

Application Type  
Facility Type  
Major / Minor

Renewal  
Municipal  
Major

**NPDES PERMIT FACT SHEET  
INDIVIDUAL SEWAGE**

Application No. **PA0027120**  
APS ID **1062503**  
Authorization ID **1394868**

**Applicant and Facility Information**

|                           |                                           |                  |                                                 |
|---------------------------|-------------------------------------------|------------------|-------------------------------------------------|
| Applicant Name            | <b>Warren City Warren County</b>          | Facility Name    | <b>Warren City WWTP</b>                         |
| Applicant Address         | 318 W 3rd Avenue<br>Warren, PA 16365-2388 | Facility Address | 380 West Harmar Street<br>Warren, PA 16365-2388 |
| Applicant Contact         | Michael Holtz                             | Facility Contact | Michael Holtz                                   |
| Applicant Phone           | (814) 723-6300                            | Facility Phone   | (814) 723-6300                                  |
| Client ID                 | 82555                                     | Site ID          | 261846                                          |
| Ch 94 Load Status         | Not Overloaded                            | Municipality     | Warren City                                     |
| Connection Status         | No Limitations                            | County           | Warren                                          |
| Date Application Received | May 3, 2022                               | EPA Waived?      | No                                              |
| Date Application Accepted |                                           | If No, Reason    | Major Facility                                  |
| Purpose of Application    | NPDES renewal for a POTW with CSO.        |                  |                                                 |

**Summary of Review**

The permittee currently has 4 existing Combined Sewer Overflows (CSOs). They are demonstrating compliance with the nine minimal control requirements through 85% capture. The CSO nine minimal controls (NMCs) and long-term control plan (LTCP) have been previously submitted to the Department and approved by the Department.

The plant and the city's two pump stations were upgraded in 2015 with the proper design capacity to handle peak flows, and no CSO discharge events have occurred since this upgrade was completed.

This facility discharges to the Allegheny River, which contains threatened & endangered species of mussels. A summary of concerns and considerations is included in this fact sheet.

The City of Warren is currently in an EPA approved industrial pretreatment program. None of the industrial users are considered a significant industrial user.

E. Coli monitoring was added per Department SOP. The Department's Toxics Management Spreadsheet (TMS) established reasonable potential for several new parameters with either limits or monitoring requirements, which have been added to this permit.

Sludge use and disposal description and location(s): Sent to landfill, handled by City of Warren.

There is currently 1 open violation for this client (82555) as of 7/30/2025.

| Approve | Deny | Signatures                                                              | Date              |
|---------|------|-------------------------------------------------------------------------|-------------------|
| X       |      | Jordan A. Frey, E.I.T.<br>Jordan A. Frey, E.I.T. / Project Manager      | July 30, 2025     |
| X       |      | Adam Olesnanik<br>Adam Olesnanik, P.E. / Environmental Engineer Manager | September 2, 2025 |

### Summary of Review

#### Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

| Discharge, Receiving Waters and Water Supply Information |                                                                                                                                                         |                              |                |
|----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|----------------|
| Outfall No.                                              | 001                                                                                                                                                     | Design Flow (MGD)            | 6.5            |
| Latitude                                                 | 41° 50' 20.44"                                                                                                                                          | Longitude                    | -79° 9' 43.24" |
| Quad Name                                                | Warren                                                                                                                                                  | Quad Code                    | 41079G2        |
| Wastewater Description:                                  | Sewage Effluent                                                                                                                                         |                              |                |
| Receiving Waters                                         | Allegheny River (WWF)                                                                                                                                   | Stream Code                  | 42122          |
| NHD Com ID                                               | 112375327                                                                                                                                               | RMI                          | 188.6          |
| Drainage Area                                            | 3130                                                                                                                                                    | Yield (cfs/mi <sup>2</sup> ) | 0.08           |
| Q <sub>7-10</sub> Flow (cfs)                             | 250.4                                                                                                                                                   | Q <sub>7-10</sub> Basis      | Streamstats    |
| Elevation (ft)                                           | 1176                                                                                                                                                    | Slope (ft/ft)                | ---            |
| Watershed No.                                            | 16-B                                                                                                                                                    | Chapter 93 Class.            | WWF            |
| Existing Use                                             |                                                                                                                                                         | Existing Use Qualifier       |                |
| Exceptions to Use                                        |                                                                                                                                                         | Exceptions to Criteria       |                |
| Assessment Status                                        | Impaired                                                                                                                                                |                              |                |
| Cause(s) of Impairment                                   | CHLORIDE, MERCURY, OSMOTIC PRESSURE, PATHOGENS, PATHOGENS, TOTAL DISSOLVED SOLIDS (TDS)                                                                 |                              |                |
| Source(s) of Impairment                                  | INDUSTRIAL POINT SOURCE DISCHARGE, INDUSTRIAL POINT SOURCE DISCHARGE, INDUSTRIAL POINT SOURCE DISCHARGE, SOURCE UNKNOWN, SOURCE UNKNOWN, SOURCE UNKNOWN |                              |                |
| TMDL Status                                              | Name _____                                                                                                                                              |                              |                |
| Background/Ambient Data                                  |                                                                                                                                                         | Data Source                  |                |
| pH (SU)                                                  | 7.0                                                                                                                                                     | Default                      |                |
| Temperature (°F)                                         | 25                                                                                                                                                      | Default                      |                |
| Hardness (mg/L)                                          | 100                                                                                                                                                     | Default                      |                |
| Other:                                                   |                                                                                                                                                         |                              |                |
| Nearest Downstream Public Water Supply Intake            | Aqua Pennsylvania, Inc. - Emlenton                                                                                                                      |                              |                |
| PWS Waters                                               | Allegheny River                                                                                                                                         | Flow at Intake (cfs)         | 1376           |
| PWS RMI                                                  | 90.0                                                                                                                                                    | Distance from Outfall (mi)   | >25            |

Changes Since Last Permit Issuance: A sewer extension and new pump station (Callendar St) were permitted in August 2024.

Other Comments: None.

| Discharge, Receiving Waters and Water Supply Information  |                                                                                                                           |                        |             |
|-----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|------------------------|-------------|
| Outfall No.                                               | 002                                                                                                                       | Design Flow (MGD)      | 0           |
| Latitude                                                  | 41° 50' 20"                                                                                                               | Longitude              | 79° 09' 49" |
| Outfall No.                                               | 003                                                                                                                       | Design Flow (MGD)      | 0           |
| Latitude                                                  | 41° 50' 30"                                                                                                               | Longitude              | 79° 08' 45" |
| Outfall No.                                               | 004                                                                                                                       | Design Flow (MGD)      | 0           |
| Latitude                                                  | 41° 50' 26"                                                                                                               | Longitude              | 79° 08' 28" |
| Outfall No.                                               | 005                                                                                                                       | Design Flow (MGD)      | 0           |
| Latitude                                                  | 41° 50' 20"                                                                                                               | Longitude              | 79° 09' 40" |
| Quad Name                                                 |                                                                                                                           | Quad Code              | 0           |
| Wastewater Description: Untreated Combined Sewer Overflow |                                                                                                                           |                        |             |
| Receiving Waters                                          | Unnamed Tributary to Allegheny River (CWF)                                                                                | Stream Code            | 42122       |
| NHD Com ID                                                | 112375101                                                                                                                 | RMI                    |             |
| Watershed No.                                             | 16-B                                                                                                                      | Chapter 93 Class.      | CWF         |
| Existing Use                                              |                                                                                                                           | Existing Use Qualifier |             |
| Exceptions to Use                                         |                                                                                                                           | Exceptions to Criteria |             |
| Assessment Status                                         | Impaired                                                                                                                  |                        |             |
| Cause(s) of Impairment                                    | Chlorides, Mercury, Osmotic Pressure, Pathogens, Pathogens, TDS                                                           |                        |             |
| Source(s) of Impairment                                   | Industrial Point Source, Industrial Point Source, Industrial Point Source, Source Unknown, Source Unknown, Source Unknown |                        |             |
| TMDL Status                                               |                                                                                                                           | Name                   |             |

Changes Since Last Permit Issuance: None.

Other Comments: This is a CSO outfall pipe that bypasses the influent pumps at the plant. The bypass is controlled manually by a valve, with flow monitoring, and would be engaged during an excessive flow event.

| Treatment Facility Summary                       |                                   |                     |                            |                               |
|--------------------------------------------------|-----------------------------------|---------------------|----------------------------|-------------------------------|
| <b>Treatment Facility Name:</b> Warren City WWTP |                                   |                     |                            |                               |
| <b>WQM Permit No.</b>                            | <b>Issuance Date</b>              |                     |                            |                               |
| 6210404                                          | 11/14/2012                        |                     |                            |                               |
| 6210404 A-1                                      | 08/20/2024                        |                     |                            |                               |
| <b>Waste Type</b>                                | <b>Degree of Treatment</b>        | <b>Process Type</b> | <b>Disinfection</b>        | <b>Avg Annual Flow (MGD)</b>  |
| Sewage                                           | Secondary                         | Oxidation Ditch     | Gas Chlorine               | 6.5                           |
| <b>Hydraulic Capacity (MGD)</b>                  | <b>Organic Capacity (lbs/day)</b> | <b>Load Status</b>  | <b>Biosolids Treatment</b> | <b>Biosolids Use/Disposal</b> |
| 6.5                                              | 6500                              | Not Overloaded      | Aerobic Digestion          | Landfill                      |

Changes Since Last Permit Issuance: None.

Other Comments: None.

Compliance History

DMR Data for Outfall 001 (from June 1, 2024 to May 31, 2025)

| Parameter                                                         | MAY-25 | APR-25 | MAR-25 | FEB-25 | JAN-25 | DEC-24 | NOV-24 | OCT-24 | SEP-24 | AUG-24 | JUL-24 | JUN-24 |
|-------------------------------------------------------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| Flow (MGD)<br>Average Monthly                                     | 2.76   | 2.27   | 2.11   | 1.99   | 1.61   | 2.28   | 1.36   | 1.11   | 1.22   | 1.32   | 1.09   | 1.5    |
| Flow (MGD)<br>Weekly Average                                      | 3.14   | 2.92   | 2.36   | 2.92   | 2.64   | 2.95   | 1.82   | 1.34   | 1.61   | 1.2    | 1.38   | 2.47   |
| pH (S.U.)<br>Minimum                                              | 6.8    | 6.6    | 6.6    | 6.7    | 6.7    | 6.7    | 6.6    | 6.6    | 6.4    | 6.6    | 6.6    | 6.7    |
| pH (S.U.)<br>Maximum                                              | 7.0    | 6.9    | 6.9    | 6.9    | 7.0    | 7.0    | 6.9    | 6.9    | 7.0    | 7.1    | 7.0    | 7.1    |
| DO (mg/L)<br>Instantaneous<br>Minimum                             | 4.87   | 5.74   | 6.2    | 7.03   | 6.09   | 6.07   | 5.58   | 5.65   | 5.29   | 5.23   | 5.19   | 5.1    |
| TRC (mg/L)<br>Average Monthly                                     | 0.3    | 0.2    | 0.2    | 0.2    | 0.2    | 0.3    | 0.3    | 0.3    | 0.3    | 0.2    | 0.2    | 0.2    |
| TRC (mg/L)<br>Instantaneous<br>Maximum                            | 0.37   | 0.39   | 0.35   | 0.45   | 0.33   | 0.6    | 0.38   | 0.41   | 0.44   | 0.41   | 0.47   | 0.42   |
| CBOD5 (lbs/day)<br>Average Monthly                                | 47     | 31     | 21     | 56     | 21     | 30     | 11     | 13     | 9      | 9      | 10     | 15     |
| CBOD5 (lbs/day)<br>Weekly Average                                 | 59     | 48     | 35     | 147    | 62     | 39     | 16     | 29     | 12     | 13     | 12     | 30     |
| CBOD5 (mg/L)<br>Average Monthly                                   | 2      | 2      | 1      | 3      | 2      | 2      | 1      | 2      | 1      | 1      | 1      | 1      |
| CBOD5 (mg/L)<br>Weekly Average                                    | 3      | 3      | 2      | 0.45   | 3      | 2      | 1      | 4      | 1      | 1      | 1      | 2      |
| BOD5 (lbs/day)<br>Raw Sewage Influent<br><br/> Average<br>Monthly | 2049   | 1886   | 1754   | 2210   | 1588   | 1712   | 1629   | 1607   | 1649   | 1537   | 1724   | 1887   |
| BOD5 (lbs/day)<br>Raw Sewage Influent<br><br/> Daily Maximum      | 2486   | 2314   | 2168   | 4291   | 1748   | 2023   | 1812   | 1848   | 2554   | 1836   | 2044   | 2948   |
| BOD5 (mg/L)<br>Raw Sewage Influent<br><br/> Average<br>Monthly    | 100    | 111    | 118    | 128    | 140    | 102    | 158    | 194    | 186    | 176    | 193    | 185    |
| TSS (lbs/day)<br>Average Monthly                                  | 210    | 57     | 35     | 83     | 79     | 167    | 60     | 18     | 11     | 25     | 14     | 28     |

NPDES Permit Fact Sheet  
Warren City WWTP

NPDES Permit No. PA0027120

|                                                                  |       |       |        |       |       |        |       |       |        |       |       |        |
|------------------------------------------------------------------|-------|-------|--------|-------|-------|--------|-------|-------|--------|-------|-------|--------|
| TSS (lbs/day)<br>Raw Sewage Influent<br><br/> Average<br>Monthly | 1319  | 1260  | 1161   | 1833  | 1306  | 1391   | 1563  | 1446  | 1268   | 1221  | 1399  | 1605   |
| TSS (lbs/day)<br>Raw Sewage Influent<br><br/> Daily Maximum      | 1836  | 1643  | 1700   | 4110  | 1509  | 1664   | 2693  | 2039  | 1988   | 1525  | 1778  | 3615   |
| TSS (lbs/day)<br>Weekly Average                                  | 502   | 98    | 62     | 216   | 205   | 223    | 106   | 31    | 19     | 42    | 27    | 41     |
| TSS (mg/L)<br>Average Monthly                                    | 8     | 3     | 2      | 4     | 6     | 9      | 5     | 2     | 1      | 3     | 1     | 2      |
| TSS (mg/L)<br>Raw Sewage Influent<br><br/> Average<br>Monthly    | 65    | 75    | 78     | 110   | 115   | 82     | 150   | 175   | 143    | 139   | 155   | 152    |
| TSS (mg/L)<br>Weekly Average                                     | 13    | 5     | 4      | 6     | 10    | 10     | 7     | 4     | 2      | 3     | 3     | 3      |
| Fecal Coliform<br>(CFU/100 ml)<br>Geometric Mean                 | 4     | 4     | 3      | 5     | 3     | 5      | 2     | 2     | 8      | 11    | 190   | 3      |
| Fecal Coliform<br>(CFU/100 ml)<br>Instantaneous<br>Maximum       | 30.5  | 360.9 | 6.3    | 285.1 | 33.6  | 461.1  | 42.8  | 34.1  | 913.9  | 960.6 | 237   | 30.9   |
| Total Nitrogen<br>(lbs/day)<br>Average Quarterly                 |       |       | < 5    |       |       | < 4    |       |       | < 5    |       |       | < 11   |
| Total Nitrogen (mg/L)<br>Average Quarterly                       |       |       | < 0.5  |       |       | < 0.5  |       |       | < 0.5  |       |       | < 0.5  |
| Ammonia (lbs/day)<br>Average Monthly                             | < 2   | < 1   | < 2    | < 1   | < 1   | < 1    | < 1   | < 0.9 | < 0.9  | < 2   | < 0.9 | < 2    |
| Ammonia (mg/L)<br>Average Monthly                                | < 0.1 | < 0.1 | < 0.1  | < 0.1 | < 0.1 | < 0.1  | < 0.1 | < 0.1 | < 0.1  | < 0.1 | < 0.1 | < 0.1  |
| Total Phosphorus<br>(lbs/day)<br>Average Quarterly               |       |       | 21     |       |       | 33     |       |       | 36     |       |       | 5      |
| Total Phosphorus<br>(mg/L)<br>Average Quarterly                  |       |       | 2      |       |       | 3.82   |       |       | 3.9    |       |       | 0.21   |
| Total Nickel (mg/L)<br>Average Quarterly                         |       |       | < 0.05 |       |       | < 0.05 |       |       | < 0.05 |       |       | < 0.05 |
| Chloride (mg/L)<br>Average Monthly                               | 100   | 97.6  | 125    | 187   | 129   | 85.2   | 115   | 69.5  | 52     | 55.2  | 73    | 67.6   |

**Development of Effluent Limitations**

**Outfall No.** 001  
**Latitude** 41° 50' 21.00"  
**Wastewater Description:** Sewage Effluent

**Design Flow (MGD)** 6.5  
**Longitude** -79° 9' 39.50"

**Technology-Based Limitations**

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

| Pollutant                    | Limit (mg/l)    | SBC             | Federal Regulation | State Regulation |
|------------------------------|-----------------|-----------------|--------------------|------------------|
| CBOD <sub>5</sub>            | 25              | Average Monthly | 133.102(a)(4)(i)   | 92a.47(a)(1)     |
|                              | 40              | Average Weekly  | 133.102(a)(4)(ii)  | 92a.47(a)(2)     |
| Total Suspended Solids       | 30              | Average Monthly | 133.102(b)(1)      | 92a.47(a)(1)     |
|                              | 45              | Average Weekly  | 133.102(b)(2)      | 92a.47(a)(2)     |
| pH                           | 6.0 – 9.0 S.U.  | Min – Max       | 133.102(c)         | 95.2(1)          |
| Fecal Coliform (5/1 – 9/30)  | 200 / 100 ml    | Geo Mean        | -                  | 92a.47(a)(4)     |
| Fecal Coliform (5/1 – 9/30)  | 1,000 / 100 ml  | IMAX            | -                  | 92a.47(a)(4)     |
| Fecal Coliform (10/1 – 4/30) | 2,000 / 100 ml  | Geo Mean        | -                  | 92a.47(a)(5)     |
| Fecal Coliform (10/1 – 4/30) | 10,000 / 100 ml | IMAX            | -                  | 92a.47(a)(5)     |
| Total Residual Chlorine      | 0.5             | Average Monthly | -                  | 92a.48(b)(2)     |
| E. Coli                      | Report          | IMAX            | -                  | 92a.61           |

E. Coli monitoring was added in accordance with the Department SOP on new and reissued permits.

**Water Quality-Based Limitations**

A "Reasonable Potential Analysis" (Attachment A) determined the following parameters were candidates for limitations: Total Cadmium, Total Copper, and Total Zinc.

The following limitations were determined through water quality modeling (output files attached):

| Parameter               | Limit (mg/l) | Limit (ug/l) | SBC             | Model                         |
|-------------------------|--------------|--------------|-----------------|-------------------------------|
| Ammonia-Nitrogen        | 25           |              | Average Monthly | WQM v.1.0b                    |
| CBOD5                   | 25           |              | Average Monthly | WQM v1.0b                     |
| Dissolved Oxygen        | 3.0          |              | Daily Minimum   | WQM v.1.0b                    |
| Total Residual Chlorine | 0.5          |              | Average Monthly | TRC Spreadsheet               |
| Total Cadmium           |              | Report       | Average Monthly | Toxics Management Spreadsheet |
| Total Copper            |              | 25.8         | Average Monthly | Toxics Management Spreadsheet |
| Total Zinc              |              | Report       | Average Monthly | Toxics Management Spreadsheet |

Ammonia-Nitrogen (NH3N) & CBOD5 limits of 25 mg/l, and a Dissolved Oxygen limit of 4.0 mg/l were determined by WQM modeling to be protective. When an NH3-N limit of 25 mg/l is acceptable, monitoring-only can be imposed per the Department's SOP. The Department's TRC Spreadsheet determined a limit of 0.5 mg/l. The Toxics Management Spreadsheet calculated a Total Copper limit of 25.87 mg/l, and weekly monitoring for Total Cadmium & Zinc. A three-year schedule of compliance will be included for Total Copper because the permittee may not be able to achieve the limit upon permit issuance.

**Best Professional Judgment (BPJ) Limitations**

A dissolved oxygen limit of a minimum of 4.0 mg/l, a TRC IMAX limit of 1.6 mg/l, effluent monitoring for total nitrogen, total phosphorus, and ammonia nitrogen, and raw sewage monitoring for BOD<sub>5</sub> and TSS are placed in the permit in accordance with the Department's SOP entitled "Establishing Effluent Limitations for Individual Sewage Permits."

Annual monitoring for PFAS parameters (PFOA, PFOS, PFBS, and HFPO-DA) was added to the renewed permit in accordance with the Department's PFAS monitoring directive, under the authority of Chapter 92a.51. A footnote was also for discontinuation of sampling requirements for PFAS parameters after four consecutive non-detect are reported for all parameters at or below the Target QLs.

Anti-Backsliding

The previous limits can be used pursuant to EPA's anti-backsliding regulation, 40 CFR 122.44(l). The previous permit limitations, monitoring requirements, and conditions will be retained:

| Parameter                                     | Effluent Limitations                |                     |                       |                     |                   |                     | Monitoring Requirements               |                            |
|-----------------------------------------------|-------------------------------------|---------------------|-----------------------|---------------------|-------------------|---------------------|---------------------------------------|----------------------------|
|                                               | Mass Units (lbs/day) <sup>(1)</sup> |                     | Concentrations (mg/L) |                     |                   |                     | Minimum <sup>(2)</sup><br>Measurement | Required<br>Sample<br>Type |
|                                               | Average<br>Monthly                  | Weekly<br>Average   | Minimum               | Average<br>Monthly  | Weekly<br>Average | Instant.<br>Maximum |                                       |                            |
| Flow (MGD)                                    | Report                              | Report              | XXX                   | XXX                 | XXX               | XXX                 | Continuous                            | Measured                   |
| pH (S.U.)                                     | XXX                                 | XXX                 | 6.0                   | XXX                 | XXX               | 9.0                 | 1/day                                 | Grab                       |
| DO                                            | XXX                                 | XXX                 | 4.0                   | XXX                 | XXX               | XXX                 | 1/day                                 | Grab                       |
| TRC                                           | XXX                                 | XXX                 | XXX                   | 0.5                 | XXX               | 1.6                 | 1/day                                 | Grab                       |
| CBOD5                                         | 1355                                | 2165                | XXX                   | 25                  | 40                | 50                  | 2/week                                | 24-Hr<br>Composite         |
| BOD5<br>Raw Sewage Influent                   | Report                              | Report<br>Daily Max | XXX                   | Report              | XXX               | XXX                 | 2/week                                | 24-Hr<br>Composite         |
| TSS                                           | 1625                                | 2435                | XXX                   | 30                  | 45                | 60                  | 2/week                                | 24-Hr<br>Composite         |
| TSS<br>Raw Sewage Influent                    | Report                              | Report<br>Daily Max | XXX                   | Report              | XXX               | XXX                 | 2/week                                | 24-Hr<br>Composite         |
| Fecal Coliform (No./100 ml)<br>Oct 1 - Apr 30 | XXX                                 | XXX                 | XXX                   | 2000<br>Geo Mean    | XXX               | 10000               | 2/week                                | Grab                       |
| Fecal Coliform (No./100 ml)<br>May 1 - Sep 30 | XXX                                 | XXX                 | XXX                   | 200<br>Geo Mean     | XXX               | 1000                | 2/week                                | Grab                       |
| E. Coli (No./100 ml)                          | XXX                                 | XXX                 | XXX                   | Report              | XXX               | XXX                 | 1/month                               | Grab                       |
| Total Nitrogen                                | Report<br>Avg Qrtly                 | XXX                 | XXX                   | Report<br>Avg Qrtly | XXX               | XXX                 | 1/quarter                             | 24-Hr<br>Composite         |
| Ammonia                                       | Report                              | XXX                 | XXX                   | Report              | XXX               | XXX                 | 1/month                               | 24-Hr<br>Composite         |
| Total Phosphorus                              | Report<br>Avg Qrtly                 | XXX                 | XXX                   | Report<br>Avg Qrtly | XXX               | XXX                 | 1/quarter                             | 24-Hr<br>Composite         |
| Total Nickel (µg/L)                           | XXX                                 | XXX                 | XXX                   | Report<br>Avg Qrtly | XXX               | XXX                 | 1/quarter                             | 24-Hr<br>Composite         |
| Chloride                                      | XXX                                 | XXX                 | XXX                   | Report              | XXX               | XXX                 | 1/month                               | 24-Hr<br>Composite         |

### Threatened and Endangered Mussel Species Concerns and Considerations

The Allegheny River is known to contain state and federally listed threatened and endangered mussel species. Due to the discharge being directly to the Allegheny River, potential impacts to endangered mussel species were evaluated.

The USFWS has indicated in comment letters on other NPDES permits that to protect threatened and endangered mussel species, wastewater discharges containing ammonia-nitrogen ( $\text{NH}_3\text{-N}$ ), chloride ( $\text{Cl}^-$ ), zinc and nickel, where mussels or their habitat exist, can be no more than 1.9 mg/l, 78 mg/l, 13.18  $\mu\text{g/l}$  and 7.3  $\mu\text{g/l}$ , respectively. The Department reviewed sampling data for these three parameters to determine potential impacts that the discharge may have to threatened and endangered mussel species.

The Department completed several aquatic biological investigations on the Allegheny River in this area between 2012-2024. These investigations concluded that the effluents from the Warren City WWTP discharge does not appear to impact the endangered mussel species in the Allegheny River.

The Department utilized its Impact Evaluation spreadsheet to calculate the maximum potential impact area of the STP discharge under the worst-case theoretical scenario. This yielded a maximum potential impact area of 0.51  $\text{m}^2$  by the mass balance relationship of loading and assimilative capacity of the stream (Method 2). The Department will retain monitoring for Chloride, Nickel, and Zinc for the next permit term and may conduct an additional survey. Monitoring frequencies for Nickel and Chloride from the previous permit shall be retained, however the Toxics Management Spreadsheet (TMS) modeling justifies a more frequent weekly monitoring.

**Whole Effluent Toxicity (WET)**

For Outfall 001,  **Acute**  **Chronic** WET Testing was completed:

- For the permit renewal application (4 tests).
- Quarterly throughout the permit term.
- Quarterly throughout the permit term and a TIE/TRE was conducted.
- Other:

The dilution series used for the tests was: 100%, 60%, 30%, 5%, and 2%. The Target Instream Waste Concentration (TIWC) to be used for analysis of the results is: 5%.

**Summary of Four Most Recent Test Results**

(NOTE – Enter results into one table, depending on which data analysis method was used).

NOEC/LC50 Data Analysis

| Test Date | Ceriodaphnia Results (% Effluent) |                   |      | Pimephales Results (% Effluent) |             |      | Pass? * |
|-----------|-----------------------------------|-------------------|------|---------------------------------|-------------|------|---------|
|           | NOEC Survival                     | NOEC Reproduction | LC50 | NOEC Survival                   | NOEC Growth | LC50 |         |
| 9/14/2018 | 100                               | 100               | >100 | 100                             | 100         | >100 | Yes     |
| 10/8/2019 | 100                               | 100               | >100 | 100                             | 100         | >100 | Yes     |
| 7/13/2020 | 100                               | 100               | >100 | 100                             | 100         | >100 | Yes     |
| 7/19/2021 | 100                               | 100               | >100 | 100                             | 100         | >100 | Yes     |

\* A “passing” result is that which is greater than or equal to the TIWC value.

Is there reasonable potential for an excursion above water quality standards based on the results of these tests? (NOTE – In general, reasonable potential is determined anytime there is at least one test failure in the previous four tests).

- YES**  **NO**

**Comments:** None.

**Evaluation of Test Type, IWC and Dilution Series for Renewed Permit**

Acute Partial Mix Factor (PMFa): **0.069**

Chronic Partial Mix Factor (PMFc): **0.479**

**1. Determine IWC – Acute (IWCa):**

$$(Q_d \times 1.547) / ((Q_{7-10} \times PMFa) + (Q_d \times 1.547))$$

$$[(6.5 \text{ MGD} \times 1.547) / ((250.4 \text{ cfs} \times 0.069) + (6.5 \text{ MGD} \times 1.547))] \times 100 = \mathbf{36.78\%}$$

Is IWCa < 1%?  **YES**  **NO**

**Type of Test for Permit Renewal: Chronic**

**2b. Determine Target IWCC (If Chronic Tests Required)**

$$(Q_d \times 1.547) / (Q_{7-10} \times PMFc) + (Q_d \times 1.547)$$

$$[(6.5 \text{ MGD} \times 1.547) / ((250.4 \text{ cfs} \times 0.479) + (6.5 \text{ MGD} \times 1.547))] \times 100 = \mathbf{7.74\%}$$

**3. Determine Dilution Series**

(NOTE – check Attachment C of WET SOP for dilution series based on TIWCa or TIWCC, whichever applies).

Dilution Series = 100%, 60%, 30%, 8%, and 4%.

**WET Limits**

Has reasonable potential been determined?  **YES**  **NO**

Will WET limits be established in the permit?  **YES**  **NO**

**Proposed Effluent Limitations and Monitoring Requirements**

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (386-0400-001), SOPs and/or BPJ.

**Interim Limitations:**

**Outfall 001, Effective Period: Permit Effective Date through Three Years After Permit Effective Date.**

| Parameter           | Effluent Limitations                |                |                       |                 |         |                  | Monitoring Requirements                      |                      |
|---------------------|-------------------------------------|----------------|-----------------------|-----------------|---------|------------------|----------------------------------------------|----------------------|
|                     | Mass Units (lbs/day) <sup>(1)</sup> |                | Concentrations (mg/L) |                 |         |                  |                                              |                      |
|                     | Average Monthly                     | Average Weekly | Minimum               | Average Monthly | Maximum | Instant. Maximum | Minimum <sup>(2)</sup> Measurement Frequency | Required Sample Type |
| Total Copper (ug/L) | XXX                                 | XXX            | XXX                   | Report          | XXX     | Report           | 1/week                                       | Grab                 |

**Final Limitations:**

**Outfall 001, Effective Period: Three Years After Permit Effective Date through Permit Expiration Date.**

| Parameter           | Effluent Limitations                |                |                       |                 |         |                  | Monitoring Requirements                      |                      |
|---------------------|-------------------------------------|----------------|-----------------------|-----------------|---------|------------------|----------------------------------------------|----------------------|
|                     | Mass Units (lbs/day) <sup>(1)</sup> |                | Concentrations (mg/L) |                 |         |                  |                                              |                      |
|                     | Average Monthly                     | Average Weekly | Minimum               | Average Monthly | Maximum | Instant. Maximum | Minimum <sup>(2)</sup> Measurement Frequency | Required Sample Type |
| Total Copper (ug/L) | XXX                                 | XXX            | XXX                   | 25.8            | XXX     | 64.6             | 1/week                                       | Grab                 |

Compliance Sampling Location: Outfall 001, after disinfection.

**Proposed Effluent Limitations and Monitoring Requirements**

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (386-0400-001), SOPs and/or BPJ.

**Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.**

| Parameter                                     | Effluent Limitations                |                     |                       |                     |                |                  | Monitoring Requirements                         |                      |
|-----------------------------------------------|-------------------------------------|---------------------|-----------------------|---------------------|----------------|------------------|-------------------------------------------------|----------------------|
|                                               | Mass Units (lbs/day) <sup>(1)</sup> |                     | Concentrations (mg/L) |                     |                |                  | Minimum <sup>(2)</sup><br>Measurement Frequency | Required Sample Type |
|                                               | Average Monthly                     | Weekly Average      | Minimum               | Average Monthly     | Weekly Average | Instant. Maximum |                                                 |                      |
| Flow (MGD)                                    | Report                              | Report              | XXX                   | XXX                 | XXX            | XXX              | Continuous                                      | Measured             |
| pH (S.U.)                                     | XXX                                 | XXX                 | 6.0<br>Inst Min       | XXX                 | XXX            | 9.0              | 1/day                                           | Grab                 |
| DO                                            | XXX                                 | XXX                 | 4.0<br>Inst Min       | XXX                 | XXX            | XXX              | 1/day                                           | Grab                 |
| TRC                                           | XXX                                 | XXX                 | XXX                   | 0.5                 | XXX            | 1.6              | 1/day                                           | Grab                 |
| CBOD5                                         | 1355                                | 2165                | XXX                   | 25                  | 40             | 50               | 2/week                                          | 24-Hr Composite      |
| BOD5<br>Raw Sewage Influent                   | Report                              | Report<br>Daily Max | XXX                   | Report              | XXX            | XXX              | 2/week                                          | 24-Hr Composite      |
| TSS                                           | 1625                                | 2435                | XXX                   | 30                  | 45             | 60               | 2/week                                          | 24-Hr Composite      |
| TSS<br>Raw Sewage Influent                    | Report                              | Report<br>Daily Max | XXX                   | Report              | XXX            | XXX              | 2/week                                          | 24-Hr Composite      |
| Fecal Coliform (No./100 ml)<br>Oct 1 - Apr 30 | XXX                                 | XXX                 | XXX                   | 2000<br>Geo Mean    | XXX            | 10000            | 2/week                                          | Grab                 |
| Fecal Coliform (No./100 ml)<br>May 1 - Sep 30 | XXX                                 | XXX                 | XXX                   | 200<br>Geo Mean     | XXX            | 1000             | 2/week                                          | Grab                 |
| E. Coli (No./100 ml)                          | XXX                                 | XXX                 | XXX                   | Report              | XXX            | XXX              | 1/month                                         | Grab                 |
| Total Nitrogen                                | Report<br>Avg Qrtly                 | XXX                 | XXX                   | Report<br>Avg Qrtly | XXX            | XXX              | 1/quarter                                       | 24-Hr Composite      |
| Ammonia                                       | Report                              | XXX                 | XXX                   | Report              | XXX            | XXX              | 1/month                                         | 24-Hr Composite      |
| Total Phosphorus                              | Report<br>Avg Qrtly                 | XXX                 | XXX                   | Report<br>Avg Qrtly | XXX            | XXX              | 1/quarter                                       | 24-Hr Composite      |

**Outfall 001, Continued (from Permit Effective Date through Permit Expiration Date)**

| Parameter            | Effluent Limitations                |                |                       |                  |                |                  | Monitoring Requirements                         |                      |
|----------------------|-------------------------------------|----------------|-----------------------|------------------|----------------|------------------|-------------------------------------------------|----------------------|
|                      | Mass Units (lbs/day) <sup>(1)</sup> |                | Concentrations (mg/L) |                  |                |                  | Minimum <sup>(2)</sup><br>Measurement Frequency | Required Sample Type |
|                      | Average Monthly                     | Weekly Average | Minimum               | Average Monthly  | Weekly Average | Instant. Maximum |                                                 |                      |
| Total Cadmium (µg/L) | XXX                                 | XXX            | XXX                   | Report           | XXX            | XXX              | 1/week                                          | Grab                 |
| Total Nickel (µg/L)  | XXX                                 | XXX            | XXX                   | Report Avg Qrtly | XXX            | XXX              | 1/quarter                                       | 24-Hr Composite      |
| Total Zinc (µg/L)    | XXX                                 | XXX            | XXX                   | Report           | XXX            | XXX              | 1/week                                          | Grab                 |
| Chloride             | XXX                                 | XXX            | XXX                   | Report           | XXX            | XXX              | 1/month                                         | 24-Hr Composite      |
| PFOA (ng/L)          | XXX                                 | XXX            | XXX                   | XXX              | XXX            | Report           | 1/year                                          | Grab                 |
| PFOS (ng/L)          | XXX                                 | XXX            | XXX                   | XXX              | XXX            | Report           | 1/year                                          | Grab                 |
| PFBS (ng/L)          | XXX                                 | XXX            | XXX                   | XXX              | XXX            | Report           | 1/year                                          | Grab                 |
| HFPO-DA (ng/L)       | XXX                                 | XXX            | XXX                   | XXX              | XXX            | Report           | 1/year                                          | Grab                 |

Compliance Sampling Location: Outfall 001, after disinfection.

### WQM 7.0 Wasteload Allocations

| <u>SWP Basin</u>                    | <u>Stream Code</u> | <u>Stream Name</u>        |                          |                           |                          |                                     |                                     |
|-------------------------------------|--------------------|---------------------------|--------------------------|---------------------------|--------------------------|-------------------------------------|-------------------------------------|
| 18A                                 | 42122              | ALLEGHENY RIVER           |                          |                           |                          |                                     |                                     |
| <b>NH3-N Acute Allocations</b>      |                    |                           |                          |                           |                          |                                     |                                     |
| RMI                                 | Discharge Name     | Baseline Criterion (mg/L) | Baseline WLA (mg/L)      | Multiple Criterion (mg/L) | Multiple WLA (mg/L)      | Critical Reach                      | Percent Reduction                   |
| 188.600                             | Warren City WW     | 6.91                      | 50                       | 6.91                      | 50                       | 0                                   | 0                                   |
| <b>NH3-N Chronic Allocations</b>    |                    |                           |                          |                           |                          |                                     |                                     |
| RMI                                 | Discharge Name     | Baseline Criterion (mg/L) | Baseline WLA (mg/L)      | Multiple Criterion (mg/L) | Multiple WLA (mg/L)      | Critical Reach                      | Percent Reduction                   |
| 188.600                             | Warren City WW     | 1.35                      | 25                       | 1.35                      | 25                       | 0                                   | 0                                   |
| <b>Dissolved Oxygen Allocations</b> |                    |                           |                          |                           |                          |                                     |                                     |
| RMI                                 | Discharge Name     | CBOD5<br>Baseline (mg/L)  | CBOD5<br>Multiple (mg/L) | NH3-N<br>Baseline (mg/L)  | NH3-N<br>Multiple (mg/L) | Dissolved Oxygen<br>Baseline (mg/L) | Dissolved Oxygen<br>Multiple (mg/L) |
| 188.60                              | Warren City WWT    | 25                        | 25                       | 25                        | 25                       | 4                                   | 4                                   |
|                                     |                    |                           |                          |                           |                          | 0                                   | 0                                   |

**WQM 7.0 D.O.Simulation**

| <u>SWP Basin</u>                | <u>Stream Code</u>                | <u>Stream Name</u>               |                             |             |
|---------------------------------|-----------------------------------|----------------------------------|-----------------------------|-------------|
| 18A                             | 42122                             | ALLEGHENY RIVER                  |                             |             |
| <u>RML</u>                      | <u>Total Discharge Flow (mgd)</u> | <u>Analysis Temperature (°C)</u> | <u>Analysis pH</u>          |             |
| 188.600                         | 6.500                             | 24.807                           | 7.000                       |             |
| <u>Reach Width (ft)</u>         | <u>Reach Depth (ft)</u>           | <u>Reach WDRatio</u>             | <u>Reach Velocity (fps)</u> |             |
| 298.882                         | 1.196                             | 249.933                          | 0.729                       |             |
| <u>Reach CBOD5 (mg/L)</u>       | <u>Reach Kc (1/days)</u>          | <u>Reach NH3-N (mg/L)</u>        | <u>Reach Kn (1/days)</u>    |             |
| 2.89                            | 0.488                             | 0.97                             | 1.013                       |             |
| <u>Reach DO (mg/L)</u>          | <u>Reach Kr (1/days)</u>          | <u>Kr Equation</u>               | <u>Reach DO Goal (mg/L)</u> |             |
| 8.079                           | 2.886                             | Tsivoglou                        | 6                           |             |
| <u>Reach Travel Time (days)</u> | <b>Subreach Results</b>           |                                  |                             |             |
| 0.042                           | TravTime (days)                   | CBOD5 (mg/L)                     | NH3-N (mg/L)                | D.O. (mg/L) |
|                                 | 0.004                             | 2.88                             | 0.96                        | 7.56        |
|                                 | 0.008                             | 2.87                             | 0.96                        | 7.56        |
|                                 | 0.013                             | 2.87                             | 0.95                        | 7.56        |
|                                 | 0.017                             | 2.86                             | 0.95                        | 7.56        |
|                                 | 0.021                             | 2.85                             | 0.94                        | 7.56        |
|                                 | 0.025                             | 2.84                             | 0.94                        | 7.56        |
|                                 | 0.029                             | 2.84                             | 0.94                        | 7.56        |
|                                 | 0.034                             | 2.83                             | 0.93                        | 7.56        |
|                                 | 0.038                             | 2.82                             | 0.93                        | 7.56        |
|                                 | 0.042                             | 2.82                             | 0.93                        | 7.56        |

| RMI     | Name             | Permit Number | Disc Flow (mgd) | Parameter        | Effl. Limit 30-day Ave. (mg/L) | Effl. Limit Maximum (mg/L) | Effl. Limit Minimum (mg/L) |
|---------|------------------|---------------|-----------------|------------------|--------------------------------|----------------------------|----------------------------|
| 188.600 | Warren City WWTP | PA0027120     | 6.500           | CBOD5            | 25                             |                            |                            |
|         |                  |               |                 | NH3-N            | 25                             | 50                         |                            |
|         |                  |               |                 | Dissolved Oxygen |                                |                            | 4                          |

**Input Data WQM 7.0**

| SWP Basin             | Stream Code      | Stream Name           |                             | RMI                          | Elevation                 | Drainage Area  | Slope             | PWS Withdrawal    | Apply FC                            |                     |      |      |
|-----------------------|------------------|-----------------------|-----------------------------|------------------------------|---------------------------|----------------|-------------------|-------------------|-------------------------------------|---------------------|------|------|
|                       |                  |                       |                             |                              | (ft)                      | (sq mi)        | (ft/ft)           | (mgd)             |                                     |                     |      |      |
| 18A                   |                  | 42122 ALLEGHENY RIVER |                             | 188.600                      | 1176.00                   | 3130.00        | 0.00000           | 0.00              | <input checked="" type="checkbox"/> |                     |      |      |
| <b>Stream Data</b>    |                  |                       |                             |                              |                           |                |                   |                   |                                     |                     |      |      |
| Design Cond.          | LFY<br>(cfsm)    | Trib Flow<br>(cfs)    | Stream Flow<br>(cfs)        | Rch Trav Time<br>(days)      | Rch Velocity<br>(fps)     | WD Ratio       | Rch Width<br>(ft) | Rch Depth<br>(ft) | Tributary Temp<br>(°C)              | Stream Temp<br>(°C) | pH   | pH   |
| Q7-10                 | 0.080            | 0.00                  | 0.00                        | 0.000                        | 0.000                     | 0.0            | 0.00              | 0.00              | 25.00                               | 7.00                | 0.00 | 0.00 |
| Q1-10                 |                  | 0.00                  | 0.00                        | 0.000                        | 0.000                     |                |                   |                   |                                     |                     |      |      |
| Q30-10                |                  | 0.00                  | 0.00                        | 0.000                        | 0.000                     |                |                   |                   |                                     |                     |      |      |
| <b>Discharge Data</b> |                  |                       |                             |                              |                           |                |                   |                   |                                     |                     |      |      |
|                       | Name             | Permit Number         | Existing Disc Flow<br>(mgd) | Permitted Disc Flow<br>(mgd) | Design Disc Flow<br>(mgd) | Reserve Factor |                   | Disc Temp<br>(°C) | Disc pH                             |                     |      |      |
|                       | Warren City WWTP | PA0027120             | 6.5000                      | 0.0000                       | 0.0000                    | 0.000          | 20.00             | 7.00              |                                     |                     |      |      |
| <b>Parameter Data</b> |                  |                       |                             |                              |                           |                |                   |                   |                                     |                     |      |      |
|                       | Parameter Name   | Disc Conc<br>(mg/L)   | Trib Conc<br>(mg/L)         | Stream Conc<br>(mg/L)        | Fate Coef<br>(1/days)     |                |                   |                   |                                     |                     |      |      |
|                       | CBOD5            | 25.00                 | 2.00                        | 0.00                         | 1.50                      |                |                   |                   |                                     |                     |      |      |
|                       | Dissolved Oxygen | 4.00                  | 8.24                        | 0.00                         | 0.00                      |                |                   |                   |                                     |                     |      |      |
|                       | NH3-N            | 25.00                 | 0.00                        | 0.00                         | 0.70                      |                |                   |                   |                                     |                     |      |      |

Input Data WQM 7.0

| SWP Basin             | Stream Code      | Stream Name        |                             | RMI                          | Elevation<br>(ft)         | Drainage Area<br>(sq mi) | Slope<br>(ft/ft)  | PWS Withdrawal<br>(mgd) | Apply FC                            |                     |  |
|-----------------------|------------------|--------------------|-----------------------------|------------------------------|---------------------------|--------------------------|-------------------|-------------------------|-------------------------------------|---------------------|--|
| 18A                   | 42122            | ALLEGHENY RIVER    |                             | 188.100                      | 1174.00                   | 3150.00                  | 0.00000           | 0.00                    | <input checked="" type="checkbox"/> |                     |  |
| <b>Stream Data</b>    |                  |                    |                             |                              |                           |                          |                   |                         |                                     |                     |  |
| <b>Design Cond.</b>   |                  |                    |                             |                              |                           |                          |                   |                         |                                     |                     |  |
|                       | LFY<br>(cfsm)    | Trib Flow<br>(cfs) | Stream Flow<br>(cfs)        | Rch Trav Time<br>(days)      | Rch Velocity<br>(fps)     | WD Ratio                 | Rch Width<br>(ft) | Rch Depth<br>(ft)       | Tributary Temp<br>(°C)              | Stream Temp<br>(°C) |  |
| Q7-10                 | 0.080            | 0.00               | 0.00                        | 0.000                        | 0.000                     | 0.0                      | 0.00              | 0.00                    | 25.00                               | 7.00                |  |
| Q1-10                 |                  | 0.00               | 0.00                        | 0.000                        | 0.000                     |                          |                   |                         | 0.00                                | 0.00                |  |
| Q30-10                |                  | 0.00               | 0.00                        | 0.000                        | 0.000                     |                          |                   |                         |                                     |                     |  |
| <b>Discharge Data</b> |                  |                    |                             |                              |                           |                          |                   |                         |                                     |                     |  |
|                       | Name             | Permit Number      | Existing Disc Flow<br>(mgd) | Permitted Disc Flow<br>(mgd) | Design Disc Flow<br>(mgd) | Reserve Factor           | Disc Temp<br>(°C) | Disc pH                 |                                     |                     |  |
|                       |                  |                    | 0.0000                      | 0.0000                       | 0.0000                    | 0.000                    | 25.00             | 7.00                    |                                     |                     |  |
| <b>Parameter Data</b> |                  |                    |                             |                              |                           |                          |                   |                         |                                     |                     |  |
|                       | Parameter Name   |                    | Disc Conc<br>(mg/L)         | Trib Conc<br>(mg/L)          | Stream Conc<br>(mg/L)     | Fate Coef<br>(1/days)    |                   |                         |                                     |                     |  |
|                       | CBOD5            |                    | 25.00                       | 2.00                         | 0.00                      | 1.50                     |                   |                         |                                     |                     |  |
|                       | Dissolved Oxygen |                    | 3.00                        | 8.24                         | 0.00                      | 0.00                     |                   |                         |                                     |                     |  |
|                       | NH3-N            |                    | 25.00                       | 0.00                         | 0.00                      | 0.70                     |                   |                         |                                     |                     |  |

**WQM 7.0 Hydrodynamic Outputs**

| RMI                | Stream Flow | PWS With | SWP Basin             |                          | Stream Code         |            | Stream Name |           |                |                        |                    |             |  |
|--------------------|-------------|----------|-----------------------|--------------------------|---------------------|------------|-------------|-----------|----------------|------------------------|--------------------|-------------|--|
|                    |             |          | 18A                   | 42122                    | ALLEGHENY RIVER     |            |             |           |                |                        |                    |             |  |
|                    | (cfs)       | (cfs)    | Net Stream Flow (cfs) | Disc Analysis Flow (cfs) | Reach Slope (ft/ft) | Depth (ft) | Width (ft)  | W/D Ratio | Velocity (fps) | Reach Trav Time (days) | Analysis Temp (°C) | Analysis pH |  |
| <b>Q7-10 Flow</b>  |             |          |                       |                          |                     |            |             |           |                |                        |                    |             |  |
| 188.600            | 250.40      | 0.00     | 250.40                | 10.0555                  | 0.00076             | 1.196      | 298.88      | 249.93    | 0.73           | 0.042                  | 24.81              | 7.00        |  |
| <b>Q1-10 Flow</b>  |             |          |                       |                          |                     |            |             |           |                |                        |                    |             |  |
| 188.600            | 160.26      | 0.00     | 160.26                | 10.0555                  | 0.00076             | NA         | NA          | NA        | 0.57           | 0.053                  | 24.70              | 7.00        |  |
| <b>Q30-10 Flow</b> |             |          |                       |                          |                     |            |             |           |                |                        |                    |             |  |
| 188.600            | 340.54      | 0.00     | 340.54                | 10.0555                  | 0.00076             | NA         | NA          | NA        | 0.86           | 0.036                  | 24.86              | 7.00        |  |

## WQM 7.0 Modeling Specifications

|                    |        |                                     |                                     |
|--------------------|--------|-------------------------------------|-------------------------------------|
| Parameters         | Both   | Use Inputted Q1-10 and Q30-10 Flows | <input checked="" type="checkbox"/> |
| WLA Method         | EMPR   | Use Inputted W/D Ratio              | <input type="checkbox"/>            |
| Q1-10/Q7-10 Ratio  | 0.64   | Use Inputted Reach Travel Times     | <input type="checkbox"/>            |
| Q30-10/Q7-10 Ratio | 1.36   | Temperature Adjust Kr               | <input checked="" type="checkbox"/> |
| D.O. Saturation    | 90.00% | Use Balanced Technology             | <input checked="" type="checkbox"/> |
| D.O. Goal          | 6      |                                     |                                     |



## Discharge Information

Instructions **Discharge** Stream

Facility: Warren City WWTP NPDES Permit No.: PA0027120 Outfall No.: 001

Evaluation Type Major Sewage / Industrial Waste Wastewater Description: Treated Sewage

| Design Flow<br>(MGD)* | Hardness (mg/l)* | pH (SU)* | Discharge Characteristics  |     |     |     |                          |                |
|-----------------------|------------------|----------|----------------------------|-----|-----|-----|--------------------------|----------------|
|                       |                  |          | Partial Mix Factors (PMFs) |     |     |     | Complete Mix Times (min) |                |
|                       |                  |          | AFC                        | CFC | THH | CRL | Q <sub>7-10</sub>        | Q <sub>h</sub> |
| 6.5                   | 117              | 7        |                            |     |     |     |                          |                |

|         |         | Discharge Pollutant             | Units | Max Discharge Conc | 0 if left blank |             | 0.5 if left blank |           | 0 if left blank |            | 1 if left blank |               |             |
|---------|---------|---------------------------------|-------|--------------------|-----------------|-------------|-------------------|-----------|-----------------|------------|-----------------|---------------|-------------|
| Group 1 | Group 2 |                                 |       |                    | Trib Conc       | Stream Conc | Daily CV          | Hourly CV | Stream CV       | Fate Coeff | FOS             | Criteri a Mod | Chem Transl |
|         |         | Total Dissolved Solids (PWS)    | mg/L  | 294                |                 |             |                   |           |                 |            |                 |               |             |
|         |         | Chloride (PWS)                  | mg/L  | 195                |                 |             |                   |           |                 |            |                 |               |             |
|         |         | Bromide                         | mg/L  | 1.19               |                 |             |                   |           |                 |            |                 |               |             |
|         |         | Sulfate (PWS)                   | mg/L  | 38.1               |                 |             |                   |           |                 |            |                 |               |             |
|         |         | Fluoride (PWS)                  | mg/L  |                    |                 |             |                   |           |                 |            |                 |               |             |
|         |         | Total Aluminum                  | µg/L  | 26                 |                 |             |                   |           |                 |            |                 |               |             |
|         |         | Total Antimony                  | µg/L  | 0.3                |                 |             |                   |           |                 |            |                 |               |             |
|         |         | Total Arsenic                   | µg/L  | 2                  |                 |             |                   |           |                 |            |                 |               |             |
|         |         | Total Barium                    | µg/L  | 60                 |                 |             |                   |           |                 |            |                 |               |             |
|         |         | Total Beryllium                 | µg/L  | < 1                |                 |             |                   |           |                 |            |                 |               |             |
|         |         | Total Boron                     | µg/L  | 134                |                 |             |                   |           |                 |            |                 |               |             |
|         |         | Total Cadmium                   | µg/L  | 0.7                |                 |             |                   |           |                 |            |                 |               |             |
|         |         | Total Chromium (III)            | µg/L  | < 4                |                 |             |                   |           |                 |            |                 |               |             |
|         |         | Hexavalent Chromium             | µg/L  | 2                  |                 |             |                   |           |                 |            |                 |               |             |
|         |         | Total Cobalt                    | µg/L  | < 1                |                 |             |                   |           |                 |            |                 |               |             |
|         |         | Total Copper                    | µg/L  | 27                 |                 |             |                   |           |                 |            |                 |               |             |
|         |         | Free Cyanide                    | µg/L  | 4                  |                 |             |                   |           |                 |            |                 |               |             |
|         |         | Total Cyanide                   | µg/L  | 12                 |                 |             |                   |           |                 |            |                 |               |             |
|         |         | Dissolved Iron                  | µg/L  | 67                 |                 |             |                   |           |                 |            |                 |               |             |
|         |         | Total Iron                      | µg/L  | 79.4               |                 |             |                   |           |                 |            |                 |               |             |
|         |         | Total Lead                      | µg/L  | 2                  |                 |             |                   |           |                 |            |                 |               |             |
|         |         | Total Manganese                 | µg/L  | 18                 |                 |             |                   |           |                 |            |                 |               |             |
|         |         | Total Mercury                   | µg/L  | < 0.2              |                 |             |                   |           |                 |            |                 |               |             |
|         |         | Total Nickel                    | µg/L  | < 4                |                 |             |                   |           |                 |            |                 |               |             |
|         |         | Total Phenols (Phenolics) (PWS) | µg/L  | < 5                |                 |             |                   |           |                 |            |                 |               |             |
|         |         | Total Selenium                  | µg/L  | < 5                |                 |             |                   |           |                 |            |                 |               |             |
|         |         | Total Silver                    | µg/L  | < 0.5              |                 |             |                   |           |                 |            |                 |               |             |
|         |         | Total Thallium                  | µg/L  | < 0.05             |                 |             |                   |           |                 |            |                 |               |             |
|         |         | Total Zinc                      | µg/L  | 94                 |                 |             |                   |           |                 |            |                 |               |             |
|         |         | Total Molybdenum                | µg/L  | < 4                |                 |             |                   |           |                 |            |                 |               |             |
|         |         | Acrolein                        | µg/L  | < 2                |                 |             |                   |           |                 |            |                 |               |             |
|         |         | Acrylamide                      | µg/L  | <                  |                 |             |                   |           |                 |            |                 |               |             |
|         |         | Acrylonitrile                   | µg/L  | < 5                |                 |             |                   |           |                 |            |                 |               |             |
|         |         | Benzene                         | µg/L  | < 0.5              |                 |             |                   |           |                 |            |                 |               |             |
|         |         | Bromoform                       | µg/L  | < 0.5              |                 |             |                   |           |                 |            |                 |               |             |
|         |         | Carbon Tetrachloride            | µg/L  | < 0.5              |                 |             |                   |           |                 |            |                 |               |             |
|         |         | Chlorobenzene                   | µg/L  | 0.5                |                 |             |                   |           |                 |            |                 |               |             |
|         |         | Chlorodibromomethane            | µg/L  | < 0.5              |                 |             |                   |           |                 |            |                 |               |             |
|         |         | Chloroethane                    | µg/L  | < 0.5              |                 |             |                   |           |                 |            |                 |               |             |
|         |         | 2-Chloroethyl Vinyl Ether       | µg/L  | < 0.5              |                 |             |                   |           |                 |            |                 |               |             |

|         |                             |      |   |      |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|---------|-----------------------------|------|---|------|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|
| Group 3 | Chloroform                  | µg/L | < | 15.8 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|         | Dichlorobromomethane        | µg/L | < | 4.9  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|         | 1,1-Dichloroethane          | µg/L | < | 0.5  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|         | 1,2-Dichloroethane          | µg/L | < | 0.5  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|         | 1,1-Dichloroethylene        | µg/L | < | 0.5  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|         | 1,2-Dichloropropane         | µg/L | < | 0.5  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|         | 1,3-Dichloropropylene       | µg/L | < | 0.5  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|         | 1,4-Dioxane                 | µg/L | < | 0.1  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|         | Ethylbenzene                | µg/L | < | 0.5  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|         | Methyl Bromide              | µg/L | < | 0.5  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|         | Methyl Chloride             | µg/L | < | 0.5  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|         | Methylene Chloride          | µg/L | < | 0.5  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|         | 1,1,2,2-Tetrachloroethane   | µg/L | < | 0.5  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|         | Tetrachloroethylene         | µg/L | < | 0.5  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|         | Toluene                     | µg/L | < | 0.5  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|         | 1,2-trans-Dichloroethylene  | µg/L | < | 0.5  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|         | 1,1,1-Trichloroethane       | µg/L | < | 0.5  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|         | 1,1,2-Trichloroethane       | µg/L | < | 0.5  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|         | Trichloroethylene           | µg/L | < | 0.5  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|         | Vinyl Chloride              | µg/L | < | 0.5  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Group 4 | 2-Chlorophenol              | µg/L | < | 10   |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|         | 2,4-Dichlorophenol          | µg/L | < | 10   |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|         | 2,4-Dimethylphenol          | µg/L | < | 10   |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|         | 4,6-Dinitro-o-Cresol        | µg/L | < | 10   |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|         | 2,4-Dinitrophenol           | µg/L | < | 10   |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|         | 2-Nitrophenol               | µg/L | < | 10   |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|         | 4-Nitrophenol               | µg/L | < | 10   |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|         | p-Chloro-m-Cresol           | µg/L | < | 10   |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|         | Pentachlorophenol           | µg/L | < | 10   |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|         | Phenol                      | µg/L | < | 10   |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Group 5 | 2,4,6-Trichlorophenol       | µg/L | < | 10   |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|         | Acenaphthene                | µg/L | < | 2.5  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|         | Acenaphthylene              | µg/L | < | 2.5  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|         | Anthracene                  | µg/L | < | 2.5  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|         | Benzidine                   | µg/L | < | 50   |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|         | Benzo(a)Anthracene          | µg/L | < | 2.5  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|         | Benzo(a)Pyrene              | µg/L | < | 2.5  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|         | 3,4-Benzoxyanthene          | µg/L | < | 2.5  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|         | Benzo(ghi)Perylene          | µg/L | < | 2.5  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|         | Benzo(k)Fluoranthene        | µg/L | < | 2.5  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|         | Bis(2-Chloroethoxy)Methane  | µg/L | < | 5    |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|         | Bis(2-Chloroethyl)Ether     | µg/L | < | 5    |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|         | Bis(2-Chloroisopropyl)Ether | µg/L | < | 5    |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|         | Bis(2-Ethylhexyl)Phthalate  | µg/L | < | 5    |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|         | 4-Bromophenyl Phenyl Ether  | µg/L | < | 5    |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|         | Butyl Benzyl Phthalate      | µg/L | < | 5    |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|         | 2-Chloronaphthalene         | µg/L | < | 5    |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|         | 4-Chlorophenyl Phenyl Ether | µg/L | < | 5    |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|         | Chrysene                    | µg/L | < | 2.5  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|         | Dibenzo(a,h)Anthracene      | µg/L | < | 2.5  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|         | 1,2-Dichlorobenzene         | µg/L | < | 0.5  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|         | 1,3-Dichlorobenzene         | µg/L | < | 0.5  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|         | 1,4-Dichlorobenzene         | µg/L | < | 0.5  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|         | 3,3-Dichlorobenzidine       | µg/L | < | 5    |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|         | Diethyl Phthalate           | µg/L | < | 5    |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|         | Dimethyl Phthalate          | µg/L | < | 5    |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|         | Di-n-Butyl Phthalate        | µg/L | < | 5    |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|         | 2,4-Dinitrotoluene          | µg/L | < | 5    |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|         | 2,6-Dinitrotoluene          | µg/L | < | 5    |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|         | Di-n-Octyl Phthalate        | µg/L | < | 5    |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|         | 1,2-Diphenylhydrazine       | µg/L | < | 10   |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|         | Fluoranthene                | µg/L | < | 2.5  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|         | Fluorene                    | µg/L | < | 2.5  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|         | Hexachlorobenzene           | µg/L | < | 5    |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|         | Hexachlorobutadiene         | µg/L | < | 0.5  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|         | Hexachlorocyclopentadiene   | µg/L | < | 5    |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|         | Hexachloroethane            | µg/L | < | 5    |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|         | Indeno(1,2,3-cd)Pyrene      | µg/L | < | 2.5  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |





## Stream / Surface Water Information

Warren City WWTP, NPDES Permit No. PA0027120, Outfall 001

Instructions **Discharge** Stream

Receiving Surface Water Name: \_\_\_\_\_

No. Reaches to Model: 1

Statewide Criteria  
 Great Lakes Criteria  
 ORSANCO Criteria

| Location           | Stream Code* | RMI*  | Elevation (ft)* | DA (mi <sup>2</sup> )* | Slope (ft/ft) | PWS Withdrawal (MGD) | Apply Fish Criteria* |
|--------------------|--------------|-------|-----------------|------------------------|---------------|----------------------|----------------------|
| Point of Discharge | 042122       | 188.6 | 1176            | 3130                   |               |                      | Yes                  |
| End of Reach 1     | 042122       | 188.1 | 1174            | 3150                   |               |                      | Yes                  |

Q<sub>7-10</sub>

| Location           | RMI   | LFY (cfs/mi <sup>2</sup> )* | Flow (cfs) |           | W/D Ratio | Width (ft) | Depth (ft) | Velocity (fps) | Travel Time | Tributary |    | Stream    |     | Analysis |    |
|--------------------|-------|-----------------------------|------------|-----------|-----------|------------|------------|----------------|-------------|-----------|----|-----------|-----|----------|----|
|                    |       |                             | Stream     | Tributary |           |            |            |                |             | Hardness  | pH | Hardness* | pH* | Hardness | pH |
| Point of Discharge | 188.6 | 0.08                        |            |           |           |            |            |                |             | 100       | 7  |           |     |          |    |
| End of Reach 1     | 188.1 | 0.08                        |            |           |           |            |            |                |             |           |    |           |     |          |    |

Q<sub>h</sub>

| Location           | RMI   | LFY (cfs/mi <sup>2</sup> )* | Flow (cfs) |           | W/D Ratio | Width (ft) | Depth (ft) | Velocity (fps) | Travel Time | Tributary |    | Stream    |     | Analysis |    |
|--------------------|-------|-----------------------------|------------|-----------|-----------|------------|------------|----------------|-------------|-----------|----|-----------|-----|----------|----|
|                    |       |                             | Stream     | Tributary |           |            |            |                |             | Hardness  | pH | Hardness* | pH* | Hardness | pH |
| Point of Discharge | 188.6 |                             |            |           |           |            |            |                |             |           |    |           |     |          |    |
| End of Reach 1     | 188.1 |                             |            |           |           |            |            |                |             |           |    |           |     |          |    |



## Model Results

Warren City WWTP, NPDES Permit No. PA0027120, Outfall 001

|                                                                  |             | RETURN TO INPUTS | SAVE AS PDF      | PRINT     | <input checked="" type="radio"/> All | <input type="radio"/> Inputs | <input type="radio"/> Results | <input type="radio"/> Limits     |
|------------------------------------------------------------------|-------------|------------------|------------------|-----------|--------------------------------------|------------------------------|-------------------------------|----------------------------------|
| <input type="checkbox"/> <b>Hydrodynamics</b>                    |             |                  |                  |           |                                      |                              |                               |                                  |
| <input checked="" type="checkbox"/> <b>Wasteload Allocations</b> |             |                  |                  |           |                                      |                              |                               |                                  |
| <input checked="" type="checkbox"/> <b>AFC</b>                   | CCT (min):  | 15               | PMF:             | 0.069     | Analysis Hardness (mg/l):            | 106.25                       | Analysis pH:                  | 7.00                             |
| Pollutants                                                       | Stream Conc | Stream CV        | Trib Conc (µg/L) | Fate Coef | WQC (µg/L)                           | WQ Obj (µg/L)                | WLA (µg/L)                    | Comments                         |
| Total Dissolved Solids (PWS)                                     | 0           | 0                |                  | 0         | N/A                                  | N/A                          | N/A                           |                                  |
| Chloride (PWS)                                                   | 0           | 0                |                  | 0         | N/A                                  | N/A                          | N/A                           |                                  |
| Sulfate (PWS)                                                    | 0           | 0                |                  | 0         | N/A                                  | N/A                          | N/A                           |                                  |
| Total Aluminum                                                   | 0           | 0                |                  | 0         | 750                                  | 750                          | 2,040                         |                                  |
| Total Antimony                                                   | 0           | 0                |                  | 0         | 1,100                                | 1,100                        | 2,992                         |                                  |
| Total Arsenic                                                    | 0           | 0                |                  | 0         | 340                                  | 340                          | 925                           |                                  |
| Total Barium                                                     | 0           | 0                |                  | 0         | 21,000                               | 21,000                       | 57,120                        |                                  |
| Total Boron                                                      | 0           | 0                |                  | 0         | 8,100                                | 8,100                        | 22,032                        |                                  |
| Total Cadmium                                                    | 0           | 0                |                  | 0         | 2.136                                | 2.27                         | 6.17                          | Chem Translator of 0.941 applied |
| Total Chromium (III)                                             | 0           | 0                |                  | 0         | 598.767                              | 1,895                        | 5,154                         | Chem Translator of 0.316 applied |
| Hexavalent Chromium                                              | 0           | 0                |                  | 0         | 16                                   | 16.3                         | 44.3                          | Chem Translator of 0.982 applied |
| Total Cobalt                                                     | 0           | 0                |                  | 0         | 95                                   | 95.0                         | 258                           |                                  |
| Total Copper                                                     | 0           | 0                |                  | 0         | 14,229                               | 14.8                         | 40.3                          | Chem Translator of 0.96 applied  |
| Free Cyanide                                                     | 0           | 0                |                  | 0         | 22                                   | 22.0                         | 59.8                          |                                  |
| Dissolved Iron                                                   | 0           | 0                |                  | 0         | N/A                                  | N/A                          | N/A                           |                                  |
| Total Iron                                                       | 0           | 0                |                  | 0         | N/A                                  | N/A                          | N/A                           |                                  |
| Total Lead                                                       | 0           | 0                |                  | 0         | 68.984                               | 88.2                         | 240                           | Chem Translator of 0.782 applied |
| Total Manganese                                                  | 0           | 0                |                  | 0         | N/A                                  | N/A                          | N/A                           |                                  |
| Total Mercury                                                    | 0           | 0                |                  | 0         | 1.400                                | 1.65                         | 4.48                          | Chem Translator of 0.85 applied  |
| Total Nickel                                                     | 0           | 0                |                  | 0         | 492.877                              | 494                          | 1,343                         | Chem Translator of 0.998 applied |
| Total Phenols (Phenolics) (PWS)                                  | 0           | 0                |                  | 0         | N/A                                  | N/A                          | N/A                           |                                  |
| Total Selenium                                                   | 0           | 0                |                  | 0         | N/A                                  | N/A                          | N/A                           | Chem Translator of 0.922 applied |
| Total Silver                                                     | 0           | 0                |                  | 0         | 3.570                                | 4.2                          | 11.4                          | Chem Translator of 0.85 applied  |
| Total Thallium                                                   | 0           | 0                |                  | 0         | 65                                   | 65.0                         | 177                           |                                  |
| Total Zinc                                                       | 0           | 0                |                  | 0         | 123.357                              | 126                          | 343                           | Chem Translator of 0.978 applied |
| Acrolein                                                         | 0           | 0                |                  | 0         | 3                                    | 3.0                          | 8.16                          |                                  |
| Acrylonitrile                                                    | 0           | 0                |                  | 0         | 650                                  | 650                          | 1,768                         |                                  |
| Benzene                                                          | 0           | 0                |                  | 0         | 640                                  | 640                          | 1,741                         |                                  |

Model Results

7/30/2025

Page 5

|                             |   |   |  |   |        |        |        |
|-----------------------------|---|---|--|---|--------|--------|--------|
| Bromoform                   | 0 | 0 |  | 0 | 1,800  | 1,800  | 4,896  |
| Carbon Tetrachloride        | 0 | 0 |  | 0 | 2,800  | 2,800  | 7,616  |
| Chlorobenzene               | 0 | 0 |  | 0 | 1,200  | 1,200  | 3,264  |
| Chlorodibromomethane        | 0 | 0 |  | 0 | N/A    | N/A    | N/A    |
| 2-Chloroethyl Vinyl Ether   | 0 | 0 |  | 0 | 18,000 | 18,000 | 48,960 |
| Chloroform                  | 0 | 0 |  | 0 | 1,900  | 1,900  | 5,168  |
| Dichlorobromomethane        | 0 | 0 |  | 0 | N/A    | N/A    | N/A    |
| 1,2-Dichloroethane          | 0 | 0 |  | 0 | 15,000 | 15,000 | 40,800 |
| 1,1-Dichloroethylene        | 0 | 0 |  | 0 | 7,500  | 7,500  | 20,400 |
| 1,2-Dichloropropane         | 0 | 0 |  | 0 | 11,000 | 11,000 | 29,920 |
| 1,3-Dichloropropylene       | 0 | 0 |  | 0 | 310    | 310    | 843    |
| Ethylbenzene                | 0 | 0 |  | 0 | 2,900  | 2,900  | 7,888  |
| Methyl Bromide              | 0 | 0 |  | 0 | 550    | 550    | 1,496  |
| Methyl Chloride             | 0 | 0 |  | 0 | 28,000 | 28,000 | 76,160 |
| Methylene Chloride          | 0 | 0 |  | 0 | 12,000 | 12,000 | 32,640 |
| 1,1,2,2-Tetrachloroethane   | 0 | 0 |  | 0 | 1,000  | 1,000  | 2,720  |
| Tetrachloroethylene         | 0 | 0 |  | 0 | 700    | 700    | 1,904  |
| Toluene                     | 0 | 0 |  | 0 | 1,700  | 1,700  | 4,624  |
| 1,2-trans-Dichloroethylene  | 0 | 0 |  | 0 | 6,800  | 6,800  | 18,496 |
| 1,1,1-Trichloroethane       | 0 | 0 |  | 0 | 3,000  | 3,000  | 8,160  |
| 1,1,2-Trichloroethane       | 0 | 0 |  | 0 | 3,400  | 3,400  | 9,248  |
| Trichloroethylene           | 0 | 0 |  | 0 | 2,300  | 2,300  | 6,256  |
| Vinyl Chloride              | 0 | 0 |  | 0 | N/A    | N/A    | N/A    |
| 2-Chlorophenol              | 0 | 0 |  | 0 | 560    | 560    | 1,523  |
| 2,4-Dichlorophenol          | 0 | 0 |  | 0 | 1,700  | 1,700  | 4,624  |
| 2,4-Dimethylphenol          | 0 | 0 |  | 0 | 660    | 660    | 1,795  |
| 4,6-Dinitro-o-Cresol        | 0 | 0 |  | 0 | 80     | 80.0   | 218    |
| 2,4-Dinitrophenol           | 0 | 0 |  | 0 | 660    | 660    | 1,795  |
| 2-Nitrophenol               | 0 | 0 |  | 0 | 8,000  | 8,000  | 21,760 |
| 4-Nitrophenol               | 0 | 0 |  | 0 | 2,300  | 2,300  | 6,256  |
| p-Chloro-m-Cresol           | 0 | 0 |  | 0 | 160    | 160    | 435    |
| Pentachlorophenol           | 0 | 0 |  | 0 | 8.723  | 8.72   | 23.7   |
| Phenol                      | 0 | 0 |  | 0 | N/A    | N/A    | N/A    |
| 2,4,6-Trichlorophenol       | 0 | 0 |  | 0 | 460    | 460    | 1,251  |
| Acenaphthene                | 0 | 0 |  | 0 | 83     | 83.0   | 226    |
| Anthracene                  | 0 | 0 |  | 0 | N/A    | N/A    | N/A    |
| Benzidine                   | 0 | 0 |  | 0 | 300    | 300    | 816    |
| Benzo(a)Anthracene          | 0 | 0 |  | 0 | 0.5    | 0.5    | 1.36   |
| Benzo(a)Pyrene              | 0 | 0 |  | 0 | N/A    | N/A    | N/A    |
| 3,4-Benzofluoranthene       | 0 | 0 |  | 0 | N/A    | N/A    | N/A    |
| Benzo(k)Fluoranthene        | 0 | 0 |  | 0 | N/A    | N/A    | N/A    |
| Bis(2-Chloroethyl)Ether     | 0 | 0 |  | 0 | 30,000 | 30,000 | 81,600 |
| Bis(2-Chloroisopropyl)Ether | 0 | 0 |  | 0 | N/A    | N/A    | N/A    |
| Bis(2-Ethylhexyl)Phthalate  | 0 | 0 |  | 0 | 4,500  | 4,500  | 12,240 |
| 4-Bromophenyl Phenyl Ether  | 0 | 0 |  | 0 | 270    | 270    | 734    |
| Butyl Benzyl Phthalate      | 0 | 0 |  | 0 | 140    | 140    | 381    |
| 2-Chloronaphthalene         | 0 | 0 |  | 0 | N/A    | N/A    | N/A    |

|                           |   |   |  |   |        |        |        |
|---------------------------|---|---|--|---|--------|--------|--------|
| Chrysene                  | 0 | 0 |  | 0 | N/A    | N/A    | N/A    |
| Dibenzo(a,h)Anthracene    | 0 | 0 |  | 0 | N/A    | N/A    | N/A    |
| 1,2-Dichlorobenzene       | 0 | 0 |  | 0 | 820    | 820    | 2,230  |
| 1,3-Dichlorobenzene       | 0 | 0 |  | 0 | 350    | 350    | 952    |
| 1,4-Dichlorobenzene       | 0 | 0 |  | 0 | 730    | 730    | 1,986  |
| 3,3-Dichlorobenzidine     | 0 | 0 |  | 0 | N/A    | N/A    | N/A    |
| Diethyl Phthalate         | 0 | 0 |  | 0 | 4,000  | 4,000  | 10,880 |
| Dimethyl Phthalate        | 0 | 0 |  | 0 | 2,500  | 2,500  | 6,800  |
| Di-n-Butyl Phthalate      | 0 | 0 |  | 0 | 110    | 110    | 299    |
| 2,4-Dinitrotoluene        | 0 | 0 |  | 0 | 1,600  | 1,600  | 4,352  |
| 2,6-Dinitrotoluene        | 0 | 0 |  | 0 | 990    | 990    | 2,693  |
| 1,2-Diphenylhydrazine     | 0 | 0 |  | 0 | 15     | 15.0   | 40.8   |
| Fluoranthene              | 0 | 0 |  | 0 | 200    | 200    | 544    |
| Fluorene                  | 0 | 0 |  | 0 | N/A    | N/A    | N/A    |
| Hexachlorobenzene         | 0 | 0 |  | 0 | N/A    | N/A    | N/A    |
| Hexachlorobutadiene       | 0 | 0 |  | 0 | 10     | 10.0   | 27.2   |
| Hexachlorocyclopentadiene | 0 | 0 |  | 0 | 5      | 5.0    | 13.6   |
| Hexachloroethane          | 0 | 0 |  | 0 | 60     | 60.0   | 163    |
| Indeno(1,2,3-cd)Pyrene    | 0 | 0 |  | 0 | N/A    | N/A    | N/A    |
| Isophorone                | 0 | 0 |  | 0 | 10,000 | 10,000 | 27,200 |
| Naphthalene               | 0 | 0 |  | 0 | 140    | 140    | 381    |
| Nitrobenzene              | 0 | 0 |  | 0 | 4,000  | 4,000  | 10,880 |
| n-Nitrosodimethylamine    | 0 | 0 |  | 0 | 17,000 | 17,000 | 46,240 |
| n-Nitrosodi-n-Propylamine | 0 | 0 |  | 0 | N/A    | N/A    | N/A    |
| n-Nitrosodiphenylamine    | 0 | 0 |  | 0 | 300    | 300    | 816    |
| Phenanthrene              | 0 | 0 |  | 0 | 5      | 5.0    | 13.6   |
| Pyrene                    | 0 | 0 |  | 0 | N/A    | N/A    | N/A    |
| 1,2,4-Trichlorobenzene    | 0 | 0 |  | 0 | 130    | 130    | 354    |

CFC

CCT (min): 720

PMF: 0.479

Analysis Hardness (mg/l): 101.32

Analysis pH: 7.00

| Pollutants                   | Stream Conc | Stream CV | Trib Conc (µg/L) | Fate Coef | WQC (µg/L) | WQ Obj (µg/L) | WLA (µg/L) | Comments                         |
|------------------------------|-------------|-----------|------------------|-----------|------------|---------------|------------|----------------------------------|
| Total Dissolved Solids (PWS) | 0           | 0         |                  | 0         | N/A        | N/A           | N/A        |                                  |
| Chloride (PWS)               | 0           | 0         |                  | 0         | N/A        | N/A           | N/A        |                                  |
| Sulfate (PWS)                | 0           | 0         |                  | 0         | N/A        | N/A           | N/A        |                                  |
| Total Aluminum               | 0           | 0         |                  | 0         | N/A        | N/A           | N/A        |                                  |
| Total Antimony               | 0           | 0         |                  | 0         | 220        | 220           | 2,842      |                                  |
| Total Arsenic                | 0           | 0         |                  | 0         | 150        | 150           | 1,937      | Chem Translator of 1 applied     |
| Total Barium                 | 0           | 0         |                  | 0         | 4,100      | 4,100         | 52,957     |                                  |
| Total Boron                  | 0           | 0         |                  | 0         | 1,600      | 1,600         | 20,666     |                                  |
| Total Cadmium                | 0           | 0         |                  | 0         | 0.248      | 0.27          | 3.53       | Chem Translator of 0.908 applied |
| Total Chromium (III)         | 0           | 0         |                  | 0         | 74.912     | 87.1          | 1,125      | Chem Translator of 0.86 applied  |
| Hexavalent Chromium          | 0           | 0         |                  | 0         | 10         | 10.4          | 134        | Chem Translator of 0.962 applied |
| Total Cobalt                 | 0           | 0         |                  | 0         | 19         | 19.0          | 245        |                                  |
| Total Copper                 | 0           | 0         |                  | 0         | 9.056      | 9.43          | 122        | Chem Translator of 0.96 applied  |
| Free Cyanide                 | 0           | 0         |                  | 0         | 5.2        | 5.2           | 67.2       |                                  |
| Dissolved Iron               | 0           | 0         |                  | 0         | N/A        | N/A           | N/A        |                                  |

Model Results

7/30/2025

Page 7

|                                 |   |   |  |   |         |       |        |                                  |
|---------------------------------|---|---|--|---|---------|-------|--------|----------------------------------|
| Total Iron                      | 0 | 0 |  | 0 | 1,500   | 1,500 | 38,853 | WQC = 30 day average; PMF = 1    |
| Total Lead                      | 0 | 0 |  | 0 | 2.553   | 3.23  | 41.8   | Chem Translator of 0.789 applied |
| Total Manganese                 | 0 | 0 |  | 0 | N/A     | N/A   | N/A    |                                  |
| Total Mercury                   | 0 | 0 |  | 0 | 0.770   | 0.91  | 11.7   | Chem Translator of 0.85 applied  |
| Total Nickel                    | 0 | 0 |  | 0 | 52.585  | 52.7  | 681    | Chem Translator of 0.997 applied |
| Total Phenols (Phenolics) (PWS) | 0 | 0 |  | 0 | N/A     | N/A   | N/A    |                                  |
| Total Selenium                  | 0 | 0 |  | 0 | 4,600   | 4.99  | 64.4   | Chem Translator of 0.922 applied |
| Total Silver                    | 0 | 0 |  | 0 | N/A     | N/A   | N/A    | Chem Translator of 1 applied     |
| Total Thallium                  | 0 | 0 |  | 0 | 13      | 13.0  | 168    |                                  |
| Total Zinc                      | 0 | 0 |  | 0 | 119,455 | 121   | 1,565  | Chem Translator of 0.986 applied |
| Acrolein                        | 0 | 0 |  | 0 | 3       | 3.0   | 38.7   |                                  |
| Acrylonitrile                   | 0 | 0 |  | 0 | 130     | 130   | 1,679  |                                  |
| Benzene                         | 0 | 0 |  | 0 | 130     | 130   | 1,679  |                                  |
| Bromoform                       | 0 | 0 |  | 0 | 370     | 370   | 4,779  |                                  |
| Carbon Tetrachloride            | 0 | 0 |  | 0 | 560     | 560   | 7,233  |                                  |
| Chlorobenzene                   | 0 | 0 |  | 0 | 240     | 240   | 3,100  |                                  |
| Chlorodibromomethane            | 0 | 0 |  | 0 | N/A     | N/A   | N/A    |                                  |
| 2-Chloroethyl Vinyl Ether       | 0 | 0 |  | 0 | 3,500   | 3,500 | 45,207 |                                  |
| Chloroform                      | 0 | 0 |  | 0 | 390     | 390   | 5,037  |                                  |
| Dichlorobromomethane            | 0 | 0 |  | 0 | N/A     | N/A   | N/A    |                                  |
| 1,2-Dichloroethane              | 0 | 0 |  | 0 | 3,100   | 3,100 | 40,041 |                                  |
| 1,1-Dichloroethylene            | 0 | 0 |  | 0 | 1,500   | 1,500 | 19,375 |                                  |
| 1,2-Dichloropropane             | 0 | 0 |  | 0 | 2,200   | 2,200 | 28,416 |                                  |
| 1,3-Dichloropropylene           | 0 | 0 |  | 0 | 61      | 61.0  | 788    |                                  |
| Ethylbenzene                    | 0 | 0 |  | 0 | 580     | 580   | 7,492  |                                  |
| Methyl Bromide                  | 0 | 0 |  | 0 | 110     | 110   | 1,421  |                                  |
| Methyl Chloride                 | 0 | 0 |  | 0 | 5,500   | 5,500 | 71,040 |                                  |
| Methylene Chloride              | 0 | 0 |  | 0 | 2,400   | 2,400 | 30,999 |                                  |
| 1,1,2,2-Tetrachloroethane       | 0 | 0 |  | 0 | 210     | 210   | 2,712  |                                  |
| Tetrachloroethylene             | 0 | 0 |  | 0 | 140     | 140   | 1,808  |                                  |
| Toluene                         | 0 | 0 |  | 0 | 330     | 330   | 4,262  |                                  |
| 1,2-trans-Dichloroethylene      | 0 | 0 |  | 0 | 1,400   | 1,400 | 18,083 |                                  |
| 1,1,1-Trichloroethane           | 0 | 0 |  | 0 | 610     | 610   | 7,879  |                                  |
| 1,1,2-Trichloroethane           | 0 | 0 |  | 0 | 680     | 680   | 8,783  |                                  |
| Trichloroethylene               | 0 | 0 |  | 0 | 450     | 450   | 5,812  |                                  |
| Vinyl Chloride                  | 0 | 0 |  | 0 | N/A     | N/A   | N/A    |                                  |
| 2-Chlorophenol                  | 0 | 0 |  | 0 | 110     | 110   | 1,421  |                                  |
| 2,4-Dichlorophenol              | 0 | 0 |  | 0 | 340     | 340   | 4,392  |                                  |
| 2,4-Dimethylphenol              | 0 | 0 |  | 0 | 130     | 130   | 1,679  |                                  |
| 4,6-Dinitro-o-Cresol            | 0 | 0 |  | 0 | 16      | 16.0  | 207    |                                  |
| 2,4-Dinitrophenol               | 0 | 0 |  | 0 | 130     | 130   | 1,679  |                                  |
| 2-Nitrophenol                   | 0 | 0 |  | 0 | 1,600   | 1,600 | 20,666 |                                  |
| 4-Nitrophenol                   | 0 | 0 |  | 0 | 470     | 470   | 6,071  |                                  |
| p-Chloro-m-Cresol               | 0 | 0 |  | 0 | 500     | 500   | 6,458  |                                  |
| Pentachlorophenol               | 0 | 0 |  | 0 | 6,693   | 6.69  | 86.4   |                                  |
| Phenol                          | 0 | 0 |  | 0 | N/A     | N/A   | N/A    |                                  |
| 2,4,6-Trichlorophenol           | 0 | 0 |  | 0 | 91      | 91.0  | 1,175  |                                  |
| Acenaphthene                    | 0 | 0 |  | 0 | 17      | 17.0  | 220    |                                  |
| Anthracene                      | 0 | 0 |  | 0 | N/A     | N/A   | N/A    |                                  |

Model Results

7/30/2025

Page 8

|                             |   |   |  |   |       |       |        |  |
|-----------------------------|---|---|--|---|-------|-------|--------|--|
| Benzidine                   | 0 | 0 |  | 0 | 59    | 59.0  | 762    |  |
| Benzo(a)Anthracene          | 0 | 0 |  | 0 | 0.1   | 0.1   | 1.29   |  |
| Benzo(a)Pyrene              | 0 | 0 |  | 0 | N/A   | N/A   | N/A    |  |
| 3,4-Benzofluoranthene       | 0 | 0 |  | 0 | N/A   | N/A   | N/A    |  |
| Benz(k)Fluoranthene         | 0 | 0 |  | 0 | N/A   | N/A   | N/A    |  |
| Bis(2-Chloroethyl)Ether     | 0 | 0 |  | 0 | 6,000 | 6,000 | 77,499 |  |
| Bis(2-Chloroisopropyl)Ether | 0 | 0 |  | 0 | N/A   | N/A   | N/A    |  |
| Bis(2-Ethylhexyl)Phthalate  | 0 | 0 |  | 0 | 910   | 910   | 11,754 |  |
| 4-Bromophenyl Phenyl Ether  | 0 | 0 |  | 0 | 54    | 54.0  | 697    |  |
| Butyl Benzyl Phthalate      | 0 | 0 |  | 0 | 35    | 35.0  | 452    |  |
| 2-Chloronaphthalene         | 0 | 0 |  | 0 | N/A   | N/A   | N/A    |  |
| Chrysene                    | 0 | 0 |  | 0 | N/A   | N/A   | N/A    |  |
| Dibenzo(a,h)Anthracene      | 0 | 0 |  | 0 | N/A   | N/A   | N/A    |  |
| 1,2-Dichlorobenzene         | 0 | 0 |  | 0 | 160   | 160   | 2,067  |  |
| 1,3-Dichlorobenzene         | 0 | 0 |  | 0 | 69    | 69.0  | 891    |  |
| 1,4-Dichlorobenzene         | 0 | 0 |  | 0 | 150   | 150   | 1,937  |  |
| 3,3-Dichlorobenzidine       | 0 | 0 |  | 0 | N/A   | N/A   | N/A    |  |
| Diethyl Phthalate           | 0 | 0 |  | 0 | 800   | 800   | 10,333 |  |
| Dimethyl Phthalate          | 0 | 0 |  | 0 | 500   | 500   | 6,458  |  |
| Di-n-Butyl Phthalate        | 0 | 0 |  | 0 | 21    | 21.0  | 271    |  |
| 2,4-Dinitrotoluene          | 0 | 0 |  | 0 | 320   | 320   | 4,133  |  |
| 2,6-Dinitrotoluene          | 0 | 0 |  | 0 | 200   | 200   | 2,583  |  |
| 1,2-Diphenylhydrazine       | 0 | 0 |  | 0 | 3     | 3.0   | 38.7   |  |
| Fluoranthene                | 0 | 0 |  | 0 | 40    | 40.0  | 517    |  |
| Fluorene                    | 0 | 0 |  | 0 | N/A   | N/A   | N/A    |  |
| Hexachlorobenzene           | 0 | 0 |  | 0 | N/A   | N/A   | N/A    |  |
| Hexachlorobutadiene         | 0 | 0 |  | 0 | 2     | 2.0   | 25.8   |  |
| Hexachlorocyclopentadiene   | 0 | 0 |  | 0 | 1     | 1.0   | 12.9   |  |
| Hexachloroethane            | 0 | 0 |  | 0 | 12    | 12.0  | 155    |  |
| Inden(1,2,3-cd)Pyrene       | 0 | 0 |  | 0 | N/A   | N/A   | N/A    |  |
| Isophorone                  | 0 | 0 |  | 0 | 2,100 | 2,100 | 27,124 |  |
| Naphthalene                 | 0 | 0 |  | 0 | 43    | 43.0  | 555    |  |
| Nitrobenzene                | 0 | 0 |  | 0 | 810   | 810   | 10,462 |  |
| n-Nitrosodimethylamine      | 0 | 0 |  | 0 | 3,400 | 3,400 | 43,916 |  |
| n-Nitrosodi-n-Propylamine   | 0 | 0 |  | 0 | N/A   | N/A   | N/A    |  |
| n-Nitrosodiphenylamine      | 0 | 0 |  | 0 | 59    | 59.0  | 762    |  |
| Phenanthrene                | 0 | 0 |  | 0 | 1     | 1.0   | 12.9   |  |
| Pyrene                      | 0 | 0 |  | 0 | N/A   | N/A   | N/A    |  |
| 1,2,4-Trichlorobenzene      | 0 | 0 |  | 0 | 26    | 26.0  | 336    |  |

THH

CCT (min): 720

PMF: 0.479

Analysis Hardness (mg/l): N/A

Analysis pH: N/A

| Pollutants                   | Stream Conc | Stream CV | Trib Conc (µg/L) | Fate Coef | WQC (µg/L) | WQ Obj (µg/L) | WLA (µg/L) | Comments |
|------------------------------|-------------|-----------|------------------|-----------|------------|---------------|------------|----------|
| Total Dissolved Solids (PWS) | 0           | 0         |                  | 0         | 500,000    | 500,000       | N/A        |          |
| Chloride (PWS)               | 0           | 0         |                  | 0         | 250,000    | 250,000       | N/A        |          |
| Sulfate (PWS)                | 0           | 0         |                  | 0         | 250,000    | 250,000       | N/A        |          |
| Total Aluminum               | 0           | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Total Antimony               | 0           | 0         |                  | 0         | 5.6        | 5.6           | 72.3       |          |

|                                 |   |   |  |   |        |        |         |  |
|---------------------------------|---|---|--|---|--------|--------|---------|--|
| Total Arsenic                   | 0 | 0 |  | 0 | 10     | 10.0   | 129     |  |
| Total Barium                    | 0 | 0 |  | 0 | 2,400  | 2,400  | 30,999  |  |
| Total Boron                     | 0 | 0 |  | 0 | 3,100  | 3,100  | 40,041  |  |
| Total Cadmium                   | 0 | 0 |  | 0 | N/A    | N/A    | N/A     |  |
| Total Chromium (III)            | 0 | 0 |  | 0 | N/A    | N/A    | N/A     |  |
| Hexavalent Chromium             | 0 | 0 |  | 0 | N/A    | N/A    | N/A     |  |
| Total Cobalt                    | 0 | 0 |  | 0 | N/A    | N/A    | N/A     |  |
| Total Copper                    | 0 | 0 |  | 0 | N/A    | N/A    | N/A     |  |
| Free Cyanide                    | 0 | 0 |  | 0 | 4      | 4.0    | 51.7    |  |
| Dissolved Iron                  | 0 | 0 |  | 0 | 300    | 300    | 3,875   |  |
| Total Iron                      | 0 | 0 |  | 0 | N/A    | N/A    | N/A     |  |
| Total Lead                      | 0 | 0 |  | 0 | N/A    | N/A    | N/A     |  |
| Total Manganese                 | 0 | 0 |  | 0 | 1,000  | 1,000  | 12,916  |  |
| Total Mercury                   | 0 | 0 |  | 0 | 0.050  | 0.05   | 0.65    |  |
| Total Nickel                    | 0 | 0 |  | 0 | 610    | 610    | 7,879   |  |
| Total Phenols (Phenolics) (PWS) | 0 | 0 |  | 0 | 5      | 5.0    | N/A     |  |
| Total Selenium                  | 0 | 0 |  | 0 | N/A    | N/A    | N/A     |  |
| Total Silver                    | 0 | 0 |  | 0 | N/A    | N/A    | N/A     |  |
| Total Thallium                  | 0 | 0 |  | 0 | 0.24   | 0.24   | 3.1     |  |
| Total Zinc                      | 0 | 0 |  | 0 | N/A    | N/A    | N/A     |  |
| Acrolein                        | 0 | 0 |  | 0 | 3      | 3.0    | 38.7    |  |
| Acrylonitrile                   | 0 | 0 |  | 0 | N/A    | N/A    | N/A     |  |
| Benzene                         | 0 | 0 |  | 0 | N/A    | N/A    | N/A     |  |
| Bromoform                       | 0 | 0 |  | 0 | N/A    | N/A    | N/A     |  |
| Carbon Tetrachloride            | 0 | 0 |  | 0 | N/A    | N/A    | N/A     |  |
| Chlorobenzene                   | 0 | 0 |  | 0 | 100    | 100.0  | 1,292   |  |
| Chlorodibromomethane            | 0 | 0 |  | 0 | N/A    | N/A    | N/A     |  |
| 2-Chloroethyl Vinyl Ether       | 0 | 0 |  | 0 | N/A    | N/A    | N/A     |  |
| Chloroform                      | 0 | 0 |  | 0 | N/A    | N/A    | N/A     |  |
| Dichlorobromomethane            | 0 | 0 |  | 0 | N/A    | N/A    | N/A     |  |
| 1,2-Dichloroethane              | 0 | 0 |  | 0 | N/A    | N/A    | N/A     |  |
| 1,1-Dichloroethylene            | 0 | 0 |  | 0 | 33     | 33.0   | 426     |  |
| 1,2-Dichloropropane             | 0 | 0 |  | 0 | N/A    | N/A    | N/A     |  |
| 1,3-Dichloropropylene           | 0 | 0 |  | 0 | N/A    | N/A    | N/A     |  |
| Ethylbenzene                    | 0 | 0 |  | 0 | 68     | 68.0   | 878     |  |
| Methyl Bromide                  | 0 | 0 |  | 0 | 100    | 100.0  | 1,292   |  |
| Methyl Chloride                 | 0 | 0 |  | 0 | N/A    | N/A    | N/A     |  |
| Methylene Chloride              | 0 | 0 |  | 0 | N/A    | N/A    | N/A     |  |
| 1,1,2,2-Tetrachloroethane       | 0 | 0 |  | 0 | N/A    | N/A    | N/A     |  |
| Tetrachloroethylene             | 0 | 0 |  | 0 | N/A    | N/A    | N/A     |  |
| Toluene                         | 0 | 0 |  | 0 | 57     | 57.0   | 736     |  |
| 1,2-trans-Dichloroethylene      | 0 | 0 |  | 0 | 100    | 100.0  | 1,292   |  |
| 1,1,1-Trichloroethane           | 0 | 0 |  | 0 | 10,000 | 10,000 | 129,164 |  |
| 1,1,2-Trichloroethane           | 0 | 0 |  | 0 | N/A    | N/A    | N/A     |  |
| Trichloroethylene               | 0 | 0 |  | 0 | N/A    | N/A    | N/A     |  |
| Vinyl Chloride                  | 0 | 0 |  | 0 | N/A    | N/A    | N/A     |  |
| 2-Chlorophenol                  | 0 | 0 |  | 0 | 30     | 30.0   | 387     |  |
| 2,4-Dichlorophenol              | 0 | 0 |  | 0 | 10     | 10.0   | 129     |  |
| 2,4-Dimethylphenol              | 0 | 0 |  | 0 | 100    | 100.0  | 1,292   |  |

Model Results

7/30/2025

Page 10

|                             |   |   |  |   |       |       |        |  |
|-----------------------------|---|---|--|---|-------|-------|--------|--|
| 4,6-Dinitro-o-Cresol        | 0 | 0 |  | 0 | 2     | 2.0   | 25.8   |  |
| 2,4-Dinitrophenol           | 0 | 0 |  | 0 | 10    | 10.0  | 129    |  |
| 2-Nitrophenol               | 0 | 0 |  | 0 | N/A   | N/A   | N/A    |  |
| 4-Nitrophenol               | 0 | 0 |  | 0 | N/A   | N/A   | N/A    |  |
| p-Chloro-m-Cresol           | 0 | 0 |  | 0 | N/A   | N/A   | N/A    |  |
| Pentachlorophenol           | 0 | 0 |  | 0 | N/A   | N/A   | N/A    |  |
| Phenol                      | 0 | 0 |  | 0 | 4,000 | 4,000 | 51,666 |  |
| 2,4,6-Trichlorophenol       | 0 | 0 |  | 0 | N/A   | N/A   | N/A    |  |
| Acenaphthene                | 0 | 0 |  | 0 | 70    | 70.0  | 904    |  |
| Anthracene                  | 0 | 0 |  | 0 | 300   | 300   | 3,875  |  |
| Benzidine                   | 0 | 0 |  | 0 | N/A   | N/A   | N/A    |  |
| Benzo(a)Anthracene          | 0 | 0 |  | 0 | N/A   | N/A   | N/A    |  |
| Benzo(a)Pyrene              | 0 | 0 |  | 0 | N/A   | N/A   | N/A    |  |
| 3,4-Benzofluoranthene       | 0 | 0 |  | 0 | N/A   | N/A   | N/A    |  |
| Benzo(k)Fluoranthene        | 0 | 0 |  | 0 | N/A   | N/A   | N/A    |  |
| Bis(2-Chloroethyl)Ether     | 0 | 0 |  | 0 | N/A   | N/A   | N/A    |  |
| Bis(2-Chloroisopropyl)Ether | 0 | 0 |  | 0 | 200   | 200   | 2,583  |  |
| Bis(2-Ethylhexyl)Phthalate  | 0 | 0 |  | 0 | N/A   | N/A   | N/A    |  |
| 4-Bromophenyl Phenyl Ether  | 0 | 0 |  | 0 | N/A   | N/A   | N/A    |  |
| Butyl Benzyl Phthalate      | 0 | 0 |  | 0 | 0.1   | 0.1   | 1.29   |  |
| 2-Chloronaphthalene         | 0 | 0 |  | 0 | 800   | 800   | 10,333 |  |
| Chrysene                    | 0 | 0 |  | 0 | N/A   | N/A   | N/A    |  |
| Dibenz(a,h)Anthracene       | 0 | 0 |  | 0 | N/A   | N/A   | N/A    |  |
| 1,2-Dichlorobenzene         | 0 | 0 |  | 0 | 1,000 | 1,000 | 12,916 |  |
| 1,3-Dichlorobenzene         | 0 | 0 |  | 0 | 7     | 7.0   | 90.4   |  |
| 1,4-Dichlorobenzene         | 0 | 0 |  | 0 | 300   | 300   | 3,875  |  |
| 3,3-Dichlorobenzidine       | 0 | 0 |  | 0 | N/A   | N/A   | N/A    |  |
| Diethyl Phthalate           | 0 | 0 |  | 0 | 600   | 600   | 7,750  |  |
| Dimethyl Phthalate          | 0 | 0 |  | 0 | 2,000 | 2,000 | 25,833 |  |
| Di-n-Butyl Phthalate        | 0 | 0 |  | 0 | 20    | 20.0  | 258    |  |
| 2,4-Dinitrotoluene          | 0 | 0 |  | 0 | N/A   | N/A   | N/A    |  |
| 2,6-Dinitrotoluene          | 0 | 0 |  | 0 | N/A   | N/A   | N/A    |  |
| 1,2-Diphenylhydrazine       | 0 | 0 |  | 0 | N/A   | N/A   | N/A    |  |
| Fluoranthene                | 0 | 0 |  | 0 | 20    | 20.0  | 258    |  |
| Fluorene                    | 0 | 0 |  | 0 | 50    | 50.0  | 646    |  |
| Hexachlorobenzene           | 0 | 0 |  | 0 | N/A   | N/A   | N/A    |  |
| Hexachlorobutadiene         | 0 | 0 |  | 0 | N/A   | N/A   | N/A    |  |
| Hexachlorocyclopentadiene   | 0 | 0 |  | 0 | 4     | 4.0   | 51.7   |  |
| Hexachloroethane            | 0 | 0 |  | 0 | N/A   | N/A   | N/A    |  |
| Indeno(1,2,3-cd)Pyrene      | 0 | 0 |  | 0 | N/A   | N/A   | N/A    |  |
| Isophorone                  | 0 | 0 |  | 0 | 34    | 34.0  | 439    |  |
| Naphthalene                 | 0 | 0 |  | 0 | N/A   | N/A   | N/A    |  |
| Nitrobenzene                | 0 | 0 |  | 0 | 10    | 10.0  | 129    |  |
| n-Nitrosodimethylamine      | 0 | 0 |  | 0 | N/A   | N/A   | N/A    |  |
| n-Nitrosodi-n-Propylamine   | 0 | 0 |  | 0 | N/A   | N/A   | N/A    |  |
| n-Nitrosodiphenylamine      | 0 | 0 |  | 0 | N/A   | N/A   | N/A    |  |
| Phenanthrene                | 0 | 0 |  | 0 | N/A   | N/A   | N/A    |  |
| Pyrene                      | 0 | 0 |  | 0 | 20    | 20.0  | 258    |  |
| 1,2,4-Trichlorobenzene      | 0 | 0 |  | 0 | 0.07  | 0.07  | 0.9    |  |

**CRL** CCT (min): **720** PMF: **0.710** Analysis Hardness (mg/l): **N/A** Analysis pH: **N/A**

| Pollutants                      | Stream Conc | Stream CV | Trib Conc (µg/L) | Fate Coef | WQC (µg/L) | WQ Obj (µg/L) | WLA (µg/L) | Comments |
|---------------------------------|-------------|-----------|------------------|-----------|------------|---------------|------------|----------|
| Total Dissolved Solids (PWS)    | 0           | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Chloride (PWS)                  | 0           | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Sulfate (PWS)                   | 0           | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Total Aluminum                  | 0           | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Total Antimony                  | 0           | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Total Arsenic                   | 0           | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Total Barium                    | 0           | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Total Boron                     | 0           | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Total Cadmium                   | 0           | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Total Chromium (III)            | 0           | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Hexavalent Chromium             | 0           | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Total Cobalt                    | 0           | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Total Copper                    | 0           | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Free Cyanide                    | 0           | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Dissolved Iron                  | 0           | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Total Iron                      | 0           | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Total Lead                      | 0           | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Total Manganese                 | 0           | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Total Mercury                   | 0           | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Total Nickel                    | 0           | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Total Phenols (Phenolics) (PWS) | 0           | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Total Selenium                  | 0           | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Total Silver                    | 0           | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Total Thallium                  | 0           | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Total Zinc                      | 0           | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Acrolein                        | 0           | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Acrylonitrile                   | 0           | 0         |                  | 0         | 0.06       | 0.06          | 3.99       |          |
| Benzene                         | 0           | 0         |                  | 0         | 0.58       | 0.58          | 38.6       |          |
| Bromoform                       | 0           | 0         |                  | 0         | 7          | 7.0           | 465        |          |
| Carbon Tetrachloride            | 0           | 0         |                  | 0         | 0.4        | 0.4           | 26.6       |          |
| Chlorobenzene                   | 0           | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Chlorodibromomethane            | 0           | 0         |                  | 0         | 0.8        | 0.8           | 53.2       |          |
| 2-Chloroethyl Vinyl Ether       | 0           | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Chloroform                      | 0           | 0         |                  | 0         | 5.7        | 5.7           | 379        |          |
| Dichlorobromomethane            | 0           | 0         |                  | 0         | 0.95       | 0.95          | 63.2       |          |
| 1,2-Dichloroethane              | 0           | 0         |                  | 0         | 9.9        | 9.9           | 658        |          |
| 1,1-Dichloroethylene            | 0           | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| 1,2-Dichloropropane             | 0           | 0         |                  | 0         | 0.9        | 0.9           | 59.8       |          |
| 1,3-Dichloropropylene           | 0           | 0         |                  | 0         | 0.27       | 0.27          | 17.9       |          |
| Ethylbenzene                    | 0           | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Methyl Bromide                  | 0           | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Methyl Chloride                 | 0           | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Methylene Chloride              | 0           | 0         |                  | 0         | 20         | 20.0          | 1,330      |          |
| 1,1,2,2-Tetrachloroethane       | 0           | 0         |                  | 0         | 0.2        | 0.2           | 13.3       |          |

Model Results

7/30/2025

Page 12

|                             |   |   |  |   |         |         |       |  |
|-----------------------------|---|---|--|---|---------|---------|-------|--|
| Tetrachloroethylene         | 0 | 0 |  | 0 | 10      | 10.0    | 665   |  |
| Toluene                     | 0 | 0 |  | 0 | N/A     | N/A     | N/A   |  |
| 1,2-trans-Dichloroethylene  | 0 | 0 |  | 0 | N/A     | N/A     | N/A   |  |
| 1,1,1-Trichloroethane       | 0 | 0 |  | 0 | N/A     | N/A     | N/A   |  |
| 1,1,2-Trichloroethane       | 0 | 0 |  | 0 | 0.55    | 0.55    | 36.6  |  |
| Trichloroethylene           | 0 | 0 |  | 0 | 0.6     | 0.6     | 39.9  |  |
| Vinyl Chloride              | 0 | 0 |  | 0 | 0.02    | 0.02    | 1.33  |  |
| 2-Chlorophenol              | 0 | 0 |  | 0 | N/A     | N/A     | N/A   |  |
| 2,4-Dichlorophenol          | 0 | 0 |  | 0 | N/A     | N/A     | N/A   |  |
| 2,4-Dimethylphenol          | 0 | 0 |  | 0 | N/A     | N/A     | N/A   |  |
| 4,6-Dinitro-o-Cresol        | 0 | 0 |  | 0 | N/A     | N/A     | N/A   |  |
| 2,4-Dinitrophenol           | 0 | 0 |  | 0 | N/A     | N/A     | N/A   |  |
| 2-Nitrophenol               | 0 | 0 |  | 0 | N/A     | N/A     | N/A   |  |
| 4-Nitrophenol               | 0 | 0 |  | 0 | N/A     | N/A     | N/A   |  |
| p-Chloro-m-Cresol           | 0 | 0 |  | 0 | N/A     | N/A     | N/A   |  |
| Pentachlorophenol           | 0 | 0 |  | 0 | 0.030   | 0.03    | 1.99  |  |
| Phenol                      | 0 | 0 |  | 0 | N/A     | N/A     | N/A   |  |
| 2,4,6-Trichlorophenol       | 0 | 0 |  | 0 | 1.5     | 1.5     | 99.7  |  |
| Acenaphthene                | 0 | 0 |  | 0 | N/A     | N/A     | N/A   |  |
| Anthracene                  | 0 | 0 |  | 0 | N/A     | N/A     | N/A   |  |
| Benzidine                   | 0 | 0 |  | 0 | 0.0001  | 0.0001  | 0.007 |  |
| Benzo(a)Anthracene          | 0 | 0 |  | 0 | 0.001   | 0.001   | 0.066 |  |
| Benzo(a)Pyrene              | 0 | 0 |  | 0 | 0.0001  | 0.0001  | 0.007 |  |
| 3,4-Benzofluoranthene       | 0 | 0 |  | 0 | 0.001   | 0.001   | 0.066 |  |
| Benz(k)Fluoranthene         | 0 | 0 |  | 0 | 0.01    | 0.01    | 0.66  |  |
| Bis(2-Chloroethyl)Ether     | 0 | 0 |  | 0 | 0.03    | 0.03    | 1.99  |  |
| Bis(2-Chloroisopropyl)Ether | 0 | 0 |  | 0 | N/A     | N/A     | N/A   |  |
| Bis(2-Ethylhexyl)Phthalate  | 0 | 0 |  | 0 | 0.32    | 0.32    | 21.3  |  |
| 4-Bromophenyl Phenyl Ether  | 0 | 0 |  | 0 | N/A     | N/A     | N/A   |  |
| Butyl Benzyl Phthalate      | 0 | 0 |  | 0 | N/A     | N/A     | N/A   |  |
| 2-Chloronaphthalene         | 0 | 0 |  | 0 | N/A     | N/A     | N/A   |  |
| Chrysene                    | 0 | 0 |  | 0 | 0.12    | 0.12    | 7.98  |  |
| Dibenzo(a,h)Anthracene      | 0 | 0 |  | 0 | 0.0001  | 0.0001  | 0.007 |  |
| 1,2-Dichlorobenzene         | 0 | 0 |  | 0 | N/A     | N/A     | N/A   |  |
| 1,3-Dichlorobenzene         | 0 | 0 |  | 0 | N/A     | N/A     | N/A   |  |
| 1,4-Dichlorobenzene         | 0 | 0 |  | 0 | N/A     | N/A     | N/A   |  |
| 3,3-Dichlorobenzidine       | 0 | 0 |  | 0 | 0.05    | 0.05    | 3.32  |  |
| Diethyl Phthalate           | 0 | 0 |  | 0 | N/A     | N/A     | N/A   |  |
| Dimethyl Phthalate          | 0 | 0 |  | 0 | N/A     | N/A     | N/A   |  |
| Di-n-Butyl Phthalate        | 0 | 0 |  | 0 | N/A     | N/A     | N/A   |  |
| 2,4-Dinitrotoluene          | 0 | 0 |  | 0 | 0.05    | 0.05    | 3.32  |  |
| 2,6-Dinitrotoluene          | 0 | 0 |  | 0 | 0.05    | 0.05    | 3.32  |  |
| 1,2-Diphenylhydrazine       | 0 | 0 |  | 0 | 0.03    | 0.03    | 1.99  |  |
| Fluoranthene                | 0 | 0 |  | 0 | N/A     | N/A     | N/A   |  |
| Fluorene                    | 0 | 0 |  | 0 | N/A     | N/A     | N/A   |  |
| Hexachlorobenzene           | 0 | 0 |  | 0 | 0.00008 | 0.00008 | 0.005 |  |
| Hexachlorobutadiene         | 0 | 0 |  | 0 | 0.01    | 0.01    | 0.66  |  |
| Hexachlorocyclopentadiene   | 0 | 0 |  | 0 | N/A     | N/A     | N/A   |  |
| Hexachloroethane            | 0 | 0 |  | 0 | 0.1     | 0.1     | 6.65  |  |

|                           |   |   |  |   |        |        |       |  |
|---------------------------|---|---|--|---|--------|--------|-------|--|
| Indeno(1,2,3-cd)Pyrene    | 0 | 0 |  | 0 | 0.001  | 0.001  | 0.066 |  |
| Isophorone                | 0 | 0 |  | 0 | N/A    | N/A    | N/A   |  |
| Naphthalene               | 0 | 0 |  | 0 | N/A    | N/A    | N/A   |  |
| Nitrobenzene              | 0 | 0 |  | 0 | N/A    | N/A    | N/A   |  |
| n-Nitrosodimethylamine    | 0 | 0 |  | 0 | 0.0007 | 0.0007 | 0.047 |  |
| n-Nitrosodi-n-Propylamine | 0 | 0 |  | 0 | 0.005  | 0.005  | 0.33  |  |
| n-Nitrosodiphenylamine    | 0 | 0 |  | 0 | 3.3    | 3.3    | 219   |  |
| Phenanthrene              | 0 | 0 |  | 0 | N/A    | N/A    | N/A   |  |
| Pyrene                    | 0 | 0 |  | 0 | N/A    | N/A    | N/A   |  |
| 1,2,4-Trichlorobenzene    | 0 | 0 |  | 0 | N/A    | N/A    | N/A   |  |

*Recommended WQBELs & Monitoring Requirements*

No. Samples/Month: 4

*Other Pollutants without Limits or Monitoring*

The following pollutants do not require effluent limits or monitoring based on water quality because reasonable potential to exceed water quality criteria was not determined and the discharge concentration was less than thresholds for monitoring, or the pollutant was not detected and a sufficiently sensitive analytical method was used (e.g., <= Target QL).

| Pollutants                   | Governing WQBEL | Units | Comments                   |
|------------------------------|-----------------|-------|----------------------------|
| Total Dissolved Solids (PWS) | N/A             | N/A   | PWS Not Applicable         |
| Chloride (PWS)               | N/A             | N/A   | PWS Not Applicable         |
| Bromide                      | N/A             | N/A   | No WQS                     |
| Sulfate (PWS)                | N/A             | N/A   | PWS Not Applicable         |
| Total Aluminum               | 1,308           | µg/L  | Discharge Conc ≤ 10% WQBEL |
| Total Antimony               | 72.3            | µg/L  | Discharge Conc ≤ 10% WQBEL |
| Total Arsenic                | 129             | µg/L  | Discharge Conc ≤ 10% WQBEL |
| Total Barium                 | 30,999          | µg/L  | Discharge Conc ≤ 10% WQBEL |
| Total Beryllium              | N/A             | N/A   | No WQS                     |
| Total Boron                  | 14,122          | µg/L  | Discharge Conc ≤ 10% WQBEL |
| Total Chromium (III)         | 1,125           | µg/L  | Discharge Conc < TQL       |
| Hexavalent Chromium          | 28.4            | µg/L  | Discharge Conc ≤ 10% WQBEL |

## Model Results

7/30/2025

Page 14

|                                 |        |      |                            |
|---------------------------------|--------|------|----------------------------|
| Total Cobalt                    | 166    | µg/L | Discharge Conc < TQL       |
| Free Cyanide                    | 38.4   | µg/L | Discharge Conc ≤ 25% WQBEL |
| Total Cyanide                   | N/A    | µg/L | No WQS                     |
| Dissolved Iron                  | 3,875  | µg/L | Discharge Conc ≤ 10% WQBEL |
| Total Iron                      | 38,853 | µg/L | Discharge Conc ≤ 10% WQBEL |
| Total Lead                      | 41.8   | µg/L | Discharge Conc ≤ 10% WQBEL |
| Total Manganese                 | 12,916 | µg/L | Discharge Conc ≤ 10% WQBEL |
| Total Mercury                   | 0.65   | µg/L | Discharge Conc < TQL       |
| Total Nickel                    | 681    | µg/L | Discharge Conc < TQL       |
| Total Phenols (Phenolics) (PWS) |        | µg/L | Discharge Conc < TQL       |
| Total Selenium                  | 64.4   | µg/L | Discharge Conc < TQL       |
| Total Silver                    | 7.32   | µg/L | Discharge Conc ≤ 10% WQBEL |
| Total Thallium                  | 3.1    | µg/L | Discharge Conc < TQL       |
| Total Molybdenum                | N/A    | µg/L | No WQS                     |
| Acrolein                        | 5.23   | µg/L | Discharge Conc < TQL       |
| Acrylonitrile                   | 3.99   | µg/L | Discharge Conc < TQL       |
| Benzene                         | 38.6   | µg/L | Discharge Conc < TQL       |
| Bromoform                       | 465    | µg/L | Discharge Conc < TQL       |
| Carbon Tetrachloride            | 26.6   | µg/L | Discharge Conc < TQL       |
| Chlorobenzene                   | 1,292  | µg/L | Discharge Conc ≤ 25% WQBEL |
| Chlorodibromomethane            | 53.2   | µg/L | Discharge Conc < TQL       |
| Chloroethane                    | N/A    | µg/L | No WQS                     |
| 2-Chloroethyl Vinyl Ether       | 31,381 | µg/L | Discharge Conc < TQL       |
| Chloroform                      | 379    | µg/L | Discharge Conc ≤ 25% WQBEL |
| Dichlorobromomethane            | 63.2   | µg/L | Discharge Conc ≤ 25% WQBEL |
| 1,1-Dichloroethane              | N/A    | µg/L | No WQS                     |
| 1,2-Dichloroethane              | 658    | µg/L | Discharge Conc < TQL       |
| 1,1-Dichloroethylene            | 426    | µg/L | Discharge Conc < TQL       |
| 1,2-Dichloropropane             | 59.8   | µg/L | Discharge Conc < TQL       |
| 1,3-Dichloropropylene           | 17.9   | µg/L | Discharge Conc < TQL       |
| 1,4-Dioxane                     | N/A    | µg/L | No WQS                     |
| Ethylbenzene                    | 878    | µg/L | Discharge Conc < TQL       |
| Methyl Bromide                  | 959    | µg/L | Discharge Conc < TQL       |
| Methyl Chloride                 | 48,815 | µg/L | Discharge Conc < TQL       |
| Methylene Chloride              | 1,330  | µg/L | Discharge Conc < TQL       |
| 1,1,2,2-Tetrachloroethane       | 13.3   | µg/L | Discharge Conc < TQL       |
| Tetrachloroethylene             | 665    | µg/L | Discharge Conc < TQL       |
| Toluene                         | 736    | µg/L | Discharge Conc < TQL       |
| 1,2-trans-Dichloroethylene      | 1,292  | µg/L | Discharge Conc < TQL       |
| 1,1,1-Trichloroethane           | 5,230  | µg/L | Discharge Conc < TQL       |
| 1,1,2-Trichloroethane           | 36.6   | µg/L | Discharge Conc < TQL       |
| Trichloroethylene               | 39.9   | µg/L | Discharge Conc < TQL       |
| Vinyl Chloride                  | 1.33   | µg/L | Discharge Conc < TQL       |
| 2-Chlorophenol                  | 387    | µg/L | Discharge Conc < TQL       |
| 2,4-Dichlorophenol              | 129    | µg/L | Discharge Conc < TQL       |
| 2,4-Dimethylphenol              | 1,151  | µg/L | Discharge Conc < TQL       |
| 4,6-Dinitro-o-Cresol            | 25.8   | µg/L | Discharge Conc < TQL       |
| 2,4-Dinitrophenol               | 129    | µg/L | Discharge Conc < TQL       |
| 2-Nitrophenol                   | 13,947 | µg/L | Discharge Conc < TQL       |

Model Results

7/30/2025

Page 15

|                             |        |      |                      |
|-----------------------------|--------|------|----------------------|
| 4-Nitrophenol               | 4,010  | µg/L | Discharge Conc < TQL |
| p-Chloro-m-Cresol           | 279    | µg/L | Discharge Conc < TQL |
| Pentachlorophenol           | 1.99   | µg/L | Discharge Conc < TQL |
| Phenol                      | 51,666 | µg/L | Discharge Conc < TQL |
| 2,4,6-Trichlorophenol       | 99.7   | µg/L | Discharge Conc < TQL |
| Acenaphthene                | 145    | µg/L | Discharge Conc < TQL |
| Acenaphthylene              | N/A    | N/A  | No WQS               |
| Anthracene                  | 3,875  | µg/L | Discharge Conc < TQL |
| Benzidine                   | 0.007  | µg/L | Discharge Conc < TQL |
| Benzo(a)Anthracene          | 0.066  | µg/L | Discharge Conc < TQL |
| Benzo(a)Pyrene              | 0.007  | µg/L | Discharge Conc < TQL |
| 3,4-Benzofluoranthene       | 0.066  | µg/L | Discharge Conc < TQL |
| Benzo(ghi)Perylene          | N/A    | N/A  | No WQS               |
| Benzol(k)Fluoranthene       | 0.66   | µg/L | Discharge Conc < TQL |
| Bis(2-Chloroethoxy)Methane  | N/A    | N/A  | No WQS               |
| Bis(2-Chloroethyl)Ether     | 1.99   | µg/L | Discharge Conc < TQL |
| Bis(2-Chloroisopropyl)Ether | 2,583  | µg/L | Discharge Conc < TQL |
| Bis(2-Ethylhexyl)Phthalate  | 21.3   | µg/L | Discharge Conc < TQL |
| 4-Bromophenyl Phenyl Ether  | 471    | µg/L | Discharge Conc < TQL |
| Butyl Benzyl Phthalate      | 1.29   | µg/L | Discharge Conc < TQL |
| 2-Chloronaphthalene         | 10,333 | µg/L | Discharge Conc < TQL |
| 4-Chlorophenyl Phenyl Ether | N/A    | N/A  | No WQS               |
| Chrysene                    | 7.98   | µg/L | Discharge Conc < TQL |
| Dibenzo(a,h)Anthracene      | 0.007  | µg/L | Discharge Conc < TQL |
| 1,2-Dichlorobenzene         | 1,430  | µg/L | Discharge Conc < TQL |
| 1,3-Dichlorobenzene         | 90.4   | µg/L | Discharge Conc < TQL |
| 1,4-Dichlorobenzene         | 1,273  | µg/L | Discharge Conc < TQL |
| 3,3-Dichlorobenzidine       | 3.32   | µg/L | Discharge Conc < TQL |
| Diethyl Phthalate           | 6.974  | µg/L | Discharge Conc < TQL |
| Dimethyl Phthalate          | 4,359  | µg/L | Discharge Conc < TQL |
| Di-n-Butyl Phthalate        | 192    | µg/L | Discharge Conc < TQL |
| 2,4-Dinitrotoluene          | 3.32   | µg/L | Discharge Conc < TQL |
| 2,6-Dinitrotoluene          | 3.32   | µg/L | Discharge Conc < TQL |
| Di-n-Octyl Phthalate        | N/A    | N/A  | No WQS               |
| 1,2-Diphenylhydrazine       | 1.99   | µg/L | Discharge Conc < TQL |
| Fluoranthene                | 258    | µg/L | Discharge Conc < TQL |
| Fluorene                    | 646    | µg/L | Discharge Conc < TQL |
| Hexachlorobenzene           | 0.005  | µg/L | Discharge Conc < TQL |
| Hexachlorobutadiene         | 0.66   | µg/L | Discharge Conc < TQL |
| Hexachlorocyclopentadiene   | 8.72   | µg/L | Discharge Conc < TQL |
| Hexachloroethane            | 6.65   | µg/L | Discharge Conc < TQL |
| Indeno(1,2,3-cd)Pyrene      | 0.066  | µg/L | Discharge Conc < TQL |
| Isophorone                  | 439    | µg/L | Discharge Conc < TQL |
| Naphthalene                 | 244    | µg/L | Discharge Conc < TQL |
| Nitrobenzene                | 129    | µg/L | Discharge Conc < TQL |
| n-Nitrosodimethylamine      | 0.047  | µg/L | Discharge Conc < TQL |
| n-Nitrosodi-n-Propylamine   | 0.33   | µg/L | Discharge Conc < TQL |
| n-Nitrosodiphenylamine      | 219    | µg/L | Discharge Conc < TQL |
| Phenanthrene                | 8.72   | µg/L | Discharge Conc < TQL |

Model Results

7/30/2025

Page 16

TRC Spreadsheet

| TRC EVALUATION                              |           |                                                                                                         |       |                               |                  |       |  |  |  |  |  |
|---------------------------------------------|-----------|---------------------------------------------------------------------------------------------------------|-------|-------------------------------|------------------|-------|--|--|--|--|--|
| Input appropriate values in A3:A9 and D3:D9 |           |                                                                                                         |       |                               |                  |       |  |  |  |  |  |
| Source                                      | Reference | AFC Calculations                                                                                        |       | Reference                     | CFC Calculations |       |  |  |  |  |  |
| TRC                                         | 1.3.2.iii | WLA_afc =                                                                                               | 7.918 | 1.3.2.iii                     | WLA_cfc =        | 7.712 |  |  |  |  |  |
| PENTOXSD TRG                                | 5.1a      | LTAMULT_afc =                                                                                           | 0.373 | 5.1c                          | LTAMULT_cfc =    | 0.581 |  |  |  |  |  |
| PENTOXSD TRG                                | 5.1b      | LTA_afc =                                                                                               | 2.951 | 5.1d                          | LTA_cfc =        | 4.483 |  |  |  |  |  |
| Effluent Limit Calculations                 |           |                                                                                                         |       |                               |                  |       |  |  |  |  |  |
| PENTOXSD TRG                                | 5.1f      | AML MULT = 1.231                                                                                        |       | BAT/BPJ                       |                  |       |  |  |  |  |  |
| PENTOXSD TRG                                | 5.1g      | AVG MON LIMIT (mg/l) = 0.500                                                                            |       | INST MAX LIMIT (mg/l) = 1.635 |                  |       |  |  |  |  |  |
| WLA_afc                                     |           | $(.019/e(-k*AFC_tc)) + [(AFC_Yc*Qs*.019/Qd*e(-k*AFC_tc))...\\ ...+ Xd + (AFC_Yc*Qs*Xs/Qd)]*(1-FOS/100)$ |       |                               |                  |       |  |  |  |  |  |
| LTAMULT_afc                                 |           | $\text{EXP}((0.5*\text{LN}(cvh^2+1))-2.326*\text{LN}(cvh^2+1)^0.5)$                                     |       |                               |                  |       |  |  |  |  |  |
| LTA_afc                                     |           | wla_afc*LTAMULT_afc                                                                                     |       |                               |                  |       |  |  |  |  |  |
| WLA_cfc                                     |           | $(.011/e(-k*CFC_tc)) + [(CFC_Yc*Qs*.011/Qd*e(-k*CFC_tc))...\\ ...+ Xd + (CFC_Yc*Qs*Xs/Qd)]*(1-FOS/100)$ |       |                               |                  |       |  |  |  |  |  |
| LTAMULT_cfc                                 |           | $\text{EXP}((0.5*\text{LN}(cvd^2/no_samples+1))-2.326*\text{LN}(cvd^2/no_samples+1)^0.5)$               |       |                               |                  |       |  |  |  |  |  |
| LTA_cfc                                     |           | wla_cfc*LTAMULT_cfc                                                                                     |       |                               |                  |       |  |  |  |  |  |
| AML MULT                                    |           | $\text{EXP}(2.326*\text{LN}((cvd^2/no_samples+1)^0.5)-0.5*\text{LN}(cvd^2/no_samples+1))$               |       |                               |                  |       |  |  |  |  |  |
| AVG MON LIMIT                               |           | $\text{MIN}(\text{BAT_BPJ},\text{MIN}(\text{LTA_afc},\text{LTA_cfc})*\text{AML_MULT})$                  |       |                               |                  |       |  |  |  |  |  |
| INST MAX LIMIT                              |           | $1.5*((\text{av\_mon\_limit}/\text{AML\_MULT})/\text{LTAMULT\_afc})$                                    |       |                               |                  |       |  |  |  |  |  |

Outfall 001

|                                        |                          |            |             |
|----------------------------------------|--------------------------|------------|-------------|
| Facility: Warren City WWTP             | Permit Number: PA0027120 | Effective: | Expiration: |
| Outfall No: 001                        |                          |            |             |
| Location:                              |                          |            |             |
| Discharge to: Allegheny River          |                          |            |             |
| Site Specific Mussel Survey Completed: |                          |            |             |

| Discharge and Stream Characteristics |                                         |                         | Comments                                                                 |
|--------------------------------------|-----------------------------------------|-------------------------|--------------------------------------------------------------------------|
| $Q_s$                                | Stream Flow                             | 134.75 MGD / 47.325 cfs |                                                                          |
| $Q_p$                                | Discharge Flow                          | 6.5 MGD / 10.05845 cfs  |                                                                          |
| $C_{S(Cl)}$                          | Instream chloride Concentration         | mg/L                    |                                                                          |
| $C_{E(Cl)}$                          | Discharge chloride (existing)           | 195 mg/L                |                                                                          |
| $C_{P(Cl)}$                          | Discharge chloride (proposed)           | mg/L                    |                                                                          |
| $C_{S(Ni)}$                          | Instream nickel Concentration           | µg/L                    |                                                                          |
| $C_{E(Ni)}$                          | Discharge nickel (existing)             | 4 µg/L                  |                                                                          |
| $C_{P(Ni)}$                          | Discharge nickel (proposed)             | µg/L                    |                                                                          |
| $C_{S(Zn)}$                          | Instream zinc Concentration             | µg/L                    |                                                                          |
| $C_{E(Zn)}$                          | Discharge zinc (existing)               | 94 µg/L                 |                                                                          |
| $Zn_{P(Zn)}$                         | Discharge zinc (proposed)               | µg/L                    |                                                                          |
| $C_{S(Cu)}$                          | Instream copper Concentration           | µg/L                    |                                                                          |
| $C_{E(Cu)}$                          | Discharge copper (existing)             | µg/L                    |                                                                          |
| $Zn_{P(Cu)}$                         | Discharge copper (proposed)             | µg/L                    |                                                                          |
| $C_{S(NH3-N)}$                       | Instream NH <sup>3</sup> -N             | mg/L                    |                                                                          |
| $C_{E(NH3-N)}$                       | Discharge NH <sup>3</sup> -N (existing) | 0.8 mg/L                |                                                                          |
| $C_{P(NH3-N)}$                       | Discharge NH <sup>3</sup> -N (proposed) | mg/L                    |                                                                          |
| $pH_s$                               | Instream pH                             | 7 S.U.                  |                                                                          |
| $T_s$                                | Instream Temp.                          | 25 °C                   | Default value for a WWF                                                  |
| $C_{C(NH3-N)}$                       | Ammonia criteria                        | 1.367 mg/L              | From ammonia criteria comparison spreadsheet -using Instream pH and Temp |
| $C_{C(Cl)}$                          | Chloride criteria                       | 78 mg/L                 | USFWS criteria                                                           |
| $C_{C(Ni)}$                          | Nickel criteria                         | 7.3 µg/L                | USFWS criteria                                                           |
| $C_{C(Zn)}$                          | Zinc criteria                           | 13.18 µg/L              | USFWS criteria                                                           |
| $C_{C(Cu)}$                          | Copper criteria                         | 10 µg/L                 | USFWS criteria                                                           |
| $W_s$                                | Stream width                            | 21 meters               | Google Earth (Approximate)                                               |

| Ammonia Criteria Calculations:           |          |                                                        |                                           |
|------------------------------------------|----------|--------------------------------------------------------|-------------------------------------------|
| $pH_s$                                   | 7 S.U.   | (Default value is 7.0)                                 |                                           |
| $T_s$                                    | 25 °C    | (Default value is 20 °C for a CWF and 25 °C for a WWF) |                                           |
| Acute Criteria                           |          |                                                        |                                           |
| METHOD and UNITS                         | CRITERIA | Comments                                               |                                           |
| Old CMC (mg TAN/L) =                     | 6.764    |                                                        |                                           |
| EPA 2013 CMC (mg TAN/L) =                | 11.073   | Oncorhynchus present                                   | * formula on pg. 41 (plateaus at 15.7 °C) |
|                                          | 11.073   | Oncorhynchus absent                                    | * formula on pg. 42 (plateaus at 10.2 °C) |
| Chronic Criteria                         |          |                                                        |                                           |
| METHOD and UNITS                         | CRITERIA | COMMENTS                                               |                                           |
| Old CMC (mg TAN/L) =                     | 1.341    |                                                        |                                           |
| $C_{C(NH3-N)}$ EPA 2013 CMC (mg TAN/L) = | 1.367    | * formula on pg. 46 (plateaus at 7 °C)                 |                                           |

Endangered Mussel Species Impact Area Calculations:

Existing Area of Impact

N/A - No Site Specific Mussel Survey Completed for this Discharger

|                                                              |                      |                                                           |
|--------------------------------------------------------------|----------------------|-----------------------------------------------------------|
| Approximate Area of Impact Determined from Survey =          | N/A m <sup>2</sup>   | (Enter N/A if no site specific survey has been completed) |
| Existing Mussel Density within Area of Impact =              |                      |                                                           |
| Rabbitfoot ( <i>Quadrula cylindrica</i> )                    | per m <sup>2</sup>   |                                                           |
| Northern Riffleshell ( <i>Epioblasma torulosa rangiana</i> ) | per m <sup>2</sup>   |                                                           |
| Rayed Bean ( <i>Villosa fabalis</i> )                        | per m <sup>2</sup>   |                                                           |
| Clubshell ( <i>Pleurobema clava</i> )                        | per m <sup>2</sup>   |                                                           |
| Sheepnose ( <i>Plethobasius cyphatus</i> )                   | per m <sup>2</sup>   |                                                           |
| Snuffbox ( <i>Epioblasma triquetra</i> )                     | per m <sup>2</sup>   |                                                           |
| TOTAL                                                        | 0 per m <sup>2</sup> |                                                           |

Method 1 - Utilizing Site Specific Mussel Survey Information

N/A - No Site Specific Mussel Survey Completed for this Discharger

This method utilizes a simple comparison of the size of the existing area of impact as determined from a site specific mussel survey and the chlorides in the existing discharge compared to the chlorides in the proposed discharge after the facility upgrades treatment technologies. This method is only applicable to where the stream impairment is caused by TDS and/or chlorides as the plume has been delineated through conductivity measurements.

|                                                                       |     |                |
|-----------------------------------------------------------------------|-----|----------------|
| A. Area of Impact Determined from Survey:                             | N/A | m <sup>2</sup> |
| B. Chlorides in Existing Discharge:                                   | 195 | mg/L           |
| C. Chlorides in Proposed Discharge after Treatment Facility Upgrades: | 174 | mg/L           |
| D. Approximate Area of Impact after Treatment Facility Upgrades:      | N/A | m <sup>2</sup> |

$$A/B = D/C \quad \text{Therefore, } D = (A \cdot C) / B$$

7/30/2025

Outfall 001

|                                        |  |            |  |
|----------------------------------------|--|------------|--|
| Facility:                              |  | Effective: |  |
| Permit Number:                         |  |            |  |
| Outfall No:                            |  |            |  |
| Location:                              |  |            |  |
| Discharge to:                          |  |            |  |
| Site Specific Mussel Survey Completed: |  |            |  |

*Endangered Mussel Species Impact Area Calculations: (continued...)*

**Method 2 - Mass Balance Relationship of Loading and Assimilative Capacity of Stream**

|                                       |                                                                                                                                                                                    |                           |
|---------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
| Chloride (Cl <sup>-</sup> )           | $L_{S(Cl)} = \text{Available Chloride Loading in Stream} = C_{D(Cl)} - C_{S(Cl)} \times Q_0(\text{MGD}) \times 8.34 =$                                                             | 87,658 lbs/Day            |
|                                       | $L_{D-MAX(Cl)} = \text{Current Maximum Discharge Chloride Loading exceeding criteria} = (C_{E(Cl)} - C_{S(Cl)}) \times Q_0(\text{MGD}) \times 8.34 =$                              | 6,343 lbs/Day             |
|                                       | $\%_{P(Cl)} = \text{Percent of Stream Capacity for Current Loading} = L_{D-MAX(Cl)} / L_{S(Cl)} =$                                                                                 | 7% of Stream Capacity     |
|                                       | $L_{D(Cl)} = \text{Proposed Discharge Cl}^{-} \text{ Loading exceeding criteria after Treatment Facility Upgrades} = (C_{P(Cl)} - C_{S(Cl)}) \times Q_0(\text{MGD}) \times 8.34 =$ | -4228.38 lbs/Day          |
|                                       | $\%_{P(Cl)} = \text{Percent of Stream Capacity for Proposed Loading} = L_{D(Cl)} / L_{S(Cl)} =$                                                                                    | -4.82% of Stream Capacity |
| Nickel (Ni)                           | $\text{Proposed Area of Impact due to Chloride}^* = (\%_{P(Cl)} \times W_g)^2 \times 0.5 =$<br>* assuming equal flow across transect and 90° spread at discharge                   | 0.51 m <sup>2</sup>       |
|                                       | $L_{S(Ni)} = \text{Available Nickel Loading in Stream} = C_{D(Ni)} - C_{S(Ni)} \times Q_0(\text{MGD}) \times 8.34 =$                                                               | 8,204 lbs/Day             |
|                                       | $L_{D-MAX(Ni)} = \text{Current Maximum Discharge Nickel Loading exceeding criteria} = (C_{E(Ni)} - C_{S(Ni)}) \times Q_0(\text{MGD}) \times 8.34 =$                                | -179 lbs/Day              |
|                                       | $\%_{E(Ni)} = \text{Percent of Stream Capacity for Current Loading} = L_{D-MAX(Ni)} / L_{S(Ni)} =$                                                                                 | 0% of Stream Capacity     |
|                                       | $L_{D(Ni)} = \text{Proposed Discharge Ni Loading exceeding criteria after Treatment Facility Upgrades} = (C_{P(Ni)} - C_{S(Ni)}) \times Q_0(\text{MGD}) \times 8.34 =$             | -395.733 lbs/Day          |
| Zinc (Zn)                             | $\%_{P(Ni)} = \text{Percent of Stream Capacity for Proposed Loading} = L_{D(Ni)} / L_{S(Ni)} =$                                                                                    | -4.82% of Stream Capacity |
|                                       | $\text{Proposed Area of Impact due to Nickel}^* = (\%_{P(Ni)} \times W_g)^2 \times 0.5 =$<br>* assuming equal flow across transect and 90° spread at discharge                     | 0.51 m <sup>2</sup>       |
|                                       | $L_{S(Zn)} = \text{Available Zinc Loading in Stream} = C_{D(Zn)} - C_{S(Zn)} \times Q_0(\text{MGD}) \times 8.34 =$                                                                 | 14,812 lbs/Day            |
|                                       | $L_{D-MAX(Zn)} = \text{Current Maximum Discharge Zinc Loading exceeding criteria} = (C_{E(Zn)} - C_{S(Zn)}) \times Q_0(\text{MGD}) \times 8.34 =$                                  | 4,381 lbs/Day             |
|                                       | $\%_{E(Zn)} = \text{Percent of Stream Capacity for Current Loading} = L_{D-MAX(Zn)} / L_{S(Zn)} =$                                                                                 | 30% of Stream Capacity    |
| Copper (Cu)                           | $L_{D(Zn)} = \text{Proposed Discharge Zn Loading exceeding criteria after Treatment Facility Upgrades} = (C_{P(Zn)} - C_{S(Zn)}) \times Q_0(\text{MGD}) \times 8.34 =$             | -714,487.8 lbs/Day        |
|                                       | $\%_{P(Zn)} = \text{Percent of Stream Capacity for Proposed Loading} = L_{D(Zn)} / L_{S(Zn)} =$                                                                                    | -4.82% of Stream Capacity |
|                                       | $\text{Proposed Area of Impact due to Zinc}^* = (\%_{P(Zn)} \times W_g)^2 \times 0.5 =$<br>* assuming equal flow across transect and 90° spread at discharge                       | 0.51 m <sup>2</sup>       |
|                                       | $L_{S(Cu)} = \text{Available Copper Loading in Stream} = C_{D(Cu)} - C_{S(Cu)} \times Q_0(\text{MGD}) \times 8.34 =$                                                               | 11,238 lbs/Day            |
|                                       | $L_{D-MAX(Cu)} = \text{Current Maximum Discharge Copper Loading exceeding criteria} = (C_{E(Cu)} - C_{S(Cu)}) \times Q_0(\text{MGD}) \times 8.34 =$                                | -542 lbs/Day              |
| Ammonia-Nitrogen (NH <sub>3</sub> -N) | $\%_{E(Cu)} = \text{Percent of Stream Capacity for Current Loading} = L_{D-MAX(Cu)} / L_{S(Cu)} =$                                                                                 | 0% of Stream Capacity     |
|                                       | $L_{D(Cu)} = \text{Proposed Discharge Cu Loading exceeding criteria after Treatment Facility Upgrades} = (C_{P(Cu)} - C_{S(Cu)}) \times Q_0(\text{MGD}) \times 8.34 =$             | -542.1 lbs/Day            |
|                                       | $\%_{P(Cu)} = \text{Percent of Stream Capacity for Proposed Loading} = L_{D(Cu)} / L_{S(Cu)} =$                                                                                    | -4.82% of Stream Capacity |
|                                       | $\text{Proposed Area of Impact due to Copper}^* = (\%_{P(Cu)} \times W_g)^2 \times 0.5 =$<br>* assuming equal flow across transect and 90° spread at discharge                     | 0.51 m <sup>2</sup>       |
|                                       | $L_{S(NH3-N)} = \text{Available NH3-N Loading in Stream} = C_{D(NH3-N)} - C_{S(NH3-N)} \times Q_0(\text{MGD}) \times 8.34 =$                                                       | 1,536 lbs/Day             |
|                                       | $L_{D-MAX(NH3-N)} = \text{Current Maximum Discharge NH3-N Loading} = C_{E(NH3-N)} \times Q_0(\text{MGD}) \times 8.34 =$                                                            | 43 lbs/Day                |
|                                       | $\%_{E(NH3-N)} = \text{Percent of Stream Capacity for Current Loading} = L_{D-MAX(NH3-N)} / L_{S(NH3-N)} =$                                                                        | 3% of Stream Capacity     |
|                                       | $L_{D(NH3-N)} = \text{Proposed Discharge NH3-N Loading after Treatment Facility Upgrades} = C_{P(NH3-N)} - C_{S(NH3-N)} \times Q_0(\text{MGD}) \times 8.34 =$                      | -74 lbs/Day               |
|                                       | $\%_{P(NH3-N)} = \text{Percent of Stream Capacity for Proposed Loading} = L_{D(NH3-N)} / L_{S(NH3-N)} =$                                                                           | -4.82% of Stream Capacity |
|                                       | $\text{Proposed Area of Impact due to NH3-N}^* = (\%_{P(NH3-N)} \times W_g)^2 \times 0.5 =$<br>* assuming equal flow across transect and 90° spread at discharge                   | 0.51 m <sup>2</sup>       |

| DEP Whole Effluent Toxicity (WET) Analysis Spreadsheet |              |       |  |                     |                      |       |  |
|--------------------------------------------------------|--------------|-------|--|---------------------|----------------------|-------|--|
| Type of Test                                           | Chronic      |       |  | Facility Name       |                      |       |  |
| Species Tested                                         | Ceriodaphnia |       |  | City of Warren WWTP |                      |       |  |
| Endpoint                                               | Survival     |       |  | Permit No.          |                      |       |  |
| TIWC (decimal)                                         | 0.05         |       |  | PA0027120           |                      |       |  |
| No. Per Replicate                                      | 1            |       |  |                     |                      |       |  |
| TST b value                                            | 0.75         |       |  |                     |                      |       |  |
| TST alpha value                                        | 0.2          |       |  |                     |                      |       |  |
| Test Completion Date                                   |              |       |  |                     |                      |       |  |
| Replicate                                              | 9/4/2018     |       |  | Replicate           | Test Completion Date |       |  |
| No.                                                    | Control      | TIWC  |  | No.                 | Control              | TIWC  |  |
| 1                                                      | 1            | 1     |  | 1                   | 1                    | 1     |  |
| 2                                                      | 1            | 1     |  | 2                   | 1                    | 1     |  |
| 3                                                      | 1            | 1     |  | 3                   | 1                    | 1     |  |
| 4                                                      | 1            | 1     |  | 4                   | 1                    | 0     |  |
| 5                                                      | 1            | 1     |  | 5                   | 1                    | 1     |  |
| 6                                                      | 1            | 1     |  | 6                   | 1                    | 1     |  |
| 7                                                      | 1            | 1     |  | 7                   | 1                    | 1     |  |
| 8                                                      | 1            | 1     |  | 8                   | 1                    | 1     |  |
| 9                                                      | 1            | 1     |  | 9                   | 1                    | 1     |  |
| 10                                                     | 1            | 1     |  | 10                  | 1                    | 1     |  |
| 11                                                     |              |       |  | 11                  |                      |       |  |
| 12                                                     |              |       |  | 12                  |                      |       |  |
| 13                                                     |              |       |  | 13                  |                      |       |  |
| 14                                                     |              |       |  | 14                  |                      |       |  |
| 15                                                     |              |       |  | 15                  |                      |       |  |
| Mean                                                   | 1.000        | 1.000 |  | Mean                | 1.000                | 0.900 |  |
| Std Dev.                                               | 0.000        | 0.000 |  | Std Dev.            | 0.000                | 0.316 |  |
| # Replicates                                           | 10           | 10    |  | # Replicates        | 10                   | 10    |  |
| T-Test Result                                          |              |       |  |                     |                      |       |  |
| Deg. of Freedom                                        |              |       |  | T-Test Result       |                      |       |  |
| Critical T Value                                       |              |       |  | Deg. of Freedom     |                      |       |  |
| Pass or Fail                                           | PASS         |       |  | Critical T Value    |                      |       |  |
| Test Completion Date                                   |              |       |  |                     |                      |       |  |
| Replicate                                              | 7/13/2020    |       |  | Replicate           | Test Completion Date |       |  |
| No.                                                    | Control      | TIWC  |  | No.                 | Control              | TIWC  |  |
| 1                                                      | 1            | 1     |  | 1                   | 1                    | 1     |  |
| 2                                                      | 1            | 1     |  | 2                   | 1                    | 1     |  |
| 3                                                      | 1            | 1     |  | 3                   | 1                    | 1     |  |
| 4                                                      | 1            | 1     |  | 4                   | 1                    | 1     |  |
| 5                                                      | 1            | 1     |  | 5                   | 0                    | 1     |  |
| 6                                                      | 1            | 1     |  | 6                   | 1                    | 1     |  |
| 7                                                      | 1            | 1     |  | 7                   | 1                    | 1     |  |
| 8                                                      | 1            | 1     |  | 8                   | 1                    | 1     |  |
| 9                                                      | 1            | 1     |  | 9                   | 1                    | 1     |  |
| 10                                                     | 1            | 1     |  | 10                  | 1                    | 1     |  |
| 11                                                     |              |       |  | 11                  |                      |       |  |
| 12                                                     |              |       |  | 12                  |                      |       |  |
| 13                                                     |              |       |  | 13                  |                      |       |  |
| 14                                                     |              |       |  | 14                  |                      |       |  |
| 15                                                     |              |       |  | 15                  |                      |       |  |
| Mean                                                   | 1.000        | 1.000 |  | Mean                | 0.900                | 1.000 |  |
| Std Dev.                                               | 0.000        | 0.000 |  | Std Dev.            | 0.316                | 0.000 |  |
| # Replicates                                           | 10           | 10    |  | # Replicates        | 10                   | 10    |  |
| T-Test Result                                          |              |       |  |                     |                      |       |  |
| Deg. of Freedom                                        |              |       |  | T-Test Result       |                      |       |  |
| Critical T Value                                       |              |       |  | Deg. of Freedom     |                      |       |  |
| Pass or Fail                                           | PASS         |       |  | Critical T Value    |                      |       |  |

| DEP Whole Effluent Toxicity (WET) Analysis Spreadsheet |              |        |  |                     |                      |        |  |
|--------------------------------------------------------|--------------|--------|--|---------------------|----------------------|--------|--|
| Type of Test                                           | Chronic      |        |  | Facility Name       |                      |        |  |
| Species Tested                                         | Ceriodaphnia |        |  | City of Warren WWTP |                      |        |  |
| Endpoint                                               | Reproduction |        |  | Permit No.          |                      |        |  |
| TIWC (decimal)                                         | 0.05         |        |  | PA0027120           |                      |        |  |
| No. Per Replicate                                      | 1            |        |  |                     |                      |        |  |
| TST b value                                            | 0.75         |        |  |                     |                      |        |  |
| TST alpha value                                        | 0.2          |        |  |                     |                      |        |  |
| Test Completion Date                                   |              |        |  |                     |                      |        |  |
| Replicate                                              | 9/4/2018     |        |  | Replicate           | Test Completion Date |        |  |
| No.                                                    | Control      | TIWC   |  | No.                 | Control              | TIWC   |  |
| 1                                                      | 35           | 33     |  | 1                   | 30                   | 33     |  |
| 2                                                      | 36           | 32     |  | 2                   | 30                   | 31     |  |
| 3                                                      | 33           | 33     |  | 3                   | 31                   | 35     |  |
| 4                                                      | 27           | 35     |  | 4                   | 31                   | 6      |  |
| 5                                                      | 34           | 36     |  | 5                   | 36                   | 34     |  |
| 6                                                      | 34           | 33     |  | 6                   | 35                   | 31     |  |
| 7                                                      | 36           | 35     |  | 7                   | 33                   | 28     |  |
| 8                                                      | 32           | 31     |  | 8                   | 33                   | 30     |  |
| 9                                                      | 33           | 31     |  | 9                   | 32                   | 32     |  |
| 10                                                     | 30           | 37     |  | 10                  | 30                   | 30     |  |
| 11                                                     |              |        |  | 11                  |                      |        |  |
| 12                                                     |              |        |  | 12                  |                      |        |  |
| 13                                                     |              |        |  | 13                  |                      |        |  |
| 14                                                     |              |        |  | 14                  |                      |        |  |
| 15                                                     |              |        |  | 15                  |                      |        |  |
| Mean                                                   | 33.000       | 33.600 |  | Mean                | 32.100               | 29.000 |  |
| Std Dev.                                               | 2.789        | 2.066  |  | Std Dev.            | 2.132                | 8.340  |  |
| # Replicates                                           | 10           | 10     |  | # Replicates        | 10                   | 10     |  |
| T-Test Result                                          | 9.5202       |        |  | T-Test Result       | 1.8340               |        |  |
| Deg. of Freedom                                        | 17           |        |  | Deg. of Freedom     | 11                   |        |  |
| Critical T Value                                       | 0.8633       |        |  | Critical T Value    | 0.8755               |        |  |
| Pass or Fail                                           | PASS         |        |  | Pass or Fail        | PASS                 |        |  |
| Test Completion Date                                   |              |        |  |                     |                      |        |  |
| Replicate                                              | 7/13/2020    |        |  | Replicate           | Test Completion Date |        |  |
| No.                                                    | Control      | TIWC   |  | No.                 | Control              | TIWC   |  |
| 1                                                      | 30           | 25     |  | 1                   | 27                   | 29     |  |
| 2                                                      | 28           | 25     |  | 2                   | 21                   | 26     |  |
| 3                                                      | 26           | 25     |  | 3                   | 33                   | 34     |  |
| 4                                                      | 26           | 28     |  | 4                   | 12                   | 29     |  |
| 5                                                      | 29           | 25     |  | 5                   | 26                   | 33     |  |
| 6                                                      | 29           | 28     |  | 6                   | 33                   | 30     |  |
| 7                                                      | 29           | 23     |  | 7                   | 32                   | 32     |  |
| 8                                                      | 20           | 23     |  | 8                   | 30                   | 34     |  |
| 9                                                      | 24           | 30     |  | 9                   | 16                   | 27     |  |
| 10                                                     | 28           | 30     |  | 10                  | 29                   | 29     |  |
| 11                                                     |              |        |  | 11                  |                      |        |  |
| 12                                                     |              |        |  | 12                  |                      |        |  |
| 13                                                     |              |        |  | 13                  |                      |        |  |
| 14                                                     |              |        |  | 14                  |                      |        |  |
| 15                                                     |              |        |  | 15                  |                      |        |  |
| Mean                                                   | 26.900       | 26.200 |  | Mean                | 25.900               | 30.300 |  |
| Std Dev.                                               | 3.035        | 2.616  |  | Std Dev.            | 7.310                | 2.830  |  |
| # Replicates                                           | 10           | 10     |  | # Replicates        | 10                   | 10     |  |
| T-Test Result                                          | 5.4942       |        |  | T-Test Result       | 5.5738               |        |  |
| Deg. of Freedom                                        | 17           |        |  | Deg. of Freedom     | 17                   |        |  |
| Critical T Value                                       | 0.8633       |        |  | Critical T Value    | 0.8633               |        |  |
| Pass or Fail                                           | PASS         |        |  | Pass or Fail        | PASS                 |        |  |

| DEP Whole Effluent Toxicity (WET) Analysis Spreadsheet |            |       |  |                     |                      |       |  |
|--------------------------------------------------------|------------|-------|--|---------------------|----------------------|-------|--|
| Type of Test                                           | Chronic    |       |  | Facility Name       |                      |       |  |
| Species Tested                                         | Pimephales |       |  | City of Warren WWTP |                      |       |  |
| Endpoint                                               | Survival   |       |  | Permit No.          |                      |       |  |
| TIWC (decimal)                                         | 0.05       |       |  | PA0027120           |                      |       |  |
| No. Per Replicate                                      | 10         |       |  |                     |                      |       |  |
| TST b value                                            | 0.75       |       |  |                     |                      |       |  |
| TST alpha value                                        | 0.25       |       |  |                     |                      |       |  |
| Test Completion Date                                   |            |       |  |                     |                      |       |  |
| Replicate                                              | 9/4/2018   |       |  | Replicate           | Test Completion Date |       |  |
| No.                                                    | Control    | TIWC  |  | No.                 | Control              | TIWC  |  |
| 1                                                      | 1          | 1     |  | 1                   | 1                    | 1     |  |
| 2                                                      | 1          | 1     |  | 2                   | 1                    | 1     |  |
| 3                                                      | 0.9        | 1     |  | 3                   | 1                    | 0.9   |  |
| 4                                                      | 1          | 1     |  | 4                   | 1                    | 1     |  |
| 5                                                      |            |       |  | 5                   |                      |       |  |
| 6                                                      |            |       |  | 6                   |                      |       |  |
| 7                                                      |            |       |  | 7                   |                      |       |  |
| 8                                                      |            |       |  | 8                   |                      |       |  |
| 9                                                      |            |       |  | 9                   |                      |       |  |
| 10                                                     |            |       |  | 10                  |                      |       |  |
| 11                                                     |            |       |  | 11                  |                      |       |  |
| 12                                                     |            |       |  | 12                  |                      |       |  |
| 13                                                     |            |       |  | 13                  |                      |       |  |
| 14                                                     |            |       |  | 14                  |                      |       |  |
| 15                                                     |            |       |  | 15                  |                      |       |  |
| Mean                                                   | 0.975      | 1.000 |  | Mean                | 1.000                | 0.975 |  |
| Std Dev.                                               | 0.050      | 0.000 |  | Std Dev.            | 0.000                | 0.050 |  |
| # Replicates                                           | 4          | 4     |  | # Replicates        | 4                    | 4     |  |
| T-Test Result                                          | 26.1497    |       |  | T-Test Result       | 17.8623              |       |  |
| Deg. of Freedom                                        | 3          |       |  | Deg. of Freedom     | 3                    |       |  |
| Critical T Value                                       | 0.7649     |       |  | Critical T Value    | 0.7649               |       |  |
| Pass or Fail                                           | PASS       |       |  | Pass or Fail        | PASS                 |       |  |
| Test Completion Date                                   |            |       |  |                     |                      |       |  |
| Replicate                                              | 7/14/2020  |       |  | Replicate           | Test Completion Date |       |  |
| No.                                                    | Control    | TIWC  |  | No.                 | Control              | TIWC  |  |
| 1                                                      | 0.9        | 1     |  | 1                   | 1                    | 1     |  |
| 2                                                      | 1          | 1     |  | 2                   | 0.9                  | 1     |  |
| 3                                                      | 1          | 1     |  | 3                   | 1                    | 0.8   |  |
| 4                                                      | 1          | 0.9   |  | 4                   | 1                    | 1     |  |
| 5                                                      |            |       |  | 5                   |                      |       |  |
| 6                                                      |            |       |  | 6                   |                      |       |  |
| 7                                                      |            |       |  | 7                   |                      |       |  |
| 8                                                      |            |       |  | 8                   |                      |       |  |
| 9                                                      |            |       |  | 9                   |                      |       |  |
| 10                                                     |            |       |  | 10                  |                      |       |  |
| 11                                                     |            |       |  | 11                  |                      |       |  |
| 12                                                     |            |       |  | 12                  |                      |       |  |
| 13                                                     |            |       |  | 13                  |                      |       |  |
| 14                                                     |            |       |  | 14                  |                      |       |  |
| 15                                                     |            |       |  | 15                  |                      |       |  |
| Mean                                                   | 0.975      | 0.975 |  | Mean                | 0.975                | 0.950 |  |
| Std Dev.                                               | 0.050      | 0.050 |  | Std Dev.            | 0.050                | 0.100 |  |
| # Replicates                                           | 4          | 4     |  | # Replicates        | 4                    | 4     |  |
| T-Test Result                                          | 14.8898    |       |  | T-Test Result       | 8.0396               |       |  |
| Deg. of Freedom                                        | 5          |       |  | Deg. of Freedom     | 4                    |       |  |
| Critical T Value                                       | 0.7267     |       |  | Critical T Value    | 0.7407               |       |  |
| Pass or Fail                                           | PASS       |       |  | Pass or Fail        | PASS                 |       |  |

| DEP Whole Effluent Toxicity (WET) Analysis Spreadsheet |            |        |  |                     |                      |       |
|--------------------------------------------------------|------------|--------|--|---------------------|----------------------|-------|
| Type of Test                                           | Chronic    |        |  | Facility Name       |                      |       |
| Species Tested                                         | Pimephales |        |  | City of Warren WWTP |                      |       |
| Endpoint                                               | Growth     |        |  | Permit No.          |                      |       |
| TIWC (decimal)                                         | 0.05       |        |  | PA0027120           |                      |       |
| No. Per Replicate                                      | 10         |        |  |                     |                      |       |
| TST b value                                            | 0.75       |        |  |                     |                      |       |
| TST alpha value                                        | 0.25       |        |  |                     |                      |       |
| Test Completion Date                                   |            |        |  |                     |                      |       |
| Replicate                                              | 9/4/2018   |        |  | Replicate           | Test Completion Date |       |
| No.                                                    | Control    | TIWC   |  | No.                 | Control              | TIWC  |
| 1                                                      | 0.218      | 0.198  |  | 1                   | 0.435                | 0.453 |
| 2                                                      | 0.207      | 0.203  |  | 2                   | 0.384                | 0.383 |
| 3                                                      | 0.253      | 0.271  |  | 3                   | 0.385                | 0.34  |
| 4                                                      | 0.292      | 0.263  |  | 4                   | 0.352                | 0.427 |
| 5                                                      |            |        |  | 5                   |                      |       |
| 6                                                      |            |        |  | 6                   |                      |       |
| 7                                                      |            |        |  | 7                   |                      |       |
| 8                                                      |            |        |  | 8                   |                      |       |
| 9                                                      |            |        |  | 9                   |                      |       |
| 10                                                     |            |        |  | 10                  |                      |       |
| 11                                                     |            |        |  | 11                  |                      |       |
| 12                                                     |            |        |  | 12                  |                      |       |
| 13                                                     |            |        |  | 13                  |                      |       |
| 14                                                     |            |        |  | 14                  |                      |       |
| 15                                                     |            |        |  | 15                  |                      |       |
| Mean                                                   | 0.243      | 0.234  |  | Mean                | 0.389                | 0.401 |
| Std Dev.                                               | 0.038      | 0.039  |  | Std Dev.            | 0.034                | 0.050 |
| # Replicates                                           | 4          | 4      |  | # Replicates        | 4                    | 4     |
| T-Test Result                                          | 2.1550     |        |  | T-Test Result       | 3.8928               |       |
| Deg. of Freedom                                        | 5          |        |  | Deg. of Freedom     | 5                    |       |
| Critical T Value                                       | 0.7267     |        |  | Critical T Value    | 0.7267               |       |
| Pass or Fail                                           | PASS       |        |  | Pass or Fail        | PASS                 |       |
| Test Completion Date                                   |            |        |  |                     |                      |       |
| Replicate                                              | 7/14/2020  |        |  | Replicate           | Test Completion Date |       |
| No.                                                    | Control    | TIWC   |  | No.                 | Control              | TIWC  |
| 1                                                      | 0.448      | 0.4556 |  | 1                   | 0.316                | 0.313 |
| 2                                                      | 0.425      | 0.407  |  | 2                   | 0.295                | 0.354 |
| 3                                                      | 0.479      | 0.476  |  | 3                   | 0.306                | 0.265 |
| 4                                                      | 0.387      | 0.453  |  | 4                   | 0.312                | 0.331 |
| 5                                                      |            |        |  | 5                   |                      |       |
| 6                                                      |            |        |  | 6                   |                      |       |
| 7                                                      |            |        |  | 7                   |                      |       |
| 8                                                      |            |        |  | 8                   |                      |       |
| 9                                                      |            |        |  | 9                   |                      |       |
| 10                                                     |            |        |  | 10                  |                      |       |
| 11                                                     |            |        |  | 11                  |                      |       |
| 12                                                     |            |        |  | 12                  |                      |       |
| 13                                                     |            |        |  | 13                  |                      |       |
| 14                                                     |            |        |  | 14                  |                      |       |
| 15                                                     |            |        |  | 15                  |                      |       |
| Mean                                                   | 0.435      | 0.448  |  | Mean                | 0.307                | 0.316 |
| Std Dev.                                               | 0.039      | 0.029  |  | Std Dev.            | 0.009                | 0.038 |
| # Replicates                                           | 4          | 4      |  | # Replicates        | 4                    | 4     |
| T-Test Result                                          | 5.9193     |        |  | T-Test Result       | 4.4453               |       |
| Deg. of Freedom                                        | 5          |        |  | Deg. of Freedom     | 3                    |       |
| Critical T Value                                       | 0.7267     |        |  | Critical T Value    | 0.7649               |       |
| Pass or Fail                                           | PASS       |        |  | Pass or Fail        | PASS                 |       |

| WET Summary and Evaluation         |                              |                          |           |           |           |  |  |  |  |
|------------------------------------|------------------------------|--------------------------|-----------|-----------|-----------|--|--|--|--|
| <b>Facility Name</b>               | City of Warren WWTP          |                          |           |           |           |  |  |  |  |
| <b>Permit No.</b>                  | PA0027120                    |                          |           |           |           |  |  |  |  |
| <b>Design Flow (MGD)</b>           | 6.5                          |                          |           |           |           |  |  |  |  |
| <b>Q<sub>7-10</sub> Flow (cfs)</b> | 250.4                        |                          |           |           |           |  |  |  |  |
| <b>PMF<sub>a</sub></b>             | 0.07                         |                          |           |           |           |  |  |  |  |
| <b>PMF<sub>c</sub></b>             | 0.48                         |                          |           |           |           |  |  |  |  |
| <b>Species</b>                     | <b>Endpoint</b>              | Test Results (Pass/Fail) |           |           |           |  |  |  |  |
|                                    |                              | Test Date                | Test Date | Test Date | Test Date |  |  |  |  |
| Ceriodaphnia                       | Survival                     | 9/4/18                   |           | 7/13/20   | 7/19/21   |  |  |  |  |
|                                    |                              | PASS                     | PASS      | PASS      | PASS      |  |  |  |  |
| <b>Species</b>                     | <b>Endpoint</b>              | Test Results (Pass/Fail) |           |           |           |  |  |  |  |
|                                    |                              | Test Date                | Test Date | Test Date | Test Date |  |  |  |  |
| Ceriodaphnia                       | Reproduction                 | 9/4/18                   | 10/8/19   | 7/13/20   | 7/19/21   |  |  |  |  |
|                                    |                              | PASS                     | PASS      | PASS      | PASS      |  |  |  |  |
| <b>Species</b>                     | <b>Endpoint</b>              | Test Results (Pass/Fail) |           |           |           |  |  |  |  |
|                                    |                              | Test Date                | Test Date | Test Date | Test Date |  |  |  |  |
| Pimephales                         | Survival                     | 9/4/18                   | 10/8/19   | 7/14/20   | 7/20/21   |  |  |  |  |
|                                    |                              | PASS                     | PASS      | PASS      | PASS      |  |  |  |  |
| <b>Species</b>                     | <b>Endpoint</b>              | Test Results (Pass/Fail) |           |           |           |  |  |  |  |
|                                    |                              | Test Date                | Test Date | Test Date | Test Date |  |  |  |  |
| Pimephales                         | Growth                       | 9/4/18                   |           | 7/14/20   | 7/20/21   |  |  |  |  |
|                                    |                              | PASS                     | PASS      | PASS      | PASS      |  |  |  |  |
| <b>Reasonable Potential?</b>       |                              | NO                       |           |           |           |  |  |  |  |
| <b>Permit Recommendations</b>      |                              |                          |           |           |           |  |  |  |  |
| Test Type                          | <b>Chronic</b>               |                          |           |           |           |  |  |  |  |
| TIWC                               | 8 % Effluent                 |                          |           |           |           |  |  |  |  |
| Dilution Series                    | 4, 8, 30, 60, 100 % Effluent |                          |           |           |           |  |  |  |  |
| Permit Limit                       | <b>None</b>                  |                          |           |           |           |  |  |  |  |
| Permit Limit Species               |                              |                          |           |           |           |  |  |  |  |