbon Tetrachloride	0	0	0	0.4	0.4	45.2	
Chlorobenzene	0	0	0	N/A	N/A	N/A	
Chlorodibromomethane	0	0	0	0.8	0.8	90.4	
2-Chloroethyl Vinyl Ether	0	0	0	N/A	N/A	N/A	
Chloroform	0	0	0	5.7	5.7	644	
Dichlorobromomethane	0	0	0	0.95	0.95	107	
1,2-Dichloroethane	0	0	0	9.9	9.9	1,119	
1,1-Dichloroethylene	0	0	0	N/A	N/A	N/A	
1,2-Dichloropropane	0	0	0	0.9	0.9	102	
1,3-Dichloropropylene	0	0	0	0.27	0.27	30.5	
Ethylbenzene	0	0	0	N/A	N/A	N/A	
Methyl Bromide	0	0	0	N/A	N/A	N/A	
Methyl Chloride	0	0	0	N/A	N/A	N/A	
Methylene Chloride	0	0	0	20	20.0	2,261	
1,1,2,2-Tetrachloroethane	0	0	0	0.2	0.2	22.6	
Tetrachloroethylene	0	0	0	10	10.0	1,130	
Toluene	0	0	0	N/A	N/A	N/A	
1,2-trans-Dichloroethylene	0	0	0	N/A	N/A	N/A	
1,1,1-Trichloroethane	0	0	0	N/A	N/A	N/A	
1,1,2-Trichloroethane	0	0	0	0.55	0.55	62.2	
Trichloroethylene	0	0	0	0.6	0.6	67.8	
Vinyl Chloride	0	0	0	0.02	0.02	2.26	
2-Chlorophenol	0	0	0	N/A	N/A	N/A	
2,4-Dichlorophenol	0	0	0	N/A	N/A	N/A	
2,4-Dimethylphenol	0	0	0	N/A	N/A	N/A	
4,6-Dinitro-o-Cresol	0	0	0	N/A	N/A	N/A	

Model Results

11/1/2021

2.4-Dinitrophenol	0	0	0	N/A	N/A	N/A	
2,4-Dintrophenol	0	0	0	N/A	N/A N/A	N/A N/A	
	-	0	-	N/A N/A	N/A N/A	N/A N/A	
4-Nitrophenol	0	0	0		N/A N/A		
p-Chloro-m-Cresol	0	-	0	N/A		N/A	
Pentachlorophenol	0	0	0	0.030	0.03	3.39	
Phenol	0	0	 0	N/A	N/A	N/A	
2,4,6-Trichlorophenol	0	0	0	1.5	1.5	170	
Acenaphthene	0	0	0	N/A	N/A	N/A	
Anthracene	0	0	0	N/A	N/A	N/A	
Benzidine	0	0	0	0.0001	0.0001	0.011	
Benzo(a)Anthracene	0	0	0	0.001	0.001	0.11	
Benzo(a)Pyrene	0	0	0	0.0001	0.0001	0.011	
3,4-Benzofluoranthene	0	0	0	0.001	0.001	0.11	
Benzo(k)Fluoranthene	0	0	0	0.01	0.01	1.13	
Bis(2-Chloroethyl)Ether	0	0	0	0.03	0.03	3.39	
Bis(2-Chloroisopropyl)Ether	0	0	0	N/A	N/A	N/A	
Bis(2-Ethylhexyl)Phthalate	0	0	0	0.32	0.32	36.2	
4-Bromophenyl Phenyl Ether	0	0	0	N/A	N/A	N/A	
Butyl Benzyl Phthalate	0	0	0	N/A	N/A	N/A	
2-Chloronaphthalene	0	0	0	N/A	N/A	N/A	
Chrysene	0	0	0	0.12	0.12	13.6	
Dibenzo(a,h)Anthrancene	0	0	0	0.0001	0.0001	0.011	
1,2-Dichlorobenzene	0	0	0	N/A	N/A	N/A	
1,3-Dichlorobenzene	0	0	0	N/A	N/A	N/A	
1,4-Dichlorobenzene	0	0	0	N/A	N/A	N/A	
3,3-Dichlorobenzidine	0	0	0	0.05	0.05	5.65	
Diethyl Phthalate	0	0	0	N/A	N/A	N/A	
Dimethyl Phthalate	0	0	0	N/A	N/A	N/A	
Di-n-Butyl Phthalate	0	0	0	N/A	N/A	N/A	
2,4-Dinitrotoluene	0	0	0	0.05	0.05	5.65	
2.6-Dinitrotoluene	0	0	0	0.05	0.05	5.65	
1,2-Diphenylhydrazine	0	0	0	0.03	0.03	3.39	
Fluoranthene	0	0	0	N/A	N/A	N/A	
Fluorene	0	0	0	N/A	N/A	N/A	
Hexachlorobenzene	0	0	0	0.00008	0.00008	0.009	
Hexachlorobutadiene	0	0	0	0.01	0.01	1.13	
Hexachlorocyclopentadiene	0	0	0	N/A	N/A	N/A	
Hexachloroethane	ő	0	0	0.1	0.1	11.3	
Indeno(1,2,3-cd)Pyrene	0	0	Ő	0.001	0.001	0.11	
Isophorone	0	0	0	N/A	N/A	N/A	
Naphthalene	0	0	0	N/A	N/A	N/A	
Nitrobenzene	0	0	0	N/A	N/A	N/A	
n-Nitrosodimethylamine	0	0	0	0.0007	0.0007	0.079	
n-Nitrosodi-n-Propylamine	0	0	0	0.005	0.005	0.57	
n-Nitrosodiphenylamine	0	0	0	3.3	3.3	373	
n-niuosouipnenyianine	v	v	v	0.0	0.0	313	ļ

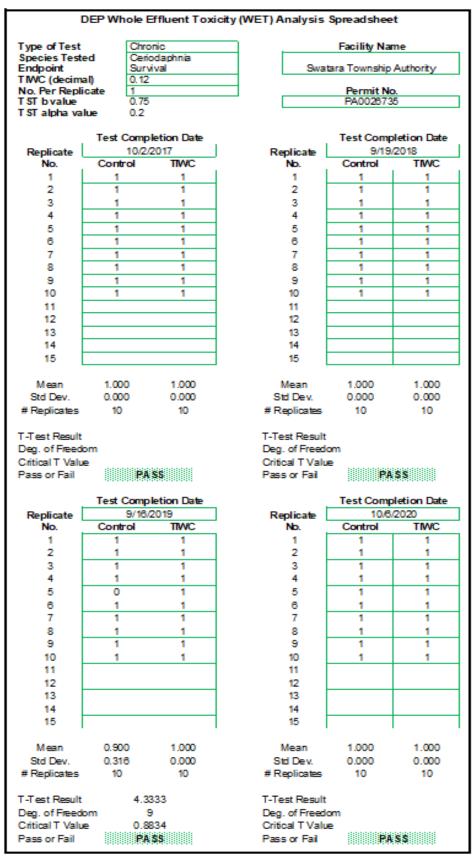
Model Results

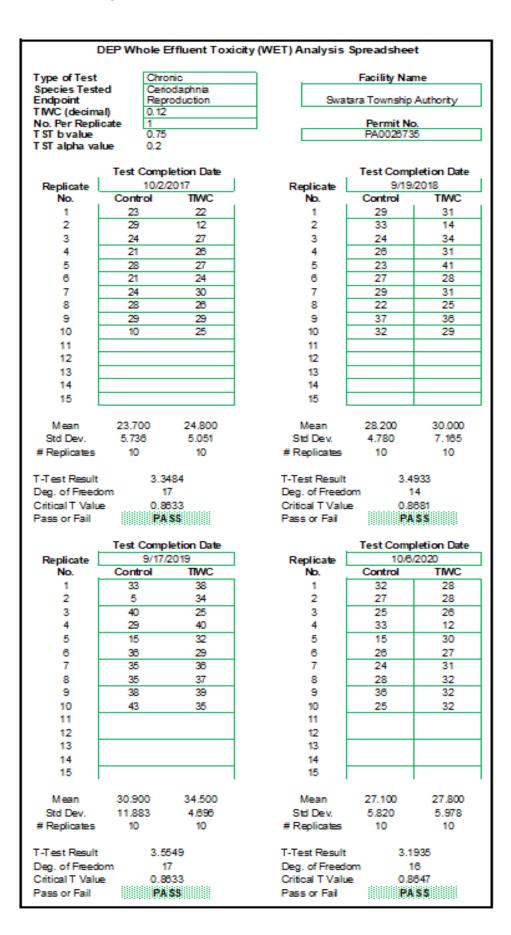
11/1/2021

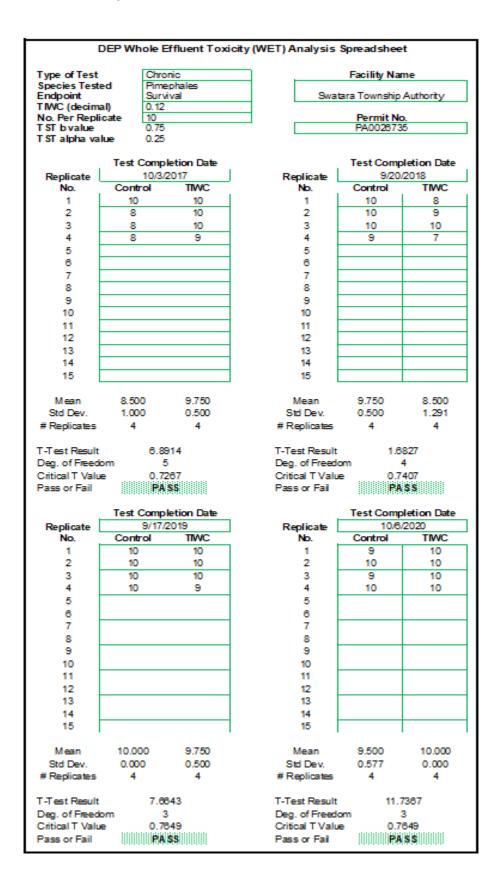
Page 14

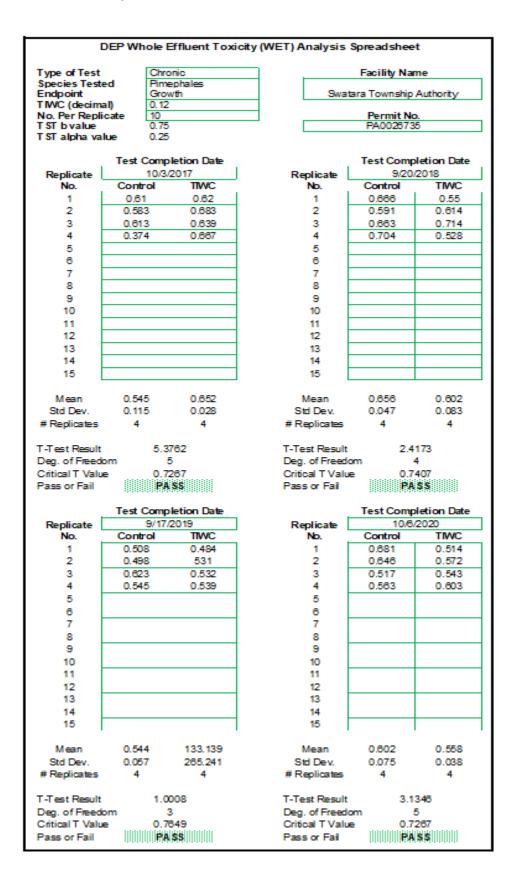
Phenanthrene	0	0	0	N/A	N/A	N/A	
Pyrene	0	0	0	N/A	N/A	N/A	
1,2,4-Trichlorobenzene	0	0	0	N/A	N/A	N/A	

Recommended WQBELs & Monitoring Requirements


No. Samples/Month: 4


	Mass	Limits		Concentra	tion Limits				
Pollutants	AML (lbs/day)	MDL (Ibs/day)	AML	MDL	IMAX	Units	Governing WQBEL	WQBEL Basis	Comments
Total Zinc	Report	Report	Report	Report	Report	µg/L	484	AFC	Discharge Conc > 10% WQBEL (no RP)


D. TRC Calculations


TRC EVAL	UATION													
Input appropria	ate values ii	n A3:A9 and D3:D9												
76.86	76.86 = Q stream (cfs) 0.5 = CV Daily 6.3 = Q discharge (MGD) 0.5 = CV Hourly													
6.3	= Q discha	arge (MGD)	= CV Hourly											
30	= no. sam	ples	= AFC_Partia	al Mix Factor										
	0.3 = Chlorine Demand of Stream 1 = CFC_Partial Mix Factor													
0	= Chlorine	Demand of Discharge		ria Compliance Time (min)										
0.5	= BAT/BP.	J Value	720	= CFC_Crite	ria Compliance Time (min)									
0	= % Facto	r of Safety (FOS)	0	=Decay Coe	fficient (K)									
) Source	Reference	AFC Calculations		Reference	CFC Calculations									
TRC	1.3.2.iii	WLA afc =	2.535	1.3.2.iii	WLA cfc = 2.464									
PENTOXSD TRO	5.1a	LTAMULT afc =	0.373	5.1c	LTAMULT cfc = 0.581									
PENTOXSD TRO	5.1b	LTA_afc=	0.944	5.1d	LTA_cfc = 1.432									
1														
5 Source		Effluer	nt Limit Calcu	lations										
PENTOXSD TRO) 5.1f		AML MULT =	1.231										
PENTOXSD TRO	6 5.1g		IMIT (mg/l) =		BAT/BPJ									
3		INST MAX L	IMIT (mg/l) =	1.635										
3														
김														
	(040/-/ 14	AFO 1-11 - MAFO V-10	-+ 040/04+	-/										
2 WLA afc		*AFC_tc)) + [(AFC_Yc*Q AFC_Yc*Qs*Xs/Qd)]*(1-		e(-K"AFG_tC)))									
LTAMULT afc	-	l(cvh^2+1))-2.326*LN(cvh^2	-											
LTA_afc	wla_afc*LTA													
)	ma_are Err													
WLA_cfc	(.011/e(-k*	CFC_tc) + [(CFC_Yc*Qs	*.011/Qd*e	(-k*CFC tc))										
3		CFC_Yc*Qs*Xs/Qd)]*(1-												
LTAMULT_cfc														
LTA_cfc														
2 AML MULT		_N((cvd^2/no_samples+1)^		vd^2/no_samp	les+1))									
AVG MON LIMIT		PJ,MIN(LTA_afc,LTA_cfc)*												
INST MAX LIMIT	1.5*((av_п	non_limit/AML_MULT)/L1	AMULT_af	c)										
5														
	1				· · · · · ·									

E. WETT Test Results

