

Southwest Regional Office CLEAN WATER PROGRAM

Application Type	Renewal
Facility Type	Municipal
Major / Minor	Major

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

Application No.	PA0026824
APS ID	820242
Authorization ID	988913

Applicant Name	Clairton Municipal Authority	Facility Name	Clairton Municipal Authority STP
Applicant Address	1 North State Street	Facility Address	1 N State Street
	Clairton, PA 15025-2172		Clairton, PA 15025-2172
Applicant Contact	Mr. Brian Secrest	Facility Contact	Same as Applicant
Applicant Phone	(412) 233-3246	Facility Phone	Same as Applicant
Client ID	5935	Site ID	249758
Ch 94 Load Status	Not Overloaded	Municipality	Clairton City
Connection Status	No Limitations	County	Allegheny
Date Application Rece	eived August 7, 2013	EPA Waived?	No
Date Application Acce	pted August 7, 2013	If No, Reason	Major Facility, Pretreatment

Summary of Review

The applicant has applied for a renewal of an existing NPDES Permit, Permit No. PA0026824, which was previously issued by the Department on January 30, 2009. That permit expired on January 31, 2014.

WQM Permit 8775S A-3 was issued by the Department on August 24, 2020 and approves STP expansion. In an email dated February 25, 2021, KLH Engineers confirmed that construction will begin by January 1, 2022, and that the new STP will be online by January 1, 2024.

The new STP will change the existing conventional activated sludge process to a membrane bioreactor (MBR) process. The annual average flow will increase from 6.0 MGD to 6.8 MGD and the design organic loading will increase from 6,504 lbs/day to 13,000 lbs/day. The facility's maximum monthly average flow will be 10.83 MGD and this number will be used to prepare the Annual Municipal Wasteload Management Report to help determine whether a "hydraulic overload" situation exists, as defined in Title 25 Pa. Code Chapter 94.

The MBR process does not require disinfection based upon the on-site pilot studies. The existing chlorine gas disinfection units will be converted to liquid sodium hypochlorite for chlorination and liquid sodium bisulfite for dichlorination.

The receiving stream, Peters Creek, is classified as a TSF and is located in State Watershed No. 19-C.

CSO Outfalls 002, 003, 004, 006, and 007 will again be permitted. These outfalls serve as combined sewer overflows necessitated by storm water entering the sewer system and exceeding the hydraulic capacity of the sewers and/or the treatment plant and are permitted to discharge only for this reason. Dry weather discharges from these outfalls are Prohibited. Part A.I.D, Identification of Combined Sewer Overflow Discharges, and Part C.III, Combined Sewer Overflows, has been added to the permit.

Approve	Deny	Signatures	Date
Х		hill C Mitebell	
		William C. Mitchell, E.I.T. / Project Manager	May 6, 2021
Х		Donald J. Leone, P.E. / Environmental Engineer Manager	May 6, 2021

Summary of Review

The Department previously approved the NMC and LTCP Reports. The LTCP Update, dated April 2018 and tevised July 2018, was approved by the Department on September 13, 2018. The LTCP Update proposes to comply with the Presumption Approach Criteria of the EPA CSO Policy with an 85% capture rate for the annual average of precipitation events that occurs as a running 5 year average.

LTCP Implementation involves a Phase I & II Construction Project consisting of the following:

- Phase 1 consists of new raw sewage pump station, interceptor sewer modification, new headworks, new aerobic digester, modifications to existing aerobic digesters, and new belt filter sludge press.
- Phase 2 consists of STP Modifications to change the existing conventional activated sludge process to a Membrane Bioreactor (MBR) process to reduce untreated combined sewage wet weather overflows. The two existing primary clarifiers will be converted to MBR effluent water storage tanks and back-up MBR chlorine contact tank, the four existing aeration tanks will be converted to MBR tanks, the four existing secondary clarifiers will be converted to CSO storage and primary clarifiers, and the two existing chlorine contact tanks will be converted to CSO disinfection. The MBR process is designed for 20.18 MGD with an additional wet weather holding capacity of 18.05 MGD. Flows in excess of 20.18 MGD will be diverted to the CSO treatment process, which includes primary clarification and disinfection, for a combined peak flow capacity of 38.23 MGD. The initial flow of 18.05 MG will be held in the CSO processing units to be diverted back through the secondaries as the flow rate to the secondaries drops below 20.18 MGD.

The approved LTCP Task Implementation Schedule requires PCCMP submission by July 1, 2026. Please note that the Department will request that the Authority submit an updated LTCP Task Implementation Schedule during the Draft Permit Comment Period to account for construction delays.

Part C.II, Maximizing Treatment at the Existing POTW has been added to the permit. This condition allows for a CSO Related Bypass of secondary treatment at the STP. This is only permitted when the maximum daily flow to the STP exceeds 38.23 MGD. All bypassed flow receives primary treatment and disinfection prior to bypass.

Storm Water Outfalls 008, 009, 010, 011, and 012 will again be permitted for the discharge of un-contaminated storm water runoff from areas in and around the treatment plant. Part C.VI, Requirements Applicable to Storm Water Outfalls, has been added to the permit.

The permit application does not list any CIUs in the service area and there have been no compliance issues attributed to IW discharges causing NPDES permit effluent violations. Part C language, Pretreatment Program Development, has not been added to the permit. In an email, dated May 2, 2018, Mr. Stephen Copeland, EPA Region III, stated that the Pretreatment Program Development condition will likely not be needed.

The applicant has complied with Act 14 Notifications and no comments were received.

Sludge use and disposal description and location(s): Solids from aerobic digestion is dewatered via a centrifuge and disposed of at the Greenridge Reclamation Landfill, Permit # 100281.

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Discharge, Receiving Waters and Water Supply Inform	nation	
Outfall No. 001 Latitude 40° 18' 13.00" Quad Name Glassport, PA Wastewater Description: Sewage Effluent	Design Flow (MGD) Longitude Quad Code	6.0 (existing flow) to 6.8 (expanded flow) -79° 52' 57.00"
Receiving Waters Peters Creek (TSF) NHD Com ID 99408364 Drainage Area 51.33	Stream Code RMI Yield (cfs/mi²)	39425 0.42 0.141 USGS StreamStats &
Q ₇₋₁₀ Flow (cfs) 7.24 Elevation (ft) 721.5 Watershed No. 19-C Existing Use Exceptions to Use	Q ₇₋₁₀ Basis Slope (ft/ft) Chapter 93 Class. Existing Use Qualifier Exceptions to Criteria	Bulletin 12, Sta. 03075090, Peters Creek @ Large, PA 0.0001 TSF
Assessment Status Impaired Cause(s) of Impairment Source(s) of Impairment TMDL Status Final		« Watershed
Background/Ambient Data pH (SU) Temperature (°F) Hardness (mg/L) Other:	Data Source	
Nearest Downstream Public Water Supply Intake PWS Waters Monongahela River PWS RMI	Western PA Water Company Flow at Intake (cfs) Distance from Outfall (mi)	

Changes Since Last Permit Issuance: NONE

Other Comments: The discharge is to Peters Creek, which has a Final TMDL and is impaired by metals & pH. This sewage discharge is not expected to contribute to the stream impairment for which abandoned mine drainage is source of such impairment. No WLAs have been developed for this sewage discharge and they are not expected to contribute to the stream impairment for these pollutants. The permit requires monitoring of these metals. 1/quarter monitoring is imposed for the parameters of Total Iron, Total Manganese and Total Aluminum per Chapter 92.a.61.

	Treatment Facility Summary – Existing and Expanded					
Treatment Facility Na	me: Clairton Municipal Aut	hority STP				
WQM Permit No.	Issuance Date					
8775S						
8775S A-3	08/24/2020					
	Degree of			Avg Annual		
Waste Type	Treatment	Process Type	Disinfection	Flow (MGD)		
Caurage	Casandam, ta Tantiam,	Activated Sludge With Solids Removal to MBRs	Gas Chlorine & Liquid Sodium Hypochlorite	0.045.00		
Sewage	Secondary to Tertiary	Solids Removal to MBRs	Sodium Hypochiome	6.0 to 6.8		
Hydraulic Canacity	Organic Capacity	1		Biosolids		
Hydraulic Capacity		Lood Status	Piocelide Treatment			
(MGD)	(lbs/day)	Load Status	Biosolids Treatment	Use/Disposal		
6.0 to 20.8	6,504 to 13,000	Not Overload	Aerobic Digestion	Landfill		

Changes Since Last Permit Issuance: STP is being converted from the existing conventional activated sludge process to a MBR process.

Compliance History

Operations Compliance Check Summary Report

Facility: Clairton_MA_STP

NPDES Permit No.: PA0026824

Compliance Review Period: 04/27/2013 – 04/27/2018

Open Violations by Client Summary

None.

Inspection Summary

INSP ID	INSPECTED DATE	INSP TYPE	AGENCY	INSPECTION RESULT DESC	# OF VIOLATIONS
2512182	08/09/2016	Compliance Evaluation	County Health Dept	No Violations Noted	0
2872538	04/09/2019	Compliance Evaluation	County Health Dept	No Violations Noted	0
2491319	05/27/2016	Chapter 94 Inspection	County Health Dept	No Violations Noted	0
2592695	04/20/2017	Compliance Evaluation	County Health Dept	No Violations Noted	0
2726370	04/24/2018	Chapter 94 Inspection	PA Dept of Environmental Protection	Administratively Closed	0
3084498	03/21/2020	Administrative/File Review	PA Dept of Environmental Protection	No Violations Noted	0
3097150	03/31/2020	Compliance Evaluation	County Health Dept	No Violations Noted	0
2734405	05/23/2018	Compliance Evaluation	County Health Dept	No Violations Noted	0
2596005	04/18/2017	Chapter 94 Inspection	PA Dept of Environmental Protection	No Violations Noted	0

Violation Summary

No violations in eFACTs.

Enforcement Summary

No enforcement actions.

DMR Violation Summary

Current eDMR user.

Effluent limit violation summary 4/27/2016 – 4/27/2021:

MONITORING END DATE	OUTFALL	PARAMETER	SAMPLE VALUE	PERMIT VALUE	UNIT OF MEASURE	STATISTICAL BASE CODE
12/31/2020	001	Total Suspended Solids	50.3	30	mg/L	Average Monthly
12/31/2020	001	Total Suspended Solids	65.8	45	mg/L	Weekly Average
12/31/2020	001	Total Suspended Solids	2116	1501	lbs/day	Average Monthly
12/31/2020	001	Total Suspended Solids	2940	2252	lbs/day	Weekly Average
02/28/2021	001	Total Suspended Solids	34.3	30	mg/L	Average Monthly

Compliance Status:

Facility had a single month of effluent violations in 2020 and 2021. No other compliance issues.

Completed by: David Roote

Completed date: 4/27/2021

Development of Effluent Limitations				
Outfall No.	001	Design Flow (MGD)	6.0 & 6.8	
Latitude	40° 18' 13.00"	Longitude	-79° 52' 57.00"	
Wastewater D	Description: Sewage Effluent			

Technology-Based Limitations

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Pollutant	Limit (mg/l)	SBC	Federal Regulation	State Regulation
CBOD	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
CBOD ₅	40	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)
Total Suspended	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
Solids	45	Average Weekly	133.102(b)(2)	92a.47(a)(2)
pН	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform (5/1 – 9/30)	200 / 100 ml	Geo Mean	_	92a.47(a)(4)
Fecal Coliform	2007 100 1111	Oco Mcan		32a.+1 (a)(+)
(5/1 – 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform (10/1 – 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
Fecal Coliform (10/1 – 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)
Total Residual Chlorine	0.5	Average Monthly	-	92a.48(b)(2)

Existing Facility - 6.0 MGD

The discharge to Peters Creek is approximately 2,200 feet from the Monongahela River. Of that 2,200 feet distance, roughly 400 feet is open stream and the remaining 1,800 feet is culverted under the Penn Central RR & the U.S. Clairton Works. Historically the Monongahela River has been considered the point of first use.

Water Quality Analysis Modeling for CBOD5, DO and Ammonia-Nitrogen is not necessary, and we will again re-impose the above Technology-Based Limitations due to the large dilution available in the Monongahela River. Q7-10 flow of the Monongahela River at the point of discharge is 550 cfs. The instream to wasteflow dilution ration = total stream flow (560.52 cfs) / discharge flow (10.52cfs) = 53/1.

Existing Facility - 6.0 MGD - Water Quality-Based Limitations

A "Reasonable Potential Analysis" (Attachment Toxic Management Spreadsheet, Version 1.3) was conducted.

No WQBEL limitations were determined through water quality modeling and no WQBELs will be imposed on this facility during this permit cycle for the existing facility.

The TMS recommended monitoring for hexavalent chromium, total copper, and total zinc. Due to ongoing STP expansion, the Department will not impose monitoring requirements at this time. A "Reasonable Potential Analysis" will be conducted at the expanded MBR facility during the next permit renewal cycle.

Existing Facility - 6.0 MGD - Best Professional Judgment (BPJ) Limitations

Comments: A Dissolved Oxygen minimum limitation of 4.0 mg/L will be implemented based on the standard in 25 PA Code Chapter 93 and best professional judgment.

Existing Facility - 6.0 MGD - Additional Considerations

For pH, DO and TRC, a monitoring frequency 1/day has been imposed. In general, less frequent monitoring may be established only when the permittee demonstrates that there will be no discharge on days where monitoring is not required.

Sewage discharges will include monitoring, at a minimum, for E. Coli, in new and reissued permits, with a monitoring frequency of 1/month for facilities with a design flows >= 1 MGD per Chapter 92.a.61.

Nutrient monitoring is required to establish the nutrient load from the wastewater treatment facility and the impacts that load may have on the quality of the receiving stream(s). A 1/quarter monitor and report requirement for Total N & Total P has been added to the permit per Chapter 92.a.61.

For existing discharges (NPDES Renewal Applications), if WQM7.0 modeling results for summer indicates that an average monthly warm period limit of 25 mg/L (default in model) is acceptable for ammonia-nitrogen, a year-round monitoring requirement, at a minimum should be established. Due to the large dilution ration discussed above, assume that a monthly warm period limit of 25 mg/L is acceptable for ammonia-nitrogen and impose a year-round monitoring requirement for ammonia-nitrogen that is consistent with Table 6-3 of the Permit Writers Manual. Application data for Outfall # 001 indicates that ammonia-nitrogen concentration in the discharge is ND. The QL used was 0.032 mg/L

Mass loading limits are applicable for publicly owned treatment works. Current policy requires average monthly mass loading limits be established for CBOD5, TSS, and NH₃-N and average weekly mass loading limits be established for CBOD5 and TSS. Average monthly mass loading limits (lbs/day) are based on the formula: design flow (MGD) x concentration limit (mg/L) x conversion factor (8.34).

For POTWs with design flows greater than 2,000 GPD influent BOD₅ and TSS monitoring must be established in the permit, and the monitoring should be consistent with the same frequency and sample type as is used for other effluent parameters.

Monitoring frequency for the proposed effluent limits are based upon Table 6-3, Self-Monitoring Requirements for Sewage Dischargers, from the Departments Technical Guidance for the Development and Specification of Effluent Limitations. Please note that Monitoring Requirements were changed for Flow to 2/week Metered to be consistent with the guidance.

Expanded Facility - 6.8 MGD

A DEP Aquatic Biologist performed a cause and effect stream survey for Peters Creek and various tributaries in late March and April 2012 and prepared a report dated June 16, 2014. The report concludes the entire Peters Creek watershed is impaired for multiple causes from several sources. Although the aquatic life use of the Peters Creek watershed is severely impaired, the report confirms that there is a use to protect at the point of discharge. For the expanded facility the point of first use is Peters Creek and not the Monongahela River.

The above Technology-Based Limitations for Total Suspended Solids, pH, and Fecal Coliform are applicable.

Expanded Facility – 6.8 MGD - Water Quality-Based Limitations

A "Reasonable Potential Analysis" (Attachment WQM 7.0 Version 1.1 and TRC CALC Spreadsheet) was conducted.

The following limitations were determined through water quality modeling for the expanded facility (output files attached):

Parameter	Limit (mg/l)	SBC	Model
CBOD5			
May 1 - Oct 31	12	Average Monthly	WQM 7.0 Version 1.1
Ammonia			WQM 7.0 Version 1.1
May 1 - Oct 31	3.0	Average Monthly	
Dissolved Oxygen	6.0	Instantaneous Minimum	WQM 7.0 Version 1.1
Total Residual Chlorine	0.1	Average Monthly	TRC_CALC

The MBR process does not require disinfection based upon the on-site pilot studies to meet effluent limitations. The existing chlorine gas disinfection units will be converted to liquid sodium hypochlorite for chlorination and liquid sodium bisulfite for dichlorination. These units will be available for back up use.

Expanded Facility - 6.8 MGD - Additional Considerations

For pH, DO and TRC, a monitoring frequency 1/day has been imposed. In general, less frequent monitoring may be established only when the permittee demonstrates that there will be no discharge on days where monitoring is not required.

Sewage discharges will include monitoring, at a minimum, for E. Coli, in new and reissued permits, with a monitoring frequency of 1/month for facilities with a design flows >= 1 MGD per Chapter 92.a.61.

Nutrient monitoring is required to establish the nutrient load from the wastewater treatment facility and the impacts that load may have on the quality of the receiving stream(s). A 1/quarter monitor and report requirement for Total N & Total P has been added to the permit per Chapter 92.a.61.

Mass loading limits are applicable for publicly owned treatment works. Current policy requires average monthly mass loading limits be established for CBOD5, TSS, and NH_3 -N and average weekly mass loading limits be established for CBOD5 and TSS. Average monthly mass loading limits (lbs/day) are based on the formula: design flow (MGD) x concentration limit (mg/L) x conversion factor (8.34).

For POTWs with design flows greater than 2,000 GPD influent BOD₅ and TSS monitoring must be established in the permit, and the monitoring should be consistent with the same frequency and sample type as is used for other effluent parameters.

Monitoring frequency for the proposed effluent limits are based upon Table 6-3, Self-Monitoring Requirements for Sewage Dischargers, from the Departments Technical Guidance for the Development and Specification of Effluent Limitations. Please note that Monitoring Requirements were changed for Flow to 2/week Metered to be consistent with the guidance.

Anti-Backsliding

Section 402(o) of the Clean Water Act (CWA), enacted in the Water Quality Act of 1987, establishes anti-backsliding rules governing two situations. The first situation occurs when a permittee seeks to revise a Technology-Based effluent limitation based on BPJ to reflect a subsequently promulgated effluent guideline which is less stringent. The second situation

NPDES Permit No. PA0026824

NPDES Permit Fact Sheet Clairton Municipal Authority STP

addressed by Section 402(o) arises when a permittee seeks relaxation of an effluent limitation which is based upon a State treatment standard of water quality standard.

Previous limits can be used pursuant to EPA's anti-backsliding regulation 40 CFR 122.44 (I) Reissued permits. (1) Except as provided in paragraph (I)(2) of this section when a permit is renewed or reissued. Interim effluent limitations, standards or conditions must be at least as stringent as the final effluent limitations, standards, or conditions in the previous permit (unless the circumstances on which the previous permit was based have materially and substantially changed since the time the permit was issued and would constitute cause for permit modification or revocation and reissuance under §122.62). (2) In the case of effluent limitations established on the basis of Section 402(a)(1)(B) of the CWA, a permit may not be renewed, reissued, or modified on the basis of effluent guidelines promulgated under section 304(b) subsequent to the original issuance of such permit, to contain effluent limitations which are less stringent than the comparable effluent limitations in the previous permit.

The facility is not seeking to revise the previously permitted effluent limits.

Whole Effluent Toxicity (WET)	
For Outfall 001, Acute Chronic WET Testing was completed: N/A	
For the permit renewal application (4 tests). Quarterly throughout the permit term. Quarterly throughout the permit term and a TIE/TRE was conducted. Other: The NPDES Permit Renewal Application was received on August 7, 2013 and the Department la requested an updated application be submitted, which was received on September 30, 2019. Due ongoing construction at the STP, the Department waived the WET Testing requirement. WET testing she conducted within 6 months of plant expansion and then annually for the remainder of the permit cyclindrical completion date for the expanded STP is January 1, 2024.	to hall
Evaluation of Test Type, IWC and Dilution Series for Renewed Permit	
Acute Partial Mix Factor (PMFa): 1 Chronic Partial Mix Factor (PMFc): 1	
1. Determine IWC – Acute (IWCa):	
$(Q_d \times 1.547) / ((Q_{7-10} \times PMFa) + (Q_d \times 1.547))$	
$[(6.8 \text{ MGD} \times 1.547) / ((7.24 \text{ cfs} \times 1) + (6.8 \text{ MGD} \times 1.547))] \times 100 = 59\%$	
Is IWCa < 1%? ☐ YES ☒ NO (YES - Acute Tests Required OR NO - Chronic Tests Required)	
If the discharge is to the tidal portion of the Delaware River, indicate how the type of test was determined:	
N/A	
Type of Test for Permit Renewal: Chronic Tests	
2a. Determine Target IWCa (If Acute Tests Required)	
TIWCa = 0.5923 / 0.3 = 100%	
2b. Determine Target IWCc (If Chronic Tests Required)	
$(Q_d \times 1.547) / (Q_{7-10} \times PMFc) + (Q_d \times 1.547)$	
$[(6.8 \text{ MGD} \times 1.547) / ((7.24 \text{ cfs} \times 1) + (6.8 \text{ MGD} \times 1.547))] \times 100 = 59\%$	
3. Determine Dilution Series	
(NOTE – check Attachment C of WET SOP for dilution series based on TIWCa or TIWCc, whichever applies).	
Dilution Series = 100%, 80%, 59%, 30%, and 15%.	
WET Limits	
Has reasonable potential been determined? ☐ YES ☒ NO	
Will WET limits be established in the permit? \square YES \boxtimes NO	
If WET limits will be established, identify the species and the limit values for the permit (TU).	
N/A	
If WET limits will not be established, but reasonable potential was determined, indicate the rationale for not establishing	J

N/A

WET limits:

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through June 30, 2024.

			Effluent L	imitations			Monitoring Re	quirements
Parameter	Mass Units	(lbs/day) (1)		Concentrati	ions (mg/L)		Minimum (2)	Required
Farameter	Average Monthly	Weekly Average	Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report Daily Max	XXX	XXX	XXX	XXX	1/day	Metered
pH (S.U.)	XXX	XXX	6.0 Inst Min	XXX	XXX	9.0	1/day	Grab
DO	XXX	XXX	4.0 Inst Min	XXX	XXX	XXX	1/day	Grab
TRC	XXX	XXX	XXX	0.5	XXX	1.6	1/day	Grab
CBOD5	1250	1875	XXX	25.0	37.5	50	1/day	24-Hr Composite
TSS	1500	2250	XXX	30.0	45.0	60	1/day	24-Hr Composite
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	XXX	XXX	XXX	2000 Geo Mean	XXX	10000	1/day	Grab
Fecal Coliform (No./100 ml) May 1 - Sep 30	XXX	XXX	XXX	200 Geo Mean	XXX	1000	1/day	Grab
E. Coli (No./100 ml)	XXX	XXX	XXX	XXX	XXX	Report	1/month	Grab
Ammonia-Nitrogen	Report	XXX	XXX	Report	XXX	XXX	1/day	24-Hr Composite

Compliance Sampling Location: 001

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: July 1, 2024 through Permit Expiration Date.

			Effluent L	imitations.			Monitoring Re	quirements
Parameter	Mass Units	(lbs/day) (1)		Concentrat	ions (mg/L)		Minimum (2)	Required
Farameter	Average Monthly	Weekly Average	Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report Daily Max	XXX	XXX	XXX	XXX	1/day	Metered
pH (S.U.)	XXX	XXX	6.0 Inst Min	XXX	XXX	9.0	1/day	Grab
DO	XXX	XXX	6.0 Inst Min	XXX	XXX	XXX	1/day	Grab
TRC	XXX	XXX	XXX	0.1	XXX	0.3	1/day	Grab
CBOD5 Nov 1 - Apr 30	1415	2125	XXX	25.0	37.5	50	1/day	24-Hr Composite
CBOD5 May 1 - Oct 31	680	1020	XXX	12.0	18.0	24	1/day	24-Hr Composite
TSS	1700	2550	XXX	30.0	45.0	60	1/day	24-Hr Composite
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	XXX	XXX	XXX	2000 Geo Mean	XXX	10000	1/day	Grab
Fecal Coliform (No./100 ml) May 1 - Sep 30	xxx	XXX	XXX	200 Geo Mean	XXX	1000	1/day	Grab
E. Coli (No./100 ml)	XXX	XXX	XXX	XXX	XXX	Report	1/month	Grab
Ammonia-Nitrogen Nov 1 - Apr 30	510	XXX	XXX	9.0	XXX	18	1/day	24-Hr Composite
Ammonia-Nitrogen May 1 - Oct 31	170	XXX	XXX	3.0	XXX	6	1/day	24-Hr Composite

Compliance Sampling Location: 001

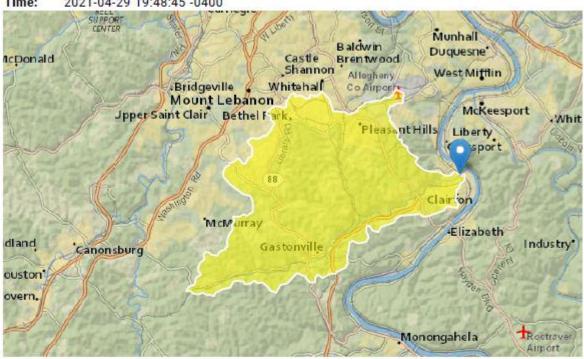
Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

			Effluent L	imitations			Monitoring Re	quirements
Parameter	Mass Units	(lbs/day) (1)		Concentra	tions (mg/L)		Minimum ⁽²⁾	Required
Farameter	Average Monthly	Daily Maximum	Minimum	Average Monthly	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
BOD5								24-Hr
Raw Sewage Influent	Report	Report	XXX	Report	XXX	XXX	1/day	Composite
TSS								24-Hr
Raw Sewage Influent	Report	Report	XXX	Report	XXX	XXX	1/day	Composite
_					Report			24-Hr
Total Nitrogen	XXX	XXX	XXX	XXX	Daily Max	XXX	1/quarter	Composite
_					Report			24-Hr
Total Phosphorus	XXX	XXX	XXX	XXX	Daily Max	XXX	1/quarter	Composite
					Report			24-Hr
Total Aluminum	XXX	XXX	XXX	XXX	Daily Max	XXX	1/quarter	Composite
					Report			24-Hr
Total Iron	XXX	XXX	XXX	XXX	Daily Max	XXX	1/quarter	Composite
					Report			24-Hr
Total Manganese	XXX	XXX	XXX	XXX	Daily Max	XXX	1/quarter	Composite

Compliance Sampling Location: 001


StreamStats Report

Region ID:

Workspace ID: PA20210429234827477000

40.30458, -79.88131 Clicked Point (Latitude, Longitude):

2021-04-29 19:48:45 -0400

Basin Characteristics			
Parameter Code	Parameter Description	Value	Unit
DRNAREA	Area that drains to a point on a stream	51.3	square miles
ELEV	Mean Basin Elevation	1086	feet

Low-Flow Statistics Pa	rameters [Low Flow Region 4	4			
Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	51.3	square miles	2.26	1400

Existing Facility TMS Analysis - Annual Average Design Flow 6.0 MGD

Toxics Management Spreadsheet Version 1.3, March 2021

Discharge Information

Instructions	Discharge Stream							
Facility: Cla	irton MA STP			NPDES Pen	mit No.: PA	0026824	Outfall	No.: 001
Evaluation Type:	Major Sewage /	Industrial Wast	e	Wastewater	Description:	Sewage Eff	luent	
			Discharge	Characterist	ics			
Design Flow	Headana (mar/Dt	-11 (610)	P	artial Mix Fa	ctors (PMF	s)	Complete Mix	x Times (min)
(MGD)*	Hardness (mg/l)*	pH (SU)*	AFC	CFC	THH	CRL	Q ₇₋₁₀	Q _h
6	233	7						

					0 If lef	t blank	0.5 If le	eft blank	0	If left blani	k	1 If lef	t blank
	Discharge Pollutant	Units	Ma	x Discharge Conc	Trib Conc	Stream Conc	Daily CV	Hourly CV	Strea m CV	Fate Coeff	FOS	Criteri a Mod	
	Total Dissolved Solids (PWS)	mg/L		491.9									
7	Chloride (PWS)	mg/L		120.78									
Group	Bromide	mg/L		0.1635									
٥	Sulfate (PWS)	mg/L		139.65									
	Fluoride (PWS)	mg/L											
	Total Aluminum	μg/L		55									
1	Total Antimony	μg/L		0.591									
1	Total Arsenic	μg/L		1.2									
1	Total Barium	μg/L		31									
1	Total Beryllium	μg/L	<	0.3									
1	Total Boron	μg/L		216									
1	Total Cadmium	μg/L	<	0.2									
1	Total Chromium (III)	μg/L		0.8									
1	Hexavalent Chromium	μg/L	٧	5									
1	Total Cobalt	μg/L		1									
1	Total Copper	μg/L		10.1									
2	Free Cyanide	μg/L	<	0.5									
Group	Total Cyanide	μg/L		12.6									
١ĕ	Dissolved Iron	μg/L		26									
	Total Iron	μg/L		249									
1	Total Lead	μg/L		0.41									
1	Total Manganese	μg/L		59									
1	Total Mercury	μg/L	٧	0.04									
1	Total Nickel	μg/L		5									
1	Total Phenols (Phenolics) (PWS)	μg/L	٧	0.22									
1	Total Selenium	μg/L	٧	2									
1	Total Silver	μg/L	<	0.9									
1	Total Thallium	μg/L	<	0.5									
1	Total Zinc	μg/L		34									
L	Total Molybdenum	μg/L		3									
	Acrolein	μg/L	٧	1.9									
	Acrylamide	μg/L	٧										
	Acrylonitrile	μg/L	<	1.2									
	Benzene	μg/L		0.31									
	Bromoform	μg/L		8.4									

Discharge Information 4/26/2021 Page 1

ı	Carbon Tetrachloride	uall	<	0.31								к—		
1	Chlorobenzene	μg/L	_	0.45	Н	Н	-	_			 	⊬	Н	\dashv
1		µg/L	<	0.45	H	Н	H					⊬	H	\dashv
1	Chlorodibromomethane	μg/L												
1	Chloroethane	μg/L	٧.	0.33			<u> </u>							4
1	2-Chloroethyl Vinyl Ether	μg/L	<	0.38	L	Щ	-					-	ш	4
1	Chloroform	μg/L		3.5	H	H	H					⊬	=	4
1	Dichlorobromomethane	μg/L	<	0.189										
1	1,1-Dichloroethane	μg/L	٧	0.28										
က	1,2-Dichloroethane	μg/L	٧	0.32			Щ					Ļ		\Box
Group	1,1-Dichloroethylene	μg/L	٧	0.29	_		\Box					\vdash	\blacksquare	+
2	1,2-Dichloropropane	μg/L	٧	0.24		Н							П	\vdash
ဖ	1,3-Dichloropropylene	μg/L	٧	0.47	Г	ī	П					ī	П	T
1	1,4-Dioxane	µg/L	<	58.9										
	Ethylbenzene	μg/L	<	0.34	F									\mp
1	Methyl Bromide	μg/L	<	0.39	F	Ħ	Ħ					H	Ħ	Ħ
1	Methyl Chloride	μg/L	<	0.31	Н	П							Н	$\overline{}$
1	Methylene Chloride	µg/L	<	0.45										\equiv
1	1,1,2,2-Tetrachloroethane	µg/L	<	0.34										#
			/ v	0.35	H	H	H	-				⊨	H	\forall
1	Tetrachloroethylene Toluono	µg/L	,	0.33	-								H	-
	Toluene	μg/L			F									
1	1,2-trans-Dichloroethylene	μg/L	٧.	0.26										
1	1,1,1-Trichloroethane	μg/L	٧	0.22	H									4
	1,1,2-Trichloroethane	μg/L	<	0.33								H		\dashv
	Trichloroethylene	μg/L	<	0.33										
\perp	Vinyl Chloride	μg/L	٧	0.3										
1	2-Chlorophenol	μg/L	٧	0.32			П					Щ		Д
1	2,4-Dichlorophenol	μg/L	٧	0.31								H		\blacksquare
1	2,4-Dimethylphenol	μg/L	٧	0.2	Н	Н	H					\vdash	P	$\exists \exists$
	4,6-Dinitro-o-Cresol	μg/L	<	0.32	F	Ħ	Ħ					Ħ	Ħ	Ħ
4	2,4-Dinitrophenol	µg/L	٧	2.4										
Group	2-Nitrophenol	μg/L	<	0.44	F									\exists
18	4-Nitrophenol	μg/L	<	1	H	H	H					H	H	Ħ
ľ	p-Chloro-m-Cresol	µg/L	<	0.19	Н	Н	Н						Н	Н
1	Pentachlorophenol	µg/L	· ·	1.2	E									Ħ
1	Phenol		<	0.22										#
1		μg/L	~	0.22	Н	Н	-	-				-	Н	Н
\vdash	2,4,6-Trichlorophenol	μg/L			H	H	H					⊬	H	\forall
1	Acenaphthene	μg/L	<	0.15	H	H					 	H	H	\Rightarrow
1	Acenaphthylene	μg/L	<	0.19							 			
1	Anthracene	μg/L	<	0.15	L								ш	Ш
1	Benzidine	μg/L	<	3		Н	H					Н		\exists
1	Benzo(a)Anthracene	μg/L	٧	0.17										\pm
1	Benzo(a)Pyrene	μg/L	٧	0.21								\vdash		
	3,4-Benzofluoranthene	μg/L	<	0.13			Щ							
1	Benzo(ghi)Perylene	μg/L	<	0.21			H					H	\Box	\blacksquare
	Benzo(k)Fluoranthene	μg/L	<	0.19	Н	Н	H						П	\blacksquare
1	Bis(2-Chloroethoxy)Methane	μg/L	٧	0.2	Г	ī	Ħ					m	П	Ħ
1	Bis(2-Chloroethyl)Ether	μg/L	٧	0.19										
	Bis(2-Chloroisopropyl)Ether	μg/L	<	0.27										
1	Bis(2-Ethylhexyl)Phthalate	μg/L		0.26	F	Ħ	Ħ					H	Ħ	Ħ
	4-Bromophenyl Phenyl Ether	μg/L	٧	0.17	Н	Н							Н	-
1	Butyl Benzyl Phthalate	µg/L	<	0.12										Ħ
	2-Chloronaphthalene		<	0.12										
1	4-Chlorophenyl Phenyl Ether	µg/L	~	0.14	\vdash							-		+
1		μg/L			-							-	H	-
1	Chrysene	μg/L	<	0.15										
1	Dibenzo(a,h)Anthrancene	μg/L	<	0.2										
1	1,2-Dichlorobenzene	μg/L	<	0.38										
1	1,3-Dichlorobenzene	μg/L		0.25	E									
40	1,4-Dichlorobenzene	μg/L		0.57										
g.	3,3-Dichlorobenzidine	μg/L	٧	0.47										
Group	Diethyl Phthalate	μg/L	٧	0.18										
9	Dimethyl Phthalate	μg/L	٧	0.14	F									
	Di-n-Butyl Phthalate	μg/L	<	0.14									F	-
	2,4-Dinitrotoluene	μg/L	<	2.4									F	
	F				-						 	_	_	_

ı	2 8 Dinitestaliana		-	0.12		_	-					
	2,6-Dinitrotoluene	μg/L	<	0.13	Н	4	+					\dashv
	Di-n-Octyl Phthalate	μg/L	<	0.098	Н	4	+				 H	\dashv
	1,2-Diphenylhydrazine	μg/L	<	0.25	Н		\Rightarrow					#
	Fluoranthene	μg/L	<	0.17		\rightrightarrows	1					
	Fluorene	μg/L	<	0.2	Ц	4	4				Щ	
	Hexachlorobenzene	µg/L	<	0.22	Н	4	+				H	\dashv
	Hexachlorobutadiene	μg/L	<	0.19								
	Hexachlorocyclopentadiene	μg/L	<	0.17								
	Hexachloroethane	μg/L	<	0.29	Ц	4	4				Щ	\bot
	Indeno(1,2,3-od)Pyrene	μg/L	٧	0.12	Н	\dashv					\vdash	
	Isophorone	μg/L	<	0.15		\dashv					\vdash	
	Naphthalene	μg/L		1.1		\Box	T				\square	
	Nitrobenzene	μg/L	<	3.57		\Box	Ţ				П	\Box
	n-Nitrosodimethylamine	μg/L	<	0.62	Н	\exists	7				H	$\exists \exists$
	n-Nitrosodi-n-Propylamine	µg/L	<	0.23	Ħ	Ħ	\mp				Ħ	77
	n-Nitrosodiphenylamine	μg/L	<	0.18							Ш	
	Phenanthrene	μg/L	<	0.13		⇉	#					\Rightarrow
	Pyrene	μg/L	<	0.16	H	#	+					#
	1,2,4-Trichlorobenzene	µg/L	<	0.16	Ħ	7	+				H	-
\vdash	Aldrin	µg/L	<	0.0047								
	alpha-BHC	µg/L	<	0.0019		1	Ŧ					
	beta-BHC	μg/L	<	0.0075	H	+	+					+
			-	0.0075	H	-						
	gamma-BHC delta BHC	µg/L	<	0.0028	H							
		µg/L	<	0.0028			-					
	Chlordane	μg/L	_		Н	4	+				 ₩	
	4,4-DDT	μg/L	<	0.0057	Н	4	+				H	\dashv
	4,4-DDE	μg/L	<	0.0066	Н	4	+					
	4,4-DDD	μg/L	<	0.0066								
	Dieldrin	μg/L	<	0.0028								
	alpha-Endosulfan	μg/L	<	0.0028	Н	4	\perp				H	\blacksquare
	beta-Endosulfan	μg/L	<	0.0057	Н	\dashv	\pm				\vdash	
9	Endosulfan Sulfate	μg/L	٧	0.0038	Π	\exists					\sqcap	
Group	Endrin	μg/L	<	0.0075	Ц	Ц	Į				Щ	
ō	Endrin Aldehyde	μg/L	<	0.0094	Н	-	7				\mathbb{H}	$\exists \exists$
	Heptachlor	μg/L	<	0.0028	Н	\exists	7				H	
	Heptachlor Epoxide	μg/L	<	0.0038		\neg					\Box	
	PCB-1016	µg/L				耳	Ţ					
	PCB-1221	μg/L			Н	7	7				H	$\exists \exists$
	PCB-1232	μg/L			Ħ	Ħ	+				Ħ	$\dashv \vdash$
	PCB-1242	μg/L			Н	\top	\top					\blacksquare
	PCB-1248	μg/L										_
	PCB-1254	µg/L			H	#	+				H	#
	PCB-1260	µg/L			Н	+	+				₩	+
	PCBs, Total	µg/L			H	\dashv	+				 H	-
			<	0.18								
	Toxaphene 2,3,7,8-TCDD	µg/L	-	U. 10	H	+	+				H	-
\vdash		ng/L			H	-					-	
	Gross Alpha	pCi/L					+					
7	Total Beta	pCi/L										
Group	Radium 226/228	pCi/L			Н	_					Щ	44
5	Total Strontium	μg/L			H	+	+				H	\dashv
ľ	Total Uranium	μg/L			Н	\Rightarrow	+					-
$ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{L}}}}$	Osmotic Pressure	mOs/kg										
					Ы							
							Ţ					
					H							
					H							
					1						1	

Toxics Management Spreadsheet Version 1.3, March 2021

Stream / Surface Water Information

Clairton MA STP, NPDES Permit No. PA0026824, Outfall 001

Point of Discharge	Receiving Surface W	ater Name:	Peters Cre	ek				No. Rea	aches to M	Model:	1	~	tewide Criteri			
Point of Discharge	Location	Stream Co	de* RM	x	DA (mi	i²)* Sk	ope (ft/ft)					OR	SANCO Crite	ria		
Cocation RMI	Point of Discharge	039425	0.4	2 721.	5 51.3	3	0.0001			Yes						
Location RMI	End of Reach 1	039425	0.0	1 721.3	28 51.5		0.0001			Yes						
Point of Discharge		RMI														
End of Reach 1 0.01 0.141 Continue	Deiet of Disebases	0.40		Stream	Iributary	Ratio				(days)	Hardness	рн			Hardness	p⊦
Location RMI LFY Flow (cfs) W/D Width Depth Velocit Time Tributary Stream Analysis (cfs/mi²) Stream Tributary Ratio (ft) (ft) (ft) y (fps) (days) Hardness pH Hardness pH Hardness							40	2.000	0.22				100	-/		
Location RMI LFY Flow (cfs) W/D Width Depth Velocit Time (fts) (ft	Life of Reach 1	0.01	0.141													
Location RMI CFY Flow (cfs) W/D Width Depth Velocit Time (cfs/mi²) Stream Tributary Ratio (ft) (ft) y (fps) (days) Hardness pH Hardness pH Hardness pH Hardness	Q _h															
(cfs/mi*) Stream Tributary Ratio (ft) (ft) y (fps) Hardness pH Hardness pH Hardness pH Hardness	Landin	DMI	LFY	Flow	v (cfs)	W/D	Width	Depth	Velocit		Tributa	ary	Stream	m	Analys	sis
I days	Location	KMI	(cfs/mi ²)	Stream	Tributary	Ratio	(ft)	(ft)	y (fps)		Hardness	pН	Hardness	pН	Hardness	рH
Point of Discharge 0.42	Location									Time					-	-
End of Reach 1 0.01													1			1

Hexavalent Chromium

Total Cobalt

Total Copper

Free Cyanide

0

0

0

0

0

0

0

0

Toxics Management Spreadsheet Version 1.3, March 2021

Chem Translator of 0.982 applied

Chem Translator of 0.96 applied

Model Results

Clairton MA STP, NPDES Permit No. PA0026824, Outfall 001

Instructions	Results		RETURN	I TO INPU	rs) (SAVE AS I	PDF	PRINT		All O Inputs	() Results	○ Limits	
✓ Hydrod	lynamics												
Q 7-10													
RMI	Stream Flow (cfs)	PWS With (cfs)		Net Stream		arge Analys low (cfs)	Slope (ft/	ft) Depth (f	t) Width	(ft) W/D Ratio	Velocity (fps)	Time (days)	Complete Mix Time (min)
0.42	7.24			7.24		9.282	0.0001	2.656	40.	15.06	0.22	0.114	9.725
0.01	7.26			7.2615									
Qh													
RMI	Stream Flow (cfs)	PWS With (cfs)		Net Strear Flow (cfs)		arge Analys low (cfs)	Slope (ft/	ft) Depth (f	t) Width	(ft) W/D Ratio	Velocity (fps)	Time (days)	Complete Mix Time (min)
0.42	41.91			41.91		9.282	0.0001	4.369	40.	9.156	0.414	0.06	16.097
0.01	42.027			42.03									
✓ Wastel	oad Allocatio		Γ (min): 9		PMF:	1		sis Hardness	s (mg/l):	174.73	Analysis pH:	7.00	
	Pollutants		Conc	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	NLA (µg/L)		С	omments	
	ssolved Solid		0	0		0	N/A	N/A	N/A				
	Chloride (PWS	•	0	0		0	N/A	N/A	N/A				
	Sulfate (PWS	,	0	0		0	N/A	N/A	N/A				
	Total Aluminu Total Antimon		0	0		0	750 1,100	750 1,100	1,335				
	Total Arsenio		0	0		0	340	340	605		Chem Tran	slator of 1 ap	nnlied
	Total Barium		0	0		0	21,000	21,000	37,375		Onem man	isiator Of Ta	pplied
	Total Boron		0	0		0	8,100	8,100	14,416				
1	Total Cadmiur	n	0	0		0	3.463	3.76	6.7		Chem Transl	ator of 0.921	applied
Tot	tal Chromium	(III)	0	0		0	899.899	2,848	5,068		Chem Transl	ator of 0.316	applied

Model Results 4/26/2021 Page 5

16.3

95.0

23.7

22.0

29.0

169

42.2

39.2

16

95

22.737

22

0

0

0

0

0	0				0	N/A	N/A	N/A	
0	0				0	N/A	N/A	N/A	
0	0		7	\Box	0	117.904	166	296	Chem Translator of 0.71 applied
0	0	H	\mp		0	N/A	N/A	N/A	
0	0		\mp		0	1.400	1.65	2.93	Chem Translator of 0.85 applied
0	0				0	750.771	752	1,339	Chem Translator of 0.998 applied
0	0		7		0	N/A	N/A	N/A	
0	0		\mp		0	N/A	N/A	N/A	Chem Translator of 0.922 applied
0	0	H	\top	$\forall t$	0	8.400	9.88	17.6	Chem Translator of 0.85 applied
0	0		Ţ		0	65	65.0	116	
0	0	#	#	##	0	188.024	192	342	Chem Translator of 0.978 applied
0	0	Ħ	\pm	##	0	3	3.0	5.34	
0	0	\vdash	\rightarrow	$\forall \forall$	0	650	650	1,157	
0	0		#		0	640	640	1.139	
	0	##	+	##	0	1.800	1.800		
	0	##	+	++	0				
0	0				0	1,200	1,200	2,136	
0	0		7		0	N/A	N/A	N/A	
	0	Ħ	+	#	0		18.000		
	0	₩	+	++-	0			3.382	
	0				0			N/A	
			+	##					
		₩	+	++				,	
		+	+	++					
			#						
			+	++-					
		+	+	++-					
	0		\pm		0		28 000		
			#		_	,			
		₩	+	++	_				
		+	+	++	_				
			#						
		##	+	#					
		₩	+	++	_				
	_	H	+	**	_				
	_		#			-			
	_		+	++		-			
	_		+	++-	_				
			#						
			+						
		+	+	++					
	_		+		_				
	_				_				
	_		+			-,			
0	0	+++	+	++-	0	160	160	285	
			-			100			
0	0				0	9.722	0.72	15.5	
0	0		+		0	8.723 N/A	8.72 N/A	15.5 N/A	
		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 117.904 0 0 0 0 117.904 0 0 0 0 117.904 0 0 0 0 750.771 0 0 0 0 0 750.771 0 0 0 0 0 0 N/A 0 0 0 0 0 0 N/A 0 0 0 0 0 0 8.400 0 0 0 0 65 0 0 0 0 650 0 0 0 0 1.800 0 0 0 0 1.800 0 0 0 0 1.800 0 0 0 0 1.800 0 0 0 1.800 0 0 0 1.800 0 0 0 1.800 0 0 0 1.900 0 0 1.900 0 0 0 1.900 0 0 0 11.000 0 0 0 0 11.000 0 0 0 0 11.000 0 0 0 0 11.000 0 0 0 0 11.000 0 0 0 0 11.000 0 0 0 0 11.000 0 0 0 0 11.000 0 0 0 0 11.000 0 0 0 0 11.000 0 0 0 0 11.000 0 0 0 0 11.000 0 0 0 0 11.000 0 0 0 0 11.000 0 0 0 0 11.000 0 0 0 0 11.000 0 0 0 0 11.000 0 0 0 0 11.000 0 0 0 0 12.000 0 0 0 0 1.000 0 0 0 0 1.000 0 0 0 0 1.000 0 0 0 0 1.000 0 0 0 0 1.000 0 0 0 0 1.700 0 0 0 0 0 1.700 0 0 0 0 0 1.700 0 0 0 0 0 0 0 0.300 0 0 0 0 0 0 0.3000 0 0 0 0 0 0 0.3000 0 0 0 0 0 0 0.3000 0 0 0 0 0 0 0.000 0 0 0 0 0 0.000 0 0 0 0	0 0 0 N/A N/A 0 0 0 117.904 168 0 0 0 1.400 1.65 0 0 0 1.400 1.65 0 0 0 750.771 752 0 0 0 N/A N/A 0 0 0 0 8.400 9.88 0 0 0 0 8.400 9.88 0 0 0 18.800 9.92 0 0 0 18.000 9.50 0 0 0 1.800 1.800 0 0 0 1.800 <td>0 0 0 N/A N/A N/A 0 0 0 117.904 188 298 0 0 0 1.400 1.65 2.93 0 0 0 1.400 1.65 2.93 0 0 0 755.771 752 1.339 0 0 0 N/A N/A N/A 0 0 0 0 8.400 9.88 17.6 0 0 0 8.500 9.88 17.6 17.6 0 0 0 188.024 192 342 192 342 0 0 0 188.024 192 342 192 342 192 342 192 342</td>	0 0 0 N/A N/A N/A 0 0 0 117.904 188 298 0 0 0 1.400 1.65 2.93 0 0 0 1.400 1.65 2.93 0 0 0 755.771 752 1.339 0 0 0 N/A N/A N/A 0 0 0 0 8.400 9.88 17.6 0 0 0 8.500 9.88 17.6 17.6 0 0 0 188.024 192 342 192 342 0 0 0 188.024 192 342 192 342 192 342 192 342

Acenaphthene	0	0		0	83	83.0	148	
Anthracene	0	0		0	N/A	N/A	N/A	
Benzidine	0	0		0	300	300	534	
Benzo(a)Anthracene	0	0		0	0.5	0.5	0.89	
Benzo(a)Pyrene	0	0		0	N/A	N/A	N/A	
3,4-Benzofluoranthene	0	0		0	N/A	N/A	N/A	
Benzo(k)Fluoranthene	0	0		0	N/A	N/A	N/A	
Bis(2-Chloroethyl)Ether	0	0		0	30,000	30,000	53,392	
Bis(2-Chloroisopropyl)Ether	0	0		0	N/A	N/A	N/A	
Bis(2-Ethylhexyl)Phthalate	0	0		0	4,500	4,500	8,009	
4-Bromophenyl Phenyl Ether	0	0		0	270	270	481	
Butyl Benzyl Phthalate	0	0		0	140	140	249	
2-Chloronaphthalene	0	0		0	N/A	N/A	N/A	
Chrysene	0	0		0	N/A	N/A	N/A	
Dibenzo(a,h)Anthrancene	0	0		0	N/A	N/A	N/A	
1,2-Dichlorobenzene	0	0		0	820	820	1,459	
1,3-Dichlorobenzene	0	0		0	350	350	623	
1,4-Dichlorobenzene	0	0		0	730	730	1,299	
3,3-Dichlorobenzidine	0	0		0	N/A	N/A	N/A	
Diethyl Phthalate	0	0		0	4,000	4,000	7,119	
Dimethyl Phthalate	0	0		0	2,500	2,500	4,449	
Di-n-Butyl Phthalate	0	0		0	110	110	196	
2.4-Dinitrotoluene	0	0		0	1.600	1.600	2.848	
2.6-Dinitrotoluene	0	0		0	990	990	1,762	
1,2-Diphenylhydrazine	0	0		0	15	15.0	26.7	
Fluoranthene	0	0		0	200	200	356	
Fluorene	0	0	 	0	N/A	N/A	N/A	
Hexachlorobenzene	0	0		0	N/A	N/A	N/A	
Hexachlorobutadiene	0	0		0	10	10.0	17.8	
Hexachlorocyclopentadiene	0	0		0	5	5.0	8.9	
Hexachloroethane	0	0		0	60	60.0	107	
Indeno(1,2,3-cd)Pyrene	0	0		0	N/A	N/A	N/A	
Isophorone	0	0		0	10.000	10.000	17.797	
Naphthalene	0	0		0	140	140	249	
Nitrobenzene	0	0		0	4.000	4.000	7,119	
n-Nitrosodimethylamine	0	0		0	17,000	17,000	30,256	
n-Nitrosodi-n-Propylamine	0	0		0	N/A	N/A	N/A	
n-Nitrosodiphenylamine	0	0		0	300	300	534	
Phenanthrene	0	0		0	5	5.0	8.9	
Pyrene	0	0		0	N/A	N/A	N/A	
1.2.4-Trichlorobenzene	0	0		0	130	130	231	
Aldrin	0	0		0	3	3.0	5.34	
alpha-BHC	0	0		0	N/A	N/A	N/A	
beta-BHC	0	0		0	N/A	N/A	N/A	
gamma-BHC	0	0		0	0.95	0.95	1.69	
Chlordane	0	0		0	2.4	2.4	4.27	
4.4-DDT	0	0		0	1.1	1.1	1.96	
4,4-DDE	0	0		0	1.1	1.1	1.96	
4,4-000	U	U		U	1.1	1.1	1.90	

4,4-DDD	0	0	0	1.1	1.1	1.96	
Dieldrin	0	0	0	0.24	0.24	0.43	
alpha-Endosulfan	0	0	0	0.22	0.22	0.39	
beta-Endosulfan	0	0	0	0.22	0.22	0.39	
Endosulfan Sulfate	0	0	0	N/A	N/A	N/A	
Endrin	0	0	0	0.086	0.086	0.15	
Endrin Aldehyde	0	0	0	N/A	N/A	N/A	
Heptachlor	0	0	0	0.52	0.52	0.93	
Heptachlor Epoxide	0	0	0	0.5	0.5	0.89	
Toxaphene	0	0	0	0.73	0.73	1.3	

✓ CFC	CCT (min): 9.725	PMF: 1	Analysis Hardness (mg/l):	174.73	Analysis pH:	7.00	Į

Pollutants	Conc	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A	
Chloride (PWS)	0	0		0	N/A	N/A	N/A	
Sulfate (PWS)	0	0		0	N/A	N/A	N/A	
Total Aluminum	0	0		0	N/A	N/A	N/A	
Total Antimony	0	0		0	220	220	392	
Total Arsenic	0	0		0	150	150	267	Chem Translator of 1 applied
Total Barium	0	0		0	4,100	4,100	7,297	
Total Boron	0	0		0	1,600	1,600	2,848	
Total Cadmium	0	0		0	0.362	0.41	0.73	Chem Translator of 0.886 applied
Total Chromium (III)	0	0		0	117.058	136	242	Chem Translator of 0.86 applied
Hexavalent Chromium	0	0		0	10	10.4	18.5	Chem Translator of 0.982 applied
Total Cobalt	0	0		0	19	19.0	33.8	
Total Copper	0	0		0	14.428	15.0	26.7	Chem Translator of 0.96 applied
Free Cyanide	0	0		0	5.2	5.2	9.25	
Dissolved Iron	0	0		0	N/A	N/A	N/A	
Total Iron	0	0		0	1,500	1,500	2,670	WQC = 30 day average; PMF = 1
Total Lead	0	0		0	4.595	6.47	11.5	Chem Translator of 0.71 applied
Total Manganese	0	0		0	N/A	N/A	N/A	
Total Mercury	0	0		0	0.770	0.91	1.61	Chem Translator of 0.85 applied
Total Nickel	0	0		0	83.388	83.6	149	Chem Translator of 0.997 applied
Total Phenols (Phenolics) (PWS)	0	0		0	N/A	N/A	N/A	
Total Selenium	0	0		0	4.600	4.99	8.88	Chem Translator of 0.922 applied
Total Silver	0	0		0	N/A	N/A	N/A	Chem Translator of 1 applied
Total Thallium	0	0		0	13	13.0	23.1	
Total Zinc	0	0		0	189.562	192	342	Chem Translator of 0.986 applied
Acrolein	0	0		0	3	3.0	5.34	
Acrylonitrile	0	0		0	130	130	231	
Benzene	0	0		0	130	130	231	
Bromoform	0	0		0	370	370	659	
Carbon Tetrachloride	0	0		0	560	560	997	
Chlorobenzene	0	0		0	240	240	427	

Chlorodibromomethane	0	0		0	N/A	N/A	N/A	
2-Chloroethyl Vinyl Ether	0	0		0	3,500	3,500	6,229	
Chloroform	0	0		0	390	390	694	
Dichlorobromomethane	0	0	\pm	0	N/A	N/A	N/A	
1.2-Dichloroethane	0	0		0	3,100	3,100	5,517	
1,1-Dichloroethylene	0	0		0	1,500	1,500	2,670	
1,2-Dichloropropane	0	0	\pm	0	2.200	2.200	3,915	
1,3-Dichloropropylene	0	0		0	61	61.0	109	
Ethylbenzene	0	0	\Rightarrow	0	580	580	1.032	
Methyl Bromide	0	0	\pm	0	110	110	196	
Methyl Chloride	0	0		0	5,500	5,500	9,789	
Methylene Chloride	0	0	\Rightarrow	0	2,400	2,400	4,271	
1.1.2.2-Tetrachloroethane	0	0	+	0	210	210	374	
Tetrachloroethylene	0	0		0	140	140	249	
Toluene	0	0		0	330	330	587	
1,2-trans-Dichloroethylene	0	0		0	1,400	1,400	2,492	
1,1,1-Trichloroethane	0	0		0	610	610	1,086	
1,1,2-Trichloroethane	0	0		0	680	680	1,210	
Trichloroethylene	0	0	\dashv	0	450	450	801	
Vinyl Chloride	0	0		0	N/A	N/A	N/A	
2-Chlorophenol	0	0	\dashv	0	110	110	196	
2.4-Dichlorophenol	0	0	\dashv	0	340	340	605	
2,4-Dimethylphenol	0	0		0	130	130	231	
4.6-Dinitro-o-Cresol	0	0	\dashv	0	16	16.0	28.5	
2,4-Dinitrophenol	0	0	\dashv	0	130	130	231	
2-Nitrophenol	0	0	\Rightarrow	0	1.600	1.600	2.848	
4-Nitrophenol	0	0	\dashv	0	470	470	836	
p-Chloro-m-Cresol	0	0		0	500	500	890	
Pentachlorophenol	0	0	\blacksquare	0	6.693	6.69	11.9	
Phenol	0	0	\dashv	0	N/A	N/A	N/A	
2,4,6-Trichlorophenol	0	0		0	91	91.0	162	
Acenaphthene	0	0	\rightarrow	0	17	17.0	30.3	
Anthracene	0	0		0	N/A	N/A	N/A	
Benzidine	0	0		0	59	59.0	105	
Benzo(a)Anthracene	0	0		0	0.1	0.1	0.18	
Benzo(a)Pyrene	0	0		0	N/A	N/A	N/A	
3,4-Benzofluoranthene	0	0		0	N/A	N/A	N/A	
Benzo(k)Fluoranthene	0	0		0	N/A	N/A	N/A	
Bis(2-Chloroethyl)Ether	0	0		0	6,000	6,000	10,678	
Bis(2-Chloroisopropyl)Ether	0	0		0	N/A	N/A	N/A	
Bis(2-Ethylhexyl)Phthalate	0	0		0	910	910	1,620	
4-Bromophenyl Phenyl Ether	0	0		0	54	54.0	96.1	
Butyl Benzyl Phthalate	0	0		0	35	35.0	62.3	
2-Chloronaphthalene	0	0		0	N/A	N/A	N/A	
Chrysene	0	0		0	N/A	N/A	N/A	

Dibenzo(a,h)Anthrancene	0	0	0	N/A	N/A	N/A	
1,2-Dichlorobenzene	0	0	0	160	160	285	
1,3-Dichlorobenzene	0	0	0	69	69.0	123	
1,4-Dichlorobenzene	0	0	0	150	150	267	
3,3-Dichlorobenzidine	0	0	0	N/A	N/A	N/A	
Diethyl Phthalate	0	0	0	800	800	1,424	
Dimethyl Phthalate	0	0	0	500	500	890	
Di-n-Butyl Phthalate	0	0	0	21	21.0	37.4	
2,4-Dinitrotoluene	0	0	0	320	320	570	
2,6-Dinitrotoluene	0	0	0	200	200	356	
1,2-Diphenylhydrazine	0	0	0	3	3.0	5.34	
Fluoranthene	0	0	0	40	40.0	71.2	
Fluorene	0	0	0	N/A	N/A	N/A	
Hexachlorobenzene	0	0	0	N/A	N/A	N/A	
Hexachlorobutadiene	0	0	0	2	2.0	3.56	
Hexachlorocyclopentadiene	0	0	0	1	1.0	1.78	
Hexachloroethane	0	0	0	12	12.0	21.4	
Indeno(1,2,3-cd)Pyrene	0	0	0	N/A	N/A	N/A	
Isophorone	0	0	0	2,100	2,100	3,737	
Naphthalene	0	0	0	43	43.0	76.5	
Nitrobenzene	0	0	0	810	810	1,442	
n-Nitrosodimethylamine	0	0	0	3,400	3,400	6,051	
n-Nitrosodi-n-Propylamine	0	0	0	N/A	N/A	N/A	
n-Nitrosodiphenylamine	0	0	0	59	59.0	105	
Phenanthrene	0	0	0	1	1.0	1.78	
Pyrene	0	0	0	N/A	N/A	N/A	
1,2,4-Trichlorobenzene	0	0	0	26	26.0	46.3	
Aldrin	0	0	0	0.1	0.1	0.18	
alpha-BHC	0	0	0	N/A	N/A	N/A	
beta-BHC	0	0	0	N/A	N/A	N/A	
gamma-BHC	0	0	0	N/A	N/A	N/A	
Chlordane	0	0	0	0.0043	0.004	0.008	
4,4-DDT	0	0	0	0.001	0.001	0.002	
4,4-DDE	0	0	0	0.001	0.001	0.002	
4,4-DDD	0	0	0	0.001	0.001	0.002	
Dieldrin	0	0	0	0.056	0.056	0.1	
alpha-Endosulfan	0	0	0	0.056	0.056	0.1	
beta-Endosulfan	0	0	0	0.056	0.056	0.1	
Endosulfan Sulfate	0	0	0	N/A	N/A	N/A	
Endrin	0	0	0	0.036	0.036	0.064	
Endrin Aldehyde	0	0	0	N/A	N/A	N/A	
Heptachlor	0	0	0	0.0038	0.004	0.007	
Heptachlor Epoxide	0	0	0	0.0038	0.004	0.007	
Toxaphene	0	0	0	0.0002	0.0002	0.0004	

✓ THH	CT (min): 9.	725	PMF:	1	Ana	alysis Hardne	ss (mg/l):	N/A Analysis pH: N/A
	Stream	Stream	Trib Cone	Fate	wac	WQ Obj		
Pollutants	Conc (ug/L)	CV	(µg/L)	Coef	(µg/L)	(µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0		0	500,000	500,000	N/A	
Chloride (PWS)	0	0		0	250,000	250,000	N/A	
Sulfate (PWS)	0	0		0	250,000	250,000	N/A	
Total Aluminum	0	0		0	N/A	N/A	N/A	
Total Antimony	0	0		0	5.6	5.6	9.97	
Total Arsenic	0	0		0	10	10.0	17.8	
Total Barium	0	0		0	2,400	2,400	4,271	
Total Boron	0	0		0	3,100	3,100	5,517	
Total Cadmium	0	0		0	N/A	N/A	N/A	
Total Chromium (III)	0	0		0	N/A	N/A	N/A	
Hexavalent Chromium	0	0		0	N/A	N/A	N/A	
Total Cobalt	0	0		0	N/A	N/A	N/A	
Total Copper	0	0		0	N/A	N/A	N/A	
Free Cyanide	0	0		0	4	4.0	7.12	
Dissolved Iron	0	0		0	300	300	534	
Total Iron	0	0		0	N/A	N/A	N/A	
Total Lead	0	0		0	N/A	N/A	N/A	
Total Manganese	0	0		0	1,000	1,000	1,780	
Total Mercury	0	0		0	0.050	0.05	0.089	
Total Nickel	0	0		0	610	610	1,086	
Total Phenols (Phenolics) (PWS	0	0		0	5	5.0	N/A	
Total Selenium	0	0		0	N/A	N/A	N/A	
Total Silver	0	0		0	N/A	N/A	N/A	
Total Thallium	0	0		0	0.24	0.24	0.43	
Total Zinc	0	0		0	N/A	N/A	N/A	
Acrolein	0	0		0	3	3.0	5.34	
Acrylonitrile	0	0		0	N/A	N/A	N/A	
Benzene	0	0		0	N/A	N/A	N/A	
Bromoform	0	0		0	N/A	N/A	N/A	
Carbon Tetrachloride	0	0		0	N/A	N/A	N/A	
Chlorobenzene	0	0		0	100	100.0	178	
Chlorodibromomethane	0	0		0	N/A	N/A	N/A	
2-Chloroethyl Vinyl Ether	0	0		0	N/A	N/A	N/A	
Chloroform	0	0		0	N/A	N/A	N/A	
Dichlorobromomethane	0	0		0	N/A	N/A	N/A	
1,2-Dichloroethane	0	0		0	N/A	N/A	N/A	
1,1-Dichloroethylene	0	0		0	33	33.0	58.7	
1,2-Dichloropropane	0	0		0	N/A	N/A	N/A	
1,3-Dichloropropylene	0	0		0	N/A	N/A	N/A	
Ethylbenzene	0	0		0	68	68.0	121	
Methyl Bromide	0	0		0	100	100.0	178	

Methyl Chloride	0	0	-	- 0	N/A	N/A	N/A	
Methylene Chloride	0	0		0	N/A	N/A	N/A	
1,1,2,2-Tetrachloroethane	0	0		0	N/A	N/A	N/A	
Tetrachloroethylene	0	0		0	N/A	N/A	N/A	
Toluene	0	0		0	57	57.0	101	
1,2-trans-Dichloroethylene	0	0		0	100	100.0	178	
1,1,1-Trichloroethane	0	0		0	10,000	10.000	17,797	
1,1,2-Trichloroethane	0	0		0	N/A	N/A	N/A	
Trichloroethylene	0	0		0	N/A	N/A	N/A	
Vinyl Chloride	0	0		0	N/A	N/A	N/A	
2-Chlorophenol	0	0		0	30	30.0	53.4	
2,4-Dichlorophenol	0	0		- 0	10	10.0	17.8	
2,4-Dimethylphenol	0	0		0	100	100.0	178	
4,6-Dinitro-o-Cresol	0	0		0	2	2.0	3.56	
2.4-Dinitrophenol	0	0		0	10	10.0	17.8	
2-Nitrophenol	0	0		0	N/A	N/A	N/A	
4-Nitrophenol	0	0		0	N/A	N/A	N/A	
p-Chloro-m-Cresol	0	0		- 0	N/A	N/A	N/A	
Pentachlorophenol	0	0		0	N/A	N/A	N/A	
Phenol	0	0		0	4,000	4,000	7,119	
2,4,6-Trichlorophenol	0	0		- 0	N/A	N/A	N/A	
Acenaphthene	0	0		0	70	70.0	125	
Anthracene	0	0		- 0	300	300	534	
Benzidine	0	0		0	N/A	N/A	N/A	
Benzo(a)Anthracene	0	0		0	N/A	N/A	N/A	
Benzo(a)Pyrene	0	0		- 0	N/A	N/A	N/A	
3,4-Benzofluoranthene	0	0		0	N/A	N/A	N/A	
Benzo(k)Fluoranthene	0	0		0	N/A	N/A	N/A	
Bis(2-Chloroethyl)Ether	0	0		- 0	N/A	N/A	N/A	
Bis(2-Chloroisopropyl)Ether	0	0		- 0	200	200	356	
Bis(2-Ethylhexyl)Phthalate	0	0		0	N/A	N/A	N/A	
4-Bromophenyl Phenyl Ether	0	0		_ 0	N/A	N/A	N/A	
Butyl Benzyl Phthalate	0	0		0	0.1	0.1	0.18	
2-Chloronaphthalene	0	0		0	800	800	1,424	
Chrysene	0	0		- 0	N/A	N/A	N/A	
Dibenzo(a,h)Anthrancene	0	0		0	N/A	N/A	N/A	
1,2-Dichlorobenzene	0	0		0	1,000	1,000	1,780	
1,3-Dichlorobenzene	0	0		- 0	7	7.0	12.5	
1,4-Dichlorobenzene	0	0		0	300	300	534	
3,3-Dichlorobenzidine	0	0		0	N/A	N/A	N/A	
Diethyl Phthalate	0	0		- 0	600	600	1,068	
Dimethyl Phthalate	0	0		0	2,000	2,000	3,559	
Di-n-Butyl Phthalate	0	0		0	20	20.0	35.6	
2,4-Dinitrotoluene	0	0		- 0	N/A	N/A	N/A	
2,6-Dinitrotoluene	0	0		0	N/A	N/A	N/A	

1.2-Diphenylhydrazine								
Fluorene	1,2-Diphenylhydrazine	0		0	N/A	N/A	N/A	
Hexachlorobenzene	Fluoranthene	0	0	0	20	20.0	35.6	
Hexachlorobutadiene		0	0	0	50	50.0	89.0	
Hexachlorocyclopentadiene	Hexachlorobenzene	0	0	0	N/A	N/A	N/A	
Hexachloroethane	Hexachlorobutadiene	0	0	0	N/A	N/A	N/A	
Indeno(1,2,3-od)Pyrene	Hexachlorocyclopentadiene	0	0	0	4	4.0	7.12	
Isophorone	Hexachloroethane	0	0	0	N/A	N/A	N/A	
Naphthalene	Indeno(1,2,3-cd)Pyrene	0	0	0	N/A	N/A	N/A	
Nitrobenzene 0 0 0 10 10.0 17.8 n-Nitrosodimethylamine 0 0 0 N/A N/A N/A n-Nitrosodiphenylamine 0 0 0 N/A N/A N/A Phenanthrene 0 0 0 N/A N/A N/A Pyrene 0 0 0 0 0 0.07 0.07 1.2,4-Trichlorobenzene 0 0 0 0 0 0.07 0.07 0.12 Aldrin 0 0 0 0 0 0 0.07 0.12 Aldrin 0 0 0 0 0 0 0.07 0.12 Aldrin 0 0 0 0 0 0 0.07 0.12 Beta-BHC 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Isophorone	0	0	0	34	34.0	60.5	
Nitrosodin-Propylamine	Naphthalene	0	0	0	N/A	N/A	N/A	
n-Nitrosodi-n-Propylamine 0 0 N/A N/A N/A N/A n-Nitrosodiphenylamine 0 0 0 N/A N/A N/A N/A Phenanthrene 0 0 0 N/A N/A N/A N/A Pyrene 0 0 0 0 20 20.0 35.6 1,2,4-Trichlorobenzene 0 0 0 0.07 0.07 0.12 Aldrin 0 0 0 N/A N/A N/A N/A alpha-BHC 0 0 0 N/A N/A N/A N/A gamma-BHC 0 0 0 0 N/A N/A N/A Chlordane 0 0 0 N/A N/A N/A N/A 4,4-DDT 0 0 N/A N/A N/A N/A 4,4-DDD 0 0 N/A N/A N/A N/A Dieldrin<	Nitrobenzene	0	0	0	10	10.0	17.8	
Nikosodiphenylamine	n-Nitrosodimethylamine	0	0	0	N/A	N/A	N/A	
Phenanthrene	n-Nitrosodi-n-Propylamine	0	0	0	N/A	N/A	N/A	
Pyrene 0 0 0 20 20.0 35.6 1,2,4-Trichlorobenzene 0 0 0 0.07 0.07 0.12 Aldrin 0 0 0 0 N/A N/A N/A alpha-BHC 0 0 0 0 N/A N/A N/A beta-BHC 0 0 0 0 N/A N/A N/A gamma-BHC 0 0 0 0 0 N/A N/A N/A Chlordane 0 0 0 0 N/A N/A N/A N/A 4,4-DDT 0 0 0 N/A N/A N/A N/A 4,4-DDE 0 0 0 0 N/A N/A N/A 4,4-DDD 0 0 0 N/A N/A N/A N/A Dieldrin 0 0 0 N/A N/A N/A N/A <td>n-Nitrosodiphenylamine</td> <td>0</td> <td>0</td> <td>0</td> <td>N/A</td> <td>N/A</td> <td>N/A</td> <td></td>	n-Nitrosodiphenylamine	0	0	0	N/A	N/A	N/A	
1,2,4-Trichlorobenzene 0 0 0 0.07 0.07 0.12 Aldrin 0 0 0 N/A N/A N/A N/A alpha-BHC 0 0 0 N/A N/A N/A N/A beta-BHC 0 0 0 0 N/A N/A N/A gamma-BHC 0 0 0 1 0 N/A N/A N/A Chlordane 0 0 0 N/A N/A N/A N/A 4,4-DDT 0 0 0 N/A N/A N/A N/A 4,4-DDE 0 0 0 N/A N/A N/A N/A 4,4-DDD 0 0 0 N/A N/A N/A N/A Dieldrin 0 0 0 0 N/A N/A N/A alpha-Endosulfan 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 <td>Phenanthrene</td> <td>0</td> <td>0</td> <td>0</td> <td>N/A</td> <td>N/A</td> <td>N/A</td> <td></td>	Phenanthrene	0	0	0	N/A	N/A	N/A	
Aldrin 0 0 0 N/A	Pyrene	0	0	0	20	20.0	35.6	
alpha-BHC 0 0 0 N/A N/A N/A beta-BHC 0 0 0 N/A N/A N/A gamma-BHC 0 0 0 4.2 4.2 7.47 Chlordane 0 0 0 N/A N/A N/A 4,4-DDT 0 0 0 N/A N/A N/A 4,4-DDD 0 0 0 N/A N/A N/A 4,4-DDD 0 0 0 N/A N/A N/A Dieldrin 0 0 0 N/A N/A N/A Dieldrin 0 0 0 N/A N/A N/A Alpha-Endosulfan 0 0 0 0 20 20.0 35.6 Endosulfan Sulfate 0 0 0 0 0 35.6 Endrin Aldehyde 0 0 0 0 0 1 1.0 1.78	1,2,4-Trichlorobenzene	0	0	0	0.07	0.07	0.12	
beta-BHC 0 0 N/A N/A N/A gamma-BHC 0 0 0 4.2 4.2 7.47 Chlordane 0 0 0 N/A N/A N/A N/A 4,4-DDT 0 0 0 0 N/A N/A N/A N/A 4,4-DDD 0 0 0 N/A N/A N/A N/A Dieldrin 0 0 0 N/A N/A N/A N/A Dieldrin 0 0 0 N/A N/A N/A N/A Alpha-Endosulfan 0 0 0 0 20 20.0 35.6 Endosulfan Sulfate 0 0 0 0 20 20.0 35.6 Endrin Aldehyde 0 0 0 0 0 1 1.0 1.78 Heptachlor Epoxide 0 0 0 N/A N/A N/A N/A	Aldrin	0	0	0	N/A	N/A	N/A	
gamma-BHC 0 0 4.2 4.2 7.47 Chlordane 0 0 0 N/A N/A N/A 4,4-DDT 0 0 0 N/A N/A N/A 4,4-DDE 0 0 0 N/A N/A N/A 4,4-DDD 0 0 0 N/A N/A N/A Dieldrin 0 0 0 N/A N/A N/A Balpha-Endosulfan 0 0 0 20 20.0 35.6 beta-Endosulfan 0 0 0 20 20.0 35.6 Endosulfan Sulfate 0 0 0 0 0 35.6 Endrin Aldehyde 0 0 0 0 0 0 1 1.0 1.78 Heptachlor 0 0 0 N/A N/A N/A N/A	alpha-BHC	0	0	0	N/A	N/A	N/A	
Chlordane 0 0 0 N/A N/A N/A N/A N/A A A A A A A A A A A	beta-BHC	0	0	0	N/A	N/A	N/A	
4,4-DDT 0 0 0 N/A N/A N/A N/A 4,4-DDE 0 0 0 N/A N/A N/A N/A 4,4-DDD 0 0 0 N/A N/A N/A N/A Dieldrin 0 0 0 0 N/A N/A N/A Ajpha-Endosulfan 0 0 0 0 20 20.0 35.6 beta-Endosulfan 0 0 0 20 20.0 35.6 Endosulfan Sulfate 0 0 0 20 20.0 35.6 Endrin 0 0 0 0 0 0.03 0.053 Endrin Aldehyde 0 0 0 0 1 1.0 1.78 Heptachlor 0 0 0 N/A N/A N/A N/A Heptachlor Epoxide 0 0 0 N/A N/A N/A N/A	gamma-BHC	0	0	0	4.2	4.2	7.47	
4,4-DDE 0 0 N/A N/A N/A N/A 4,4-DDD 0 0 0 N/A N/A N/A N/A Dieldrin 0 0 0 N/A N/A N/A N/A alpha-Endosulfan 0 0 0 20 20.0 35.6 beta-Endosulfan 0 0 0 20 20.0 35.6 Endosulfan Sulfate 0 0 0 20 20.0 35.6 Endrin 0 0 0 0 0.03 0.053 Endrin Aldehyde 0 0 0 1 1.0 1.78 Heptachlor 0 0 0 N/A N/A N/A Heptachlor Epoxide 0 0 0 N/A N/A N/A	Chlordane	0	0	0	N/A	N/A	N/A	
4,4-DDD 0 0 0 N/A N/A N/A N/A Dieldrin 0 0 0 N/A N/A N/A N/A alpha-Endosulfan 0 0 0 20 20.0 35.6 beta-Endosulfan 0 0 0 20 20.0 35.6 Endosulfan Sulfate 0 0 0 20 20.0 35.6 Endrin 0 0 0 0 0.03 0.053 Endrin Aldehyde 0 0 0 1 1.0 1.78 Heptachlor 0 0 0 N/A N/A N/A Heptachlor Epoxide 0 0 N/A N/A N/A	4,4-DDT	0	0	0	N/A	N/A	N/A	
Dieldrin 0 0 0 N/A N/A N/A alpha-Endosulfan 0 0 0 20 20.0 35.6 beta-Endosulfan 0 0 0 20 20.0 35.6 Endosulfan Sulfate 0 0 0 20 20.0 35.6 Endrin 0 0 0 0 0.03 0.03 0.053 Endrin Aldehyde 0 0 0 1 1.0 1.78 Heptachlor 0 0 0 N/A N/A N/A Heptachlor Epoxide 0 0 N/A N/A N/A	4,4-DDE	0	0	0	N/A	N/A	N/A	
alpha-Endosulfan 0 0 0 20 20.0 35.6 beta-Endosulfan 0 0 0 20 20.0 35.6 Endosulfan Sulfate 0 0 0 20 20.0 35.6 Endrin 0 0 0 0 0 35.6 Endrin Aldehyde 0 0 0 0 0 1 1.0 1.78 Heptachlor 0 0 0 N/A N/A N/A N/A Heptachlor Epoxide 0 0 N/A N/A N/A N/A	4,4-DDD	0	0	0	N/A	N/A	N/A	
beta-Endosulfan 0 0 0 20 20.0 35.6 Endosulfan Sulfate 0 0 0 20 20.0 35.6 Endrin 0 0 0 0.03 0.03 0.053 Endrin Aldehyde 0 0 0 1 1.0 1.78 Heptachlor 0 0 N/A N/A N/A N/A Heptachlor Epoxide 0 0 N/A N/A N/A N/A	Dieldrin	0	0	0	N/A	N/A	N/A	
Endosulfan Sulfate 0 0 20 20.0 35.6 Endrin 0 0 0 0.03 0.03 0.053 Endrin Aldehyde 0 0 0 1 1.0 1.78 Heptachlor 0 0 0 N/A N/A N/A Heptachlor Epoxide 0 0 N/A N/A N/A	alpha-Endosulfan	0	0	0	20	20.0	35.6	
Endrin 0 0 0 0.03 0.03 0.053 Endrin Aldehyde 0 0 0 1 1.0 1.78 Heptachlor 0 0 0 N/A N/A N/A Heptachlor Epoxide 0 0 N/A N/A N/A	beta-Endosulfan	0	0	0	20	20.0	35.6	
Endrin Aldehyde 0 0 0 1 1.0 1.78 Heptachlor 0 0 0 N/A N/A N/A Heptachlor Epoxide 0 0 N/A N/A N/A	Endosulfan Sulfate	0	0	0	20	20.0	35.6	
Heptachlor 0 0 0 0 0 0 0 0 0	Endrin	0	0	0	0.03	0.03	0.053	
Heptachlor Epoxide 0 0 0 N/A N/A N/A	Endrin Aldehyde	0	0	0	1	1.0	1.78	
	Heptachlor	0	0	0	N/A	N/A	N/A	
Toxaphene 0 0 0 N/A N/A N/A N/A	Heptachlor Epoxide	0	0	0	N/A	N/A	N/A	
	Toxaphene	0	0	0	N/A	N/A	N/A	

✓ CRL	CCT (min): 16.	nin): 16.097 PMF: 1			Ana	lysis Hardne	ess (mg/l):	N/A Analysis pH: N/A
Pollutants	Conc	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (μg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A	
Chloride (PWS)	0	0		0	N/A	N/A	N/A	
Sulfate (PWS)	0	0		0	N/A	N/A	N/A	
Total Aluminum	0	0		0	N/A	N/A	N/A	
Total Antimony	0	0		0	N/A	N/A	N/A	
Total Arsenic	0	0		0	N/A	N/A	N/A	

Total Barium	0	0	-		- 0	N/A	N/A	N/A	
Total Boron	0	0	H	++-	0	N/A	N/A	N/A	
Total Cadmium	0	0			0	N/A	N/A	N/A	
Total Chromium (III)	0	0	##	++-	0	N/A	N/A	N/A	
Hexavalent Chromium	0	0	$^{++}$	+	0	N/A	N/A	N/A	
Total Cobalt	0	0	\square		0	N/A	N/A	N/A	
Total Copper	0	0	##	+	0	N/A	N/A	N/A	
Free Cyanide	0	0			0	N/A	N/A	N/A	
Dissolved Iron	0	0			0	N/A	N/A	N/A	
Total Iron	0	0	₩	++-	0	N/A	N/A	N/A	
Total Lead	0	0			0	N/A	N/A	N/A	
Total Manganese	0	0		##	0	N/A	N/A	N/A	
Total Mercury	0	0	##	++-	0	N/A	N/A	N/A	
Total Nickel	0	0			0	N/A	N/A	N/A	
Total Phenols (Phenolics) (PWS)	0	0			0	N/A	N/A	N/A	
Total Selenium	0	0	+++	++-	0	N/A	N/A	N/A	
Total Silver	0	0			0	N/A	N/A	N/A	
Total Thallium	0	0			0	N/A	N/A	N/A	
Total Zinc	0	0	##	++-	0	N/A	N/A	N/A	
Acrolein	0	0			0	N/A	N/A	N/A	
Acrylonitrile	0	0	##	++-	0	0.06	0.06	0.33	
Benzene	0	0	\mapsto	++-	0	0.58	0.58	3.2	
Bromoform	0	0			0	7	7.0	38.6	
Carbon Tetrachloride	0	0	##	++-	0	0.4	0.4	2.21	
Chlorobenzene	0	0			0	N/A	N/A	N/A	
Chlorodibromomethane	0	0			0	0.8	0.8	4.41	
2-Chloroethyl Vinyl Ether	0	0	ĦŦ	++-	0	N/A	N/A	N/A	
Chloroform	0	0			0	5.7	5.7	31.4	
Dichlorobromomethane	0	0			0	0.95	0.95	5.24	
1,2-Dichloroethane	0	0	ĦŦ	+	0	9.9	9.9	54.6	
1,1-Dichloroethylene	0	0	ш		0	N/A	N/A	N/A	
1,2-Dichloropropane	0	0		-	- 0	0.9	0.9	4.96	
1,3-Dichloropropylene	0	0	H		0	0.27	0.27	1.49	
Ethylbenzene	0	0			0	N/A	N/A	N/A	
Methyl Bromide	0	0			0	N/A	N/A	N/A	
Methyl Chloride	0	0			0	N/A	N/A	N/A	
Methylene Chloride	0	0			0	20	20.0	110	
1,1,2,2-Tetrachloroethane	0	0			0	0.2	0.2	1.1	
Tetrachloroethylene	0	0	Ħ		0	10	10.0	55.1	
Toluene	0	0			0	N/A	N/A	N/A	
1,2-trans-Dichloroethylene	0	0	1		0	N/A	N/A	N/A	
1,1,1-Trichloroethane	0	0			0	N/A	N/A	N/A	
1,1,2-Trichloroethane	0	0			0	0.55	0.55	3.03	
Trichloroethylene	0	0			0	0.6	0.6	3.31	
Vinyl Chloride	0	0			0	0.02	0.02	0.11	

2 Chlorobard	0	_	_	N/A	N/A	N/A	T
2-Chlorophenol		0	0				
2,4-Dichlorophenol	0	0	0	N/A	N/A	N/A	
2,4-Dimethylphenol	0	0	0	N/A	N/A	N/A	
4,6-Dinitro-o-Cresol	0	0	0	N/A	N/A	N/A	
2,4-Dinitrophenol	0	0	0	N/A	N/A	N/A	
2-Nitrophenol	0	0	0	N/A	N/A	N/A	
4-Nitrophenol	0	0	0	N/A	N/A	N/A	
p-Chloro-m-Cresol	0	0	0	N/A	N/A	N/A	
Pentachlorophenol	0	0	0	0.030	0.03	0.17	
Phenol	0	0	0	N/A	N/A	N/A	
2,4,6-Trichlorophenol	0	0	0	1.5	1.5	8.27	
Acenaphthene	0	0	0	N/A	N/A	N/A	
Anthracene	0	0	0	N/A	N/A	N/A	
Benzidine	0	0	0	0.0001	0.0001	0.0006	
Benzo(a)Anthracene	0	0	0	0.001	0.001	0.006	
Benzo(a)Pyrene	0	0	0	0.0001	0.0001	0.0006	
3,4-Benzofluoranthene	0	0	0	0.001	0.001	0.006	
Benzo(k)Fluoranthene	0	0	0	0.01	0.01	0.055	
Bis(2-Chloroethyl)Ether	0	0	0	0.03	0.03	0.17	
Bis(2-Chloroisopropyl)Ether	0	0	0	N/A	N/A	N/A	
Bis(2-Ethylhexyl)Phthalate	0	0	0	0.32	0.32	1.76	
4-Bromophenyl Phenyl Ether	0	0	0	N/A	N/A	N/A	
Butyl Benzyl Phthalate	0	0	0	N/A	N/A	N/A	
2-Chloronaphthalene	0	0	0	N/A	N/A	N/A	
Chrysene	0	0	0	0.12	0.12	0.66	
Dibenzo(a,h)Anthrancene	0	0	0	0.0001	0.0001	0.0006	
1,2-Dichlorobenzene	0	0	0	N/A	N/A	N/A	
1.3-Dichlorobenzene	0	0	0	N/A	N/A	N/A	
1,4-Dichlorobenzene	0	0	0	N/A	N/A	N/A	
3,3-Dichlorobenzidine	0	0	0	0.05	0.05	0.28	
Diethyl Phthalate	0	0	0	N/A	N/A	N/A	
Dimethyl Phthalate	0	0	0	N/A	N/A	N/A	
Di-n-Butyl Phthalate	0	0	0	N/A	N/A	N/A	
2,4-Dinitrotoluene	0	0	0	0.05	0.05	0.28	
2.6-Dinitrotoluene	0	0	0	0.05	0.05	0.28	
1,2-Diphenylhydrazine	0	0	0	0.03	0.03	0.17	
Fluoranthene	0	0	0	N/A	N/A	N/A	
Fluorene	0	0	0	N/A	N/A	N/A	
Hexachlorobenzene	0	0	0	0.00008	0.00008	0.0004	
Hexachlorobutadiene	0	0	0	0.01	0.01	0.055	
Hexachlorocyclopentadiene	0	0	0	N/A	N/A	N/A	
Hexachloroethane	0	0	0	0.1	0.1	0.55	
Indeno(1,2,3-cd)Pyrene	0	0	0	0.001	0.001	0.008	
Isophorone	0	0	0	N/A	N/A	N/A	
Naphthalene	0	0	0	N/A	N/A	N/A	
Naphinalene	U	U	0	DVA	DVA	DVA	

Nitrobenzene	0	0	0	N/A	N/A	N/A	
n-Nitrosodimethylamine	0	0	0	0.0007	0.0007	0.004	
n-Nitrosodi-n-Propylamine	0	0	0	0.005	0.005	0.028	
n-Nitrosodiphenylamine	0	0	0	3.3	3.3	18.2	
Phenanthrene	0	0	0	N/A	N/A	N/A	
Pyrene	0	0	0	N/A	N/A	N/A	
1,2,4-Trichlorobenzene	0	0	0	N/A	N/A	N/A	
Aldrin	0	0	0	0.0000008	8.00E-07	0.000004	
alpha-BHC	0	0	0	0.0004	0.0004	0.002	
beta-BHC	0	0	0	0.008	0.008	0.044	
gamma-BHC	0	0	0	N/A	N/A	N/A	
Chlordane	0	0	0	0.0003	0.0003	0.002	
4,4-DDT	0	0	0	0.00003	0.00003	0.0002	
4,4-DDE	0	0	0	0.00002	0.00002	0.0001	
4,4-DDD	0	0	0	0.0001	0.0001	0.0006	
Dieldrin	0	0	0	0.000001	0.000001	0.000006	
alpha-Endosulfan	0	0	0	N/A	N/A	N/A	
beta-Endosulfan	0	0	0	N/A	N/A	N/A	
Endosulfan Sulfate	0	0	0	N/A	N/A	N/A	
Endrin	0	0	0	N/A	N/A	N/A	
Endrin Aldehyde	0	0	0	N/A	N/A	N/A	
Heptachlor	0	0	0	0.000006	0.000006	0.00003	
Heptachlor Epoxide	0	0	0	0.00003	0.00003	0.0002	
Toxaphene	0	0	0	0.0007	0.0007	0.004	

☑ Recommended WQBELs & Monitoring Requirements

No. Samples/Month: 4

	Mass	Limits		Concentra	tion Limits				
Pollutants	AML (lbs/day)	MDL (lbs/day)	AML	MDL	IMAX	Units	Governing WQBEL	WQBEL Basis	Comments
Hexavalent Chromium	Report	Report	Report	Report	Report	μg/L	18.5	CFC	Discharge Conc > 10% WQBEL (no RP)
Total Copper	Report	Report	Report	Report	Report	μg/L	26.7	CFC	Discharge Conc > 10% WQBEL (no RP)
Total Zinc	Report	Report	Report	Report	Report	μg/L	219	AFC	Discharge Conc > 10% WQBEL (no RP)

☑ Other Pollutants without Limits or Monitoring

The following pollutants do not require effluent limits or monitoring based on water quality because reasonable potential to exceed water quality criteria was not determined and the discharge concentration was less than thresholds for monitoring, or the pollutant was not detected and a sufficiently sensitive analytical method was used (e.g., <= Target QL).

Pollutants	Governing WQBEL	Units	Comments			
Total Dissolved Solids (PWS)	N/A	N/A	PWS Not Applicable			
Chloride (PWS)	N/A	N/A	PWS Not Applicable			
Bromide	N/A	N/A	No WQS			

Sulfate (PWS)	N/A	N/A	PWS Not Applicable
Total Aluminum	856	µg/L	Discharge Conc ≤ 10% WQBEL
Total Antimony	9.97	µg/L	Discharge Conc ≤ 10% WQBEL
Total Arsenic	17.8	µg/L	Discharge Conc ≤ 10% WQBEL
Total Barium	4.271		Discharge Conc ≤ 10% WQBEL
Total Beryllium	N/A	μg/L N/A	No WQS
Total Boron			
	2,848	µg/L	Discharge Conc ≤ 10% WQBEL
Total Cadmium	0.73	μg/L	Discharge Conc < TQL
Total Chromium (III)	242	μg/L	Discharge Conc ≤ 10% WQBEL
Total Cobalt	33.8	μg/L	Discharge Conc ≤ 10% WQBEL
Free Cyanide	7.12	μg/L	Discharge Conc < TQL
Total Cyanide	N/A	N/A	No WQS
Dissolved Iron	534	μg/L	Discharge Conc ≤ 10% WQBEL
Total Iron	2,670	μg/L	Discharge Conc ≤ 10% WQBEL
Total Lead	11.5	μg/L	Discharge Conc ≤ 10% WQBEL
Total Manganese	1,780	μg/L	Discharge Conc ≤ 10% WQBEL
Total Mercury	0.089	μg/L	Discharge Conc < TQL
Total Nickel	149	μg/L	Discharge Conc ≤ 10% WQBEL
Total Phenols (Phenolics) (PWS)		μg/L	Discharge Conc < TQL
Total Selenium	8.88	μg/L	Discharge Conc < TQL
Total Silver	11.3	μg/L	Discharge Conc ≤ 10% WQBEL
Total Thallium	0.43	μg/L	Discharge Conc < TQL
Total Molybdenum	N/A	N/A	No WQS
Acrolein	3.42	μg/L	Discharge Conc < TQL
Acrylonitrile	0.33	μg/L	Discharge Conc < TQL
Benzene	3.2	μg/L	Discharge Conc ≤ 25% WQBEL
Bromoform	38.6	μg/L	Discharge Conc ≤ 25% WQBEL
Carbon Tetrachloride	2.21	μg/L	Discharge Conc < TQL
Chlorobenzene	178	µg/L	Discharge Conc ≤ 25% WQBEL
Chlorodibromomethane	4.41	μg/L	Discharge Conc < TQL
Chloroethane	N/A	N/A	No WQS
2-Chloroethyl Vinyl Ether	6,229	μg/L	Discharge Conc < TQL
Chloroform	31.4	μg/L	Discharge Conc ≤ 25% WQBEL
Dichlorobromomethane	5.24	μg/L	Discharge Conc < TQL
1,1-Dichloroethane	N/A	N/A	No WQS
1,2-Dichloroethane	54.6	μg/L	Discharge Conc < TQL
1,1-Dichloroethylene	58.7	µg/L	Discharge Conc < TQL
1,2-Dichloropropane	4.96	µg/L	Discharge Conc < TQL
1,3-Dichloropropylene	1.49	µg/L	Discharge Conc < TQL
1.4-Dioxane	N/A	N/A	No WQS
Ethylbenzene	121	µg/L	Discharge Conc < TQL
Methyl Bromide	178	µg/L	Discharge Conc < TQL
Methyl Chloride	9.789	µg/L	Discharge Conc < TQL
Methylene Chloride	110	µg/L	Discharge Conc < TQL
1,1,2,2-Tetrachloroethane	1.1	µg/L	Discharge Conc < TQL
1, 1,2,2-1 etrachioroetriane	1.1	µg/L	Discharge Cond < TQL

Tetrachloroethylene	55.1	μg/L	Discharge Conc < TQL
Toluene	101	μg/L	Discharge Conc ≤ 25% WQBEL
1,2-trans-Dichloroethylene	178	μg/L	Discharge Conc < TQL
1,1,1-Trichloroethane	1,086	μg/L	Discharge Conc < TQL
1,1,2-Trichloroethane	3.03	μg/L	Discharge Conc < TQL
Trichloroethylene	3.31	μg/L	Discharge Conc < TQL
Vinyl Chloride	0.11	μg/L	Discharge Conc < TQL
2-Chlorophenol	53.4	μg/L	Discharge Conc < TQL
2,4-Dichlorophenol	17.8	μg/L	Discharge Conc < TQL
2,4-Dimethylphenol	178	μg/L	Discharge Conc < TQL
4,6-Dinitro-o-Cresol	3.56	μg/L	Discharge Conc < TQL
2,4-Dinitrophenol	17.8	μg/L	Discharge Conc < TQL
2-Nitrophenol	2,848	μg/L	Discharge Conc < TQL
4-Nitrophenol	836	μg/L	Discharge Conc < TQL
p-Chloro-m-Cresol	183	μg/L	Discharge Conc < TQL
Pentachlorophenol	0.17	μg/L	Discharge Conc < TQL
Phenol	7,119	μg/L	Discharge Conc < TQL
2,4,6-Trichlorophenol	8.27	μg/L	Discharge Conc < TQL
Acenaphthene	30.3	μg/L	Discharge Conc < TQL
Acenaphthylene	N/A	N/A	No WQS
Anthracene	534	μg/L	Discharge Conc < TQL
Benzidine	0.0006	µg/L	Discharge Conc < TQL
Benzo(a)Anthracene	0.006	μg/L	Discharge Conc < TQL
Benzo(a)Pyrene	0.0006	μg/L	Discharge Conc < TQL
3,4-Benzofluoranthene	0.006	μg/L	Discharge Conc < TQL
Benzo(ghi)Perylene	N/A	N/A	No WQS
Benzo(k)Fluoranthene	0.055	μg/L	Discharge Conc < TQL
Bis(2-Chloroethoxy)Methane	N/A	N/A	No WQS
Bis(2-Chloroethyl)Ether	0.17	μg/L	Discharge Conc < TQL
Bis(2-Chloroisopropyl)Ether	356	μg/L	Discharge Conc < TQL
Bis(2-Ethylhexyl)Phthalate	1.76	μg/L	Discharge Conc ≤ 25% WQBEL
4-Bromophenyl Phenyl Ether	96.1	μg/L	Discharge Conc < TQL
Butyl Benzyl Phthalate	0.18	μg/L	Discharge Conc < TQL
2-Chloronaphthalene	1,424	μg/L	Discharge Conc < TQL
4-Chlorophenyl Phenyl Ether	N/A	N/A	No WQS
Chrysene	0.66	μg/L	Discharge Conc < TQL
Dibenzo(a,h)Anthrancene	0.0006	μg/L	Discharge Conc < TQL
1,2-Dichlorobenzene	285	µg/L	Discharge Conc < TQL
1,3-Dichlorobenzene	12.5	µg/L	Discharge Conc ≤ 25% WQBEL
1.4-Dichlorobenzene	267	μg/L	Discharge Conc ≤ 25% WQBEL
3.3-Dichlorobenzidine	0.28	µg/L	Discharge Conc < TQL
Diethyl Phthalate	1.068	μg/L	Discharge Conc < TQL
Dimethyl Phthalate	890	μg/L	Discharge Conc < TQL
Di-n-Butyl Phthalate	35.6	μg/L	Discharge Conc < TQL
2.4-Dinitrotoluene	0.28	μg/L	Discharge Conc < TQL

2.6-Dinitrotoluene	0.28	μg/L	Discharge Conc < TQL
Di-n-Octvl Phthalate	N/A	N/A	No WQS
1,2-Diphenylhydrazine	0.17	μg/L	Discharge Conc < TQL
Fluoranthene	35.6	μg/L	Discharge Conc < TQL
Fluorene	89.0	µg/L	Discharge Conc < TQL
Hexachlorobenzene	0.0004	μg/L	Discharge Conc < TQL
Hexachlorobutadiene	0.055	µg/L	Discharge Conc < TQL
Hexachlorocyclopentadiene	1.78	μg/L	Discharge Conc < TQL
Hexachloroethane	0.55	μg/L	Discharge Conc < TQL
Indeno(1,2,3-cd)Pyrene	0.006	μg/L	Discharge Conc < TQL
Isophorone	60.5	μg/L	Discharge Conc < TQL
Naphthalene	76.5	μg/L	Discharge Conc ≤ 25% WQBEL
Nitrobenzene	17.8	μg/L	Discharge Conc < TQL
n-Nitrosodimethylamine	0.004	μg/L	Discharge Conc < TQL
n-Nitrosodi-n-Propylamine	0.028	μg/L	Discharge Conc < TQL
n-Nitrosodiphenylamine	18.2	μg/L	Discharge Conc < TQL
Phenanthrene	1.78	μg/L	Discharge Conc < TQL
Pyrene	35.6	μg/L	Discharge Conc < TQL
1,2,4-Trichlorobenzene	0.12	μg/L	Discharge Conc < TQL
Aldrin	0.000004	μg/L	Discharge Conc < TQL
alpha-BHC	0.002	μg/L	Discharge Conc < TQL
beta-BHC	0.044	μg/L	Discharge Conc < TQL
gamma-BHC	1.08	μg/L	Discharge Conc < TQL
delta BHC	N/A	N/A	No WQS
Chlordane	0.002	μg/L	Discharge Conc < TQL
4,4-DDT	0.0002	μg/L	Discharge Conc < TQL
4,4-DDE	0.0001	μg/L	Discharge Conc < TQL
4,4-DDD	0.0006	μg/L	Discharge Conc < TQL
Dieldrin	0.000006	μg/L	Discharge Conc < TQL
alpha-Endosulfan	0.1	μg/L	Discharge Conc < TQL
beta-Endosulfan	0.1	μg/L	Discharge Conc < TQL
Endosulfan Sulfate	35.6	μg/L	Discharge Conc < TQL
Endrin	0.053	μg/L	Discharge Conc < TQL
Endrin Aldehyde	1.78	μg/L	Discharge Conc < TQL
Heptachlor	0.00003	μg/L	Discharge Conc < TQL
Heptachlor Epoxide	0.0002	μg/L	Discharge Conc < TQL
Toxaphene	0.0004	μg/L	Discharge Conc < TQL

Expanded Facility WQM 7.0 Warm Period NH3-N Evaluation Annual Average Design Flow 6.8 MGD

Input Data WQM 7.0

	SWP Basin			Stre	eam Name		RMI		vation (ft)	Drainage Area (sq mi)	Slope (ft/ft)	PWS Withdra (mgd	wal	Apply FC
	19C	394	125 PETER	RS CREE	К		0.42	20	721.50	51.33	0.00010		0.00	✓
					St	ream Dat	a							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth		Tributary p pH	Ten	<u>Stream</u> np	рН	
Cond.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)	(°C	()		
Q7-10 Q1-10 Q30-10	0.141	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.220 0.000 0.000	0.0	40.00	2.6	6 2	5.00 7.0	00	0.00	0.00	
					Di	scharge l	Data							
			Name	Per	rmit Number	Disc	Permitto Disc Flow (mgd)	Dis Flo	c Res w Fa	Dis erve Ten ctor	np p	isc pH		
		Clairt	on MA STF	PA	0026824	0.000	6.800	0.0	000	0.000 2	0.00	7.00		
					Pa	arameter l	Data							
			,	Paramete	r Name			Trib Conc	Stream Conc	Fate Coef				
						(m	g/L) (r	mg/L)	(mg/L)	(1/days)		.		
			CBOD5				25.00	2.00	0.00	1.50				
			Dissolved	Oxygen			3.00	8.24	0.00	0.00				
			NH3-N				25.00	0.00	0.00	0.70				

Input Data WQM 7.0

					IIIP	ut Data	i vvQi	vi 7.0					
	SWP Basir			Str	eam Name		RMI		vation (ft)	Drainage Area (sq mi)	Slope (ft/ft)	PWS Vithdrawal (mgd)	Apply
	19C	394	25 PETE	RS CREE	K		0.0	10	721.28	51.50	0.00010	0.00	~
					St	ream Data	a						
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	Tributary p pH	S: Temp	ream pH	
Cond.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C))	(°C)		
Q7-10 Q1-10 Q30-10	0.141	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000	0.0	0.00	0.0	0 25	5.00 7.0	0 0.0	0.00	
					Di	scharge [)ata						
			Name	Per	rmit Number	Existing Disc Flow (mgd)	Permitt Disc Flow (mgd	Disc Flor	c Reso w Fac	Disc erve Tem etor (°C)	р рН		
						0.0000	0.000	0.0	000 0	0.000 29	5.00 7.	00	
					Pa	arameter [Data						
				Paramete		Di: Co		Trib : Conc	Stream Conc	Fate Coef			
			1	Paramete	r Name	(m	g/L) (r	mg/L)	(mg/L)	(1/days)			
			CBOD5			:	25.00	2.00	0.00	1.50			
			Dissolved	Oxygen			3.00	8.24	0.00	0.00			
			NH3-N				25.00	0.00	0.00	0.70			

WQM 7.0 Hydrodynamic Outputs

	SW	P Basin	Strea	ım Code				Stream	Name			
		19C	3	9425			P	ETERS	CREEK			
RMI	Stream Flow	PWS With	Net Stream Flow	Disc Analysis Flow	Reach Slope	Depth	Width	W/D Ratio	Velocity	Reach Trav Time	Analysis Temp	Analysis pH
	(cfs)	(cfs)	(cfs)	(cfs)	(ft/ft)	(ft)	(ft)		(fps)	(days)	(°C)	
Q7-1	0 Flow											
0.420	7.24	0.00	0.00	10.5196	0.00010	0	0	0	0.00	0.000	0.00	0.00
Q1-1	0 Flow											
0.420	4.63	0.00	4.63	10.5196	0.00010	NA	NA	NA	0.14	0.176	21.53	7.00
Q30-	10 Flow	,										
0.420	9.84	0.00	9.84	10.5196	0.00010	NA	NA	NA	0.19	0.131	22.42	7.00

WQM 7.0 Modeling Specifications

Parameters	NH3-N	Use Inputted Q1-10 and Q30-10 Flows	~
WLA Method	Uniform Treatme	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.64	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.36	Temperature Adjust Kr	~
D.O. Saturation	90.00%	Use Balanced Technology	~
D.O. Goal	6		

WQM 7.0 Wasteload Allocations

1	SWP Basin 19C		am Code 9425		_	ream Name TERS CREEK		
1H3-N /	Acute Alloc	ation	ıs					
RMI	Discharge	Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
0.42	0 Clairton MA	STP	NA	50	14.77	21.27	1	57
H3-N (Chronic All	ocati	ons					
RMI	Discharge N	lame	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
0.40	0 Clairton MA	стр	NA	25	1.61	3.13	- 1	87

39

WQM 7.0 Effluent Limits

		<u>1 Code</u> 425	<u>Stream Name</u> PETERS CREEK							
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)			
0.420	Clairton MA STP	PA0026824	0.000	CBOD5	999					
				NH3-N	3.13	6.26				
				Dissolved Oxygen			NA			

40

Expanded Facility WQM 7.0 Cold Period NH3-N Evaluation Annual Average Design Flow 6.8 MGD

	SWP Basin	Strea Cod		Stre	eam Name		RMI		vation (ft)	Drainage Area (sq mi)	Slope (fl/ft)	PW Withd (mg	rawal	Apply FC
	19C	394	25 PETER	RS CREE	K		0.42	20	721.50	51.33	0.0001	0	0.00	~
					St	ream Dat	a							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	<u>Tributary</u> p pH	Te	Stream emp	n pH	
Cond.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)	(°	C)		
Q7-10 Q1-10 Q30-10	0.282	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.220 0.000 0.000	0.0	40.00	2.6	66 .	5.00 7.	00	0.00	0.00	
					Di	scharge (Data]	
			Name	Per	rmit Number	Disc	Permitte Disc Flow (mgd)	Dis Flo	c Res w Fa	Di: erve Ter ctor (°(mp	Disc pH		
		Clairt	on MA STF	PAG	0026824	0.000	6.800	0.0	0000	0.000	15.00	7.00		
					Pa	arameter (Data							
				Paramete	r Name			Trib Conc	Stream Conc	Fate Coef				
				didiffete	rvanie	(m	g/L) (n	ng/L)	(mg/L)	(1/days)				
			CBOD5			:	25.00	2.00	0.00	1.50				
			Dissolved	Oxygen			3.00	8.24	0.00	0.00				
			NH3-N				25.00	0.00	0.00	0.70				

	SWP Basin			Stre	eam Name		RMI		evation (ft)	Drainage Area (sq mi)	Slope (ft/ft)	PW Withd (mg		Apply FC
	19C	394	125 PETER	RS CREE	К		0.01	10	721.28	51.50	0.00010	0	0.00	~
					St	ream Dat	a							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	Tributary p pH	Te	<u>Strean</u> mp	n pH	
Cond.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)	(°	C)		
Q7-10 Q1-10 Q30-10	0.282	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000	0.0	0.00	0.0	00	5.00 7.	00	0.00	0.00	
					Di	scharge [Data]	
			Name	Per	rmit Number	Disc	Permitte Disc Flow (mgd)	Dis Flo	sc Res	Dis erve Ten ctor	np	Disc pH		
						0.0000					25.00	7.00		
					Pa	rameter [Data							
			,	Paramete	r Name			Trib Conc	Stream Conc	Fate Coef				
						(m	g/L) (n	ng/L)	(mg/L)	(1/days)				
			CBOD5			:	25.00	2.00	0.00	1.50				
			Dissolved	Oxygen			3.00	8.24	0.00	0.00				
			NH3-N				25.00	0.00	0.00	0.70				

WQM 7.0 Hydrodynamic Outputs

	SW	P Basin	Strea	am Code				Stream	Name			
		19C	3	9425			P	ETERS	CREEK			
RMI	Stream Flow	PWS With	Net Stream Flow	Disc Analysis Flow	Reach Slope	Depth	Width	W/D Ratio	Velocity	Reach Trav Time	Analysis Temp	Analysis pH
	(cfs)	(cfs)	(cfs)	(cfs)	(ft/ft)	(ft)	(ft)		(fps)	(days)	(°C)	
Q7-1	0 Flow											
0.420	14.48	0.00	0.00	10.5196	0.00010	0	0	0	0.00	0.000	0.00	0.00
Q1-1	0 Flow											
0.420	9.26	0.00	9.26	10.5196	0.00010	NA	NA	NA	0.19	0.135	10.32	7.00
Q30-	10 Flow	,										
0.420	19.69	0.00	19.69	10.5196	0.00010	NA	NA	NA	0.28	0.088	8.48	7.00

WQM 7.0 Modeling Specifications

Parameters	NH3-N	Use Inputted Q1-10 and Q30-10 Flows	~
WLA Method	Uniform Treatme	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.64	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.36	Temperature Adjust Kr	~
D.O. Saturation	90.00%	Use Balanced Technology	~
D.O. Goal	6		

WQM 7.0 Wasteload Allocations

	SWP Basin 19C		<u>m Code</u> 9425			_	ream Name ERS CREEK		
NH3-N	Acute Alloc	ation	s						
RMI	Discharge	Name	Baseline Criterion (mg/L)	Baselin WLA (mg/L)		Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
0.42	0 Clairton MA	STP	NA		50	24.1	45.33	1	9
NH3-N	Chronic All	ocatio	ons						
RMI	Discharge N		Baseline Criterion (mg/L)	Baseline WLA (mg/L)		Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
0.42	0 Clairton MA	етр	NA		25	3.97	11.39		54

45

WQM 7.0 Effluent Limits

		<u>n Code</u> 425	Stream Name PETERS CREEK							
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)			
0.420	Clairton MA STP	PA0026824	0.000	CBOD5	999					
				NH3-N	11.39	22.78				
				Dissolved Oxygen			NA			

Expanded Facility WQM 7.0 Warm Period CBOD5 & DO Evaluation Annual Average Design Flow 6.8 MGD

	SWP Basin			Stre	eam Name		RMI		vation (ft)	Drainage Area (sq mi)	Slope (ft/ft)	PW Withd (mg	rawal	Apply FC
	19C	394	25 PETER	RS CREE	К		0.42	20	721.50	51.33	0.00010	0	0.00	~
					St	ream Dat	a							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth		Tributary p pH	Te	Strean mp	n pH	
Cond.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)	(°	C)		
Q7-10 Q1-10 Q30-10	0.141	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.220 0.000 0.000	0.0	40.00	2.6	86 29	5.00 7.	00	0.00	0.00	
					Di	scharge (Data						l	
			Name	Per	rmit Number	Disc	Permitto Disc Flow (mgd)	Dis Flo	ic Res w Fa	Dis erve Ten ctor (°C	np	Disc pH		
		Clairt	on MA STF	PA	0026824	0.000	6.800	0.0	0000	0.000 2	20.00	7.00		
					Pa	rameter l	Data							
				Paramete	r Name			Trib Conc	Stream Conc	Fate Coef				
						(m	g/L) (r	ng/L)	(mg/L)	(1/days)				
			CBOD5			:	25.00	2.00	0.00	1.50				
			Dissolved	Oxygen			6.00	8.24	0.00	0.00				
			NH3-N				3.00	0.00	0.00	0.70				

	SWP Basin			Stre	eam Name		RMI	Ele	(ft)	Drainage Area (sq mi)	Slope (ft/ft)	Witho	VS drawal gd)	Apply FC
	19C	39	425 PETER	RS CREE	К		0.01	10	721.28	51.50	0.000	10	0.00	✓
					St	ream Dat	a							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth		<u>Tributary</u> ip pH	Т	<u>Strear</u> emp	m pH	
cona.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)	((°C)		
Q7-10 Q1-10 Q30-10	0.141	0.00 0.00 0.00	0.00	0.000 0.000 0.000	0.000 0.000 0.000	0.0	0.00	0.0	00 2	5.00 7	.00	0.00	0.00	
					Di	scharge (Data]	
			Name	Per	mit Number	Disc	Permitte Disc Flow (mgd)	Dis Flo	sc Res ow Fa	erve Te ctor	isc mp C)	Disc pH		
						0.000	0.000	0.0	0000	0.000	25.00	7.00		
					Pa	rameter l	Data							
				Paramete	r Name			Trib Conc	Stream Conc	Fate Coef				
			'	aramete	Hallie	(m	g/L) (n	ng/L)	(mg/L)	(1/days)				
			CBOD5				25.00	2.00	0.00	1.50				
			Dissolved	Oxygen			3.00	8.24	0.00	0.00				
			NH3-N				25.00	0.00	0.00	0.70				

WQM 7.0 Hydrodynamic Outputs

	SW	P Basin	Strea	am Code				Stream	Name			
		19C	3	9425			P	ETERS	CREEK			
RMI	Stream Flow	PWS With	Net Stream Flow	Disc Analysis Flow	Reach Slope	Depth	Width	W/D Ratio	Velocity	Reach Trav Time	Analysis Temp	Analysis pH
	(cfs)	(cfs)	(cfs)	(cfs)	(ft/ft)	(ft)	(ft)		(fps)	(days)	(°C)	
Q7-1	0 Flow											
0.420	7.24	0.00	7.24	10.5196	0.00010	2.656	30.39	11.44	0.22	0.114	22.04	7.00
Q1-1	0 Flow											
0.420	4.63	0.00	4.63	10.5196	0.00010	NA	NA	NA	0.14	0.176	21.53	7.00
Q30-	10 Flow	1										
0.420	9.84	0.00	9.84	10.5196	0.00010	NA	NA	NA	0.19	0.131	22.42	7.00

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	~
WLA Method	Uniform Treatme	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.64	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.36	Temperature Adjust Kr	~
D.O. Saturation	90.00%	Use Balanced Technology	~
D.O. Goal	6		

WQM 7.0 Wasteload Allocations

	SWP Basin 19C	Stream 3942				_	tream TERS	<u>Name</u> CREEK			
NH3-N	Acute Alloc	ations									
RMI	Discharge I	Name (Baseline Criterion (mg/L)	Baseline WLA (mg/L)		Multiple Criterion (mg/L)	V	ltiple /LA ng/L)	Critical Reach	Percent Reductio	
0.42	O Clairton MA	STP	NA		6	14.77		6	0	0	_
NH3-N (Chronic Allo Discharge Na	Ba ame Cr	_	Baseline WLA (mg/L)		Multiple Criterion (mg/L)	Multi WI (mg	A	Critical Reach	Percent Reduction	
0.42	0 Clairton MA	STP	NA		3	1.61		3	0	0	
Dissolve	ed Oxygen /	Allocati	ons								_
RMI	Discharg	je Name				<u>NH3-N</u> Baseline M (mg/L) (n	•		ved Oxygen ne Multiple .) (mg/L)	Critical	Percent Reduction
0.4	2 Clairton MA S	STP	2	5 9.64	4	3	2.89	6	6	1	46

WQM 7.0 D.O.Simulation

SWP Basin S	Stream Code			Stream Name		
19C	39425		ı	PETERS CREEK	(
RMI	Total Discharge	Flow (mgd) Anal	lysis Temperatur	e (°C)	Analysis pH
0.420	6.80	0		22.038		7.000
Reach Width (ft)	Reach De	pth (ft)		Reach WDRatio	2	Reach Velocity (fps)
30.389	2.65	6		11.442		0.220
Reach CBOD5 (mg/L)	Reach Kc	(1/days)	R	each NH3-N (mg	1/L)	Reach Kn (1/days)
6.53	0.50			1.71		0.819
Reach DO (mg/L)	Reach Kr (Kr Equation		Reach DO Goal (mg/L)
6.914	1.46	7		O'Connor		6
Reach Travel Time (days)	1	Subreach	Results			
0.114	TravTime	CBOD5	NH3-N	D.O.		
	(days)	(mg/L)	(mg/L)	(mg/L)		
	0.011	6.48	1.70	6.81		
	0.023	6.44	1.68	6.71		
	0.034	6.40	1.67	6.62		
	0.046	6.36	1.65	6.52		
	0.057	6.32	1.63	6.43		
	0.068	6.28	1.62	6.35		
	0.080	6.24	1.60	6.26		
	0.091	6.20	1.59	6.18		
	0.102	6.17	1.58	6.10		
	0.114	6.13	1.56	6.02		

WQM 7.0 Effluent Limits

		125		PETERS CREE	-		
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	
0.420	Clairton MA STP	PA0026824	0.000	CBOD5	9.64		
				NH3-N	2.89	5.78	
				Dissolved Oxygen			6

53

Expanded Facility WQM 7.0 Warm Period CBOD5 & DO Evaluation Annual Average Design Flow 6.8 MGD Doubled kR = 2.93

	SWP Basin			Stre	eam Name		RMI	Ele	evation (ft)	Drainage Area (sq mi)	Slope (ft/ft)	Witho	VS Irawal gd)	Apply FC
	19C	394	25 PETER	RS CREE	K		0.42	20	721.50	51.33	3 0.000	10	0.00	✓
					St	ream Dat	a							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	n Tem	Tributary p pH	і т	<u>Strear</u> emp	m pH	
Conu.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C)		
Q7-10 Q1-10 Q30-10	0.141	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000	0.0	40.00	2.0	66 2	5.00 7	7.00	0.00	0.00	
					Di	scharge (Data						1	
			Name	Per	rmit Number	Disc	Permitt Disc Flow (mgd)	Dis Flo	sc Res ow Fa	erve Te ctor	isc mp °C)	Disc pH		
		Clairt	on MA STF	PA(0026824	0.000	6.800	0.0	0000	0.000	20.00	7.00		
					Pa	arameter l	Data							
				Paramete	r Name			Trib Conc	Stream Conc	Fate Coef				
				aramete	- realine	(m	g/L) (r	ng/L)	(mg/L)	(1/days)				
			CBOD5				25.00	2.00	0.00	1.50				
			Dissolved	Oxygen			6.00	8.24	0.00	2.93				
			NH3-N				3.00	0.00	0.00	0.70				

	SWP Basin			Stre	eam Name		RMI	Ele	evation (ft)	Drainage Area (sq mi)	Slo (ft/	With	WS drawal ngd)	Apply FC
	19C	394	25 PETER	RS CREE	К		0.0	10	721.28	51.5	50 0.00	0010	0.00	~
					St	ream Dat	a							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	n Tem	Tributary np pi	н	<u>Strea</u> Temp	m pH	
Conu.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C	()		(°C)		
Q7-10 Q1-10 Q30-10	0.141	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000 0.000 0.000	0.0	0.00	0.0	00 2	5.00	7.00	0.00	0.00	
					Di	scharge (Data						٦	
			Name	Per	mit Number	Disc	Permitto Disc Flow (mgd)	Dis Flo	sc Res ow Fa	erve T	Oisc emp (°C)	Disc pH		
						0.000	0.000	0.0	0000	0.000	25.00	7.00		
					Pa	rameter l	Data							
				Paramete	r Name	C	one C	Trib Conc	Stream	Fate Coef				
	_					(m	g/L) (r	ng/L)	(mg/L)	(1/days)				
			CBOD5			:	25.00	2.00	0.00	1.50				
			Dissolved	Oxygen			3.00	8.24	0.00	0.00				
			NH3-N			:	25.00	0.00	0.00	0.70				

WQM 7.0 Hydrodynamic Outputs

	SW	P Basin	Strea	m Code				Stream	Name			
		19C	3	9425			P	ETERS	CREEK			
RMI	Stream Flow	PWS With	Net Stream Flow	Disc Analysis Flow	Reach Slope	Depth	Width	W/D Ratio	Velocity	Reach Trav Time	Analysis Temp	Analysis pH
	(cfs)	(cfs)	(cfs)	(cfs)	(ft/ft)	(ft)	(ft)		(fps)	(days)	(°C)	
Q7-1	0 Flow											
0.420	7.24	0.00	7.24	10.5196	0.00010	2.656	30.39	11.44	0.22	0.114	22.04	7.00
Q1-1	0 Flow											
0.420	4.63	0.00	4.63	10.5196	0.00010	NA	NA	NA	0.14	0.176	21.53	7.00
Q30-	10 Flow	,										
0.420	9.84	0.00	9.84	10.5196	0.00010	NA	NA	NA	0.19	0.131	22.42	7.00

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	~
WLA Method	Uniform Treatme	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.64	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.36	Temperature Adjust Kr	~
D.O. Saturation	90.00%	Use Balanced Technology	~
D.O. Goal	e		

WQM 7.0 Wasteload Allocations

		<u>v</u>	VQIVI 1	.0 44	ası	teloac	<u>I All</u>	OC	atio	15		
	SWP Basin	Stream	m Code				Strea	am Na	ame			
	19C	39	1425				PETER	RS CF	REEK			
NH3-N	Acute Alloc	ations	6									
RMI	Discharge	Name	Baseline Criterion (mg/L)	Basel WL (mg/	A	Multipl Criterio (mg/L	on	Multip WL (mg/	Α	Critical Reach	Percent Reductio	
0.42	0 Clairton MA	STP	NA		6	14	.77		6	0	0	_
NH3-N (Chronic All	E	Baseline Criterion	Baselin WLA		Multiple Criterion		fultiple WLA		Critical Reach	Percent Reduction	_
0.42	0 Clairton MA	STP	(mg/L) NA	(mg/L	3	(mg/L)	.61	(mg/L)	3	0	0	-
	ed Oxygen		<u>)</u>	CBOD5			3-N			ed Oxygen	Critical	Percent
RMI	Discharg	ge Nam	e Basel (mg/l			Baseline (mg/L)	Multip (mg/l		aseline (mg/L)	Multiple (mg/L)	Reach	Reduction
0.4	2 Clairton MA	STP		25 12	2.38	3		3	6	6	1	37

58

WQM 7.0 D.O.Simulation

	Stream Code			Stream Nan	_	
19C	39425			PETERS CRE	EK	
RMI	Total Discharge	Flow (mgd) Anal	ysis Tempera	ture (°C)	Analysis pH
0.420	6.80	0		22.038		7.000
Reach Width (ft)	Reach De	pth (ft)		Reach WDR	atio	Reach Velocity (fps)
30.389	2.65	6		11.442		0.220
Reach CBOD5 (mg/L)	Reach Ko	(1/days)	R	each NH3-N (mg/L)	Reach Kn (1/days)
8.15	0.66			1.78		0.819
Reach DO (mg/L)	Reach Kr (Kr Equatio	<u>n</u>	Reach DO Goal (mg/L)
6.914	3.07	9		User Suppli	ed	6
Reach Travel Time (days	5).	Subreach	Results			
0.114	TravTime	CBOD5	NH3-N	D.O.		
	(days)	(mg/L)	(mg/L)	(mg/L)		
	0.011	8.08	1.76	6.81		
	0.023	8.01	1.74	6.70		
	0.034	7.95	1.73	6.61		
	0.046	7.88	1.71	6.51		
	0.057	7.82	1.70	6.43		
	0.068	7.75	1.68	6.34		
	0.080	7.69	1.66	6.26		
	0.091	7.62	1.65	6.19		
	0.102	7.56	1.63	6.12		
	0.114		1.62	6.05		

Monday, April 26, 2021 Version 1.1 Page 1 of 1

Additional dilution provided by the Monongahela River will preclude DO sag below criteria of 6 mg/L.

WQM 7.0 Effluent Limits

	19C 394	125		Stream Name	-		
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
0.420	Clairton MA STP	PA0026824	0.000	CBOD5	12.38		
				NH3-N	3	6	
				Dissolved Oxygen			6

Monday, April 26, 2021 Version 1.1 Page 1 of 1

• Proposed warm temperature limits for CBOD5, NH3-N, and DO.

Expanded Facility WQM 7.0 Cold Period CBOD5 & DO Evaluation Annual Average Design Flow 6.8 MGD

	SWP Basin			Stre	eam Name		RMI		evation (ft)	Drainage Area (sq mi)		Wit	PWS thdrawal (mgd)	Apply FC
	19C	394	25 PETER	RS CREE	К		0.42	20	721.50	51.	33 0.0	0010	0.00	✓
					St	ream Dat	a							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Ten	Tributary np p	н	Stre Temp	eam pH	
cona.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C)		
Q7-10 Q1-10 Q30-10	0.282	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.220 0.000 0.000	0.0	40.00	2.6	66	5.00	7.00	0.00	0.00)
		Discharge Data												
			Name	Per	rmit Number	Disc	Permitt Disc Flow (mgd)	Dis Flo	sc Res	erve T	Disc emp (°C)	Disc pH		
		Clairt	on MA STF	PAG	0026824	0.000	6.800	0.0	0000	0.000	15.00	7.00)	
					Pa	rameter l	Data							
				Paramete	r Name			Trib Conc	Stream Conc	Fate Coef				
						(m	g/L) (r	ng/L)	(mg/L)	(1/days)				
			CBOD5			:	25.00	2.00	0.00	1.50)			
			Dissolved	Oxygen			6.00	11.50	0.00	0.00)			
			NH3-N				11.00	0.00	0.00	0.70)			

Input Data WQM 7.0

	SWP Basin			Stre	eam Name		RMI	Ele	evation (ft)	Drainage Area (sq mi)	Slope (ft/ft)	Witho	VS Irawal gd)	Apply FC
	19C	394	25 PETER	RS CREE	K		0.0	10	721.28	51.50	0.000	10	0.00	~
					St	ream Dat	a							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Ten	Tributary np pH	т т	<u>Strear</u> emp	m pH	
Conu.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)	((°C)		
Q7-10 Q1-10 Q30-10	0.282	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000 0.000 0.000	0.0	0.00	0.0	00	5.00 7	.00	0.00	0.00	
					Di	scharge (Data						1	
			Name	Per	rmit Number	Disc	Permitt Disc Flow (mgd)	Dis Flo	sc Res	erve Te	isc mp (C)	Disc pH		
						0.000	0.000	0.0	0000	0.000	25.00	7.00		
					Pa	arameter I	Data							
				Paramete	r Name			Trib Conc	Stream Conc	Fate Coef				
				aramete	rivanie	(m	g/L) (r	ng/L)	(mg/L)	(1/days)				
			CBOD5				25.00	2.00	0.00	1.50				
			Dissolved	Oxygen			3.00	8.24	0.00	0.00				
			NH3-N			:	25.00	0.00	0.00	0.70				

WQM 7.0 Hydrodynamic Outputs

	SWP Basin		Strea	m Code				Stream				
		19C	3	9425			P	ETERS	CREEK			
RMI	Stream Flow	PWS With	Net Stream Flow	Disc Analysis Flow	Reach Slope	Depth	Width	W/D Ratio	Velocity	Reach Trav Time	Analysis Temp	Analysis pH
	(cfs)	(cfs)	(cfs)	(cfs)	(ft/ft)	(ft)	(ft)		(fps)	(days)	(°C)	
Q7-1	0 Flow											
0.420	14.48	0.00	14.48	10.5196	0.00010	2.656	42.78	16.11	0.22	0.114	9.21	7.00
Q1-1	0 Flow											
0.420	9.26	0.00	9.26	10.5196	0.00010	NA	NA	NA	0.19	0.135	10.32	7.00
Q30-	10 Flow	1										
0.420	19.69	0.00	19.69	10.5196	0.00010	NA	NA	NA	0.28	0.088	8.48	7.00

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	~
WLA Method	Uniform Treatme	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.64	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.36	Temperature Adjust Kr	~
D.O. Saturation	90.00%	Use Balanced Technology	~
D.O. Goal	6		

WQM 7.0 Wasteload Allocations

	SWP Basin 19C		<u>m Code</u> 9425				Name CREEK			
NH3-N	Acute Alloc	ation	s							
RMI	Discharge	Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multipl Criterio (mg/L	on	ultiple WLA mg/L)	Critical Reach	Percent Reductio	
0.42	0 Clairton MA	STP	NA	2	2 2	4.1	22	0	0	_
NH3-N	Chronic All	ocatio	ons							_
RMI	Discharge N		Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	ı W	tiple /LA g/L)	Critical Reach	Percent Reduction	
0.42	20 Clairton MA	STP	NA	1	1 3	3.97	11	0	0	_
Dissolve	ed Oxygen	Alloca	ations							_
RMI	Discharg	ge Nam	_	: <u>BOD5</u> ne Multiple .) (mg/L)		3-N Multiple (mg/L)	Baselin	red Oxygen e Multiple (mg/L)	Critical	Percent Reduction
0.4	2 Clairton MA	STP		25 25	11	11	6	6	0	0

65

WQM 7.0 D.O.Simulation

SWP Basin St 19C	ream Code 39425		ı	Stream Name PETERS CREEK	
RMI	Total Discharge	Flow (mgd) Anal	ysis Temperature (°C) Analysis pH
0.420	6.80	0		9.209	7.000
Reach Width (ft)	Reach De	pth (ft)		Reach WDRatio	Reach Velocity (fps)
42.776	2.65	6		16.105	0.220
Reach CBOD5 (mg/L)	Reach Kc (1/days)	R	each NH3-N (mg/L)	Reach Kn (1/days)
11.68	1.34			4.63	0.305
Reach DO (mg/L)	Reach Kr (Kr Equation	Reach DO Goal (mg/L)
9.185	1.08	2		O'Connor	6
Reach Travel Time (days)		Subreach	Results		
0.114	TravTime (days)	CBOD5 (mg/L)	NH3-N (mg/L)	D.O. (mg/L)	
	0.011	11.57	4.61	8.98	
	0.023	11.46	4.60	8.78	
	0.034	11.36	4.58	8.58	
	0.046	11.25	4.57	8.38	
	0.057	11.15	4.55	8.19	
	0.068	11.04	4.53	8.01	
	0.080	10.94	4.52	7.83	
	0.091	10.84	4.50	7.65	
	0.102	10.74	4.49	7.48	
	0.114	10.64	4.47	7.30	

WQM 7.0 Effluent Limits

		<u>n Code</u> 425		Stream Name	-			
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)	
0.420	Clairton MA STP	PA0026824	0.000	CBOD5	25			
				NH3-N	11	22		
				Dissolved Oxygen			6	

Expanded Facility TRC_CALC - Annual Average Design Flow 6.8 MGD

TRC_CALC

TRC EVALUATION

7.24	= Q stream (d	cfs)	0.5	= CV Daily							
6.8	= Q discharg	e (MGD)	0.5	= CV Hourly							
30	= no. sample	s	1	= AFC_Partial Mix Factor							
0.3	= Chlorine De	emand of Stream	1	= CFC_Partial Mix Factor							
0	= Chlorine De	emand of Discharge	15	= AFC_Criteria	Compliance Time (min)						
0.5	= BAT/BPJ V	alue	720	= CFC_Criteria Compliance Time (min)							
	= % Factor o	of Safety (FOS)		=Decay Coefficient (K)							
Source	Reference	AFC Calculations		Reference	CFC Calculations						
TRC	1.3.2.iii	WLA afc =	0.239	1.3.2.iii	WLA cfc = 0.225						
PENTOXSD TRG	5.1a	LTAMULT afc =	0.373	5.1c	LTAMULT cfc = 0.581						
PENTOXSD TRG	5.1b	LTA_afc=	0.089	5.1d	LTA_cfc = 0.131						
Source											
PENTOXSD TRG			AML MULT =								
PENTOXSD TRG	5.1g		LIMIT (mg/l) =		AFC						
l		INST MAX I	LIMIT (mg/l) =	0.358							
WLA afc	+ Xd + (AF	C_tc)) + [(AFC_Yc*Qs* C_Yc*Qs*Xs/Qd)]*(1-F(OS/100)	AFC_tc))							
LTAMULT afc		cvh^2+1))-2.326*LN(cvl	h^2+1)^0.5)								
LTA_afc	wla_afc*LTAN	//ULT_afc									
WLA_cfc		C_tc) + [(CFC_Yc*Qs*. C_Yc*Qs*Xs/Qd)]*(1-F(CFC_tc))							
LTAMULT_cfc	EXP((0.5*LN(cvd^2/no_samples+1))-	2.326*LN(cvd/	^2/no_samples+1	1)^0.5)						
LTA_cfc	wla_cfc*LTAN	MULT_cfc									
AML MULT		N((cvd^2/no_samples+1			es+1))						
AVG MON LIMIT		J,MIN(LTA_afc,LTA_cfc)							
INST MAX LIMIT	1.5*((av_mon	_limit/AML_MULT)/LT	AMULT_afc)								

Expanded Facility PMF - Annual Average Design Flow 6.8 MGD

Applicant: Clairton Municipal Authority
Name of plant: Clairton Municipal Authority STP

Permit Number: PA0026824

Municipality: City of Clairton
County: Allegheny
Receiving stream: Peters Creek

The following program will calulate partial mix factors for acute and chronic conditions:

calculated fields

net stream flow (Qs cfs)= 7.24
discharge flow (Qd mgd)= 6.8
velocity (fps)= 0.22
width (feet) = 40
depth (feet) = 2.66
slope (ft/ft) = 0.0001

complete mix time (min) = 8.38

FOR ACUTE CONDITIONS: IF COMPLETE MIX TIME < 15 MINUTES

THEN PMF = 1, IF > 15 MINUTES CALCULATE PMFa

PMFa = 1.000 or 100.00 %

FOR CHRONIC CONDITIONS: IF COMPLETE MIX TIME < 720 MINUTES
THEN PMF = 1, IF > 720 MINUTES CALCULATE PMFc

PMFc = 1.000 or 100.00 %

IWCc=[Qd * 1.547]/[(Qs*PMFc)+(Qd * 1.547)] = 0.5923

Target IWCc=IWCc/1= 0.592 59.23 %

IWCa=[Qd * 1.547]/[(Qs*PMFa)+(Qd * 1.547)] = 0.5923

Target IWCa=IWCa/0.3= 1.000 or 100.00 %

WET tests should pass if percentage for C.dubia LC50 and P.promelas LC50 are greater than the target IWCa (acute) or NOEC > target IWCc (chronic).

Program written by David Ponchione on April 8, 1999

Program run by: W. Mitchell on April 27, 2021

For Department use only

Expanded Facility WET Summary - Annual Average Design Flow 6.8 MGD

WET Summary and Evaluation										
Facility Name Permit No. Design Flow (MGD) Q ₇₋₁₀ Flow (cfs) PMF _a PMF _c	Clairton Muni PA0026824 6.8 7.24 1	cipal Authority	STP							
	Test Results (Pass/Fail)									
Currier.	Fundameters	Test Date	Test Date	Test Date	Test Date					
Species	Endpoint	-			 					
				s (Pass/Fail)						
6	Fundame in 4	Test Date	Test Date	Test Date	Test Date					
Species	Endpoint	-								
	Test Results (Pass/Fail)									
Sunaina Sunaina	Endusins	Test Date	Test Date	Test Date	Test Date					
Species	Endpoint	-								
				s (Pass/Fail)						
Sunaine.	Endnaint	Test Date	Test Date	Test Date	Test Date					
Species	Endpoint				 					
Reasonable Potential? NO Permit Recommendations Test Type Chronic TIWC 59 % Effluent Dilution Series 15, 30, 59, 80, 100 % Effluent Permit Limit None Permit Limit Species										