

Application Type	Renewal
Facility Type	Sewage
Maior / Minor	Maior

NPDES PERMIT FACT SHEET ADDENDUM No. 1

Application No.	PA0027057
APS ID	1033318
Authorization ID	1344918

Applicant and Facility Information

Applicant Name	Williamsport Sanitary Authority	Facility Name	Central Plant
Applicant Address	253 W 4th Street	Facility Address	601 Jefferson Lane
	Williamsport, PA 17701-6113		Williamsport, PA 17701-5340
Applicant Contact	Michael Miller	- Facility Contact	Steven Benner
Applicant Phone	(570) 323-6148	Facility Phone	(570) 337-8588
Client ID	70278	Site ID	261565
SIC Code	4952	Municipality	City of Williamsport
SIC Description	Trans. & Utilities - Sewerage Systems	County	Lycoming
Date Published in PA	Bulletin December 11, 2021	EPA Waived?	No
Comment Period End I	Date January 9, 2021	_ If No, Reason	Major Facility, Pretreatment, Significant CB Discharge
Purpose of Application	Renewal of an existing NPDES pe	rmit for discharge of trea	ated sewage.

Internal Review and Recommendations

Comments/Responses

The Williamsport Sanitary Authority ("WSA") submitted comments dated December 22, 2021. The comments and DEP's responses are as follows:

1. <u>Comment</u>: UPCM Plan, cover letter - The cover letter indicates that "UPCM Plan Annual Reports are no longer required and that related water quality monitoring may be discontinued." Please confirm that this statement applies to both the WSA Central and West Plants, so that all monitoring and reporting can cease.

Response: DEP originally intended for WSA to cease water quality monitoring and the annual reporting associated with the UPCM Plan. However, to address comments submitted by the U.S. EPA regarding the new E. coli standards, DEP has proposed a three-year schedule under the LTCP Implementation Schedule condition Part C.IV.C.3. The three-year schedule will allow for WSA to develop and implement an E. coli sampling plan to verify compliance with the new seasonal standard. Upon end of the three-year development and implementation window, WSA will once again be required to conduct water quality monitoring and submit UPCM Plan Annual Reports.

Approve	Return	Deny	Signatures	Date
х			<i>Derek S. Garner</i> Derek S. Garner / Project Manager	February 4, 2022
х			<i>Nícholas W. Hartranft</i> Nicholas W. Hartranft, P.E. / Environmental Engineer Manager	February 7, 2022
x			<i>Thomas M. Randús</i> Thomas M. Randis / Program Manager	February 7, 2022

2. <u>Comment</u>: CBOD5, TSS, and TDS Monitoring Frequency, page 2 - The WSA requests reduced monitoring and reporting for effluent CBOD5 and TSS from one per day to the current five per week and for TDS from the one per day to the current one per week. The maximum reported monthly average CBOD5 concentration for 2019 to 2021 (excluding November and December 2021) has been <5 mg/L and for TSS the concentration has been< 6 mg/L. For the same time period the range of monthly average effluent TDS concentration has been 211 mg/L to 608 mg/L with an average of 322 mg/L. Based on the magnitude of the currently reported values, increased monitoring frequency does not seem justified. The current frequencies are adequate to characterize the effluent wastewater.</p>

<u>Response</u>: DEP agrees that based on historic compliance the existing monitoring frequency of 5/week for CBOD5 and TSS and 1/week for TDS remains acceptable. Accordingly, the permit no longer proposes increases to 1/day for CBOD5, TSS, and TDS.

3. <u>Comment</u>: Fecal Coliform Monitoring Frequency. pages 2 and 3 - The WSA requests reduced monitoring and reporting for effluent fecal coliforms for both periods October 1 - April 30 and May 1 - September 30 from one per day to the current two per week Increasing the frequency of fecal coliform sampling will place an undue burden on the WSA to be required (based on our union agreement) to staff the laboratory seven days each week. In the event that the WSA is unable (due to absenteeism or staff shortage) to conduct daily fecal coliform testing or chooses to only use contract laboratory services, the closest contract laboratory was contacted to determine if they could accommodate the seven day a week testing schedule that is required due to the short fecal coliform holding time. They have indicated that they only staff their facility Monday through Friday and would not accommodate a seven day fecal coliform testing schedule, especially in this difficult employment atmosphere.

In addition, as indicated in the cover letter, the conclusions of the WSA UPCM plan have been accepted and no further monitoring is required. The report "continues to indicate average fecal coliform concentrations in the West Branch Susquehanna River generally well below baseline data collected from 2006 to 2013. Additionally, the West Branch Susquehanna River has no listed impairment for fecal coliform." This statement does not support the need to increase the frequency of fecal coliform monitoring.

<u>Response</u>: DEP does not view 2/week fecal coliform monitoring frequency as an appropriate frequency for a treatment plant and discharge the size and magnitude of WSA's Central Plant. However, to help satisfy WSA's concerns and to match other parameters in the permit DEP is no longer proposing a 1/day frequency and is instead proposing a 5/week frequency.

4. <u>Comment</u>: Copper Monitoring Frequency, page 3 - The WSA requests that DEP use its permitting discretion to reduce the frequency from one per week to one per month since it is a monitor only parameter.

<u>Response</u>: DEP generally assigns a weekly monitoring frequency for newly established toxic pollutants to sewage discharges the magnitude of WSA's Central Plant. In this situation, it does not appear that a deviation from standard operating procedures is warranted.

 <u>Comment</u>: Zinc Monitoring Frequency, page 3 - The WSA requests that DEP use its permitting discretion to reduce the frequency from one per week to one per quarter since it is a monitor only parameter and the maximum percent of the Governing WQBEL is only 18%.

<u>Response</u>: DEP generally assigns a weekly monitoring frequency for newly established toxic pollutants to sewage discharges the magnitude of WSA's Central Plant. In this situation, it does not appear that a deviation from standard operating procedures is warranted.

6. <u>Comment</u>: Butyl Benzyl Phthalate Limitations, page 3 - Eight sample results for this parameter were included in the permit application. Of those eight, seven were reported as non-detected. Since submission of the permit application, four additional samples have been collected and analyzed. All of these additional samples were reported as non-detected, with results below the DEP required target quantitation limit (see attachment). Only one of the twelve samples for this parameter, just over 8% and the first sample collected, had a detectible level of the pollutant. The WSA requests that the single detected sample be considered an outlier and not be used in the DEP Toxic Management Spreadsheet (TMS). If this sample was excluded, the TMS program would not return a monitoring or limitation result, removing this parameter from the draft permit.

Additionally, if it is not possible to exclude the outlier sample as requested above, the WSA requests that DEP reconsider the instantaneous maximum concentration limitation. The proposed instantaneous maximum concentration limitation in the draft permit is 2.7 μ g/L, which is below the DEP-required target quantitation limit of 5.0 μ g/L as listed in DEP's Permit Application Instructions "Target Quantitation Limits (QLs) for Effluent Analysis of Pollutant Groups, 8/2021". While some laboratories report MDLs lower than this target, the MDL varies significantly from laboratory to laboratory and can be affected by method interferences, making it very difficult to consistently and accurately test against the proposed limit.

The WSA requests that this parameter be removed from the draft permit. If not removed, the WSA requests that monitoring be reduced to quarterly with no limits imposed.

Response: Since WSA increased the sample size for butyl benzyl phthalate and provided DEP with the discrete sample results, it is appropriate to recalculate the average monthly effluent concentration and coefficient of variation using the statistical analysis outlined in the *EPA Technical Support Document (TSD) for Water Quality-based Toxics Control, Appendix E.* DEP does not view the January 2019 sample result as an outlier; accordingly, all sample results were entered into the TOXCONC spreadsheet (attached) and the revised average monthly effluent concentration and coefficient of variation were then entered into the revised TMS (attached). The TMS recommends establishing limits for butyl benzyl phthalate. However, DEP agrees with WSA that based on the sample results and limited timeframe in which the samples have been collected that a quarterly monitoring requirement is more appropriate. A quarterly monitoring report will allow WSA to collect more data throughout the permit term so that DEP can determine if the January 2019 sample result is truly an outlier or representative of the discharge.

7. <u>Comment</u>: N-Nitrosodi-N-Propylamine Limitations, page 3 - Eight sample results for this parameter were included in the permit application. Of those eight, seven were reported as non-detected. Since submission of the permit application, four additional samples have been collected and analyzed. All of these additional samples were reported as non-detected, with results below the DEP required target quantitation limit (see attachment). Only one of the twelve samples for this parameter, just over 8% and the first sample collected, had a detectible level of the pollutant. The WSA requests that the single detected sample be considered an outlier and not used in the TMS. If this sample was excluded, the TMS program would not return a monitoring or limitation result, removing this parameter from the draft permit.

Additionally, if it is not possible to exclude the outlier sample as requested above, the WSA requests that DEP reconsider the instantaneous maximum concentration limitation. The proposed instantaneous maximum concentration limitation in the draft permit is 0.61 µg/L, which is an order of magnitude below the DEP-required target quantitation limit of 5.0 µg/L as listed in DEP's Permit Application Instructions "Target Quantitation Limits (QLs) for Effluent Analysis of Pollutant Groups, 8/2021". While some laboratories report MD Ls lower than this target, the MDL varies significantly from laboratory to laboratory and can be affected by method interferences, making it very difficult to consistently and accurately test against the proposed limit. To illustrate, seven of the eight non-detected sample results included in the permit application utilized a test method with an MDL that was 10% of the DEP-required quantitation limit. Even so, the WSA would have been in violation of the proposed monthly average mass limitation for 50% of the reported results if these sample results would have been utilized for compliance reporting as proposed in the draft permit. Further, seven non-detected sample results included in the permit application was submitted would have been utilized for compliance reporting and all four sample results after the application was submitted would have been utilized for compliance reporting.

The WSA requests that this parameter be removed from the draft permit. If not removed, the WSA requests that monitoring be reduced to quarterly with no limits imposed.

Response: Since WSA increased the sample size for n-nitrosodi-n-propylamine and provided DEP with the discrete sample results, it is appropriate to recalculate the average monthly effluent concentration and coefficient of variation using the statistical analysis outlined in the *EPA Technical Support Document (TSD) for Water Quality-based Toxics Control, Appendix E.* DEP does not view the January 2019 sample result as an outlier; accordingly, all sample results were entered into the TOXCONC spreadsheet (attached) and the revised average monthly effluent concentration and coefficient of variation were then entered into the revised TMS (attached). The TMS recommends establishing limits for n-nitrosodi-n-propylamine. However, DEP agrees with WSA that based on the sample results and limited timeframe in which the samples have been collected that a quarterly monitoring requirement is more appropriate. A quarterly monitoring report will allow WSA to collect more data throughout the permit term so that DEP can determine if the January 2019 sample result is truly an outlier or representative of the discharge.

8. <u>Comment</u>: Annual Fee, page 16 - Please clarify if the due date for the annual fee payment will be the permit effective date. Also, the existing permit states "Throughout a five year permit term, permittees will pay four annual fees followed by a permit renewal application fee in the last year of permit coverage." For WSA budgeting purposes, please confirm or clarify if this is the same schedule or if the WSA will be required to pay an annual fee and a permit renewal fee in the same year.

Response: Annual fees are due on the same date until the NPDES Permit is terminated. For existing Individual NPDES Permits, the due date for annual fees is based on the anniversary of the effective date of the latest new or renewed permit as of August 28, 2021. If a permit is renewed, amended, or transferred during the permit term, the due date does not change. Fees will be invoiced three months before the due date; however, the fee is due regardless of whether the invoice was received. NPDES Permit application renewal fees have been eliminated.

The U.S. EPA submitted comments dated December 21, 2021. The comments and DEP's responses are as follows:

1. <u>Comment</u>: We would like to note that EPA's review of the CSO portion of this permit reflects the recent understanding between the EPA Region III Water Director and PADEP Deputy Secretary for Water Programs regarding how to proceed with reissuance of permits with CSOs and LTCPs consistent with Section 402(q) of the CWA and EPA's 1994 CSO Policy. As you know, consistent with that understanding, PADEP has committed to making changes to its CSO program as noted in the June 9, 2020 letter to EPA and its April 15, 2020 memo (see attached). PADEP's memo documents its commitment to initiate the regulatory revisions process for modifying its compliance schedule regulations at 25 Pa. Code § 92a.51(a), so that schedules for LTCP implementation can be placed in an NPDES permit. PADEP will draft CSO permits using the template language agreed upon by PADEP and EPA. EPA notes that once PADEP's compliance schedule regulations are revised and final, the template language will need to be modified to incorporate a CSO compliance schedule that meets the requirements of 40 CFR 122.47 and includes the final compliance date for LTCP implementation. EPA's Phase 2 e-Reporting rule requires electronic reporting of Sewer Overflow/Bypass Events, and PADEP will need to make modifications to this template that will be necessary to address the requirements of the e-Reporting rule that is effective at the time that the permit is issued.

In addition, consistent with the understanding between EPA and PADEP, since PADEP's proposed seasonal E. coli standard became effective in March 2021, PADEP will begin to incorporate E. coli monitoring in subsequently reissued NPDES permits and ensure it is included in CSO post-construction compliance monitoring (PCCM) plans to verify compliance with water quality standards and designated uses. Consistent with the CSO Policy, EPA notes that there will also need to be a requirement added to implement a PCCM plan with an established schedule in NPDES permits once a facility begins to implement its approved plan.

Response: DEP has addressed E. coli in Response No. 2 below.

 <u>Comment</u>: The draft factsheet indicates that the UPCM Plan Annual Reports are no longer required and related water quality monitoring may be discontinued due to the lack of an impairment designation for fecal coliform and the successful implementation of the CSO control measures. As discussed in the previous comment, PADEP's E. coli standard became effective in March 2021. E. coli monitoring should be included in the PCCM to verify compliance with the new seasonal standard.

Response: To address the new E. coli standards, DEP has proposed a three-year schedule under the LTCP Implementation Schedule condition Part C.IV.C.3. The three-year schedule will allow for WSA to develop and implement an E. coli monitoring plan to verify compliance with the new seasonal standard. Upon end of the three-year development/implementation window, WSA will once again be required to submit UPCM Plan Annual Reports.

3. <u>Comment</u>: The permit describes the design conditions as being "developed using National Oceanic and Atmospheric Administration (NOAA)'s Climatography of the United States No. 81, Monthly Station Normals of Temperature, Precipitation and Heating and Cooling Degree Days data as outlined in the LTCP", Part C.IV.C.2. Although the permit does include the statement referenced above, it is hard to determine the average conditions (such as the typical year rainfall) upon which the CSO controls were based. We would recommend the permit more clearly define the design conditions outlined in the LTCP.

<u>Response</u>: DEP believes the existing language at C.IV.C.2 is appropriate since it is taken directly from the approved LTCP.

No comments were received from the public. An internal review of the draft permit did not yield any comments.

Summary of Proposed Changes

A summary of changes based on WSA and U.S. EPA comments is as follows:

- 1. The monitoring frequencies for CBOD5, TSS, and TDS have been reverted to existing frequencies (5/week CBOD5 and TSS, 1/week TDS) from proposed increases to 1/day.
- 2. Fecal coliform has been decreased from the proposed 1/day frequency to 5/week. The 5/week frequency is an increase from the existing permit's requirement of 2/week.
- 3. Butyl benzyl phthalate and n-nitrosodi-n-propylamine effluent limits have been replaced with quarterly monitoring requirements in order to collect more data to determine if the January 2019 sample results are outliers or representative of the discharge. The revised modeling data is attached to this addendum.
- 4. A requirement to develop and implement E. coli sampling as part of the UPCM Plan within three years has been added to the proposed LTCP implementation schedule at Part C.IV.C.3.

Recommendation

Based on the above proposed changes to the draft permit, DEP recommends that the permit is redrafted and published again in the PA Bulletin.

	Facility: NPDES#: Outfall No: n (Samples/Mor Reviewer/Perm	nth): It Engineer:	VISA Ceurini Plant PA0022057 001 4 2 2 Dunik Gamer																	
Parameter Name Units	utyi Benzyi Primai uo/L	trosodi-N-Propyl	amine										 							
Detection Limit	17	1.0																		_
4/8/2019	0.22	0.31	detection limit, er	Ner "ND" or use	the < notation (eg.	<0.02)														
7/22/2019	0.54	0.39																		
1/13/2020	0.54	0.39																		
7/13/2020	0.56	0.41																		
10/13/2020 2/1/2021	0.55	0.4																		
4/19/2021	0.55	0.4																		
10/18/2021	0.55	0.39																		
1/14/2019	1.01	1.04																		
																				-
	-																			
														<u> </u>						
									-	-		-		-	-		-			
			-		-									1	1					
	_																			
																				-
	_												 							
	_																			
																				-
															1					
									-	-		-		-	-		-			
			-		-									1	-					
	+		<u> </u>		+	<u> </u>									+	 		<u> </u>		
	1													1	1					
															1					
															+					
			-		-									1	-					
															1					
		-	-	-	-	-						-	 	1	1			-		
	1													1	1					
														1						
	+						<u>├</u>						<u>├ </u>		+	 				

		Reviewer/Permit Engineer:	Derek Garner
Facility:	WSA Central Plant	-	
NPDES #:	PA0027057		
Outfall No:	001		
n (Samples/Month):	4		
	т		
Baramotor	Distribution Applied	Coofficient of Variation (daily)	Ava Monthly
Farameter	Distribution Applied	coefficient of variation (daily)	Avg. Wontiny
utid Denzyd Dhthelete (ug/		0.22005.85	0.0054547
utyl Benzyl Phinalate (µg/	Lognormal	0.3399585	0.8251547
illiosodi-in-Propylamine (µ	Lognormai	0.3011027	0.0150231

Discharge Information

Facility: WSA Central Plant NPDES Permit No.: PA0027057 Outfall No.: 001 Evaluation Type: Major Sewage / Industrial Waste Wastewater Description: Sewage Design Flow (MGD)* Hardness (mg/l) pH (SU)* ArC Cm H Complete Mix Times (min) 8.4 101 7 C TH CR Q _{5,10} Q _{5,10} Q _{6,10}	Inst	ructions D	ischarge Stream												
Facility: WSA Central Plant NPDES Permit No:: PA0027057 Outfall No:: 01 Evaluation Type: Major Sewage / Industrial Waste Wastewater Description: Sewage Design Flow (MGD)* Hardness (mg/l)* PH (SU)* Partial Mix Factors (PMFs) Complete Mix Times (min) 8.4 101 7 Image: Complete Mix Times (min) Arc CR TH CRL Qr.e Qn 8.4 101 7 Image: Complete Mix Times (min) Arc Qf.et/think Qf.et															
Evaluation Type: Major Sewage / Industrial Waste Wastewater Description: Sewage Design Flow (MCD)* Hardness (mg/)* PH (SU)* Partial Mix Factors (PMFs) Complete Mix Times (min)* 8.4 101 7 Image: Complete Mix Times (min)* Qn 8.4 101 7 Image: Complete Mix Times (min)* Qn 5 Stafferd Dawk 0.76 m km complete Mix Times (min)* Qn Qn 6 Image: Complete Mix Times (min)* Qn Qn Qn Qn 6 Image: Complete Mix Times (min)* Qn Qn Qn Qn 1 Total Dissolved Solds (PWS) mgL 4460 Image: Complete Mix Times (min)* Qn 1 Total Dissolved Solds (PWS) mgL 4460 Image: Complete Mix Times (min)* Pix 1 Total Dissolved Solds (PWS) mgL 4460 Image: Complete Mix Times (min)* Pix 1 Total Dissolved Solds (PWS) mgL 4460 Image: Complete Mix Times (min)* 1 Total Dissolved Solds (PWS) mgL 0.48 </td <td>Fac</td> <td>lity: WS</td> <td>A Central Plant</td> <td></td> <td></td> <td></td> <td>NP</td> <td>DES Peri</td> <td>mit No.:</td> <td>PA0027</td> <td>057</td> <td></td> <td>Outfall I</td> <td>No.: 001</td> <td></td>	Fac	lity: WS	A Central Plant				NP	DES Peri	mit No.:	PA0027	057		Outfall I	No.: 001	
Wajer Sewage / Industrial Waste Wastewater Description: Sewage Design Flow (MGD)* Hardness (mg/)* Philes Partial Mix Factors (PMFs) Complete Mix Times (min) AFC Sewage / Industrial Waste Discharge Pollutant Of Int CRL Of Int Discharge Control (CV Control (CV Of Int Discharge Pollutant Of Int Pollutant	_								.						
	Eva	luation Type:	Major Sewage /	Industri	al wa	ste	. VVa	stewater	Descrip	tion: Sev	vage				
Discharge Characteristics Design Flow (MGD)* Hardness (mg/l) pH (SU)* Partial Mix Factors (PMFs) Complete Mix Times (min) Qr.4e Qn 8.4 101 7 Qn Qn 8.4 101 7 Qn Qn 8.4 101 7 Qn Qn 8.4 101 7 Qn Qn Qn Qn Qn															
				1		Discha	rge Cha	racteris	ics			1			
(MGG)* CFC THH CRL Q _{x-10} Q _h 8.4 101 7 0 <td>De</td> <td>sign Flow</td> <td>Hardness (mg/l)*</td> <td>pH (</td> <td>SU)*</td> <td></td> <td>Parti</td> <td>al Mix Fa</td> <td>actors (F</td> <td>PMFs)</td> <td></td> <td>Com</td> <td>plete Mi</td> <td>x Times</td> <td>(min)</td>	De	sign Flow	Hardness (mg/l)*	pH (SU)*		Parti	al Mix Fa	actors (F	PMFs)		Com	plete Mi	x Times	(min)
8.4 101 7 0 if left blank 0 if left blank 0 if left blank 0 if left blank 1 if left blank Discharge Pollutant Units Max Discharge Conc Trik Conc Stream Conc Daily CV Hourly WCV Stream CV Fat WCV FAt Coeff FOS Criteri a Mod Chem f Mod Choinde (PWS) mg1 4680		(MGD)*			/	AFC	;	CFC	THF	1	CRL	Q7	7-10	C	2 _h
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		8.4	101		7										
Of lieft blank 0.5 <i>E</i> lieft blank 0.5 <i>E</i> lieft blank 0 <i>f</i> lieft blank 0 <i>f</i> lieft blank 1 <i>l</i> lieft blank Discharge Pollutant Units Max Discharge Conc Trito Conc Strean Conc Daily CV Houry CV Streat Conc Feet Conc Foot Conc Foot CV Poot CV Conc Foot Conc Foot CV Foot CV Foot CON Foot CON Foot CV Foot									-					-	
Discharge Pollutant Units Max Discharge Conc Tritic Conc Streen Conc Daily CV Hourly CV Street mCV Faste Conf Fost Conf Criteri A Mod Chem Transl Total Dissolved Solids (PWS) mg/L 468 <td< td=""><td></td><td></td><td></td><td>-</td><td></td><td></td><td>0 if le</td><td>ft blank</td><td>0.5 if le</td><td>eft blank</td><td>(</td><td>0 if left blan</td><td>k</td><td>1 if lei</td><td>ft blank</td></td<>				-			0 if le	ft blank	0.5 if le	eft blank	(0 if left blan	k	1 if lei	ft blank
Discharge Pollutant Units mode Conc Conc Conc Conc Cov CV CV Coeff FOS a Mod Transl Total Dissolved Solids (PWS) mg/L 468					Max	Discharge	Trib	Stream	Daily	Hourly	Strea	Fate		Criteri	Chem
Total Dissolved Solids (PWS) mg/L 468 Image: Constraint of the second seco		Disch	arge Pollutant	Units		Conc	Conc	Conc	CV	CV	m CV	Coeff	FOS	a Mod	Transl
Total Dissolved Solds (PWS) mg/L 4460 Image: Chloride (PWS) mg/L 39 Bromide mg/L 0.52 Image: Chloride (PWS) mg/L 39 Image: Chloride (PWS) Image:	<u> </u>	Tatal Disasta				100									
Open Open <th< td=""><td>-</td><td>Total Dissolve</td><td>ed Solids (PVVS)</td><td>mg/L</td><td></td><td>468</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	-	Total Dissolve	ed Solids (PVVS)	mg/L		468									
or Total Auminum mgL 39 Fluoride (PWS) mgL 39 Image: Constraint of the second	dn	Bromide	3)	mg/L		400									
O Diada (HWS) Hy2L Diada (HWS) Hy2L 24.7 Total Aluminum Hy2L 24.7 Image: Constraint of the second sec	j.c	Sulfate (PW/S)	mg/L		30									
Total Aluminum µg/L 24.7 1 1 1 Total Antimony µg/L 0.48	0	Eluoride (PW)	, S)	ua/l		400									
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		Total Aluminu	im	µg/L		24.7									
Total Arsenic µg/L 0.83 <td></td> <td>Total Antimor</td> <td>ıy</td> <td>µg/L</td> <td></td> <td>0.48</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		Total Antimor	ıy	µg/L		0.48									
Total Barium µg/L 35.9		Total Arsenic	•	µg/L		0.83									
Total Beryllium µg/L < 0.1 </td <td></td> <td>Total Barium</td> <td></td> <td>µg/L</td> <td></td> <td>35.9</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		Total Barium		µg/L		35.9									
Total Boron µg/L 150		Total Berylliur	n	µg/L	<	0.1									
Total Cadmium µg/L < 0.16 <th< th=""> <th< th=""> <td></td><td>Total Boron</td><td></td><td>µg/L</td><td></td><td>150</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<></th<>		Total Boron		µg/L		150									
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		Total Cadmiu	m	µg/L	<	0.16									
Hexavalent Chromium Lg/L 0.063 Image: Constraint of the second secon		Total Chromit	um (III)	µg/L		1.39									
Total Cobait µg/L < 0.83 <td></td> <td>Hexavalent C</td> <td>hromium</td> <td>µg/L</td> <td></td> <td>0.063</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		Hexavalent C	hromium	µg/L		0.063									
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Total Coppor		µg/L	<	0.63									
Production pg/L 0.0	2	Free Cyanide		µg/∟ ug/l		33									
O Dissolved Iron µg/L 79 <th< th=""></th<>	dn	Total Cvanide)	µg/L µa/L		5.3									
Total Iron µg/L 420 <th< th=""></th<>	Sc.	Dissolved Iror	٦	µg/L		79									
Total Lead μg/L < 2.4	Ŭ	Total Iron		µg/L		420									
Total Manganese µg/L 103 <th< th=""> </th<> <td></td> <td>Total Lead</td> <td></td> <td>µg/L</td> <td><</td> <td>2.4</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		Total Lead		µg/L	<	2.4									
Total Mercury µg/L < 0.2 <td></td> <td>Total Mangan</td> <td>ese</td> <td>µg/L</td> <td></td> <td>103</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		Total Mangan	ese	µg/L		103									
Total Nickel µg/L 4.4		Total Mercury	,	µg/L	<	0.2									
Total Phenolis (Phenolics) (PWS)µg/L5.4Image: Constraint of the constraint of		Total Nickel	(=) (=) (=) (=)	µg/L		4.4									
I otal Selenium µg/L <		Total Phenols	(Phenolics) (PWS)	µg/L		5.4									
Total Silver µg/L <		Total Seleniul	m	µg/L	<	3.8									
Total Trainfull µg/L <		Total Silver	2	µg/L	<	0.33									
Formulation µg/L 0 0 0 0 0		Total Zinc	I	µg/∟ ug/l	<u>`</u>	34									
Acrolein µg/L < 2 Image: Constraint of the cons		Total Molybde	enum	ug/L		1.6									
Acrylamide μg/L <	┢──	Acrolein		µg/L	<	2									
Acrylonitrile μg/L < 2 2 <td></td> <td>Acrylamide</td> <td></td> <td>µg/L</td> <td><</td> <td></td>		Acrylamide		µg/L	<										
Benzene μg/L < 0.24 <th< th=""></th<>		Acrylonitrile		µg/L	<	2									
Bromoform μg/L < 0.37		Benzene		µg/L	<	0.24									
		Bromoform		µg/L	<	0.37									

	Carbon Tetrachloride	ua/L	<	0.34					
	Chlorobenzene	ua/L	<	0.25					
	Chlorodibromomethane	ua/l		0.83					
	Chloroethane	ug/l	<	0.55					
	2-Chloroethyl Vinyl Ether	µg/=	<	31					
	Chloroform	μg/L	`	10.8					
	Dichlorobromomethane	μg/L		2.7					
		µg/∟		2.7					
		µg/L	<	0.19					
3	1,2-Dichloroethane	µg/∟	<	0.25					
np		µg/L	<	0.31					
Gro	1,2-Dichloropropane	µg/L	<	0.26				 	
•	1,3-Dichloropropylene	µg/L	<	0.51					
	1,4-Dioxane	µg/L		1.2					
	Ethylbenzene	µg/L	<	0.31					
	Methyl Bromide	µg/L	<	0.49					
	Methyl Chloride	µg/L	<	0.68					
	Methylene Chloride	µg/L	۷	0.77					
	1,1,2,2-Tetrachloroethane	µg/L	<	0.38					
	Tetrachloroethylene	μg/L	<	0.32					
	Toluene	µg/L	<	0.3					
	1,2-trans-Dichloroethylene	µg/L	<	0.22					
	1,1,1-Trichloroethane	µg/L	<	0.28					
	1,1,2-Trichloroethane	µg/L	<	0.23					
	Trichloroethylene	µa/L	<	0.39					
	Vinvl Chloride	ua/l	<	0.33					
	2-Chlorophenol	μg/L	~	0.38					
	2 4-Dichlorophenol	μg/L		0.00					
	2.4 Dimethylphonol	µg/∟ µg/l		0.46					
		µg/L	<u>`</u>	1.2					
4	4,6-Dinitro-b-Cresoi	µg/∟	<	1.2					
dr	2,4-Dinitrophenoi	µg/L	<	2.7					
rol		µg/L	<	0.38					
G	4-Nitrophenol	µg/L	<	1.3				 	
	p-Chloro-m-Cresol	µg/L	<	0.4				 	
	Pentachlorophenol	µg/L	<	1./					
	Phenol	µg/L		4.8					
	2,4,6-Trichlorophenol	µg/L		0.48					
	Acenaphthene	µg/L	<	0.39					
	Acenaphthylene	µg/L	<	0.38					
	Anthracene	µg/L	<	0.39					
	Benzidine	µg/L	<	2.4					
	Benzo(a)Anthracene	µg/L	۷	0.4					
	Benzo(a)Pyrene	µg/L	<	0.35					
	3,4-Benzofluoranthene	µg/L	<	0.39					
	Benzo(ghi)Perylene	µg/L	<	0.41					
	Benzo(k)Fluoranthene	µg/L	<	0.38					
	Bis(2-Chloroethoxy)Methane	µg/L	<	0.43					
	Bis(2-Chloroethyl)Ether	µg/L	<	0.37					
	Bis(2-Chloroisopropyl)Ether	µg/L	<	0.43					
	Bis(2-Ethylhexyl)Phthalate	ua/L		1.77					
	4-Bromophenyl Phenyl Ether	ua/l	<	0.44					
	Butyl Benzyl Phthalate	ug/l		0.83		0.34			
	2-Chloronaphthalene	µg/L	<	0.39		0.01			
		µg/L		0.00					
		µg/L	`	0.41					
	Dibenzo(a b)Anthrancono	μg/L	~	0.41					
	1.2 Dichlorobanzana	µg/L	`	0.42					
		µg/L	<	0.37					
		µg/L	<	0.43					
5		µg/L	<	0.43					
Juc	3,3-Dichlorobenzidine	µg/L	<	1					
55	Diethyl Phthalate	µg/L		1.24					
-	Dimethyl Phthalate	µg/L	<	0.41					
	Di-n-Butyl Phthalate	µg/L		8.5					
	2,4-Dinitrotoluene	µg/L	<	0.77					

						-	1			
	2,6-Dinitrotoluene	µg/L	<	0.4						
	Di-n-Octyl Phthalate	µg/L		1.19						
	1,2-Diphenylhydrazine	µg/L	<	0.37						
	Fluoranthene	ua/L	<	0.42						
	Fluorene	ug/l	<	0.37						
	Hexachlorobenzene	µg/L	~	0.42						
	Hexachloroberizene	µg/∟	`	0.42						
		µg/∟	<	0.46						
	Hexachlorocyclopentadiene	µg/L	<	0.71						
	Hexachloroethane	µg/L	<	0.36						
	Indeno(1,2,3-cd)Pyrene	µg/L	<	0.39						
	Isophorone	µg/L	<	0.42						
	Naphthalene	µg/L	<	0.39						
	Nitrobenzene	µg/L	<	0.5						
	n-Nitrosodimethylamine	ua/L	<	1.1						
	n-Nitrosodi-n-Propylamine	ug/l		0.62		0.3				
	n-Nitrosodinhenvlamine	<u>м9/</u>	/	0.02		0.0				
	Phononthrono	µg/∟	`	0.40						
		µg/∟	<	0.36						
	Pyrene	µg/L	<	0.41						
	1,2,4-Irichlorobenzene	µg/L	<	0.41						
	Aldrin	µg/L	<	0.0069						
	alpha-BHC	µg/L	<	0.011						
	beta-BHC	µg/L	<	0.012						
	gamma-BHC	µg/L	<	0.012						
	delta BHC	µg/L	<	0.014						
	Chlordane	ua/L	<	0.069						
	4 4-DDT	ug/l	<	0.0069						
	4 4-DDE	µg/L	~	0.019						
	4,4 DDD	µg/∟		0.010						
		µy/L	~	0.019						
		µg/∟	<	0.011						
	alpha-Endosulfan	µg/L	<	0.0099						
~	beta-Endosulfan	µg/L	<	0.011						
đ	Endosulfan Sulfate	µg/L	<	0.014						
no	Endrin	µg/L	<	0.013						
ō	Endrin Aldehyde	µg/L	<	0.014						
	Heptachlor	µg/L	<	0.011						
	Heptachlor Epoxide	µg/L	<	0.0099						
	PCB-1016	ua/L	<							
	PCB-1221		<							
	PCB-1232	ug/l								
	PCB 1232	µg/∟								
	PCB-1242	µg/L	、 、		8 9 9 9					
	PCB-1248	µg/∟	<							
	PCB-1254	µg/L	<							
	PCB-1260	µg/L	<							
	PCBs, Total	µg/L	<							
	Toxaphene	µg/L	<	0.2						
	2,3,7,8-TCDD	ng/L	<							
	Gross Alpha	pCi/L		0.401						
~	Total Beta	pCi/L	<	8.2						
₫	Radium 226/228	pCi/L	<	0.54						
õ	Total Strontium	ua/L	<	218						
ū	Total Uranium	ug/l	<	0.11						
	Osmotic Pressure	mOs/ka		0.11						
		mos/kg								
					-					

Stream / Surface Water Information

WSA Central Plant, NPDES Permit No. PA0027057, Outfall 001

• Statewide Criteria

○ Great Lakes Criteria
 ○ ORSANCO Criteria

Instructions Discharge Stream

Receiving Surface Water Name: West Branch Susquehanna River

No. Reaches to Model: 1

Location	Stream Code*	RMI*	Elevation (ft)*	DA (mi²)*	Slope (ft/ft)	PWS Withdrawal (MGD)	Apply Fish Criteria*
Point of Discharge	018668	38.3	497	5680			Yes
End of Reach 1	018668	10.66	436	6680			Yes

Q₇₋₁₀

Location	РМI	LFY	Flow	(cfs)	W/D	Width	Depth	Velocit	Timo	Tributa	ary	Stream		Analysis	
Location		(cfs/mi ²)*	Stream	Tributary	Ratio	(ft)	(ft)	y (fps)	(days)	Hardness	pН	Hardness*	pH*	Hardness	рΗ
Point of Discharge	38.3	0.1										100	1		
End of Reach 1	10.66	0.1													

 \boldsymbol{Q}_h

Location	РМI	LFY	Flow	r (cfs)	W/D	Width	Depth	Velocit	Timo	Tributa	ıry	Stream	n	Analysis	
Location	TXIVII	(cfs/mi ²)	Stream	Tributary	Ratio	(ft)	(ft)	y (fps)	(days)	Hardness	pН	Hardness	pН	Hardness	рН
Point of Discharge	38.3														
End of Reach 1	10.66														

Model Results

WSA Central Plant, NPDES Permit No. PA0027057, Outfall 001

Instructions Results	RETURN	TO INPU	ITS	SAVE AS	PDF	PRINT	•) (A	II 🔿 Inputs 🔿 Results 🔿 Limits			
U Hydrodynamics											
Wasteload Allocations											
AFC CCT (min): 15 PMF: 0.036 Analysis Hardness (mg/l): 100.39 Analysis pH: 7.00											
Pollutants	Conc (ug/L)	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments			
Total Dissolved Solids (PVVS)	(µg;=/	U		U	N/A	N/A	IN/A				
Chloride (PWS)	0	0		0	N/A	N/A	N/A				
Sulfate (PWS)	0	0		0	N/A	N/A	N/A				
Fluoride (PWS)	0	0		0	N/A	N/A	N/A				
Total Aluminum	0	0		0	750	750	1,927				
Total Antimony	0	0		0	1,100	1,100	2,826				
Total Arsenic	0	0		0	340	340	874	Chem Translator of 1 applied			
Total Barium	0	0		0	21,000	21,000	53,954				
Total Boron	0	0		0	8,100	8,100	20,811				
Total Cadmium	0	0		0	2.021	2.14	5.5	Chem Translator of 0.944 applied			
Total Chromium (III)	0	0		0	571.579	1,809	4,647	Chem Translator of 0.316 applied			
Hexavalent Chromium	0	0		0	16	16.3	41.9	Chem Translator of 0.982 applied			
Total Cobalt	0	0		0	95	95.0	244				
Total Copper	0	0		0	13.488	14.1	36.1	Chem Translator of 0.96 applied			
Free Cyanide	0	0		0	22	22.0	56.5				
Dissolved Iron	0	0		0	N/A	N/A	N/A				
Total Iron	0	0		0	N/A	N/A	N/A				
Total Lead	0	0		0	64.855	82.0	211	Chem Translator of 0.79 applied			
Total Manganese	0	0		0	N/A	N/A	N/A				
Total Mercury	0	0		0	1.400	1.65	4.23	Chem Translator of 0.85 applied			
Total Nickel	0	0		0	469.777	471	1,209	Chem Translator of 0.998 applied			
Total Phenols (Phenolics) (PWS)	0	0		0	N/A	N/A	N/A				
Total Selenium	0	0		0	N/A	N/A	N/A	Chem Translator of 0.922 applied			
Total Silver	0	0		0	3.238	3.81	9.79	Chem Translator of 0.85 applied			
Total Thallium	0	0		0	65	65.0	167				
Total Zinc	0	0		0	117.567	120	309	Chem Translator of 0.978 applied			

Acrolein	0	0	0	3	3.0	7.71	
Acrylonitrile	0	0	0	650	650	1,670	
Benzene	0	0	0	640	640	1,644	
Bromoform	0	0	0	1,800	1,800	4,625	
Carbon Tetrachloride	0	0	0	2,800	2,800	7,194	
Chlorobenzene	0	0	0	1,200	1,200	3,083	
Chlorodibromomethane	0	0	0	N/A	N/A	N/A	
2-Chloroethyl Vinyl Ether	0	0	0	18,000	18,000	46,246	
Chloroform	0	0	0	1,900	1,900	4,882	
Dichlorobromomethane	0	0	0	N/A	N/A	N/A	
1,2-Dichloroethane	0	0	0	15,000	15,000	38,539	
1,1-Dichloroethylene	0	0	0	7,500	7,500	19,269	
1,2-Dichloropropane	0	0	0	11,000	11,000	28,262	
1,3-Dichloropropylene	0	0	0	310	310	796	
Ethylbenzene	0	0	0	2,900	2,900	7,451	
Methyl Bromide	0	0	0	550	550	1,413	
Methyl Chloride	0	0	0	28,000	28,000	71,939	
Methylene Chloride	0	0	0	12,000	12,000	30,831	
1,1,2,2-Tetrachloroethane	0	0	0	1,000	1,000	2,569	
Tetrachloroethylene	0	0	0	700	700	1,798	
Toluene	0	0	0	1,700	1,700	4,368	
1,2-trans-Dichloroethylene	0	0	0	6,800	6,800	17,471	
1,1,1-Trichloroethane	0	0	0	3,000	3,000	7,708	
1,1,2-Trichloroethane	0	0	0	3,400	3,400	8,735	
Trichloroethylene	0	0	0	2,300	2,300	5,909	
Vinyl Chloride	0	0	0	N/A	N/A	N/A	
2-Chlorophenol	0	0	0	560	560	1,439	
2,4-Dichlorophenol	0	0	0	1,700	1,700	4,368	
2,4-Dimethylphenol	0	0	0	660	660	1,696	
4,6-Dinitro-o-Cresol	0	0	0	80	80.0	206	
2,4-Dinitrophenol	0	0	0	660	660	1,696	
2-Nitrophenol	0	0	0	8,000	8,000	20,554	
4-Nitrophenol	0	0	0	2,300	2,300	5,909	
p-Chloro-m-Cresol	0	0	0	160	160	411	
Pentachlorophenol	0	0	0	8.723	8.72	22.4	
Phenol	0	0	0	N/A	N/A	N/A	
2,4,6-Trichlorophenol	0	0	0	460	460	1,182	
Acenaphthene	0	0	0	83	83.0	213	
Anthracene	0	0	0	N/A	N/A	N/A	
Benzidine	0	0	0	300	300	771	
Benzo(a)Anthracene	0	0	0	0.5	0.5	1.28	
Benzo(a)Pyrene	0	0	0	N/A	N/A	N/A	
3,4-Benzofluoranthene	0	0	0	N/A	N/A	N/A	
Benzo(k)Fluoranthene	0	0	0	N/A	N/A	N/A	
Bis(2-Chloroethyl)Ether	0	0	0	30,000	30,000	77,077	
Bis(2-Chloroisopropyl)Ether	0	0	0	N/A	N/A	N/A	
Bis(2-Ethylhexyl)Phthalate	0	0	0	4,500	4,500	11,562	
4-Bromophenyl Phenyl Ether	0	0	0	270	270	694	

Butyl Benzyl Phthalate	0	0		0	140	140	360	
2-Chloronaphthalene	0	0		0	N/A	N/A	N/A	
Chrysene	0	0		0	N/A	N/A	N/A	
Dibenzo(a,h)Anthrancene	0	0		0	N/A	N/A	N/A	
1,2-Dichlorobenzene	0	0		0	820	820	2,107	
1,3-Dichlorobenzene	0	0	-	0	350	350	899	
1,4-Dichlorobenzene	0	0		0	730	730	1,876	
3,3-Dichlorobenzidine	0	0		0	N/A	N/A	N/A	
Diethyl Phthalate	0	0		0	4,000	4,000	10,277	
Dimethyl Phthalate	0	0		0	2,500	2,500	6,423	
Di-n-Butyl Phthalate	0	0		0	110	110	283	
2,4-Dinitrotoluene	0	0		0	1,600	1,600	4,111	
2,6-Dinitrotoluene	0	0		0	990	990	2,544	
1,2-Diphenylhydrazine	0	0		0	15	15.0	38.5	
Fluoranthene	0	0		0	200	200	514	
Fluorene	0	0		0	N/A	N/A	N/A	
Hexachlorobenzene	0	0		0	N/A	N/A	N/A	
Hexachlorobutadiene	0	0		0	10	10.0	25.7	
Hexachlorocyclopentadiene	0	0		0	5	5.0	12.8	
Hexachloroethane	0	0		0	60	60.0	154	
Indeno(1,2,3-cd)Pyrene	0	0		0	N/A	N/A	N/A	
Isophorone	0	0		0	10,000	10,000	25,692	
Naphthalene	0	0		0	140	140	360	
Nitrobenzene	0	0		0	4,000	4,000	10,277	
n-Nitrosodimethylamine	0	0		0	17,000	17,000	43,677	
n-Nitrosodi-n-Propylamine	0	0		0	N/A	N/A	N/A	
n-Nitrosodiphenylamine	0	0		0	300	300	771	
Phenanthrene	0	0		0	5	5.0	12.8	
Pyrene	0	0		0	N/A	N/A	N/A	
1,2,4-Trichlorobenzene	0	0		0	130	130	334	
Aldrin	0	0		0	3	3.0	7.71	
alpha-BHC	0	0		0	N/A	N/A	N/A	
beta-BHC	0	0		0	N/A	N/A	N/A	
gamma-BHC	0	0		0	0.95	0.95	2.44	
Chlordane	0	0		0	2.4	2.4	6.17	
4,4-DDT	0	0		0	1.1	1.1	2.83	
4,4-DDE	0	0		0	1.1	1.1	2.83	
4,4-DDD	0	0		0	1.1	1.1	2.83	
Dieldrin	0	0		0	0.24	0.24	0.62	
alpha-Endosulfan	0	0		0	0.22	0.22	0.57	
beta-Endosulfan	0	0		0	0.22	0.22	0.57	
Endosulfan Sulfate	0	0		0	N/A	N/A	N/A	
Endrin	0	0		0	0.086	0.086	0.22	
Endrin Aldehyde	0	0		0	N/A	N/A	N/A	
Heptachlor	0	0		0	0.52	0.52	1.34	
Heptachlor Epoxide	0	0		0	0.5	0.5	1.28	
Toxaphene	0	0		0	0.73	0.73	1.88	
Total Strontium	0	0		0	N/A	N/A	N/A	

☑ CFC CC	CT (min): 7	20	PMF:	0.249	Ana	Ilysis Hardne	ss (mg/l):	100.08 Analysis pH: 7.00
Pollutants	Conc (ug/L)	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
I otal Dissolved Solids (PWS)	<u>(=3, =</u>) 0	0		0	N/A	N/A	N/A	
Chloride (PWS)	0	0		0	N/A	N/A	N/A	
Sulfate (PWS)	0	0		0	N/A	N/A	N/A	
Fluoride (PWS)	0	0		0	N/A	N/A	N/A	
Total Aluminum	0	0		0	N/A	N/A	N/A	
Total Antimony	0	0		0	220	220	2,612	
Total Arsenic	0	0		0	150	150	1,781	Chem Translator of 1 applied
Total Barium	0	0		0	4,100	4,100	48,676	
Total Boron	0	0		0	1,600	1,600	18,995	
Total Cadmium	0	0		0	0.246	0.27	3.21	Chem Translator of 0.909 applied
Total Chromium (III)	0	0		0	74.166	86.2	1,024	Chem Translator of 0.86 applied
Hexavalent Chromium	0	0		0	10	10.4	123	Chem Translator of 0.962 applied
Total Cobalt	0	0		0	19	19.0	226	
Total Copper	0	0		0	8.962	9.34	111	Chem Translator of 0.96 applied
Free Cyanide	0	0		0	5.2	5.2	61.7	
Dissolved Iron	0	0		0	N/A	N/A	N/A	
Total Iron	0	0		0	1,500	1,500	67,065	WQC = 30 day average; PMF = 1
Total Lead	0	0		0	2.519	3.19	37.8	Chem Translator of 0.791 applied
Total Manganese	0	0		0	N/A	N/A	N/A	
Total Mercury	0	0		0	0.770	0.91	10.8	Chem Translator of 0.85 applied
Total Nickel	0	0		0	52.044	52.2	620	Chem Translator of 0.997 applied
Total Phenols (Phenolics) (PWS)	0	0		0	N/A	N/A	N/A	
Total Selenium	0	0		0	4.600	4.99	59.2	Chem Translator of 0.922 applied
Total Silver	0	0		0	N/A	N/A	N/A	Chem Translator of 1 applied
Total Thallium	0	0		0	13	13.0	154	
Total Zinc	0	0		0	118.223	120	1,423	Chem Translator of 0.986 applied
Acrolein	0	0		0	3	3.0	35.6	
Acrylonitrile	0	0		0	130	130	1,543	
Benzene	0	0		0	130	130	1,543	
Bromoform	0	0		0	370	370	4,393	
Carbon Tetrachloride	0	0		0	560	560	6,648	
Chlorobenzene	0	0		0	240	240	2,849	
Chlorodibromomethane	0	0		0	N/A	N/A	N/A	
2-Chloroethyl Vinyl Ether	0	0		0	3,500	3,500	41,552	
Chloroform	0	0		0	390	390	4,630	
Dichlorobromomethane	0	0		0	N/A	N/A	N/A	
1,2-Dichloroethane	0	0		0	3,100	3,100	36,803	
1,1-Dichloroethylene	0	0		0	1,500	1,500	17,808	
1,2-Dichloropropane	0	0		0	2,200	2,200	26,119	
1,3-Dichloropropylene	0	0		0	61	61.0	724	

Ethylbenzene	0	0	0	580	580	6,886	
Methyl Bromide	0	0	0	110	110	1,306	
Methyl Chloride	0	0	0	5,500	5,500	65,296	
Methylene Chloride	0	0	0	2,400	2,400	28,493	
1,1,2,2-Tetrachloroethane	0	0	0	210	210	2,493	
Tetrachloroethylene	0	0	0	140	140	1,662	
Toluene	0	0	0	330	330	3,918	
1,2-trans-Dichloroethylene	0	0	0	1,400	1,400	16,621	
1,1,1-Trichloroethane	0	0	0	610	610	7,242	
1,1,2-Trichloroethane	0	0	0	680	680	8,073	
Trichloroethylene	0	0	0	450	450	5,342	
Vinyl Chloride	0	0	0	N/A	N/A	N/A	
2-Chlorophenol	0	0	0	110	110	1,306	
2,4-Dichlorophenol	0	0	0	340	340	4,037	
2,4-Dimethylphenol	0	0	0	130	130	1,543	
4,6-Dinitro-o-Cresol	0	0	0	16	16.0	190	
2,4-Dinitrophenol	0	0	0	130	130	1,543	
2-Nitrophenol	0	0	0	1,600	1,600	18,995	
4-Nitrophenol	0	0	0	470	470	5,580	
p-Chloro-m-Cresol	0	0	0	500	500	5,936	
Pentachlorophenol	0	0	0	6.693	6.69	79.5	
Phenol	0	0	0	N/A	N/A	N/A	
2,4,6-Trichlorophenol	0	0	0	91	91.0	1,080	
Acenaphthene	0	0	0	17	17.0	202	
Anthracene	0	0	0	N/A	N/A	N/A	
Benzidine	0	0	0	59	59.0	700	
Benzo(a)Anthracene	0	0	0	0.1	0.1	1.19	
Benzo(a)Pyrene	0	0	0	N/A	N/A	N/A	
3,4-Benzofluoranthene	0	0	0	N/A	N/A	N/A	
Benzo(k)Fluoranthene	0	0	0	N/A	N/A	N/A	
Bis(2-Chloroethyl)Ether	0	0	0	6,000	6,000	71,232	
Bis(2-Chloroisopropyl)Ether	0	0	0	N/A	N/A	N/A	
Bis(2-Ethylhexyl)Phthalate	0	0	0	910	910	10,804	
4-Bromophenyl Phenyl Ether	0	0	0	54	54.0	641	
Butyl Benzyl Phthalate	0	0	0	35	35.0	416	
2-Chloronaphthalene	0	0	0	N/A	N/A	N/A	
Chrysene	0	0	0	N/A	N/A	N/A	
Dibenzo(a,h)Anthrancene	0	0	0	N/A	N/A	N/A	
1,2-Dichlorobenzene	0	0	0	160	160	1,900	
1,3-Dichlorobenzene	0	0	0	69	69.0	819	
1,4-Dichlorobenzene	0	0	0	150	150	1,781	
3,3-Dichlorobenzidine	0	0	0	N/A	N/A	N/A	
Diethyl Phthalate	0	0	0	800	800	9,498	
Dimethyl Phthalate	0	0	0	500	500	5,936	
Di-n-Butyl Phthalate	0	0	0	21	21.0	249	

2.4 Dipitrotoluopo	0	0		0	220	220	2 700	
	0	0		0	200	200	2 374	
	0	0		0	200	200	2,574	
Fluoranthono	0	0		0	40	40.0	475	
Eluorono	0	0		0	40 N/A	40.0	473 N/A	
Hovesblersbenzons	0	0		0		N/A		
Hexachiorobertzeite	0	0		0	N/A	N/A	N/A	
	0	0		0	2	2.0	23.7	
Hexachloroothano	0	0		0	12	12.0	142	
	0	0		0	12 N/A	12.0 N/A	142 N/A	
	0	0		0	2 100	2 100	24.021	
Naphthalana	0	0		0	2,100	2,100	24,931 510	
Napitinalene	0	0		0	43 910	43.0 910	0.616	
Nitropedimethylemine	0	0		0	2,400	2,400	9,616	
n-Nitrosodimetnylamine	0	0		0	3,400	3,400	40,365	
n-Nitrosodi-n-Propylamine	0	0		0	N/A	N/A	IN/A	
n-initrosodipnenyiamine	0	0		0	59	59.0	700	
Phenanthrene	0	0		0	1	1.0	11.9	
Pyrene	0	0		0	N/A	N/A	N/A	
1,2,4- I richlorobenzene	0	0		0	26	26.0	309	
Aldrin	0	0		0	0.1	0.1	1.19	
alpha-BHC	0	0		0	N/A	N/A	N/A	
beta-BHC	0	0		0	N/A	N/A	N/A	
gamma-BHC	0	0		0	N/A	N/A	N/A	
Chlordane	0	0		0	0.0043	0.004	0.051	
4,4-DDT	0	0		0	0.001	0.001	0.012	
4,4-DDE	0	0		0	0.001	0.001	0.012	
4,4-DDD	0	0		0	0.001	0.001	0.012	
Dieldrin	0	0		0	0.056	0.056	0.66	
alpha-Endosulfan	0	0		0	0.056	0.056	0.66	
beta-Endosulfan	0	0		0	0.056	0.056	0.66	
Endosulfan Sulfate	0	0		0	N/A	N/A	N/A	
Endrin	0	0		0	0.036	0.036	0.43	
Endrin Aldehyde	0	0		0	N/A	N/A	N/A	
Heptachlor	0	0		0	0.0038	0.004	0.045	
Heptachlor Epoxide	0	0		0	0.0038	0.004	0.045	
Toxaphene	0	0		0	0.0002	0.0002	0.002	
Total Strontium	0	0		0	N/A	N/A	N/A	
✓ THH CC	T (min): 7	20	PMF:	0.249	Ana	llysis Hardne	ss (mg/l):	N/A Analysis pH: N/A
	Stream	Stream	Trib Conc	Fate	WQC	WQ Obj		October 1
Pollutants	Conc	CV	(µg/L)	Coef	(µg/L)	, (μg/L)	VVLA (µg/L)	Comments
I otal Dissolved Solids (PWS)	(µg/L) 0	0		0	500,000	500,000	N/A	
Chloride (PWS)	0	0		0	250,000	250,000	N/A	
Sulfate (PWS)	0	0		0	250,000	250,000	N/A	

Fluoride (PWS)	0	0	0	2,000	2,000	N/A	
Total Aluminum	0	0	0	N/A	N/A	N/A	
Total Antimony	0	0	0	5.6	5.6	66.5	
Total Arsenic	0	0	0	10	10.0	119	
Total Barium	0	0	0	2,400	2,400	28,493	
Total Boron	0	0	0	3,100	3,100	36,803	
Total Cadmium	0	0	0	N/A	N/A	N/A	
Total Chromium (III)	0	0	0	N/A	N/A	N/A	
Hexavalent Chromium	0	0	0	N/A	N/A	N/A	
Total Cobalt	0	0	0	N/A	N/A	N/A	
Total Copper	0	0	0	N/A	N/A	N/A	
Free Cyanide	0	0	0	4	4.0	47.5	
Dissolved Iron	0	0	0	300	300	3,562	
Total Iron	0	0	0	N/A	N/A	N/A	
Total Lead	0	0	0	N/A	N/A	N/A	
Total Manganese	0	0	0	1,000	1,000	11,872	
Total Mercury	0	0	0	0.050	0.05	0.59	
Total Nickel	0	0	0	610	610	7,242	
Total Phenols (Phenolics) (PWS)	0	0	0	5	5.0	N/A	
Total Selenium	0	0	0	N/A	N/A	N/A	
Total Silver	0	0	0	N/A	N/A	N/A	
Total Thallium	0	0	0	0.24	0.24	2.85	
Total Zinc	0	0	0	N/A	N/A	N/A	
Acrolein	0	0	0	3	3.0	35.6	
Acrylonitrile	0	0	0	N/A	N/A	N/A	
Benzene	0	0	0	N/A	N/A	N/A	
Bromoform	0	0	0	N/A	N/A	N/A	
Carbon Tetrachloride	0	0	0	N/A	N/A	N/A	
Chlorobenzene	0	0	0	100	100.0	1,187	
Chlorodibromomethane	0	0	0	N/A	N/A	N/A	
2-Chloroethyl Vinyl Ether	0	0	0	N/A	N/A	N/A	
Chloroform	0	0	0	N/A	N/A	N/A	
Dichlorobromomethane	0	0	0	N/A	N/A	N/A	
1,2-Dichloroethane	0	0	0	N/A	N/A	N/A	
1,1-Dichloroethylene	0	0	0	33	33.0	392	
1,2-Dichloropropane	0	0	0	N/A	N/A	N/A	
1,3-Dichloropropylene	0	0	0	N/A	N/A	N/A	
Ethylbenzene	0	0	0	68	68.0	807	
Methyl Bromide	0	0	0	100	100.0	1,187	
Methyl Chloride	0	0	0	N/A	N/A	N/A	
Methylene Chloride	0	0	0	N/A	N/A	N/A	
1,1,2,2-Tetrachloroethane	0	0	0	N/A	N/A	N/A	
Tetrachloroethylene	0	0	0	N/A	N/A	N/A	
Toluene	0	0	0	57	57.0	677	
1,2-trans-Dichloroethylene	0	0	0	100	100.0	1,187	

1,1,1-Trichloroethane	0	0	0	10,000	10,000	118,721	
1,1,2-Trichloroethane	0	0	0	N/A	N/A	N/A	
Trichloroethylene	0	0	0	N/A	N/A	N/A	
Vinyl Chloride	0	0	0	N/A	N/A	N/A	
2-Chlorophenol	0	0	0	30	30.0	356	
2,4-Dichlorophenol	0	0	0	10	10.0	119	
2,4-Dimethylphenol	0	0	0	100	100.0	1,187	
4,6-Dinitro-o-Cresol	0	0	0	2	2.0	23.7	
2,4-Dinitrophenol	0	0	0	10	10.0	119	
2-Nitrophenol	0	0	0	N/A	N/A	N/A	
4-Nitrophenol	0	0	0	N/A	N/A	N/A	
p-Chloro-m-Cresol	0	0	0	N/A	N/A	N/A	
Pentachlorophenol	0	0	0	N/A	N/A	N/A	
Phenol	0	0	0	4,000	4,000	47,488	
2,4,6-Trichlorophenol	0	0	0	N/A	N/A	N/A	
Acenaphthene	0	0	0	70	70.0	831	
Anthracene	0	0	0	300	300	3,562	
Benzidine	0	0	0	N/A	N/A	N/A	
Benzo(a)Anthracene	0	0	0	N/A	N/A	N/A	
Benzo(a)Pyrene	0	0	0	N/A	N/A	N/A	
3,4-Benzofluoranthene	0	0	0	N/A	N/A	N/A	
Benzo(k)Fluoranthene	0	0	0	N/A	N/A	N/A	
Bis(2-Chloroethyl)Ether	0	0	0	N/A	N/A	N/A	
Bis(2-Chloroisopropyl)Ether	0	0	0	200	200	2,374	
Bis(2-Ethylhexyl)Phthalate	0	0	0	N/A	N/A	N/A	
4-Bromophenyl Phenyl Ether	0	0	0	N/A	N/A	N/A	
Butyl Benzyl Phthalate	0	0	0	0.1	0.1	1.19	
2-Chloronaphthalene	0	0	0	800	800	9,498	
Chrysene	0	0	0	N/A	N/A	N/A	
Dibenzo(a,h)Anthrancene	0	0	0	N/A	N/A	N/A	
1,2-Dichlorobenzene	0	0	0	1,000	1,000	11,872	
1,3-Dichlorobenzene	0	0	0	7	7.0	83.1	
1,4-Dichlorobenzene	0	0	0	300	300	3,562	
3,3-Dichlorobenzidine	0	0	0	N/A	N/A	N/A	
Diethyl Phthalate	0	0	0	600	600	7,123	
Dimethyl Phthalate	0	0	0	2,000	2,000	23,744	
Di-n-Butyl Phthalate	0	0	0	20	20.0	237	
2,4-Dinitrotoluene	0	0	0	N/A	N/A	N/A	
2,6-Dinitrotoluene	0	0	0	N/A	N/A	N/A	
1,2-Diphenylhydrazine	0	0	0	N/A	N/A	N/A	
Fluoranthene	0	0	0	20	20.0	237	
Fluorene	0	0	0	50	50.0	594	
Hexachlorobenzene	0	0	0	N/A	N/A	N/A	
Hexachlorobutadiene	0	0	0	N/A	N/A	N/A	
Hexachlorocyclopentadiene	0	0	0	4	4.0	47.5	

						-		
Hexachloroethane	0	0		0	N/A	N/A	N/A	
Indeno(1,2,3-cd)Pyrene	0	0		0	N/A	N/A	N/A	
Isophorone	0	0		0	34	34.0	404	
Naphthalene	0	0		0	N/A	N/A	N/A	
Nitrobenzene	0	0		0	10	10.0	119	
n-Nitrosodimethylamine	0	0		0	N/A	N/A	N/A	
n-Nitrosodi-n-Propylamine	0	0		0	N/A	N/A	N/A	
n-Nitrosodiphenylamine	0	0		0	N/A	N/A	N/A	
Phenanthrene	0	0		0	N/A	N/A	N/A	
Pyrene	0	0		0	20	20.0	237	
1,2,4-Trichlorobenzene	0	0		0	0.07	0.07	0.83	
Aldrin	0	0		0	N/A	N/A	N/A	
alpha-BHC	0	0		0	N/A	N/A	N/A	
beta-BHC	0	0		0	N/A	N/A	N/A	
gamma-BHC	0	0		0	4.2	4.2	49.9	
Chlordane	0	0		0	N/A	N/A	N/A	
4,4-DDT	0	0		0	N/A	N/A	N/A	
4.4-DDE	0	0		0	N/A	N/A	N/A	
4,4-DDD	0	0		0	N/A	N/A	N/A	
Dieldrin	0	0		0	N/A	N/A	N/A	
alpha-Endosulfan	0	0		0	20	20.0	237	
beta-Endosulfan	0	0		0	20	20.0	237	
Endosulfan Sulfate	0	0		0	20	20.0	237	
Endrin	0	0		0	0.03	0.03	0.36	
Endrin Aldehvde	0	0		0	1	1.0	11.9	
Heptachlor	0	0		0	N/A	N/A	N/A	
Heptachlor Epoxide	0	0		0	N/A	N/A	N/A	
Toxaphene	0	0		0	N/A	N/A	N/A	
Total Strontium	0	0		0	4.000	4.000	47.488	
	Ũ	Ŭ		Ū	4,000	4,000	47,400	
CRL CC	T (min): 7	20	PMF:	0.363	Ana	alysis Hardne	ess (mg/l):	N/A Analysis pH: N/A
Pollutants	Conc	Stream	Trib Conc	Fate	WQC	WQ Obj	WI A (ug/L)	Comments
1 ondunto	(ug/L)	CV	(µg/L)	Coef	(µg/L)	(µg/L)	ν <i>Ε</i> , (μg/Ε)	Commonte
Total Dissolved Solids (PWS)	<u>(-9,-</u>) U	0		0	N/A	N/A	N/A	
Chloride (PWS)	0	0		0	N/A	N/A	N/A	
Sulfate (PWS)	0	0		0	N/A	N/A	N/A	
Fluoride (PWS)	0	0		0	N/A	N/A	N/A	
Total Aluminum	0	0		0	N/A	N/A	N/A	
Total Antimony	0	0		0	N/A	N/A	N/A	
Total Arsenic	0	0		0	N/A	N/A	N/A	
Total Barium	0	0		0	N/A	N/A	N/A	
Total Boron	0	0		0	N/A	N/A	N/A	
Total Cadmium	0	0		0	N/A	N/A	N/A	
Total Chromium (III)	0	0		0	N/A	N/A	N/A	

Hexavalent Chromium	0	0	0	N/A	N/A	N/A	
Total Cobalt	0	0	0	N/A	N/A	N/A	
Total Copper	0	0	0	N/A	N/A	N/A	
Free Cyanide	0	0	0	N/A	N/A	N/A	
Dissolved Iron	0	0	0	N/A	N/A	N/A	
Total Iron	0	0	0	N/A	N/A	N/A	
Total Lead	0	0	0	N/A	N/A	N/A	
Total Manganese	0	0	0	N/A	N/A	N/A	
Total Mercury	0	0	0	N/A	N/A	N/A	
Total Nickel	0	0	0	N/A	N/A	N/A	
Total Phenols (Phenolics) (PWS)	0	0	0	N/A	N/A	N/A	
Total Selenium	0	0	0	N/A	N/A	N/A	
Total Silver	0	0	0	N/A	N/A	N/A	
Total Thallium	0	0	0	N/A	N/A	N/A	
Total Zinc	0	0	0	N/A	N/A	N/A	
Acrolein	0	0	0	N/A	N/A	N/A	
Acrylonitrile	0	0	0	0.06	0.06	3.24	
Benzene	0	0	0	0.58	0.58	31.3	
Bromoform	0	0	0	7	7.0	378	
Carbon Tetrachloride	0	0	0	0.4	0.4	21.6	
Chlorobenzene	0	0	0	N/A	N/A	N/A	
Chlorodibromomethane	0	0	0	0.8	0.8	43.2	
2-Chloroethyl Vinyl Ether	0	0	0	N/A	N/A	N/A	
Chloroform	0	0	0	5.7	5.7	308	
Dichlorobromomethane	0	0	0	0.95	0.95	51.3	
1,2-Dichloroethane	0	0	0	9.9	9.9	534	
1,1-Dichloroethylene	0	0	0	N/A	N/A	N/A	
1,2-Dichloropropane	0	0	0	0.9	0.9	48.6	
1,3-Dichloropropylene	0	0	0	0.27	0.27	14.6	
Ethylbenzene	0	0	0	N/A	N/A	N/A	
Methyl Bromide	0	0	0	N/A	N/A	N/A	
Methyl Chloride	0	0	0	N/A	N/A	N/A	
Methylene Chloride	0	0	0	20	20.0	1,079	
1,1,2,2-Tetrachloroethane	0	0	0	0.2	0.2	10.8	
Tetrachloroethylene	0	0	0	10	10.0	540	
Toluene	0	0	0	N/A	N/A	N/A	
1,2-trans-Dichloroethylene	0	0	0	N/A	N/A	N/A	
1,1,1-Trichloroethane	0	0	0	N/A	N/A	N/A	
1,1,2-Trichloroethane	0	0	0	0.55	0.55	29.7	
Trichloroethylene	0	0	0	0.6	0.6	32.4	
Vinyl Chloride	0	0	0	0.02	0.02	1.08	
2-Chlorophenol	0	0	0	N/A	N/A	N/A	
2,4-Dichlorophenol	0	0	0	N/A	N/A	N/A	
2,4-Dimethylphenol	0	0	0	N/A	N/A	N/A	
4,6-Dinitro-o-Cresol	0	0	0	N/A	N/A	N/A	

2,4-Dinitrophenol	0	0	0	N/A	N/A	N/A	
2-Nitrophenol	0	0	0	N/A	N/A	N/A	
4-Nitrophenol	0	0	0	N/A	N/A	N/A	
p-Chloro-m-Cresol	0	0	0	N/A	N/A	N/A	
Pentachlorophenol	0	0	0	0.030	0.03	1.62	
Phenol	0	0	0	N/A	N/A	N/A	
2,4,6-Trichlorophenol	0	0	0	1.5	1.5	81.0	
Acenaphthene	0	0	0	N/A	N/A	N/A	
Anthracene	0	0	0	N/A	N/A	N/A	
Benzidine	0	0	0	0.0001	0.0001	0.005	
Benzo(a)Anthracene	0	0	0	0.001	0.001	0.054	
Benzo(a)Pyrene	0	0	0	0.0001	0.0001	0.005	
3,4-Benzofluoranthene	0	0	0	0.001	0.001	0.054	
Benzo(k)Fluoranthene	0	0	0	0.01	0.01	0.54	
Bis(2-Chloroethyl)Ether	0	0	0	0.03	0.03	1.62	
Bis(2-Chloroisopropyl)Ether	0	0	0	N/A	N/A	N/A	
Bis(2-Ethylhexyl)Phthalate	0	0	0	0.32	0.32	17.3	
4-Bromophenyl Phenyl Ether	0	0	0	N/A	N/A	N/A	
Butyl Benzyl Phthalate	0	0	0	N/A	N/A	N/A	
2-Chloronaphthalene	0	0	0	N/A	N/A	N/A	
Chrysene	0	0	0	0.12	0.12	6.48	
Dibenzo(a,h)Anthrancene	0	0	0	0.0001	0.0001	0.005	
1,2-Dichlorobenzene	0	0	0	N/A	N/A	N/A	
1,3-Dichlorobenzene	0	0	0	N/A	N/A	N/A	
1,4-Dichlorobenzene	0	0	0	N/A	N/A	N/A	
3,3-Dichlorobenzidine	0	0	0	0.05	0.05	2.7	
Diethyl Phthalate	0	0	0	N/A	N/A	N/A	
Dimethyl Phthalate	0	0	0	N/A	N/A	N/A	
Di-n-Butyl Phthalate	0	0	0	N/A	N/A	N/A	
2,4-Dinitrotoluene	0	0	0	0.05	0.05	2.7	
2,6-Dinitrotoluene	0	0	0	0.05	0.05	2.7	
1,2-Diphenylhydrazine	0	0	0	0.03	0.03	1.62	
Fluoranthene	0	0	0	N/A	N/A	N/A	
Fluorene	0	0	0	N/A	N/A	N/A	
Hexachlorobenzene	0	0	0	0.00008	0.00008	0.004	
Hexachlorobutadiene	0	0	0	0.01	0.01	0.54	
Hexachlorocyclopentadiene	0	0	0	N/A	N/A	N/A	
Hexachloroethane	0	0	0	0.1	0.1	5.4	
Indeno(1,2,3-cd)Pyrene	0	0	0	0.001	0.001	0.054	
Isophorone	0	0	0	N/A	N/A	N/A	
Naphthalene	0	0	0	N/A	N/A	N/A	
Nitrobenzene	0	0	0	N/A	N/A	N/A	
n-Nitrosodimethylamine	0	0	0	0.0007	0.0007	0.038	
n-Nitrosodi-n-Propylamine	0	0	0	0.005	0.005	0.27	
n-Nitrosodiphenylamine	0	0	0	3.3	3.3	178	

Phenanthrene	0	0	0	N/A	N/A	N/A	
Pyrene	0	0	0	N/A	N/A	N/A	
1,2,4-Trichlorobenzene	0	0	0	N/A	N/A	N/A	
Aldrin	0	0	0	0.000008	8.00E-07	0.00004	
alpha-BHC	0	0	0	0.0004	0.0004	0.022	
beta-BHC	0	0	0	0.008	0.008	0.43	
gamma-BHC	0	0	0	N/A	N/A	N/A	
Chlordane	0	0	0	0.0003	0.0003	0.016	
4,4-DDT	0	0	0	0.00003	0.00003	0.002	
4,4-DDE	0	0	0	0.00002	0.00002	0.001	
4,4-DDD	0	0	0	0.0001	0.0001	0.005	
Dieldrin	0	0	0	0.000001	0.000001	0.00005	
alpha-Endosulfan	0	0	0	N/A	N/A	N/A	
beta-Endosulfan	0	0	0	N/A	N/A	N/A	
Endosulfan Sulfate	0	0	0	N/A	N/A	N/A	
Endrin	0	0	0	N/A	N/A	N/A	
Endrin Aldehyde	0	0	0	N/A	N/A	N/A	
Heptachlor	0	0	0	0.000006	0.000006	0.0003	
Heptachlor Epoxide	0	0	0	0.00003	0.00003	0.002	
Toxaphene	0	0	0	0.0007	0.0007	0.038	
Total Strontium	0	0	0	N/A	N/A	N/A	

Recommended WQBELs & Monitoring Requirements

No. Samples/Month: 4

	Mass	Limits	Concentration Limits						
Pollutants	AML (lbs/day)	MDL (lbs/day)	AML	MDL	IMAX	Units	Governing WQBEL	WQBEL Basis	Comments
Total Copper	Report	Report	Report	Report	Report	µg/L	23.1	AFC	Discharge Conc > 10% WQBEL (no RP)
Total Zinc	Report	Report	Report	Report	Report	µg/L	198	AFC	Discharge Conc > 10% WQBEL (no RP)
Butyl Benzyl Phthalate	0.083	0.12	1.19	1.66	2.97	µg/L	1.19	THH	Discharge Conc ≥ 50% WQBEL (RP)
n-Nitrosodi-n-Propylamine	0.019	0.026	0.27	0.37	0.67	µg/L	0.27	CRL	Discharge Conc ≥ 50% WQBEL (RP)

Other Pollutants without Limits or Monitoring

The following pollutants do not require effluent limits or monitoring based on water quality because reasonable potential to exceed water quality criteria was not determined and the discharge concentration was less than thresholds for monitoring, or the pollutant was not detected and a sufficiently sensitive analytical method was used (e.g., <= Target QL).

Pollutants	Governing WQBEL	Units	Comments
Total Dissolved Solids (PWS)	N/A	N/A	PWS Not Applicable
Chloride (PWS)	N/A	N/A	PWS Not Applicable
Bromide	N/A	N/A	No WQS
Sulfate (PWS)	N/A	N/A	PWS Not Applicable
Fluoride (PWS)	N/A	N/A	PWS Not Applicable

Total Aluminum	1,235	µg/L	Discharge Conc ≤ 10% WQBEL	
Total Antimony	66.5	µg/L	Discharge Conc ≤ 10% WQBEL	
Total Arsenic	119	µg/L	Discharge Conc ≤ 10% WQBEL	
Total Barium	28,493	µg/L	Discharge Conc ≤ 10% WQBEL	
Total Beryllium	N/A	N/A	No WQS	
Total Boron	13,339	µg/L	Discharge Conc ≤ 10% WQBEL	
Total Cadmium	3.21	µg/L	Discharge Conc < TQL	
Total Chromium (III)	1,024	µg/L	Discharge Conc ≤ 10% WQBEL	
Hexavalent Chromium	26.8	µg/L	Discharge Conc ≤ 10% WQBEL	
Total Cobalt	156	µg/L	Discharge Conc < TQL	
Free Cyanide	36.2	µg/L	Discharge Conc ≤ 25% WQBEL	
Total Cyanide	N/A	N/A	No WQS	
Dissolved Iron	3,562	µg/L	Discharge Conc ≤ 10% WQBEL	
Total Iron	67,065	µg/L	Discharge Conc ≤ 10% WQBEL	
Total Lead	37.8	µg/L	Discharge Conc ≤ 10% WQBEL	
Total Manganese	11,872	µg/L	Discharge Conc ≤ 10% WQBEL	
Total Mercury	0.59	µg/L	Discharge Conc < TQL	
Total Nickel	620	µg/L	Discharge Conc ≤ 10% WQBEL	
Total Phenols (Phenolics) (PWS)		µg/L	PWS Not Applicable	
Total Selenium	59.2	µg/L	Discharge Conc < TQL	
Total Silver	6.27	µg/L	Discharge Conc < TQL	
Total Thallium	2.85	µg/L	Discharge Conc < TQL	
Total Molybdenum	N/A	N/A	No WQS	
Acrolein	4.94	µg/L	Discharge Conc < TQL	
Acrylonitrile	3.24	µg/L	Discharge Conc < TQL	
Benzene	31.3	µg/L	Discharge Conc < TQL	
Bromoform	378	µg/L	Discharge Conc < TQL	
Carbon Tetrachloride	21.6	µg/L	Discharge Conc < TQL	
Chlorobenzene	1,187	µg/L	Discharge Conc < TQL	
Chlorodibromomethane	43.2	µg/L	Discharge Conc ≤ 25% WQBEL	
Chloroethane	N/A	N/A	No WQS	
2-Chloroethyl Vinyl Ether	29,642	µg/L	Discharge Conc < TQL	
Chloroform	308	µg/L	Discharge Conc ≤ 25% WQBEL	
Dichlorobromomethane	51.3	µg/L	Discharge Conc ≤ 25% WQBEL	
1,1-Dichloroethane	N/A	N/A	No WQS	
1,2-Dichloroethane	534	µg/L	Discharge Conc < TQL	
1,1-Dichloroethylene	392	µg/L	Discharge Conc < TQL	
1,2-Dichloropropane	48.6	µg/L	Discharge Conc < TQL	
1,3-Dichloropropylene	14.6	µg/L	Discharge Conc ≤ 25% WQBEL	
1,4-Dioxane	N/A	N/A	No WQS	
Ethylbenzene	807	µg/L	Discharge Conc < TQL	
Methyl Bromide	906	µg/L	Discharge Conc < TQL	
Methyl Chloride	46.110	ua/L	Discharge Conc ≤ 25% WQBEL	
Methylene Chloride	1.079	ua/L	Discharge Conc ≤ 25% WQBEL	
1.1.2.2-Tetrachloroethane	10.8	ua/L	Discharge Conc < TQL	

Tetrachloroethylene	540	µg/L	Discharge Conc < TQL
Toluene	677	µg/L	Discharge Conc < TQL
1,2-trans-Dichloroethylene	1,187	µg/L	Discharge Conc < TQL
1,1,1-Trichloroethane	4,940	µg/L	Discharge Conc < TQL
1,1,2-Trichloroethane	29.7	µg/L	Discharge Conc < TQL
Trichloroethylene	32.4	µg/L	Discharge Conc < TQL
Vinyl Chloride	1.08	µg/L	Discharge Conc < TQL
2-Chlorophenol	356	µg/L	Discharge Conc < TQL
2,4-Dichlorophenol	119	µg/L	Discharge Conc < TQL
2,4-Dimethylphenol	1,087	µg/L	Discharge Conc < TQL
4,6-Dinitro-o-Cresol	23.7	µg/L	Discharge Conc < TQL
2,4-Dinitrophenol	119	µg/L	Discharge Conc < TQL
2-Nitrophenol	13,174	µg/L	Discharge Conc < TQL
4-Nitrophenol	3,788	µg/L	Discharge Conc < TQL
p-Chloro-m-Cresol	263	µg/L	Discharge Conc < TQL
Pentachlorophenol	1.62	µg/L	Discharge Conc < TQL
Phenol	47,488	µg/L	Discharge Conc ≤ 25% WQBEL
2,4,6-Trichlorophenol	81.0	µg/L	Discharge Conc ≤ 25% WQBEL
Acenaphthene	137	µg/L	Discharge Conc < TQL
Acenaphthylene	N/A	N/A	No WQS
Anthracene	3,562	µg/L	Discharge Conc < TQL
Benzidine	0.005	µg/L	Discharge Conc < TQL
Benzo(a)Anthracene	0.054	µg/L	Discharge Conc < TQL
Benzo(a)Pyrene	0.005	µg/L	Discharge Conc < TQL
3,4-Benzofluoranthene	0.054	µg/L	Discharge Conc < TQL
Benzo(ghi)Perylene	N/A	N/A	No WQS
Benzo(k)Fluoranthene	0.54	µg/L	Discharge Conc < TQL
Bis(2-Chloroethoxy)Methane	N/A	N/A	No WQS
Bis(2-Chloroethyl)Ether	1.62	µg/L	Discharge Conc < TQL
Bis(2-Chloroisopropyl)Ether	2,374	µg/L	Discharge Conc < TQL
Bis(2-Ethylhexyl)Phthalate	17.3	µg/L	Discharge Conc ≤ 25% WQBEL
4-Bromophenyl Phenyl Ether	445	µg/L	Discharge Conc < TQL
2-Chloronaphthalene	9,498	µg/L	Discharge Conc < TQL
4-Chlorophenyl Phenyl Ether	N/A	N/A	No WQS
Chrysene	6.48	µg/L	Discharge Conc < TQL
Dibenzo(a,h)Anthrancene	0.005	µg/L	Discharge Conc < TQL
1,2-Dichlorobenzene	1,350	µg/L	Discharge Conc < TQL
1,3-Dichlorobenzene	83.1	µg/L	Discharge Conc < TQL
1,4-Dichlorobenzene	1,202	µg/L	Discharge Conc < TQL
3,3-Dichlorobenzidine	2.7	µg/L	Discharge Conc < TQL
Diethyl Phthalate	6,587	µg/L	Discharge Conc ≤ 25% WQBEL
Dimethyl Phthalate	4,117	µg/L	Discharge Conc < TQL
Di-n-Butyl Phthalate	181	µg/L	Discharge Conc ≤ 25% WQBEL
2,4-Dinitrotoluene	2.7	µg/L	Discharge Conc < TQL
2,6-Dinitrotoluene	2.7	μg/L	Discharge Conc < TQL

Di-n-Octyl Phthalate	N/A	N/A	No WQS	
1,2-Diphenylhydrazine	1.62	µg/L	Discharge Conc < TQL	
Fluoranthene	237	µg/L	Discharge Conc < TQL	
Fluorene	594	µg/L	Discharge Conc < TQL	
Hexachlorobenzene	0.004	µg/L	Discharge Conc < TQL	
Hexachlorobutadiene	0.54	µg/L	Discharge Conc < TQL	
Hexachlorocyclopentadiene	8.23	µg/L	Discharge Conc < TQL	
Hexachloroethane	5.4	µg/L	Discharge Conc < TQL	
Indeno(1,2,3-cd)Pyrene	0.054	µg/L	Discharge Conc < TQL	
Isophorone	404	µg/L	Discharge Conc < TQL	
Naphthalene	231	µg/L	Discharge Conc < TQL	
Nitrobenzene	119	µg/L	Discharge Conc < TQL	
n-Nitrosodimethylamine	0.038	µg/L	Discharge Conc < TQL	
n-Nitrosodiphenylamine	178	µg/L	Discharge Conc < TQL	
Phenanthrene	8.23	µg/L	Discharge Conc < TQL	
Pyrene	237	µg/L	Discharge Conc < TQL	
1,2,4-Trichlorobenzene	0.83	µg/L	Discharge Conc < TQL	
Aldrin	0.00004	µg/L	Discharge Conc < TQL	
alpha-BHC	0.022	µg/L	Discharge Conc < TQL	
beta-BHC	0.43	µg/L	Discharge Conc < TQL	
gamma-BHC	1.56	µg/L	Discharge Conc < TQL	
delta BHC	N/A	N/A	No WQS	
Chlordane	0.016	µg/L	Discharge Conc < TQL	
4,4-DDT	0.002	µg/L	Discharge Conc < TQL	
4,4-DDE	0.001	µg/L	Discharge Conc < TQL	
4,4-DDD	0.005	µg/L	Discharge Conc < TQL	
Dieldrin	0.00005	µg/L	Discharge Conc < TQL	
alpha-Endosulfan	0.36	µg/L	Discharge Conc < TQL	
beta-Endosulfan	0.36	µg/L	Discharge Conc < TQL	
Endosulfan Sulfate	237	µg/L	Discharge Conc < TQL	
Endrin	0.14	µg/L	Discharge Conc < TQL	
Endrin Aldehyde	11.9	µg/L	Discharge Conc < TQL	
Heptachlor	0.0003	µg/L	Discharge Conc < TQL	
Heptachlor Epoxide	0.002	µg/L	Discharge Conc < TQL	
Toxaphene	0.002	µg/L	Discharge Conc < TQL	
Gross Alpha	N/A	N/A	No WQS	
Total Beta	N/A	N/A	No WQS	
Radium 226/228	N/A	N/A	No WQS	
Total Strontium	47,488	µg/L	Discharge Conc ≤ 10% WQBEL	
Total Uranium	N/A	N/A	No WQS	