

### Southeast Regional Office CLEAN WATER PROGRAM

Application Type

Facility Type

Major / Minor

Major

### NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

Application No. PA0026867

APS ID 1050892

Authorization ID 1374867

| plicant Name       | Abington Township       | Facility Name    | Abington Township STP   |
|--------------------|-------------------------|------------------|-------------------------|
| plicant Address    | 1176 Old York Road      | Facility Address | 1000 Fitzwatertown Road |
|                    | Abington, PA 19001-3731 |                  | Roslyn, PA 19001-4008   |
| plicant Contact    | George Wrigley          | Facility Contact | George Wrigley          |
| plicant Phone      | (215) 884-8329          | Facility Phone   | (215) 884-8329          |
| ent ID             | 87533                   | Site ID          | 445741                  |
| 94 Load Status     | Not Overloaded          | Municipality     | Upper Dublin Township   |
| nnection Status    | No Limitations          | County           | Montgomery              |
| e Application Rec  | eived November 1, 2021  | EPA Waived?      | No                      |
| e Application Acce | epted                   | If No, Reason    | Major Facility          |

#### **Summary of Review**

The applicant requests renewal of an NPDES permit to discharge treated sewage effluent from Abington Township STP. The facility is located at 1000 Fitzwatertown Road in Upper Dublin Township, Montgomery County along the Sandy Run Creek on approximately 11 acres of land.

The facility serves the following Municipalities: Abington Township, Upper Dublin Township, Upper Moreland Township, Cheltenham Township and Springfield Township.

The facility design includes screening; grit removal; primary settling with rectangular settling tanks; activated sludge anaerobic, anoxic and aerobic zones with internal recycle; alum addition, secondary settling with circular clarifiers followed by cloth media disc filtration, UV disinfection, and post aeration. Sludge treatment includes dissolved Air Flotation (DAF) thickening of mixed primary and waste secondary sludges, anaerobic thermal sludge stabilization, centrifuge dewatering, and biosolids agricultural land application. Off - line equalization is provided for centrifuge centrate return and for wet weather excess flow diversion and temporary storage. There are no bypasses, nor overflows at this facility.

No upgrades are proposed at this time.

Hydrated Lime (pH control and alkalinity stabilization) and Aluminum Chloride (enhance final effluent for TSS and Phosphorus removal) are the wastewater chemicals reported in the application.

There are no industrial users connected to the system.

Based on the review of the eDMRs, discharge is in compliance with the effluent limitations in the existing permit most of the times.

| Approve | Deny | Signatures                                                          | Date            |
|---------|------|---------------------------------------------------------------------|-----------------|
| X       |      | Sara Abraham<br>Sara Reji Abraham, E.I.T. / Project Manager         | January 5, 2022 |
| Х       |      | Pravin Patel Pravin C. Patel, P.E. / Environmental Engineer Manager | 07/05/2022      |

#### **Summary of Review**

The effluent requirements recommended for the draft permit are mostly similar to the existing permit requirements.

The following are the new requirements recommended for the draft permit:

- (i) Monitoring for E. Coli and Cyanide, Free.
- (ii) Effluent limit for Copper, Total

The existing WET limits are eliminated based on the new WET testing reports.

Influent monitoring requirements for CBOD5, TSS and BOD5 are continued in the draft permit to check compliance with the 85% removal requirement and Chapter 94 requirement.

Sludge use and disposal description and location(s): Biosolids are used in agricultural applications at various locations in Berks, Carbon, Lebanon, Lehigh, Monroe and Northampton Counties.

#### Act 14 Notifications:

Upper Dublin Township - October 13, 2021 Montgomery County - October 13, 2021

#### Permit Conditions:

- A. No Stormwater
- B. Acquire Necessary Property Rights
- C. Proper Sludge Disposal
- D. Chlorine Optimization
- E. Small Stream Discharge
- F. Operator Notification
- G. Fecal Coliform Reporting
- H. Solids Management
- I. WET Condition
- J. Stormwater Outfalls Requirement

#### Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

| Outfall No. 001              |          |                             | Design Flow (MGD)                                                                  | 3.91                 |  |  |
|------------------------------|----------|-----------------------------|------------------------------------------------------------------------------------|----------------------|--|--|
| Latitude 40° 7               | ' 47.25" |                             | Longitude                                                                          | -75° 9' 32.41"       |  |  |
| Quad Name Am                 | bler     |                             | Quad Code                                                                          | 1744                 |  |  |
| Wastewater Descrip           | otion:   | Treated Sewage Effluent     |                                                                                    |                      |  |  |
| Receiving Waters             | Sand     | / Run (TSF, MF)             | Stream Code                                                                        | 0859                 |  |  |
| NHD Com ID                   | 25960    | , ,                         | RMI                                                                                | 4.3                  |  |  |
| Drainage Area                | 3.0      |                             | Yield (cfs/mi²)                                                                    | 0.035                |  |  |
| Q <sub>7-10</sub> Flow (cfs) | 0.105    |                             | Q <sub>7-10</sub> Basis                                                            | Previous fact sheet* |  |  |
| Elevation (ft)               | 209.7    | ,                           |                                                                                    |                      |  |  |
| Watershed No.                | 3-F      |                             | Chapter 93 Class.                                                                  | TSF, MF              |  |  |
| Assessment Status            |          | Impaired                    |                                                                                    |                      |  |  |
| Cause(s) of Impairr          | nent     | alterations, nutrients, pat | and (bod), cause unknown, flow hogens, siltation er than hydromodification, munici |                      |  |  |
| Source(s) of Impair          | ment     | source unknown, urban r     |                                                                                    | p p g ,              |  |  |
| TMDL Status                  |          | Final                       | Name Sandv Run.                                                                    | Wissahickon TMDL     |  |  |

#### \* Low-Flow (Q7-10) and Harmonic Mean Flow

Based on the Wissahickon TMDL, the  $Q_{7-10}$  flow for this facility was calculated as 0.105-cfs. The  $Q_{7-10}$  flow for the Wissahickon watershed was calculated by subtracting average permitted discharge flows of all facilities in the watershed reported during the critical dry summer period of 2002 (combined discharge flow of 14.9 cfs), from the  $Q_{7-10}$  flow calculated at the mouth of Wissahickon Creek (16.3 cfs), resulting in a base-flow of 1.4-cfs for the entire watershed. A prorated  $Q_{7-10}$  flow of 0.105-cfs was allocated to Sandy Run at the Abington Township STP. The permitted discharge flow from Abington Township facility represents 98.3% of Sandy Run's flow at  $Q_{7-10}$  flow conditions. (Reference: Modeling Report for Wissahickon Creek, Pennsylvania Nutrient TMDL Development, October 2003, Figure 4-1)

The harmonic mean flow for this facility was calculated at 2.39-cfs. The harmonic mean flow is based on the flow calculated at the mouth of the Wissahickon, adjusted proportionally based on the relative size of the drainage areas: Harmonic Mean Flow (HMF) =  $(3.0 \text{ mi}^2 / 64 \text{ mi}^2)$  \* 51 cfs = 2.39 cfs

| Dutfall No. | 003                     | Design Flow (MGD) | 0              |
|-------------|-------------------------|-------------------|----------------|
| ₋atitude    | 40° 7' 47.31"           | Longitude         | -75° 9' 32.23" |
| Quad Name   | Ambler                  | Quad Code         | 1744           |
| Vastewater  | Description: Stormwater |                   |                |

| Discharge, Red | ceiving Waters and Water Supply Information |                   |                |
|----------------|---------------------------------------------|-------------------|----------------|
| Outfall No.    | 002                                         | Design Flow (MGD) | 0              |
| Latitude       | 40° 7' 47.31"                               | Longitude         | -75° 9' 32.23" |
| Quad Name      | Ambler                                      | Quad Code         | 1744           |
| Wastewater     | Description: Stormwater                     |                   |                |
| Receiving W    | aters Sandy Run (TSF, MF)                   | Stream Code       | 0859           |

|                       | Tre                        | eatment Facility Summa | rv                    |                  |
|-----------------------|----------------------------|------------------------|-----------------------|------------------|
|                       | 116                        | satinent racinty Summa | ı y                   |                  |
| Treatment Facility Na | me: Abington Township ST   | -р                     |                       |                  |
| Troumont Lucinty True | mer / tomigton remiemp e i | •                      |                       |                  |
| WQM Permit No.        | Issuance Date              |                        |                       |                  |
| 4612401               | 08/06/2012                 |                        |                       |                  |
| 4603404               | 05/20/2011                 |                        |                       |                  |
|                       |                            |                        |                       |                  |
|                       | Degree of                  |                        |                       | Avg Annual       |
| Waste Type            | Treatment                  | Process Type           | Disinfection          | Flow (MGD)       |
| Sewage                | Secondary                  | Extended Aeration      | Ultraviolet           | 3.91             |
|                       |                            |                        |                       |                  |
|                       |                            |                        |                       |                  |
| Hydraulic Capacity    | Organic Capacity           |                        |                       | Biosolids        |
| (MGD)                 | (lbs/day)                  | Load Status            | Biosolids Treatment   | Use/Disposal     |
| •                     |                            |                        | Aneaerobic sludge     |                  |
|                       |                            |                        | stabilization &       |                  |
| 3.91                  | 7729                       | Not Overloaded         | Centrifuge dewatering | Land Application |

### **Compliance History**

### DMR Data for Outfall 001 (from November 1, 2020 to October 31, 2021)

| Parameter                | OCT-21 | SEP-21 | AUG-21 | JUL-21 | JUN-21 | MAY-21       | APR-21 | MAR-21 | FEB-21 | JAN-21 | DEC-20 | NOV-20 |
|--------------------------|--------|--------|--------|--------|--------|--------------|--------|--------|--------|--------|--------|--------|
| Flow (MGD)               |        |        |        |        |        |              |        |        |        |        |        |        |
| Average Monthly          | 3.014  | 3.221  | 2.862  | 2.981  | 3.124  | 2.919        | 3.216  | 4.145  | 4.244  | 3.624  | 3.731  | 3.153  |
| Flow (MGD)               |        |        |        |        |        |              |        |        |        |        |        |        |
| Daily Maximum            | 4.274  | 6.027  | 3.626  | 3.691  | 3.538  | 3.513        | 3.991  | 6.701  | 5.673  | 4.393  | 6.181  | 3.965  |
| pH (S.U.)                |        |        |        |        |        |              |        |        |        |        |        |        |
| Minimum                  | 6.97   | 7.38   | 7.42   | 7.46   | 7.15   | 7.37         | 7.19   | 6.92   | 7.16   | 7.34   | 7.05   | 7.53   |
| pH (S.U.)                |        |        |        |        |        |              |        |        |        |        |        |        |
| Maximum                  | 7.90   | 7.97   | 7.99   | 7.91   | 7.84   | 7.85         | 7.67   | 7.73   | 7.55   | 7.67   | 7.79   | 7.92   |
| DO (mg/L)                |        |        |        |        |        |              |        |        |        |        |        |        |
| Minimum                  | 8.4    | 8.0    | 7.7    | 7.22   | 7.6    | 8.4          | 8.8    | 8.1    | 9.8    | 9.6    | 7.2    | 9.2    |
| CBOD5 (lbs/day)          |        |        |        |        |        |              |        |        |        |        |        |        |
| Average Monthly          | 53     | 70     | 46     | 33     | 35     | 48           | 32     | 54     | 54     | 15     | 59     | 52     |
| CBOD5 (lbs/day)          |        |        |        |        |        |              |        |        |        |        |        |        |
| Raw Sewage Influent      |        |        |        |        |        |              |        |        |        |        |        |        |
| <br>br/> Average         |        |        |        |        |        |              |        |        |        |        |        |        |
| Monthly                  | 5319   | 5949   | 4870   | 5075   | 4936   | 4784         | 4863   | 5879   | 6336   | 4261   | 3770   | 4672   |
| CBOD5 (lbs/day)          |        |        |        |        |        |              |        |        |        |        |        |        |
| Weekly Average           | 56     | 102    | 70     | 53     | 54     | 49           | 37     | 69     | 74     | 16     | 63     | 52.5   |
| CBOD5 (mg/L)             |        |        |        |        |        |              |        |        |        |        |        |        |
| Average Monthly          | 2.3    | 2.8    | 2.5    | 1.39   | 2.0    | 2.0          | 2.0    | 2.2    | 2.1    | < 2.0  | < 2.0  | < 2.0  |
| CBOD5 (mg/L)             |        |        |        |        |        |              |        |        |        |        |        |        |
| Raw Sewage Influent      |        |        |        |        |        |              |        |        |        |        |        |        |
| <br>br/> Average         |        |        |        |        |        |              |        |        |        |        |        |        |
| Monthly                  | 217    | 243    | 208    | 203    | 210    | 200          | 179    | 181    | 179    | 145    | 131    | 179    |
| CBOD5 (mg/L)             |        |        |        |        |        |              |        |        |        |        |        |        |
| Weekly Average           | 2.95   | 3.85   | 3.00   | 2.55   | 2.05   | 2.00         | 3.0    | 2.5    | 2.2    | < 2.0  | 2.2    | < 2.0  |
| BOD5 (lbs/day)           |        |        |        |        |        |              |        |        |        |        |        |        |
| Raw Sewage Influent      |        |        |        |        |        |              |        |        |        |        |        |        |
| <br>br/> Average         | 0050   | 4000   | 4770   | 4707   | 0000   | <b>-</b> 444 | 0004   | 7000   | 0.455  | 0000   | 0004   |        |
| Monthly                  | 8050   | 4892   | 4772   | 4797   | 6092   | 5144         | 6281   | 7260   | 9155   | 6988   | 6064   | 7577   |
| BOD5 (mg/L)              |        |        |        |        |        |              |        |        |        |        |        |        |
| Raw Sewage Influent      |        |        |        |        |        |              |        |        |        |        |        |        |
| <br><br>Average          | 220    | 100    | 400    | 404    | 047    | 226          | 0.47   | 24.4   | 200    | 225    | 240    | 056    |
| Monthly TCC (the detail) | 330    | 192    | 198    | 184    | 217    | 226          | 247    | 214    | 308    | 225    | 219    | 256    |
| TSS (lbs/day)            | 20     | 50     | 20     | 25     | 44     | 40           | 446    | 0.5    | 40     | 50     | 60     | 0.0    |
| Average Monthly          | 30     | 50     | 30     | 25     | 41     | 43           | 116    | 85     | 43     | 59     | 68     | 86     |

### NPDES Permit No. PA0026867

| TOO (III - /-I )              |       | 1     | I     | 1     | 1     | 1     | 1      | ı     |            | 1      | I     |       |
|-------------------------------|-------|-------|-------|-------|-------|-------|--------|-------|------------|--------|-------|-------|
| TSS (lbs/day)                 |       |       |       |       |       |       |        |       |            |        |       |       |
| Raw Sewage Influent           |       |       |       |       |       |       |        |       |            |        |       |       |
| <br><br>Average               | 4547  | 6406  | E455  | 5000  | 5006  | E440  | 5040   | 6262  | E011       | 6600   | 6660  | 5300  |
| Monthly TSS (lbs/day)         | 4517  | 6126  | 5155  | 5299  | 5836  | 5418  | 5949   | 6362  | 5911       | 6693   | 6663  | 5389  |
| Weekly Average                | 47    | 60    | 44    | 25.5  | 82    | 59    | 175    | 238   | 63         | 100    | 119   | 155   |
| TSS (mg/L)                    | 47    | 00    | 44    | 25.5  | 02    | 59    | 175    | 236   | 03         | 100    | 119   | 155   |
| Average Monthly               | 1.2   | 2.0   | 1.3   | < 1.0 | 1.6   | 1.8   | 4.2    | 2.6   | 1.2        | 2.0    | 2.3   | 3.3   |
| TSS (mg/L)                    | 1.2   | 2.0   | 1.0   | V 1.0 | 1.0   | 1.0   | 7.2    | 2.0   | 1.2        | 2.0    | 2.0   | 0.0   |
| Raw Sewage Influent           |       |       |       |       |       |       |        |       |            |        |       |       |
| <br>br/> Average              |       |       |       |       |       |       |        |       |            |        |       |       |
| Monthly                       | 184   | 248   | 221   | 210   | 244   | 226   | 219    | 197   | 167        | 227    | 233   | 208   |
| TSS (mg/L)                    |       |       |       |       |       |       |        |       |            |        |       |       |
| Weekly Average                | 2.0   | 2.0   | 2.0   | 1.0   | 3.0   | 2.5   | 6.5    | 7.0   | 1.5        | 3.5    | 4.0   | 6.0   |
| Total Dissolved Solids        |       |       |       |       |       |       |        |       |            |        |       |       |
| (lbs/day)                     |       |       |       |       |       |       |        |       |            |        |       |       |
| Average Monthly               | 12795 | 6662  | 14011 | 14096 | 14538 | 12756 | 13974  | 17699 | 29838      | 13480  | 15807 | 13645 |
| Total Dissolved Solids        |       |       |       |       |       |       |        |       |            |        |       |       |
| (mg/L)                        |       |       |       |       |       |       |        |       |            |        |       |       |
| Average Monthly               | 509   | 518   | 587   | 567   | 558   | 524   | 521    | 512   | 843        | 446    | 508   | 461   |
| Fecal Coliform                |       |       |       |       |       |       |        |       |            |        |       |       |
| (CFU/100 ml)                  | 20    | 44    | 20    | _     | 44    | 00    | 0.5    |       | <b>-</b> 7 | 40     | 4.5   | 0.4   |
| Geometric Mean                | 22    | 11    | 32    | 5     | 11    | 29    | 25     | 8     | 57         | 18     | 15    | 24    |
| Fecal Coliform                |       |       |       |       |       |       |        |       |            |        |       |       |
| (CFU/100 ml)<br>Instantaneous |       |       |       |       |       |       |        |       |            |        |       |       |
| Maximum                       | 160   | 27    | 400   | 85    | 35    | 140   | 300    | 26    | 700        | 80     | 48    | 100   |
| UV Transmittance (%)          | 100   | 21    | 400   | 00    | 33    | 140   | 300    | 20    | 700        | 00     | 40    | 100   |
| Minimum                       | 70.8  | 70.0  | 66.9  | 68.6  | 73.9  | 75.7  | 72.1   | 64.3  | 67.9       | 77.3   | 78.2  | 74.6  |
| Nitrate-Nitrite (lbs/day)     | 7 0.0 | 7 0.0 | 00.0  | 00.0  | 7 0.0 | 7 0.7 | 72     | 0 1.0 | 01.10      | 77.0   | 70.2  | 7 110 |
| Average Monthly               | 186   | 201   | 232   | 258   | 68    | 366   | 282    | 434   | 467        | 398    | 88    | 408   |
| Nitrate-Nitrite (mg/L)        |       |       |       |       |       |       |        |       |            |        |       |       |
| Average Monthly               | 7.03  | 7.9   | 9.61  | 9.9   | 2.4   | 16.1  | 10.7   | 12.8  | 15.7       | 12.8   | 10.6  | 13.8  |
| Total Nitrogen                |       |       |       |       |       |       |        |       |            |        |       |       |
| (lbs/day)                     |       |       |       |       |       |       |        |       |            |        |       |       |
| Average Monthly               | 201   | 214   | 249   | 277   | 324   | 380   | 297    | 455   | 502        | 425    | 653   | 450   |
| Total Nitrogen (mg/L)         |       |       |       |       |       |       |        |       |            |        |       |       |
| Average Monthly               | 7.59  | 8.4   | 10.3  | 10.6  | 11.6  | 16.7  | 11.3   | 13.4  | 16.9       | 13.7   | 21    | 15.2  |
| Ammonia (lbs/day)             |       |       |       |       |       |       |        |       |            |        |       | _     |
| Average Monthly               | 12    | 2.0   | 4.2   | 3.6   | 39    | 10.6  | 2.7    | 3.3   | 8.3        | 2.9    | 15.7  | 2.9   |
| Ammonia (mg/L)                | 0.40  | 0.00  | 0.40  | 0.45  | 4.50  | 0.44  | 0.40   | 0.40  | 0.00       | 0.40   | 0.50  |       |
| Average Monthly               | 0.49  | 0.08  | 0.18  | 0.15  | 1.50  | 0.44  | < 0.10 | 0.10  | 0.20       | < 0.10 | 0.56  | 0.11  |
| TKN (lbs/day)                 | 4.4   | 10.7  | 447   | 10    | 142   | 44.4  | 42.0   | 47    | 24         | 24.5   | 470   | 27.0  |
| Average Monthly               | 14    | 12.7  | 14.7  | 16    | 143   | 11.4  | 13.2   | 17    | 34         | 24.5   | 173   | 37.3  |

### NPDES Permit No. PA0026867

| TKN (mg/L)                       | 0.50            | 0.5   | 0.04  | 0.00  | <b>5</b> 4 | 0.50  | 0.50  | 0.50  | 4.4.4 | 0.70  | 0.0    | 4.00  |
|----------------------------------|-----------------|-------|-------|-------|------------|-------|-------|-------|-------|-------|--------|-------|
| Average Monthly Total Phosphorus | 0.53            | 0.5   | 0.61  | 0.62  | 5.1        | 0.50  | 0.50  | 0.50  | 1.14  | 0.79  | 6.3    | 1.26  |
| (lbs/day)                        |                 |       |       |       |            |       |       |       |       |       |        |       |
| Average Monthly                  | 34              | 34.6  | 37    | 35    | 30         | 32    | 50    | 40    | 42    | 52    | 29     | 30    |
| Total Phosphorus                 | <del>- 54</del> | 34.0  | - 57  | 33    | 30         | 32    | 30    | 70    | 72    | 32    | 23     | 30    |
| (mg/L)                           |                 |       |       |       |            |       |       |       |       |       |        |       |
| Average Monthly                  | 1.40            | 1.4   | 1.6   | 1.4   | 1.2        | 1.36  | 1.81  | 1.2   | 1.3   | 1.8   | 1.0    | 1.1   |
| Total Phosphorus                 | 11.10           |       | 1.0   |       |            | 1.00  | 1101  |       | 1.0   | 1.0   | 1.0    |       |
| (mg/L)                           |                 |       |       |       |            |       |       |       |       |       |        |       |
| Daily Maximum                    | 1.80            | 1.7   | 1.9   | 1.9   | 2.0        | 1.65  | 2.8   | 1.7   | 2.1   | 2.3   | 1.5    | 1.5   |
| Orthophosphate                   |                 |       |       |       |            |       |       |       |       |       |        |       |
| (lbs/day)                        |                 |       |       |       |            |       |       |       |       |       |        |       |
| Average Monthly                  | 33              | 34    | 34    | 32    | 27         | 29    | 46    | 34    | 36    | 41    | 23     | 21    |
| Orthophosphate                   |                 |       |       |       |            |       |       |       |       |       |        |       |
| (mg/L)                           |                 |       |       |       |            |       |       |       |       |       |        |       |
| Average Monthly                  | 1.34            | 1.38  | 1.47  | 1.29  | 1.10       | 1.21  | 1.67  | 1.07  | 1.10  | 1.42  | 0.80   | 0.80  |
| Total Aluminum                   |                 |       |       |       |            |       |       |       |       |       |        |       |
| (mg/L)                           |                 |       |       |       |            |       |       |       |       |       |        |       |
| Average Monthly                  | 0.04            | 0.11  | 0.04  | 0.035 | 0.07       | 0.11  | 0.08  | 0.11  | 0.16  | 0.11  | < 0.10 | 0.48  |
| Total Copper (mg/L)              |                 |       |       |       |            |       |       |       |       |       |        |       |
| Average Monthly                  | 0.014           | 0.012 | 0.009 | 0.011 | 0.004      | 0.014 | 0.010 | 0.009 | 0.013 | 0.014 | 0.008  | 0.011 |
| Total Hardness (mg/L)            | 004             | 000   | 004   | 000   | 000        | 0.40  | 004   | 000   | 070   | 000   | 0.4.0  | 000   |
| Average Monthly                  | 204             | 200   | 224   | 228   | 236        | 248   | 224   | 228   | 272   | 236   | 212    | 208   |
| Chronic WET -                    |                 |       |       |       |            |       |       |       |       |       |        |       |
| Ceriodaphnia Survival            |                 |       |       |       |            |       |       |       |       |       |        |       |
| (TUc)<br>Daily Maximum           |                 | 1.00  |       |       | GG         |       |       | GG    |       |       | GG     |       |
| Chronic WET -                    |                 | 1.00  |       |       | GG         |       |       | GG    |       |       | GG     |       |
| Chronic WET -<br>Ceriodaphnia    |                 |       |       |       |            |       |       |       |       |       |        |       |
| Reproduction (TUc)               |                 |       |       |       |            |       |       |       |       |       |        |       |
| Daily Maximum                    |                 | 1.00  |       |       | GG         |       |       | GG    |       |       | GG     |       |
| Chronic WET -                    |                 | 1.00  |       |       |            |       |       | - 55  |       |       |        |       |
| Pimephales Survival              |                 |       |       |       |            |       |       |       |       |       |        |       |
| (TUc)                            |                 |       |       |       |            |       |       |       |       |       |        |       |
| Daily Maximum                    |                 | 1.00  |       |       | GG         |       |       | GG    |       |       | GG     |       |
| Chronic WET -                    |                 |       |       |       |            |       |       |       |       |       |        |       |
| Pimephales Growth                |                 |       |       |       |            |       |       |       |       |       |        |       |
| (TUc)                            |                 |       |       |       |            |       |       |       |       |       |        |       |
| Daily Maximum                    |                 | 1.00  |       |       | GG         |       |       | GG    |       |       | GG     |       |

DMR Data for Outfall 002 (from November 1, 2020 to October 31, 2021)

| Parameter             | OCT-21 | SEP-21 | AUG-21 | JUL-21 | JUN-21 | MAY-21 | APR-21 | MAR-21 | FEB-21 | JAN-21 | DEC-20 | NOV-20 |
|-----------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| pH (S.U.)             |        |        |        |        |        |        |        |        |        |        |        |        |
| Minimum               |        |        |        |        |        |        |        |        |        |        | 6.52   |        |
| pH (S.U.)             |        |        |        |        |        |        |        |        |        |        |        |        |
| Maximum               |        |        |        |        |        |        |        |        |        |        | 6.52   |        |
| CBOD5 (mg/L)          |        |        |        |        |        |        |        |        |        |        |        |        |
| Annual Average        |        |        |        |        |        |        |        |        |        |        | 3      |        |
| CBOD5 (mg/L)          |        |        |        |        |        |        |        |        |        |        |        |        |
| Daily Maximum         |        |        |        |        |        |        |        |        |        |        | 3      |        |
| COD (mg/L)            |        |        |        |        |        |        |        |        |        |        |        |        |
| Annual Average        |        |        |        |        |        |        |        |        |        |        | 46     |        |
| COD (mg/L)            |        |        |        |        |        |        |        |        |        |        |        |        |
| Daily Maximum         |        |        |        |        |        |        |        |        |        |        | 46     |        |
| TSS (mg/L)            |        |        |        |        |        |        |        |        |        |        |        |        |
| Annual Average        |        |        |        |        |        |        |        |        |        |        | 56     |        |
| TSS (mg/L)            |        |        |        |        |        |        |        |        |        |        |        |        |
| Daily Maximum         |        |        |        |        |        |        |        |        |        |        | 56     |        |
| Oil and Grease (mg/L) |        |        |        |        |        |        |        |        |        |        |        |        |
| Annual Average        |        |        |        |        |        |        |        |        |        |        | < 5    |        |
| Oil and Grease (mg/L) |        |        |        |        |        |        |        |        |        |        |        |        |
| Daily Maximum `       |        |        |        |        |        |        |        |        |        |        | < 5    |        |
| Fecal Coliform        |        |        |        |        |        |        |        |        |        |        |        |        |
| (CFU/100 ml)          |        |        |        |        |        |        |        |        |        |        |        |        |
| Annual Average        |        |        |        |        |        |        |        |        |        |        | 840    |        |
| Fecal Coliform        |        |        |        |        |        |        |        |        |        |        |        |        |
| (CFU/100 ml)          |        |        |        |        |        |        |        |        |        |        |        |        |
| Daily Maximum         |        |        |        |        |        |        |        |        |        |        | 840    |        |
| TKN (mg/L)            |        |        |        |        |        |        |        |        |        |        |        |        |
| Annual Average        |        |        |        |        |        |        |        |        |        |        | 0.78   |        |
| TKN (mg/L)            |        |        |        |        |        |        |        |        |        |        |        |        |
| Daily Maximum         |        |        |        |        |        |        |        |        |        |        | 0.78   |        |
| Total Phosphorus      |        |        |        |        |        |        |        |        |        |        |        |        |
| (mg/L)                |        |        |        |        |        |        |        |        |        |        |        |        |
| Annual Average        |        |        |        |        |        |        |        |        |        |        | 0.27   |        |
| Total Phosphorus      |        |        |        |        |        |        |        |        |        |        |        |        |
| (mg/L)                |        |        |        |        |        |        |        |        |        |        | 0.07   |        |
| Daily Maximum         | -      |        |        |        |        |        |        |        |        |        | 0.27   |        |
| Dissolved Iron (mg/L) |        |        |        |        |        |        |        |        |        |        | 0.00   |        |
| Annual Average        |        |        |        |        |        |        |        |        |        |        | 0.02   |        |
| Dissolved Iron (mg/L) |        |        |        |        |        |        |        |        |        |        | 0.00   |        |
| Daily Maximum         |        |        |        |        |        |        |        |        |        |        | 0.02   |        |

### DMR Data for Outfall 003 (from November 1, 2020 to October 31, 2021)

| Parameter             | OCT-21 | SEP-21 | AUG-21 | JUL-21 | JUN-21 | MAY-21 | APR-21 | MAR-21 | FEB-21 | JAN-21 | DEC-20  | NOV-20 |
|-----------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|---------|--------|
| pH (S.U.)             |        |        |        |        |        |        |        |        |        |        |         |        |
| Minimum               |        |        |        |        |        |        |        |        |        |        | 6.55    |        |
| pH (S.U.)             |        |        |        |        |        |        |        |        |        |        |         |        |
| Maximum               |        |        |        |        |        |        |        |        |        |        | 6.55    |        |
| CBOD5 (mg/L)          |        |        |        |        |        |        |        |        |        |        |         |        |
| Annual Average        |        |        |        |        |        |        |        |        |        |        | 2       |        |
| CBOD5 (mg/L)          |        |        |        |        |        |        |        |        |        |        |         |        |
| Daily Maximum         |        |        |        |        |        |        |        |        |        |        | 2       |        |
| COD (mg/L)            |        |        |        |        |        |        |        |        |        |        |         |        |
| Annual Average        |        |        |        |        |        |        |        |        |        |        | 30      |        |
| COD (mg/L)            |        |        |        |        |        |        |        |        |        |        |         |        |
| Daily Maximum         |        |        |        |        |        |        |        |        |        |        | 30      |        |
| TSS (mg/L)            |        |        |        |        |        |        |        |        |        |        |         |        |
| Annual Average        |        |        |        |        |        |        |        |        |        |        | 31      |        |
| TSS (mg/L)            |        |        |        |        |        |        |        |        |        |        |         |        |
| Daily Maximum         |        |        |        |        |        |        |        |        |        |        | 31      |        |
| Oil and Grease (mg/L) |        |        |        |        |        |        |        |        |        |        |         |        |
| Annual Average        |        |        |        |        |        |        |        |        |        |        | < 5     |        |
| Oil and Grease (mg/L) |        |        |        |        |        |        |        |        |        |        |         |        |
| Daily Maximum         |        |        |        |        |        |        |        |        |        |        | < 5     |        |
| Fecal Coliform        |        |        |        |        |        |        |        |        |        |        |         |        |
| (CFU/100 ml)          |        |        |        |        |        |        |        |        |        |        |         |        |
| Annual Average        |        |        |        |        |        |        |        |        |        |        | 1500    |        |
| Fecal Coliform        |        |        |        |        |        |        |        |        |        |        |         |        |
| (CFU/100 ml)          |        |        |        |        |        |        |        |        |        |        |         |        |
| Daily Maximum         |        |        |        |        |        |        |        |        |        |        | 1500    |        |
| TKN (mg/L)            |        |        |        |        |        |        |        |        |        |        |         |        |
| Annual Average        |        |        |        |        |        |        |        |        |        |        | 0.52    |        |
| TKN (mg/L)            |        |        |        |        |        |        |        |        |        |        |         |        |
| Daily Maximum         |        |        |        |        |        |        |        |        |        |        | 0.52    |        |
| Total Phosphorus      |        |        |        |        |        |        |        |        |        |        |         |        |
| (mg/L)                |        |        |        |        |        |        |        |        |        |        | 0.40    |        |
| Annual Average        |        |        |        |        |        |        |        |        |        |        | 0.43    |        |
| Total Phosphorus      |        |        |        |        |        |        |        |        |        |        |         | 1      |
| (mg/L)                |        |        |        |        |        |        |        |        |        |        | 0.40    | 1      |
| Daily Maximum         |        |        |        |        |        |        |        |        |        |        | 0.43    |        |
| Dissolved Iron (mg/L) |        |        |        |        |        |        |        |        |        |        | . 0. 00 | 1      |
| Annual Average        |        |        |        |        |        |        |        |        |        |        | < 0.02  |        |

### NPDES Permit No. PA0026867

| Dissolved Iron (mg/L) |  |  |  |  |        |  |
|-----------------------|--|--|--|--|--------|--|
| Daily Maximum         |  |  |  |  | < 0.02 |  |

### **Compliance History**

Effluent Violations for Outfall 001, from: December 1, 2020 To: October 31, 2021

| Elliablic Violationio for Gatian 66 | .,       | ., ==== |           |         |             |         |
|-------------------------------------|----------|---------|-----------|---------|-------------|---------|
| Parameter                           | Date     | SBC     | DMR Value | Units   | Limit Value | Units   |
| Ammonia                             | 06/30/21 | Ava Mo  | 39        | lbs/day | 23          | lbs/day |
| Ammonio                             |          | Ava Ma  |           |         | 70          |         |
| Ammonia                             | 06/30/21 | Avg Mo  | 1.50      | l mg/L  | ./2         | l mg/L  |

| Development of Effluent Limitations |                                      |                   |                |  |  |  |  |  |  |  |  |  |  |
|-------------------------------------|--------------------------------------|-------------------|----------------|--|--|--|--|--|--|--|--|--|--|
| Outfall No.                         | 001                                  | Design Flow (MGD) | 3.91           |  |  |  |  |  |  |  |  |  |  |
| Latitude                            | 40° 7' 47.00"                        | Longitude         | -75° 9' 32.00" |  |  |  |  |  |  |  |  |  |  |
| Wastewater D                        | Description: Treated Sewage Effluent |                   |                |  |  |  |  |  |  |  |  |  |  |

#### **Technology-Based Limitations**

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

| Pollutant               | Limit (mg/l)                          | SBC             | Federal Regulation | State Regulation |
|-------------------------|---------------------------------------|-----------------|--------------------|------------------|
| CBOD <sub>5</sub>       | 25                                    | Average Monthly | 133.102(a)(4)(i)   | 92a.47(a)(1)     |
| CBOD5                   | 40                                    | Average Weekly  | 133.102(a)(4)(ii)  | 92a.47(a)(2)     |
| Total Suspended         | 30                                    | Average Monthly | 133.102(b)(1)      | 92a.47(a)(1)     |
| Solids                  | 45                                    | Average Weekly  | 133.102(b)(2)      | 92a.47(a)(2)     |
| рН                      | 6.0 – 9.0 S.U.                        | Min – Max       | 133.102(c)         | 95.2(1)          |
| Fecal Coliform          |                                       |                 |                    |                  |
| (5/1 – 9/30)            | 200 / 100 ml                          | Geo Mean        | -                  | 92a.47(a)(4)     |
| Fecal Coliform          |                                       |                 |                    |                  |
| (5/1 – 9/30)            | 1,000 / 100 ml                        | IMAX            | -                  | 92a.47(a)(4)     |
| Fecal Coliform          |                                       |                 |                    |                  |
| (10/1 – 4/30)           | 2,000 / 100 ml                        | Geo Mean        | -                  | 92a.47(a)(5)     |
| Fecal Coliform          | · · · · · · · · · · · · · · · · · · · |                 |                    | ·                |
| (10/1 – 4/30)           | 10,000 / 100 ml                       | IMAX            | -                  | 92a.47(a)(5)     |
| Total Residual Chlorine | 0.5                                   | Average Monthly | -                  | 92a.48(b)(2)     |

#### **Water Quality-Based Limitations**

TMDL Limits: CBOD<sub>5</sub>, Ammonia-nitrogen (NH<sub>3</sub>-N), Nitrite-Nitrate as N, Dissolved Oxygen, orthophosphate, phosphorus

The watershed was listed by the Department as impaired due to excessive nutrients and sediments (see the 305(b) and 303(d) reports). On October 9, 2003, the Environmental Protection Agency (EPA) issued the Wissahickon TMDL that includes wasteload allocations (WLAs) for five POTWs located in the watershed. The TMDL includes WLA limits for: CBOD<sub>5</sub>, ammonia-nitrogen, nitrites-nitrates, orthophosphate, and dissolved oxygen.

The Department had not yet finalized in-stream criteria for total-phosphorus. Therefore, the EPA developed the TMDL using the in-stream dissolved oxygen standard for a trout stocking fishery (TSF) (e.g. 7.0 mg/l minimum) as the target standard. The Department anticipates establishing numerical nutrient criteria (e.g. phosphorus) sometime in the future. At such a time, the TMDL may be revised to incorporate the promulgated nutrient limits.

Table 4-3 of the Wissahickon TMDL includes the following effluent limits:

| <u>Parameter</u>   | <u>Summer</u> |
|--------------------|---------------|
| CBOD <sub>5</sub>  | 7.5 mg/l      |
| NH <sub>3</sub> -N | 0.72 mg/l     |
| Nitrite-Nitrate    | 30.27 mg/l    |
| Orthophosphate-P   | 1.85 mg/l     |

Dissolved Oxygen: 7.0 mg/l is continued in the permit based on the TMDL

<u>Nitrite-Nitrate</u>: The permit contains a monitoring requirement for Nitrite + Nitrate as Nitrogen, in lieu of the WLA listed in the Wissahickon Creek TMDL. The Environmental Protection Agency (EPA) determined that the nitrite-nitrate levels listed in the TMDL, in addition to protecting the dissolved oxygen standard, would also be protective of the nearest downstream

potable water supply. Based on Table 4-3 of the TMDL, the allowable nitrate-nitrate concentration for Abington is 30.27 mg/l and a 0% reduction is required. Based on the past one year of data, the average nitrite-nitrate effluent concentration from Abington Township was 10.78 mg/l. The monitoring requirement is continued in the permit to collect data for future analysis to determine compliance with the TMDL.

<u>Phosphorus</u>: In addition to the orthophosphate limit listed in the Wissahickon TMDL, the existing permit includes a monitoring requirement for total phosphorous. It is recommended to continue the Phosphorous Total monitoring requirement.

Total Nitrogen: Reporting for total nitrogen and TKN are in the existing permit and are recommended to continue.

<u>Seasonal Multipliers</u>: Consistent with the DEP guidance document "Determining Water Quality-Based Effluent Limits" (391-2000-003, May 9, 2003, Page 32, Table 8), seasonal multipliers are applied to effluent limits:  $CBOD_5 = 2X$ ,  $NH_3-N = 3X$ , Phosphorus = 2X

#### Total Dissolved Solids (TDS)

The TDS concentrations listed in the permit application were 682 mg/l (average) and 792 mg/l (maximum). DRBC Regulation 3.10.4.D.2 includes TDS limit of 1,000 mg/l. The Department has a statewide osmotic pressure criterion of 50 milliosmoles per kilogram (approximately 1,500 mg/l TDS). The existing TDS limits: 1,000 mg/l (average monthly), and 1,500 mg/l (instantaneous maximum) are recommended to continue.

<u>E. Coli:</u> Monitoring is included in the draft permit according to the DEP SOP guidance (Chapter 92.a.61). This is a new requirement and is consistent with the requirements of other similar discharges in the area.

TRC / UV: Since chlorine is not used at the facility, no TRC limit is needed. UV monitoring is continued.

A "Reasonable Potential Analysis" determined the following parameters were candidates for limitations or monitoring requirements:

| Parameter      | Limit (mg/l) | SBC             | Model                              |
|----------------|--------------|-----------------|------------------------------------|
| Total Aluminum | Report       | Average Monthly | Toxic Management Spreadsheet (TMS) |
| Total Boron    | Report       | Average Monthly | TMS                                |
| Total Copper * | 19.4         | Average Monthly | TMS                                |
| Free Cyanide** | 4.07         | Average Monthly | TMS                                |
| Total Zinc     | Report       | Average Monthly | TMS                                |

<sup>\*</sup> Existing permit has a copper Monitoring requirement. The maximum discharge concentration for Copper Total is reported as 14 ug/l in the eDMR and is used in the TMS model run. The WQBEL recommended by TMS is 19.4 ug/l. The review of the last year's eDMR data shows compliance with the proposed WQBEL 100 % of the time. The new Average Monthly effluent limit for Copper is included in the draft permit.

The existing permit has a Part C condition requiring the permittee to conduct a scientific study during the permit term to develop site specific criterion (SSC) for Copper. Based on the records the study was never conducted. Since the facility is able to meet the proposed limit, the permittee is not pursuing any site-specific studies at this time.

\*\*For Free Cyanide, only 3 sample results are available, and they all are non-detect results using a QL of 4 ug/l. According to the permittee, there are no sources for this parameter in their discharge. A monthly monitoring requirement is included to collect more data to reevaluate the reasonable potential at the next permit renewal. We suggest conducting the sample analysis using the TQL recommended in the application instructions in the future.

See the below attached TMS report:

### Discharge Information



|             | Discharge Characteristics |          |     |               |             |     |                         |    |  |  |  |  |  |  |  |
|-------------|---------------------------|----------|-----|---------------|-------------|-----|-------------------------|----|--|--|--|--|--|--|--|
| Design Flow | Hardness (mg/l)*          | pH (SU)* | P   | artial Mix Fa | actors (PMF | 5)  | Complete Mix Times (mir |    |  |  |  |  |  |  |  |
| (MGD)*      | naruness (mg/l)           | рн (30)  | AFC | CFC           | THH         | CRL | Q <sub>7-10</sub>       | Qh |  |  |  |  |  |  |  |
| 3.91        | 233                       | 7.84     |     |               |             |     |                         |    |  |  |  |  |  |  |  |

|       |                                 |       |    |                     | 0 If lef     | blank          | 0.5 lf le   | ft blank     | 0             | If left blan  | k   | 1 If lef         | blank          |
|-------|---------------------------------|-------|----|---------------------|--------------|----------------|-------------|--------------|---------------|---------------|-----|------------------|----------------|
|       | Discharge Pollutant             | Units | Ма | x Discharge<br>Conc | Trib<br>Conc | Stream<br>Conc | Daily<br>CV | Hourly<br>CV | Strea<br>m CV | Fate<br>Coeff | FOS | Criteri<br>a Mod | Chem<br>Transl |
|       | Total Dissolved Solids (PWS)    | mg/L  |    | 792                 |              |                |             |              |               |               |     |                  |                |
| 7     | Chloride (PWS)                  | mg/L  |    | 152                 |              |                |             |              |               |               |     |                  |                |
| ١Ē    | Bromide                         | mg/L  | <  | 1                   |              |                |             |              |               |               |     |                  |                |
| Group | Sulfate (PWS)                   | mg/L  |    | 42.8                |              |                |             |              |               |               |     |                  |                |
|       | Fluoride (PWS)                  | mg/L  |    |                     |              |                |             |              |               |               |     |                  |                |
|       | Total Aluminum                  | μg/L  |    | 130                 |              |                |             |              |               |               |     |                  |                |
| 1     | Total Antimony                  | μg/L  |    | 0.4                 |              |                |             |              |               |               |     |                  |                |
| 1     | Total Arsenic                   | μg/L  | <  | 1                   |              |                |             |              |               |               |     |                  |                |
| 1     | Total Barium                    | μg/L  |    | 27                  |              |                |             |              |               |               |     |                  |                |
|       | Total Beryllium                 | μg/L  | <  | 1                   |              |                |             |              |               |               |     |                  |                |
| 1     | Total Boron                     | μg/L  |    | 300                 |              |                |             |              |               |               |     |                  |                |
| 1     | Total Cadmium                   | μg/L  | <  | 0.1                 |              |                |             |              |               |               |     |                  |                |
| 1     | Total Chromium (III)            | μg/L  |    | 1.4                 |              |                |             |              |               |               |     |                  |                |
| 1     | Hexavalent Chromium             | μg/L  | <  | 0.25                |              |                |             |              |               |               |     |                  |                |
|       | Total Cobalt                    | μg/L  | <  | 0.5                 |              |                |             |              |               |               |     |                  |                |
| 1     | Total Copper                    | μg/L  |    | 14                  |              |                |             |              |               |               |     |                  |                |
| 2     | Free Cyanide                    | μg/L  | ٧  | 4                   |              |                |             |              |               |               |     |                  |                |
| Group | Total Cyanide                   | μg/L  | <  | 4                   |              |                |             |              |               |               |     |                  |                |
| ق     | Dissolved Iron                  | μg/L  |    | 25                  |              |                |             |              |               |               |     |                  |                |
|       | Total Iron                      | μg/L  |    | 30                  |              |                |             |              |               |               |     |                  |                |
|       | Total Lead                      | μg/L  | <  | 1                   |              |                |             |              |               |               |     |                  |                |
| 1     | Total Manganese                 | μg/L  |    | 22                  |              |                |             |              |               |               |     |                  |                |
| 1     | Total Mercury                   | μg/L  | ٧  | 0.2                 |              |                |             |              |               |               |     |                  |                |
| 1     | Total Nickel                    | μg/L  |    | 2.2                 |              |                |             |              |               |               |     |                  |                |
| 1     | Total Phenols (Phenolics) (PWS) | μg/L  | ٧  | 2                   |              |                |             |              |               |               |     |                  |                |
|       | Total Selenium                  | μg/L  | ٧  | 1                   |              |                |             |              |               |               |     |                  |                |
|       | Total Silver                    | μg/L  | <  | 1                   |              |                |             |              |               |               |     |                  |                |
|       | Total Thallium                  | μg/L  | <  | 0.2                 |              |                |             |              |               |               |     |                  |                |
|       | Total Zinc                      | μg/L  |    | 44                  |              |                |             |              |               |               |     |                  |                |
|       | Total Molybdenum                | μg/L  | ٧  | 3                   |              |                |             |              |               |               |     |                  |                |

|               |      |   |     |          |   |  |  |  | <br> |
|---------------|------|---|-----|----------|---|--|--|--|------|
| Acrolein      | μg/L | < | 2   | $\vdash$ |   |  |  |  |      |
| Acrylamide    | μg/L | < |     | $\vdash$ |   |  |  |  |      |
| Acrylonitrile | μg/L | < | 2   |          | П |  |  |  |      |
| Benzene       | μg/L | < | 0.5 |          | П |  |  |  |      |
| Bromoform     | μg/L | < | 0.5 | $\Box$   | П |  |  |  |      |

Discharge Information 1/3/2022 Page 1

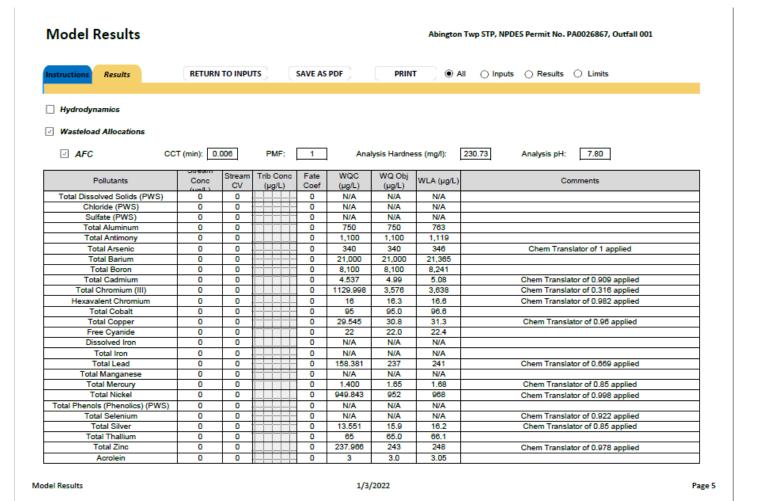
|         | Carbon Tetrachloride       | μg/L | < | 0.5 | H         | 7             |  |  |  |  |
|---------|----------------------------|------|---|-----|-----------|---------------|--|--|--|--|
|         | Chlorobenzene              | μg/L |   | 0.5 | H         |               |  |  |  |  |
|         | Chlorodibromomethane       | μg/L | < | 0.5 |           |               |  |  |  |  |
|         | Chloroethane               | μg/L | < | 0.5 | Ц         |               |  |  |  |  |
|         | 2-Chloroethyl Vinyl Ether  | μg/L | < | 5   | $\dashv$  | $\rightarrow$ |  |  |  |  |
|         | Chloroform                 | μg/L | < | 0.5 | H         | 7             |  |  |  |  |
|         | Dichlorobromomethane       | μg/L | < | 0.5 | Ħ         |               |  |  |  |  |
|         | 1,1-Dichloroethane         | μg/L | < | 0.5 |           |               |  |  |  |  |
| e       | 1,2-Dichloroethane         | μg/L | < | 0.5 | Ц         | 4             |  |  |  |  |
| 9       | 1,1-Dichloroethylene       | μg/L | < | 0.5 | $\dashv$  |               |  |  |  |  |
| Group   | 1,2-Dichloropropane        | μg/L | < | 0.5 | H         |               |  |  |  |  |
| O       | 1,3-Dichloropropylene      | μg/L | < | 0.5 | Ħ         |               |  |  |  |  |
|         | 1,4-Dioxane                | μg/L | < | 50  | Ц         | ļ             |  |  |  |  |
|         | Ethylbenzene               | μg/L | < | 0.5 | Ц         |               |  |  |  |  |
|         | Methyl Bromide             | μg/L | < | 0.5 | Н         | 7             |  |  |  |  |
|         | Methyl Chloride            | μg/L | < | 0.5 | H         |               |  |  |  |  |
|         | Methylene Chloride         | μg/L | < | 0.5 | T         |               |  |  |  |  |
|         | 1,1,2,2-Tetrachloroethane  | μg/L | < | 0.5 | Ц         |               |  |  |  |  |
|         | Tetrachloroethylene        | μg/L | < | 0.5 | $\exists$ |               |  |  |  |  |
|         | Toluene                    | μg/L | < | 0.5 | Н         | 7             |  |  |  |  |
|         | 1,2-trans-Dichloroethylene | μg/L | < | 0.5 | Ħ         |               |  |  |  |  |
|         | 1,1,1-Trichloroethane      | μg/L | < | 0.5 |           |               |  |  |  |  |
|         | 1,1,2-Trichloroethane      | μg/L | < | 0.5 | Ц         |               |  |  |  |  |
|         | Trichloroethylene          | μg/L | < | 0.5 | $\dashv$  |               |  |  |  |  |
|         | Vinyl Chloride             | μg/L | < | 0.5 | H         |               |  |  |  |  |
|         | 2-Chlorophenol             | μg/L | < | 10  | Ħ         |               |  |  |  |  |
|         | 2,4-Dichlorophenol         | μg/L | < | 10  |           |               |  |  |  |  |
|         | 2,4-Dimethylphenol         | μg/L | < | 10  | Ц         |               |  |  |  |  |
|         | 4,6-Dinitro-o-Cresol       | μg/L | < | 10  | Н         |               |  |  |  |  |
| 40      | 2,4-Dinitrophenol          | μg/L | < | 10  | Ħ         |               |  |  |  |  |
| Group 4 | 2-Nitrophenol              | μg/L | < | 10  | T         |               |  |  |  |  |
| ĕ       | 4-Nitrophenol              | μg/L | < | 10  | Ц         |               |  |  |  |  |
|         | p-Chloro-m-Cresol          | μg/L | < | 10  | H         |               |  |  |  |  |
|         | Pentachlorophenol          | μg/L | < | 10  | H         |               |  |  |  |  |
|         | Phenol                     | μg/L | < | 10  | H         |               |  |  |  |  |
|         | 2,4,6-Trichlorophenol      | μg/L | < | 10  | П         |               |  |  |  |  |

| Acenaphthene                            | µg/L | < | 2.5 |  |  |  |  |  |
|-----------------------------------------|------|---|-----|--|--|--|--|--|
| Acenaphthylene                          | μg/L | < | 2.5 |  |  |  |  |  |
| Anthracene                              | μg/L | < | 2.5 |  |  |  |  |  |
| Benzidine                               | μg/L | < | 50  |  |  |  |  |  |
| Benzo(a)Anthracene                      | µg/L | < | 2.5 |  |  |  |  |  |
| Benzo(a)Pyrene                          | μg/L | < | 2.5 |  |  |  |  |  |
| 3,4-Benzofluoranthene                   | µg/L | < | 2.5 |  |  |  |  |  |
| Benzo(ghi)Perylene                      | µg/L | < | 2.5 |  |  |  |  |  |
| Benzo(k)Fluoranthene                    | μg/L | < | 2.5 |  |  |  |  |  |
| Bis(2-Chloroethoxy)Methane              | μg/L | < | 5   |  |  |  |  |  |
| Bis(2-Chloroethyl)Ether                 | μg/L | < | 5   |  |  |  |  |  |
| Bis(2-Chloroisopropyl)Ether             | μg/L | < | 5   |  |  |  |  |  |
| Bis(2-Ethylhexyl)Phthalate              | μg/L | < | 5   |  |  |  |  |  |
| 4-Bromophenyl Phenyl Ether              | μg/L | < | 5   |  |  |  |  |  |
| Butyl Benzyl Phthalate                  | μg/L | < | 5   |  |  |  |  |  |
| 2-Chloronaphthalene                     | μg/L | < | 5   |  |  |  |  |  |
| 4-Chlorophenyl Phenyl Ether             | μg/L | < | 5   |  |  |  |  |  |
| Chrysene                                | μg/L | < | 2.5 |  |  |  |  |  |
| Dibenzo(a,h)Anthrancene                 | μg/L | < | 2.5 |  |  |  |  |  |
| 1,2-Dichlorobenzene                     | μg/L | < | 0.5 |  |  |  |  |  |
| 1,3-Dichlorobenzene                     | μg/L | < | 0.5 |  |  |  |  |  |
| 1,4-Dichlorobenzene                     | μg/L | < | 0.5 |  |  |  |  |  |
| 3,3-Dichlorobenzidine                   | μg/L | < | 5   |  |  |  |  |  |
| 3,3-Dichlorobenzidine Diethyl Phthalate | μg/L | < | 5   |  |  |  |  |  |
| Dimethyl Phthalate                      | μg/L | < | 5   |  |  |  |  |  |
| Di-n-Butyl Phthalate                    | μg/L | < | 5   |  |  |  |  |  |
| 2,4-Dinitrotoluene                      | μg/L | < | 5   |  |  |  |  |  |

Discharge Information 1/3/2022 Page 2

| 2,6-Dinitrotoluene        | μg/L | < | 5   |   |   |   | Н |  |  |  | $\dashv$ | - |
|---------------------------|------|---|-----|---|---|---|---|--|--|--|----------|---|
| Di-n-Octyl Phthalate      | μg/L | < | 5   |   |   | Г | Н |  |  |  | H        |   |
| 1,2-Diphenylhydrazine     | μg/L | < | 5   |   |   |   |   |  |  |  |          |   |
| Fluoranthene              | μg/L | < | 2.5 |   |   |   | Į |  |  |  | $\Box$   | Ţ |
| Fluorene                  | μg/L | < | 2.5 |   |   |   | H |  |  |  | $\dashv$ | 7 |
| Hexachlorobenzene         | µg/L | < | 5   | Е | F | F | Н |  |  |  | H        | 7 |
| Hexachlorobutadiene       | μg/L | < | 0.5 | F |   | П | Ħ |  |  |  | Ħ        |   |
| Hexachlorocyclopentadiene | μg/L | < | 5   |   |   |   |   |  |  |  |          |   |
| Hexachloroethane          | μg/L | < | 5   | Е |   | F | Ц |  |  |  | П        | Ŧ |
| Indeno(1,2,3-cd)Pyrene    | μg/L | < | 2.5 | F | F | F | H |  |  |  | $\Box$   | 7 |
| Isophorone                | μg/L | < | 5   |   |   |   | Н |  |  |  | $\Box$   |   |
| Naphthalene               | μg/L | < | 0.5 | Г | Г | Г | Ħ |  |  |  | Ħ        | T |
| Nitrobenzene              | μg/L | < | 5   |   |   |   | Ц |  |  |  | Ц        | Ţ |
| n-Nitrosodimethylamine    | μg/L | < | 5   |   |   | F | H |  |  |  | $\Box$   | 7 |
| n-Nitrosodi-n-Propylamine | μg/L | < | 5   | Е | F | F | Н |  |  |  | H        | 7 |
| n-Nitrosodiphenylamine    | μg/L | < | 5   | F | П | F | Н |  |  |  | H        |   |
| Phenanthrene              | μg/L | < | 2.5 |   |   |   | Ī |  |  |  |          |   |
| Pyrene                    | μg/L | < | 2.5 |   |   |   |   |  |  |  |          | Ţ |
| 1,2,4-Trichlorobenzene    | µg/L | < | 0.5 |   |   |   | П |  |  |  | П        |   |

| _       | Aldrin             | um/l   | < |   |   |           |   |      |  |      |   |   |                |
|---------|--------------------|--------|---|---|---|-----------|---|------|--|------|---|---|----------------|
|         | alpha-BHC          | μg/L   | < |   |   | Н         |   |      |  |      |   | H | $\blacksquare$ |
|         | beta-BHC           | μg/L   |   | Н | L | Н         | _ |      |  |      | L | Ļ | H              |
|         |                    | μg/L   | < | Н | H | H         |   |      |  |      | H | H | H              |
|         | gamma-BHC          | μg/L   | < | Н |   | H         | _ |      |  |      |   | H |                |
|         | delta BHC          | μg/L   | ٧ |   |   |           |   |      |  |      |   |   |                |
|         | Chlordane          | μg/L   | < |   |   | Ħ         |   |      |  |      |   |   |                |
|         | 4,4-DDT            | μg/L   | < |   |   |           |   |      |  |      |   |   |                |
|         | 4,4-DDE            | μg/L   | < | Ц |   | Щ         |   |      |  |      |   | L | Щ              |
|         | 4,4-DDD            | μg/L   | < | Н |   | Ш         |   |      |  |      |   | L | Н              |
|         | Dieldrin           | μg/L   | ٧ | Н |   | H         |   |      |  |      |   | H |                |
|         | alpha-Endosulfan   | μg/L   | ٧ |   |   | П         |   |      |  |      |   | Е |                |
|         | beta-Endosulfan    | µg/L   | ٧ |   |   |           |   |      |  |      |   | П | $\Box$         |
| 90      | Endosulfan Sulfate | μg/L   | ٧ |   |   | Щ         |   |      |  |      |   | L |                |
| l ē     | Endrin             | μg/L   | ٧ | П |   | H         |   |      |  |      |   | F | $\Box$         |
| Group ( | Endrin Aldehyde    | μg/L   | ٧ | Н | Ε | H         |   |      |  |      | F | F | $\Box$         |
|         | Heptachlor         | μg/L   | ٧ | F | Ε | Ħ         |   |      |  |      | F | F | Ħ              |
|         | Heptachlor Epoxide | µg/L   | < | П |   | П         |   |      |  |      | Г | Т | $\Box$         |
|         | PCB-1016           | µg/L   | < |   |   |           |   |      |  |      |   |   |                |
|         | PCB-1221           | μg/L   | < |   |   | Ħ         |   |      |  |      |   |   | $\Box$         |
|         | PCB-1232           | µg/L   | < | Ħ |   | Ħ         |   |      |  |      | F | H | Ħ              |
|         | PCB-1242           | μg/L   | < | Ħ | Η | Ħ         |   |      |  |      | F | F | Ħ              |
|         | PCB-1248           | μg/L   | < | П |   | П         |   |      |  |      | Г |   |                |
|         | PCB-1254           | μg/L   | < |   |   |           |   |      |  |      |   |   |                |
|         | PCB-1260           | μg/L   | < | Н |   | H         |   |      |  |      | F | F | $\Box$         |
|         | PCBs, Total        | μg/L   | < | Н |   | H         |   |      |  |      | F | F | H              |
|         | Toxaphene          | μg/L   | ٧ | Ħ | Π | Ħ         |   |      |  |      | F | Т | Ħ              |
|         | 2,3,7,8-TCDD       | ng/L   | < |   |   |           |   |      |  |      |   |   |                |
|         | Gross Alpha        | pCi/L  |   |   |   | П         |   |      |  |      |   |   | П              |
| 4       | Total Beta         | pCi/L  | < | Н |   | H         |   |      |  |      | F | F | H              |
| -       | Radium 226/228     | pCi/L  | < | F |   | Ħ         |   |      |  |      | F | F | Ħ              |
| Group   | Total Strontium    | μg/L   | ٧ | Ħ | Т | Ħ         |   |      |  |      | Г | Т | Ħ              |
| O       | Total Uranium      | µg/L   | < |   |   |           |   |      |  |      |   |   |                |
|         | Osmotic Pressure   | mOs/kg |   |   |   | $\square$ |   |      |  |      |   | F | $\Box$         |
|         |                    | Ĭ      |   | Н |   | H         |   |      |  |      | Г |   |                |
|         |                    |        |   | Ħ |   | Ħ         |   |      |  |      | Г |   |                |
|         |                    |        |   | П |   | П         |   |      |  |      | Г |   |                |
|         |                    |        |   |   |   |           |   |      |  |      | Г |   |                |
|         |                    |        |   | Е |   | H         |   |      |  |      | Г |   |                |
|         |                    |        |   | H |   |           |   |      |  |      |   |   |                |
|         |                    |        |   |   |   | Ħ         |   |      |  |      |   |   |                |
|         |                    |        |   |   |   |           |   |      |  |      |   |   |                |
|         |                    |        |   |   |   |           |   |      |  |      |   |   |                |
|         |                    |        |   | H |   | H         |   |      |  |      |   |   |                |
|         |                    |        |   | H |   | Ħ         |   |      |  |      |   |   |                |
|         |                    |        |   | - |   | _         |   | <br> |  | <br> | _ | _ | _              |


Discharge Information 1/3/2022 Page 3

Stream / Surface Water Information

Page 4

#### Stream / Surface Water Information Abington Twp STP, NPDES Permit No. PA0026867, Outfall 001 Instructions Discharge No. Reaches to Model: 1 Statewide Criteria Receiving Surface Water Name: O Great Lakes Criteria ORSANCO Criteria Elevation PWS Withdrawal Apply Fish Location Stream Code DA (mi<sup>2</sup>)\* Slope (ft/ft) (ft)\* (MGD) Criteria\* Point of Discharge 000859 Yes End of Reach 1 000859 1.204 156.42 5.57 Yes Q 7-10 LFY Flow (cfs) W/D Width Depth Velocit Tributary Stream Analysis Location RMI Time Stream Tributary Hardness pH (cfs/mi<sup>2</sup>)\* Ratio (ft) (ft) y (fps) Hardness pH Hardness\* pH' Point of Discharge 4.3 0.1 0.105 100 0.195 End of Reach 1 1.204 0.1 $Q_h$ LFY Flow (cfs) Stream W/D Depth (ft) Tributary Analysis Width Velocit RMI Location Time (cfs/mi<sup>2</sup>) Ratio (ft) y (fps) Hardness pH Hardness Hardness pH Stream Tributary pН Point of Discharge 4.3 End of Reach 1 1.204

1/3/2022



| Acrylonitrile                                             | 0 | 0 |                                                  | 0 | 650           | 650           | 661           |  |
|-----------------------------------------------------------|---|---|--------------------------------------------------|---|---------------|---------------|---------------|--|
| Benzene                                                   | 0 | 0 |                                                  | 0 | 640           | 640           | 651           |  |
| Bromoform                                                 | 0 | 0 |                                                  | 0 | 1,800         | 1,800         | 1,831         |  |
| Carbon Tetrachloride                                      | 0 | 0 |                                                  | 0 | 2,800         | 2,800         | 2,849         |  |
| Chlorobenzene                                             | 0 | 0 |                                                  | 0 | 1,200         | 1,200         | 1,221         |  |
| Chlorodibromomethane                                      | 0 | 0 |                                                  | 0 | N/A           | N/A           | N/A           |  |
| 2-Chloroethyl Vinyl Ether                                 | 0 | 0 |                                                  | 0 | 18,000        | 18,000        | 18,312        |  |
| Chloroform                                                | 0 | 0 |                                                  | 0 | 1,900         | 1,900         | 1,933         |  |
| Dichlorobromomethane                                      | 0 | 0 |                                                  | 0 | N/A           | N/A           | N/A           |  |
| 1,2-Dichloroethane                                        | 0 | 0 |                                                  | 0 | 15,000        | 15,000        | 15,260        |  |
| 1,1-Dichloroethylene                                      | 0 | 0 |                                                  | 0 | 7,500         | 7,500         | 7,630         |  |
| 1,2-Dichloropropane                                       | 0 | 0 |                                                  | 0 | 11,000        | 11,000        | 11,191        |  |
| 1,3-Dichloropropylene                                     | 0 | 0 |                                                  | 0 | 310           | 310           | 315           |  |
| Ethylbenzene                                              | 0 | 0 |                                                  | 0 | 2,900         | 2,900         | 2,950         |  |
| Methyl Bromide                                            | 0 | 0 |                                                  | 0 | 550           | 550           | 560           |  |
| Methyl Chloride                                           | 0 | 0 |                                                  | 0 | 28,000        | 28,000        | 28,486        |  |
| Methylene Chloride                                        | 0 | 0 |                                                  | 0 | 12,000        | 12,000        | 12,208        |  |
| 1,1,2,2-Tetrachloroethane                                 | 0 | 0 |                                                  | 0 | 1,000         | 1,000         | 1,017         |  |
| Tetrachloroethylene                                       | 0 | 0 |                                                  | 0 | 700           | 700           | 712           |  |
| Toluene                                                   | 0 | 0 |                                                  | 0 | 1.700         | 1.700         | 1.730         |  |
| 1,2-trans-Dichloroethylene                                | 0 | 0 |                                                  | 0 | 6.800         | 6.800         | 6,918         |  |
| 1,1,1-Trichloroethane                                     | 0 | 0 |                                                  | 0 | 3.000         | 3.000         | 3.052         |  |
| 1,1,2-Trichloroethane                                     | 0 | 0 |                                                  | 0 | 3,400         | 3.400         | 3,459         |  |
| Trichloroethylene                                         | 0 | 0 |                                                  | 0 | 2.300         | 2.300         | 2.340         |  |
| Vinyl Chloride                                            | 0 | 0 |                                                  | 0 | N/A           | N/A           | N/A           |  |
| 2-Chlorophenol                                            | 0 | 0 |                                                  | 0 | 560           | 560           | 570           |  |
| 2.4-Dichlorophenol                                        | 0 | 0 |                                                  | 0 | 1,700         | 1,700         | 1,730         |  |
| 2,4-Dimethylphenol                                        | 0 | 0 |                                                  | 0 | 660           | 660           | 671           |  |
| 4.6-Dinitro-o-Cresol                                      | 0 | 0 | <del>                                     </del> | 0 | 80            | 80.0          | 81.4          |  |
| 2.4-Dinitrophenol                                         | 0 | 0 |                                                  | 0 | 660           | 660           | 671           |  |
| 2-Nitrophenol                                             | 0 | 0 |                                                  | 0 | 8.000         | 8.000         | 8,139         |  |
| 4-Nitrophenol                                             | 0 | 0 |                                                  | 0 | 2,300         | 2,300         | 2,340         |  |
| p-Chloro-m-Cresol                                         | 0 | 0 |                                                  | 0 | 160           | 160           | 163           |  |
| Pentachlorophenol                                         | 0 | 0 |                                                  | 0 | 19.457        | 19.5          | 19.8          |  |
| Phenol                                                    | 0 | 0 |                                                  | 0 | N/A           | N/A           | N/A           |  |
| 2,4,6-Trichlorophenol                                     | 0 | 0 |                                                  | 0 | 460           | 460           | 468           |  |
| Acenaphthene                                              | 0 | 0 |                                                  | 0 | 83            | 83.0          | 84.4          |  |
| Anthracene                                                | 0 | 0 |                                                  | 0 | N/A           | N/A           | N/A           |  |
| Benzidine                                                 | 0 | 0 |                                                  | 0 | 300           | 300           | 305           |  |
| Benzo(a)Anthracene                                        | 0 | 0 |                                                  | 0 | 0.5           | 0.5           | 0.51          |  |
| Benzo(a)Pyrene                                            | 0 | 0 |                                                  | 0 | N/A           | N/A           | N/A           |  |
| 3,4-Benzofluoranthene                                     | 0 | 0 |                                                  | 0 | N/A           | N/A           | N/A           |  |
| Benzo(k)Fluoranthene                                      | 0 | 0 |                                                  | 0 | N/A           | N/A           | N/A           |  |
| Bis(2-Chloroethyl)Ether                                   | 0 | 0 |                                                  | 0 | 30.000        | 30.000        | 30.521        |  |
| Bis(2-Chloroethyl)Ether Bis(2-Chloroisopropyl)Ether       | 0 | 0 |                                                  | 0 | 30,000<br>N/A | 30,000<br>N/A | 30,521<br>N/A |  |
| Bis(2-Chloroisopropyi)Ether<br>Bis(2-Ethylhexyl)Phthalate | 0 | 0 |                                                  | 0 | 4,500         | 4,500         | 4,578         |  |
| 4-Bromophenyl Phenyl Ether                                | 0 | 0 |                                                  | 0 | 270           | 270           | 4,578<br>275  |  |
| Butyl Benzyl Phthalate                                    | 0 | 0 |                                                  | 0 | 140           | 140           | 142           |  |
| butyi berizyi Fritrialate                                 | U | U |                                                  | U | 140           | 140           | 142           |  |

| 2-Chloronaphthalene       | 0 | 0 | 0 | N/A    | N/A    | N/A    |  |
|---------------------------|---|---|---|--------|--------|--------|--|
| Chrysene                  | 0 | 0 | 0 | N/A    | N/A    | N/A    |  |
| Dibenzo(a,h)Anthrancene   | 0 | 0 | 0 | N/A    | N/A    | N/A    |  |
| 1,2-Dichlorobenzene       | 0 | 0 | 0 | 820    | 820    | 834    |  |
| 1,3-Dichlorobenzene       | 0 | 0 | 0 | 350    | 350    | 356    |  |
| 1,4-Dichlorobenzene       | 0 | 0 | 0 | 730    | 730    | 743    |  |
| 3,3-Dichlorobenzidine     | 0 | 0 | 0 | N/A    | N/A    | N/A    |  |
| Diethyl Phthalate         | 0 | 0 | 0 | 4,000  | 4,000  | 4,069  |  |
| Dimethyl Phthalate        | 0 | 0 | 0 | 2,500  | 2,500  | 2,543  |  |
| Di-n-Butyl Phthalate      | 0 | 0 | 0 | 110    | 110    | 112    |  |
| 2,4-Dinitrotoluene        | 0 | 0 | 0 | 1,600  | 1,600  | 1,628  |  |
| 2,6-Dinitrotoluene        | 0 | 0 | 0 | 990    | 990    | 1,007  |  |
| 1,2-Diphenylhydrazine     | 0 | 0 | 0 | 15     | 15.0   | 15.3   |  |
| Fluoranthene              | 0 | 0 | 0 | 200    | 200    | 203    |  |
| Fluorene                  | 0 | 0 | 0 | N/A    | N/A    | N/A    |  |
| Hexachlorobenzene         | 0 | 0 | 0 | N/A    | N/A    | N/A    |  |
| Hexachlorobutadiene       | 0 | 0 | 0 | 10     | 10.0   | 10.2   |  |
| Hexachlorocyclopentadiene | 0 | 0 | 0 | 5      | 5.0    | 5.09   |  |
| Hexachloroethane          | 0 | 0 | 0 | 60     | 60.0   | 61.0   |  |
| Indeno(1,2,3-cd)Pyrene    | 0 | 0 | 0 | N/A    | N/A    | N/A    |  |
| Isophorone                | 0 | 0 | 0 | 10,000 | 10,000 | 10,174 |  |
| Naphthalene               | 0 | 0 | 0 | 140    | 140    | 142    |  |
| Nitrobenzene              | 0 | 0 | 0 | 4,000  | 4,000  | 4,069  |  |
| n-Nitrosodimethylamine    | 0 | 0 | 0 | 17,000 | 17,000 | 17,295 |  |
| n-Nitrosodi-n-Propylamine | 0 | 0 | 0 | N/A    | N/A    | N/A    |  |
| n-Nitrosodiphenylamine    | 0 | 0 | 0 | 300    | 300    | 305    |  |
| Phenanthrene              | 0 | 0 | 0 | 5      | 5.0    | 5.09   |  |
| Pyrene                    | 0 | 0 | 0 | N/A    | N/A    | N/A    |  |
| 1,2,4-Trichlorobenzene    | 0 | 0 | 0 | 130    | 130    | 132    |  |
|                           |   |   |   |        |        |        |  |

| ✓ CFC CCT (min | : 0.006 | PMF: | 1 | Analysis Hardness (mg/l): | 230.73 | Analysis pH: | 7.80 | ] |
|----------------|---------|------|---|---------------------------|--------|--------------|------|---|
|----------------|---------|------|---|---------------------------|--------|--------------|------|---|

| Pollutants                   | Conc   | Stream<br>CV | Trib Conc<br>(µg/L) | Fate<br>Coef | WQC<br>(µg/L) | WQ Obj<br>(µg/L) | WLA (µg/L) | Comments                         |
|------------------------------|--------|--------------|---------------------|--------------|---------------|------------------|------------|----------------------------------|
| Total Dissolved Solids (PWS) | (ug/L) | 0            | (Pg-=/              | 0            | N/A           | N/A              | N/A        |                                  |
| , ,                          |        |              |                     | _            |               |                  |            |                                  |
| Chloride (PWS)               | 0      | 0            |                     | 0            | N/A           | N/A              | N/A        |                                  |
| Sulfate (PWS)                | 0      | 0            |                     | 0            | N/A           | N/A              | N/A        |                                  |
| Total Aluminum               | 0      | 0            |                     | 0            | N/A           | N/A              | N/A        |                                  |
| Total Antimony               | 0      | 0            |                     | 0            | 220           | 220              | 224        |                                  |
| Total Arsenic                | 0      | 0            |                     | 0            | 150           | 150              | 153        | Chem Translator of 1 applied     |
| Total Barium                 | 0      | 0            |                     | 0            | 4,100         | 4,100            | 4,171      |                                  |
| Total Boron                  | 0      | 0            |                     | 0            | 1,600         | 1,600            | 1,628      |                                  |
| Total Cadmium                | 0      | 0            |                     | 0            | 0.439         | 0.5              | 0.51       | Chem Translator of 0.874 applied |
| Total Chromium (III)         | 0      | 0            |                     | 0            | 146.990       | 171              | 174        | Chem Translator of 0.86 applied  |
| Hexavalent Chromium          | 0      | 0            |                     | 0            | 10            | 10.4             | 10.6       | Chem Translator of 0.962 applied |
| Total Cobalt                 | 0      | 0            |                     | 0            | 19            | 19.0             | 19.3       |                                  |
| Total Copper                 | 0      | 0            |                     | 0            | 18.297        | 19.1             | 19.4       | Chem Translator of 0.96 applied  |

| Free Cyanide                    | 0 | 0 | 0 | 5.2     | 5.2   | 5.29  |                                  |
|---------------------------------|---|---|---|---------|-------|-------|----------------------------------|
| Dissolved Iron                  | 0 | 0 | 0 | N/A     | N/A   | N/A   |                                  |
| Total Iron                      | 0 | 0 | 0 | 1,500   | 1,500 | 1,526 | WQC = 30 day average; PMF = 1    |
| Total Lead                      | 0 | 0 | 0 | 6.172   | 9.22  | 9.38  | Chem Translator of 0.669 applied |
| Total Manganese                 | 0 | 0 | 0 | N/A     | N/A   | N/A   |                                  |
| Total Mercury                   | 0 | 0 | 0 | 0.770   | 0.91  | 0.92  | Chem Translator of 0.85 applied  |
| Total Nickel                    | 0 | 0 | 0 | 105.498 | 106   | 108   | Chem Translator of 0.997 applied |
| Total Phenols (Phenolics) (PWS) | 0 | 0 | 0 | N/A     | N/A   | N/A   |                                  |
| Total Selenium                  | 0 | 0 | 0 | 4.600   | 4.99  | 5.08  | Chem Translator of 0.922 applied |
| Total Silver                    | 0 | 0 | 0 | N/A     | N/A   | N/A   | Chem Translator of 1 applied     |
| Total Thallium                  | 0 | 0 | 0 | 13      | 13.0  | 13.2  |                                  |
| Total Zinc                      | 0 | 0 | 0 | 239.912 | 243   | 248   | Chem Translator of 0.988 applied |
| Acrolein                        | 0 | 0 | 0 | 3       | 3.0   | 3.05  |                                  |
| Acrylonitrile                   | 0 | 0 | 0 | 130     | 130   | 132   |                                  |
| Benzene                         | 0 | 0 | 0 | 130     | 130   | 132   |                                  |
| Bromoform                       | 0 | 0 | 0 | 370     | 370   | 376   |                                  |
| Carbon Tetrachloride            | 0 | 0 | 0 | 560     | 560   | 570   |                                  |
| Chlorobenzene                   | 0 | 0 | 0 | 240     | 240   | 244   |                                  |
| Chlorodibromomethane            | 0 | 0 | 0 | N/A     | N/A   | N/A   |                                  |
| 2-Chloroethyl Vinyl Ether       | 0 | 0 | 0 | 3,500   | 3,500 | 3,561 |                                  |
| Chloroform                      | 0 | 0 | 0 | 390     | 390   | 397   |                                  |
| Dichlorobromomethane            | 0 | 0 | 0 | N/A     | N/A   | N/A   |                                  |
| 1,2-Dichloroethane              | 0 | 0 | 0 | 3,100   | 3,100 | 3,154 |                                  |
| 1,1-Dichloroethylene            | 0 | 0 | 0 | 1,500   | 1,500 | 1,526 |                                  |
| 1,2-Dichloropropane             | 0 | 0 | 0 | 2,200   | 2,200 | 2,238 |                                  |
| 1,3-Dichloropropylene           | 0 | 0 | 0 | 61      | 61.0  | 62.1  |                                  |
| Ethylbenzene                    | 0 | 0 | 0 | 580     | 580   | 590   |                                  |
| Methyl Bromide                  | 0 | 0 | 0 | 110     | 110   | 112   |                                  |
| Methyl Chloride                 | 0 | 0 | 0 | 5,500   | 5,500 | 5,595 |                                  |
| Methylene Chloride              | 0 | 0 | 0 | 2,400   | 2,400 | 2,442 |                                  |
| 1,1,2,2-Tetrachloroethane       | 0 | 0 | 0 | 210     | 210   | 214   |                                  |
| Tetrachloroethylene             | 0 | 0 | 0 | 140     | 140   | 142   |                                  |
| Toluene                         | 0 | 0 | 0 | 330     | 330   | 336   |                                  |
| 1,2-trans-Dichloroethylene      | 0 | 0 | 0 | 1,400   | 1,400 | 1,424 |                                  |
| 1,1,1-Trichloroethane           | 0 | 0 | 0 | 610     | 610   | 621   |                                  |
| 1,1,2-Trichloroethane           | 0 | 0 | 0 | 680     | 680   | 692   |                                  |
| Trichloroethylene               | 0 | 0 | 0 | 450     | 450   | 458   |                                  |
| Vinyl Chloride                  | 0 | 0 | 0 | N/A     | N/A   | N/A   |                                  |
| 2-Chlorophenol                  | 0 | 0 | 0 | 110     | 110   | 112   |                                  |
| 2,4-Dichlorophenol              | 0 | 0 | 0 | 340     | 340   | 346   |                                  |
| 2,4-Dimethylphenol              | 0 | 0 | 0 | 130     | 130   | 132   |                                  |
| 4,6-Dinitro-o-Cresol            | 0 | 0 | 0 | 16      | 16.0  | 16.3  |                                  |
| 2,4-Dinitrophenol               | 0 | 0 | 0 | 130     | 130   | 132   |                                  |
| 2-Nitrophenol                   | 0 | 0 | 0 | 1,600   | 1,600 | 1,628 |                                  |
| 4-Nitrophenol                   | 0 | 0 | 0 | 470     | 470   | 478   |                                  |

| p-Chloro-m-Cresol           |   |   |   |        |       |       |  |
|-----------------------------|---|---|---|--------|-------|-------|--|
|                             | 0 | 0 | 0 | 500    | 500   | 509   |  |
| Pentachlorophenol           | 0 | 0 | 0 | 14.928 | 14.9  | 15.2  |  |
| Phenol                      | 0 | 0 | 0 | N/A    | N/A   | N/A   |  |
| 2,4,6-Trichlorophenol       | 0 | 0 | 0 | 91     | 91.0  | 92.6  |  |
| Acenaphthene                | 0 | 0 | 0 | 17     | 17.0  | 17.3  |  |
| Anthracene                  | 0 | 0 | 0 | N/A    | N/A   | N/A   |  |
| Benzidine                   | 0 | 0 | 0 | 59     | 59.0  | 60.0  |  |
| Benzo(a)Anthracene          | 0 | 0 | 0 | 0.1    | 0.1   | 0.1   |  |
| Benzo(a)Pyrene              | 0 | 0 | 0 | N/A    | N/A   | N/A   |  |
| 3,4-Benzofluoranthene       | 0 | 0 | 0 | N/A    | N/A   | N/A   |  |
| Benzo(k)Fluoranthene        | 0 | 0 | 0 | N/A    | N/A   | N/A   |  |
| Bis(2-Chloroethyl)Ether     | 0 | 0 | 0 | 6,000  | 6,000 | 6,104 |  |
| Bis(2-Chloroisopropyl)Ether | 0 | 0 | 0 | N/A    | N/A   | N/A   |  |
| Bis(2-Ethylhexyl)Phthalate  | 0 | 0 | 0 | 910    | 910   | 926   |  |
| 4-Bromophenyl Phenyl Ether  | 0 | 0 | 0 | 54     | 54.0  | 54.9  |  |
| Butyl Benzyl Phthalate      | 0 | 0 | 0 | 35     | 35.0  | 35.6  |  |
| 2-Chloronaphthalene         | 0 | 0 | 0 | N/A    | N/A   | N/A   |  |
| Chrysene                    | 0 | 0 | 0 | N/A    | N/A   | N/A   |  |
| Dibenzo(a,h)Anthrancene     | 0 | 0 | 0 | N/A    | N/A   | N/A   |  |
| 1,2-Dichlorobenzene         | 0 | 0 | 0 | 160    | 160   | 163   |  |
| 1,3-Dichlorobenzene         | 0 | 0 | 0 | 69     | 69.0  | 70.2  |  |
| 1,4-Dichlorobenzene         | 0 | 0 | 0 | 150    | 150   | 153   |  |
| 3,3-Dichlorobenzidine       | 0 | 0 | 0 | N/A    | N/A   | N/A   |  |
| Diethyl Phthalate           | 0 | 0 | 0 | 800    | 800   | 814   |  |
| Dimethyl Phthalate          | 0 | 0 | 0 | 500    | 500   | 509   |  |
| Di-n-Butyl Phthalate        | 0 | 0 | 0 | 21     | 21.0  | 21.4  |  |
| 2,4-Dinitrotoluene          | 0 | 0 | 0 | 320    | 320   | 326   |  |
| 2,6-Dinitrotoluene          | 0 | 0 | 0 | 200    | 200   | 203   |  |
| 1,2-Diphenylhydrazine       | 0 | 0 | 0 | 3      | 3.0   | 3.05  |  |
| Fluoranthene                | 0 | 0 | 0 | 40     | 40.0  | 40.7  |  |
| Fluorene                    | 0 | 0 | 0 | N/A    | N/A   | N/A   |  |
| Hexachlorobenzene           | 0 | 0 | 0 | N/A    | N/A   | N/A   |  |
| Hexachlorobutadiene         | 0 | 0 | 0 | 2      | 2.0   | 2.03  |  |
| Hexachlorocyclopentadiene   | 0 | 0 | 0 | 1      | 1.0   | 1.02  |  |
| Hexachloroethane            | 0 | 0 | 0 | 12     | 12.0  | 12.2  |  |
| Indeno(1,2,3-cd)Pyrene      | 0 | 0 | 0 | N/A    | N/A   | N/A   |  |
| Isophorone                  | 0 | 0 | 0 | 2,100  | 2,100 | 2,136 |  |
| Naphthalene                 | 0 | 0 | 0 | 43     | 43.0  | 43.7  |  |
| Nitrobenzene                | 0 | 0 | 0 | 810    | 810   | 824   |  |
| n-Nitrosodimethylamine      | 0 | 0 | 0 | 3,400  | 3,400 | 3,459 |  |
| n-Nitrosodi-n-Propylamine   | 0 | 0 | 0 | N/A    | N/A   | N/A   |  |
| n-Nitrosodiphenylamine      | 0 | 0 | 0 | 59     | 59.0  | 60.0  |  |
| Phenanthrene                | 0 | 0 | 0 | 1      | 1.0   | 1.02  |  |
| Pyrene                      | 0 | 0 | 0 | N/A    | N/A   | N/A   |  |
| 1,2,4-Trichlorobenzene      | 0 | 0 | 0 | 26     | 26.0  | 26.5  |  |

|                                | Sueam          |              |                     |              |               |                  |            |          |
|--------------------------------|----------------|--------------|---------------------|--------------|---------------|------------------|------------|----------|
| Pollutants                     | Conc<br>(ug/L) | Stream<br>CV | Trib Conc<br>(µg/L) | Fate<br>Coef | WQC<br>(µg/L) | WQ Obj<br>(µg/L) | WLA (µg/L) | Comments |
| Total Dissolved Solids (PWS)   | 0              | 0            |                     | 0            | 500,000       | 500,000          | N/A        |          |
| Chloride (PWS)                 | 0              | 0            |                     | 0            | 250,000       | 250,000          | N/A        |          |
| Sulfate (PWS)                  | 0              | 0 -          |                     | 0            | 250,000       | 250,000          | N/A        |          |
| Total Aluminum                 | 0              | 0            |                     | 0            | N/A           | N/A              | N/A        |          |
| Total Antimony                 | 0              | 0            |                     | 0            | 5.6           | 5.6              | 5.7        |          |
| Total Arsenic                  | 0              | 0            |                     | 0            | 10            | 10.0             | 10.2       |          |
| Total Barium                   | 0              | 0            |                     | 0            | 2,400         | 2,400            | 2,442      |          |
| Total Boron                    | 0              | 0            |                     | 0            | 3,100         | 3,100            | 3,154      |          |
| Total Cadmium                  | 0              | 0            |                     | 0            | N/A           | N/A              | N/A        |          |
| Total Chromium (III)           | 0              | 0 .          |                     | 0            | N/A           | N/A              | N/A        |          |
| Hexavalent Chromium            | 0              | 0            |                     | 0            | N/A           | N/A              | N/A        |          |
| Total Cobalt                   | 0              | 0            |                     | 0            | N/A           | N/A              | N/A        |          |
| Total Copper                   | 0              | 0            |                     | 0            | N/A           | N/A              | N/A        |          |
| Free Cyanide                   | 0              | 0 .          |                     | 0            | 4             | 4.0              | 4.07       |          |
| Dissolved Iron                 | 0              | 0            |                     | 0            | 300           | 300              | 305        |          |
| Total Iron                     | 0              | 0            |                     | 0            | N/A           | N/A              | N/A        |          |
| Total Lead                     | 0              | 0            |                     | 0            | N/A           | N/A              | N/A        |          |
| Total Manganese                | 0              | 0            |                     | 0            | 1,000         | 1,000            | 1,017      |          |
| Total Mercury                  | 0              | 0            |                     | 0            | 0.050         | 0.05             | 0.051      |          |
| Total Nickel                   | 0              | 0            |                     | 0            | 610           | 610              | 621        |          |
| otal Phenols (Phenolics) (PWS) | 0              | 0            |                     | 0            | 5             | 5.0              | N/A        |          |
| Total Selenium                 | 0              | 0            |                     | 0            | N/A           | N/A              | N/A        |          |
| Total Silver                   | 0              | 0            |                     | 0            | N/A           | N/A              | N/A        |          |
| Total Thallium                 | 0              | 0            |                     | 0            | 0.24          | 0.24             | 0.24       |          |
| Total Zinc                     | 0              | 0            |                     | 0            | N/A           | N/A              | N/A        |          |
| Acrolein                       | 0              | 0            |                     | 0            | 3             | 3.0              | 3.05       |          |
| Acrylonitrile                  | 0              | 0            |                     | 0            | N/A           | N/A              | N/A        |          |
| Benzene                        | 0              | 0            |                     | 0            | N/A           | N/A              | N/A        |          |
| Bromoform                      | 0              | 0            |                     | 0            | N/A           | N/A              | N/A        |          |
| Carbon Tetrachloride           | 0              | 0            |                     | 0            | N/A           | N/A              | N/A        |          |
| Chlorobenzene                  | 0              | 0            |                     | 0            | 100           | 100.0            | 102        |          |
| Chlorodibromomethane           | 0              | 0            |                     | 0            | N/A           | N/A              | N/A        |          |
| 2-Chloroethyl Vinyl Ether      | 0              | 0 .          |                     | 0            | N/A           | N/A              | N/A        |          |
| Chloroform                     | 0              | 0            |                     | 0            | N/A           | N/A              | N/A        |          |
| Dichlorobromomethane           | 0              | 0            |                     | 0            | N/A           | N/A              | N/A        |          |
| 1,2-Dichloroethane             | 0              | 0            |                     | 0            | N/A           | N/A              | N/A        |          |
| 1,1-Dichloroethylene           | 0              | 0            |                     | 0            | 33            | 33.0             | 33.6       |          |
| 1,2-Dichloropropane            | 0              | 0            |                     | 0            | N/A           | N/A              | N/A        |          |
| 1,3-Dichloropropylene          | 0              | 0            |                     | 0            | N/A           | N/A              | N/A        |          |
| Ethylbenzene                   | 0              | 0            |                     | 0            | 68            | 68.0             | 69.2       |          |

| Methyl Bromide              | 0 | 0 |                                                  | 0 | 100    | 100.0  | 102    |  |
|-----------------------------|---|---|--------------------------------------------------|---|--------|--------|--------|--|
| Methyl Chloride             | 0 | 0 |                                                  | 0 | N/A    | N/A    | N/A    |  |
| Methylene Chloride          | 0 | 0 |                                                  | 0 | N/A    | N/A    | N/A    |  |
| 1,1,2,2-Tetrachloroethane   | 0 | 0 | <del>                                     </del> | 0 | N/A    | N/A    | N/A    |  |
| Tetrachloroethylene         | 0 | 0 |                                                  | 0 | N/A    | N/A    | N/A    |  |
| Toluene                     | 0 | 0 |                                                  | 0 | 57     | 57.0   | 58.0   |  |
| 1,2-trans-Dichloroethylene  | 0 | 0 | <del>                                     </del> | 0 | 100    | 100.0  | 102    |  |
| 1,1,1-Trichloroethane       | 0 | 0 |                                                  | 0 | 10.000 | 10.000 | 10,174 |  |
| 1.1.2-Trichloroethane       | 0 | 0 |                                                  | 0 | N/A    | N/A    | N/A    |  |
| Trichloroethylene           | 0 | 0 |                                                  | 0 | N/A    | N/A    | N/A    |  |
| Vinyl Chloride              | 0 | 0 |                                                  | 0 | N/A    | N/A    | N/A    |  |
| 2-Chlorophenol              | 0 | 0 |                                                  | 0 | 30     | 30.0   | 30.5   |  |
|                             |   |   |                                                  |   |        |        |        |  |
| 2,4-Dichlorophenol          | 0 | 0 |                                                  | 0 | 10     | 10.0   | 10.2   |  |
| 2,4-Dimethylphenol          | 0 | 0 |                                                  | 0 | 100    | 100.0  | 102    |  |
| 4,6-Dinitro-o-Cresol        | 0 | 0 |                                                  | 0 | 2      | 2.0    | 2.03   |  |
| 2,4-Dinitrophenol           | 0 | 0 |                                                  | 0 | 10     | 10.0   | 10.2   |  |
| 2-Nitrophenol               | 0 | 0 |                                                  | 0 | N/A    | N/A    | N/A    |  |
| 4-Nitrophenol               | 0 | 0 |                                                  | 0 | N/A    | N/A    | N/A    |  |
| p-Chloro-m-Cresol           | 0 | 0 |                                                  | 0 | N/A    | N/A    | N/A    |  |
| Pentachlorophenol           | 0 | 0 |                                                  | 0 | N/A    | N/A    | N/A    |  |
| Phenol                      | 0 | 0 |                                                  | 0 | 4,000  | 4,000  | 4,069  |  |
| 2,4,6-Trichlorophenol       | 0 | 0 |                                                  | 0 | N/A    | N/A    | N/A    |  |
| Acenaphthene                | 0 | 0 |                                                  | 0 | 70     | 70.0   | 71.2   |  |
| Anthracene                  | 0 | 0 |                                                  | 0 | 300    | 300    | 305    |  |
| Benzidine                   | 0 | 0 |                                                  | 0 | N/A    | N/A    | N/A    |  |
| Benzo(a)Anthracene          | 0 | 0 |                                                  | 0 | N/A    | N/A    | N/A    |  |
| Benzo(a)Pyrene              | 0 | 0 |                                                  | 0 | N/A    | N/A    | N/A    |  |
| 3,4-Benzofluoranthene       | 0 | 0 |                                                  | 0 | N/A    | N/A    | N/A    |  |
| Benzo(k)Fluoranthene        | 0 | 0 |                                                  | 0 | N/A    | N/A    | N/A    |  |
| Bis(2-Chloroethyl)Ether     | 0 | 0 |                                                  | 0 | N/A    | N/A    | N/A    |  |
| Bis(2-Chloroisopropyl)Ether | 0 | 0 |                                                  | 0 | 200    | 200    | 203    |  |
| Bis(2-Ethylhexyl)Phthalate  | 0 | 0 |                                                  | 0 | N/A    | N/A    | N/A    |  |
| 4-Bromophenyl Phenyl Ether  | 0 | 0 |                                                  | 0 | N/A    | N/A    | N/A    |  |
| Butyl Benzyl Phthalate      | 0 | 0 |                                                  | 0 | 0.1    | 0.1    | 0.1    |  |
| 2-Chloronaphthalene         | 0 | 0 |                                                  | 0 | 800    | 800    | 814    |  |
| Chrysene                    | 0 | 0 |                                                  | 0 | N/A    | N/A    | N/A    |  |
| Dibenzo(a,h)Anthrancene     | 0 | 0 |                                                  | 0 | N/A    | N/A    | N/A    |  |
| 1,2-Dichlorobenzene         | 0 | 0 |                                                  | 0 | 1,000  | 1,000  | 1,017  |  |
| 1,3-Dichlorobenzene         | 0 | 0 |                                                  | 0 | 7      | 7.0    | 7.12   |  |
| 1.4-Dichlorobenzene         | 0 | 0 |                                                  | 0 | 300    | 300    | 305    |  |
| 3.3-Dichlorobenzidine       | 0 | 0 |                                                  | 0 | N/A    | N/A    | N/A    |  |
| Diethyl Phthalate           | 0 | 0 |                                                  | 0 | 600    | 600    | 610    |  |
| Dimethyl Phthalate          | 0 | 0 |                                                  | 0 | 2,000  | 2.000  | 2.035  |  |
| Di-n-Butyl Phthalate        | 0 | 0 |                                                  | 0 | 20     | 20.0   | 20.3   |  |
| 2.4-Dinitrotoluene          | 0 | 0 |                                                  | 0 | N/A    | N/A    | N/A    |  |
| 2,4-Dillidoloiderie         | U | U |                                                  | U | DVA    | TW/A   | DVA    |  |

Page 12

## NPDES Permit Fact Sheet Abington Township STP

Model Results

| 2,6-Dinitrotoluene                                                                                                                                                                                                                                                                                                     | 0                                                       | 0                                             |                     | 0                                            | N/A                                                                                 | N/A                                                                                    | N/A                                                |    |        |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|-----------------------------------------------|---------------------|----------------------------------------------|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------|----|--------|--|
| 1,2-Diphenylhydrazine                                                                                                                                                                                                                                                                                                  | 0                                                       | 0                                             |                     | 0                                            | N/A                                                                                 | N/A                                                                                    | N/A                                                |    |        |  |
| Fluoranthene                                                                                                                                                                                                                                                                                                           | 0                                                       | 0                                             |                     | 0                                            | 20                                                                                  | 20.0                                                                                   | 20.3                                               |    |        |  |
| Fluorene                                                                                                                                                                                                                                                                                                               | 0                                                       | 0                                             |                     | 0                                            | 50                                                                                  | 50.0                                                                                   | 50.9                                               |    |        |  |
| Hexachlorobenzene                                                                                                                                                                                                                                                                                                      | 0                                                       | 0                                             |                     | 0                                            | N/A                                                                                 | N/A                                                                                    | N/A                                                |    |        |  |
| Hexachlorobutadiene                                                                                                                                                                                                                                                                                                    | 0                                                       | 0                                             |                     | 0                                            | N/A                                                                                 | N/A                                                                                    | N/A                                                |    |        |  |
| Hexachlorocyclopentadiene                                                                                                                                                                                                                                                                                              | 0                                                       | 0                                             |                     | 0                                            | 4                                                                                   | 4.0                                                                                    | 4.07                                               |    |        |  |
| Hexachloroethane                                                                                                                                                                                                                                                                                                       | 0                                                       | 0                                             |                     | 0                                            | N/A                                                                                 | N/A                                                                                    | N/A                                                |    |        |  |
| Indeno(1,2,3-cd)Pyrene                                                                                                                                                                                                                                                                                                 | 0                                                       | 0                                             |                     | 0                                            | N/A                                                                                 | N/A                                                                                    | N/A                                                |    |        |  |
| Isophorone                                                                                                                                                                                                                                                                                                             | 0                                                       | 0                                             |                     | 0                                            | 34                                                                                  | 34.0                                                                                   | 34.6                                               |    |        |  |
| Naphthalene                                                                                                                                                                                                                                                                                                            | 0                                                       | 0                                             |                     | 0                                            | N/A                                                                                 | N/A                                                                                    | N/A                                                |    |        |  |
| Nitrobenzene                                                                                                                                                                                                                                                                                                           | 0                                                       | 0                                             |                     | 0                                            | 10                                                                                  | 10.0                                                                                   | 10.2                                               |    |        |  |
| n-Nitrosodimethylamine                                                                                                                                                                                                                                                                                                 | 0                                                       | 0                                             |                     | 0                                            | N/A                                                                                 | N/A                                                                                    | N/A                                                |    |        |  |
| n-Nitrosodi-n-Propylamine                                                                                                                                                                                                                                                                                              | 0                                                       | 0                                             |                     | 0                                            | N/A                                                                                 | N/A                                                                                    | N/A                                                |    |        |  |
| n-Nitrosodiphenylamine                                                                                                                                                                                                                                                                                                 | 0                                                       | 0                                             |                     | 0                                            | N/A                                                                                 | N/A                                                                                    | N/A                                                |    |        |  |
| Phenanthrene                                                                                                                                                                                                                                                                                                           | 0                                                       | 0                                             |                     | 0                                            | N/A                                                                                 | N/A                                                                                    | N/A                                                |    |        |  |
| Pyrene                                                                                                                                                                                                                                                                                                                 | 0                                                       | 0                                             |                     | 0                                            | 20                                                                                  | 20.0                                                                                   | 20.3                                               |    |        |  |
| 1,2,4-Trichlorobenzene                                                                                                                                                                                                                                                                                                 | 0                                                       | 0                                             |                     | 0                                            | 0.07                                                                                | 0.07                                                                                   | 0.071                                              |    |        |  |
| ☑ CRL CC                                                                                                                                                                                                                                                                                                               | T (min): 0.3                                            |                                               |                     |                                              |                                                                                     |                                                                                        | ss (mg/l):                                         |    |        |  |
| Pollutants                                                                                                                                                                                                                                                                                                             | Sueam                                                   | Stream<br>CV                                  | Trib Conc<br>(µg/L) | Fate<br>Coef                                 | WQC<br>(µg/L)                                                                       | WQ Obj                                                                                 | WLA (µg/L)                                         | Co | mments |  |
|                                                                                                                                                                                                                                                                                                                        | Stream                                                  | Stream                                        |                     |                                              | WQC                                                                                 |                                                                                        |                                                    | Co | mments |  |
| Pollutants                                                                                                                                                                                                                                                                                                             | Conc<br>(ug/L)                                          | Stream<br>CV                                  |                     | Coef                                         | WQC<br>(µg/L)                                                                       | WQ Obj<br>(µg/L)                                                                       | WLA (µg/L)                                         | Co | mments |  |
| Pollutants Total Dissolved Solids (PWS)                                                                                                                                                                                                                                                                                | Conc<br>(uall.)                                         | Stream<br>CV<br>0                             |                     | Coef<br>0                                    | WQC<br>(µg/L)<br>N/A                                                                | WQ Obj<br>(µg/L)<br>N/A                                                                | WLA (µg/L)                                         | Co | mments |  |
| Pollutants  Total Dissolved Solids (PWS)  Chloride (PWS)                                                                                                                                                                                                                                                               | Conc<br>(uall )<br>0                                    | Stream<br>CV<br>0                             |                     | Coef<br>0<br>0                               | WQC<br>(µg/L)<br>N/A<br>N/A                                                         | WQ Obj<br>(µg/L)<br>N/A<br>N/A                                                         | WLA (µg/L)<br>N/A<br>N/A                           | Co | mments |  |
| Pollutants  Total Dissolved Solids (PWS) Chloride (PWS) Sulfate (PWS)                                                                                                                                                                                                                                                  | Conc<br>(ug/l)<br>0<br>0                                | Stream<br>CV<br>0<br>0                        |                     | Coef<br>0<br>0                               | WQC<br>(µg/L)<br>N/A<br>N/A                                                         | WQ Obj<br>(µg/L)<br>N/A<br>N/A                                                         | WLA (µg/L) N/A N/A N/A                             | Co | mments |  |
| Pollutants  Total Dissolved Solids (PWS)  Chloride (PWS)  Sulfate (PWS)  Total Aluminum                                                                                                                                                                                                                                | Conc<br>(unil )<br>0<br>0<br>0                          | Stream<br>CV<br>0<br>0                        |                     | 0<br>0<br>0<br>0                             | WQC<br>(µg/L)<br>N/A<br>N/A<br>N/A                                                  | WQ Obj<br>(µg/L)<br>N/A<br>N/A<br>N/A                                                  | WLA (µg/L) N/A N/A N/A N/A                         | Co | mments |  |
| Pollutants  Total Dissolved Solids (PWS) Chloride (PWS) Sulfate (PWS) Total Aluminum Total Antimony                                                                                                                                                                                                                    | Conc<br>(unit )<br>0<br>0<br>0<br>0                     | Stream<br>CV<br>0<br>0<br>0                   |                     | 0<br>0<br>0<br>0<br>0                        | WQC<br>(µg/L)<br>N/A<br>N/A<br>N/A<br>N/A                                           | WQ Obj<br>(µg/L)<br>N/A<br>N/A<br>N/A<br>N/A                                           | WLA (µg/L) N/A N/A N/A N/A N/A                     | Co | mments |  |
| Pollutants  Total Dissolved Solids (PWS) Chloride (PWS) Sulfate (PWS) Total Aluminum Total Antimony Total Arsenic                                                                                                                                                                                                      | One (uall ) 0 0 0 0 0 0 0                               | Stream CV 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |                     | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0        | WQC<br>(µg/L)<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A                                    | WQ Obj<br>(µg/L)<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A                                    | WLA (µg/L)  N/A  N/A  N/A  N/A  N/A  N/A  N/A      | Co | mments |  |
| Pollutants  Total Dissolved Solids (PWS) Chloride (PWS) Sulfate (PWS) Total Aluminum Total Antimony Total Arsenic Total Barium                                                                                                                                                                                         | Stream   Conc (unit )                                   | Stream CV 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |                     | 0<br>0<br>0<br>0<br>0<br>0<br>0              | WQC<br>(µg/L)<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A                             | WQ Obj<br>(µg/L)<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A                             | WLA (µg/L)  N/A  N/A  N/A  N/A  N/A  N/A  N/A  N/  | Co | mments |  |
| Pollutants  Total Dissolved Solids (PWS) Chloride (PWS) Sulfate (PWS) Total Aluminum Total Antimony Total Arsenic Total Barium Total Boron                                                                                                                                                                             | Stream   Cond                                           | Stream CV 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |                     | 0<br>0<br>0<br>0<br>0<br>0<br>0              | WQC<br>(µg/L)<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A                      | WQ Obj<br>(µg/L)<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A               | WLA (µg/L) N/A | Co | mments |  |
| Pollutants  Total Dissolved Solids (PWS) Chloride (PWS) Sulfate (PWS) Total Aluminum Total Antimony Total Arsenic Total Barium Total Boron Total Cadmium                                                                                                                                                               | Sueam Cone (unit) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | Stream CV 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |                     | Coef<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | WQC<br>(µg/L)<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A               | WQ Obj<br>(µg/L)<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A        | WLA (µg/L) N/A | Co | mments |  |
| Pollutants  Total Dissolved Solids (PWS) Chloride (PWS) Sulfate (PWS) Total Aluminum Total Antimony Total Arsenic Total Barium Total Boron Total Cadmium Total Chromium (III)                                                                                                                                          | O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                 | Stream CV 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |                     | Coef 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0         | WQC<br>(µg/L)<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A        | WQ Obj<br>(µg/L)<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A | WLA (µg/L) N/A | Co | mments |  |
| Pollutants  Total Dissolved Solids (PWS) Chloride (PWS) Sulfate (PWS) Total Aluminum Total Antimony Total Arsenic Total Barium Total Boron Total Cadmium Total Chromium (III) Hexavalent Chromium                                                                                                                      | O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                 | Stream CV 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |                     | Coef 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0     | WQC<br>(µg/L)<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A | WQ Obj<br>(µg/L)<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A | WLA (µg/L) N/A | Co | mments |  |
| Pollutants  Total Dissolved Solids (PWS) Chloride (PWS) Sulfate (PWS) Total Aluminum Total Antimony Total Arsenic Total Barium Total Boron Total Cadmium Total Chromium (III) Hexavalent Chromium Total Cobalt                                                                                                         | One (wall)  0  0  0  0  0  0  0  0  0  0  0  0  0       | Stream CV 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |                     | Coef 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0   | WQC<br>(µg/L)<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A | WQ Obj<br>(µg/L)<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A | WLA (µg/L) N/A | Co | mments |  |
| Pollutants  Total Dissolved Solids (PWS) Chloride (PWS) Sulfate (PWS) Total Aluminum Total Antimony Total Arsenic Total Barium Total Boron Total Cadmium Total Chromium (III) Hexavalent Chromium Total Cobper                                                                                                         | Stream Cone (wall) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  | Stream CV                                     |                     | Coef 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0   | WQC<br>(µg/L)<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A | WQ Obj<br>(µg/L)<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A | WLA (µg/L) N/A | Co | mments |  |
| Pollutants  Total Dissolved Solids (PWS) Chloride (PWS) Sulfate (PWS) Total Aluminum Total Antimony Total Arsenic Total Barium Total Boron Total Cadmium Total Chromium (III) Hexavalent Chromium Total Cobalt Total Copper Free Cyanide                                                                               | Sueam Conc (100H) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0   | Stream CV 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |                     | Coef 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0   | WQC<br>(µg/L)<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A | WQ Obj<br>(µg/L)<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A | WLA (µg/L) N/A | Co | mments |  |
| Pollutants  Total Dissolved Solids (PWS) Chloride (PWS) Sulfate (PWS) Total Aluminum Total Antimony Total Arsenic Total Barium Total Boron Total Cadmium Total Chromium (III) Hexavalent Chromium Total Copper Free Cyanide Dissolved Iron                                                                             | Stream Conc (sml) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | Stream CV 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |                     | Coef 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0   | WQC<br>(µg/L)<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A | WQ Obj<br>(µg/L)<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A | WLA (µg/L) N/A | Co | mments |  |
| Pollutants  Total Dissolved Solids (PWS) Chloride (PWS) Sulfate (PWS) Total Aluminum Total Antimony Total Arsenic Total Barium Total Boron Total Cadmium Total Chromium (III) Hexavalent Chromium Total Copper Free Cyanide Dissolved Iron Total Iron                                                                  | O O O O O O O O O O O O O O O O O O O                   | Stream CV 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |                     | Coef 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0   | WQC<br>(µg/L)<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A | WQ Obj<br>(µg/L)<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A | WLA (µg/L) N/A | Co | mments |  |
| Pollutants  Total Dissolved Solids (PWS) Chloride (PWS) Sulfate (PWS) Total Aluminum Total Antimony Total Arsenic Total Barium Total Boron Total Cadmium Total Chromium (III) Hexavalent Chromium Total Copper Free Cyanide Dissolved Iron Total Iron Total Iron Total Iron Total Iron                                 | Stream Conc (wall) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  | Stream CV 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |                     | Coef 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0   | WQC<br>(µg/L)<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A | WQ Obj<br>(µg/L)<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A | WLA (µg/L) N/A | Co | mments |  |
| Pollutants  Total Dissolved Solids (PWS) Chloride (PWS) Sulfate (PWS) Total Aluminum Total Antimony Total Arsenic Total Barium Total Boron Total Cadmium Total Chromium (III) Hexavalent Chromium Total Copper Free Cyanide Dissolved Iron Total Iron Total Lead Total Lead Total Manganese                            | Stream Cone (wall) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  | Stream CV 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |                     | Coef 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0   | WQC (µg/L) N/A                                  | WQ Obj<br>(µg/L)<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A | WLA (µg/L) N/A | Co | mments |  |
| Pollutants  Total Dissolved Solids (PWS) Chloride (PWS) Sulfate (PWS) Total Aluminum Total Antimony Total Arsenic Total Barium Total Boron Total Cadmium Total Chromium (III) Hexavalent Chromium Total Cobalt Total Copper Free Cyanide Dissolved Iron Total Iron Total Iron Total Lead Total Manganese Total Mercury | Stream Conc (unil ) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | Stream CV 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |                     | Coef 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0   | WQC (µg/L) N/A                                  | WQ Obj<br>(µg/L)<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A | WLA (µg/L) N/A | Co | mments |  |

1/3/2022

| Total Silver               | 0 | 0 | 0 | N/A    | N/A    | N/A    |  |
|----------------------------|---|---|---|--------|--------|--------|--|
| Total Thallium             | 0 | 0 | 0 | N/A    | N/A    | N/A    |  |
| Total Zinc                 | 0 | 0 | 0 | N/A    | N/A    | N/A    |  |
| Acrolein                   | 0 | 0 | 0 | N/A    | N/A    | N/A    |  |
| Acrylonitrile              | 0 | 0 | 0 | 0.06   | 0.06   | 0.07   |  |
| Benzene                    | 0 | 0 | 0 | 0.58   | 0.58   | 0.68   |  |
| Bromoform                  | 0 | 0 | 0 | 7      | 7.0    | 8.2    |  |
| Carbon Tetrachloride       | 0 | 0 | 0 | 0.4    | 0.4    | 0.47   |  |
| Chlorobenzene              | 0 | 0 | 0 | N/A    | N/A    | N/A    |  |
| Chlorodibromomethane       | 0 | 0 | 0 | 0.8    | 0.8    | 0.94   |  |
| 2-Chloroethyl Vinyl Ether  | 0 | 0 | 0 | N/A    | N/A    | N/A    |  |
| Chloroform                 | 0 | 0 | 0 | 5.7    | 5.7    | 6.68   |  |
| Dichlorobromomethane       | 0 | 0 | 0 | 0.95   | 0.95   | 1.11   |  |
| 1,2-Dichloroethane         | 0 | 0 | 0 | 9.9    | 9.9    | 11.6   |  |
| 1,1-Dichloroethylene       | 0 | 0 | 0 | N/A    | N/A    | N/A    |  |
| 1,2-Dichloropropane        | 0 | 0 | 0 | 0.9    | 0.9    | 1.05   |  |
| 1,3-Dichloropropylene      | 0 | 0 | 0 | 0.27   | 0.27   | 0.32   |  |
| Ethylbenzene               | 0 | 0 | 0 | N/A    | N/A    | N/A    |  |
| Methyl Bromide             | 0 | 0 | 0 | N/A    | N/A    | N/A    |  |
| Methyl Chloride            | 0 | 0 | 0 | N/A    | N/A    | N/A    |  |
| Methylene Chloride         | 0 | 0 | 0 | 20     | 20.0   | 23.4   |  |
| 1,1,2,2-Tetrachloroethane  | 0 | 0 | 0 | 0.2    | 0.2    | 0.23   |  |
| Tetrachloroethylene        | 0 | 0 | 0 | 10     | 10.0   | 11.7   |  |
| Toluene                    | 0 | 0 | 0 | N/A    | N/A    | N/A    |  |
| 1,2-trans-Dichloroethylene | 0 | 0 | 0 | N/A    | N/A    | N/A    |  |
| 1,1,1-Trichloroethane      | 0 | 0 | 0 | N/A    | N/A    | N/A    |  |
| 1,1,2-Trichloroethane      | 0 | 0 | 0 | 0.55   | 0.55   | 0.64   |  |
| Trichloroethylene          | 0 | 0 | 0 | 0.6    | 0.6    | 0.7    |  |
| Vinyl Chloride             | 0 | 0 | 0 | 0.02   | 0.02   | 0.023  |  |
| 2-Chlorophenol             | 0 | 0 | 0 | N/A    | N/A    | N/A    |  |
| 2,4-Dichlorophenol         | 0 | 0 | 0 | N/A    | N/A    | N/A    |  |
| 2,4-Dimethylphenol         | 0 | 0 | 0 | N/A    | N/A    | N/A    |  |
| 4,6-Dinitro-o-Cresol       | 0 | 0 | 0 | N/A    | N/A    | N/A    |  |
| 2,4-Dinitrophenol          | 0 | 0 | 0 | N/A    | N/A    | N/A    |  |
| 2-Nitrophenol              | 0 | 0 | 0 | N/A    | N/A    | N/A    |  |
| 4-Nitrophenol              | 0 | 0 | 0 | N/A    | N/A    | N/A    |  |
| p-Chloro-m-Cresol          | 0 | 0 | 0 | N/A    | N/A    | N/A    |  |
| Pentachlorophenol          | 0 | 0 | 0 | 0.030  | 0.03   | 0.035  |  |
| Phenol                     | 0 | 0 | 0 | N/A    | N/A    | N/A    |  |
| 2,4,6-Trichlorophenol      | 0 | 0 | 0 | 1.5    | 1.5    | 1.76   |  |
| Acenaphthene               | 0 | 0 | 0 | N/A    | N/A    | N/A    |  |
| Anthracene                 | 0 | 0 | 0 | N/A    | N/A    | N/A    |  |
| Benzidine                  | 0 | 0 | 0 | 0.0001 | 0.0001 | 0.0001 |  |
| Benzo(a)Anthracene         | 0 | 0 | 0 | 0.0001 | 0.001  | 0.001  |  |
| Benzo(a)Pyrene             | 0 | 0 | 0 | 0.0001 | 0.0001 | 0.0001 |  |
| Delizo(a)F yielle          | U | U | U | 0.0001 | 0.0001 | 0.0001 |  |

| 0 | 0                                              |                                                  | 0 | 0.001                                 | 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|---|------------------------------------------------|--------------------------------------------------|---|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   |                                                |                                                  |   |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|   | _                                              |                                                  | _ |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|   | _                                              | <del>                                     </del> | _ |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|   | _                                              |                                                  | _ |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|   | _                                              |                                                  | _ |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|   |                                                |                                                  | _ |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|   |                                                |                                                  |   |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|   | _                                              |                                                  |   |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|   | _                                              |                                                  | _ |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|   |                                                |                                                  |   |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|   |                                                |                                                  |   |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|   | _                                              |                                                  | _ |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|   | _                                              |                                                  | _ |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|   | _                                              |                                                  | _ |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|   |                                                |                                                  | _ |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|   | _                                              |                                                  | _ |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|   |                                                |                                                  |   |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|   | _                                              |                                                  |   |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|   |                                                |                                                  | 0 |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 0 | 0                                              |                                                  | 0 | 0.03                                  | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.035                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 0 | 0                                              |                                                  | 0 | N/A                                   | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                           | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 0 | 0                                              |                                                  | 0 | N/A                                   | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                           | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 0 | 0                                              |                                                  | 0 | 0.00008                               | 0.00008                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.00009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 0 | 0                                              |                                                  | 0 | 0.01                                  | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 0 | 0                                              |                                                  | 0 | N/A                                   | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                           | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 0 | 0                                              |                                                  | 0 | 0.1                                   | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 0 | 0                                              |                                                  | 0 | 0.001                                 | 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 0 | 0                                              |                                                  | 0 | N/A                                   | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                           | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 0 | 0                                              |                                                  | 0 | N/A                                   | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                           | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 0 | 0                                              |                                                  | 0 | N/A                                   | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                           | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 0 | 0                                              |                                                  | 0 | 0.0007                                | 0.0007                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 0 | 0                                              |                                                  | 0 | 0.005                                 | 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 0 | 0                                              |                                                  | 0 | 3.3                                   | 3.3                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 0 | 0                                              |                                                  | 0 | N/A                                   | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                           | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 0 | 0                                              |                                                  | 0 | N/A                                   | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                           | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 0 | 0                                              |                                                  | 0 | N/A                                   | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                           | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|   | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0            |   | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0 0 0 0 0 0.01 0 0 0 0 0.03 0 0 0 0 0 0.03 0 0 0 0 0 0 0.03 0 0 0 0 0 0 0.32 0 0 0 0 0 0 0 0.32 0 0 0 0 0 0 0 0.42 0 0 0 0 0 0 0.001 0 0 0 0 0 0 0 0.05 0 0 0 0 0 0 0.05 0 0 0 0 0 0 0.05 0 0 0 0 0 0 0.05 0 0 0 0 0 0 0.05 0 0 0 0 0 0.05 0 0 0 0 0 0.05 0 0 0 0 0 0.05 0 0 0 0 0 0.05 0 0 0 0 0 0.05 0 0 0 0 0 0.05 0 0 0 0 0 0.05 0 0 0 0 0 0.05 0 0 0 0 0 0.05 0 0 0 0 0 0.05 0 0 0 0 0 0.05 0 0 0 0 0 0.05 0 0 0 0 0 0.05 0 0 0 0 0 0.05 | 0         0         0         0.01         0.01           0         0         0         0.03         0.03           0         0         0         0.03         0.03           0         0         0         0.032         0.32           0         0         0         0.04         N/A         N/A           0         0         0         0         N/A         N/A           0         0         0         0         N/A         N/A           0         0         0         0.001         0.001         0.001           0         0         0         0.001         0.001         0.0001           0         0         0         0.001         0.0001         0.0001           0         0         0         0.001         0.0001         0.0001           0         0         0         0.001         0.0001         0.0001         0.0001           0         0         0         0.04         0.001         0.001         0.0001         0.0001         0.0001         0.0001         0.0001         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000< | 0         0         0         0.01         0.01         0.012           0         0         0         0.03         0.03         0.035           0         0         0         0.03         0.035         0.035           0         0         0         0         0.32         0.32         0.37           0         0         0         0         0.04         N/A         N/A         N/A           0         0         0         0         N/A         N/A         N/A         N/A           0         0         0         0         N/A         N/A         N/A         N/A           0         0         0         0         0.12         0.12         0.14         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00 |

☑ Recommended WQBELs & Monitoring Requirements

No. Samples/Month: 4



|                | Mass             | Limits           |        | Concentra | tion Limits |       |                    |                |                                    |
|----------------|------------------|------------------|--------|-----------|-------------|-------|--------------------|----------------|------------------------------------|
| Pollutants     | AML<br>(lbs/day) | MDL<br>(lbs/day) | AML    | MDL       | IMAX        | Units | Governing<br>WQBEL | WQBEL<br>Basis | Comments                           |
| Total Aluminum | Report           | Report           | Report | Report    | Report      | μg/L  | 750                | AFC            | Discharge Conc > 10% WQBEL (no RP) |

| Total Boron  | Report | Report | Report | Report | Report | μg/L | 1,628 | CFC | Discharge Conc > 10% WQBEL (no RP) |
|--------------|--------|--------|--------|--------|--------|------|-------|-----|------------------------------------|
| Total Copper | 0.63   | 0.99   | 19.4   | 30.3   | 48.5   | μg/L | 19.4  | CFC | Discharge Conc ≥ 50% WQBEL (RP)    |
| Free Cyanide | 0.13   | 0.21   | 4.07   | 6.35   | 10.2   | μg/L | 4.07  | THH | Discharge Conc ≥ 50% WQBEL (RP)    |
| Total Zinc   | Report | Report | Report | Report | Report | μg/L | 243   | AFC | Discharge Conc > 10% WQBEL (no RP) |
|              |        |        |        |        |        |      |       |     |                                    |
|              |        |        |        |        |        |      |       |     |                                    |
|              |        |        |        |        |        |      |       |     |                                    |
|              |        |        |        |        |        |      |       |     |                                    |

#### ☑ Other Pollutants without Limits or Monitoring

The following pollutants do not require effluent limits or monitoring based on water quality because reasonable potential to exceed water quality criteria was not determined and the discharge concentration was less than thresholds for monitoring, or the pollutant was not detected and a sufficiently sensitive analytical method was used (e.g., <= Target QL).

| Pollutants                      | Governing<br>WQBEL | Units | Comments                   |
|---------------------------------|--------------------|-------|----------------------------|
| Total Dissolved Solids (PWS)    | N/A                | N/A   | PWS Not Applicable         |
| Chloride (PWS)                  | N/A                | N/A   | PWS Not Applicable         |
| Bromide                         | N/A                | N/A   | No WQS                     |
| Sulfate (PWS)                   | N/A                | N/A   | PWS Not Applicable         |
| Total Antimony                  | 5.7                | μg/L  | Discharge Conc ≤ 10% WQBEL |
| Total Arsenic                   | N/A                | N/A   | Discharge Conc < TQL       |
| Total Barium                    | 2,442              | μg/L  | Discharge Conc ≤ 10% WQBEL |
| Total Beryllium                 | N/A                | N/A   | No WQS                     |
| Total Cadmium                   | 0.51               | μg/L  | Discharge Conc < TQL       |
| Total Chromium (III)            | 174                | μg/L  | Discharge Conc ≤ 10% WQBEL |
| Hexavalent Chromium             | 10.6               | μg/L  | Discharge Conc < TQL       |
| Total Cobalt                    | 19.3               | μg/L  | Discharge Conc < TQL       |
| Total Cyanide                   | N/A                | N/A   | No WQS                     |
| Dissolved Iron                  | 305                | μg/L  | Discharge Conc ≤ 10% WQBEL |
| Total Iron                      | 1,526              | μg/L  | Discharge Conc ≤ 10% WQBEL |
| Total Lead                      | 9.38               | μg/L  | Discharge Conc < TQL       |
| Total Manganese                 | 1,017              | μg/L  | Discharge Conc ≤ 10% WQBEL |
| Total Mercury                   | 0.051              | μg/L  | Discharge Conc < TQL       |
| Total Nickel                    | 108                | μg/L  | Discharge Conc ≤ 10% WQBEL |
| Total Phenols (Phenolics) (PWS) |                    | μg/L  | Discharge Conc < TQL       |
| Total Selenium                  | 5.08               | μg/L  | Discharge Conc < TQL       |
| Total Silver                    | 15.9               | μg/L  | Discharge Conc ≤ 10% WQBEL |
| Total Thallium                  | 0.24               | μg/L  | Discharge Conc < TQL       |
| Total Molybdenum                | N/A                | N/A   | No WQS                     |
| Acrolein                        | 3.0                | μg/L  | Discharge Conc < TQL       |
| Acrylonitrile                   | 0.07               | μg/L  | Discharge Conc < TQL       |
| Benzene                         | 0.68               | μg/L  | Discharge Conc < TQL       |
| Bromoform                       | 8.2                | μg/L  | Discharge Conc < TQL       |
| Carbon Tetrachloride            | 0.47               | μg/L  | Discharge Conc < TQL       |
| Chlorobenzene                   | 102                | μg/L  | Discharge Conc ≤ 25% WQBEL |

| Chlorodibromomethane       | 0.94        | μg/L        | Discharge Conc < TQL                       |
|----------------------------|-------------|-------------|--------------------------------------------|
| Chloroethane               | N/A         | N/A         | No WQS                                     |
| 2-Chloroethyl Vinyl Ether  | 3,561       | μg/L        | Discharge Conc < TQL                       |
| Chloroform                 | 6.68        |             | Discharge Cond < TQL                       |
| Dichlorobromomethane       | 1.11        | μg/L        | Discharge Cond < TQL  Discharge Cond < TQL |
| 1.1-Dichloroethane         | 1.11<br>N/A | μg/L<br>N/A | No WQS                                     |
| .,                         | 11.6        |             |                                            |
| 1,2-Dichloroethane         |             | μg/L        | Discharge Conc < TQL                       |
| 1,1-Dichloroethylene       | 33.6        | μg/L        | Discharge Conc < TQL                       |
| 1,2-Dichloropropane        | 1.05        | μg/L        | Discharge Conc < TQL                       |
| 1,3-Dichloropropylene      | 0.32        | μg/L        | Discharge Conc < TQL                       |
| 1,4-Dioxane                | N/A         | N/A         | No WQS                                     |
| Ethylbenzene               | 69.2        | μg/L        | Discharge Conc < TQL                       |
| Methyl Bromide             | 102         | μg/L        | Discharge Conc < TQL                       |
| Methyl Chloride            | 5,595       | μg/L        | Discharge Conc < TQL                       |
| Methylene Chloride         | 23.4        | μg/L        | Discharge Conc < TQL                       |
| 1,1,2,2-Tetrachloroethane  | 0.23        | μg/L        | Discharge Conc < TQL                       |
| Tetrachloroethylene        | 11.7        | μg/L        | Discharge Conc < TQL                       |
| Toluene                    | 58.0        | μg/L        | Discharge Conc < TQL                       |
| 1,2-trans-Dichloroethylene | 102         | μg/L        | Discharge Conc < TQL                       |
| 1,1,1-Trichloroethane      | 621         | μg/L        | Discharge Conc < TQL                       |
| 1,1,2-Trichloroethane      | 0.64        | μg/L        | Discharge Conc < TQL                       |
| Trichloroethylene          | 0.7         | μg/L        | Discharge Conc < TQL                       |
| Vinyl Chloride             | 0.023       | μg/L        | Discharge Conc < TQL                       |
| 2-Chlorophenol             | 30.5        | μg/L        | Discharge Conc < TQL                       |
| 2,4-Dichlorophenol         | 10.2        | μg/L        | Discharge Conc < TQL                       |
| 2,4-Dimethylphenol         | 102         | μg/L        | Discharge Conc < TQL                       |
| 4,6-Dinitro-o-Cresol       | 2.03        | μg/L        | Discharge Conc < TQL                       |
| 2,4-Dinitrophenol          | 10.2        | μg/L        | Discharge Conc < TQL                       |
| 2-Nitrophenol              | 1,628       | μg/L        | Discharge Conc < TQL                       |
| 4-Nitrophenol              | 478         | μg/L        | Discharge Conc < TQL                       |
| p-Chloro-m-Cresol          | 160         | μg/L        | Discharge Conc < TQL                       |
| Pentachlorophenol          | 0.035       | μg/L        | Discharge Conc < TQL                       |
| Phenol                     | 4.069       | μg/L        | Discharge Conc < TQL                       |
| 2,4,6-Trichlorophenol      | 1.76        | μg/L        | Discharge Conc < TQL                       |
| Acenaphthene               | 17.3        | μg/L        | Discharge Conc < TQL                       |
| Acenaphthylene             | N/A         | N/A         | No WQS                                     |
| Anthracene                 | 305         | μg/L        | Discharge Conc < TQL                       |
| Benzidine                  | 0.0001      | µg/L        | Discharge Conc < TQL                       |
| Benzo(a)Anthracene         | 0.001       | μg/L        | Discharge Conc < TQL                       |
| Benzo(a)Pyrene             | 0.0001      | μg/L        | Discharge Conc < TQL                       |
| 3.4-Benzofluoranthene      | 0.001       | μg/L        | Discharge Conc < TQL                       |
| Benzo(ghi)Perylene         | N/A         | N/A         | No WQS                                     |
| Benzo(k)Fluoranthene       | 0.012       | µg/L        | Discharge Conc < TQL                       |
| Bis(2-Chloroethoxy)Methane | N/A         | N/A         | No WQS                                     |
| Bis(2-Chloroethyl)Ether    | 0.035       | μg/L        | Discharge Conc < TQL                       |
| 5/3(2-Onloroetry)/Ether    | 0.035       | pg/L        | Discharge Cond < TQL                       |

| Bis(2-Chloroisopropyl)Ether | 203     | μg/L | Discharge Conc < TQL |
|-----------------------------|---------|------|----------------------|
| Bis(2-Ethylhexyl)Phthalate  | 0.37    | μg/L | Discharge Conc < TQL |
| 4-Bromophenyl Phenyl Ether  | 54.9    | μg/L | Discharge Conc < TQL |
| Butyl Benzyl Phthalate      | 0.1     | μg/L | Discharge Conc < TQL |
| 2-Chloronaphthalene         | 814     | μg/L | Discharge Conc < TQL |
| 4-Chlorophenyl Phenyl Ether | N/A     | N/A  | No WQS               |
| Chrysene                    | 0.14    | μg/L | Discharge Conc < TQL |
| Dibenzo(a,h)Anthrancene     | 0.0001  | μg/L | Discharge Conc < TQL |
| 1,2-Dichlorobenzene         | 163     | μg/L | Discharge Conc < TQL |
| 1,3-Dichlorobenzene         | 7.12    | μg/L | Discharge Conc < TQL |
| 1,4-Dichlorobenzene         | 153     | μg/L | Discharge Conc < TQL |
| 3,3-Dichlorobenzidine       | 0.059   | μg/L | Discharge Conc < TQL |
| Diethyl Phthalate           | 610     | μg/L | Discharge Conc < TQL |
| Dimethyl Phthalate          | 509     | μg/L | Discharge Conc < TQL |
| Di-n-Butyl Phthalate        | 20.3    | μg/L | Discharge Conc < TQL |
| 2,4-Dinitrotoluene          | 0.059   | μg/L | Discharge Conc < TQL |
| 2,6-Dinitrotoluene          | 0.059   | μg/L | Discharge Conc < TQL |
| Di-n-Octyl Phthalate        | N/A     | N/A  | No WQS               |
| 1,2-Diphenylhydrazine       | 0.035   | μg/L | Discharge Conc < TQL |
| Fluoranthene                | 20.3    | μg/L | Discharge Conc < TQL |
| Fluorene                    | 50.9    | μg/L | Discharge Conc < TQL |
| Hexachlorobenzene           | 0.00009 | μg/L | Discharge Conc < TQL |
| Hexachlorobutadiene         | 0.012   | μg/L | Discharge Conc < TQL |
| Hexachlorocyclopentadiene   | 1.02    | μg/L | Discharge Conc < TQL |
| Hexachloroethane            | 0.12    | μg/L | Discharge Conc < TQL |
| Indeno(1,2,3-cd)Pyrene      | 0.001   | μg/L | Discharge Conc < TQL |
| Isophorone                  | 34.6    | μg/L | Discharge Conc < TQL |
| Naphthalene                 | 43.7    | μg/L | Discharge Conc < TQL |
| Nitrobenzene                | 10.2    | μg/L | Discharge Conc < TQL |
| n-Nitrosodimethylamine      | 0.0008  | μg/L | Discharge Conc < TQL |
| n-Nitrosodi-n-Propylamine   | 0.006   | μg/L | Discharge Conc < TQL |
| n-Nitrosodiphenylamine      | 3.87    | μg/L | Discharge Conc < TQL |
| Phenanthrene                | 1.02    | µg/L | Discharge Conc < TQL |
| Pyrene                      | 20.3    | μg/L | Discharge Conc < TQL |
| 1,2,4-Trichlorobenzene      | 0.071   | μg/L | Discharge Conc < TQL |

Model Results 1/3/2022 Page 17

### **Anti-Backsliding**

The current WET limits are eliminated based on the review of the submitted WET reports. New monitoring data constitutes new information and RP is not demonstrated and hence the anti-backsliding exception applies here.

| Development of Effluent Limitations                                       |                                              |  |  |  |  |  |  |  |
|---------------------------------------------------------------------------|----------------------------------------------|--|--|--|--|--|--|--|
| Outfall No.002Latitude40° 7' 47.00"Wastewater Description:Stormwater      | Design Flow (MGD)   0     -75° 9' 32.00"     |  |  |  |  |  |  |  |
| Outfall No. 003 Latitude 40° 7' 47.00" Wastewater Description: Stormwater | Design Flow (MGD) 0 Longitude -75° 9' 32.00" |  |  |  |  |  |  |  |

#### NPDES Permit No. PA0026867

The existing stormwater parameters; pH, CBOD5, COD, TSS, Oil and Grease, Fecal Coliform, TKN, Total Phosphorus, and Iron Dissolved are recommended to continue in the permit. For TSS and COD, benchmark values are incorporated in Part C condition in the draft permit.

### **NPDES Permit Fact Sheet**

### NPDES Permit No. PA0026867 Abington Township STP

|           |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Whol                                            | e Effluent T | oxicity (WE  | ET)                        |               |             |          |
|-----------|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|--------------|--------------|----------------------------|---------------|-------------|----------|
| For Outfa | all 001, 🗌 <b>A</b>            | acute ⊠ Chroni                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | i <b>c</b> WET Testi                            | ng was com   | pleted:      |                            |               |             |          |
|           | Quarterly thr<br>Quarterly thr | nit renewal applications oughout the permition oughout the permition all testing throughout the permition of | nit term.<br>nit term and a                     | a TIE/TRE w  | as conducte  | ed.                        |               |             |          |
|           |                                | sed for the tests or analysis of the r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                 |              | 49%, and 25  | 5%. The Ta                 | rget Instrear | n Waste Con | centrati |
|           | Γ                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | WET St                                          | ummary and   | l Evaluation |                            |               | 1           |          |
|           | Pe<br>De<br>Q                  | acility Name<br>ermit No.<br>esign Flow (MGD)<br><sub>7-10</sub> Flow (cfs)<br>MF <sub>a</sub><br>MF <sub>c</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Abington Twp<br>PA0026867<br>3.91<br>0.105<br>1 | STP          |              |                            |               |             |          |
|           | Ir                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |              | Test Result  | s (Pass/Fail)              |               |             |          |
|           |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 | Test Date    | Test Date    | Test Date                  | Test Date     |             |          |
|           | I⊢                             | Species                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Endpoint                                        | 12/10/18     | 5/14/19      | 8/8/20                     | 7/27/21       |             |          |
|           |                                | Pimephales                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Growth                                          | Pass         | Pass         | Pass                       | Pass          |             |          |
|           | I -                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 | 1            | Toot Decult  | o (Bood/Fail)              |               |             |          |
|           |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 | Test Date    | Test Date    | s (Pass/Fail)<br>Test Date | Test Date     |             |          |
|           |                                | Species                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Endpoint                                        | 12/10/18     | 5/14/19      | 8/8/20                     | 7/27/21       |             |          |
|           |                                | Pimephales                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Survival                                        | Pass         | Pass         | Pass                       | Pass          |             |          |
|           | 1-                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |              |              |                            |               |             |          |
|           |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |              | Test Result  | s (Pass/Fail)              |               |             |          |
|           |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 | Test Date    | Test Date    | Test Date                  | Test Date     |             |          |
|           | -                              | Species                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Endpoint                                        | 12/10/18     | 5/13/19      | 8/17/20                    | 7/26/21       |             |          |
|           |                                | Ceriodaphnia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Survival                                        | Pass         | Pass         | Pass                       | Pass          | 1           |          |
|           | I                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |              | Toet Besult  | s (Pass/Fail)              |               | 1           |          |
|           |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 | Test Date    | Test Date    | Test Date                  | Test Date     |             |          |
|           |                                | Species                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Endpoint                                        | 12/10/18     | 5/13/19      | 8/17/20                    | 7/26/21       |             |          |
|           | - 1 ⊢                          | Ceriodaphnia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Reproduction                                    |              | Pass         | Pass                       | Pass          |             |          |
|           | <u>Ре</u><br>Те<br>ТІ          | easonable Potentia<br>ermit Recommenda<br>est Type<br>IWC<br>ilution Series                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | chronic<br>98                                   |              | % Effluent   |                            |               |             |          |
|           | Pe                             | ermit Limit<br>ermit Limit Species                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | None                                            | . 5, 55, 100 | Emdent       |                            |               |             |          |

#### **NPDES Permit Fact Sheet**

NPDES Permit No. PA0026867 Abington Township STP

Based on the review of the WET test reports, test of significant toxicity (TST) was performed using DEP's WET Analysis Spreadsheet. There is no reasonable potential, and no WET limits are recommended. The standard WET condition based on the DEP WET SOP is incorporated in Part C of the draft permit.

### **Proposed Effluent Limitations and Monitoring Requirements**

### Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

|                                                                          |                    |                     | Effluent L       | imitations         |                   |                     | Monitoring Re            | quirements         |
|--------------------------------------------------------------------------|--------------------|---------------------|------------------|--------------------|-------------------|---------------------|--------------------------|--------------------|
| Parameter                                                                | Mass Units         | (lbs/day) (1)       |                  | Concentrati        | ons (mg/L)        |                     | Minimum <sup>(2)</sup>   | Required           |
| raiametei                                                                | Average<br>Monthly | Weekly<br>Average   | Daily<br>Minimum | Average<br>Monthly | Weekly<br>Average | Instant.<br>Maximum | Measurement<br>Frequency | Sample<br>Type     |
| Flow (MGD)                                                               | Report             | Report<br>Daily Max | XXX              | XXX                | XXX               | XXX                 | Continuous               | Metered            |
| pH (S.U.)                                                                | XXX                | XXX                 | 6.0<br>Inst Min  | XXX                | XXX               | 9.0                 | 1/day                    | Grab               |
| Dissolved Oxygen                                                         | XXX                | XXX                 | 7.0<br>Inst Min  | XXX                | XXX               | XXX                 | 1/day                    | Grab               |
| Carbonaceous Biochemical<br>Oxygen Demand (CBOD5)<br>Nov 1 - Apr 30      | 489                | 734                 | XXX              | 15                 | 22.5              | 30                  | 2/week                   | 24-Hr<br>Composite |
| Carbonaceous Biochemical<br>Oxygen Demand (CBOD5)<br>May 1 - Oct 31      | 245                | 376                 | XXX              | 7.5                | 11.25             | 15                  | 2/week                   | 24-Hr<br>Composite |
| Carbonaceous Biochemical<br>Oxygen Demand (CBOD5)<br>Raw Sewage Influent | Report             | XXX                 | XXX              | Report             | XXX               | XXX                 | 2/week                   | 24-Hr<br>Composite |
| Biochemical Oxygen Demand (BOD5) Raw Sewage Influent                     | Report             | XXX                 | XXX              | Report             | XXX               | XXX                 | 1/month                  | 24-Hr<br>Composite |
| Total Suspended Solids                                                   | 978                | 1467                | XXX              | 30                 | 45                | 60                  | 2/week                   | 24-Hr<br>Composite |
| Total Suspended Solids Raw Sewage Influent                               | Report             | XXX                 | XXX              | Report             | XXX               | XXX                 | 2/week                   | 24-Hr<br>Composite |
| Total Dissolved Solids                                                   | 32609              | XXX                 | XXX              | 1000               | XXX               | 1500                | 1/week                   | 24-Hr<br>Composite |
| Fecal Coliform (No./100 ml)<br>Oct 1 - Apr 30                            | XXX                | XXX                 | XXX              | 200<br>Geo Mean    | XXX               | 1000                | 2/week                   | Grab               |
| Fecal Coliform (No./100 ml)<br>May 1 - Sep 30                            | XXX                | XXX                 | XXX              | 200<br>Geo Mean    | XXX               | 1000                | 1/week                   | Grab               |
| E. Coli (No./100 ml)                                                     | XXX                | XXX                 | XXX              | XXX                | XXX               | Report              | 1/month                  | Grab               |

Outfall 001, Continued (from Permit Effective Date through Permit Expiration Date)

|                                 |                    |                   | Effluent L       | imitations         |                   |                     | Monitoring Re            | quirements      |
|---------------------------------|--------------------|-------------------|------------------|--------------------|-------------------|---------------------|--------------------------|-----------------|
| <b>D</b>                        | Mass Units         | (lbs/day) (1)     |                  | Concentrat         | Minimum (2)       | Required            |                          |                 |
| Parameter                       | Average<br>Monthly | Weekly<br>Average | Daily<br>Minimum | Average<br>Monthly | Weekly<br>Average | Instant.<br>Maximum | Measurement<br>Frequency | Sample<br>Type  |
| Ultraviolet light transmittance | -                  |                   |                  | •                  |                   |                     | ,                        |                 |
| (%)                             | XXX                | XXX               | Report           | XXX                | XXX               | XXX                 | 1/day                    | Measured        |
|                                 |                    |                   |                  |                    |                   |                     |                          | 24-Hr           |
| Nitrate-Nitrite as N            | Report             | XXX               | XXX              | Report             | XXX               | XXX                 | 1/month                  | Composite       |
|                                 |                    |                   |                  |                    |                   |                     |                          | 24-Hr           |
| Total Nitrogen                  | Report             | XXX               | XXX              | Report             | XXX               | XXX                 | 1/month                  | Composite       |
| Ammonia-Nitrogen                |                    |                   |                  |                    |                   |                     |                          | 24-Hr           |
| Nov 1 - Apr 30                  | 70                 | XXX               | XXX              | 2.16               | XXX               | 4.32                | 2/week                   | Composite       |
| Ammonia-Nitrogen                |                    |                   |                  |                    |                   |                     |                          | 24-Hr           |
| May 1 - Oct 31                  | 23                 | XXX               | XXX              | 0.72               | XXX               | 1.44                | 2/week                   | Composite       |
| T . 112 11 11 11                | ъ .                | V0/0/             | NAA4             | <u> </u>           | 2007              | 2007                | 4./                      | 24-Hr           |
| Total Kjeldahl Nitrogen         | Report             | XXX               | XXX              | Report             | XXX               | XXX                 | 1/month                  | Composite       |
| Tatal Discoulance               | D                  | V/V/              | V/V/             | D                  | Report            | V/V/                | 0/                       | 24-Hr           |
| Total Phosphorus                | Report             | XXX               | XXX              | Report             | Daily Max         | XXX                 | 2/week                   | Composite       |
| Outhanhaanhata                  | 60                 | VVV               | VVV              | 4.05               | VVV               | 0.7                 | 2/week                   | 24-Hr           |
| Orthophosphate                  | 60                 | XXX               | XXX              | 1.85               | XXX               | 3.7                 | Z/week                   | Composite 24-Hr |
| Aluminum, Total                 | Report             | xxx               | xxx              | Report             | xxx               | xxx                 | 1/month                  | Composite       |
| Aluminum, Total                 | Кероп              | ^^^               | ^^^              | Керип              |                   | ^^^                 | 1/111011111              | 24-Hr           |
| Boron, Total                    | Report             | xxx               | XXX              | Report             | xxx               | XXX                 | 1/month                  | Composite       |
| Boron, Total                    | report             | 0.99              | XXX              | ТСРОП              | 0.030             | XXX                 | 1/11101101               | 24-Hr           |
| Copper, Total                   | 0.63               | Daily Max         | XXX              | 0.019              | Daily Max         | 0.049               | 1/week                   | Composite       |
| Copper, Total                   | 0.00               | Daily Max         | 7000             | 0.010              | Bany Max          | 0.010               | 17 WOOK                  | Composito       |
| Cyanide, Free                   | Report             | XXX               | XXX              | Report             | XXX               | XXX                 | 1/month                  | Grab            |
|                                 | •                  |                   |                  | •                  |                   |                     |                          | 24-Hr           |
| Zinc, Total                     | Report             | XXX               | XXX              | Report             | XXX               | XXX                 | 1/month                  | Composite       |
|                                 |                    |                   |                  |                    |                   |                     |                          | 24-Hr           |
| Hardness, Total (as CaCO3)      | XXX                | XXX               | XXX              | Report             | XXX               | XXX                 | 1/month                  | Composite       |
| Toxicity, Chronic -             |                    |                   |                  | Report             |                   |                     |                          | 24-Hr           |
| Ceriodaphnia Survival (TUc)     | XXX                | XXX               | XXX              | Daily Max          | XXX               | XXX                 | See Permit               | Composite       |
| Toxicity, Chronic -             |                    |                   |                  |                    |                   |                     |                          |                 |
| Ceriodaphnia Reproduction       |                    |                   |                  | Report             |                   |                     |                          | 24-Hr           |
| (TUc)                           | XXX                | XXX               | XXX              | Daily Max          | XXX               | XXX                 | See Permit               | Composite       |
| Toxicity, Chronic - Pimephales  |                    |                   |                  | Report             |                   |                     |                          | 24-Hr           |
| Survival (TUc)                  | XXX                | XXX               | XXX              | Daily Max          | XXX               | XXX                 | See Permit               | Composite       |

NPDES Permit No. PA0026867

### NPDES Permit Fact Sheet Abington Township STP

### Outfall 001, Continued (from Permit Effective Date through Permit Expiration Date)

| Parameter                      |            | Monitoring Requirements |         |            |             |          |             |           |
|--------------------------------|------------|-------------------------|---------|------------|-------------|----------|-------------|-----------|
|                                | Mass Units | (lbs/day) (1)           |         | Concentrat | Minimum (2) | Required |             |           |
| Farameter                      | Average    | Weekly                  | Daily   | Average    | Weekly      | Instant. | Measurement | Sample    |
|                                | Monthly    | Average                 | Minimum | Monthly    | Average     | Maximum  | Frequency   | Type      |
| Toxicity, Chronic - Pimephales |            |                         |         | Report     |             |          |             | 24-Hr     |
| Growth (TUc)                   | XXX        | XXX                     | XXX     | Daily Max  | XXX         | XXX      | See Permit  | Composite |

### **Proposed Effluent Limitations and Monitoring Requirements**

### Outfall 002, Effective Period: Permit Effective Date through Permit Expiration Date.

|                                                |                    | Effluent Limitations     |         |                    |                  |                     |                          |                |  |  |
|------------------------------------------------|--------------------|--------------------------|---------|--------------------|------------------|---------------------|--------------------------|----------------|--|--|
| Parameter                                      | Mass Units         | (lbs/day) <sup>(1)</sup> |         | Concentrat         | Minimum (2)      | Required            |                          |                |  |  |
| r drumotor                                     | Average<br>Monthly | Average<br>Weekly        | Minimum | Average<br>Monthly | Daily<br>Maximum | Instant.<br>Maximum | Measurement<br>Frequency | Sample<br>Type |  |  |
| pH (S.U.)                                      | XXX                | XXX                      | XXX     | XXX                | Report           | XXX                 | 1/year                   | Grab           |  |  |
| Carbonaceous Biochemical Oxygen Demand (CBOD5) | XXX                | XXX                      | XXX     | XXX                | Report           | XXX                 | 1/year                   | Grab           |  |  |
| Chemical Oxygen Demand (COD)                   | XXX                | XXX                      | XXX     | XXX                | Report           | XXX                 | 1/year                   | Grab           |  |  |
| Total Suspended Solids                         | XXX                | XXX                      | XXX     | XXX                | Report           | XXX                 | 1/year                   | Grab           |  |  |
| Oil and Grease                                 | XXX                | XXX                      | XXX     | XXX                | Report           | XXX                 | 1/year                   | Grab           |  |  |
| Fecal Coliform (No./100 ml)                    | XXX                | XXX                      | XXX     | XXX                | Report           | XXX                 | 1/year                   | Grab           |  |  |
| Total Kjeldahl Nitrogen                        | XXX                | XXX                      | XXX     | XXX                | Report           | XXX                 | 1/year                   | Grab           |  |  |
| Total Phosphorus                               | XXX                | XXX                      | XXX     | XXX                | Report           | XXX                 | 1/year                   | Grab           |  |  |
| Iron, Dissolved                                | XXX                | XXX                      | XXX     | XXX                | Report           | XXX                 | 1/year                   | Grab           |  |  |

### **Proposed Effluent Limitations and Monitoring Requirements**

### Outfall 003, Effective Period: Permit Effective Date through Permit Expiration Date.

|                                                |                          | Monitoring Red    | quirements |                    |                        |                     |                          |                |
|------------------------------------------------|--------------------------|-------------------|------------|--------------------|------------------------|---------------------|--------------------------|----------------|
| Parameter                                      | Mass Units (lbs/day) (1) |                   |            | Concentrat         | Minimum <sup>(2)</sup> | Required            |                          |                |
| i didiliotoi                                   | Average<br>Monthly       | Average<br>Weekly | Minimum    | Average<br>Monthly | Daily<br>Maximum       | Instant.<br>Maximum | Measurement<br>Frequency | Sample<br>Type |
| pH (S.U.)                                      | XXX                      | XXX               | XXX        | XXX                | Report                 | XXX                 | 1/year                   | Grab           |
| Carbonaceous Biochemical Oxygen Demand (CBOD5) | XXX                      | XXX               | XXX        | XXX                | Report                 | XXX                 | 1/year                   | Grab           |
| Chemical Oxygen Demand (COD)                   | XXX                      | XXX               | XXX        | XXX                | Report                 | XXX                 | 1/year                   | Grab           |
| Total Suspended Solids                         | XXX                      | XXX               | XXX        | XXX                | Report                 | XXX                 | 1/year                   | Grab           |
| Oil and Grease                                 | XXX                      | XXX               | XXX        | XXX                | Report                 | XXX                 | 1/year                   | Grab           |
| Fecal Coliform (No./100 ml)                    | XXX                      | XXX               | XXX        | XXX                | Report                 | XXX                 | 1/year                   | Grab           |
| Total Kjeldahl Nitrogen                        | XXX                      | XXX               | XXX        | XXX                | Report                 | XXX                 | 1/year                   | Grab           |
| Total Phosphorus                               | XXX                      | XXX               | XXX        | XXX                | Report                 | XXX                 | 1/year                   | Grab           |
| Iron, Dissolved                                | XXX                      | XXX               | XXX        | XXX                | Report                 | XXX                 | 1/year                   | Grab           |