

Application Type  
Facility Type  
Major / Minor

Renewal  
Municipal  
Major

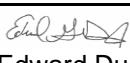
**NPDES PERMIT FACT SHEET  
INDIVIDUAL SEWAGE**

Application No. PA0027235  
APS ID 571161  
Authorization ID 1441936

**Applicant and Facility Information**

|                           |                                                              |                  |                                                              |
|---------------------------|--------------------------------------------------------------|------------------|--------------------------------------------------------------|
| Applicant Name            | <u>Easton Area Joint Sewer Authority</u>                     | Facility Name    | <u>Easton WWTP</u>                                           |
| Applicant Address         | <u>50-A S Delaware Drive</u><br><u>Easton, PA 18042-9405</u> | Facility Address | <u>50-A S Delaware Drive</u><br><u>Easton, PA 18042-9405</u> |
| Applicant Contact         | <u>Robert Lammi</u>                                          | Facility Contact | <u>Charles Wilson</u>                                        |
| Applicant Phone           | <u>(610) 250-6707</u>                                        | Facility Phone   | <u>(610) 250-6705</u>                                        |
| Client ID                 | <u>87609</u>                                                 | Site ID          | <u>443488</u>                                                |
| Ch 94 Load Status         | <u>Not Overloaded</u>                                        | Municipality     | <u>Easton City</u>                                           |
| Connection Status         |                                                              | County           | <u>Northampton</u>                                           |
| Date Application Received | <u>May 30, 2023</u>                                          | EPA Waived?      | <u>No</u>                                                    |
| Date Application Accepted | <u>June 2, 2023</u>                                          | If No, Reason    | <u>Major Facility, Pretreatment</u>                          |
| Purpose of Application    | <u>RENEWAL OF EXISTING NPDES PERMIT.</u>                     |                  |                                                              |

**Summary of Review**


The PA Department of Environmental Protection (PADEP/Department) received an NPDES permit renewal application from S C Engineers, Inc. (consultant) on behalf of Easton Area Joint Sewer Authority (EAJSA/Authority/Permittee) for permittee's Easton WWTP (facility) on May 30, 2023. The current permit expired on November 30 2023 and the permit is under administrative extension since then. This is a major sewage facility with design flow of 10.0 MGD and the treated effluent is discharged into Delaware River (WWF, MF) and Delaware Canal. Renewal NPDES permit applications under Clean Water program are not covered by PADEP's PDG per 021-2100-001. This fact sheet is developed in accordance with 40 CFR §124.56.

Changes in this permit: Quarterly monitoring for Total Thallium, monthly monitoring for E. Coli, and annual monitoring for PFOA, PFOS, PFBS, and HFPO-DA, removed monitoring requirements for Outfalls 003 and 004.

Sludge use and disposal description and location(s): Settled solids from the primary clarifiers are sent to Anaerobic Digester Nos. 2 and 3 for treatment and the sludge from these units is dewatered through the plant's centrifuge system. Waste activated sludge is sent to the aerobic digester cells where it is run through a gravity belt thickener, from there it is transferred to Anaerobic Digester No. 1 for treatment and the sludge from this unit is dewatered through the plant's centrifuge system. Class B Biosolids are produced. Pathogen reduction and vector attraction are not tracked since the biosolids are currently disposed of at Chrin Landfill.

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

| Approve | Deny | Signatures                                                                                                                                  | Date              |
|---------|------|---------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| ✓       |      | Reza H. Chowdhury, P.E. / Environmental Engineer<br>    | November 5, 2025  |
| X       |      | Edward Dudick, P.E. / Environmental Engineer Manager<br> | November 12, 2025 |

| Discharge, Receiving Waters and Water Supply Information |                          |                              |                                    |
|----------------------------------------------------------|--------------------------|------------------------------|------------------------------------|
| Outfall No.                                              | 001                      | Design Flow (MGD)            | 10.0                               |
| Latitude                                                 | 40° 40' 44"              | Longitude                    | -75° 11' 39"                       |
| Quad Name                                                | Easton                   | Quad Code                    | 1344                               |
| Wastewater Description:                                  | Sewage Effluent          |                              |                                    |
| Receiving Waters                                         | Delaware River (WWF, MF) | Stream Code                  | 00002                              |
| NHD Com ID                                               | 26037060                 | RMI                          | 107.9                              |
| Drainage Area                                            | 6,090 mi <sup>2</sup>    | Yield (cfs/mi <sup>2</sup> ) | 0.238                              |
| Q <sub>7-10</sub> Flow (cfs)                             | 1450.32                  | Q <sub>7-10</sub> Basis      | Please see below                   |
| Elevation (ft)                                           | 153.7                    | Slope (ft/ft)                | 0.00006                            |
| Watershed No.                                            | 2-C                      | Chapter 93 Class.            | WWF, MF                            |
| Existing Use                                             |                          | Existing Use Qualifier       |                                    |
| Exceptions to Use                                        |                          | Exceptions to Criteria       |                                    |
| Assessment Status                                        | Impaired                 |                              |                                    |
| Cause(s) of Impairment                                   | MERCURY                  |                              |                                    |
| Source(s) of Impairment                                  | SOURCE UNKNOWN           |                              |                                    |
| TMDL Status                                              |                          | Name                         |                                    |
| Background/Ambient Data                                  |                          |                              |                                    |
| pH (SU)                                                  | 7.6                      | Data Source                  | WQN 0194, median Jul-Sep 2003-2019 |
| Temperature (°C)                                         | 22.71                    |                              | WQN 0194, median Jul-Sep 2003-2019 |
| Hardness (mg/L)                                          | 34.5                     |                              | WQN 0194, median Jul-Sep 2003-2019 |
| Other:                                                   |                          |                              |                                    |
| Nearest Downstream Public Water Supply Intake            |                          |                              |                                    |
| PWS Waters                                               | Delaware River           | BCWSA New Hope               |                                    |
| PWS RMI                                                  | 73.31                    | Flow at Intake (cfs)         |                                    |
|                                                          |                          | Distance from Outfall (mi)   | 34.59                              |

Changes Since Last Permit Issuance: The WQM permit for the WWTP was amended on November 3, 2021, to authorize the following activities:

1. Conversion of the third anaerobic digester from a secondary digester to a primary digester with a pumped mixing system.
2. A new thickened waste activated sludge pump will be constructed adjacent to the existing gravity belt thickener. A 3-inch glass-lined ductile iron force main for the pump discharge will be connected to the existing 8-inch line.
3. Construction of a fats, oils and grease receiving and pretreatment facility. One of the existing dissolved air floatation tanks will be utilized for storage after the waste is screened with a packaged rotating drum screening unit. A heated pumped mixing system will keep the tank contents uniform. Dedicated feed pumps to the first and second digesters will be installed.
4. Construction of a combined heat and power facility to utilize the biogas produced in the anaerobic digesters to generate electricity through an internal combustion engine genset for use at the facility. Biogas will be pretreated before combustion. Two new heat exchangers will be added to the existing hot water loop.

**Streamflow:**

USGS's web based watershed delineation tool StreamStats (accessible at <https://streamstats.usgs.gov/ss/>, accessed on October 29, 2025) was utilized to determine the drainage area and low flow statistics of the receiving stream at discharge point. The drainage area at Outfall 001 was found to be 6,090 mi<sup>2</sup>. The upstream Streamgage (01446500-Delaware River at Belvidere, NJ) data was analyzed to calculate the low flow yield. Data from this gage shows a drainage area of 4,535 mi<sup>2</sup>, Q<sub>1-10</sub> of 864 cfs, Q<sub>7-10</sub> of 1,080 cfs, and Q<sub>30-10</sub> of 1,260 cfs. The Q7-10 runoff rate or yield is calculated as follows:

$$\begin{aligned} Q_{7-10} \text{ runoff rate} &= 1,080 \text{ cfs}/4,535 \text{ mi}^2 \text{ or } 0.238 \text{ cfs}/\text{mi}^2 \\ Q_{7-10} \text{ at Outfall 001} &= 0.238 \text{ cfs}/\text{mi}^2 * 6,090 \text{ mi}^2 = 1,450.32 \text{ cfs} \\ Q_{1-10}:Q_{7-10} \text{ ratio} &= 864 \text{ cfs}/1,080 \text{ cfs or } 0.8 \\ Q_{30-10}:Q_{7-10} \text{ ratio} &= 1,260 \text{ cfs}/1,080 \text{ cfs or } 1.17 \end{aligned}$$

**Mixing Zone Study:**

A Mixing Zone Study (Study) was conducted on January 25, 2010, by Conestoga-Rovers & Associates. The Study collected bathymetric data at and near the outfall location and conducted CORMIX modeling to calculate/co-relate the dilution with mixing factors. The study determined an acute mixing factor of 0.22, chronic mixing factor of 0.98, and human health mixing factor is 0.64. The Study also calculated/estimated slope of 0.0006 and width of stream of 113 m (370.64 ft). The Study was approved and used in subsequent permit renewals. These numbers or revised available Q<sub>7-10</sub> flow values will be used in modeling, as appropriate.

**PWS Intake:**

The nearest downstream public water supply is Bucks County Water and Sewer Authority (BCWSA) New Hope intake. This intake is on Delaware River, at approximate RMI of 73.31 mile, which is approximately 34.59 miles downstream of Outfall 001. Because of the distance, dilution, and effluent limits, the discharge is expected not to affect the intake.

**Wastewater Characteristics:**

Default discharge pH of 7.0 S.U. and default discharge temperature of 25°C will be used. The application data indicated an average Total Hardness of 185 mg/l out of 3 samples.

**Background data:**

The nearby upstream Water Quality Network Station 21PA\_WQX-WQN0194 is located on SR 1004 Bridge at Belvidere, NJ. Per the WQN station's data, the median pH is 7.6 S.U. and median temperature is 22.71°C for the months July-September for reporting period 2003-2019. Default hardness value is 100 mg/l. These values will be used for modeling, as appropriate.

**Antidegradation (93.4):**

The effluent limits for this discharge have been developed to ensure that existing in-stream water uses and the level of water quality necessary to protect the existing uses are maintained and protected. The receiving streams are designated as Warm Water Fishes (WWF). No High-Quality (HQ) watershed is being impacted by this discharge. No Exceptional-Value (EV) watershed is being impacted by this discharge. Therefore, Anti-degradation Analysis wasn't performed.

**Class A Wild Trout Fisheries:**

No Class A Wild Trout Fisheries are impacted by this discharge.

**DRBC Docket D-1987-010 CP 5:**

The discharge is into Lower Delaware Special Protection Waters (SPW). DRBC renewed the existing Docket on June 11, 2025 with an expiration date of November 30, 2030. The DRBC parameters mimic NPDES limits with exception of TDS, for which DRBC requires a limit of 1,000 mg/l with quarterly sampling requirement. This will be discussed in the Development of Effluent Limits section of this fact sheet.

**Biosolids Management:**

Settled solids from the primary clarifiers are sent to Anaerobic Digester Nos. 2 and 3 for treatment and the sludge from these units is dewatered through the plant's centrifuge system. Waste activated sludge is sent to the aerobic digester cells where it is run through a gravity belt thickener, from there it is transferred to Anaerobic Digester No. 1 for treatment and the sludge from this unit is dewatered through the plant's centrifuge system. Class B Biosolids are produced. Pathogen reduction and vector attraction are not tracked since the biosolids are currently disposed of at Chrin Landfill.

**Discharge, Receiving Waters and Water Supply Information**

|                         |                                                 |                   |              |
|-------------------------|-------------------------------------------------|-------------------|--------------|
| Outfall No.             | 002                                             | Design Flow (MGD) | 0            |
| Latitude                | 40° 40' 44"                                     | Longitude         | -75° 11' 39" |
| Quad Name               | Easton                                          | Quad Code         | 1344         |
| Wastewater Description: | Stormwater, emergency plant effluent discharge. |                   |              |
| Receiving Waters        | Delaware Canal                                  | Stream Code       |              |

**Discharge, Receiving Waters and Water Supply Information**

|                         |                                                             |                   |              |
|-------------------------|-------------------------------------------------------------|-------------------|--------------|
| Outfall No.             | 003                                                         | Design Flow (MGD) | 0            |
| Latitude                | 40° 40' 44"                                                 | Longitude         | -75° 11' 36" |
| Quad Name               | Easton                                                      | Quad Code         | 1344         |
| Wastewater Description: | Stormwater, Stormwater, emergency plant effluent discharge. |                   |              |

|                  |                |             |  |
|------------------|----------------|-------------|--|
| Receiving Waters | Delaware Canal | Stream Code |  |
|------------------|----------------|-------------|--|

**Discharge, Receiving Waters and Water Supply Information**

|                         |             |                   |                 |
|-------------------------|-------------|-------------------|-----------------|
| Outfall No.             | 004         | Design Flow (MGD) | 0               |
| Latitude                | 40° 40' 44" | Longitude         | -75° 11' 32.00" |
| Quad Name               | Easton      | Quad Code         | 1344            |
| Wastewater Description: | Stormwater  |                   |                 |

|                  |                |             |  |
|------------------|----------------|-------------|--|
| Receiving Waters | Delaware Canal | Stream Code |  |
| NHD Com ID       | 26037192       | RMI         |  |

Other Comments: The Part C.VI.E.3 states "If the drainage area characteristics for a stormwater outfall are substantially identical in nature to the drainage area characteristics of another stormwater outfall at the facility or site, the permittee may select that outfall to be representative of the other outfall in lieu of sampling the represented outfall" as a response to permittee's comment on draft permit during last renewal. The permittee provided description of each of the stormwater outfalls which demonstrates the similarities between them. With this understanding, it is determined that the Outfall 002 is representative of Outfalls 003 and 004, and only Outfall 002 will be required semi-annual sampling and subject to eDMR reporting requirements. The Outfalls 003 and 004 will be removed from eDMR requirements but will be stated in the Part C of the permit to identify the available stormwater outfalls.

| Treatment Facility Summary                                             |                                   |                      |                            |                               |
|------------------------------------------------------------------------|-----------------------------------|----------------------|----------------------------|-------------------------------|
| <b>Treatment Facility Name:</b> Easton Area Joint Sewer Authority WWTP |                                   |                      |                            |                               |
| <b>WQM Permit No.</b>                                                  |                                   | <b>Issuance Date</b> |                            |                               |
| 4876412 A-1                                                            |                                   | 11/04/2021           |                            |                               |
| 4876412                                                                |                                   | 08/16/1976           |                            |                               |
| <b>Waste Type</b>                                                      | <b>Degree of Treatment</b>        | <b>Process Type</b>  | <b>Disinfection</b>        | <b>Avg Annual Flow (MGD)</b>  |
| Sewage                                                                 | Secondary                         | Activated Sludge     | Gas Chlorine               | 10                            |
| <b>Hydraulic Capacity (MGD)</b>                                        | <b>Organic Capacity (lbs/day)</b> | <b>Load Status</b>   | <b>Biosolids Treatment</b> | <b>Biosolids Use/Disposal</b> |
| 10                                                                     | 20,000                            | Not Overloaded       | Combination                | Land Application              |

#### Treatment Plant Description

Easton Area Joint Sewer Authority (EAJSA or Authority) owns and operates a wastewater treatment plant named Easton WWTP (facility), located in Easton City, Northampton County. The EAJSA is responsible for the WWTP operations, capital projects, repairs, and permitting as well as operations, capital projects and repairs associated with key conveyance facilities under a long-term (99-year) contract with the Easton City, which is a part of an intermunicipal agreement between all member parties. Management of the City's wastewater collection system is handled by City staff. This is a major sewage treatment facility with an average annual design flow of 10 MGD, hydraulic loading capacity of 20,000 lbs. BOD5/day, and hydraulic design capacity of 10 MGD. The facility treats wastewater from the following six municipalities that are member of EAJSA, and five other municipalities that aren't member of EAJSA.

| Authority Members   | Tributary Non-Members   |
|---------------------|-------------------------|
| Easton City         | Glendon Borough         |
|                     | Williams Township       |
| Forks Township      | Stockertown Borough     |
| Palmer Township     | Bethlehem Township      |
|                     | Lower Nazareth Township |
| Tatamy Borough      |                         |
| West Easton Borough |                         |
| Wilson Borough      |                         |

The member and non-member municipalities own and operate their own collection and conveyance systems. On September 29, 2021, the Borough of Stockertown's sewer system was connected to the Forks Township sewer system.

The WWTP employs physical and biological treatment to achieve required treatment level. The facility's treatment process consists of grit removal and screening, primary clarification, secondary biological treatment through an oxidation ditch process, secondary clarification, disk filtration system, disinfection using sodium hypochlorite and dechlorination using sodium bisulfite. The treated effluent is discharged through Outfall 001 into Delaware River, and occasionally through Outfalls 002 and 003, during high flow condition.

The facility utilizes the following wastewater treatment chemicals:

| Chemical Name                  | Purpose                 | Maximum Usage Rate | Units |
|--------------------------------|-------------------------|--------------------|-------|
| Sodium Hypochlorite            | Disinfection            | 500                | GPD   |
| Sodium Bisulfite               | Dechlorination          | 140                | GPD   |
| Magnesium Hydroxide            | Supplemental Alkalinity | 600                | GPD   |
| Ferric Chloride                | Settling                | 80                 | GPD   |
| Centrifuge System Polymer      | Dewatering              | 55                 | GPD   |
| Gravity Belt Thickener Polymer | Dewatering              | 15                 | GPD   |
| Secondary Clarifier Polymer    | Settling                | 15                 | GPD   |

The facility is planning to accept approximately 12,400 GPD or more of food waste and/or FOG, 5 days per week, for next five years. As stated in Page 2 of this report, the facility's WQM permit was amended to approve construction/modification to accept these wastes.

Per recent CEI report dated May 28, 2025, the treatment facility consists of the following treatment units: One grit removal, two Hydro-dyne Great White screens, one influent bar screen, two primary clarifiers, three oxidation ditches, three secondary clarifiers, two rotary disk filter systems, one chlorine contact tank, three anaerobic digesters, three holding cells, one gravity belt thickener, and two centrifuges.

**Industrial Users:**

There are three (3) Categorical and fourteen (14) Non-categorical Significant Industrial Users contributing to this facility. The facility is implementing EPA administered pre-treatment program, which will be continued for the next permit term.

**CSS and CSO:**

Roughly 3% of the City's contributed wastewater are discharged through two (2) CSOs, Second Street Pump Station and Spring Garden Street CSO. The CSO and CSS are permitted under PAG062201, for which the City of Easton is the permittee. The permit was last renewed on August 28, 2024 with an expiration date of October 16, 2027.

**Existing Limits**

Outfall 001: Effective from December 1, 2018 through November 30, 2023

| Parameter                      | Effluent Limitations                   |                        |                       |                    |                   |                     | Monitoring Requirements                            |                            |
|--------------------------------|----------------------------------------|------------------------|-----------------------|--------------------|-------------------|---------------------|----------------------------------------------------|----------------------------|
|                                | Mass Units<br>(lbs/day) <sup>(1)</sup> |                        | Concentrations (mg/L) |                    |                   |                     | Minimum <sup>(2)</sup><br>Measurement<br>Frequency | Required<br>Sample<br>Type |
|                                | Average<br>Monthly                     | Weekly<br>Average      | Instant.<br>Minimum   | Average<br>Monthly | Weekly<br>Average | Instant.<br>Maximum |                                                    |                            |
| Flow (MGD)                     | Report                                 | Report<br>Daily<br>Max | XXX                   | XXX                | XXX               | XXX                 | Continuous                                         | Measured                   |
| pH (S.U.)                      | XXX                                    | XXX                    | 6.0                   | XXX                | XXX               | 9.0                 | 1/day                                              | Grab                       |
| CBOD5                          | 2,085                                  | 3,336                  | XXX                   | 25.0               | 40.0              | 50.0                | 1/day                                              | 24-Hr<br>Composite         |
| TRC                            | XXX                                    | XXX                    | XXX                   | 0.5                | XXX               | 1.6                 | 1/shift                                            | Grab                       |
| TSS                            | 2,502                                  | 3,753                  | XXX                   | 30.0               | 45.0              | 60.0                | 1/day                                              | 24-Hr<br>Composite         |
| Fecal Coliform<br>(No./100 ml) | XXX                                    | XXX                    | XXX                   | 200<br>Geo<br>Mean | XXX               | 1,000               | 1/day                                              | Grab                       |
| Ammonia-<br>Nitrogen           | 1,668                                  | XXX                    | XXX                   | 20.0               | XXX               | 40.0                | 1/day                                              | 24-Hr<br>Composite         |
| DO                             | XXX                                    | XXX                    | Report                | Report             | XXX               | XXX                 | 1/month                                            | Grab                       |
| Total Nitrogen                 | XXX                                    | XXX                    | XXX                   | Report             | XXX               | XXX                 | 1/month                                            | Calculation                |

| Parameter                  | Effluent Limitations                   |                   |                       |                        |                   |                     | Monitoring Requirements                            |                            |
|----------------------------|----------------------------------------|-------------------|-----------------------|------------------------|-------------------|---------------------|----------------------------------------------------|----------------------------|
|                            | Mass Units<br>(lbs/day) <sup>(1)</sup> |                   | Concentrations (mg/L) |                        |                   |                     | Minimum <sup>(2)</sup><br>Measurement<br>Frequency | Required<br>Sample<br>Type |
|                            | Average<br>Monthly                     | Weekly<br>Average | Instant.<br>Minimum   | Average<br>Monthly     | Weekly<br>Average | Instant.<br>Maximum |                                                    |                            |
| Nitrate-Nitrite<br>as N    | XXX                                    | XXX               | XXX                   | Report                 | XXX               | XXX                 | 1/month                                            | 24-Hr<br>Composite         |
| Total Kjeldahl<br>Nitrogen | XXX                                    | XXX               | XXX                   | Report                 | XXX               | XXX                 | 1/month                                            | 24-Hr<br>Composite         |
| Total<br>Phosphorus        | XXX                                    | XXX               | XXX                   | Report                 | XXX               | XXX                 | 1/month                                            | 24-Hr<br>Composite         |
| TDS                        | XXX                                    | XXX               | XXX                   | Report<br>Avg<br>Qrtly | XXX               | XXX                 | 1/quarter                                          | 24-Hr<br>Composite         |
| Influent<br>CBOD5          | XXX                                    | XXX               | XXX                   | Report                 | XXX               | XXX                 | 1/month                                            | 24-Hr<br>Composite         |
| Influent TSS               | XXX                                    | XXX               | XXX                   | Report                 | XXX               | XXX                 | 1/month                                            | 24-Hr<br>Composite         |

Outfall 002, 003, and 004: Effective from December 1, 2018 through November 30, 2023

| Parameter         | Effluent Limitations                   |                   |                       |                    |                  |                     | Monitoring<br>Requirements                         |                            |
|-------------------|----------------------------------------|-------------------|-----------------------|--------------------|------------------|---------------------|----------------------------------------------------|----------------------------|
|                   | Mass Units<br>(lbs/day) <sup>(1)</sup> |                   | Concentrations (mg/L) |                    |                  |                     | Minimum <sup>(2)</sup><br>Measurement<br>Frequency | Required<br>Sample<br>Type |
|                   | Average<br>Monthly                     | Average<br>Weekly | Minimum               | Average<br>Monthly | Daily<br>Maximum | Instant.<br>Maximum |                                                    |                            |
| TSS               | XXX                                    | XXX               | XXX                   | XXX                | Report           | XXX                 | 1/6 months                                         | Grab                       |
| Oil and<br>Grease | XXX                                    | XXX               | XXX                   | XXX                | Report           | XXX                 | 1/6 months                                         | Grab                       |

Compliance History

DMR Data for Outfall 001 (from September 1, 2024 to August 31, 2025)

| Parameter                                              | AUG-25 | JUL-25 | JUN-25 | MAY-25 | APR-25 | MAR-25 | FEB-25 | JAN-25 | DEC-24 | NOV-24 | OCT-24 | SEP-24 |
|--------------------------------------------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| Flow (MGD)<br>Average Monthly                          | 5.18   | 5.41   | 5.33   | 5.80   | 5.32   | 5.17   | 5.28   | 5.17   | 5.38   | 5.22   | 5.11   | 5.25   |
| Flow (MGD)<br>Daily Maximum                            | 5.70   | 6.30   | 5.73   | 7.72   | 6.74   | 6.23   | 6.93   | 5.6    | 6.85   | 6.48   | 5.60   | 5.53   |
| pH (S.U.) IMIN                                         | 6.9    | 6.9    | 7.0    | 6.8    | 6.9    | 6.6    | 7.0    | 7.0    | 6.9    | 6.9    | 6.5    | 6.6    |
| pH (S.U.) IMAX                                         | 7.4    | 7.5    | 7.5    | 7.3    | 7.6    | 7.4    | 7.5    | 7.6    | 7.4    | 7.7    | 7.3    | 7.2    |
| DO (mg/L) IMIN                                         | 6.06   | 6.68   | 7.04   | 6.12   | 7.00   | 7.63   | 8.26   | 6.88   | 7.48   | 7.42   | 6.72   | 6.83   |
| DO (mg/L)<br>Average Monthly                           | 6.83   | 7.36   | 7.77   | 7.76   | 8.15   | 8.81   | 9.27   | 8.57   | 8.33   | 7.89   | 7.54   | 7.29   |
| TRC (mg/L)<br>Average Monthly                          | 0.05   | 0.04   | 0.05   | 0.04   | 0.08   | 0.07   | 0.06   | 0.04   | 0.09   | 0.05   | 0.05   | 0.04   |
| TRC (mg/L) IMAX                                        | 0.7    | 1.0    | 0.9    | 0.8    | 1.1    | 1.1    | 1.4    | 0.5    | 4.4    | 0.6    | 0.5    | 0.5    |
| CBOD5 (lbs./day)<br>Average Monthly                    | 185    | 168    | 138    | 232    | 207    | 169    | 137    | 597    | 332    | 224    | 153    | 92     |
| CBOD5 (lbs./day)<br>Weekly Average                     | 204    | 202    | 152    | 205    | 520    | 213    | 156    | 830    | 596    | 294    | 184    | 95     |
| CBOD5 (mg/L)<br>Average Monthly                        | 4.3    | 3.7    | 3.1    | 4.8    | 4.7    | 3.9    | 3.1    | 13.8   | 7.4    | 5.1    | 3.6    | 2.1    |
| CBOD5 (mg/L)<br>Raw Sewage Influent<br>Average Monthly | 287.1  | 294.7  | 303.4  | 279.2  | 297.7  | 285.0  | 311.8  | 303.3  | 274.2  | 285.8  | 253.3  | 254.4  |
| CBOD5 (mg/L)<br>Weekly Average                         | 4.7    | 4.3    | 3.3    | 4.2    | 12.4   | 4.7    | 3.7    | 19.2   | 12.7   | 6.9    | 4.4    | 2.2    |
| TSS (lbs./day)<br>Average Monthly                      | 343    | 236    | 237    | 483    | 349    | 251    | 198    | 510    | 663    | 427    | 507    | 190    |
| TSS (lbs./day)<br>Weekly Average                       | 388    | 286    | 252    | 338    | 1181   | 274    | 210    | 814    | 1672   | 542    | 855    | 202    |
| TSS (mg/L)<br>Average Monthly                          | 7.9    | 5.2    | 5.3    | 10.0   | 7.9    | 5.8    | 4.5    | 11.8   | 14.8   | 9.8    | 11.9   | 4.3    |
| TSS (mg/L)<br>Raw Sewage Influent<br>Average Monthly   | 256.6  | 242.9  | 261.5  | 271.4  | 263.7  | 270.5  | 273.0  | 274.5  | 275.4  | 282.6  | 269.2  | 262.8  |
| TSS (mg/L)<br>Weekly Average                           | 8.9    | 6.3    | 5.6    | 7.0    | 30.2   | 6.5    | 4.9    | 18.8   | 34.6   | 12.2   | 20.3   | 4.6    |
| TDS (mg/L)<br>Average Quarterly                        |        |        | 501    |        |        | 511    |        |        | 520    |        |        | 537    |
| Fecal Coliform<br>(No./100 ml)<br>Geometric Mean       | 1      | 1      | 4      | 6      | 2      | 2      | 4      | 10     | 3      | 1      | 2      | 1      |

NPDES Permit Fact Sheet  
Easton WWTP

NPDES Permit No. PA0027235

|                                               |      |      |      |      |      |      |      |      |      |      |      |      |
|-----------------------------------------------|------|------|------|------|------|------|------|------|------|------|------|------|
| Fecal Coliform<br>(No./100 ml) IMAX           | 6    | 14   | 26   | 88   | 4    | 12   | 17   | 1733 | 249  | 4    | 27   | 5    |
| Nitrate-Nitrite (mg/L)<br>Average Monthly     | 20.5 | 17.5 | 17.6 | 19.3 | 14.8 | 18.2 | 30   | 31.2 | 27.6 | 23.7 | 23.2 | 24.8 |
| Total Nitrogen (mg/L)<br>Average Monthly      | 21.3 | 18.0 | 18.3 | 21.2 | 15.8 | 19.5 | 31.3 | 32.7 | 28.1 | 24.2 | 24.0 | 25.3 |
| Ammonia (lbs/day)<br>Average Monthly          | 12   | 10   | 6    | 17   | 32   | 11   | 7    | 107  | 16   | 8    | 7    | 6    |
| Ammonia (mg/L)<br>Average Monthly             | 0.3  | 0.2  | 0.1  | 0.4  | 0.7  | 0.3  | 0.2  | 2.5  | 0.3  | 0.2  | 0.2  | 0.1  |
| TKN (mg/L)<br>Average Monthly                 | 0.8  | 0.5  | 0.7  | 1.9  | 1.0  | 1.3  | 1.3  | 1.5  | 0.5  | 0.5  | 0.8  | 0.5  |
| Total Phosphorus<br>(mg/L)<br>Average Monthly |      |      |      |      |      |      |      |      |      |      |      |      |
|                                               | 5.5  | 5.5  | 4.5  | 4.2  | 4.6  | 5.1  | 5.0  | 5.1  | 4.8  | 5.1  | 3.9  | 5.2  |

DMR Data for Outfall 002 (from September 1, 2024 to August 31, 2025)

| Parameter                              | AUG-25 | JUL-25 | JUN-25 | MAY-25 | APR-25 | MAR-25 | FEB-25 | JAN-25 | DEC-24 | NOV-24 | OCT-24 | SEP-24 |
|----------------------------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| TSS (mg/L)<br>Daily Maximum            |        |        | 6      |        |        |        |        |        | 3      |        |        |        |
| Oil and Grease (mg/L)<br>Daily Maximum |        |        | 5      |        |        |        |        |        | 5      |        |        |        |

DMR Data for Outfall 004 (from September 1, 2024 to August 31, 2025)

| Parameter                              | AUG-25 | JUL-25 | JUN-25 | MAY-25 | APR-25 | MAR-25 | FEB-25 | JAN-25 | DEC-24 | NOV-24 | OCT-24 | SEP-24 |
|----------------------------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| TSS (mg/L)<br>Daily Maximum            |        |        | 85     |        |        |        |        |        |        |        |        |        |
| Oil and Grease (mg/L)<br>Daily Maximum |        |        | 5      |        |        |        |        |        |        |        |        |        |

Compliance History

Effluent Violations for Outfall 001, from: October 1, 2024 To: August 31, 2025

| Parameter      | Date     | SBC  | DMR Value | Units      | Limit Value | Units      |
|----------------|----------|------|-----------|------------|-------------|------------|
| TRC            | 12/31/24 | IMAX | 4.4       | mg/L       | 1.6         | mg/L       |
| Fecal Coliform | 01/31/25 | IMAX | 1733      | No./100 ml | 1000        | No./100 ml |

Other Comments: The submitted Non Compliance Report form stated that color interference was the cause for TRC exceedance. No comment was provided for Fecal Coliform exceedance.

**Summary of Inspections:**

September 23, 2025: RTPT inspection conducted. No violation noted during the inspection. Recommended to submit the sealed and signed post construction certificate for the WQM amendment.

May 28, 2025: CEI conducted. Report stated that three eDMR violations were reported since last inspection.

February 21, 2024: CEI conducted. No violation noted.

November 2, 2022: CEI conducted. No violation noted.

May 27, 2021: CEI conducted. No violation noted.

May 13, 2020: ADMIN review conducted via telephone to understand how the treatment plant was operating during the COVID-19 quarantine period. The plant was operating normally and there were no major issues at the plant. No negative impact on influent or effluent was noted.

March 2, 2020: NOV was issued for multiple SSOs.

July 9, 2019: CEI conducted. No violation noted during the inspection.

**Development of Effluent Limitations**

Outfall No. 001  
Latitude 40° 40' 44.00"  
Wastewater Description: Sewage Effluent

Design Flow (MGD) 10.0  
Longitude -75° 11' 39.00"

**Technology-Based Limitations**

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

| Pollutant                    | Limit (mg/l)    | SBC             | Federal Regulation | State Regulation |
|------------------------------|-----------------|-----------------|--------------------|------------------|
| CBOD <sub>5</sub>            | 25              | Average Monthly | 133.102(a)(4)(i)   | 92a.47(a)(1)     |
|                              | 40              | Average Weekly  | 133.102(a)(4)(ii)  | 92a.47(a)(2)     |
| Total Suspended Solids       | 30              | Average Monthly | 133.102(b)(1)      | 92a.47(a)(1)     |
|                              | 45              | Average Weekly  | 133.102(b)(2)      | 92a.47(a)(2)     |
| pH                           | 6.0 – 9.0 S.U.  | Min – Max       | 133.102(c)         | 95.2(1)          |
| Fecal Coliform (5/1 – 9/30)  | 200 / 100 ml    | Geo Mean        | -                  | 92a.47(a)(4)     |
| Fecal Coliform (5/1 – 9/30)  | 1,000 / 100 ml  | IMAX            | -                  | 92a.47(a)(4)     |
| Fecal Coliform (10/1 – 4/30) | 2,000 / 100 ml  | Geo Mean        | -                  | 92a.47(a)(5)     |
| Fecal Coliform (10/1 – 4/30) | 10,000 / 100 ml | IMAX            | -                  | 92a.47(a)(5)     |
| Fecal Coliform               | 200 / 100 ml    | Geo Mean        | DRBC               | 92a.47(a)(5)     |
| Fecal Coliform               | 1,000 / 100 ml  | IMAX            | DRBC               | 92a.47(a)(5)     |
| Total Dissolved Solids       | 1,000           | Average Monthly |                    | DRBC             |
| Total Residual Chlorine      | 0.5             | Average Monthly | -                  | 92a.48(b)(2)     |

**WQM 7.0:**

The following data were used in the attached computer model (WQM 7.0) of the stream:

- Discharge pH 7.0 (Default)
- Discharge Temperature 25°C (Default)
- Discharge Hardness 185 mg/l (Application data)
- Stream pH 7.6 (21PA\_WQX-WQN0194, median Jul-Sep, 2003-2019)
- Stream Temperature 22.71°C (21PA\_WQX-WQN0194, median Jul-Sep, 2003-2019)
- Stream Hardness 100 mg/l (Default)

The following two nodes were used in modeling:

Node 1: At Outfall 001 on Delaware River (00002) at RMI 107.9  
 Elevation: 153.7 ft (National Map-Advanced Viewer, 10/29/2025)  
 Drainage Area: 6,090 mi<sup>2</sup> (StreamStat Version 3.0, 10/29/2025)  
 River Mile Index: 107.9 (PA DEP eMapPA)  
 Low Flow Yield: 0.238 cfs/mi<sup>2</sup>  
 Discharge Flow: 10.0 MGD  
 Available Q<sub>7-10</sub>: 318.87 cfs\*

Node 2: At confluence with Lopatcong Creek at Delaware River RMI 107.14  
 Elevation: 151.77 ft (National Map-Advanced Viewer, 10/29/2025)  
 Drainage Area: 6,100 mi<sup>2</sup> (StreamStat Version 3.0, 10/29/2025)  
 River Mile Index: 107.14 (PA DEP eMapPA)  
 Low Flow Yield: 0.238 cfs/mi<sup>2</sup>  
 Discharge Flow: 0.0 MGD  
 Available Q<sub>7-10</sub>: 319.4 cfs\*

\* Available Q<sub>7-10</sub> was calculated as drainage area \* Low Flow Yield \* acute partial mixing factor (PMFa). PMFa value was obtained from Mixing Zone Study.

Ammonia (NH<sub>3</sub>-N), Carbonaceous Biochemical Oxygen Demand (CBOD<sub>5</sub>), & Dissolved Oxygen (DO):

WQM 7.0 version 1.0b is a water quality model designed to assist DEP to determine appropriate effluent limits for CBOD<sub>5</sub>, NH<sub>3</sub>-N and DO. The model simulates two basic processes. In the NH<sub>3</sub>-N module, the model simulates the mixing and degradation of NH<sub>3</sub>-N in the stream and compares calculated instream NH<sub>3</sub>-N concentrations to NH<sub>3</sub>-N water quality criteria. In the D.O. module, the model simulates the mixing and consumption of D.O. in the stream due to the degradation of CBOD<sub>5</sub> and NH<sub>3</sub>N and compares calculated instream D.O. concentrations to D.O. water quality criteria. The model was utilized for this permit renewal by using Q<sub>7-10</sub> and current background water quality levels of the stream.

NH<sub>3</sub>-N:

WQM 7.0 suggested NH<sub>3</sub>-N limit of 20.0 mg/l as monthly average and 40.0 mg/l as IMAX limit to protect water quality standards. These values are the same as existing permitted limits. The average monthly mass loading is calculated to be 1,668 lbs./day. Existing limits will be continued.

CBOD<sub>5</sub>:

The WQM 7.0 model suggests a monthly average CBOD<sub>5</sub> limit of 25 mg/l, weekly average limit of 40 mg/l, and IMAX of 50 mg/l. The average monthly and average weekly mass loadings were calculated as 2,085 lbs./day and 3,336 lbs./day respectively. These values are the same as existing permit and will be carried over.

Dissolved Oxygen (DO):

The current permit has monitoring requirement for DO. Pa code 25 §93.7 lists a minimum DO of 5.0 for WWF watershed. DEP's SOP titled "Establishing Effluent Limitations for Individual Sewage Permits" (SOP No. BCW-PMT-033, revised Feb 5, 2024) recommends a minimum DO limit of 4.0 mg/l, based on BPJ, to ensure adequate operation and maintenance. A review of last 12 months (September 2024 through August 2025) data indicated that the facility is meeting the recommended minimum DO limit 100% of the time, with minimum monthly value of 6.06 mg/l. Since the facility is meeting more stringent limit 100% of the time, a schedule isn't needed. The minimum DO limit of 4.0 mg/l will be effective from the effective date of the permit.

**Toxics:**

Based on the available data, PADEP utilizes Toxics Management Spreadsheet (TMS) to (1) evaluate reasonable potential for toxic pollutants to cause or contribute to an excursion above the water quality standards and (2) develop WQBELs for those such toxic pollutants (i.e., 40 CFR § 122.44(d)(1)(i)). It is noteworthy that some of these pollutants that may be reported as "non-detect", but still exceeded the criteria, were determined to be candidates for modeling because the method detection levels used to analyze those pollutants were higher than target QLs and/or the most stringent Chapter 93 criteria. The model then recommended the appropriate action for the Pollutants of Concerns based on the following logic:

1. In general, establish limits in the draft permit where the effluent concentration determined in B.1 or B.2 equals or exceeds 50% of the WQBEL (i.e., RP is demonstrated). Use the average monthly, maximum daily and instantaneous maximum (IMAX) limits for the permit as recommended by the TMS (or, if appropriate, use a multiplier of 2 times the average monthly limit for the maximum daily limit and 2.5 times the average monthly limit for IMAX).
2. For non-conservative pollutants, in general, establish monitoring requirements where the effluent concentration determined in B.1 or B.2 is between 25% - 50% of the WQBEL.
3. For conservative pollutants, in general, establish monitoring requirements where the effluent concentration determined in B.1 or B.2 is between 10% - 50% of the WQBEL.

**NOTE 4** – If the effluent concentration determined in B.1 or B.2 is "non-detect" at or below the target quantitation limit (TQL) for the pollutant as specified in the TMS and permit application, the pollutant may be eliminated as a candidate for WQBELs or monitoring requirements unless 1) a more sensitive analytical method is available for the pollutant under 40 CFR Part 136 where the quantitation limit for the method is less than the applicable water quality criterion and 2) a detection at the more sensitive method may lead to a determination that an effluent limitation is necessary, considering available dilution at design conditions.

**NOTE 5** – If the effluent concentration determined in B.1 or B.2 is a detection below the TQL but above or equal to the applicable water quality criterion, WQBELs or monitoring may be established for the pollutant.

4. Application managers may, on a site- and pollutant-specific basis, deviate from these guidelines where there is specific rationale that is documented in the fact sheet.

The below table summarizes the output from TMS:

Recommended WQBELs & Monitoring Requirements

No. Samples/Month: 4

| Pollutants     | Mass Limits   |               | Concentration Limits |        |        |       | Governing WQBEL | WQBEL Basis | Comments                           |
|----------------|---------------|---------------|----------------------|--------|--------|-------|-----------------|-------------|------------------------------------|
|                | AML (lbs/day) | MDL (lbs/day) | AML                  | MDL    | IMAX   | Units |                 |             |                                    |
| Total Thallium | Report        | Report        | Report               | Report | Report | µg/L  | 14.6            | THH         | Discharge Conc > 10% WQBEL (no RP) |
|                |               |               |                      |        |        |       |                 |             |                                    |
|                |               |               |                      |        |        |       |                 |             |                                    |

**Total Thallium:** TMS suggests monitoring for Total Thallium based on model input value of <3 ug/l (maximum of 3 sample results). A quarterly monitoring requirement will provide sufficient effluent results for a Reasonable Potential analysis during next permit term.

### Additional Considerations

#### Fecal Coliform:

The recent coliform guidance in 25 Pa. code § 92a.47.(a)(4) requires a summer technology limit of 200/100 ml as a geometric mean and an instantaneous maximum not greater than 1,000/100ml and § 92a.47.(a)(5) requires a winter limit of 2,000/100ml as a geometric mean and an instantaneous maximum not greater than 10,000/100ml. Delaware River Basin Commission's (DRBC's) Water Quality Regulations at Section 4.30.4.A requires that during winter season from October through April, the instantaneous maximum concentration of fecal coliform organisms shall not be greater than 1,000 per 100 milliliters in more than 10 percent of the samples tested. Therefore, the summer limit is governed by DEP's regulation while winter limit is governed by DRBC's regulation. The current permit has year-round geo-mean of 200 no./100 ml. and IMAX of 1,000 no./100 ml. which will be carried over.

#### E. Coli:

Under the authority of Pa Code 25 § 92a. 61 the Department is requiring monitoring of E. Coli for all sewage facilities. DEP's SOP titled "Establishing Effluent Limitations for Individual Sewage Permits (BCW-PMT-033, revised February 5, 2024) recommends monthly E. Coli monitoring for major sewage dischargers. This requirement will be applied from this permit term.

#### pH:

The TBEL for pH is above 6.0 and below 9.0 S.U. (40 CFR §133.102(c) and Pa Code 25 §§ 95.2(1), 92a.47) which are existing limits and will be carried over.

#### Total Suspended Solids (TSS):

The existing limits of 30 mg/L average monthly, 45 mg/l average weekly, and 60 mg/L instantaneous maximum will remain in the permit based on the minimum level of effluent quality attainable by secondary treatment, 25 Pa. Code § 92a.47 and 40CFR 133.102(b). The mass based average monthly and weekly average limits are calculated to be 2,502 lbs./day and 3,753 lbs./day respectively, which are the same as were in existing permit. Existing limits will be carried over.

#### Total Residual Chlorine (TRC):

The attached computer printout utilizes the equation and calculations as presented in the Department's 2003 Implementation Guidance for Total Residual Chlorine (TRC) (ID#391-2000-015) for developing chlorine limitations. The attached printout indicates that a water quality limit of 0.5 mg/l would be needed to prevent toxicity concerns at the discharge point for Outfall 001. The Instantaneous Maximum (IMAX) limit is 1.6 mg/l. These are current limits and will be carried over.

#### Total Dissolved Solids (TDS):

TDS and its constituents are considered Special monitoring. The Department collected sufficient data for these parameters over last 8 years. The Department does no longer requires monitoring for these parameters, unless it's required by other agencies. The discharge is into a special protection watershed, as determined by DRBC. DRBC Docket D-1987-010 CP-5 (issued on June 11, 2025, expires on November 30, 2030) requires a quarterly monitoring with 1,000 mg/l limit. The docket provides options to apply for relief or monitor Specific Conductance in lieu of TDS. The current permit has monitoring requirement which will be carried over in this renewal.

Flow and Influent CBOD<sub>5</sub> and TSS Monitoring Requirement:

The requirement to monitor the volume of effluent will remain in the draft permit per 40 CFR § 122.44(i)(1)(ii). Influent BOD<sub>5</sub> and TSS monitoring requirements are established in the permit per the requirements set in Pa Code 25 Chapter 94. To demonstrate 85% removal efficiency and based on last permit, influent cBOD<sub>5</sub> was added that replaced influent BOD<sub>5</sub>. Current influent cBOD<sub>5</sub> and influent TSS monitoring will be continued.

**Best Professional Judgement (BPJ):**

Total Phosphorus:

The current permit has monitoring requirements for Total Phosphorus, which is authorized by Pa Code 25 § 92a.61 and supported by SOP BCW-PMT-033. Current monitoring requirements will be carried over.

Total Nitrogen:

Under the authority of Pa Code 25 § 92a.61 and recommendation from BCW-PMT-033, the Department is requiring monitoring, at a minimum, for all sewage facilities. Monthly monitoring of Total Nitrogen will be continued for this renewal. Since TKN and Nitrate-Nitrite-N are needed to calculate TN, monthly monitoring of TKN and Nitrate-Nitrite-N will be continued in this renewal.

**PFOA, PFOS, HFPO-DA and PFBS:**

Per BCW-PMT-033 (revised February 5, 2024) and under the authority of Pa Code 25 § 92a.61, annual monitoring for PFOA, PFOS, HFPO-DA, and PFBS will be added in this renewal with a footnote that will read:

*“The permittee may discontinue monitoring for PFOA, PFOS, HFPO-DA, and PFBS if the results in 4 consecutive monitoring periods indicate non-detect results at or below Quantitation Limits of 4.0 ng/L for PFOA, 3.7 ng/L for PFOS, 3.5 ng/L for PFBS and 6.4 ng/L for HFPO-DA. When monitoring is discontinued, permittees must enter a No Discharge Indicator (NODI) Code of “GG” on DMRs.”*

**Monitoring Frequency and Sample Types:**

Otherwise specified above, the monitoring frequency and sample type of compliance monitoring for existing parameters are recommended by DEP's SOP and Permit Writers Manual and/or on a case-by-case basis using best professional judgment (BPJ).

**Anti-Backsliding**

The proposed limits are at least as stringent as are in existing permit, unless otherwise stated; therefore, anti-backsliding is not applicable.

**High Flow Management Plan**

Due to the impact of wet weather flow and high flow levels from the receiving stream on the treatment plant, requirement to develop and implement a High Flow Management Plan will be included in Part C of the permit.

**Development of Effluent Limitations**

Outfall No. 002  
Latitude 40° 40' 44.00"  
Wastewater Description: Stormwater

Design Flow (MGD) 0  
Longitude -75° 11' 39.00"

Per Phase II stormwater regulations, major POTWs with point source discharge to surface waters are generally required to have a stormwater permit. The following limits are proposed for stormwater only Outfall 002, per Appendix J of PAG03:

| Parameter                 | Effluent Limitations    |     |                       |                  | Monitoring Requirements             |                         |
|---------------------------|-------------------------|-----|-----------------------|------------------|-------------------------------------|-------------------------|
|                           | Mass Units<br>(lbs/day) |     | Concentrations (mg/L) |                  | Minimum<br>Measurement<br>Frequency | Required Sample<br>Type |
|                           | Average<br>Monthly      |     | Minimum               | Instant. Maximum |                                     |                         |
| pH (S.U.)                 | XXX                     | XXX | XXX                   | Report           | 1/6 months                          | Grab                    |
| Chemical Oxygen<br>Demand | XXX                     | XXX | XXX                   | Report           | 1/6 months                          | Grab                    |
| Total Suspended<br>Solids | XXX                     | XXX | XXX                   | Report           | 1/6 months                          | Grab                    |
| Oil and Grease            | XXX                     | XXX | XXX                   | Report           | 1/6 months                          | Grab                    |
| Total Nitrogen            | XXX                     | XXX | XXX                   | Report           | 1/6 months                          | Calculation             |
| Total Phosphorus          | XXX                     | XXX | XXX                   | Report           | 1/6 months                          | Grab                    |

Since the “treatment works treating domestic sewage” is considered as an “Industrial Activity” per 40 CFR §122.26(b)(14)(ix), the stormwater related to industrial activity under individual permit shall contain benchmark values. Therefore, the following benchmark values will be applied at the outfalls:

| Parameter              | Benchmark Value (mg/L) |
|------------------------|------------------------|
| Chemical Oxygen Demand | 120                    |
| Total Suspended Solids | 100                    |
| Oil and Grease         | 30                     |
| pH (S.U.)              | 9.0                    |

**Whole Effluent Toxicity (WET)**

For Outfall   **Acute**  **Chronic** WET Testing was completed:

- For the permit renewal application (4 tests).
- Quarterly throughout the permit term.
- Quarterly throughout the permit term and a TIE/TRE was conducted.
- Other: **Annual**

The dilution series used for the tests was: 100%, 60%, 30%, 2%, and 1%. The Target Instream Waste Concentration (TIWC) to be used for analysis of the results is: 1.

**Summary of Four Most Recent Test Results**

**TST Data Analysis**

*(NOTE – In lieu of recording information below, the application manager may attach the DEP WET Analysis Spreadsheet).*

| Test Date  | <b>Ceriodaphnia Results (Pass/Fail)</b> |              | <b>Pimephales Results (Pass/Fail)</b> |        |
|------------|-----------------------------------------|--------------|---------------------------------------|--------|
|            | Survival                                | Reproduction | Survival                              | Growth |
| 07/26/2022 | Pass                                    | Pass         | Pass                                  | Pass   |
| 4/18/2023  | Pass                                    | Pass         | Pass                                  | Pass   |
| 5/21/2024  | Pass                                    | Pass         | Pass                                  | Pass   |
| 6/10/2025  | Pass                                    | Pass         | Pass                                  | Pass   |

\* A "passing" result is that in which the replicate data for the TIWC is not statistically significant from the control condition. This is exhibited when the calculated t value ("T-Test Result") is greater than the critical t value. A "failing" result is exhibited when the calculated t value ("T-Test Result") is less than the critical t value.

Is there reasonable potential for an excursion above water quality standards based on the results of these tests? (NOTE – In general, reasonable potential is determined anytime there is at least one test failure in the previous four tests).

- YES**  **NO**

Comments:

**Evaluation of Test Type, IWC and Dilution Series for Renewed Permit**

Acute Partial Mix Factor (PMFa): **0.22**

Chronic Partial Mix Factor (PMFc): **0.98**

**1. Determine IWC – Acute (IWCa):**

$$(Q_d \times 1.547) / ((Q_{7-10} \times PMFa) + (Q_d \times 1.547))$$

$$[(10 \text{ MGD} \times 1.547) / ((1450 \text{ cfs} \times 0.22) + (10 \text{ MGD} \times 1.547))] \times 100 = **4.63%**$$

Is IWCa < 1%?  **YES**  **NO Chronic Test Required**

If the discharge is to the tidal portion of the Delaware River, indicate how the type of test was determined:

Type of Test for Permit Renewal: **Chronic**

**2. Determine Target IWCC (If Chronic Tests Required)**

$$(Q_d \times 1.547) / (Q_{7-10} \times PMFc) + (Q_d \times 1.547)$$

$[(10 \text{ MGD} \times 1.547) / ((1450 \text{ cfs} \times 0.98) + (10 \text{ MGD} \times 1.547))] \times 100 = 1.08\%$

**3. Determine Dilution Series**

*(NOTE – check Attachment C of WET SOP for dilution series based on TIWCa or TIWCc, whichever applies).*

Dilution Series = 100%, 60%, 30%, 2%, and 1%.

**WET Limits**

Has reasonable potential been determined?  YES  NO

Will WET limits be established in the permit?  YES  NO

If WET limits will be established, identify the species and the limit values for the permit (TU).

If WET limits will not be established, but reasonable potential was determined, indicate the rationale for not establishing WET limits:

**Proposed Effluent Limitations and Monitoring Requirements**

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (386-0400-001), SOPs and/or BPJ.

**Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.**

| Parameter                    | Effluent Limitations                |                  |                       |                  |                  |                  | Monitoring Requirements                         |                      |
|------------------------------|-------------------------------------|------------------|-----------------------|------------------|------------------|------------------|-------------------------------------------------|----------------------|
|                              | Mass Units (lbs/day) <sup>(1)</sup> |                  | Concentrations (mg/L) |                  |                  |                  | Minimum <sup>(2)</sup><br>Measurement Frequency | Required Sample Type |
|                              | Average Monthly                     | Weekly Average   | Minimum               | Average Monthly  | Weekly Average   | Instant. Maximum |                                                 |                      |
| Flow (MGD)                   | Report                              | Report Daily Max | XXX                   | XXX              | XXX              | XXX              | Continuous                                      | Measured             |
| pH (S.U.)                    | XXX                                 | XXX              | 6.0<br>Inst Min       | XXX              | XXX              | 9.0              | 1/day                                           | Grab                 |
| DO                           | XXX                                 | XXX              | 4.0                   | XXX              | XXX              | XXX              | 1/month                                         | Grab                 |
| TRC                          | XXX                                 | XXX              | XXX                   | 0.5              | XXX              | 1.6              | 1/shift                                         | Grab                 |
| CBOD5                        | 2085                                | 3336             | XXX                   | 25.0             | 40.0             | 50               | 1/day                                           | 24-Hr Composite      |
| CBOD5<br>Raw Sewage Influent | XXX                                 | XXX              | XXX                   | Report           | XXX              | XXX              | 1/month                                         | 24-Hr Composite      |
| TSS                          | 2502                                | 3753             | XXX                   | 30.0             | 45.0             | 60               | 1/day                                           | 24-Hr Composite      |
| TSS<br>Raw Sewage Influent   | XXX                                 | XXX              | XXX                   | Report           | XXX              | XXX              | 1/month                                         | 24-Hr Composite      |
| Total Dissolved Solids       | XXX                                 | XXX              | XXX                   | Report Avg Qrtly | XXX              | XXX              | 1/quarter                                       | 24-Hr Composite      |
| Fecal Coliform (No./100 ml)  | XXX                                 | XXX              | XXX                   | 200<br>Geo Mean  | XXX              | 1000             | 1/day                                           | Grab                 |
| E. Coli (No./100 ml)         | XXX                                 | XXX              | XXX                   | XXX              | Report Daily Max | XXX              | 1/month                                         | Grab                 |
| Nitrate-Nitrite              | XXX                                 | XXX              | XXX                   | Report           | XXX              | XXX              | 1/month                                         | 24-Hr Composite      |
| Total Nitrogen               | XXX                                 | XXX              | XXX                   | Report           | XXX              | XXX              | 1/month                                         | Calculation          |
| Ammonia                      | 1668                                | XXX              | XXX                   | 20.0             | XXX              | 40               | 1/day                                           | 24-Hr Composite      |

Outfall 001, Continued (from Permit Effective Date through Permit Expiration Date)

| Parameter             | Effluent Limitations                |                |                       |                  |                |                  | Monitoring Requirements                         |                      |
|-----------------------|-------------------------------------|----------------|-----------------------|------------------|----------------|------------------|-------------------------------------------------|----------------------|
|                       | Mass Units (lbs/day) <sup>(1)</sup> |                | Concentrations (mg/L) |                  |                |                  | Minimum <sup>(2)</sup><br>Measurement Frequency | Required Sample Type |
|                       | Average Monthly                     | Weekly Average | Minimum               | Average Monthly  | Weekly Average | Instant. Maximum |                                                 |                      |
| TKN                   | XXX                                 | XXX            | XXX                   | Report           | XXX            | XXX              | 1/month                                         | 24-Hr Composite      |
| Total Phosphorus      | XXX                                 | XXX            | XXX                   | Report           | XXX            | XXX              | 1/month                                         | 24-Hr Composite      |
| Total Thallium (mg/l) | XXX                                 | XXX            | XXX                   | Report Avg Qrtly | XXX            | Report Daily Max | 1/quarter                                       | 24-Hr Composite      |
| PFOA (ug/L)           | XXX                                 | XXX            | XXX                   | XXX              | XXX            | Report           | 1/year                                          | Grab                 |
| PFOS (ug/L)           | XXX                                 | XXX            | XXX                   | XXX              | XXX            | Report           | 1/year                                          | Grab                 |
| HFPO-DA (ug/L)        | XXX                                 | XXX            | XXX                   | XXX              | XXX            | Report           | 1/year                                          | Grab                 |
| PFBA (ug/L)           | XXX                                 | XXX            | XXX                   | XXX              | XXX            | Report           | 1/year                                          | Grab                 |

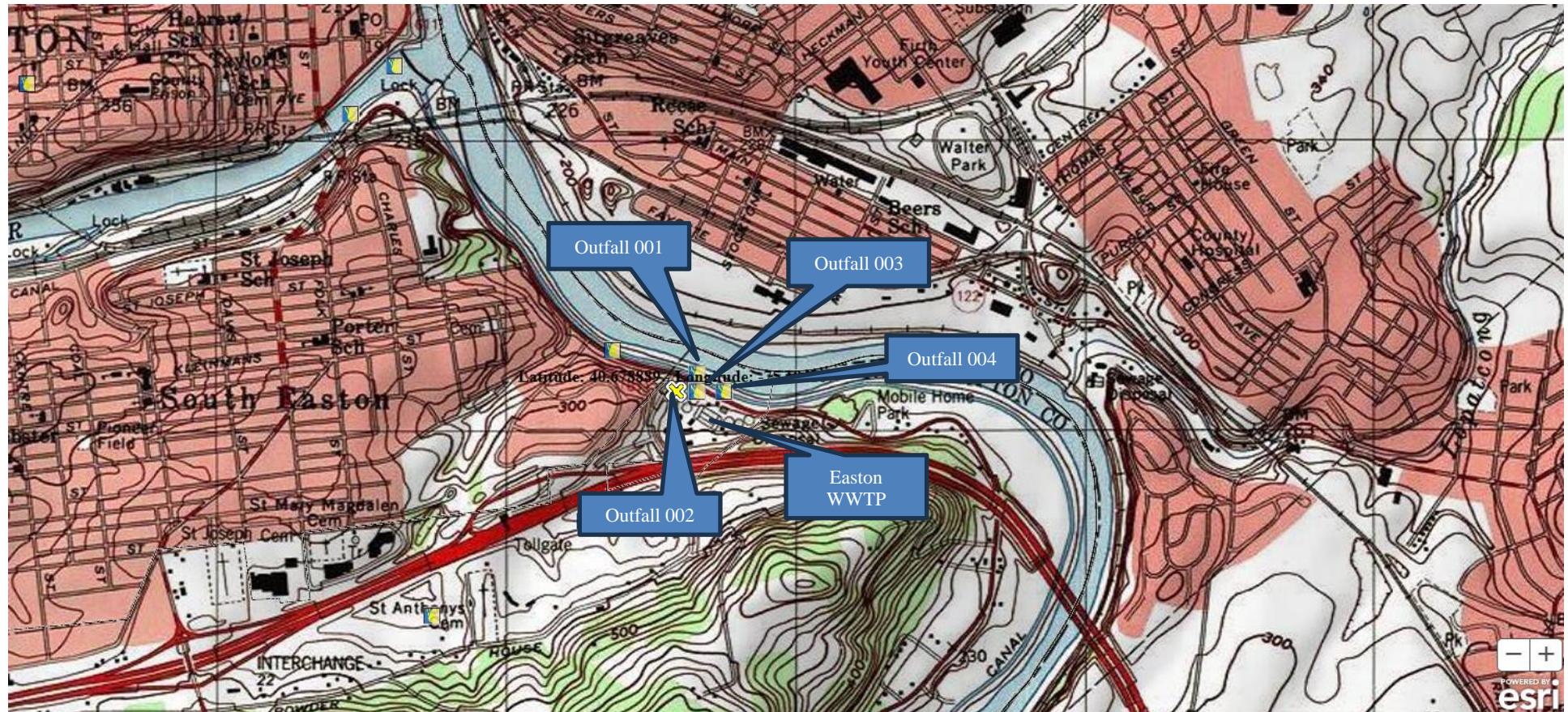
Compliance Sampling Location: At location after last treatment unit

Other Comments: None

**Proposed Effluent Limitations and Monitoring Requirements**

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (386-0400-001), SOPs and/or BPJ.

**Outfall 002, Effective Period: Permit Effective Date through Permit Expiration Date.**


| Parameter                    | Effluent Limitations                |                |                       |                 |               |                  | Monitoring Requirements                         |                      |
|------------------------------|-------------------------------------|----------------|-----------------------|-----------------|---------------|------------------|-------------------------------------------------|----------------------|
|                              | Mass Units (lbs/day) <sup>(1)</sup> |                | Concentrations (mg/L) |                 |               |                  | Minimum <sup>(2)</sup><br>Measurement Frequency | Required Sample Type |
|                              | Average Monthly                     | Average Weekly | Minimum               | Average Monthly | Daily Maximum | Instant. Maximum |                                                 |                      |
| pH (S.U.)                    | XXX                                 | XXX            | 6.0<br>Inst Min       | XXX             | XXX           | 9.0              | 1/6 months                                      | Grab                 |
| Chemical Oxygen Demand (COD) | XXX                                 | XXX            | XXX                   | XXX             | XXX           | Report           | 1/6 months                                      | Grab                 |
| Total Suspended Solids       | XXX                                 | XXX            | XXX                   | XXX             | XXX           | Report           | 1/6 months                                      | Grab                 |
| Oil and Grease               | XXX                                 | XXX            | XXX                   | XXX             | XXX           | Report           | 1/6 months                                      | Grab                 |
| Total Nitrogen               | XXX                                 | XXX            | XXX                   | XXX             | XXX           | Report           | 1/6 months                                      | Calculation          |
| Total Phosphorus             | XXX                                 | XXX            | XXX                   | XXX             | XXX           | Report           | 1/6 months                                      | Grab                 |

Compliance Sampling Location: At Outfall 002

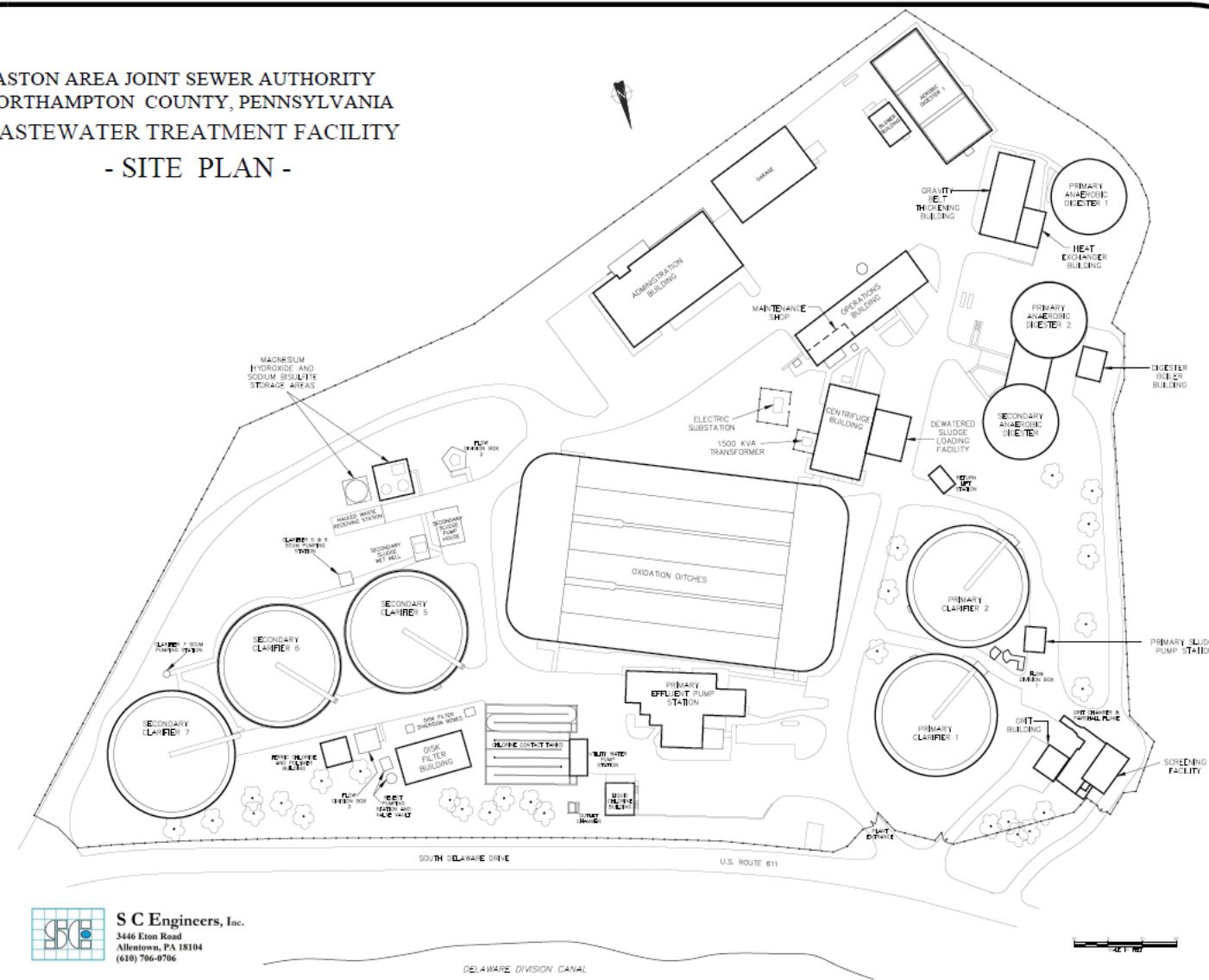
Other Comments: Outfall 002 is representative of Outfalls 003 and 004. Effluent limitations for Outfall 001 is applicable to Outfall 002 when Outfall 002 discharges treated sewage during emergency discharge.

| Tools and References Used to Develop Permit |                                                                                                                                                                                                                    |
|---------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <input checked="" type="checkbox"/>         | WQM for Windows Model (see Attachment [REDACTED])                                                                                                                                                                  |
| <input checked="" type="checkbox"/>         | Toxics Management Spreadsheet (see Attachment [REDACTED])                                                                                                                                                          |
| <input checked="" type="checkbox"/>         | TRC Model Spreadsheet (see Attachment [REDACTED])                                                                                                                                                                  |
| <input type="checkbox"/>                    | Temperature Model Spreadsheet (see Attachment [REDACTED])                                                                                                                                                          |
| <input type="checkbox"/>                    | Water Quality Toxics Management Strategy, 361-0100-003, 4/06.                                                                                                                                                      |
| <input type="checkbox"/>                    | Technical Guidance for the Development and Specification of Effluent Limitations, 386-0400-001, 10/97.                                                                                                             |
| <input type="checkbox"/>                    | Policy for Permitting Surface Water Diversions, 386-2000-019, 3/98.                                                                                                                                                |
| <input type="checkbox"/>                    | Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 386-2000-018, 11/96.                                                                                                                  |
| <input type="checkbox"/>                    | Technology-Based Control Requirements for Water Treatment Plant Wastes, 386-2183-001, 10/97.                                                                                                                       |
| <input type="checkbox"/>                    | Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 386-2183-002, 12/97.                                                                                                      |
| <input type="checkbox"/>                    | Pennsylvania CSO Policy, 386-2000-002, 9/08.                                                                                                                                                                       |
| <input type="checkbox"/>                    | Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03.                                                                                                                                        |
| <input type="checkbox"/>                    | Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 386-2000-008, 4/97.                                                                                           |
| <input type="checkbox"/>                    | Determining Water Quality-Based Effluent Limits, 386-2000-004, 12/97.                                                                                                                                              |
| <input type="checkbox"/>                    | Implementation Guidance Design Conditions, 386-2000-007, 9/97.                                                                                                                                                     |
| <input type="checkbox"/>                    | Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen, Version 1.0, 386-2000-016, 6/2004.                                                    |
| <input type="checkbox"/>                    | Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 386-2000-012, 10/1997.                                                                             |
| <input type="checkbox"/>                    | Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments, 386-2000-009, 3/99.                                                                   |
| <input type="checkbox"/>                    | Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 386-2000-015, 5/2004.                                                              |
| <input type="checkbox"/>                    | Implementation Guidance for Section 93.7 Ammonia Criteria, 386-2000-022, 11/97.                                                                                                                                    |
| <input type="checkbox"/>                    | Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 386-2000-013, 4/2008.                                             |
| <input type="checkbox"/>                    | Implementation Guidance Total Residual Chlorine (TRC) Regulation, 386-2000-011, 11/1994.                                                                                                                           |
| <input type="checkbox"/>                    | Implementation Guidance for Temperature Criteria, 386-2000-001, 4/09.                                                                                                                                              |
| <input type="checkbox"/>                    | Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 386-2000-021, 10/97.                                                                                                       |
| <input type="checkbox"/>                    | Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 386-2000-020, 10/97.       |
| <input type="checkbox"/>                    | Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 386-2000-005, 3/99.                                                                               |
| <input type="checkbox"/>                    | Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 386-2000-010, 3/1999. |
| <input type="checkbox"/>                    | Design Stream Flows, 386-2000-003, 9/98.                                                                                                                                                                           |
| <input type="checkbox"/>                    | Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 386-2000-006, 10/98.                                     |
| <input type="checkbox"/>                    | Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 386-3200-001, 6/97.                                                                                                                         |
| <input type="checkbox"/>                    | Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07.                                                                                                                   |
| <input checked="" type="checkbox"/>         | SOP: BCW-PMT-033                                                                                                                                                                                                   |
| <input type="checkbox"/>                    | Other: [REDACTED]                                                                                                                                                                                                  |

Locational Map



Easton Area Joint Sewer Authority  
NPDES Permit #: PA0027235; Easton WWTP  
Easton City, Northampton County




Reza H Chowdhury, P.E.  
Environmental Engineer  
November 5, 2025

## Site Plan

EASTON AREA JOINT SEWER AUTHORITY  
NORTHAMPTON COUNTY, PENNSYLVANIA  
WASTEWATER TREATMENT FACILITY

## - SITE PLAN -



StreamStats

PA0027235 at Outfall 001

Region ID: PA  
Workspace ID: PA20251029235006225000  
Clicked Point (Latitude, Longitude): 40.68070, -75.19524  
Time: 2025-10-29 19:50:29 -0400



[Collapse All](#)

► Basin Characteristics

| Parameter Code | Parameter Description                                              | Value   | Unit                  |
|----------------|--------------------------------------------------------------------|---------|-----------------------|
| CARBON         | Percentage of area of carbonate rock                               | 7.65    | percent               |
| DRNAREA        | Area that drains to a point on a stream                            | 6090    | square miles          |
| FOREST         | Percentage of area covered by forest                               | 75.3464 | percent               |
| GLACIATED      | Percentage of basin area that was historically covered by glaciers | 80.8998 | percent               |
| PRECIP         | Mean Annual Precipitation                                          | 45      | inches                |
| ROCKDEP        | Depth to rock                                                      | 4.4     | feet                  |
| STRDEN         | Stream Density -- total length of streams divided by drainage area | 1.62    | miles per square mile |

► Low-Flow Statistics

Low-Flow Statistics Parameters [32.0 Percent (1920 square miles) Low Flow Region 2]

| Parameter Code | Parameter Name            | Value | Units                 | Min Limit | Max Limit |
|----------------|---------------------------|-------|-----------------------|-----------|-----------|
| CARBON         | Percent Carbonate         | 7.65  | percent               | 0         | 99        |
| DRNAREA        | Drainage Area             | 6090  | square miles          | 4.93      | 1280      |
| PRECIP         | Mean Annual Precipitation | 45    | inches                | 35        | 50.4      |
| ROCKDEP        | Depth to Rock             | 4.4   | feet                  | 3.32      | 5.65      |
| STRDEN         | Stream Density            | 1.62  | miles per square mile | 0.51      | 3.1       |

Low-Flow Statistics Parameters [68.0 Percent (4160 square miles) Low Flow Region 5]

| Parameter Code | Parameter Name            | Value   | Units        | Min Limit | Max Limit |
|----------------|---------------------------|---------|--------------|-----------|-----------|
| DRNAREA        | Drainage Area             | 6090    | square miles | 4.84      | 982       |
| FOREST         | Percent Forest            | 75.3464 | percent      | 41        | 100       |
| GLACIATED      | Percent of Glaciation     | 80.8998 | percent      | 0         | 100       |
| PREC P         | Mean Annual Precipitation | 45      | inches       | 33.1      | 47.1      |

Low-Flow Statistics Disclaimers [32.0 Percent (1920 square miles) Low Flow Region 2]

One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors.

Low-Flow Statistics Flow Report [32.0 Percent (1920 square miles) Low Flow Region 2]

| Statistic               | Value | Unit   |
|-------------------------|-------|--------|
| 7 Day 2 Year Low Flow   | 1970  | ft^3/s |
| 30 Day 2 Year Low Flow  | 2340  | ft^3/s |
| 7 Day 10 Year Low Flow  | 1350  | ft^3/s |
| 30 Day 10 Year Low Flow | 1600  | ft^3/s |
| 90 Day 10 Year Low Flow | 1980  | ft^3/s |

Low-Flow Statistics Disclaimers [68.0 Percent (4160 square miles) Low Flow Region 5]

One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors.

Low-Flow Statistics Flow Report [68.0 Percent (4160 square miles) Low Flow Region 5]

| Statistic               | Value | Unit   |
|-------------------------|-------|--------|
| 7 Day 2 Year Low Flow   | 1660  | ft^3/s |
| 30 Day 2 Year Low Flow  | 1990  | ft^3/s |
| 7 Day 10 Year Low Flow  | 1210  | ft^3/s |
| 30 Day 10 Year Low Flow | 1410  | ft^3/s |
| 90 Day 10 Year Low Flow | 1750  | ft^3/s |

Low-Flow Statistics Flow Report [Area-Averaged]

| Statistic               | Value | Unit   |
|-------------------------|-------|--------|
| 7 Day 2 Year Low Flow   | 1760  | ft^3/s |
| 30 Day 2 Year Low Flow  | 2100  | ft^3/s |
| 7 Day 10 Year Low Flow  | 1250  | ft^3/s |
| 30 Day 10 Year Low Flow | 1470  | ft^3/s |
| 90 Day 10 Year Low Flow | 1820  | ft^3/s |

Low-Flow Statistics Citations

Stuckey, M.H., 2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006-5130, 84 p. (<http://pubs.usgs.gov/sir/2006/5130/>)

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor

## PA0027235 at node 2

Region ID: PA  
Workspace ID: PA20251029235722992000  
Clicked Point (Latitude, Longitude): 40.67856, -75.17871  
Time: 2025-10-29 19:57:46 -0400



[Collapse All](#)

### ► Basin Characteristics

| Parameter Code | Parameter Description                                              | Value   | Unit                  |
|----------------|--------------------------------------------------------------------|---------|-----------------------|
| CARBON         | Percentage of area of carbonate rock                               | 7.83    | percent               |
| DRNAREA        | Area that drains to a point on a stream                            | 6100    | square miles          |
| FOREST         | Percentage of area covered by forest                               | 75.2225 | percent               |
| GLACIATED      | Percentage of basin area that was historically covered by glaciers | 80.6661 | percent               |
| PRECIP         | Mean Annual Precipitation                                          | 45      | inches                |
| ROCKDEP        | Depth to rock                                                      | 4.4     | feet                  |
| STRDEN         | Stream Density – total length of streams divided by drainage area  | 1.62    | miles per square mile |

### ► Low-Flow Statistics

Low-Flow Statistics Parameters [32.0 Percent (1940 square miles) Low Flow Region 2]

| Parameter Code | Parameter Name            | Value | Units                 | Min Limit | Max Limit |
|----------------|---------------------------|-------|-----------------------|-----------|-----------|
| CARBON         | Percent Carbonate         | 7.83  | percent               | 0         | 99        |
| DRNAREA        | Drainage Area             | 6100  | square miles          | 4.93      | 1280      |
| PRECIP         | Mean Annual Precipitation | 45    | inches                | 35        | 50.4      |
| ROCKDEP        | Depth to Rock             | 4.4   | feet                  | 3.32      | 5.65      |
| STRDEN         | Stream Density            | 1.62  | miles per square mile | 0.51      | 3.1       |

Low-Flow Statistics Parameters [68.0 Percent (4160 square miles) Low Flow Region 5]

| Parameter Code | Parameter Name            | Value   | Units        | Min Limit | Max Limit |
|----------------|---------------------------|---------|--------------|-----------|-----------|
| DRNAREA        | Drainage Area             | 6100    | square miles | 4.84      | 982       |
| FOREST         | Percent Forest            | 75.2225 | percent      | 41        | 100       |
| GLACIATED      | Percent of Glaciation     | 80.6661 | percent      | 0         | 100       |
| PRECIP         | Mean Annual Precipitation | 45      | inches       | 33.1      | 47.1      |

Low-Flow Statistics Disclaimers [32.0 Percent (1940 square miles) Low Flow Region 2]

One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors.

Low-Flow Statistics Flow Report [32.0 Percent (1940 square miles) Low Flow Region 2]

| Statistic               | Value | Unit   |
|-------------------------|-------|--------|
| 7 Day 2 Year Low Flow   | 1980  | ft^3/s |
| 30 Day 2 Year Low Flow  | 2350  | ft^3/s |
| 7 Day 10 Year Low Flow  | 1360  | ft^3/s |
| 30 Day 10 Year Low Flow | 1610  | ft^3/s |
| 90 Day 10 Year Low Flow | 1980  | ft^3/s |

Low-Flow Statistics Disclaimers [68.0 Percent (4160 square miles) Low Flow Region 5]

One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors.

Low-Flow Statistics Flow Report [68.0 Percent (4160 square miles) Low Flow Region 5]

| Statistic               | Value | Unit   |
|-------------------------|-------|--------|
| 7 Day 2 Year Low Flow   | 1650  | ft^3/s |
| 30 Day 2 Year Low Flow  | 1990  | ft^3/s |
| 7 Day 10 Year Low Flow  | 1200  | ft^3/s |
| 30 Day 10 Year Low Flow | 1410  | ft^3/s |
| 90 Day 10 Year Low Flow | 1750  | ft^3/s |

Low-Flow Statistics Flow Report [Area-Averaged]

| Statistic               | Value | Unit   |
|-------------------------|-------|--------|
| 7 Day 2 Year Low Flow   | 1760  | ft^3/s |
| 30 Day 2 Year Low Flow  | 2110  | ft^3/s |
| 7 Day 10 Year Low Flow  | 1250  | ft^3/s |
| 30 Day 10 Year Low Flow | 1470  | ft^3/s |
| 90 Day 10 Year Low Flow | 1820  | ft^3/s |

Low-Flow Statistics Citations

Stuckey, M.H.,2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006-5130, 84 p. (<http://pubs.usgs.gov/sir/2006/5130/>)

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor

StreamGage 01446500 Data



Prepared in cooperation with the Pennsylvania Department of Environmental Protection

## Selected Streamflow Statistics for Streamgage Locations in and near Pennsylvania



Open-File Report 2011-1070

U.S. Department of the Interior  
U.S. Geological Survey

Table 2 21

Table 2. Selected low-flow statistics for streamgage locations in and near Pennsylvania.—Continued

[ft<sup>3</sup>/s; cubic feet per second; —, statistic not computed; <, less than]

| Streamgage number | Period of record used in analysis <sup>1</sup> | Number of years used in analysis | 1-day, 10-year (ft <sup>3</sup> /s) | 7-day, 10-year (ft <sup>3</sup> /s) | 7-day, 2-year (ft <sup>3</sup> /s) | 30-day, 10-year (ft <sup>3</sup> /s) | 30-day, 2-year (ft <sup>3</sup> /s) | 90-day, 10-year (ft <sup>3</sup> /s) |
|-------------------|------------------------------------------------|----------------------------------|-------------------------------------|-------------------------------------|------------------------------------|--------------------------------------|-------------------------------------|--------------------------------------|
| 01434021          | 1992–2008                                      | 17                               | .1                                  | .1                                  | .2                                 | .1                                   | .3                                  | .3                                   |
| 01434025          | 1985–2008                                      | 24                               | .3                                  | .4                                  | 1.0                                | .6                                   | 1.5                                 | 1.2                                  |
| 01434498          | 1993–2008                                      | 16                               | 7.0                                 | 7.4                                 | 15.2                               | 9.4                                  | 19.5                                | 15.2                                 |
| 01435000          | 1939–2008                                      | 67                               | 12.2                                | 13.5                                | 24.9                               | 17.3                                 | 31.8                                | 25.4                                 |
| 01436000          | <sup>2</sup> 1955–2008                         | 54                               | 1.0                                 | 1.9                                 | 8.1                                | 3.8                                  | 8.6                                 | 4.6                                  |
| 01436000          | <sup>3</sup> 1943–1953                         | 11                               | 18.3                                | 19.9                                | 33.6                               | 25.2                                 | 43.4                                | 42.2                                 |
| 01436500          | <sup>2</sup> 1955–1993                         | 34                               | 11.6                                | 13.7                                | 20.4                               | 16.9                                 | 26.4                                | 24.3                                 |
| 01436500          | <sup>3</sup> 1939–1953                         | 15                               | 20.4                                | 22.0                                | 37.4                               | 29.1                                 | 49.2                                | 44.4                                 |
| 01436690          | 1994–2008                                      | 15                               | 30.4                                | 35.0                                | 61.5                               | 44.1                                 | 82.4                                | 58.9                                 |
| 01437500          | <sup>2</sup> 1955–2008                         | 54                               | 47.4                                | 54.6                                | 87.6                               | 72.3                                 | 112                                 | 98.8                                 |
| 01437500          | <sup>3</sup> 1939–1953                         | 15                               | 37.2                                | 44.7                                | 76.0                               | 57.2                                 | 98.8                                | 84.6                                 |
| 01438500          | 1941–2008                                      | 68                               | 648                                 | 887                                 | 1,460                              | 1,050                                | 1,700                               | 1,310                                |
| 01439500          | 1910–2008                                      | 99                               | 6.6                                 | 7.5                                 | 18.6                               | 10.3                                 | 26.4                                | 17.5                                 |
| 01440000          | 1925–2008                                      | 84                               | 6.6                                 | 7.4                                 | 13.2                               | 9.2                                  | 17.0                                | 12.8                                 |
| 01440200          | 1966–1995                                      | 30                               | 1,030                               | 1,200                               | 1,830                              | 1,440                                | 2,110                               | 1,660                                |
| 01440400          | 1959–2008                                      | 50                               | 6.9                                 | 7.4                                 | 13.5                               | 9.1                                  | 18.1                                | 12.3                                 |
| 01441000          | 1913–1938                                      | 26                               | 13.3                                | 16.2                                | 24.3                               | 19.1                                 | 29.8                                | 23.3                                 |
| 01442500          | 1952–2008                                      | 57                               | 44.7                                | 48.4                                | 80.6                               | 57.0                                 | 100                                 | 73.6                                 |
| 01443280          | 1994–2008                                      | 15                               | 2.0                                 | 2.6                                 | 6.9                                | 3.0                                  | 8.1                                 | 4.4                                  |
| 01443500          | 1923–2008                                      | 84                               | 11.6                                | 16.2                                | 28.3                               | 20.3                                 | 36.8                                | 26.8                                 |
| 01443900          | 1968–2008                                      | 41                               | .2                                  | .6                                  | 1.0                                | .9                                   | 1.4                                 | 1.1                                  |
| 01445000          | 1941–2008                                      | 27                               | 1.9                                 | 2.1                                 | 5.3                                | 2.8                                  | 7.2                                 | 4.8                                  |
| 01445500          | 1923–2008                                      | 86                               | 18.2                                | 19.5                                | 33.5                               | 22.0                                 | 39.0                                | 27.2                                 |
| 01446000          | 1924–2008                                      | 42                               | 1.9                                 | 2.1                                 | 5.1                                | 2.6                                  | 6.8                                 | 4.2                                  |
| 01446500          | 1924–2008                                      | 85                               | 864                                 | 1,080                               | 1,740                              | 1,260                                | 2,020                               | 1,580                                |
| 01446600          | 1963–1978                                      | 16                               | .1                                  | .1                                  | .7                                 | .2                                   | 1.1                                 | .4                                   |
| 01447500          | 1945–2008                                      | 64                               | 11.8                                | 13.1                                | 24.8                               | 16.5                                 | 33.1                                | 24.5                                 |
| 01447680          | <sup>2</sup> 1971–2008                         | 38                               | 3.2                                 | 3.6                                 | 7.6                                | 4.9                                  | 10.6                                | 8.1                                  |
| 01447720          | <sup>3</sup> 1963–1985                         | 23                               | —                                   | 28                                  | 43.3                               | 34.1                                 | 58.8                                | 43.2                                 |
| 01447720          | <sup>2</sup> 1987–2008                         | 22                               | 26.0                                | 28.9                                | 49.2                               | 37.3                                 | 68.2                                | 51.8                                 |
| 01447800          | 1959–2008                                      | 50                               | 39.5                                | 46.8                                | 81.4                               | 62.4                                 | 124                                 | 94.1                                 |
| 01448000          | 1918–1959                                      | 41                               | 49.0                                | 66.7                                | 108                                | 79.0                                 | 136                                 | 116                                  |
| 01448500          | 1950–1996                                      | 47                               | .4                                  | .4                                  | .8                                 | .5                                   | 1.0                                 | .7                                   |
| 01449000          | 1984–2008                                      | 25                               | 135                                 | 148                                 | 237                                | 180                                  | 315                                 | 236                                  |
| 01449360          | 1968–2008                                      | 41                               | 14.4                                | 15.1                                | 23.7                               | 17.3                                 | 27.7                                | 21.7                                 |
| 01449800          | 1969–2008                                      | 40                               | 14.2                                | 16.5                                | 31.0                               | 19.9                                 | 38.1                                | 29.4                                 |
| 01450500          | 1941–2008                                      | 68                               | 15.1                                | 17.0                                | 29.3                               | 20.0                                 | 35.6                                | 26.7                                 |
| 01451000          | <sup>2</sup> 1962–2008                         | 47                               | 185                                 | 203                                 | 337                                | 252                                  | 430                                 | 322                                  |
| 01451000          | <sup>3</sup> 1948–1960                         | 13                               | 203                                 | 213                                 | 311                                | 253                                  | 391                                 | 343                                  |
| 01451500          | 1947–2008                                      | 62                               | 27.6                                | 28.8                                | 43.4                               | 32.0                                 | 48.1                                | 35.4                                 |
| 01451650          | 1988–2008                                      | 21                               | 29.8                                | 36.2                                | 52.7                               | 41.9                                 | 60.7                                | 50.0                                 |
| 01451800          | 1967–2008                                      | 42                               | 1.7                                 | 2.2                                 | 7.0                                | 3.7                                  | 11.0                                | 7.5                                  |
| 01452000          | 1946–2008                                      | 63                               | 3.0                                 | 3.0                                 | 12.0                               | 4.4                                  | 13.9                                | 7.6                                  |
| 01452500          | 1950–2008                                      | 59                               | 12.1                                | 13.2                                | 22.9                               | 14.8                                 | 25.9                                | 16.8                                 |
| 01453000          | <sup>2</sup> 1929–2008                         | 81                               | 340                                 | 371                                 | 579                                | 439                                  | 702                                 | 546                                  |

Table 3. Selected base-flow statistics for streamgage locations in and near Pennsylvania.—Continued

[ft<sup>3</sup>/s; cubic feet per second; —, statistic not computed]

| Streamgage number | Period of record used in analysis <sup>1</sup> | Number of years used in analysis | 10-year base flow (ft <sup>3</sup> /s) | 25-year base flow (ft <sup>3</sup> /s) | 50-year base flow (ft <sup>3</sup> /s) |
|-------------------|------------------------------------------------|----------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|
| 01434021          | 1992–2008                                      | 17                               | 1.0                                    | .9                                     | .8                                     |
| 01434025          | 1985–2008                                      | 24                               | 5.0                                    | 4.6                                    | 4.3                                    |
| 01434498          | 1993–2008                                      | 16                               | 52.8                                   | 48.8                                   | 46.3                                   |
| 01435000          | 1939–2008                                      | 67                               | 87.6                                   | 78.0                                   | 72.0                                   |
| 01436000          | <sup>2</sup> 1955–2008                         | 54                               | 15.4                                   | 11.5                                   | 9.5                                    |
| 01436000          | <sup>2</sup> 1943–1953                         | 11                               | 134                                    | 124                                    | 118                                    |
| 01436500          | <sup>2</sup> 1955–1993                         | 34                               | 38.3                                   | 34.1                                   | 31.7                                   |
| 01436500          | <sup>2</sup> 1939–1953                         | 15                               | 136                                    | 119                                    | 109                                    |
| 01436690          | 1994–2008                                      | 15                               | 106                                    | 97.1                                   | 91.9                                   |
| 01437500          | <sup>2</sup> 1955–2008                         | 54                               | 194                                    | 172                                    | 159                                    |
| 01437500          | <sup>2</sup> 1939–1953                         | 15                               | 267                                    | 230                                    | 209                                    |
| 01438500          | 1941–2008                                      | 68                               | 2,230                                  | 1,940                                  | 1,770                                  |
| 01439500          | 1910–2008                                      | 99                               | 111                                    | 95.4                                   | 85.8                                   |
| 01440000          | 1925–2008                                      | 84                               | 49.5                                   | 42.5                                   | 38.3                                   |
| 01440200          | 1966–1995                                      | 30                               | 2,110                                  | 1,650                                  | 1,380                                  |
| 01440400          | 1959–2008                                      | 50                               | 62.3                                   | 54.4                                   | 49.5                                   |
| 01441000          | 1913–1938                                      | 26                               | 56.9                                   | 48.7                                   | 43.7                                   |
| 01442500          | 1952–2008                                      | 57                               | 237                                    | 206                                    | 188                                    |
| 01443280          | 1994–2008                                      | 15                               | 12.5                                   | 11.1                                   | 10.2                                   |
| 01443500          | 1923–2008                                      | 84                               | 87.5                                   | 73.5                                   | 65.3                                   |
| 01443900          | 1968–2008                                      | 41                               | 5.0                                    | 4.2                                    | 3.7                                    |
| 01445000          | 1941–2008                                      | 27                               | 25.2                                   | 20.9                                   | 18.4                                   |
| 01445500          | 1923–2008                                      | 86                               | 73.9                                   | 60.7                                   | 53.0                                   |
| 01446000          | 1924–2008                                      | 42                               | 24.0                                   | 20.5                                   | 18.5                                   |
| 01446500          | 1924–2008                                      | 85                               | 3,220                                  | 2,800                                  | 2,550                                  |
| 01446600          | 1963–1978                                      | 16                               | 4.7                                    | 3.7                                    | 3.2                                    |
| 01447500          | 1945–2008                                      | 64                               | 92.0                                   | 81.2                                   | 74.5                                   |
| 01447680          | <sup>2</sup> 1971–2008                         | 38                               | 22.0                                   | 18.4                                   | 16.3                                   |
| 01447720          | <sup>2</sup> 1987–2008                         | 22                               | 125                                    | 108                                    | 97.5                                   |
| 01447720          | <sup>2</sup> 1963–1985                         | 23                               | 120                                    | 107                                    | 99.0                                   |
| 01447800          | 1959–2008                                      | 50                               | 255                                    | 221                                    | 200                                    |
| 01448000          | 1918–1959                                      | 41                               | 307                                    | 265                                    | 238                                    |
| 01448500          | 1950–1996                                      | 47                               | 2.4                                    | 2.1                                    | 1.9                                    |
| 01449000          | 1984–2008                                      | 25                               | 605                                    | 528                                    | 482                                    |
| 01449360          | 1968–2008                                      | 41                               | 53.5                                   | 46.2                                   | 41.8                                   |
| 01449800          | 1969–2008                                      | 40                               | 76.0                                   | 64.9                                   | 58.2                                   |
| 01450500          | 1941–2008                                      | 68                               | 70.7                                   | 61.9                                   | 56.6                                   |
| 01451000          | <sup>2</sup> 1962–2008                         | 47                               | 847                                    | 739                                    | 675                                    |
| 01451000          | <sup>2</sup> 1948–1960                         | 13                               | 1,000                                  | 913                                    | 856                                    |
| 01451500          | 1947–2008                                      | 62                               | 49.7                                   | 40.8                                   | 35.8                                   |
| 01451650          | 1988–2008                                      | 21                               | 68.2                                   | 59.6                                   | 54.7                                   |
| 01451800          | 1967–2008                                      | 42                               | 32.0                                   | 27.4                                   | 24.7                                   |
| 01452000          | 1946–2008                                      | 63                               | 38.5                                   | 31.7                                   | 27.7                                   |
| 01452500          | 1950–2008                                      | 59                               | 24.3                                   | 19.4                                   | 16.6                                   |
| 01453000          | <sup>2</sup> 1929–2008                         | 81                               | 1,120                                  | 992                                    | 913                                    |

WQM 7.0

Input Data WQM 7.0

| SWP Basin             | Stream Code      | Stream Name         |                             |                              | RMI                       | Elevation<br>(ft) | Drainage Area<br>(sq mi) | Slope<br>(ft/ft)  | PWS Withdrawal<br>(mgd) | Apply FC                            |
|-----------------------|------------------|---------------------|-----------------------------|------------------------------|---------------------------|-------------------|--------------------------|-------------------|-------------------------|-------------------------------------|
| 03I                   |                  | 2 DELAWARE RIVER    |                             |                              | 107.900                   | 153.70            | 1339.80                  | 0.00060           | 0.00                    | <input checked="" type="checkbox"/> |
| <b>Stream Data</b>    |                  |                     |                             |                              |                           |                   |                          |                   |                         |                                     |
| Design Cond.          | LFY<br>(cfsm)    | Trib Flow<br>(cfs)  | Stream Flow<br>(cfs)        | Rch Trav Time<br>(days)      | Rch Velocity<br>(fps)     | WD Ratio<br>(ft)  | Rch Width<br>(ft)        | Rch Depth<br>(ft) | Tributary pH<br>(°C)    | Stream pH<br>(°C)                   |
| Q7-10                 | 0.238            | 318.87              | 0.00                        | 0.000                        | 0.000                     | 0.0               | 370.64                   | 0.00              | 22.71                   | 7.60                                |
| Q1-10                 |                  | 0.00                | 0.00                        | 0.000                        | 0.000                     |                   |                          |                   |                         |                                     |
| Q30-10                |                  | 0.00                | 0.00                        | 0.000                        | 0.000                     |                   |                          |                   |                         |                                     |
| <b>Discharge Data</b> |                  |                     |                             |                              |                           |                   |                          |                   |                         |                                     |
|                       | Name             | Permit Number       | Existing Disc Flow<br>(mgd) | Permitted Disc Flow<br>(mgd) | Design Disc Flow<br>(mgd) | Reserve Factor    | Disc Temp<br>(°C)        | Disc pH           |                         |                                     |
|                       | EAJSA WWTP       | PA0027235           | 10.0000                     | 10.0000                      | 10.0000                   | 0.000             | 25.00                    | 7.00              |                         |                                     |
| <b>Parameter Data</b> |                  |                     |                             |                              |                           |                   |                          |                   |                         |                                     |
|                       | Parameter Name   | Disc Conc<br>(mg/L) | Trib Conc<br>(mg/L)         | Stream Conc<br>(mg/L)        | Fate Coef<br>(1/days)     |                   |                          |                   |                         |                                     |
|                       | CBOD5            | 25.00               | 2.00                        | 0.00                         | 1.50                      |                   |                          |                   |                         |                                     |
|                       | Dissolved Oxygen | 4.00                | 8.24                        | 0.00                         | 0.00                      |                   |                          |                   |                         |                                     |
|                       | NH3-N            | 20.00               | 0.00                        | 0.00                         | 0.70                      |                   |                          |                   |                         |                                     |

**Input Data WQM 7.0**

| SWP Basin             | Stream Code      | Stream Name              |                           | RMI                    | Elevation (ft) | Drainage Area (sq mi) | Slope (ft/ft) | PWS Withdrawal (mgd) | Apply FC                            |  |  |
|-----------------------|------------------|--------------------------|---------------------------|------------------------|----------------|-----------------------|---------------|----------------------|-------------------------------------|--|--|
| 03I                   | 2                | DELAWARE RIVER           |                           | 107.140                | 151.77         | 1342.00               | 0.00060       | 0.00                 | <input checked="" type="checkbox"/> |  |  |
| <b>Stream Data</b>    |                  |                          |                           |                        |                |                       |               |                      |                                     |  |  |
| Design Cond.          | LFY              | Trib Flow                | Stream Flow               | Rch Trav Time          | Rch Velocity   | WD Ratio              | Rch Width     | Rch Depth            | Tributary Temp pH Stream Temp pH    |  |  |
|                       | (cfsm)           | (cfs)                    | (cfs)                     | (days)                 | (fps)          |                       | (ft)          | (ft)                 | (°C) (°C)                           |  |  |
| Q7-10                 | 0.238            | 319.40                   | 0.00                      | 0.000                  | 0.000          | 0.0                   | 370.64        | 0.00                 | 22.71 7.60 0.00 0.00                |  |  |
| Q1-10                 |                  | 0.00                     | 0.00                      | 0.000                  | 0.000          |                       |               |                      |                                     |  |  |
| Q30-10                |                  | 0.00                     | 0.00                      | 0.000                  | 0.000          |                       |               |                      |                                     |  |  |
| <b>Discharge Data</b> |                  |                          |                           |                        |                |                       |               |                      |                                     |  |  |
| Name                  | Permit Number    | Existing Disc Flow (mgd) | Permitted Disc Flow (mgd) | Design Disc Flow (mgd) | Reserve Factor | Disc Temp (°C)        | Disc pH       |                      |                                     |  |  |
|                       |                  | 0.0000                   | 0.0000                    | 0.0000                 | 0.000          | 25.00                 | 7.00          |                      |                                     |  |  |
| <b>Parameter Data</b> |                  |                          |                           |                        |                |                       |               |                      |                                     |  |  |
| Parameter Name        | Disc Conc (mg/L) | Trib Conc (mg/L)         | Stream Conc (mg/L)        | Fate Coef (1/day)      |                |                       |               |                      |                                     |  |  |
| CBOD5                 | 25.00            | 2.00                     | 0.00                      | 1.50                   |                |                       |               |                      |                                     |  |  |
| Dissolved Oxygen      | 3.00             | 8.24                     | 0.00                      | 0.00                   |                |                       |               |                      |                                     |  |  |
| NH3-N                 | 25.00            | 0.00                     | 0.00                      | 0.70                   |                |                       |               |                      |                                     |  |  |

**WQM 7.0 Modeling Specifications**

|                    |        |                                     |                                     |
|--------------------|--------|-------------------------------------|-------------------------------------|
| Parameters         | Both   | Use Inputted Q1-10 and Q30-10 Flows | <input checked="" type="checkbox"/> |
| WLA Method         | EMPR   | Use Inputted W/D Ratio              | <input type="checkbox"/>            |
| Q1-10/Q7-10 Ratio  | 0.8    | Use Inputted Reach Travel Times     | <input type="checkbox"/>            |
| Q30-10/Q7-10 Ratio | 1.17   | Temperature Adjust Kr               | <input checked="" type="checkbox"/> |
| D.O. Saturation    | 90.00% | Use Balanced Technology             | <input checked="" type="checkbox"/> |
| D.O. Goal          | 4      |                                     |                                     |

**WQM 7.0 Hydrodynamic Outputs**

| SWP Basin          | Stream Code       | Stream Name    |                       |                          |                     |                |            |                 |                 |                        |                    |             |
|--------------------|-------------------|----------------|-----------------------|--------------------------|---------------------|----------------|------------|-----------------|-----------------|------------------------|--------------------|-------------|
|                    |                   | 03I            |                       | 2                        |                     | DELAWARE RIVER |            |                 |                 |                        |                    |             |
| RMI                | Stream Flow (cfs) | PWS With (cfs) | Net Stream Flow (cfs) | Disc Analysis Flow (cfs) | Reach Slope (ft/ft) | Depth (ft)     | Width (ft) | W/D Ratio (fps) | Velocity (ft/s) | Reach Trav Time (days) | Analysis Temp (°C) | Analysis pH |
| <b>Q7-10 Flow</b>  |                   |                |                       |                          |                     |                |            |                 |                 |                        |                    |             |
| 107.900            | 318.87            | 0.00           | 318.87                | 15.47                    | 0.00060             | .96            | 370.64     | 386.11          | 0.94            | 0.049                  | 22.82              | 7.54        |
| <b>Q1-10 Flow</b>  |                   |                |                       |                          |                     |                |            |                 |                 |                        |                    |             |
| 107.900            | 255.10            | 0.00           | 255.10                | 15.47                    | 0.00060             | NA             | NA         | NA              | 0.83            | 0.056                  | 22.84              | 7.53        |
| <b>Q30-10 Flow</b> |                   |                |                       |                          |                     |                |            |                 |                 |                        |                    |             |
| 107.900            | 373.08            | 0.00           | 373.08                | 15.47                    | 0.00060             | NA             | NA         | NA              | 1.02            | 0.045                  | 22.80              | 7.55        |

**WQM 7.0 Wasteload Allocations**

| <u>SWP Basin</u> | <u>Stream Code</u> | <u>Stream Name</u> |  |  |  |  |  |
|------------------|--------------------|--------------------|--|--|--|--|--|
| 03I              | 2                  | DELAWARE RIVER     |  |  |  |  |  |

**NH3-N Acute Allocations**

| RMI     | Discharge Name | Baseline Criterion (mg/L) | Baseline WLA (mg/L) | Multiple Criterion (mg/L) | Multiple WLA (mg/L) | Critical Reach | Percent Reduction |
|---------|----------------|---------------------------|---------------------|---------------------------|---------------------|----------------|-------------------|
| 107.900 | EAJSA WWTP     | 6.96                      | 40                  | 6.96                      | 40                  | 0              | 0                 |

**NH3-N Chronic Allocations**

| RMI     | Discharge Name | Baseline Criterion (mg/L) | Baseline WLA (mg/L) | Multiple Criterion (mg/L) | Multiple WLA (mg/L) | Critical Reach | Percent Reduction |
|---------|----------------|---------------------------|---------------------|---------------------------|---------------------|----------------|-------------------|
| 107.900 | EAJSA WWTP     | 1.11                      | 20                  | 1.11                      | 20                  | 0              | 0                 |

**Dissolved Oxygen Allocations**

| RMI    | Discharge Name | CBOD5 Baseline (mg/L) | CBOD5 Multiple (mg/L) | NH3-N Baseline (mg/L) | NH3-N Multiple (mg/L) | Dissolved Oxygen Baseline (mg/L) | Dissolved Oxygen Multiple (mg/L) | Critical Reach | Percent Reduction |
|--------|----------------|-----------------------|-----------------------|-----------------------|-----------------------|----------------------------------|----------------------------------|----------------|-------------------|
| 107.90 | EAJSA WWTP     | 25                    | 25                    | 20                    | 20                    | 4                                | 4                                | 0              | 0                 |

**WQM 7.0 D.O. Simulation**

| <u>SWP Basin</u>                         | <u>Stream Code</u>                          | <u>Stream Name</u>                         |                                      |             |  |  |  |
|------------------------------------------|---------------------------------------------|--------------------------------------------|--------------------------------------|-------------|--|--|--|
| 03I                                      | 2                                           | DELAWARE RIVER                             |                                      |             |  |  |  |
| <u>RMI</u><br>107.900                    | <u>Total Discharge Flow (mgd)</u><br>10.000 | <u>Analysis Temperature (°C)</u><br>22.816 | <u>Analysis pH</u><br>7.544          |             |  |  |  |
| <u>Reach Width (ft)</u><br>370.640       | <u>Reach Depth (ft)</u><br>0.960            | <u>Reach WDRatio</u><br>386.113            | <u>Reach Velocity (fps)</u><br>0.940 |             |  |  |  |
| <u>Reach CBOD5 (mg/L)</u><br>3.06        | <u>Reach Kc (1/days)</u><br>0.551           | <u>Reach NH3-N (mg/L)</u><br>0.93          | <u>Reach Kn (1/days)</u><br>0.869    |             |  |  |  |
| <u>Reach DO (mg/L)</u><br>8.047          | <u>Reach Kr (1/days)</u><br>2.812           | <u>Kr Equation</u><br>Tsivoglou            | <u>Reach DO Goal (mg/L)</u><br>4     |             |  |  |  |
| <u>Reach Travel Time (days)</u><br>0.049 | <u>Subreach Results</u>                     |                                            |                                      |             |  |  |  |
|                                          | TravTime (days)                             | CBOD5 (mg/L)                               | NH3-N (mg/L)                         | D.O. (mg/L) |  |  |  |
|                                          | 0.005                                       | 3.05                                       | 0.92                                 | 7.83        |  |  |  |
|                                          | 0.010                                       | 3.05                                       | 0.92                                 | 7.83        |  |  |  |
|                                          | 0.015                                       | 3.04                                       | 0.91                                 | 7.83        |  |  |  |
|                                          | 0.020                                       | 3.03                                       | 0.91                                 | 7.83        |  |  |  |
|                                          | 0.025                                       | 3.02                                       | 0.91                                 | 7.83        |  |  |  |
|                                          | 0.030                                       | 3.01                                       | 0.90                                 | 7.83        |  |  |  |
|                                          | 0.035                                       | 3.00                                       | 0.90                                 | 7.83        |  |  |  |
|                                          | 0.040                                       | 2.99                                       | 0.89                                 | 7.83        |  |  |  |
|                                          | 0.044                                       | 2.98                                       | 0.89                                 | 7.83        |  |  |  |
|                                          | 0.049                                       | 2.97                                       | 0.89                                 | 7.83        |  |  |  |

**WQM 7.0 Effluent Limits**

| <u>SWP Basin</u> | <u>Stream Code</u> | <u>Stream Name</u> |                 |                  |                                |                            |                            |
|------------------|--------------------|--------------------|-----------------|------------------|--------------------------------|----------------------------|----------------------------|
| 03I              | 2                  | DELAWARE RIVER     |                 |                  |                                |                            |                            |
| RMI              | Name               | Permit Number      | Disc Flow (mgd) | Parameter        | Effl. Limit 30-day Ave. (mg/L) | Effl. Limit Maximum (mg/L) | Effl. Limit Minimum (mg/L) |
| 107.900          | EAJSA WWTP         | PA0027235          | 10.000          | CBOD5            | 25                             |                            |                            |
|                  |                    |                    |                 | NH3-N            | 20                             | 40                         |                            |
|                  |                    |                    |                 | Dissolved Oxygen |                                |                            | 4                          |



## Discharge Information

Instructions **Discharge** Stream

Facility: **EAJSA WWTP** NPDES Permit No.: **PA0027235** Outfall No.: **001**

Evaluation Type: **Major Sewage / Industrial Waste** Wastewater Description: **Treated sewage**

| Design Flow<br>(MGD)* | Hardness (mg/l)* | pH (SU)* | Discharge Characteristics  |      |      |     |                          |                |
|-----------------------|------------------|----------|----------------------------|------|------|-----|--------------------------|----------------|
|                       |                  |          | Partial Mix Factors (PMFs) |      |      |     | Complete Mix Times (min) |                |
|                       |                  |          | AFC                        | CFC  | THH  | CRL | Q <sub>7-10</sub>        | Q <sub>h</sub> |
| 10                    | 185              | 7        | 0.22                       | 0.98 | 0.64 |     |                          |                |

|                | Discharge Pollutant             | Units | Max Discharge Conc | 0 if left blank |             | 0.5 if left blank |           | 0 if left blank |            | 1 if left blank |              |
|----------------|---------------------------------|-------|--------------------|-----------------|-------------|-------------------|-----------|-----------------|------------|-----------------|--------------|
|                |                                 |       |                    | Trib Conc       | Stream Conc | Daily CV          | Hourly CV | Stream CV       | Fate Coeff | FOS             | Criteria Mod |
| <b>Group 1</b> | Total Dissolved Solids (PWS)    | mg/L  |                    |                 |             |                   |           |                 |            |                 |              |
|                | Chloride (PWS)                  | mg/L  |                    |                 |             |                   |           |                 |            |                 |              |
|                | Bromide                         | mg/L  |                    |                 |             |                   |           |                 |            |                 |              |
|                | Sulfate (PWS)                   | mg/L  |                    |                 |             |                   |           |                 |            |                 |              |
|                | Fluoride (PWS)                  | mg/L  |                    |                 |             |                   |           |                 |            |                 |              |
| <b>Group 2</b> | Total Aluminum                  | µg/L  | < 10               |                 |             |                   |           |                 |            |                 |              |
|                | Total Antimony                  | µg/L  | 0.5                |                 |             |                   |           |                 |            |                 |              |
|                | Total Arsenic                   | µg/L  | < 1                |                 |             |                   |           |                 |            |                 |              |
|                | Total Barium                    | µg/L  | 15                 |                 |             |                   |           |                 |            |                 |              |
|                | Total Beryllium                 | µg/L  | < 1                |                 |             |                   |           |                 |            |                 |              |
|                | Total Boron                     | µg/L  | 300                |                 |             |                   |           |                 |            |                 |              |
|                | Total Cadmium                   | µg/L  | < 0.2              |                 |             |                   |           |                 |            |                 |              |
|                | Total Chromium (III)            | µg/L  |                    |                 |             |                   |           |                 |            |                 |              |
|                | Hexavalent Chromium             | µg/L  | < 0.25             |                 |             |                   |           |                 |            |                 |              |
|                | Total Cobalt                    | µg/L  | 0.7                |                 |             |                   |           |                 |            |                 |              |
|                | Total Copper                    | µg/L  | 9                  |                 |             |                   |           |                 |            |                 |              |
|                | Free Cyanide                    | µg/L  | 5                  |                 |             |                   |           |                 |            |                 |              |
|                | Total Cyanide                   | µg/L  | 7                  |                 |             |                   |           |                 |            |                 |              |
|                | Dissolved Iron                  | µg/L  | 70                 |                 |             |                   |           |                 |            |                 |              |
|                | Total Iron                      | µg/L  | 140                |                 |             |                   |           |                 |            |                 |              |
|                | Total Lead                      | µg/L  | < 1                |                 |             |                   |           |                 |            |                 |              |
|                | Total Manganese                 | µg/L  | 8                  |                 |             |                   |           |                 |            |                 |              |
|                | Total Mercury                   | µg/L  | < 0.2              |                 |             |                   |           |                 |            |                 |              |
|                | Total Nickel                    | µg/L  | 4.8                |                 |             |                   |           |                 |            |                 |              |
|                | Total Phenols (Phenolics) (PWS) | µg/L  | < 2                |                 |             |                   |           |                 |            |                 |              |
|                | Total Selenium                  | µg/L  | < 1                |                 |             |                   |           |                 |            |                 |              |
|                | Total Silver                    | µg/L  | < 0.3              |                 |             |                   |           |                 |            |                 |              |
|                | Total Thallium                  | µg/L  | < 3                |                 |             |                   |           |                 |            |                 |              |
|                | Total Zinc                      | µg/L  | 125                |                 |             |                   |           |                 |            |                 |              |
|                | Total Molybdenum                | µg/L  | < 3                |                 |             |                   |           |                 |            |                 |              |
|                | Acrolein                        | µg/L  | < 2                |                 |             |                   |           |                 |            |                 |              |
|                | Acrylamide                      | µg/L  | <                  |                 |             |                   |           |                 |            |                 |              |
|                | Acrylonitrile                   | µg/L  | < 2                |                 |             |                   |           |                 |            |                 |              |
|                | Benzene                         | µg/L  | < 0.5              |                 |             |                   |           |                 |            |                 |              |
|                | Bromoform                       | µg/L  | < 0.5              |                 |             |                   |           |                 |            |                 |              |
|                | Carbon Tetrachloride            | µg/L  | < 0.5              |                 |             |                   |           |                 |            |                 |              |





NPDES Permit Fact Sheet  
Easton WWTP

NPDES Permit No. PA0027235

Receiving Surface Water Name: Delaware River

No. Reaches to Model: 1

- Statewide Criteria
- Great Lakes Criteria
- ORSANCO Criteria

| Location           | Stream Code* | RMI*   | Elevation (ft)* | DA (mi <sup>2</sup> )* | Slope (ft/ft) | PWS Withdrawal (MGD) | Apply Fish Criteria* |
|--------------------|--------------|--------|-----------------|------------------------|---------------|----------------------|----------------------|
| Point of Discharge | 000002       | 107.9  | 153.7           | 6090                   | 0.0006        |                      | Yes                  |
| End of Reach 1     | 000002       | 107.14 | 151.77          | 6100                   | 0.0006        |                      | Yes                  |

Q<sub>7-10</sub>

| Location           | RMI    | LFY (cfs/mi <sup>2</sup> )* | Flow (cfs) |           | W/D Ratio | Width (ft) | Depth (ft) | Velocity (fps) | Travel Time (days) | Tributary |    | Stream    |     | Analysis |    |
|--------------------|--------|-----------------------------|------------|-----------|-----------|------------|------------|----------------|--------------------|-----------|----|-----------|-----|----------|----|
|                    |        |                             | Stream     | Tributary |           |            |            |                |                    | Hardness  | pH | Hardness* | pH* | Hardness | pH |
| Point of Discharge | 107.9  | 0.238                       |            |           |           | 370.64     |            |                |                    |           |    | 100       | 7.6 |          |    |
| End of Reach 1     | 107.14 | 0.238                       |            |           |           | 370.64     |            |                |                    |           |    | 100       | 7.6 |          |    |

Q<sub>h</sub>

| Location           | RMI    | LFY (cfs/mi <sup>2</sup> )* | Flow (cfs) |           | W/D Ratio | Width (ft) | Depth (ft) | Velocity (fps) | Travel Time (days) | Tributary |    | Stream    |     | Analysis |    |
|--------------------|--------|-----------------------------|------------|-----------|-----------|------------|------------|----------------|--------------------|-----------|----|-----------|-----|----------|----|
|                    |        |                             | Stream     | Tributary |           |            |            |                |                    | Hardness  | pH | Hardness* | pH* | Hardness | pH |
| Point of Discharge | 107.9  |                             |            |           |           |            |            |                |                    |           |    |           |     |          |    |
| End of Reach 1     | 107.14 |                             |            |           |           |            |            |                |                    |           |    |           |     |          |    |

**Hydrodynamics**

**Wasteload Allocations**

AFC

CCT (min): 15

PMF: 0.220

Analysis Hardness (mg/l): 103.93

Analysis pH: 7.54

| Pollutants                      | Stream Conc | Stream CV | Trib Conc (µg/L) | Fate Coef | WQC (µg/L) | WQ Obj (µg/L) | WLA (µg/L) | Comments                         |
|---------------------------------|-------------|-----------|------------------|-----------|------------|---------------|------------|----------------------------------|
| Total Aluminum                  | 0           | 0         |                  | 0         | 750        | 750           | 16,209     |                                  |
| Total Antimony                  | 0           | 0         |                  | 0         | 1,100      | 1,100         | 23,774     |                                  |
| Total Arsenic                   | 0           | 0         |                  | 0         | 340        | 340           | 7,348      | Chem Translator of 1 applied     |
| Total Barium                    | 0           | 0         |                  | 0         | 21,000     | 21,000        | 453,858    |                                  |
| Total Boron                     | 0           | 0         |                  | 0         | 8,100      | 8,100         | 175,080    |                                  |
| Total Cadmium                   | 0           | 0         |                  | 0         | 2,091      | 2.22          | 47.9       | Chem Translator of 0.042 applied |
| Hexavalent Chromium             | 0           | 0         |                  | 0         | 16         | 16.3          | 352        | Chem Translator of 0.982 applied |
| Total Cobalt                    | 0           | 0         |                  | 0         | 95         | 95.0          | 2,053      |                                  |
| Total Copper                    | 0           | 0         |                  | 0         | 13.937     | 14.5          | 314        | Chem Translator of 0.96 applied  |
| Free Cyanide                    | 0           | 0         |                  | 0         | 22         | 22.0          | 475        |                                  |
| Dissolved Iron                  | 0           | 0         |                  | 0         | N/A        | N/A           | N/A        |                                  |
| Total Iron                      | 0           | 0         |                  | 0         | N/A        | N/A           | N/A        |                                  |
| Total Lead                      | 0           | 0         |                  | 0         | 67,350     | 85.8          | 1,853      | Chem Translator of 0.785 applied |
| Total Manganese                 | 0           | 0         |                  | 0         | N/A        | N/A           | N/A        |                                  |
| Total Mercury                   | 0           | 0         |                  | 0         | 1,400      | 1.65          | 35.6       | Chem Translator of 0.85 applied  |
| Total Nickel                    | 0           | 0         |                  | 0         | 483.769    | 485           | 10,476     | Chem Translator of 0.998 applied |
| Total Phenols (Phenolics) (PWS) | 0           | 0         |                  | 0         | N/A        | N/A           | N/A        |                                  |
| Total Selenium                  | 0           | 0         |                  | 0         | N/A        | N/A           | N/A        | Chem Translator of 0.922 applied |
| Total Silver                    | 0           | 0         |                  | 0         | 3,437      | 4.04          | 87.4       | Chem Translator of 0.85 applied  |
| Total Thallium                  | 0           | 0         |                  | 0         | 65         | 65.0          | 1,405      |                                  |
| Total Zinc                      | 0           | 0         |                  | 0         | 121,074    | 124           | 2,676      | Chem Translator of 0.978 applied |
| Acrolein                        | 0           | 0         |                  | 0         | 3          | 3.0           | 64.8       |                                  |
| Acrylonitrile                   | 0           | 0         |                  | 0         | 650        | 650           | 14,048     |                                  |
| Benzene                         | 0           | 0         |                  | 0         | 640        | 640           | 13,832     |                                  |
| Bromoform                       | 0           | 0         |                  | 0         | 1,800      | 1,800         | 38,902     |                                  |
| Carbon Tetrachloride            | 0           | 0         |                  | 0         | 2,800      | 2,800         | 60,514     |                                  |
| Chlorobenzene                   | 0           | 0         |                  | 0         | 1,200      | 1,200         | 25,635     |                                  |

|                             |   |   |  |   |        |        |         |
|-----------------------------|---|---|--|---|--------|--------|---------|
| Chlorodibromomethane        | 0 | 0 |  | 0 | N/A    | N/A    | N/A     |
| 2-Chloroethyl Vinyl Ether   | 0 | 0 |  | 0 | 18,000 | 18,000 | 389,022 |
| Chloroform                  | 0 | 0 |  | 0 | 1,900  | 1,900  | 41,083  |
| Dichlorobromomethane        | 0 | 0 |  | 0 | N/A    | N/A    | N/A     |
| 1,2-Dichloroethane          | 0 | 0 |  | 0 | 15,000 | 15,000 | 324,185 |
| 1,1-Dichloroethylene        | 0 | 0 |  | 0 | 7,500  | 7,500  | 162,092 |
| 1,2-Dichloropropane         | 0 | 0 |  | 0 | 11,000 | 11,000 | 237,735 |
| 1,3-Dichloropropylene       | 0 | 0 |  | 0 | 310    | 310    | 6,700   |
| Ethylbenzene                | 0 | 0 |  | 0 | 2,900  | 2,900  | 62,678  |
| Methyl Bromide              | 0 | 0 |  | 0 | 550    | 550    | 11,887  |
| Methyl Chloride             | 0 | 0 |  | 0 | 28,000 | 28,000 | 605,145 |
| Methylene Chloride          | 0 | 0 |  | 0 | 12,000 | 12,000 | 259,348 |
| 1,1,2,2-Tetrachloroethane   | 0 | 0 |  | 0 | 1,000  | 1,000  | 21,612  |
| Tetrachloroethylene         | 0 | 0 |  | 0 | 700    | 700    | 15,129  |
| Toluene                     | 0 | 0 |  | 0 | 1,700  | 1,700  | 38,741  |
| 1,2-trans-Dichloroethylene  | 0 | 0 |  | 0 | 6,800  | 6,800  | 146,964 |
| 1,1,1-Trichloroethane       | 0 | 0 |  | 0 | 3,000  | 3,000  | 64,837  |
| 1,1,2-Trichloroethane       | 0 | 0 |  | 0 | 3,400  | 3,400  | 73,482  |
| Trichloroethylene           | 0 | 0 |  | 0 | 2,300  | 2,300  | 49,708  |
| Vinyl Chloride              | 0 | 0 |  | 0 | N/A    | N/A    | N/A     |
| 2-Chlorophenol              | 0 | 0 |  | 0 | 560    | 560    | 12,103  |
| 2,4-Dichlorophenol          | 0 | 0 |  | 0 | 1,700  | 1,700  | 38,741  |
| 2,4-Dimethylphenol          | 0 | 0 |  | 0 | 660    | 660    | 14,264  |
| 4,6-Dinitro-o-Cresol        | 0 | 0 |  | 0 | 80     | 80.0   | 1,729   |
| 2,4-Dinitrophenol           | 0 | 0 |  | 0 | 660    | 660    | 14,264  |
| 2-Nitrophenol               | 0 | 0 |  | 0 | 8,000  | 8,000  | 172,898 |
| 4-Nitrophenol               | 0 | 0 |  | 0 | 2,300  | 2,300  | 49,708  |
| p-Chloro-m-Cresol           | 0 | 0 |  | 0 | 160    | 160    | 3,458   |
| Pentachlorophenol           | 0 | 0 |  | 0 | 15,088 | 15.1   | 326     |
| Phenol                      | 0 | 0 |  | 0 | N/A    | N/A    | N/A     |
| 2,4,6-Trichlorophenol       | 0 | 0 |  | 0 | 460    | 460    | 9,942   |
| Acenaphthene                | 0 | 0 |  | 0 | 83     | 83.0   | 1,794   |
| Anthracene                  | 0 | 0 |  | 0 | N/A    | N/A    | N/A     |
| Benzidine                   | 0 | 0 |  | 0 | 300    | 300    | 6,484   |
| Benz(a)Anthracene           | 0 | 0 |  | 0 | 0.5    | 0.5    | 10.8    |
| Benz(a)Pyrene               | 0 | 0 |  | 0 | N/A    | N/A    | N/A     |
| 3,4-Benzofluoranthene       | 0 | 0 |  | 0 | N/A    | N/A    | N/A     |
| Benz(k)Fluoranthene         | 0 | 0 |  | 0 | N/A    | N/A    | N/A     |
| Bis(2-Chloroethyl)Ether     | 0 | 0 |  | 0 | 30,000 | 30,000 | 649,369 |
| Bis(2-Chloroisopropyl)Ether | 0 | 0 |  | 0 | N/A    | N/A    | N/A     |
| Bis(2-Ethylhexyl)Phthalate  | 0 | 0 |  | 0 | 4,500  | 4,500  | 97,255  |
| 4-Bromophenyl Phenyl Ether  | 0 | 0 |  | 0 | 270    | 270    | 5,835   |
| Butyl Benzyl Phthalate      | 0 | 0 |  | 0 | 140    | 140    | 3,026   |
| 2-Choronaphthalene          | 0 | 0 |  | 0 | N/A    | N/A    | N/A     |
| Chrysene                    | 0 | 0 |  | 0 | N/A    | N/A    | N/A     |
| Dibenzo(a,h)Anthracene      | 0 | 0 |  | 0 | N/A    | N/A    | N/A     |
| 1,2-Dichlorobenzene         | 0 | 0 |  | 0 | 820    | 820    | 17,722  |
| 1,3-Dichlorobenzene         | 0 | 0 |  | 0 | 350    | 350    | 7,564   |
| 1,4-Dichlorobenzene         | 0 | 0 |  | 0 | 730    | 730    | 15,777  |
| 3,3-Dichlorobenzidine       | 0 | 0 |  | 0 | N/A    | N/A    | N/A     |
| Diethyl Phthalate           | 0 | 0 |  | 0 | 4,000  | 4,000  | 86,449  |
| Dimethyl Phthalate          | 0 | 0 |  | 0 | 2,500  | 2,500  | 54,031  |
| Di-n-Butyl Phthalate        | 0 | 0 |  | 0 | 110    | 110    | 2,377   |
| 2,4-Dinitrotoluene          | 0 | 0 |  | 0 | 1,600  | 1,600  | 34,580  |
| 2,6-Dinitrotoluene          | 0 | 0 |  | 0 | 990    | 990    | 21,398  |
| 1,2-Diphenylhydrazine       | 0 | 0 |  | 0 | 15     | 15.0   | 324     |
| Fluoranthene                | 0 | 0 |  | 0 | 200    | 200    | 4,322   |
| Fluorene                    | 0 | 0 |  | 0 | N/A    | N/A    | N/A     |
| Hexachlorobenzene           | 0 | 0 |  | 0 | N/A    | N/A    | N/A     |
| Hexachlorobutadiene         | 0 | 0 |  | 0 | 10     | 10.0   | 216     |
| Hexachlorocyclopentadiene   | 0 | 0 |  | 0 | 5      | 5.0    | 108     |
| Hexachloroethane            | 0 | 0 |  | 0 | 60     | 60.0   | 1,297   |
| Indeno(1,2,3-od)Pyrene      | 0 | 0 |  | 0 | N/A    | N/A    | N/A     |
| Isophorone                  | 0 | 0 |  | 0 | 10,000 | 10,000 | 216,123 |
| Naphthalene                 | 0 | 0 |  | 0 | 140    | 140    | 3,026   |
| Nitrobenzene                | 0 | 0 |  | 0 | 4,000  | 4,000  | 86,449  |
| n-Nitrosodimethylamine      | 0 | 0 |  | 0 | 17,000 | 17,000 | 367,409 |
| n-Nitrosodi-n-Propylamine   | 0 | 0 |  | 0 | N/A    | N/A    | N/A     |
| n-Nitrosodiphenylamine      | 0 | 0 |  | 0 | 300    | 300    | 6,484   |
| Phenanthrene                | 0 | 0 |  | 0 | 5      | 5.0    | 108     |
| Pyrene                      | 0 | 0 |  | 0 | N/A    | N/A    | N/A     |
| 1,2,4-Trichlorobenzene      | 0 | 0 |  | 0 | 130    | 130    | 2,810   |

CFC      CCT (min): 720      PMF: 0.980      Analysis Hardness (mg/L): 100.92      Analysis pH: 7.59

| Pollutants                      | Stream Conc (µg/L) | Stream CV | Trb Conc (µg/L) | Fate Coef | WQC (µg/L) | WQ Obj (µg/L) | WLA (µg/L) | Comments                         |
|---------------------------------|--------------------|-----------|-----------------|-----------|------------|---------------|------------|----------------------------------|
| Total Aluminum                  | 0                  | 0         |                 | 0         | N/A        | N/A           | N/A        |                                  |
| Total Antimony                  | 0                  | 0         |                 | 0         | 220        | 220           | 20,420     |                                  |
| Total Arsenic                   | 0                  | 0         |                 | 0         | 150        | 150           | 13,923     | Chem Translator of 1 applied     |
| Total Barium                    | 0                  | 0         |                 | 0         | 4,100      | 4,100         | 380,556    |                                  |
| Total Boron                     | 0                  | 0         |                 | 0         | 1,600      | 1,600         | 148,510    |                                  |
| Total Cadmium                   | 0                  | 0         |                 | 0         | 0.248      | 0.27          | 25.3       | Chem Translator of 0.909 applied |
| Hexavalent Chromium             | 0                  | 0         |                 | 0         | 10         | 10.4          | 965        | Chem Translator of 0.962 applied |
| Total Cobalt                    | 0                  | 0         |                 | 0         | 19         | 19.0          | 1,764      |                                  |
| Total Copper                    | 0                  | 0         |                 | 0         | 9,028      | 9.4           | 873        | Chem Translator of 0.96 applied  |
| Free Cyanide                    | 0                  | 0         |                 | 0         | 5.2        | 5.2           | 483        |                                  |
| Dissolved Iron                  | 0                  | 0         |                 | 0         | N/A        | N/A           | N/A        |                                  |
| Total Iron                      | 0                  | 0         |                 | 0         | 1,500      | 1,500         | 142,038    | WQC = 30 day average; PMF = 1    |
| Total Lead                      | 0                  | 0         |                 | 0         | 2,542      | 3.22          | 299        | Chem Translator of 0.79 applied  |
| Total Manganese                 | 0                  | 0         |                 | 0         | N/A        | N/A           | N/A        |                                  |
| Total Mercury                   | 0                  | 0         |                 | 0         | 0.770      | 0.91          | 84.1       | Chem Translator of 0.85 applied  |
| Total Nickel                    | 0                  | 0         |                 | 0         | 52,409     | 52.6          | 4,879      | Chem Translator of 0.997 applied |
| Total Phenols (Phenolics) (PWS) | 0                  | 0         |                 | 0         | N/A        | N/A           | N/A        |                                  |
| Total Selenium                  | 0                  | 0         |                 | 0         | 4,600      | 4.99          | 463        | Chem Translator of 0.922 applied |

|                                 |   |   |  |   |         |       |         |                                  |
|---------------------------------|---|---|--|---|---------|-------|---------|----------------------------------|
| Total Silver                    | 0 | 0 |  | 0 | N/A     | N/A   | N/A     | Chem Translator of 1 applied     |
| Total Thallium                  | 0 | 0 |  | 0 | 13      | 13.0  | 1,207   |                                  |
| Total Zinc                      | 0 | 0 |  | 0 | 119,055 | 121   | 11,207  | Chem Translator of 0.986 applied |
| Acrolein                        | 0 | 0 |  | 0 | 3       | 3.0   | 278     |                                  |
| Acrylonitrile                   | 0 | 0 |  | 0 | 130     | 130   | 12,066  |                                  |
| Benzene                         | 0 | 0 |  | 0 | 130     | 130   | 12,066  |                                  |
| Bromoform                       | 0 | 0 |  | 0 | 370     | 370   | 34,343  |                                  |
| Carbon Tetrachloride            | 0 | 0 |  | 0 | 560     | 560   | 51,978  |                                  |
| Chlorobenzene                   | 0 | 0 |  | 0 | 240     | 240   | 22,276  |                                  |
| Chlorodibromomethane            | 0 | 0 |  | 0 | N/A     | N/A   | N/A     |                                  |
| 2-Chloroethyl Vinyl Ether       | 0 | 0 |  | 0 | 3,500   | 3,500 | 324,865 |                                  |
| Chloroform                      | 0 | 0 |  | 0 | 390     | 390   | 36,199  |                                  |
| Dichlorobromomethane            | 0 | 0 |  | 0 | N/A     | N/A   | N/A     |                                  |
| 1,2-Dichloroethane              | 0 | 0 |  | 0 | 3,100   | 3,100 | 287,737 |                                  |
| 1,1-Dichloroethylene            | 0 | 0 |  | 0 | 1,500   | 1,500 | 139,228 |                                  |
| 1,2-Dichloropropane             | 0 | 0 |  | 0 | 2,200   | 2,200 | 204,201 |                                  |
| 1,3-Dichloropropylene           | 0 | 0 |  | 0 | 61      | 61.0  | 5,662   |                                  |
| Ethylbenzene                    | 0 | 0 |  | 0 | 580     | 580   | 53,835  |                                  |
| Methyl Bromide                  | 0 | 0 |  | 0 | 110     | 110   | 10,210  |                                  |
| Methyl Chloride                 | 0 | 0 |  | 0 | 5,500   | 5,500 | 510,502 |                                  |
| Methylene Chloride              | 0 | 0 |  | 0 | 2,400   | 2,400 | 222,784 |                                  |
| 1,1,2,2-Tetrachloroethane       | 0 | 0 |  | 0 | 210     | 210   | 19,492  |                                  |
| Tetrachloroethylene             | 0 | 0 |  | 0 | 140     | 140   | 12,095  |                                  |
| Toluene                         | 0 | 0 |  | 0 | 330     | 330   | 30,630  |                                  |
| 1,2-trans-Dichloroethylene      | 0 | 0 |  | 0 | 1,400   | 1,400 | 129,946 |                                  |
| 1,1,1-Trichloroethane           | 0 | 0 |  | 0 | 610     | 610   | 56,619  |                                  |
| 1,1,2-Trichloroethane           | 0 | 0 |  | 0 | 680     | 680   | 63,117  |                                  |
| Trichloroethylene               | 0 | 0 |  | 0 | 450     | 450   | 41,768  |                                  |
| Vinyl Chloride                  | 0 | 0 |  | 0 | N/A     | N/A   | N/A     |                                  |
| 2-Chlorophenol                  | 0 | 0 |  | 0 | 110     | 110   | 10,210  |                                  |
| 2,4-Dichlorophenol              | 0 | 0 |  | 0 | 340     | 340   | 31,658  |                                  |
| 2,4-Dimethylphenol              | 0 | 0 |  | 0 | 130     | 130   | 12,066  |                                  |
| 4,6-Dinitro-o-Cresol            | 0 | 0 |  | 0 | 16      | 16.0  | 1,485   |                                  |
| 2,4-Dinitrophenol               | 0 | 0 |  | 0 | 130     | 130   | 12,066  |                                  |
| 2-Nitrophenol                   | 0 | 0 |  | 0 | 1,600   | 1,600 | 148,510 |                                  |
| 4-Nitrophenol                   | 0 | 0 |  | 0 | 470     | 470   | 43,625  |                                  |
| p-Chloro-m-Cresol               | 0 | 0 |  | 0 | 500     | 500   | 46,409  |                                  |
| Pentachlorophenol               | 0 | 0 |  | 0 | 11,561  | 11.6  | 1,073   |                                  |
| Phenol                          | 0 | 0 |  | 0 | N/A     | N/A   | N/A     |                                  |
| 2,4,6-Trichlorophenol           | 0 | 0 |  | 0 | 91      | 91.0  | 8,446   |                                  |
| Acenaphthene                    | 0 | 0 |  | 0 | 17      | 17.0  | 1,578   |                                  |
| Anthracene                      | 0 | 0 |  | 0 | N/A     | N/A   | N/A     |                                  |
| Benzidine                       | 0 | 0 |  | 0 | 59      | 59.0  | 5,476   |                                  |
| Benzo(a)Anthracene              | 0 | 0 |  | 0 | 0.1     | 0.1   | 9.28    |                                  |
| Benzo(a)Pyrene                  | 0 | 0 |  | 0 | N/A     | N/A   | N/A     |                                  |
| 3,4-Benzo fluoranthene          | 0 | 0 |  | 0 | N/A     | N/A   | N/A     |                                  |
| Benzo(k)Fluoranthene            | 0 | 0 |  | 0 | N/A     | N/A   | N/A     |                                  |
| Bis(2-Chloroethyl)Ether         | 0 | 0 |  | 0 | 6,000   | 6,000 | 556,911 |                                  |
| Bis(2-Chloroisopropyl)Ether     | 0 | 0 |  | 0 | N/A     | N/A   | N/A     |                                  |
| Bis(2-Ethylhexyl)Phthalate      | 0 | 0 |  | 0 | 910     | 910   | 84,465  |                                  |
| 4-Bromophenyl Phenyl Ether      | 0 | 0 |  | 0 | 54      | 54.0  | 5,012   |                                  |
| Butyl Benzyl Phthalate          | 0 | 0 |  | 0 | 35      | 35.0  | 3,249   |                                  |
| 2-Chloronaphthalene             | 0 | 0 |  | 0 | N/A     | N/A   | N/A     |                                  |
| Chrysene                        | 0 | 0 |  | 0 | N/A     | N/A   | N/A     |                                  |
| Dibenzo(a,h)Anthracene          | 0 | 0 |  | 0 | N/A     | N/A   | N/A     |                                  |
| 1,2-Dichlorobenzene             | 0 | 0 |  | 0 | 160     | 160   | 14,851  |                                  |
| 1,3-Dichlorobenzene             | 0 | 0 |  | 0 | 69      | 69.0  | 6,404   |                                  |
| 1,4-Dichlorobenzene             | 0 | 0 |  | 0 | 150     | 150   | 13,923  |                                  |
| 3,3-Dichlorobenzidine           | 0 | 0 |  | 0 | N/A     | N/A   | N/A     |                                  |
| Diethyl Phthalate               | 0 | 0 |  | 0 | 800     | 800   | 74,255  |                                  |
| Dimethyl Phthalate              | 0 | 0 |  | 0 | 500     | 500   | 46,409  |                                  |
| Di-n-Butyl Phthalate            | 0 | 0 |  | 0 | 21      | 21.0  | 1,949   |                                  |
| 2,4-Dinitrotoluene              | 0 | 0 |  | 0 | 320     | 320   | 29,702  |                                  |
| 2,6-Dinitrotoluene              | 0 | 0 |  | 0 | 200     | 200   | 18,584  |                                  |
| 1,2-Diphenylhydrazine           | 0 | 0 |  | 0 | 3       | 3.0   | 278     |                                  |
| Fluoranthene                    | 0 | 0 |  | 0 | 40      | 40.0  | 3,713   |                                  |
| Fluorene                        | 0 | 0 |  | 0 | N/A     | N/A   | N/A     |                                  |
| Hexachlorobenzene               | 0 | 0 |  | 0 | N/A     | N/A   | N/A     |                                  |
| Hexachlorobutadiene             | 0 | 0 |  | 0 | 2       | 2.0   | 186     |                                  |
| Hexachlorocyclopentadiene       | 0 | 0 |  | 0 | 1       | 1.0   | 92.8    |                                  |
| Hexachloroethane                | 0 | 0 |  | 0 | 12      | 12.0  | 1,114   |                                  |
| Indeno(1,2,3- <i>cd</i> )Pyrene | 0 | 0 |  | 0 | N/A     | N/A   | N/A     |                                  |
| Isophorone                      | 0 | 0 |  | 0 | 2,100   | 2,100 | 194,919 |                                  |
| Naphthalene                     | 0 | 0 |  | 0 | 43      | 43.0  | 3,991   |                                  |
| Nitrobenzene                    | 0 | 0 |  | 0 | 810     | 810   | 75,183  |                                  |
| n-Nitrosodimethylamine          | 0 | 0 |  | 0 | 3,400   | 3,400 | 315,583 |                                  |
| n-Nitrosodi-n-Propylamine       | 0 | 0 |  | 0 | N/A     | N/A   | N/A     |                                  |
| n-Nitrosodiphenylamine          | 0 | 0 |  | 0 | 59      | 59.0  | 5,476   |                                  |
| Phenanthrene                    | 0 | 0 |  | 0 | 1       | 1.0   | 92.8    |                                  |
| Pyrene                          | 0 | 0 |  | 0 | N/A     | N/A   | N/A     |                                  |
| 1,2,4-Trichlorobenzene          | 0 | 0 |  | 0 | 26      | 26.0  | 2,413   |                                  |

THH CCT (min): 720 PMF: 0.640 Analysis Hardness (mg/l): N/A Analysis pH: N/A

| Pollutants     | Stream Conc (µg/L) | Stream CV | Trib Conc (µg/L) | Fate Coef | WQC (µg/L) | WQ Obj (µg/L) | WLA (µg/L) | Comments |
|----------------|--------------------|-----------|------------------|-----------|------------|---------------|------------|----------|
| Total Aluminum | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Total Antimony | 0                  | 0         |                  | 0         | 5.6        | 5.6           | 341        |          |
| Total Arsenic  | 0                  | 0         |                  | 0         | 10         | 10.0          | 610        |          |
| Total Barium   | 0                  | 0         |                  | 0         | 2,400      | 2,400         | 146,311    |          |
| Total Boron    | 0                  | 0         |                  | 0         | 3,100      | 3,100         | 188,986    |          |
| Total Cadmium  | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |          |

|                                        |          |          |  |          |          |            |            |
|----------------------------------------|----------|----------|--|----------|----------|------------|------------|
| Hexavalent Chromium                    | 0        | 0        |  | 0        | N/A      | N/A        | N/A        |
| Total Cobalt                           | 0        | 0        |  | 0        | N/A      | N/A        | N/A        |
| Total Copper                           | 0        | 0        |  | 0        | N/A      | N/A        | N/A        |
| Free Cyanide                           | 0        | 0        |  | 0        | 4        | 4.0        | 244        |
| Dissolved Iron                         | 0        | 0        |  | 0        | 300      | 300        | 18,289     |
| Total Iron                             | 0        | 0        |  | 0        | N/A      | N/A        | N/A        |
| Total Lead                             | 0        | 0        |  | 0        | N/A      | N/A        | N/A        |
| Total Manganese                        | 0        | 0        |  | 0        | 1,000    | 1,000      | 60,963     |
| Total Mercury                          | 0        | 0        |  | 0        | 0.050    | 0.05       | 3.05       |
| Total Nickel                           | 0        | 0        |  | 0        | 610      | 610        | 37,187     |
| <b>Total Phenols (Phenolics) (PWS)</b> | <b>0</b> | <b>0</b> |  | <b>0</b> | <b>5</b> | <b>5.0</b> | <b>N/A</b> |
| Total Selenium                         | 0        | 0        |  | 0        | N/A      | N/A        | N/A        |
| Total Silver                           | 0        | 0        |  | 0        | N/A      | N/A        | N/A        |
| Total Thallium                         | 0        | 0        |  | 0        | 0.24     | 0.24       | 14.6       |
| Total Zinc                             | 0        | 0        |  | 0        | N/A      | N/A        | N/A        |
| Acrolein                               | 0        | 0        |  | 0        | 3        | 3.0        | 183        |
| Acrylonitrile                          | 0        | 0        |  | 0        | N/A      | N/A        | N/A        |
| Benzene                                | 0        | 0        |  | 0        | N/A      | N/A        | N/A        |
| Bromoform                              | 0        | 0        |  | 0        | N/A      | N/A        | N/A        |
| Carbon Tetrachloride                   | 0        | 0        |  | 0        | N/A      | N/A        | N/A        |
| Chlorobenzene                          | 0        | 0        |  | 0        | 100      | 100.0      | 6,096      |
| Chlorodibromomethane                   | 0        | 0        |  | 0        | N/A      | N/A        | N/A        |
| 2-Chloroethyl Vinyl Ether              | 0        | 0        |  | 0        | N/A      | N/A        | N/A        |
| Chloroform                             | 0        | 0        |  | 0        | 5.7      | 5.7        | 347        |
| Dichlorobromomethane                   | 0        | 0        |  | 0        | N/A      | N/A        | N/A        |
| 1,2-Dichloroethane                     | 0        | 0        |  | 0        | N/A      | N/A        | N/A        |
| 1,1-Dichloroethylene                   | 0        | 0        |  | 0        | 33       | 33.0       | 2,012      |
| 1,2-Dichloropropane                    | 0        | 0        |  | 0        | N/A      | N/A        | N/A        |
| 1,3-Dichloropropylene                  | 0        | 0        |  | 0        | N/A      | N/A        | N/A        |
| Ethylbenzene                           | 0        | 0        |  | 0        | 68       | 68.0       | 4,145      |
| Methyl Bromide                         | 0        | 0        |  | 0        | 100      | 100.0      | 6,096      |
| Methyl Chloride                        | 0        | 0        |  | 0        | N/A      | N/A        | N/A        |
| Methylene Chloride                     | 0        | 0        |  | 0        | N/A      | N/A        | N/A        |
| 1,1,2,2-Tetrachloroethane              | 0        | 0        |  | 0        | N/A      | N/A        | N/A        |
| Tetrachloroethylene                    | 0        | 0        |  | 0        | N/A      | N/A        | N/A        |
| Toluene                                | 0        | 0        |  | 0        | 57       | 57.0       | 3,475      |
| 1,2-trans-Dichloroethylene             | 0        | 0        |  | 0        | 100      | 100.0      | 6,096      |
| 1,1,1-Trichloroethane                  | 0        | 0        |  | 0        | 10,000   | 10,000     | 609,631    |
| 1,1,2-Trichloroethane                  | 0        | 0        |  | 0        | N/A      | N/A        | N/A        |
| Trichloroethylene                      | 0        | 0        |  | 0        | N/A      | N/A        | N/A        |
| Vinyl Chloride                         | 0        | 0        |  | 0        | N/A      | N/A        | N/A        |
| 2-Chlorophenol                         | 0        | 0        |  | 0        | 30       | 30.0       | 1,829      |
| 2,4-Dichlorophenol                     | 0        | 0        |  | 0        | 10       | 10.0       | 610        |
| 2,4-Dimethylphenol                     | 0        | 0        |  | 0        | 100      | 100.0      | 6,096      |
| 4,6-Dinitro-o-Cresol                   | 0        | 0        |  | 0        | 2        | 2.0        | 122        |
| 2,4-Dinitrophenol                      | 0        | 0        |  | 0        | 10       | 10.0       | 610        |
| 2-Nitrophenol                          | 0        | 0        |  | 0        | N/A      | N/A        | N/A        |
| 4-Nitrophenol                          | 0        | 0        |  | 0        | N/A      | N/A        | N/A        |
| p-Chloro-m-Cresol                      | 0        | 0        |  | 0        | N/A      | N/A        | N/A        |
| Pentachlorophenol                      | 0        | 0        |  | 0        | N/A      | N/A        | N/A        |
| Phenol                                 | 0        | 0        |  | 0        | 4,000    | 4,000      | 243,852    |
| 2,4,6-Trichlorophenol                  | 0        | 0        |  | 0        | N/A      | N/A        | N/A        |
| Acenaphthene                           | 0        | 0        |  | 0        | 70       | 70.0       | 4,287      |
| Anthracene                             | 0        | 0        |  | 0        | 300      | 300        | 18,289     |
| Benzidine                              | 0        | 0        |  | 0        | N/A      | N/A        | N/A        |
| Benz(a)Anthracene                      | 0        | 0        |  | 0        | N/A      | N/A        | N/A        |
| Benz(a)Pyrene                          | 0        | 0        |  | 0        | N/A      | N/A        | N/A        |
| 3,4-Benzofluoranthene                  | 0        | 0        |  | 0        | N/A      | N/A        | N/A        |
| Benz(a)Fluoranthene                    | 0        | 0        |  | 0        | N/A      | N/A        | N/A        |
| Bis(2-Chloroethyl)Ether                | 0        | 0        |  | 0        | N/A      | N/A        | N/A        |
| Bis(2-Chloroisopropyl)Ether            | 0        | 0        |  | 0        | 200      | 200        | 12,193     |
| Bis(2-Ethylhexyl)Phthalate             | 0        | 0        |  | 0        | N/A      | N/A        | N/A        |
| 4-Bromophenyl Phenyl Ether             | 0        | 0        |  | 0        | N/A      | N/A        | N/A        |
| Butyl Benzyl Phthalate                 | 0        | 0        |  | 0        | 0.1      | 0.1        | 6.1        |
| 2-Chloronaphthalene                    | 0        | 0        |  | 0        | 800      | 800        | 48,770     |
| Chrysene                               | 0        | 0        |  | 0        | N/A      | N/A        | N/A        |
| Dibenzo(a,h)Anthracene                 | 0        | 0        |  | 0        | N/A      | N/A        | N/A        |
| 1,2-Dichlorobenzene                    | 0        | 0        |  | 0        | 1,000    | 1,000      | 60,963     |
| 1,3-Dichlorobenzene                    | 0        | 0        |  | 0        | 7        | 7.0        | 427        |
| 1,4-Dichlorobenzene                    | 0        | 0        |  | 0        | 300      | 300        | 18,289     |
| 3,3-Dichlorobenzidine                  | 0        | 0        |  | 0        | N/A      | N/A        | N/A        |
| Diethyl Phthalate                      | 0        | 0        |  | 0        | 600      | 600        | 36,578     |
| Dimethyl Phthalate                     | 0        | 0        |  | 0        | 2,000    | 2,000      | 121,928    |
| Di-n-Butyl Phthalate                   | 0        | 0        |  | 0        | 20       | 20.0       | 1,219      |
| 2,4-Dinitrotoluene                     | 0        | 0        |  | 0        | N/A      | N/A        | N/A        |
| 2,6-Dinitrotoluene                     | 0        | 0        |  | 0        | N/A      | N/A        | N/A        |
| 1,2-Diphenylhydrazine                  | 0        | 0        |  | 0        | N/A      | N/A        | N/A        |
| Fluoranthene                           | 0        | 0        |  | 0        | 20       | 20.0       | 1,219      |
| Fluorene                               | 0        | 0        |  | 0        | 50       | 50.0       | 3,048      |
| Hexachlorobenzene                      | 0        | 0        |  | 0        | N/A      | N/A        | N/A        |
| Hexachlorobutadiene                    | 0        | 0        |  | 0        | N/A      | N/A        | N/A        |
| Hexachlorocyclopentadiene              | 0        | 0        |  | 0        | 4        | 4.0        | 244        |
| Hexachloroethane                       | 0        | 0        |  | 0        | N/A      | N/A        | N/A        |
| Indeno(1,2,3-od)Pyrene                 | 0        | 0        |  | 0        | N/A      | N/A        | N/A        |
| Isophorone                             | 0        | 0        |  | 0        | 34       | 34.0       | 2,073      |
| Naphthalene                            | 0        | 0        |  | 0        | N/A      | N/A        | N/A        |
| Nitrobenzene                           | 0        | 0        |  | 0        | 10       | 10.0       | 610        |
| n-Nitrosodimethylamine                 | 0        | 0        |  | 0        | N/A      | N/A        | N/A        |
| n-Nitrosodi-n-Propylamine              | 0        | 0        |  | 0        | N/A      | N/A        | N/A        |
| n-Nitrosodiphenylamine                 | 0        | 0        |  | 0        | N/A      | N/A        | N/A        |
| Phenanthrene                           | 0        | 0        |  | 0        | N/A      | N/A        | N/A        |
| Pyrene                                 | 0        | 0        |  | 0        | 20       | 20.0       | 1,219      |

NPDES Permit Fact Sheet  
Easton WWTP

NPDES Permit No. PA0027235

| 1,2,4-Trichlorobenzene                  | 0                  | 0         | 0                | 0         | 0.07                      | 0.07          | 4.27         |          |
|-----------------------------------------|--------------------|-----------|------------------|-----------|---------------------------|---------------|--------------|----------|
| <input checked="" type="checkbox"/> CRL | CCT (min):         | 720       | PMF:             | 0.822     | Analysis Hardness (mg/l): | N/A           | Analysis pH: | N/A      |
| Pollutants                              | Stream Conc (µg/L) | Stream CV | Trib Conc (µg/L) | Fate Coef | WQC (µg/L)                | WQ Obj (µg/L) | WLA (µg/L)   | Comments |
| Total Aluminum                          | 0                  | 0         | 0                | 0         | N/A                       | N/A           | N/A          |          |
| Total Antimony                          | 0                  | 0         | 0                | 0         | N/A                       | N/A           | N/A          |          |
| Total Arsenic                           | 0                  | 0         | 0                | 0         | N/A                       | N/A           | N/A          |          |
| Total Barium                            | 0                  | 0         | 0                | 0         | N/A                       | N/A           | N/A          |          |
| Total Boron                             | 0                  | 0         | 0                | 0         | N/A                       | N/A           | N/A          |          |
| Total Cadmium                           | 0                  | 0         | 0                | 0         | N/A                       | N/A           | N/A          |          |
| Hexavalent Chromium                     | 0                  | 0         | 0                | 0         | N/A                       | N/A           | N/A          |          |
| Total Cobalt                            | 0                  | 0         | 0                | 0         | N/A                       | N/A           | N/A          |          |
| Total Copper                            | 0                  | 0         | 0                | 0         | N/A                       | N/A           | N/A          |          |
| Free Cyanide                            | 0                  | 0         | 0                | 0         | N/A                       | N/A           | N/A          |          |
| Dissolved Iron                          | 0                  | 0         | 0                | 0         | N/A                       | N/A           | N/A          |          |
| Total Iron                              | 0                  | 0         | 0                | 0         | N/A                       | N/A           | N/A          |          |
| Total Lead                              | 0                  | 0         | 0                | 0         | N/A                       | N/A           | N/A          |          |
| Total Manganese                         | 0                  | 0         | 0                | 0         | N/A                       | N/A           | N/A          |          |
| Total Mercury                           | 0                  | 0         | 0                | 0         | N/A                       | N/A           | N/A          |          |
| Total Nickel                            | 0                  | 0         | 0                | 0         | N/A                       | N/A           | N/A          |          |
| Total Phenols (Phenolics) (PWS)         | 0                  | 0         | 0                | 0         | N/A                       | N/A           | N/A          |          |
| Total Selenium                          | 0                  | 0         | 0                | 0         | N/A                       | N/A           | N/A          |          |
| Total Silver                            | 0                  | 0         | 0                | 0         | N/A                       | N/A           | N/A          |          |
| Total Thallium                          | 0                  | 0         | 0                | 0         | N/A                       | N/A           | N/A          |          |
| Total Zinc                              | 0                  | 0         | 0                | 0         | N/A                       | N/A           | N/A          |          |
| Acrolein                                | 0                  | 0         | 0                | 0         | N/A                       | N/A           | N/A          |          |
| Acrylonitrile                           | 0                  | 0         | 0                | 0         | 0.06                      | 0.06          | 13.8         |          |
| Benzene                                 | 0                  | 0         | 0                | 0         | 0.58                      | 0.58          | 133          |          |
| Bromoform                               | 0                  | 0         | 0                | 0         | 7                         | 7.0           | 1,607        |          |
| Carbon Tetrachloride                    | 0                  | 0         | 0                | 0         | 0.4                       | 0.4           | 91.8         |          |
| Chlorobenzene                           | 0                  | 0         | 0                | 0         | N/A                       | N/A           | N/A          |          |
| Chlorodibromomethane                    | 0                  | 0         | 0                | 0         | 0.8                       | 0.8           | 184          |          |
| 2-Chloroethyl Vinyl Ether               | 0                  | 0         | 0                | 0         | N/A                       | N/A           | N/A          |          |
| Chloroform                              | 0                  | 0         | 0                | 0         | N/A                       | N/A           | N/A          |          |
| Dichlorobromomethane                    | 0                  | 0         | 0                | 0         | 0.95                      | 0.95          | 218          |          |
| 1,2-Dichloroethane                      | 0                  | 0         | 0                | 0         | 0.9                       | 0.9           | 2,273        |          |
| 1,1-Dichloroethylene                    | 0                  | 0         | 0                | 0         | N/A                       | N/A           | N/A          |          |
| 1,2-Dichloropropane                     | 0                  | 0         | 0                | 0         | 0.9                       | 0.9           | 207          |          |
| 1,3-Dichloropropylene                   | 0                  | 0         | 0                | 0         | 0.27                      | 0.27          | 62.0         |          |
| Ethylbenzene                            | 0                  | 0         | 0                | 0         | N/A                       | N/A           | N/A          |          |
| Methyl Bromide                          | 0                  | 0         | 0                | 0         | N/A                       | N/A           | N/A          |          |
| Methyl Chloride                         | 0                  | 0         | 0                | 0         | N/A                       | N/A           | N/A          |          |
| Methylene Chloride                      | 0                  | 0         | 0                | 0         | 20                        | 20.0          | 4,592        |          |
| 1,1,2,2-Tetrachloroethane               | 0                  | 0         | 0                | 0         | 0.2                       | 0.2           | 45.9         |          |
| Tetrachloroethylene                     | 0                  | 0         | 0                | 0         | 10                        | 10.0          | 2,296        |          |
| Toluene                                 | 0                  | 0         | 0                | 0         | N/A                       | N/A           | N/A          |          |
| 1,2-trans-Dichloroethylene              | 0                  | 0         | 0                | 0         | N/A                       | N/A           | N/A          |          |
| 1,1,1-Trichloroethane                   | 0                  | 0         | 0                | 0         | N/A                       | N/A           | N/A          |          |
| 1,1,2-Trichloroethane                   | 0                  | 0         | 0                | 0         | 0.55                      | 0.55          | 126          |          |
| Trichloroethylene                       | 0                  | 0         | 0                | 0         | 0.6                       | 0.6           | 138          |          |
| Vinyl Chloride                          | 0                  | 0         | 0                | 0         | 0.02                      | 0.02          | 4.59         |          |
| 2-Chlorophenol                          | 0                  | 0         | 0                | 0         | N/A                       | N/A           | N/A          |          |
| 2,4-Dichlorophenol                      | 0                  | 0         | 0                | 0         | N/A                       | N/A           | N/A          |          |
| 2,4-Dimethylphenol                      | 0                  | 0         | 0                | 0         | N/A                       | N/A           | N/A          |          |
| 4,6-Dinitro-o-Cresol                    | 0                  | 0         | 0                | 0         | N/A                       | N/A           | N/A          |          |
| 2,4-Dinitrophenol                       | 0                  | 0         | 0                | 0         | N/A                       | N/A           | N/A          |          |
| 2-Nitrophenol                           | 0                  | 0         | 0                | 0         | N/A                       | N/A           | N/A          |          |
| 4-Nitrophenol                           | 0                  | 0         | 0                | 0         | N/A                       | N/A           | N/A          |          |
| p-Chloro-m-Cresol                       | 0                  | 0         | 0                | 0         | N/A                       | N/A           | N/A          |          |
| Pentachlorophenol                       | 0                  | 0         | 0                | 0         | 0.030                     | 0.03          | 6.89         |          |
| Phenol                                  | 0                  | 0         | 0                | 0         | N/A                       | N/A           | N/A          |          |
| 2,4,6-Trichlorophenol                   | 0                  | 0         | 0                | 0         | 1.5                       | 1.5           | 344          |          |
| Acenaphthene                            | 0                  | 0         | 0                | 0         | N/A                       | N/A           | N/A          |          |
| Anthracene                              | 0                  | 0         | 0                | 0         | N/A                       | N/A           | N/A          |          |
| Benzidine                               | 0                  | 0         | 0                | 0         | 0.0001                    | 0.0001        | 0.023        |          |
| Benz(a)Anthracene                       | 0                  | 0         | 0                | 0         | 0.001                     | 0.001         | 0.23         |          |
| Benz(a)Pyrene                           | 0                  | 0         | 0                | 0         | 0.0001                    | 0.0001        | 0.023        |          |
| 3,4-Benzofluoranthene                   | 0                  | 0         | 0                | 0         | 0.001                     | 0.001         | 0.23         |          |
| Benz(o)Fluoranthene                     | 0                  | 0         | 0                | 0         | 0.01                      | 0.01          | 2.3          |          |
| Bis(2-Chloroethyl)Ether                 | 0                  | 0         | 0                | 0         | 0.03                      | 0.03          | 6.89         |          |
| Bis(2-Chloroisopropyl)Ether             | 0                  | 0         | 0                | 0         | N/A                       | N/A           | N/A          |          |
| Bis(2-Ethylhexyl)Phthalate              | 0                  | 0         | 0                | 0         | 0.32                      | 0.32          | 73.5         |          |
| 4-Bromophenyl Ether                     | 0                  | 0         | 0                | 0         | N/A                       | N/A           | N/A          |          |
| Butyl Benzyl Phthalate                  | 0                  | 0         | 0                | 0         | N/A                       | N/A           | N/A          |          |
| 2-Chloronaphthalene                     | 0                  | 0         | 0                | 0         | N/A                       | N/A           | N/A          |          |
| Chrysene                                | 0                  | 0         | 0                | 0         | 0.12                      | 0.12          | 27.8         |          |
| Dibenzo(a,h)Anthracene                  | 0                  | 0         | 0                | 0         | 0.0001                    | 0.0001        | 0.023        |          |
| 1,2-Dichlorobenzene                     | 0                  | 0         | 0                | 0         | N/A                       | N/A           | N/A          |          |
| 1,3-Dichlorobenzene                     | 0                  | 0         | 0                | 0         | N/A                       | N/A           | N/A          |          |
| 1,4-Dichlorobenzene                     | 0                  | 0         | 0                | 0         | N/A                       | N/A           | N/A          |          |
| 3,3-Dichlorobenzidine                   | 0                  | 0         | 0                | 0         | 0.05                      | 0.05          | 11.5         |          |
| Diethyl Phthalate                       | 0                  | 0         | 0                | 0         | N/A                       | N/A           | N/A          |          |
| Dimethyl Phthalate                      | 0                  | 0         | 0                | 0         | N/A                       | N/A           | N/A          |          |
| Di-n-Butyl Phthalate                    | 0                  | 0         | 0                | 0         | N/A                       | N/A           | N/A          |          |
| 2,4-Dinitrotoluene                      | 0                  | 0         | 0                | 0         | 0.05                      | 0.05          | 11.5         |          |
| 2,6-Dinitrotoluene                      | 0                  | 0         | 0                | 0         | 0.05                      | 0.05          | 11.5         |          |
| 1,2-Diphenylhydrazine                   | 0                  | 0         | 0                | 0         | 0.03                      | 0.03          | 6.89         |          |
| Fluoranthene                            | 0                  | 0         | 0                | 0         | N/A                       | N/A           | N/A          |          |
| Fluorene                                | 0                  | 0         | 0                | 0         | N/A                       | N/A           | N/A          |          |
| Hexachlorobenzene                       | 0                  | 0         | 0                | 0         | 0.00008                   | 0.00008       | 0.018        |          |

|                           |   |   |  |   |        |        |      |  |
|---------------------------|---|---|--|---|--------|--------|------|--|
| Hexachlorobutadiene       | 0 | 0 |  | 0 | 0.01   | 0.01   | 2.3  |  |
| Hexachlorocyclopentadiene | 0 | 0 |  | 0 | N/A    | N/A    | N/A  |  |
| Hexachloroethane          | 0 | 0 |  | 0 | 0.1    | 0.1    | 23.0 |  |
| Indeno(1,2,3-cd)Pyrene    | 0 | 0 |  | 0 | 0.001  | 0.001  | 0.23 |  |
| Isophorone                | 0 | 0 |  | 0 | N/A    | N/A    | N/A  |  |
| Naphthalene               | 0 | 0 |  | 0 | N/A    | N/A    | N/A  |  |
| Nitrobenzene              | 0 | 0 |  | 0 | N/A    | N/A    | N/A  |  |
| n-Nitrosodimethylamine    | 0 | 0 |  | 0 | 0.0007 | 0.0007 | 0.16 |  |
| n-Nitrosodi-n-Propylamine | 0 | 0 |  | 0 | 0.005  | 0.005  | 1.15 |  |
| n-Nitrosodiphenylamine    | 0 | 0 |  | 0 | 3.3    | 3.3    | 758  |  |
| Phenanthrene              | 0 | 0 |  | 0 | N/A    | N/A    | N/A  |  |
| Pyrene                    | 0 | 0 |  | 0 | N/A    | N/A    | N/A  |  |
| 1,2,4-Trichlorobenzene    | 0 | 0 |  | 0 | N/A    | N/A    | N/A  |  |

Recommended WQBELs & Monitoring Requirements

No. Samples/Month: **4**

| Pollutants     | Mass Limits   |               | Concentration Limits |        |        |       | Governing WQBEL | WQBEL Basis | Comments                           |
|----------------|---------------|---------------|----------------------|--------|--------|-------|-----------------|-------------|------------------------------------|
|                | AML (lbs/day) | MDL (lbs/day) | AML                  | MDL    | IMAX   | Units |                 |             |                                    |
| Total Thallium | Report        | Report        | Report               | Report | Report | µg/L  | 14.6            | THH         | Discharge Conc > 10% WQBEL (no RP) |
|                |               |               |                      |        |        |       |                 |             |                                    |

Other Pollutants without Limits or Monitoring

The following pollutants do not require effluent limits or monitoring based on water quality because reasonable potential to exceed water quality criteria was not determined and the discharge concentration was less than thresholds for monitoring, or the pollutant was not detected and a sufficiently sensitive analytical method was used (e.g., <= Target QL).

| Pollutants      | Governing WQBEL | Units | Comments                   |
|-----------------|-----------------|-------|----------------------------|
| Total Aluminum  | N/A             | µg/L  | Discharge Conc < TQL       |
| Total Antimony  | 341             | µg/L  | Discharge Conc ≤ 10% WQBEL |
| Total Arsenic   | N/A             | µg/L  | Discharge Conc < TQL       |
| Total Barium    | 148,311         | µg/L  | Discharge Conc ≤ 10% WQBEL |
| Total Beryllium | N/A             | µg/L  | No WQS                     |
| Total Boron     | 112,206         | µg/L  | Discharge Conc ≤ 10% WQBEL |
| Total Cadmium   | N/A             | µg/L  | Discharge Conc < TQL       |
| Free Cyanide    | 244             | µg/L  | Discharge Conc ≤ 25% WQBEL |
| Total Cyanide   | N/A             | µg/L  | No WQS                     |
| Dissolved Iron  | 18,289          | µg/L  | Discharge Conc ≤ 10% WQBEL |
| Total Iron      | 142,038         | µg/L  | Discharge Conc ≤ 10% WQBEL |
| Total Lead      | 299             | µg/L  | Discharge Conc < TQL       |

|                                 |         |      |                            |
|---------------------------------|---------|------|----------------------------|
| Total Manganese                 | 60,963  | µg/L | Discharge Conc ≤ 10% WQBEL |
| Total Mercury                   | 3.05    | µg/L | Discharge Conc < TQL       |
| Total Nickel                    | 4,879   | µg/L | Discharge Conc ≤ 10% WQBEL |
| Total Phenols (Phenolics) (PWS) |         | µg/L | Discharge Conc < TQL       |
| Total Selenium                  | 463     | µg/L | Discharge Conc < TQL       |
| Total Silver                    | 56.0    | µg/L | Discharge Conc < TQL       |
| Total Zinc                      | 1,715   | µg/L | Discharge Conc ≤ 10% WQBEL |
| Total Molybdenum                | N/A     | N/A  | No WQS                     |
| Acrolein                        | 41.6    | µg/L | Discharge Conc < TQL       |
| Acrylonitrile                   | 13.8    | µg/L | Discharge Conc < TQL       |
| Benzene                         | 133     | µg/L | Discharge Conc < TQL       |
| Bromofom                        | 1,807   | µg/L | Discharge Conc < TQL       |
| Carbon Tetrachloride            | 91.8    | µg/L | Discharge Conc < TQL       |
| Chlorobenzene                   | 6,096   | µg/L | Discharge Conc ≤ 25% WQBEL |
| Chlorodibromomethane            | 184     | µg/L | Discharge Conc ≤ 25% WQBEL |
| Chloroethane                    | N/A     | N/A  | No WQS                     |
| 2-Chloroethyl Vinyl Ether       | 249,347 | µg/L | Discharge Conc < TQL       |
| Chloroform                      | 347     | µg/L | Discharge Conc ≤ 25% WQBEL |
| Dichlorobromomethane            | 218     | µg/L | Discharge Conc ≤ 25% WQBEL |
| 1,1-Dichloroethane              | N/A     | N/A  | No WQS                     |
| 1,2-Dichloroethane              | 2,273   | µg/L | Discharge Conc < TQL       |
| 1,1-Dichloroethylene            | 2,012   | µg/L | Discharge Conc < TQL       |
| 1,2-Dichloropropane             | 207     | µg/L | Discharge Conc < TQL       |
| 1,3-Dichloropropylene           | 62.0    | µg/L | Discharge Conc < TQL       |
| 1,4-Dioxane                     | N/A     | N/A  | No WQS                     |
| Methyl Bromide                  | 6,096   | µg/L | Discharge Conc < TQL       |
| Methyl Chloride                 | 387,873 | µg/L | Discharge Conc < TQL       |
| Methylene Chloride              | 4,592   | µg/L | Discharge Conc < TQL       |
| 1,1,2,2-Tetrachloroethane       | 45.9    | µg/L | Discharge Conc < TQL       |
| Tetrachloroethylene             | 2,296   | µg/L | Discharge Conc < TQL       |
| Toluene                         | 3,475   | µg/L | Discharge Conc < TQL       |
| 1,2-trans-Dichloroethylene      | 6,096   | µg/L | Discharge Conc < TQL       |
| 1,1,2-Trichloroethane           | 41,558  | µg/L | Discharge Conc < TQL       |
| 1,1,2-Trichloroethane           | 128     | µg/L | Discharge Conc < TQL       |
| Trichloroethylene               | 138     | µg/L | Discharge Conc < TQL       |
| Vinyl Chloride                  | 4.59    | µg/L | Discharge Conc < TQL       |
| 2-Chlorophenol                  | 1,829   | µg/L | Discharge Conc < TQL       |
| 2,4-Dichlorophenol              | 610     | µg/L | Discharge Conc < TQL       |
| 2,4-Dimethylphenol              | 6,096   | µg/L | Discharge Conc < TQL       |
| 4,6-Dinitro-o-Cresol            | 122     | µg/L | Discharge Conc < TQL       |
| 2,4-Dinitrophenol               | 610     | µg/L | Discharge Conc < TQL       |
| 2-Nitrophenol                   | 110,821 | µg/L | Discharge Conc < TQL       |
| 4-Nitrophenol                   | 31,881  | µg/L | Discharge Conc ≤ 25% WQBEL |
| p-Chloro-m-Cresol               | 2,216   | µg/L | Discharge Conc < TQL       |
| Pentachlorophenol               | 6.89    | µg/L | Discharge Conc < TQL       |

|                             |         |      |                      |
|-----------------------------|---------|------|----------------------|
| Phenol                      | 243,852 | µg/L | Discharge Conc < TQL |
| 2,4,6-Trichlorophenol       | 344     | µg/L | Discharge Conc < TQL |
| Acenaphthene                | 1,150   | µg/L | Discharge Conc < TQL |
| Acenaphthylene              | N/A     | N/A  | No WQS               |
| Anthracene                  | 18,289  | µg/L | Discharge Conc < TQL |
| Benzidine                   | 0.023   | µg/L | Discharge Conc < TQL |
| Benz(o)Anthracene           | 0.23    | µg/L | Discharge Conc < TQL |
| Benz(o)Pyrene               | 0.023   | µg/L | Discharge Conc < TQL |
| 3,4-Benzofluoranthene       | 0.23    | µg/L | Discharge Conc < TQL |
| Benz(ghi)Perylene           | N/A     | N/A  | No WQS               |
| Benz(k)Fluoranthene         | 2.3     | µg/L | Discharge Conc < TQL |
| Bis(2-Chloroethoxy)Methane  | N/A     | N/A  | No WQS               |
| Bis(2-Chloroethyl)Ether     | 6.89    | µg/L | Discharge Conc < TQL |
| Bis(2-Chloroisopropyl)Ether | 12,193  | µg/L | Discharge Conc < TQL |
| Bis(2-Ethylhexyl)Phthalate  | 73.5    | µg/L | Discharge Conc < TQL |
| 4-Bromophenyl Phenyl Ether  | 3,740   | µg/L | Discharge Conc < TQL |
| Butyl Benzyl Phthalate      | 6.1     | µg/L | Discharge Conc < TQL |
| 2-Chloronaphthalene         | 48,770  | µg/L | Discharge Conc < TQL |
| 4-Chlorophenyl Phenyl Ether | N/A     | N/A  | No WQS               |
| Chrysene                    | 27.6    | µg/L | Discharge Conc < TQL |
| Dibenzo(a,h)Anthracene      | 0.023   | µg/L | Discharge Conc < TQL |
| 1,2-Dichlorobenzene         | 11,359  | µg/L | Discharge Conc < TQL |
| 1,3-Dichlorobenzene         | 427     | µg/L | Discharge Conc < TQL |
| 1,4-Dichlorobenzene         | 10,112  | µg/L | Discharge Conc < TQL |
| 3,3-Dichlorobenzidine       | 11.5    | µg/L | Discharge Conc < TQL |
| Diethyl Phthalate           | 36,578  | µg/L | Discharge Conc < TQL |
| Dimethyl Phthalate          | 34,632  | µg/L | Discharge Conc < TQL |
| Di-n-Butyl Phthalate        | 1,219   | µg/L | Discharge Conc < TQL |
| 2,4-Dinitrotoluene          | 11.5    | µg/L | Discharge Conc < TQL |
| 2,6-Dinitrotoluene          | 11.5    | µg/L | Discharge Conc < TQL |
| Di-n-Octyl Phthalate        | N/A     | N/A  | No WQS               |
| 1,2-Diphenylhydrazine       | 6.89    | µg/L | Discharge Conc < TQL |
| Fluoranthene                | 1,219   | µg/L | Discharge Conc < TQL |
| Fluorene                    | 3,048   | µg/L | Discharge Conc < TQL |
| Hexachlorobenzene           | 0.018   | µg/L | Discharge Conc < TQL |
| Hexachlorobutadiene         | 2.3     | µg/L | Discharge Conc < TQL |
| Hexachlorocyclopentadiene   | 69.3    | µg/L | Discharge Conc < TQL |
| Hexachloroethane            | 23.0    | µg/L | Discharge Conc < TQL |
| Indeno(1,2,3-cd)Pyrene      | 0.23    | µg/L | Discharge Conc < TQL |
| Isophorone                  | 2,073   | µg/L | Discharge Conc < TQL |
| Naphthalene                 | 1,939   | µg/L | Discharge Conc < TQL |
| Nitrobenzene                | 610     | µg/L | Discharge Conc < TQL |
| n-Nitrosodimethylamine      | 0.18    | µg/L | Discharge Conc < TQL |
| n-Nitrosodi-n-Propylamine   | 1.15    | µg/L | Discharge Conc < TQL |
| n-Nitrosodiphenylamine      | 758     | µg/L | Discharge Conc < TQL |
| Phenanthrene                | 69.3    | µg/L | Discharge Conc < TQL |

| Pyrene                 | 1,219 | µg/L | Discharge Conc < TQL |
|------------------------|-------|------|----------------------|
| 1,2,4-Trichlorobenzene | 4.27  | µg/L | Discharge Conc < TQL |
| PCB-1016               | N/A   | N/A  | No WQS               |
| PCB-1221               | N/A   | N/A  | No WQS               |
| PCB-1232               | N/A   | N/A  | No WQS               |
| PCB-1242               | N/A   | N/A  | No WQS               |
| PCB-1248               | N/A   | N/A  | No WQS               |
| PCB-1254               | N/A   | N/A  | No WQS               |
| PCB-1260               | N/A   | N/A  | No WQS               |

TRC\_Calc

TRC\_CALC

| TRC EVALUATION                              |           |                                                                                                           |  |           |                     |
|---------------------------------------------|-----------|-----------------------------------------------------------------------------------------------------------|--|-----------|---------------------|
| Input appropriate values in A3:A9 and D3:D9 |           |                                                                                                           |  |           |                     |
| Source                                      | Reference | AFC Calculations                                                                                          |  | Reference | CFC Calculations    |
| TRC                                         | 1.3.2.iii | WLA_afc = 6.594                                                                                           |  | 1.3.2.iii | WLA_cfc = 6.421     |
| PENTOXSD TRG                                | 5.1a      | LTAMULT_afc = 0.373                                                                                       |  | 5.1c      | LTAMULT_cfc = 0.581 |
| PENTOXSD TRG                                | 5.1b      | LTA_afc = 2.457                                                                                           |  | 5.1d      | LTA_cfc = 3.733     |
| Effluent Limit Calculations                 |           |                                                                                                           |  |           |                     |
| PENTOXSD TRG                                | 5.1f      | AML MULT = 1.231                                                                                          |  |           |                     |
| PENTOXSD TRG                                | 5.1g      | AVG MON LIMIT (mg/l) = 0.500                                                                              |  | BAT/BPJ   |                     |
|                                             |           | INST MAX LIMIT (mg/l) = 1.635                                                                             |  |           |                     |
| WLA_afc                                     |           | $(.019/e(-k*AFC_tc)) + [(AFC_Yc*Qs*.019/Qd*e(-k*AFC_tc))... \\ ... + Xd + (AFC_Yc*Qs*Xs/Qd)]*(1-FOS/100)$ |  |           |                     |
| LTAMULT_afc                                 |           | $\text{EXP}((0.5*\text{LN}(cvh^2+1))-2.326*\text{LN}(cvh^2+1)^0.5)$                                       |  |           |                     |
| LTA_afc                                     |           | wla_afc*LTAMULT_afc                                                                                       |  |           |                     |
| WLA_cfc                                     |           | $(.011/e(-k*CFC_tc)) + [(CFC_Yc*Qs*.011/Qd*e(-k*CFC_tc))... \\ ... + Xd + (CFC_Yc*Qs*Xs/Qd)]*(1-FOS/100)$ |  |           |                     |
| LTAMULT_cfc                                 |           | $\text{EXP}((0.5*\text{LN}(cvd^2/no_samples+1))-2.326*\text{LN}(cvd^2/no_samples+1)^0.5)$                 |  |           |                     |
| LTA_cfc                                     |           | wla_cfc*LTAMULT_cfc                                                                                       |  |           |                     |
| AML MULT                                    |           | $\text{EXP}(2.326*\text{LN}(cvd^2/no_samples+1)^0.5)-0.5*\text{LN}(cvd^2/no_samples+1)$                   |  |           |                     |
| AVG MON LIMIT                               |           | MIN(BAT_BPJ,MIN(LTA_afc,LTA_cfc)*AML_MULT)                                                                |  |           |                     |
| INST MAX LIMIT                              |           | 1.5*((av_mon_limit/AML_MULT)/LTAMULT_afc)                                                                 |  |           |                     |

WETT

| DEP Whole Effluent Toxicity (WET) Analysis Spreadsheet |           |                |                  |               |                      |                   |           |                |                  |                      |                      |               |           |       |
|--------------------------------------------------------|-----------|----------------|------------------|---------------|----------------------|-------------------|-----------|----------------|------------------|----------------------|----------------------|---------------|-----------|-------|
| Type of Test                                           |           | Species Tested |                  | Facility Name |                      | Type of Test      |           | Species Tested |                  | Facility Name        |                      |               |           |       |
| Type of Test                                           | Chronic   | Species Tested | Pimephales       | Facility Name | Easton Area JSA WWTP | Type of Test      | Chronic   | Species Tested | Pimephales       | Facility Name        | Easton Area JSA WWTP |               |           |       |
| Endpoint                                               | Survival  | TIWC (decimal) | 0.01             | Permit No.    | PA0027235            | Endpoint          | Growth    | TIWC (decimal) | 0.01             | Permit No.           | PA0027235            |               |           |       |
| No. Per Replicate                                      | 10        | TST b value    | 0.75             |               |                      | No. Per Replicate | 10        | TST b value    | 0.75             |                      |                      |               |           |       |
| TST alpha value                                        | 0.25      |                |                  |               |                      | TST alpha value   | 0.25      |                |                  |                      |                      |               |           |       |
| Test Completion Date                                   |           |                |                  |               | Test Completion Date |                   |           |                |                  | Test Completion Date |                      |               |           |       |
| Replicate No.                                          | 7/26/2022 |                | Replicate No.    | 4/18/2023     |                      | Replicate No.     | 7/26/2022 |                | Replicate No.    | 4/18/2023            |                      | Replicate No. | 7/26/2022 |       |
| Replicate No.                                          | Control   | TIWC           | Replicate No.    | Control       | TIWC                 | Replicate No.     | Control   | TIWC           | Replicate No.    | Control              | TIWC                 | Replicate No. | Control   | TIWC  |
| 1                                                      | 10        | 9              | 1                | 10            | 9                    | 1                 | 0.383     | 0.433          | 1                | 0.33                 | 0.344                | 1             | 0.33      | 0.344 |
| 2                                                      | 10        | 10             | 2                | 10            | 10                   | 2                 | 0.346     | 0.404          | 2                | 0.327                | 0.386                | 2             | 0.327     | 0.386 |
| 3                                                      | 10        | 9              | 3                | 10            | 10                   | 3                 | 0.385     | 0.439          | 3                | 0.372                | 0.394                | 3             | 0.372     | 0.394 |
| 4                                                      | 9         | 10             | 4                | 10            | 9                    | 4                 | 0.358     | 0.448          | 4                | 0.382                | 0.389                | 4             | 0.382     | 0.389 |
| 5                                                      |           |                | 5                |               |                      | 5                 |           |                | 5                |                      |                      | 5             |           |       |
| 6                                                      |           |                | 6                |               |                      | 6                 |           |                | 6                |                      |                      | 6             |           |       |
| 7                                                      |           |                | 7                |               |                      | 7                 |           |                | 7                |                      |                      | 7             |           |       |
| 8                                                      |           |                | 8                |               |                      | 8                 |           |                | 8                |                      |                      | 8             |           |       |
| 9                                                      |           |                | 9                |               |                      | 9                 |           |                | 9                |                      |                      | 9             |           |       |
| 10                                                     |           |                | 10               |               |                      | 10                |           |                | 10               |                      |                      | 10            |           |       |
| 11                                                     |           |                | 11               |               |                      | 11                |           |                | 11               |                      |                      | 11            |           |       |
| 12                                                     |           |                | 12               |               |                      | 12                |           |                | 12               |                      |                      | 12            |           |       |
| 13                                                     |           |                | 13               |               |                      | 13                |           |                | 13               |                      |                      | 13            |           |       |
| 14                                                     |           |                | 14               |               |                      | 14                |           |                | 14               |                      |                      | 14            |           |       |
| 15                                                     |           |                | 15               |               |                      | 15                |           |                | 15               |                      |                      | 15            |           |       |
| Mean                                                   | 9.750     | 9.500          | Mean             | 10.000        | 9.500                | Mean              | 0.368     | 0.431          | Mean             | 0.353                | 0.378                |               |           |       |
| Std Dev.                                               | 0.500     | 0.577          | Std Dev.         | 0.000         | 0.577                | Std Dev.          | 0.019     | 0.019          | Std Dev.         | 0.028                | 0.023                |               |           |       |
| # Replicates                                           | 4         | 4              | # Replicates     | 4             | 4                    | # Replicates      | 4         | 4              | # Replicates     | 4                    | 4                    |               |           |       |
| T-Test Result                                          | 5.3848    |                | T-Test Result    | 5.7714        |                      | T-Test Result     | 13.0087   |                | T-Test Result    | 7.2502               |                      |               |           |       |
| Deg. of Freedom                                        | 5         |                | Deg. of Freedom  | 3             |                      | Deg. of Freedom   | 5         |                | Deg. of Freedom  | 5                    |                      |               |           |       |
| Critical T Value                                       | 0.7267    |                | Critical T Value | 0.7649        |                      | Critical T Value  | 0.7267    |                | Critical T Value | 0.7267               |                      |               |           |       |
| Pass or Fail                                           | PASS      |                | Pass or Fail     | PASS          |                      | Pass or Fail      | PASS      |                | Pass or Fail     | PASS                 |                      |               |           |       |
| Test Completion Date                                   |           |                |                  |               | Test Completion Date |                   |           |                |                  | Test Completion Date |                      |               |           |       |
| Replicate No.                                          | 5/21/2024 |                | Replicate No.    | 6/10/2025     |                      | Replicate No.     | 5/21/2024 |                | Replicate No.    | 6/10/2025            |                      | Replicate No. | 5/21/2024 |       |
| Replicate No.                                          | Control   | TIWC           | Replicate No.    | Control       | TIWC                 | Replicate No.     | Control   | TIWC           | Replicate No.    | Control              | TIWC                 | Replicate No. | Control   | TIWC  |
| 1                                                      | 10        | 10             | 1                | 10            | 10                   | 1                 | 0.412     | 0.319          | 1                | 0.395                | 0.398                | 1             | 0.395     | 0.398 |
| 2                                                      | 10        | 10             | 2                | 10            | 10                   | 2                 | 0.392     | 0.348          | 2                | 0.384                | 0.328                | 2             | 0.384     | 0.328 |
| 3                                                      | 10        | 10             | 3                | 10            | 10                   | 3                 | 0.34      | 0.384          | 3                | 0.381                | 0.294                | 3             | 0.381     | 0.294 |
| 4                                                      | 10        | 10             | 4                | 10            | 10                   | 4                 | 0.399     | 0.412          | 4                | 0.404                | 0.388                | 4             | 0.404     | 0.388 |
| 5                                                      |           |                | 5                |               |                      | 5                 |           |                | 5                |                      |                      | 5             |           |       |
| 6                                                      |           |                | 6                |               |                      | 6                 |           |                | 6                |                      |                      | 6             |           |       |
| 7                                                      |           |                | 7                |               |                      | 7                 |           |                | 7                |                      |                      | 7             |           |       |
| 8                                                      |           |                | 8                |               |                      | 8                 |           |                | 8                |                      |                      | 8             |           |       |
| 9                                                      |           |                | 9                |               |                      | 9                 |           |                | 9                |                      |                      | 9             |           |       |
| 10                                                     |           |                | 10               |               |                      | 10                |           |                | 10               |                      |                      | 10            |           |       |
| 11                                                     |           |                | 11               |               |                      | 11                |           |                | 11               |                      |                      | 11            |           |       |
| 12                                                     |           |                | 12               |               |                      | 12                |           |                | 12               |                      |                      | 12            |           |       |
| 13                                                     |           |                | 13               |               |                      | 13                |           |                | 13               |                      |                      | 13            |           |       |
| 14                                                     |           |                | 14               |               |                      | 14                |           |                | 14               |                      |                      | 14            |           |       |
| 15                                                     |           |                | 15               |               |                      | 15                |           |                | 15               |                      |                      | 15            |           |       |
| Mean                                                   | 10.000    | 10.000         | Mean             | 10.000        | 10.000               | Mean              | 0.386     | 0.381          | Mean             | 0.391                | 0.352                |               |           |       |
| Std Dev.                                               | 0.000     | 0.000          | Std Dev.         | 0.000         | 0.000                | Std Dev.          | 0.032     | 0.039          | Std Dev.         | 0.011                | 0.050                |               |           |       |
| # Replicates                                           | 4         | 4              | # Replicates     | 4             | 4                    | # Replicates      | 4         | 4              | # Replicates     | 4                    | 4                    |               |           |       |
| T-Test Result                                          |           |                | T-Test Result    |               |                      | T-Test Result     |           |                | T-Test Result    |                      |                      |               |           |       |
| Deg. of Freedom                                        |           |                | Deg. of Freedom  |               |                      | Deg. of Freedom   |           |                | Deg. of Freedom  |                      |                      |               |           |       |
| Critical T Value                                       |           |                | Critical T Value |               |                      | Critical T Value  |           |                | Critical T Value |                      |                      |               |           |       |
| Pass or Fail                                           | PASS      |                | Pass or Fail     | PASS          |                      | Pass or Fail      | PASS      |                | Pass or Fail     | PASS                 |                      |               |           |       |

NPDES Permit Fact Sheet  
Easton WWTP

NPDES Permit No. PA0027235

| DEP Whole Effluent Toxicity (WET) Analysis Spreadsheet |           |        |  |                                     |           |        |  |               |           |        |  |
|--------------------------------------------------------|-----------|--------|--|-------------------------------------|-----------|--------|--|---------------|-----------|--------|--|
| Type of Test                                           |           |        |  | Species Tested                      |           |        |  |               |           |        |  |
| Endpoint                                               |           |        |  | Chronic<br>Ceriodaphnia<br>Survival |           |        |  |               |           |        |  |
| TIWC (decimal)                                         |           |        |  | 0.01                                |           |        |  |               |           |        |  |
| No. Per Replicate                                      |           |        |  | 1                                   |           |        |  |               |           |        |  |
| TST b value                                            |           |        |  | 0.75                                |           |        |  |               |           |        |  |
| TST alpha value                                        |           |        |  | 0.2                                 |           |        |  |               |           |        |  |
| Test Completion Date                                   |           |        |  |                                     |           |        |  |               |           |        |  |
| Replicate No.                                          | 7/25/2022 |        |  | Replicate No.                       | 4/18/2023 |        |  | Replicate No. | 7/25/2022 |        |  |
|                                                        | Control   | TIWC   |  |                                     | Control   | TIWC   |  |               | Control   | TIWC   |  |
| 1                                                      | 1         | 1      |  | 1                                   | 1         | 1      |  | 1             | 34        | 34     |  |
| 2                                                      | 1         | 1      |  | 2                                   | 1         | 1      |  | 2             | 27        | 30     |  |
| 3                                                      | 1         | 0      |  | 3                                   | 1         | 1      |  | 3             | 16        | 4      |  |
| 4                                                      | 1         | 1      |  | 4                                   | 1         | 1      |  | 4             | 29        | 27     |  |
| 5                                                      | 1         | 1      |  | 5                                   | 1         | 1      |  | 5             | 36        | 18     |  |
| 6                                                      | 1         | 1      |  | 6                                   | 1         | 1      |  | 6             | 30        | 34     |  |
| 7                                                      | 0         | 1      |  | 7                                   | 1         | 1      |  | 7             | 16        | 29     |  |
| 8                                                      | 1         | 1      |  | 8                                   | 1         | 1      |  | 8             | 26        | 36     |  |
| 9                                                      | 1         | 1      |  | 9                                   | 1         | 1      |  | 9             | 33        | 32     |  |
| 10                                                     | 1         | 1      |  | 10                                  | 1         | 1      |  | 10            | 38        | 34     |  |
| 11                                                     |           |        |  | 11                                  |           |        |  | 11            |           |        |  |
| 12                                                     |           |        |  | 12                                  |           |        |  | 12            |           |        |  |
| 13                                                     |           |        |  | 13                                  |           |        |  | 13            |           |        |  |
| 14                                                     |           |        |  | 14                                  |           |        |  | 14            |           |        |  |
| 15                                                     |           |        |  | 15                                  |           |        |  | 15            |           |        |  |
| Mean                                                   | 0.900     | 0.900  |  | Mean                                | 1.000     | 1.000  |  | Mean          | 28.500    | 27.800 |  |
| Std Dev.                                               | 0.316     | 0.316  |  | Std Dev.                            | 0.000     | 0.000  |  | Std Dev.      | 7.805     | 9.830  |  |
| # Replicates                                           | 10        | 10     |  | # Replicates                        | 10        | 10     |  | # Replicates  | 10        | 10     |  |
| T-Test Result                                          |           |        |  |                                     |           |        |  |               |           |        |  |
| Deg. of Freedom                                        |           |        |  | T-Test Result                       |           |        |  |               |           |        |  |
| Critical T Value                                       |           |        |  | Deg. of Freedom                     |           |        |  |               |           |        |  |
| Pass or Fail                                           |           |        |  | Critical T Value                    |           |        |  |               |           |        |  |
| PASS                                                   |           |        |  | Pass or Fail                        |           |        |  |               |           |        |  |
| Test Completion Date                                   |           |        |  |                                     |           |        |  |               |           |        |  |
| Replicate No.                                          | 5/20/2024 |        |  | Replicate No.                       | 6/10/2025 |        |  | Replicate No. | 5/20/2024 |        |  |
|                                                        | Control   | TIWC   |  |                                     | Control   | TIWC   |  |               | Control   | TIWC   |  |
| 1                                                      | 1         | 1      |  | 1                                   | 1         | 1      |  | 1             | 40        | 38     |  |
| 2                                                      | 1         | 1      |  | 2                                   | 1         | 1      |  | 2             | 35        | 40     |  |
| 3                                                      | 1         | 1      |  | 3                                   | 1         | 1      |  | 3             | 39        | 39     |  |
| 4                                                      | 1         | 1      |  | 4                                   | 1         | 1      |  | 4             | 34        | 41     |  |
| 5                                                      | 1         | 1      |  | 5                                   | 1         | 1      |  | 5             | 38        | 37     |  |
| 6                                                      | 1         | 1      |  | 6                                   | 1         | 1      |  | 6             | 32        | 30     |  |
| 7                                                      | 1         | 1      |  | 7                                   | 1         | 1      |  | 7             | 17        | 31     |  |
| 8                                                      | 1         | 1      |  | 8                                   | 1         | 1      |  | 8             | 30        | 34     |  |
| 9                                                      | 1         | 1      |  | 9                                   | 1         | 1      |  | 9             | 38        | 35     |  |
| 10                                                     | 1         | 0      |  | 10                                  | 1         | 1      |  | 10            | 32        | 0      |  |
| 11                                                     |           |        |  | 11                                  |           |        |  | 11            |           |        |  |
| 12                                                     |           |        |  | 12                                  |           |        |  | 12            |           |        |  |
| 13                                                     |           |        |  | 13                                  |           |        |  | 13            |           |        |  |
| 14                                                     |           |        |  | 14                                  |           |        |  | 14            |           |        |  |
| 15                                                     |           |        |  | 15                                  |           |        |  | 15            |           |        |  |
| Mean                                                   | 1.000     | 0.900  |  | Mean                                | 1.000     | 1.000  |  | Mean          | 33.100    | 32.500 |  |
| Std Dev.                                               | 0.000     | 0.316  |  | Std Dev.                            | 0.000     | 0.000  |  | Std Dev.      | 6.454     | 11.993 |  |
| # Replicates                                           | 10        | 10     |  | # Replicates                        | 10        | 10     |  | # Replicates  | 10        | 10     |  |
| T-Test Result                                          |           |        |  |                                     |           |        |  |               |           |        |  |
| Deg. of Freedom                                        |           |        |  | T-Test Result                       |           |        |  |               |           |        |  |
| Critical T Value                                       |           |        |  | Deg. of Freedom                     |           |        |  |               |           |        |  |
| Pass or Fail                                           |           |        |  | Critical T Value                    |           |        |  |               |           |        |  |
| PASS                                                   |           |        |  | Pass or Fail                        |           |        |  |               |           |        |  |
| Test Completion Date                                   |           |        |  |                                     |           |        |  |               |           |        |  |
| Replicate No.                                          | 6/10/2025 |        |  | Replicate No.                       | 6/10/2025 |        |  | Replicate No. | 6/10/2025 |        |  |
|                                                        | Control   | TIWC   |  |                                     | Control   | TIWC   |  |               | Control   | TIWC   |  |
| 1                                                      | 40        | 38     |  | 1                                   | 40        | 38     |  | 1             | 40        | 38     |  |
| 2                                                      | 34        | 34     |  | 2                                   | 35        | 40     |  | 2             | 34        | 34     |  |
| 3                                                      | 36        | 43     |  | 3                                   | 39        | 39     |  | 3             | 36        | 43     |  |
| 4                                                      | 32        | 39     |  | 4                                   | 34        | 41     |  | 4             | 32        | 39     |  |
| 5                                                      | 35        | 37     |  | 5                                   | 38        | 37     |  | 5             | 35        | 37     |  |
| 6                                                      | 37        | 36     |  | 6                                   | 32        | 30     |  | 6             | 37        | 36     |  |
| 7                                                      | 33        | 37     |  | 7                                   | 17        | 31     |  | 7             | 33        | 37     |  |
| 8                                                      | 42        | 34     |  | 8                                   | 30        | 34     |  | 8             | 42        | 34     |  |
| 9                                                      | 33        | 31     |  | 9                                   | 38        | 35     |  | 9             | 33        | 31     |  |
| 10                                                     | 31        | 33     |  | 10                                  | 32        | 0      |  | 10            | 31        | 33     |  |
| 11                                                     |           |        |  | 11                                  |           |        |  | 11            |           |        |  |
| 12                                                     |           |        |  | 12                                  |           |        |  | 12            |           |        |  |
| 13                                                     |           |        |  | 13                                  |           |        |  | 13            |           |        |  |
| 14                                                     |           |        |  | 14                                  |           |        |  | 14            |           |        |  |
| 15                                                     |           |        |  | 15                                  |           |        |  | 15            |           |        |  |
| Mean                                                   | 35.300    | 36.000 |  | Mean                                | 35.300    | 36.000 |  | Mean          | 35.329    | 33.387 |  |
| Std Dev.                                               | 3.529     | 3.387  |  | Std Dev.                            | 3.529     | 3.387  |  | Std Dev.      | 10        | 10     |  |
| # Replicates                                           | 10        | 10     |  | # Replicates                        | 10        | 10     |  | # Replicates  | 10        | 10     |  |
| T-Test Result                                          |           |        |  |                                     |           |        |  |               |           |        |  |
| Deg. of Freedom                                        |           |        |  | T-Test Result                       |           |        |  |               |           |        |  |
| Critical T Value                                       |           |        |  | Deg. of Freedom                     |           |        |  |               |           |        |  |
| Pass or Fail                                           |           |        |  | Critical T Value                    |           |        |  |               |           |        |  |
| PASS                                                   |           |        |  | Pass or Fail                        |           |        |  |               |           |        |  |

| WET Summary and Evaluation    |                      |                          |           |           |  |  |  |
|-------------------------------|----------------------|--------------------------|-----------|-----------|--|--|--|
| Facility Name                 | Easton Area JSA WWTP |                          |           |           |  |  |  |
| Permit No.                    | PA0027235            |                          |           |           |  |  |  |
| Design Flow (MGD)             | 10                   |                          |           |           |  |  |  |
| Q <sub>7-10</sub> Flow (cfs)  | 1450                 |                          |           |           |  |  |  |
| PMF <sub>a</sub>              | 0.22                 |                          |           |           |  |  |  |
| PMF <sub>c</sub>              | 0.98                 |                          |           |           |  |  |  |
|                               |                      | Test Results (Pass/Fail) |           |           |  |  |  |
| Species                       | Endpoint             | Test Date                | Test Date | Test Date |  |  |  |
| Pimephales                    | Survival             | 7/26/22                  | 4/18/23   | 5/21/24   |  |  |  |
|                               |                      | 6/10/25                  |           |           |  |  |  |
|                               |                      | Test Results (Pass/Fail) |           |           |  |  |  |
| Species                       | Endpoint             | Test Date                | Test Date | Test Date |  |  |  |
| Pimephales                    | Growth               | 7/26/22                  | 4/18/23   | 5/21/24   |  |  |  |
|                               |                      | 6/10/25                  |           |           |  |  |  |
|                               |                      | Test Results (Pass/Fail) |           |           |  |  |  |
| Species                       | Endpoint             | Test Date                | Test Date | Test Date |  |  |  |
| Ceriodaphnia                  | Survival             | 7/25/22                  | 4/18/23   | 5/20/24   |  |  |  |
|                               |                      | 6/10/25                  |           |           |  |  |  |
|                               |                      | Test Results (Pass/Fail) |           |           |  |  |  |
| Species                       | Endpoint             | Test Date                | Test Date | Test Date |  |  |  |
| Ceriodaphnia                  | Reproduction         | 7/25/22                  | 4/18/23   | 5/20/24   |  |  |  |
|                               |                      | 6/10/25                  |           |           |  |  |  |
| Reasonable Potential?         | NO                   |                          |           |           |  |  |  |
| <u>Permit Recommendations</u> |                      |                          |           |           |  |  |  |
| Test Type                     | Chronic              |                          |           |           |  |  |  |
| TIWC                          | 1                    | % Effluent               |           |           |  |  |  |
| Dilution Series               | 1, 2, 30, 60, 100    | % Effluent               |           |           |  |  |  |
| Permit Limit                  | None                 |                          |           |           |  |  |  |
| Permit Limit Species          |                      |                          |           |           |  |  |  |