

 Application Type
 Renewal

 Facility Type
 Municipal

 Major / Minor
 Major

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

Application No.	PA0027243
APS ID	802582
Authorization ID	1264374

Applicant and Facility Information

Applicant Name	North Huntingdon Township Municipal Authority	Facility Name	Youghiogheny STP
Applicant Address	11265 Center Highway	Facility Address	4222 Turner Valley Road
	North Huntingdon, PA 15642-2018		North Huntingdon, PA 15642-2846
Applicant Contact	Mr. Michael L. Branthoover	Facility Contact	Mr. Chris Sanner
Applicant Phone	(724) 863-2860	Facility Phone	Same as Applicant
Client ID	41738	Site ID	243623
Ch 94 Load Status	Not Overloaded	Municipality	North Huntingdon Township
Connection Status	No Limitations	County	Westmoreland
Date Application Rece	ived March 6, 2019	EPA Waived?	No
Date Application Acce	pted March 9, 2019	If No, Reason	Major Facility

Summary of Review

The applicant has applied for a renewal of an existing NPDES Permit, Permit No. PA0027243, which was previously issued by the Department on August 15, 2014. That permit expired on August 31, 2019.

WQM Permit 6573448 A-5, issued on October 6, 2003, approved STP expansion with a hydraulic design capacity of 3.313 MGD and organic capacity of 5,524 lbs/day. The existing treatment process consists of primary clarifiers, trickling filter, rotating biological contactors (RBCs), final clarifiers and chlorination.

The receiving stream, Youghiogheny River, is classified as a WWF and is located in State Watershed No. 19-D.

The applicant has complied with Act 14 Notifications and no comments were received.

The application states there are no stormwater related outfalls located at the STP. Part C will not contain language titled "Requirements Applicable to Stormwater Outfalls".

Sludge use and disposal description and location(s): Sludge is anaerobically treated/stabilized, dewatered and disposed of at the Westmoreland Sanitary Landfill, Westmoreland County, PA.

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*,

Approve	Deny	Signatures	Date
x		hill Chlitebell	
		William C. Mitchell, E.I.T. / Environmental Engineering Specialist	February 19, 2021
х		Chke	
		Christopher Kriley, P.E. / Clean Water Program Manager	February 22, 2021

Summary of Review

DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Discharge, Receiving Waters and Wate	r Supply Information	
0.4641.01		0.040
Outfall No. 001	Design Flow (MGD)	3.313
Latitude <u>40° 17' 47.00"</u>	Longitude	-79° 47' 4.00"
Quad Name McKeesport	Quad Code	1607
Wastewater Description: Sewage E	ffluent	
Receiving Waters Youghiogheny Ri	ver (WWF) Stream Code	37456
NHD Com ID 69912409	RMI	9.3
Drainage Area 1739	Yield (cfs/mi ²)	0.2933
Q ₇₋₁₀ Flow (cfs) 510	Q ₇₋₁₀ Basis	US Army Corp of Engineers, Youghiogheny River @ Sutersville
Elevation (ft) 728	Slope (ft/ft)	0.00021
Watershed No 19-D	Chapter 93 Class.	WWF
Evicting Lloo All	Existing Use Qualifier	None
Exceptions to Use None	Exceptions to Criteria	None
Assessment StatusNot Asses	sed	
Cause(s) of Impairment		
Source(s) of Impairment		
TMDL Status	Name	
Background/Ambient Data pH (SU)	Data Source	
Temperature (°F)		
Hardness (mg/L)		
Other:		
Nearest Downstream Public Water Su	Westmoreland County Municip	oal Authority, McKeesport
PWS Waters Youghiogheny Rive	r Flow at Intake (cfs)	510
PWS RMI 1.3	Distance from Outfall (mi)	8.0

Changes Since Last Permit Issuance: None

Other Comments: N/A

	Treatment Facility Summary					
Treatment Facility Na	ne: Youghiogheny STP					
WQM Permit No.	Issuance Date					
6573448-A5	10/6/03					
6573448-A6	7/23/04					
6573448-A7	8/27/12					
Waste Type	Degree of Treatment	Process Type	Disinfection	Avg Annual Flow (MGD)		
waste Type	Treatment	Attached Growth using	Disinfection	2018		
Sewage	Secondary	Trickling Filter and RBCs	Chlorination	2.513 MGD		
	•					
Hydraulic Capacity	Organic Capacity			Biosolids		
(MGD)	(lbs/day)	Load Status	Biosolids Treatment	Use/Disposal		
			Anaerobic Digestion			
3.313	5,524	Not Overloaded	and Belt Filter Press	Landfill		

Changes Since Last Permit Issuance: None

Other Comments: N/A

Compliance History

Operations Compliance Check Summary Report

Facility: Youghiogheny STP

NPDES Permit No.: PA0027243

Compliance Review Period: 2/2016 - 2/2021

Inspection Summary:

INSP ID	INSPECTED DATE	INSP TYPE	INSPECTION RESULT DESC	CREATION DATE	# OF VIOLATIONS
2883275	04/02/2019	Compliance Evaluation	No Violations Noted	05/21/2019	0
2781494	09/13/2018	Incident- Response to Accident or Event	Administratively Closed	09/28/2018	0
2781473	09/12/2018	Incident- Response to Accident or Event	Violation(s) Noted	09/28/2018	<u>1</u>
2766844	08/23/2018	Compliance Evaluation	No Violations Noted	08/23/2018	0
2487859	05/26/2016	Compliance Evaluation	Violation(s) Noted	05/27/2016	<u>1</u>

Violation Summary:

VIOL ID	VIOLATION DATE	VIOLATION TYPE	VIOLATION TYPE DESC	RESOLVED DATE	INSPECTED DATE	INSP TYPE
829203	09/12/2018	92A.47(C)	NPDES - Illegal discharge to waters of the Commonwealth from a sanitary sewer overflow (SSO)	12/12/2018	09/12/2018	Incident- Response to Accident or Event
760202	05/26/2016	92A.47(C)	NPDES - Illegal discharge to waters of the Commonwealth from a sanitary sewer overflow (SSO)	05/27/2016	05/26/2016	Compliance Evaluation

Open Violations by Client ID:

No open violations for Client ID 41738

Enforcement Summary:

ENF ID	ENF TYPE	ENF TYPE DESC	ENF CREATION DATE	VIOLATIONS	ENF FINALSTATUS	ENF CLOSED DATE
367864	NOV	Notice of Violation	09/28/2018	92A.47(C)	Comply/Closed	04/02/2019
343355	NOV	Notice of Violation	05/27/2016	92A.47(C)	Administrative Close Out	08/20/2019

DMR Violation Summary:

MONITORING START DATE	MONITORING END DATE	NON COMPLIANCE CATEGORY	PARAMETER	SAMPLE VALUE	PERMIT VALUE	STATISTICAL BASE CODE
04/01/2020	04/30/2020	Concentration 3 Effluent Violation	Fecal Coliform	24196	10000	Instantaneous Maximum
09/01/2018	09/30/2018	Concentration 3 Effluent Violation	Fecal Coliform	2419.6	1000	Instantaneous Maximum
07/01/2018	07/31/2018	Concentration 3 Effluent Violation	Fecal Coliform	2419.6	1000	Instantaneous Maximum
07/01/2017	07/31/2017	Concentration 3 Effluent Violation	Fecal Coliform	1732.9	1000	Instantaneous Maximum
12/01/2016	12/31/2016	Concentration 3 Effluent Violation	Total Residual Chlorine (TRC)	1.8	1.6	Instantaneous Maximum
05/01/2016	05/31/2016	Concentration 3 Effluent Violation	Fecal Coliform	2419.6	1000	Instantaneous Maximum

Compliance Status:

Completed by: John Murphy

Completed date: 2/4/2021

Other Comments: Permit issuance is recommended. There are some effluent exceedances, but only one in the last two years. Ops will monitor.

Development of Effluent Limitations

Outfall No.	001		Design Flow (MGD)	3.313
Latitude	40º 17' 47.00"		Longitude	-79° 47' 4.00"
Wastewater De	escription:	Sewage Effluent	-	

Technology-Based Limitations

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Pollutant	Limit (mg/l)	SBC	Federal Regulation	State Regulation
CBOD₅	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
CBOD5	40	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)
Total Suspended	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
Solids	45	Average Weekly	133.102(b)(2)	92a.47(a)(2)
рН	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform				
(5/1 – 9/30)	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
Fecal Coliform				
(5/1 – 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform				
(10/1 – 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
Fecal Coliform				
(10/1 – 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)
Total Residual Chlorine	0.5	Average Monthly	-	92a.48(b)(2)

Comments: Water Quality Analysis Modeling for CBOD5, DO and Ammonia-Nitrogen is not necessary, and we will again re-impose Federal Minimum Secondary Effluent Limitations due to the large dilution available in the Youghiogheny River. Q7-10 flow of the Youghiogheny River at the point of discharge is 510 cfs. The instream to wasteflow dilution ration = total stream flow (515.135 cfs) / discharge flow (5.135 cfs) = 100/1.

For existing discharges (NPDES Renewal Applications), if WQM7.0 modeling results for summer indicates that an average monthly warm period limit of 25 mg/L (default in model) is acceptable for ammonia-nitrogen, a year-round monitoring requirement, at a minimum should be established. Due to the large dilution ration discussed above, assume that a monthly warm period limit of 25 mg/L is acceptable for ammonia-nitrogen and impose a year-round monitoring requirement for ammonia-nitrogen that is consistent with Table 6-3 of the Permit Writers Manual. Application data for Outfall # 001 indicates that the max average monthly concentration value of ammonia-nitrogen in the discharge is 5.96 mg/L.

The attached TRC_CALC Spreadsheet confirms that the above Technology-Based Limitation for TRC applies to this discharge.

Water Quality-Based Limitations

A "Reasonable Potential Analysis" (Attachment Toxic Management Spreadsheet) was conducted. No limitations were determined through water quality modeling, using DEPs Toxic Management Spreadsheet (TMS) Version 1.1, and no WQBELs will be imposed on this facility during this permit cycle. The TMS recommended Monitoring for total copper because the discharge concentration is greater than 10% of the WQBEL.

For modeling purposes, the river width is 246 ft, the river depth is 1.16 ft, and velocity is 1.8 fps. Data taken previous Fact Sheet.

Best Professional Judgment (BPJ) Limitations

Comments: A monitoring requirement for DO was imposed in the previously issued NPDES Renewal Permit. Review of eDMR data shows that the facility consistently reports a minimum DO concentration value greater than 4.0 mg/L.

A Dissolved Oxygen minimum limitation of 4.0 mg/L will be implemented based on the standard in 25 PA Code Chapter 93 and best professional judgment (BPJ).

Anti-Backsliding

Section 402(o) of the Clean Water Act (CWA), enacted in the Water Quality Act of 1987, establishes anti-backsliding rules governing two situations. The first situation occurs when a permittee seeks to revise a Technology-Based effluent limitation based on BPJ to reflect a subsequently promulgated effluent guideline which is less stringent. The second situation addressed by Section 402(o) arises when a permittee seeks relaxation of an effluent limitation which is based upon a State treatment standard of water quality standard.

Previous limits can be used pursuant to EPA's anti-backsliding regulation 40 CFR 122.44 (I) Reissued permits. (1) Except as provided in paragraph (I)(2) of this section when a permit is renewed or reissued. Interim effluent limitations, standards or conditions must be at least as stringent as the final effluent limitations, standards, or conditions in the previous permit (unless the circumstances on which the previous permit was based have materially and substantially changed since the time the permit was issued and would constitute cause for permit modification or revocation and reissuance under §122.62). (2) In the case of effluent limitations established on the basis of Section 402(a)(1)(B) of the CWA, a permit may not be renewed, reissued, or modified on the basis of effluent guidelines promulgated under section 304(b) subsequent to the original issuance of such permit, to contain effluent limitations which are less stringent than the comparable effluent limitations in the previous permit.

The facility is not seeking to revise the previously permitted effluent limits.

Additional Considerations:

For pH, DO and TRC, a monitoring frequency 1/day has been imposed. In general, less frequent monitoring may be established only when the permittee demonstrates that there will be no discharge on days where monitoring is not required.

Nutrient monitoring is required to establish the nutrient load from the wastewater treatment facility and the impacts that load may have on the quality of the receiving stream(s). A 1/quarter monitor and report requirement for Total N & Total P has been added to the permit as per Chapter 92.a.61.

Mass loading limits are applicable for publicly owned treatment works. Current policy requires average monthly mass loading limits be established for CBOD5, TSS, and NH₃-N and average weekly mass loading limits be established for CBOD5 and TSS. Average monthly mass loading limits (lbs/day) are based on the formula: design flow (MGD) x concentration limit (mg/L) x conversion factor (8.34).

For POTWs with design flows greater than 2,000 GPD influent BOD₅ and TSS monitoring must be established in the permit, and the monitoring should be consistent with the same frequency and sample type as is used for other effluent parameters.

Monitoring frequency for the proposed effluent limits are based upon Table 6-3, Self-Monitoring Requirements for Sewage Dischargers, from the Departments Technical Guidance for the Development and Specification of Effluent Limitations. Please note that Monitoring Requirements were changed for Flow to 2/week Metered to be consistent with the guidance.

Total Dissolved Solids (TDS) and its Major Constituents

Total Dissolved Solids (TDS) and its major constituents including sulfate, chloride, and bromide have emerged as pollutants of concern in several major watersheds in the Commonwealth. The conservative nature of these solids allows them to accumulate in surface waters and they may remain a concern even if the immediate downstream public water supply is not directly impacted. Bromide has been linked to formation of disinfection byproducts at increased levels in public water systems.

Based on these concerns and under the authority of §92a.61, DEP has determined it should implement increased monitoring in NPDES permits for these parameters: TDS, sulfate, chloride, bromide, and 1,4-dioxane.

Increased monitoring in NPDES permits will only occur when the following conditions are met:

- Where the concentration of TDS in the discharge exceeds 1,000 mg/L, or the net TDS load from a discharge exceeds 20,000 lbs/day, and the discharge flow exceeds 0.1 MGD, Part A of the permit should include monitor and report for TDS, sulfate, chloride, and bromide. Discharges of 0.1 MGD or less should monitor and report for TDS, sulfate, chloride if the concentration of TDS in the discharge exceeds 5,000 mg/L.
- Where the concentration of bromide in a discharge exceeds 1 mg/L and the discharge flow exceeds 0.1 MGD, Part
 A of the permit should include monitor and report for bromide. Discharges of 0.1 MGD or less should monitor and
 report for bromide if the concentration of bromide in the discharge exceeds 10 mg/L.
- Where the concentration of 1,4-dioxane (CAS 123-91-1) in a discharge exceeds 10 µg/L and the discharge flow exceeds 0.1 MGD, Part A of the permit should include monitor and report for 1,4-dioxane. Discharges of 0.1 MGD or less should monitor and report for 1,4-dioxane if the concentration of 1,4-dioxane in the discharge exceeds 100 µg/L.

Monitoring is not required for TDS, sulfate, chloride, bromide & 1,4-dioxane. Concentrations of bromide is less than 1 mg/L (application reports 0.078 mg/L), TDS is less than 1000 mg/L (application reports 440 mg/L) & 1,4-dioxane is less than 10 ug/L (application reports ND and the QL used is 10.4 ug/L).

Whole Effluent Toxicity (WET)

For Outfall 001, Acute Chronic WET Testing was completed:

- \boxtimes
 - For the permit renewal application (4 tests). Quarterly throughout the permit term.
 - Quarterly throughout the permit term and a TIE/TRE was conducted.
- Other:

The dilution series used for the tests was: 100%, 60%, 30%, 2%, and 1%. The Target Instream Waste Concentration (TIWC) to be used for analysis of the results is: 2.0.

TST Data Analysis

(NOTE – In lieu of recording information below, the application manager may attach the DEP WET Analysis Spreadsheet).

	Ceriodaphnia R	Results (Pass/Fail)	Pimephales Results (Pass/Fail)		
Test Date	Survival	Reproduction	Survival	Growth	
11/01/2016	PASS	PASS	PASS	PASS	
10/31/2017	PASS	PASS	PASS	PASS	
05/22/2018	PASS	PASS	PASS	PASS	
10/01/2019	PASS	PASS	PASS	PASS	

* A "passing" result is that in which the replicate data for the TIWC is not statistically significant from the control condition. This is exhibited when the calculated t value ("T-Test Result") is greater than the critical t value. A "failing" result is exhibited when the calculated t value ("T-Test Result") is less than the critical t value.

Is there reasonable potential for an excursion above water quality standards based on the results of these tests? (NOTE - In general, reasonable potential is determined anytime there is at least one test failure in the previous four tests).

🗌 YES 🖂 NO

Comments: N/A

Evaluation of Test Type, IWC and Dilution Series for Renewed Permit

Acute Partial Mix Factor (PMFa): 0.058 Chronic Partial Mix Factor (PMFc): 0.400

1. Determine IWC – Acute (IWCa):

 $(Q_d \times 1.547) / ((Q_{7-10} \times PMFa) + (Q_d \times 1.547))$

[(3.313 MGD x 1.547) / ((510 cfs x 0.058) + (3.313 MGD x 1.547))] x 100 = 14.81%

Is IWCa < 1%? YES X NO (YES - Acute Tests Required OR NO - Chronic Tests Required)

If the discharge is to the tidal portion of the Delaware River, indicate how the type of test was determined:

N/A

Type of Test for Permit Renewal: Chronic

2a. Determine Target IWCa (If Acute Tests Required)

TIWCa = 14.81 / 0.3 = 49.37%

2b. Determine Target IWCc (If Chronic Tests Required)

 $(Q_d \times 1.547) / (Q_{7-10} \times PMFc) + (Q_d \times 1.547)$

[(3.313 MGD x 1.547) / ((510 cfs x 0.400) + (3.313 MGD x 1.547))] x 100 = **2.0%**

3. Determine Dilution Series

(NOTE – check Attachment C of WET SOP for dilution series based on TIWCa or TIWCc, whichever applies).

Dilution Series = 100%, 60%, 30%, 2%, and 1%.

WET Limits

Has reasonable potential been determined? YES
NO

Will WET limits be established in the permit? \Box YES \boxtimes NO

If WET limits will be established, identify the species and the limit values for the permit (TU).

N/A

If WET limits will not be established, but reasonable potential was determined, indicate the rationale for not establishing WET limits:

<mark>N/A</mark>

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

			Effluent L	imitations.			Monitoring Re	quirements
Parameter	Mass Units	(lbs/day) ⁽¹⁾		Concentrat	ions (mg/L)		Minimum ⁽²⁾	Required
Farameter	Average Monthly	Weekly Average	Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report Daily Max	xxx	XXX	XXX	xxx	2/week	Metered
pH (S.U.)	ххх	xxx	6.0 Inst Min	XXX	XXX	9.0	1/day	Grab
DO	ххх	xxx	4.0 Inst Min	xxx	XXX	xxx	1/day	Grab
TRC	ххх	xxx	xxx	0.5	xxx	1.6	1/day	Grab
CBOD5	690.0	1050.0	xxx	25.0	38.0	50	2/week	24-Hr Composite
BOD5 Raw Sewage Influent	Report	Report Daily Max	xxx	Report	xxx	XXX	2/week	24-Hr Composite
TSS Raw Sewage Influent	Report	Report Daily Max	XXX	Report	XXX	XXX	2/week	24-Hr Composite
TSS	825.0	1240.0	XXX	30.0	45.0	60	2/week	24-Hr Composite
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	ххх	xxx	XXX	2000 Geo Mean	XXX	10000	2/week	Grab
Fecal Coliform (No./100 ml) May 1 - Sep 30	ххх	xxx	xxx	200 Geo Mean	XXX	1000	2/week	Grab
Total Nitrogen	ххх	xxx	xxx	XXX	Report Daily Max	xxx	1/quarter	24-Hr Composite
Ammonia-Nitrogen	Report	xxx	xxx	Report	xxx	xxx	2/week	24-Hr Composite
Total Phosphorus	XXX	XXX	XXX	XXX	Report Daily Max	XXX	1/quarter	24-Hr Composite

Outfall 001, Continued (from Permit Effective Date through Permit Expiration Date)

			Effluent L	imitations			Monitoring Re	quirements	
Parameter	Mass Units	(lbs/day) ⁽¹⁾		Concentrat	ions (mg/L)		Minimum ⁽²⁾	Required	
Falameter	Average Monthly	Weekly	Minimum	Average Monthly	Weekly	Instant. Maximum	Measurement Frequency	Sample	
	WOITIN	Average	Willingth	wontiny	Average	Maximum	Frequency	Type 24-Hr	
	_	Report			Report				
Total Copper	Report	Daily Max	XXX	Report	Daily Max	XXX	1/week	Composite	

Compliance Sampling Location: Outfall # 001

Copy of TRC_CALC

TRC EVALUATION

510	= Q stream (ofs)	0.5	= CV Daily	
3.313	= Q discharg	e (MGD)	0.5	= CV Hourly	
30	= no. sample	s	0.058	= AFC_Partial M	lix Factor
0.3	= Chlorine D	emand of Stream	0.4	= CFC_Partial M	lix Factor
0	= Chlorine D	emand of Discharge	15	= AFC_Criteria	Compliance Time (min)
0.5	= BAT/BPJ V	alue	720	= CFC_Criteria	Compliance Time (min)
	= % Factor o	of Safety (FOS)		=Decay Coeffic	ient (K)
Source	Reference	AFC Calculations		Reference	CFC Calculations
TRC	1.3.2.iii	WLA afc =	1.860	1.3.2.iii	WLA cfc = 12.390
PENTOXSD TRG	5.1a	LTAMULT afc =	0.373	5.1c	LTAMULT cfc = 0.581
PENTOXSD TRG	5.1b	LTA_afc=	0.693	5.1d	LTA_cfc = 7.203
Source		Efflue	nt Limit Calcu	lations	
PENTOXSD TRG	5.1f		AML MULT =	1.231	
PENTOXSD TRG	5.1g	AVG MON I	LIMIT (mg/l) =	0.500	BAT/BPJ
		INST MAX I	LIMIT (mg/l) =	1.635	
WLA afc		C_tc)) + [(AFC_Yc*Qs		'AFC_tc))	
		C_Yc*Qs*Xs/Qd)]*(1-F			
LTAMULT afc		cvh^2+1))-2.326*LN(cvl	n^2+1)^0.5)		
LTA_afc	wla_afc*LTAN	IULI_atc			
WLA cfc	(011/o/ btCE	C tc) + [(CFC Yc*Qs*	011/Odto/ ht	CEC toll	
		C_Yc*Qs*Xs/Qd)]*(1-F(010_1011	
LTAMULT cfc	-	cvd^2/no_samples+1))-		^2/no_samples+	1)^0.5)
LTA cfc	wla cfc*LTAN		2.020 2.11(010	2mo_sumples	,,,
	ma_ore erran				
AML MULT	EXP(2.326*L)	N((cvd^2/no_samples+1)^0.5)-0.5"LN	(cvd^2/no_sampl	es+1))
AVG MON LIMIT		J,MIN(LTA_afc,LTA_cfc			
INST MAX LIMIT		limit/AML_MULT)/LT		-	
		/	- /		

(MGD)*

Toxics Management Spreadsheet Version 1.1, October 2020

Qh

Discharge Information

Instructions C)ischarge Stream							
Facility: You	ughiogheny STP			NPDES Per	mit No.: PAO	027243	Outfall	No.: 001
Evaluation Type	Major Sewage /	Industrial Wast	te	Wastewater	Description:	treated Sew	age	
			Discharge	Characterist	ics			
Design Flow	Hardness (mg/l)*	pH (SU)*		Partial Mix Fa	ctors (PMFs	5)	Complete Mi	x Times (min)
(MGD)*	naruness (mg/i).	pri (30)-	AEC	CEC	тии	CPI	0	0

CFC

THH

CRL

Q₇₋₁₀

AFC

	(1100)				AIG		CI C		•	UNE	ÿ	7-10		<h< th=""></h<>
	3.313	161.33	7.	35	0.05	8	0.4							
						011	left blank	0.5 M k	eft blank	6) if left blan	k	1 If lef	t blank
	Disch	arge Pollutant	Units		scharge onc	Trib Cond		Daily CV	Hourly CV	Strea m CV	Fate Coeff	FOS	Criteri a Mod	Chem Transl
	Total Dissolve	ed Solids (PWS)	mg/L		463		_							
5	Chloride (PW	S)	mg/L		121		-							
Group	Bromide		mg/L		0.175									
5	Sulfate (PWS)	mg/L		69.9									
	Fluoride (PW	S)	mg/L											
	Total Aluminu	m	µg/L		144									
	Total Antimor	y	µg/L	<	5									
	Total Arsenic		µg/L		1		_							
	Total Barium		µg/L		49		-							
	Total Berylliur	n	µg/L	<	0.3									
	Total Boron		µg/L		254									
	Total Cadmiu	m	µg/L	<	0.2		-							
	Total Chromiu	um (III)	µg/L		0.6									
	Hexavalent C	hromium	µg/L	<	4.1		_							
	Total Cobalt		µg/L		6		_							
	Total Copper		µg/L		23									
0 2	Free Cyanide		µg/L		7									
no.	Total Cyanide	•	µg/L		7									
Group	Dissolved Iror	ı	µg/L		85									
	Total Iron		µg/L		283									
	Total Lead		µg/L		0.45									
	Total Mangan	ese	µg/L		53		_							
	Total Mercury	1	µg/L	<	0.04									
	Total Nickel		µg/L		10									
	Total Phenols	(Phenolics) (PWS)	µg/L	<	75									
	Total Seleniur	m	µg/L		0.75									
	Total Silver		µg/L	<	0.9									
	Total Thallium	1	µg/L	<	0.5									
	Total Zinc		µg/L		39		_							
	Total Molybde	enum	µg/L	<	2									
	Acrolein		µg/L	<	0.85		_							
	Acrylamide		µg/L	<			_							
	Acrylonitrile		µg/L	<	1.14									
	Benzene		µg/L	<	0.13									
	Bromoform		µg/L	<	0.36		_							

	Carbon Tetrachloride	µg/L	<	0.31		<u> </u>					
1	Chlorobenzene	µg/L		0.33							
1	Chlorodibromomethane	µg/L	<	0.31							
1	Chloroethane	µg/L	<	0.58							
1	2-Chloroethyl Vinyl Ether	µg/L	<	0.25							
	Chloroform	µg/L	<	0.27							
1	Dichlorobromomethane	µg/L	<	0.2							
1	1,1-Dichloroethane	µg/L	<	0.21	╞╪						
	1,2-Dichloroethane		<	0.19	┝╌┼╌						╫╾┼╾┼┥
33		µg/L	<u> </u>	0.15	╞╪╴				<u> </u>		
Group	1,1-Dichloroethylene	µg/L	<		Ħ						
1 č	1,2-Dichloropropane	µg/L	<	0.24		1					
ı~	1,3-Dichloropropylene	µg/L	<	0.27							
1	1,4-Dioxane	µg/L	<	10.4							
1	Ethylbenzene	µg/L	<	0.24							
	Methyl Bromide	µg/L	<	0.4	Ħ						
1	Methyl Chloride	µg/L	<	0.25							
	Methylene Chloride	µg/L	<	0.3							
	1,1,2,2-Tetrachloroethane	µg/L	<	0.31							
			~		╞┼╴				<u> </u>		
1	Tetrachloroethylene	µg/L	<	0.32							
1	Toluene	µg/L		0.69							
1	1,2-trans-Dichloroethylene	µg/L	<	0.28							
1	1,1,1-Trichloroethane	µg/L	<	0.2							
1	1,1,2-Trichloroethane	µg/L	<	0.23							
1	Trichloroethylene	µg/L	<	0.21							
1	Vinyl Chloride	µg/L	<	0.43	H						
	2-Chlorophenol	µg/L	<	17.4							
	2,4-Dichlorophenol	µg/L	<	21.4	Ħ						
	2,4-Dimethylphenol		<	13.5							
		µg/L		41.2							
4	4,6-Dinitro-o-Cresol	µg/L	<								
à	2,4-Dinitrophenol	µg/L	<	58.5	╞╪╴						
	2-Nitrophenol	µg/L	<	21.2							
σ	4-Nitrophenol	µg/L	<	50.9		1					
1	p-Chloro-m-Cresol	µg/L	<	22							
1	Pentachlorophenol	µg/L	<	1							
1	Phenol	µg/L	<	41.1							
1	2,4,6-Trichlorophenol	µg/L	<	29.5	i tit						
	Acenaphthene	µg/L	<	16.5	Ħ						
1	Acenaphthylene	µg/L	<	19.7					<u> </u>		
1	Anthracene		<	20.6	╞┼╴						
1		µg/L			\vdash						
1	Benzidine	µg/L	<	3.8							
1	Benzo(a)Anthracene	µg/L	<	1.4							
	Benzo(a)Pyrene	µg/L	<	1.4	itit						
1	3,4-Benzofluoranthene	µg/L	<	1.4							
	Benzo(ghi)Perylene	µg/L	<	31.7							
1	Benzo(k)Fluoranthene	µg/L	<	1.4							
	Bis(2-Chloroethoxy)Methane	µg/L	<	22.5	╞┼╴						
	Bis(2-Chloroethyl)Ether	µg/L	<	2.9	i i						
	Bis(2-Chloroisopropyl)Ether		<	21.7							
1		µg/L	<u> </u>								
1	Bis(2-Ethylhexyl)Phthalate	µg/L	<u> </u>	1.6	<u> </u>						
	4-Bromophenyl Phenyl Ether	µg/L	<	18.3	╘╧						
1	Butyl Benzyl Phthalate	µg/L		0.2							
	2-Chloronaphthalene	µg/L	<	24.2							
1	4-Chlorophenyl Phenyl Ether	µg/L	<	24.9							
	Chrysene	µg/L	<	1.4							
1	Dibenzo(a,h)Anthrancene	µg/L	<	1.4							
1	1,2-Dichlorobenzene	µg/L	<	33	+						
1	1,3-Dichlorobenzene	µg/L	<	33							
1			<	31.6	Ħ						
5	1,4-Dichlorobenzene	µg/L	—								
_	3,3-Dichlorobenzidine	µg/L	<	2.9							
20	Diethyl Phthalate	µg/L		0.29							
0	Dimethyl Phthalate	µg/L	<	26.8							
	Di-n-Butyl Phthalate	µg/L		0.15							
	2,4-Dinitrotoluene	µg/L	<	2.9							
•								 			

Discharge Information

					_	_	_					_
	2,6-Dinitrotoluene	µg/L		0.76		Ì	ļ					
	Di-n-Octyl Phthalate	µg/L	<	36.3	Ц						Ц	
	1,2-Diphenylhydrazine	µg/L	<	2.9	\vdash		+				\vdash	
	Fluoranthene	µg/L	<	26.2	H		╧					
	Fluorene	µg/L	<	23	TÌ		T					
	Hexachlorobenzene	µg/L	۷	2.9								
	Hexachlorobutadiene	µg/L	۷	5		-	-					
	Hexachlorocyclopentadiene	µg/L	<	2.9	Ħ	Ŧ	Ŧ				Ħ	-
	Hexachloroethane	µg/L	<	32.9	Ħ	+	╈				H	
	Indeno(1,2,3-cd)Pyrene	µg/L	<	1.4		t						
	Isophorone	µg/L	<	29.9	Ħ	+	+				H	++
	Naphthalene		<	17.3	⊨	+	+				╞┼	++
	Nitrobenzene	µg/L	~	35.7	⊢	┿	┿				┝┼	
		µg/L			Ħ	Ŧ	÷				Ħ	++
	n-Nitrosodimethylamine	µg/L	<	2.9			1					
	n-Nitrosodi-n-Propylamine	µg/L	<	2.9	\square	+	_				$\left \right $	++
	n-Nitrosodiphenylamine	µg/L	<	20.4	\vdash	+	+				\vdash	
	Phenanthrene	µg/L	<	1.4	H		+					
	Pyrene	µg/L	<	31			Ì					
	1,2,4-Trichlorobenzene	µg/L	<	17.3								
	Aldrin	µg/L	<	0.0047	Н							
	alpha-BHC	µg/L	۷	0.0019	H		-					
	beta-BHC	µg/L	<	0.0076							j i	
	gamma-BHC	µg/L		0.0037								
	delta BHC	µg/L	<	0.0028	Ħ							_
	Chlordane	µg/L	<	0.033	Ħ	+	+					
	4.4-DDT	µg/L	<	0.0057	H		+					
	4.4-DDE	µg/L	<	0.0066	Ħ	Ť	Ť				Ħ	
	4,4-DDD		<	0.0066	F	Ŧ	Ŧ					
	4,4-DDD Dieldrin	µg/L	<	0.0063	H	+	+				++	
		µg/L			H	+	+					
	alpha-Endosulfan	µg/L	<	0.0028	Ħ	+	+				H	
9	beta-Endosulfan	µg/L	<	0.0057	Þ	Ì	Ì					
9	Endosulfan Sulfate	µg/L	<	0.0038	H	-					H	
Group	Endrin	µg/L	<	0.0076	H	-	+				H	
ō	Endrin Aldehyde	µg/L	<	0.0095	H		+					
	Heptachlor	µg/L	<	0.0028	Ľ							
	Heptachlor Epoxide	µg/L	<	0.0038								
	PCB-1016	µg/L	<		Ц						ļ	
	PCB-1221	µg/L	<									
	PCB-1221 PCB-1232	µg/L µg/L	<		Ħ	╡	+					
		µg/L										
	PCB-1232	µg/L µg/L	<									
	PCB-1232 PCB-1242 PCB-1248	μg/L μg/L μg/L	< <									
	PCB-1232 PCB-1242 PCB-1248 PCB-1254	μg/L μg/L μg/L μg/L	v v v v									
	PCB-1232 PCB-1242 PCB-1248 PCB-1254 PCB-1254	μg/L μg/L μg/L μg/L μg/L	v v v v v									
	PCB-1232 PCB-1242 PCB-1248 PCB-1254 PCB-1260 PCBs, Total	μg/L μg/L μg/L μg/L μg/L μg/L	v v v v v v	0.19								
	PCB-1232 PCB-1242 PCB-1248 PCB-1254 PCB-1250 PCBs, Total Toxaphene	µg/L µg/L µg/L µg/L µg/L µg/L	v v v v v v	0.18								
	PCB-1232 PCB-1242 PCB-1248 PCB-1254 PCB-1260 PCBs, Total Toxaphene 2,3,7,8-TCDD	μg/L μg/L μg/L μg/L μg/L μg/L ηg/L	v v v v v v	0.18								
	PCB-1232 PCB-1242 PCB-1248 PCB-1254 PCB-1260 PCBs, Total Toxaphene 2,3,7,8-TCDD Gross Alpha	μ9/L μ9/L μ9/L μ9/L μ9/L μ9/L μ9/L ng/L pCi/L	v v v v v v v	0.18								
7	PCB-1232 PCB-1242 PCB-1248 PCB-1254 PCB-1260 PCBs, Total Toxaphene 2,3,7,8-TCDD Gross Alpha Total Beta	<u>μ9/L</u> μ9/L μ9/L μ9/L μ9/L μ9/L <u>μ9/L</u> <u>η9/L</u> ρCi/L ρCi/L	v v v v v v v v	0.18								
7	PCB-1232 PCB-1242 PCB-1248 PCB-1254 PCB-1260 PCBs, Total Toxaphene 2,3,7,8-TCDD Gross Alpha Total Beta Radium 228/228	<u>μ9/L</u> μ9/L μ9/L μ9/L μ9/L μ9/L <u>μ9/L</u> <u>μ9/L</u> <u>ρCi/L</u> ρCi/L ρCi/L	v v v v v v v v v	0.18								
sroup 7	PCB-1232 PCB-1242 PCB-1248 PCB-1254 PCBs, Total Toxaphene 2,3,7,8-TCDD Gross Alpha Total Beta Radium 226/228 Total Strontium	<u>µg/L</u> µg/L µg/L µg/L µg/L µg/L pCi/L pCi/L µg/L	v v v v v v v v v v	0.18								
sroup 7	PCB-1232 PCB-1242 PCB-1248 PCB-1254 PCB-1260 PCBs, Total Toxaphene 2,3,7,8-TCDD Gross Alpha Total Beta Radium 226/228 Total Strontium Total Uranium	<u>µg/L</u> µg/L µg/L µg/L µg/L µg/L pCi/L pCi/L pCi/L µg/L µg/L	v v v v v v v v v	0.18								
sroup 7	PCB-1232 PCB-1242 PCB-1248 PCB-1254 PCBs, Total Toxaphene 2,3,7,8-TCDD Gross Alpha Total Beta Radium 226/228 Total Strontium	<u>µg/L</u> µg/L µg/L µg/L µg/L µg/L pCi/L pCi/L µg/L	v v v v v v v v v v	0.18								
sroup 7	PCB-1232 PCB-1242 PCB-1248 PCB-1254 PCB-1260 PCBs, Total Toxaphene 2,3,7,8-TCDD Gross Alpha Total Beta Radium 226/228 Total Strontium Total Uranium	<u>µg/L</u> µg/L µg/L µg/L µg/L µg/L pCi/L pCi/L pCi/L µg/L µg/L	v v v v v v v v v v	0.18								
sroup 7	PCB-1232 PCB-1242 PCB-1248 PCB-1254 PCB-1260 PCBs, Total Toxaphene 2,3,7,8-TCDD Gross Alpha Total Beta Radium 226/228 Total Strontium Total Uranium	<u>µg/L</u> µg/L µg/L µg/L µg/L µg/L pCi/L pCi/L pCi/L µg/L µg/L	v v v v v v v v v v	0.18								
sroup 7	PCB-1232 PCB-1242 PCB-1248 PCB-1254 PCB-1260 PCBs, Total Toxaphene 2,3,7,8-TCDD Gross Alpha Total Beta Radium 226/228 Total Strontium Total Uranium	<u>µg/L</u> µg/L µg/L µg/L µg/L µg/L pCi/L pCi/L pCi/L µg/L µg/L	v v v v v v v v v v	0.18								
sroup 7	PCB-1232 PCB-1242 PCB-1248 PCB-1254 PCB-1260 PCBs, Total Toxaphene 2,3,7,8-TCDD Gross Alpha Total Beta Radium 226/228 Total Strontium Total Uranium	<u>µg/L</u> µg/L µg/L µg/L µg/L µg/L pCi/L pCi/L pCi/L µg/L µg/L	v v v v v v v v v v	0.18								
sroup 7	PCB-1232 PCB-1242 PCB-1248 PCB-1254 PCB-1260 PCBs, Total Toxaphene 2,3,7,8-TCDD Gross Alpha Total Beta Radium 226/228 Total Strontium Total Uranium	<u>µg/L</u> µg/L µg/L µg/L µg/L µg/L pCi/L pCi/L pCi/L µg/L µg/L	v v v v v v v v v v	0.18								
sroup 7	PCB-1232 PCB-1242 PCB-1248 PCB-1254 PCB-1260 PCBs, Total Toxaphene 2,3,7,8-TCDD Gross Alpha Total Beta Radium 226/228 Total Strontium Total Uranium	<u>µg/L</u> µg/L µg/L µg/L µg/L µg/L pCi/L pCi/L pCi/L µg/L µg/L	v v v v v v v v v v	0.18								
sroup 7	PCB-1232 PCB-1242 PCB-1248 PCB-1254 PCB-1260 PCBs, Total Toxaphene 2,3,7,8-TCDD Gross Alpha Total Beta Radium 226/228 Total Strontium Total Uranium	<u>µg/L</u> µg/L µg/L µg/L µg/L µg/L pCi/L pCi/L pCi/L µg/L µg/L	v v v v v v v v v v	0.18								
sroup 7	PCB-1232 PCB-1242 PCB-1248 PCB-1254 PCB-1260 PCBs, Total Toxaphene 2,3,7,8-TCDD Gross Alpha Total Beta Radium 226/228 Total Strontium Total Uranium	<u>µg/L</u> µg/L µg/L µg/L µg/L µg/L pCi/L pCi/L pCi/L µg/L µg/L	v v v v v v v v v v	0.18								
sroup 7	PCB-1232 PCB-1242 PCB-1248 PCB-1254 PCB-1260 PCBs, Total Toxaphene 2,3,7,8-TCDD Gross Alpha Total Beta Radium 226/228 Total Strontium Total Uranium	<u>µg/L</u> µg/L µg/L µg/L µg/L µg/L pCi/L pCi/L pCi/L µg/L µg/L	v v v v v v v v v v	0.18								
sroup 7	PCB-1232 PCB-1242 PCB-1248 PCB-1254 PCB-1260 PCBs, Total Toxaphene 2,3,7,8-TCDD Gross Alpha Total Beta Radium 226/228 Total Strontium Total Uranium	<u>µg/L</u> µg/L µg/L µg/L µg/L µg/L pCi/L pCi/L pCi/L µg/L µg/L	v v v v v v v v v v	0.18								
sroup 7	PCB-1232 PCB-1242 PCB-1248 PCB-1254 PCB-1260 PCBs, Total Toxaphene 2,3,7,8-TCDD Gross Alpha Total Beta Radium 226/228 Total Strontium Total Uranium	<u>µg/L</u> µg/L µg/L µg/L µg/L µg/L pCi/L pCi/L pCi/L µg/L µg/L	v v v v v v v v v v	0.18								

Stream / Surface Water Information

Toxics Management Spreadsheet Version 1.1, October 2020

Youghiogheny STP, NPDES Permit No. PA0027243, Outfall 001

Instructions	Discharge	Stream
--------------	-----------	--------

Receiving Surface Water Name: Youghiogheny River

Stream Code*	RMI*	Elevation (ft)*	DA (mi ²)*	Slope (ft/ft)	PWS Withdrawal (MGD)	Apply Fish Criteria*
037456	9.3	728	1739	0.00021		Yes
037456	1.3	719.3	1764			Yes
	037456	037456 9.3	037456 9.3 728	037456 9.3 728 1739	037456 9.3 728 1739 0.00021	037456 9.3 728 1739 0.00021 (MGD)

Statewide Criteria
Great Lakes Criteria

ORSANCO Criteria

0	
Q	7-10

Location	RMI	LFY			W/D	Width	Depth	Velocit	Time	Tributary		Stream		Analysis	
Location	LZIMI1	(cfs/mi ²)*	Stream	Tributary	Ratio	(ft)	(ft)	y (fps)	(days)	Hardness	pН	Hardness*	pH*	Hardness	pН
Point of Discharge	9.3	0.2933	510			246	1.16	1.8				100	7		
End of Reach 1	1.3	0.2933													

No. Reaches to Model: 1

Qn

Location	tion RMI LFY		Flow	Flow (cfs)		Width	Depth	Velocit	Time	Tributary		Stream		Analysis	
Location	rsiwii	(cfs/mi ²)	Stream	Tributary	Ratio	(ft)	(ft)	y (fps)	(dave)	Hardness	pН	Hardness	pН	Hardness	pН
Point of Discharge	9.3														
End of Reach 1	1.3														

Stream / Surface Water Information

2/3/2021

NPDES Permit No. PA0027243

DEPARTMENT OF ENVIRONMENTAL PROTECTION

Toxics Management Spreadsheet Version 1.1, October 2020

Model Results

Youghiogheny STP, NPDES Permit No. PA0027243, Outfall 001

Instruction	Results	RETURN TO INPUTS	SAVE AS PDF	PRINT	IIA (O Inputs	O Results	🔿 Limits	

Hydrodynamics

Q 7-10

RMI	Stream Flow (cfs)	PWS Withdrawal (cfs)	Net Stream Flow (cfs)	Discharge Analysis Flow (cfs)	Slope (ft/ft)	Depth (ft)	Width (ft)	W/D Ratio	Velocity (fps)	Time (days)	Complete Mix Time (min)
9.3	510		510	5.125	0.00021	1.16	246.	212.069	1.8	0.272	4490.719
1.3	517.333		517.3325								

Qh

RMI	Stream Flow (cfs)	PWS Withdrawal (cfs)	Net Stream Flow (cfs)	Discharge Analysis Flow (cfs)	Slope (ft/ft)	Depth (ft)	Width (ft)	W/D Ratio	Velocity (fps)	Time (days)	Complete Mix Time (min)
9.3	1727.45		1727.45	5.125	0.00021	1.978	246.	124.364	3.55	0.138	2045.285
1.3	1749.136		1749.14								

✓ Wasteload Allocations

AFC C	CT (min): 1	5	PMF:	0.058	Ana	lysis Hardne	ss (mg/l):	109.08 Analysis pH: 7.04
Pollutants	Conc (ugl)	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)) Comments
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A	
Chloride (PWS)	0	0		0	N/A	N/A	N/A	
Sulfate (PWS)	0	0		0	N/A	N/A	N/A	
Total Aluminum	0	0		0	750	750	5,079	
Total Antimony	0	0		0	1,100	1,100	7,449	
Total Arsenic	0	0		0	340	340	2,302	Chem Translator of 1 applied
Total Barium	0	0		0	21,000	21,000	142,201	
Total Boron	0	0		0	8,100	8,100	54,849	
Total Cadmium	0	0		0	2.191	2.33	15.8	Chem Translator of 0.94 applied
Total Chromium (III)	0	0		0	611.693	1,936	13,108	Chem Translator of 0.316 applied
Hexavalent Chromium	0	0		0	16	16.3	110	Chem Translator of 0.982 applied
Total Cobalt	0	0		0	95	95.0	643	
Total Copper	0	0		0	14.583	15.2	103	Chem Translator of 0.96 applied
Free Cyanide	0	0		0	22	22.0	149	

Model Results

2/3/2021

Dissolved Iron	0	0	0	N/A	N/A	N/A	
Total Iron	0	0		N/A N/A	N/A N/A	N/A N/A	
	-	-	-				
Total Lead	0	0	0	70.966	91.2	617	Chem Translator of 0.778 applied
Total Manganese	0	0	0	N/A	N/A	N/A	
Total Mercury	0	0	0	1.400	1.65 505	11.2	Chem Translator of 0.85 applied
Total Nickel	0	0	0	503.872		3,419	Chem Translator of 0.998 applied
Total Phenols (Phenolics) (PWS)	0	0	0	N/A	N/A	N/A	
Total Selenium	0	0	0	N/A	N/A	N/A	Chem Translator of 0.922 applied
Total Silver	0	0	0	3.734	4.39	29.7	Chem Translator of 0.85 applied
Total Thallium	0	0	0	65	65.0	440	
Total Zinc	0	0	0	126.113	129	873	Chem Translator of 0.978 applied
Acrolein	0	0	0	3	3.0	20.3	
Acrylonitrile	0	0	0	650	650	4,401	
Benzene	0	0	0	640	640	4,334	
Bromoform	0	0	0	1,800	1,800	12,189	
Carbon Tetrachloride	0	0	0	2,800	2,800	18,960	
Chlorobenzene	0	0	0	1,200	1,200	8,126	
Chlorodibromomethane	0	0	0	N/A	N/A	N/A	
2-Chloroethyl Vinyl Ether	0	0	0	18,000	18,000	121,886	
Chloroform	0	0	0	1,900	1,900	12,866	
Dichlorobromomethane	0	0	0	N/A	N/A	N/A	
1,2-Dichloroethane	0	0	0	15,000	15,000	101,572	
1,1-Dichloroethylene	0	0	0	7,500	7,500	50,786	
1,2-Dichloropropane	0	0	0	11,000	11,000	74,486	
1,3-Dichloropropylene	0	0	0	310	310	2,099	
Ethylbenzene	0	0	0	2,900	2,900	19,637	
Methyl Bromide	0	0	0	550	550	3,724	
Methyl Chloride	0	0	0	28,000	28,000	189,601	
Methylene Chloride	0	0	0	12,000	12,000	81,258	
1,1,2,2-Tetrachloroethane	0	0	0	1,000	1,000	6,771	
Tetrachloroethylene	0	0	0	700	700	4,740	
Toluene	0	0	0	1,700	1,700	11,511	
1,2-trans-Dichloroethylene	0	0	0	6,800	6,800	46,046	
1,1,1-Trichloroethane	0	0	0	3,000	3,000	20,314	
1,1,2-Trichloroethane	0	0	0	3,400	3,400	23,023	
Trichloroethylene	0	0	0	2,300	2,300	15,574	
Vinyl Chloride	0	0	0	N/A	N/A	N/A	
2-Chlorophenol	0	0	0	560	560	3,792	
2.4-Dichlorophenol	0	0	0	1,700	1,700	11,511	
2,4-Dimethylphenol	0	0	ō	660	660	4,469	
4.6-Dinitro-o-Cresol	0	0	ō	80	80.0	542	
2,4-Dinitrophenol	0	0	0	660	660	4,469	
2-Nitrophenol	0	0	ō	8,000	8.000	54,172	
4-Nitrophenol	0	ō	ŏ	2,300	2,300	15,574	
p-Chloro-m-Cresol	0	ō	ō	160	160	1.083	
Pentachlorophenol	0	0	ō	9.054	9.05	61.3	
Phenol	0	0	- U	N/A	8.05 N/A	N/A	
2,4,6-Trichlorophenol	0	Ö	- ŭ	460	460	3,115	
2,4,0° monorophenor	v		, v	100	100	0,110	

Model Results

2/3/2021

Acenaphthene	0	0	H			0	83	83.0	562	
Anthracene	0	ō	┟┼╶┼	++		0	N/A	N/A	N/A	
Benzidine	0	0		÷	<u> </u>	0	300	300	2.031	
Benzo(a)Anthracene	0	ō				ō	0.5	0.5	3.39	
Benzo(a)Pyrene	0	0		++	-	0	N/A	N/A	N/A	
3.4-Benzofluoranthene	0	0		++	-	0	N/A	N/A	N/A	
Benzo(k)Fluoranthene	0	0		Ħ	+	0	N/A	N/A	N/A	
Bis(2-Chloroethyl)Ether	0	ō			_	ō	30.000	30.000	203.144	
Bis(2-Chloroisopropyl)Ether	0	ō		++		ō	N/A	N/A	N/A	
Bis(2-Ethylhexyl)Phthalate	0	0		++		ō	4,500	4,500	30,472	
4-Bromophenyl Phenyl Ether	0	ō				0	270	270	1,828	
Butyl Benzyl Phthalate	0	ō		++	-	0	140	140	948	
2-Chloronaphthalene	0	0		++	_	0	N/A	N/A	N/A	
Chrysene	0	0		Ħ	-	0	N/A	N/A	N/A	
Dibenzo(a,h)Anthrancene	0	ŏ				ŏ	N/A	N/A	N/A	
1.2-Dichlorobenzene	0	ŏ		┿	-	ŏ	820	820	5,553	
1.3-Dichlorobenzene	0	ō				0	350	350	2,370	
1.4-Dichlorobenzene	0	Ö				0	730	730	4,943	
3.3-Dichlorobenzidine	0	Ö				0	N/A	N/A	N/A	
Diethyl Phthalate	0	ō	┟┼╶┼	┿┥	_	0	4.000	4.000	27,086	
Dimethyl Phthalate	0	0		Ħ	=	0	2,500	2,500	16,929	
Di-n-Butyl Phthalate	0	0				0	110	110	745	
2,4-Dinitrotoluene	0	0		++	_	0	1,600	1,600	10.834	
2.6-Dinitrotoluene	0	0		+	_	0	990	990	6,704	
1,2-Diphenylhydrazine	0	0		++		0	15	15.0	102	
Fluoranthene	0	0				0	200	200	1,354	
Fluorene	0	0		++		0	200 N/A	200 N/A	N/A	
Hexachlorobenzene	0	0	╞┼╤┾	++	==	0	N/A	N/A	N/A	
Hexachlorobenzene	0	0		++		0	10	10.0	67.7	
Hexachlorocyclopentadiene	0	0				0	5	5.0	33.9	
Hexachlorocyclopentadiene Hexachloroethane	0	0	++	+	_	0	5 60	5.U 60.0	406	
	_	-	╞┼┼┼	++		-		00.0 N/A	400 N/A	
Indeno(1,2,3-cd)Pyrene	0	0				0	N/A		67,715	
Isophorone	0	0			_	0	10,000	10,000		
Naphthalene	0	0	┝┼╌┼╸	++	_	0	140	140	948	
Nitrobenzene	0	0				0	4,000	4,000	27,086	
n-Nitrosodimethylamine	0	0				0	17,000 N/A	17,000 N/A	115,115 N/A	
n-Nitrosodi-n-Propylamine	0	0		+ +		0	N/A 300	N/A 300	N/A 2.031	
n-Nitrosodiphenylamine	_	-			_	-				
Phenanthrene	0	0				0	5	5.0	33.9	
Pyrene	0	0				0	N/A	N/A	N/A	
1,2,4-Trichlorobenzene	0	0				0	130	130	880	
Aldrin	0	0			_	0	3	3.0	20.3	
alpha-BHC	0	0				0	N/A	N/A	N/A	
beta-BHC	0	0		ļļ		0	N/A	N/A	N/A	
gamma-BHC	0	0				0	0.95	0.95	6.43	
Chlordane	0	0			_	0	2.4	2.4	16.3	
4,4-DDT	0	0				0	1.1	1.1	7.45	
4,4-DDE	0	0				0	1.1	1.1	7.45	<u> </u>

Model Results

2/3/2021

4,4-DDD	0	0			0	1.1	1.1	7.45	
Dieldrin	0	0			0	0.24	0.24	1.63	
alpha-Endosulfan	0	0			0	0.22	0.22	1.49	
beta-Endosulfan	0	0			0	0.22	0.22	1.49	
Endrin	0	0			0	0.086	0.086	0.58	
Endrin Aldehyde	0	0			0	N/A	N/A	N/A	
Heptachlor	0	0			0	0.52	0.52	3.52	
Heptachlor Epoxide	0	0			0	0.5	0.5	3.39	
Toxaphene	0	0			0	0.73	0.73	4.94	
<i>✓ CFC</i> CCT	(min): 7	20	 PMF:	_	100	•	ilysis Hardne	ess (mg/l):	101.5 Analysis pH: 7.01
Pollutants	Conc (up/L)	Stream CV	 Con g/L)	С	ate pef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0		_	0	N/A	N/A	N/A	
Chloride (PWS)	0	0			0	N/A	N/A	N/A	
Sulfate (PWS)	0	0		_	0	N/A	N/A	N/A	
Total Aluminum	0	0			0	N/A	N/A	N/A	
Total Antimony	0	0		_	0	220	220	8,977	
Total Arsenic	0	0			0	150	150	6,120	Chem Translator of 1 applied
Total Barium	0	0			0	4,100	4,100	167,293	
Total Boron	0	0			0	1,600	1,600	65,285	
Total Cadmium	0	0			0	0.249	0.27	11.2	Chem Translator of 0.908 applied
Total Chromium (III)	0	0			0	75.026	87.2	3,560	Chem Translator of 0.86 applied
Hexavalent Chromium	0	0			0	10	10.4	424	Chem Translator of 0.962 applied
Total Cobalt	0	0			0	19	19.0	775	
Total Copper	0	0			0	9.071	9.45	386	Chem Translator of 0.96 applied
Free Cyanide	0	0			0	5.2	5.2	212	
Dissolved Iron	0	0			0	N/A	N/A	N/A	
Total Iron	0	0			0	1,500	1,500	150,762	WQC = 30 day average; PMF = 1
Total Lead	0	0		_	0	2.558	3.24	132	Chem Translator of 0.789 applied
Total Manganese	0	0		_	0	N/A	N/A	N/A	
Total Mercury	0	0			0	0.770	0.91	37.0	Chem Translator of 0.85 applied
Total Nickel	0	0		_	0	52.667	52.8	2,155	Chem Translator of 0.997 applied
Total Phenols (Phenolics) (PWS)	0	0		_	0	N/A	N/A	N/A	
Total Selenium	0	0			0	4.600	4.99	204	Chem Translator of 0.922 applied
Total Silver	0	0		_	0	N/A	N/A	N/A	Chem Translator of 1 applied
Total Thallium	0	0		-	0	13	13.0	530	
Total Zinc	0	0			0	119.642	121	4,951	Chem Translator of 0.986 applied
Acrolein	0	0		-	0	3	3.0	122	
Acrylonitrile	0	0		-	0	130	130	5,304	
Benzene	0	0			0	130	130	5,304	
Bromoform	0	0			0	370	370	15.097	
Carbon Tetrachloride	0	0		_	0	560	560	22,850	
Chlorobenzene	0	0		_	0	240	240	9,793	
Chlorodibromomethane	0	0			0	N/A	N/A	N/A	
	-	-		_	-				l

Model Results

2/3/2021

2-Chloroethyl Vinyl Ether	0	0	0	3,500	3,500	142.811	
Chloroform	0	0	0	390	390	15,913	
Dichlorobromomethane	0	0	0	N/A	N/A	N/A	
1.2-Dichloroethane	0	0	0	3,100	3,100	126,490	
1,1-Dichloroethylene	0	0	0	1,500	1,500	61,205	
1,2-Dichloropropane	0	0	0	2,200	2,200	89,767	
1,3-Dichloropropylene	0	0	0	61	61.0	2,489	
Ethylbenzene	0	0	0	580	580	23,666	
Methyl Bromide	0	0	0	110	110	4,488	
-	_	0			5,500		
Methyl Chloride	0	0	0	5,500		224,418	
Methylene Chloride	_	-		2,400	2,400	97,928	
1,1,2,2-Tetrachloroethane	0	0	0	210	210	8,569	
Tetrachloroethylene	0	0	0	140	140	5,712	
Toluene	0	0	0	330	330	13,465	
1,2-trans-Dichloroethylene	0	0	0	1,400	1,400	57,125	
1,1,1-Trichloroethane	0	0	0	610	610	24,890	
1,1,2-Trichloroethane	0	0	0	680	680	27,746	
Trichloroethylene	0	0	0	450	450	18,361	
Vinyl Chloride	0	0	0	N/A	N/A	N/A	
2-Chlorophenol	0	0	0	110	110	4,488	
2,4-Dichlorophenol	0	0	0	340	340	13,873	
2,4-Dimethylphenol	0	0	0	130	130	5,304	
4,6-Dinitro-o-Cresol	0	0	0	16	16.0	653	
2,4-Dinitrophenol	0	0	0	130	130	5,304	
2-Nitrophenol	0	0	0	1,600	1,600	65,285	
4-Nitrophenol	0	0	0	470	470	19,178	
p-Chloro-m-Cresol	0	0	0	30	30.0	1,224	
Pentachlorophenol	0	0	0	6.946	6.95	283	
Phenol	0	0	0	N/A	N/A	N/A	
2,4,6-Trichlorophenol	0	0	0	91	91.0	3,713	
Acenaphthene	0	0	0	17	17.0	694	
Anthracene	0	0	0	N/A	N/A	N/A	
Benzidine	0	0	0	59	59.0	2,407	
Benzo(a)Anthracene	0	0	0	0.1	0.1	4.08	
Benzo(a)Pyrene	0	0	0	N/A	N/A	N/A	
3,4-Benzofluoranthene	0	0	0	N/A	N/A	N/A	
Benzo(k)Fluoranthene	0	0	0	N/A	N/A	N/A	
Bis(2-Chloroethyl)Ether	0	0	0	6,000	6,000	244,819	
Bis(2-Chloroisopropyl)Ether	0	0	0	N/A	N/A	N/A	
Bis(2-Ethylhexyl)Phthalate	0	0	0	910	910	37,131	
4-Bromophenyl Phenyl Ether	0	0	0	54	54.0	2,203	
Butyl Benzyl Phthalate	0	0	0	35	35.0	1,428	
2-Chloronaphthalene	0	0	0	N/A	N/A	N/A	
Chrysene	0	0	0	N/A	N/A	N/A	
Dibenzo(a,h)Anthrancene	0	0	0	N/A	N/A	N/A	
	-	-	-				I

Model Results

2/3/2021

1,2-Dichlorobenzene	0	0	0	160	160	6,529	
1,3-Dichlorobenzene	0	0	0	69	69.0	2,815	
1.4-Dichlorobenzene	0	0	0	150	150	6,120	
3.3-Dichlorobenzidine	0	0	0	N/A	N/A	N/A	
Diethyl Phthalate	0	0	0	800	800	32.643	
Dimethyl Phthalate	0	0	0	500	500	20,402	
Di-n-Butyl Phthalate	0	0	0	21	21.0	857	
2.4-Dinitrotoluene	0	0	0	320	320	13,057	
2.6-Dinitrotoluene	0	0	0	200	200	8,161	
1,2-Diphenylhydrazine	0	0	0	3	3.0	122	
Fluoranthene	0	0	0	40	40.0	1,632	
Fluorene	0	0	0	N/A	N/A	N/A	
Hexachlorobenzene	0	0	0	N/A	N/A	N/A	
Hexachlorobutadiene	0	0	0	2	2.0	81.6	
Hexachlorocyclopentadiene	0	0	0	1	1.0	40.8	
Hexachloroethane	0	0	0	12	12.0	490	
Indeno(1,2,3-cd)Pyrene	0	0	0	N/A	N/A	N/A	
Isophorone	0	0	0	2,100	2,100	85,687	
Naphthalene	0	0	0	43	43.0	1,755	
Nitrobenzene	0	ō	0	810	810	33.051	
n-Nitrosodimethylamine	0	0	0	3,400	3,400	138,731	
n-Nitrosodi-n-Propylamine	0	0	0	N/A	N/A	N/A	
n-Nitrosodiphenylamine	0	ō	0	59	59.0	2,407	
Phenanthrene	0	ō	0	1	1.0	40.8	
Pyrene	0	0	0	N/A	N/A	N/A	
1,2,4-Trichlorobenzene	0	0	0	26	28.0	1,061	
Aldrin	0	0	0	0.1	0.1	4.08	
alpha-BHC	0	ō	0	N/A	N/A	N/A	
beta-BHC	0	0	0	N/A	N/A	N/A	
gamma-BHC	0	ŏ	0	N/A	N/A	N/A	
Chlordane	0	ŏ	0	0.0043	0.004	0.18	
4,4-DDT	0	ō	0	0.001	0.001	0.041	
4.4-DDE	0	0	0	0.001	0.001	0.041	
4.4-DDD	0	0	0	0.001	0.001	0.041	
Dieldrin	0	0	0	0.056	0.056	2.28	
alpha-Endosulfan	0	ō	0	0.056	0.056	2.28	
beta-Endosulfan	0	0	0	0.056	0.056	2.20	
Endrin	0	0	0	0.036	0.036	1.47	
Endrin Aldehyde	0	0	0	0.030	0.030 N/A	N/A	
Heptachlor	0	0	0	0.0038	0.004	0.16	
Heptachlor Epoxide	0	0	0	0.0038	0.004	0.16	
Toxaphene	0	0	0	0.0002	0.004	0.008	
roxaphene	U	U	U	0.0002	0.0002	0.000	

Model Results

2/3/2021

Pollutants	Conc	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	(ug/L) 0	0		0	500.000	500.000	N/A	
Chloride (PWS)	0	0	+++++	0	250,000	250,000	N/A	
Sulfate (PWS)	0	0		0	250.000	250,000	N/A	
Total Aluminum	0	0		0	N/A	N/A	N/A	
Total Antimony	0	0		0	5.6	5.6	229	
Total Arsenic	0	0		0	10	10.0	408	
Total Barium	0	0		0	2.400	2.400	98.026	
Total Boron	0	0		0	3,100	3,100	126.617	
Total Cadmium	0	0		0	N/A	N/A	N/A	
Total Chromium (III)	0	0		0	N/A	N/A	N/A	
Hexavalent Chromium	0	0	+++++	0	N/A	N/A	N/A	
Total Cobalt	0	0		0	N/A	N/A	N/A	
Total Copper	0	0		0	N/A	N/A	N/A	
Free Cyanide	0	0		0	140	140	5,718	
Dissolved Iron	0	0		0	300	300	12,253	
Total Iron	0	0		0	N/A	N/A	N/A	
Total Lead	0	0		0	N/A	N/A	N/A	
Total Manganese	0	0		0	1.000	1.000	40,844	
Total Mercury	0	0		0	0.050	0.05	2.04	
Total Nickel	0	0		0	610	610	24,915	
Total Phenols (Phenolics) (PWS)	0	0		0	5	5.0	N/A	
Total Selenium	0	0		0	N/A	N/A	N/A	
Total Silver	0	0		0	N/A	N/A	N/A	
Total Thallium	0	0		0	0.24	0.24	9.8	
Total Zinc	0	0		0	N/A	N/A	N/A	
Acrolein	0	0		0	6	6.0	245	
Acrylonitrile	0	0		0	N/A	N/A	N/A	
Benzene	0	0		0	N/A	N/A	N/A	
Bromoform	0	0		0	N/A	N/A	N/A	
Carbon Tetrachloride	0	0		0	N/A	N/A	N/A	
Chlorobenzene	0	0		0	130	130	5,310	
Chlorodibromomethane	0	0		0	N/A	N/A	N/A	
2-Chloroethyl Vinyl Ether	0	0		0	N/A	N/A	N/A	
Chloroform	0	0		0	N/A	N/A	N/A	
Dichlorobromomethane	0	0		0	N/A	N/A	N/A	
1,2-Dichloroethane	0	0		0	N/A	N/A	N/A	
1,1-Dichloroethylene	0	0		0	33	33.0	1,348	
1,2-Dichloropropane	0	0		0	N/A	N/A	N/A	
1,3-Dichloropropylene	0	0		0	N/A	N/A	N/A	
Ethylbenzene	0	0		0	530	530	21,648	
Methyl Bromide	0	0		0	47	47.0	1,920	
Methyl Chloride	0	0		0	N/A	N/A	N/A	
Methylene Chloride	0	0		0	N/A	N/A	N/A	

Model Results

2/3/2021

1,1,2,2-Tetrachloroethane	0	0	0	N/A	N/A	N/A	
Tetrachloroethylene	0	0	0	N/A	N/A	N/A	
Toluene	0	0	0	1,300	1,300	53.098	
1,2-trans-Dichloroethylene	0	0	0	140	140	5,718	
1,1,1-Trichloroethane	0	0	0	N/A	N/A	N/A	
1,1,2-Trichloroethane	0	0	0	N/A	N/A	N/A	
Trichloroethylene	0	0	0	N/A	N/A	N/A	
Vinyl Chloride	0	0	0	N/A	N/A	N/A	
2-Chlorophenol	0	0	0	81	81.0	3,308	
2,4-Dichlorophenol	0	0	0	77	77.0	3,145	
2,4-Dimethylphenol	0	0	0	380	380	15,521	
4,6-Dinitro-o-Cresol	0	0	0	13	13.0	531	
2,4-Dinitrophenol	0	0	0	69	69.0	2,818	
2-Nitrophenol	0	0	0	N/A	N/A	N/A	
4-Nitrophenol	0	0	0	N/A	N/A	N/A	
p-Chloro-m-Cresol	0	0	0	N/A	N/A	N/A	
Pentachlorophenol	0	0	0	N/A	N/A	N/A	
Phenol	0	0	0	10,400	10,400	424,781	
2,4,6-Trichlorophenol	0	0	0	N/A	N/A	N/A	
Acenaphthene	0	0	0	670	670	27,366	
Anthracene	0	0	0	8,300	8,300	339,008	
Benzidine	0	0	0	N/A	N/A	N/A	
Benzo(a)Anthracene	0	0	0	N/A	N/A	N/A	
Benzo(a)Pyrene	0	0	0	N/A	N/A	N/A	
3,4-Benzofluoranthene	0	0	0	N/A	N/A	N/A	
Benzo(k)Fluoranthene	0	0	0	N/A	N/A	N/A	
Bis(2-Chloroethyl)Ether	0	0	0	N/A	N/A	N/A	
Bis(2-Chloroisopropyl)Ether	0	0	0	1,400	1,400	57,182	
Bis(2-Ethylhexyl)Phthalate	0	0	0	N/A	N/A	N/A	
4-Bromophenyl Phenyl Ether	0	0	0	N/A	N/A	N/A	
Butyl Benzyl Phthalate	0	0	0	150	150	6,127	
2-Chloronaphthalene	0	0	0	1,000	1,000	40,844	
Chrysene	0	0	0	N/A	N/A	N/A	
Dibenzo(a,h)Anthrancene	0	0	0	N/A	N/A	N/A	
1,2-Dichlorobenzene	0	0	0	420	420	17,155	
1,3-Dichlorobenzene	0	0	0	420	420	17,155	
1,4-Dichlorobenzene	0	0	0	420	420	17,155	
3,3-Dichlorobenzidine	0	0	0	N/A	N/A	N/A	
Diethyl Phthalate	0	0	0	17,000	17,000	694,354	
Dimethyl Phthalate	0	0	0	270,000	270,000	11,027,974	
Di-n-Butyl Phthalate	0	0	0	2,000	2,000	81,689	
2,4-Dinitrotoluene	0	0	0	N/A	N/A	N/A	
2,6-Dinitrotoluene	0	0	0	N/A	N/A	N/A	
1.2-Diphenylhydrazine	0	0	0	N/A	N/A	N/A	
Fluoranthene	0	0	0	130	130	5,310	

Model Results

2/3/2021

							_	
Fluorene	0	0		0	1,100	1,100	44,929	
Hexachlorobenzene	0	0		0	N/A	N/A	N/A	
Hexachlorobutadiene	0	0		0	N/A	N/A	N/A	
Hexachlorocyclopentadiene	0	0		0	40	40.0	1,634	
Hexachloroethane	0	0		0	N/A	N/A	N/A	
Indeno(1,2,3-cd)Pyrene	0	0		0	0.0038	0.004	0.16	
Isophorone	0	0		0	35	35.0	1,430	
Naphthalene	0	0		0	N/A	N/A	N/A	
Nitrobenzene	0	0		0	17	17.0	694	
n-Nitrosodimethylamine	0	0		0	N/A	N/A	N/A	
n-Nitrosodi-n-Propylamine	0	0		0	N/A	N/A	N/A	
n-Nitrosodiphenylamine	0	0		0	N/A	N/A	N/A	
Phenanthrene	0	0		0	N/A	N/A	N/A	
Pyrene	0	0		0	830	830	33,901	
1,2,4-Trichlorobenzene	0	0		0	35	35.0	1,430	
Aldrin	0	0		0	N/A	N/A	N/A	
alpha-BHC	0	0		0	N/A	N/A	N/A	
beta-BHC	0	0		0	N/A	N/A	N/A	
gamma-BHC	0	0		0	0.098	0.098	4.0	
Chlordane	0	0		0	N/A	N/A	N/A	
4,4-DDT	0	0		0	N/A	N/A	N/A	
4,4-DDE	0	0		0	N/A	N/A	N/A	
4,4-DDD	0	0		0	N/A	N/A	N/A	
Dieldrin	0	0		0	N/A	N/A	N/A	
alpha-Endosulfan	0	0		0	62	62.0	2,532	
beta-Endosulfan	0	0		0	62	62.0	2,532	
Endrin	0	0		0	0.059	0.059	2.41	
Endrin Aldehyde	0	0		0	0.29	0.29	11.8	
Heptachlor	0	0		0	N/A	N/A	N/A	
Heptachlor Epoxide	0	0		0	N/A	N/A	N/A	
Toxaphene	0	0		0	0.00028	0.0003	0.011	
CRL CC		20	PMF:	0.593	Ana 🗌	alysis Hardne	ess (mg/l):	N/A Analysis pH: N/A
Pollutants	Conc (up/L)	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A	
Chloride (PWS)	0	0		0	N/A	N/A	N/A	
Sulfate (PWS)	0	0		0	N/A	N/A	N/A	
Total Aluminum	0	0		0	N/A	N/A	N/A	
Total Antimony	0	0		0	N/A	N/A	N/A	
Total Arsenic	0	0		0	N/A	N/A	N/A	
Total Barium	0	0		0	N/A	N/A	N/A	
Total Boron	0	0		0	N/A	N/A	N/A	
Total Cadmium	0	0		0	NI/A	NI/A	NI/A	

Model Results

Total Boron Total Cadmium

0

0

2/3/2021

N/A

N/A

N/A

0

Total Chromium (III)	0	0	_	0	N/A	N/A	N/A	
Hexavalent Chromium	0	0		0	N/A	N/A	N/A	
Total Cobalt	0	0		0	N/A	N/A	N/A	
Total Copper	0	0		0	N/A	N/A	N/A	
Free Cyanide	0	0		0	N/A	N/A	N/A	
Dissolved Iron	0	0		0	N/A	N/A	N/A	
Total Iron	0	0		0	N/A	N/A	N/A	
Total Lead	0	0		0	N/A	N/A	N/A	
Total Manganese	0	0		0	N/A	N/A	N/A	
Total Mercury	0	0		0	N/A	N/A	N/A	
Total Nickel	0	0		0	N/A	N/A	N/A	
Total Phenols (Phenolics) (PWS)	0	0		0	N/A	N/A	N/A	
Total Selenium	0	0		0	N/A	N/A	N/A	
Total Silver	0	0		0	N/A	N/A	N/A	
Total Thallium	0	0		0	N/A	N/A	N/A	
Total Zinc	0	0		0	N/A	N/A	N/A	
Acrolein	0	0		0	N/A	N/A	N/A	
Acrylonitrile	0	0		0	0.051	0.051	10.2	
Benzene	0	0		0	1.2	1.2	241	
Bromoform	0	0		0	4.3	4.3	864	
Carbon Tetrachloride	0	0		0	0.23	0.23	46.2	
Chlorobenzene	0	0		0	N/A	N/A	N/A	
Chlorodibromomethane	0	0		0	0.4	0.4	80.4	
2-Chloroethyl Vinyl Ether	0	0		0	N/A	N/A	N/A	
Chloroform	0	0		0	5.7	5.7	1,146	
Dichlorobromomethane	0	0		0	0.55	0.55	111	
1.2-Dichloroethane	0	0		0	0.38	0.38	76.4	
1,1-Dichloroethylene	0	0		0	N/A	N/A	N/A	
1,2-Dichloropropane	0	0		0	N/A	N/A	N/A	
1,3-Dichloropropylene	0	0		0	0.34	0.34	68.3	
Ethylbenzene	0	0		0	N/A	N/A	N/A	
Methyl Bromide	0	0		0	N/A	N/A	N/A	
Methyl Chloride	0	0		0	N/A	N/A	N/A	
Methylene Chloride	0	0		0	4.6	4.6	924	
1,1,2,2-Tetrachloroethane	0	0		0	0.17	0.17	34.2	
Tetrachloroethylene	0	0		0	0.69	0.69	139	
Toluene	0	0		0	N/A	N/A	N/A	
1,2-trans-Dichloroethylene	0	0		0	N/A	N/A	N/A	
1,1,1-Trichloroethane	0	0		0	N/A	N/A	N/A	
1,1,2-Trichloroethane	0	0		0	0.59	0.59	119	
Trichloroethylene	0	0		0	2.5	2.5	502	
Vinyl Chloride	0	0		0	0.025	0.025	5.02	
2-Chlorophenol	0	0		0	N/A	N/A	N/A	
2,4-Dichlorophenol	0	0		0	N/A	N/A	N/A	
2,4-Dimethylphenol	0	0		0	N/A	N/A	N/A	

2/3/2021

4.6-Dinitro-o-Cresol	0	0		_		0	N/A	N/A	N/A	
2.4-Dinitrophenol	0	0		-		0	N/A	N/A	N/A	
2-Nitrophenol	0	0		÷		0	N/A	N/A	N/A	
4-Nitrophenol	0	0		+		0	N/A	N/A	N/A	
p-Chloro-m-Cresol	0	0		+		0	N/A	N/A	N/A	
Pentachlorophenol	0	0		÷	Ħ	0	0.270	0.27	54.3	
Phenol	0	0		+		0	N/A	N/A	N/A	
2,4,6-Trichlorophenol	0	0	┝──	+		0	1.4	1.4	281	
Acenaphthene	0	0		+		0	N/A	N/A	N/A	
Anthracene	0	0		+		0	N/A	N/A	N/A	
Benzidine	0	0	┝──┤	+		0	0.000086	0.00009	0.017	
Benzo(a)Anthracene	0	0		÷		0	0.0038	0.0000	0.76	
Benzo(a)Pyrene	0	0		+		0	0.0038	0.004	0.76	
3.4-Benzofluoranthene	0	0	╞┼╤┤	+	+++	0	0.0038	0.004	0.76	
Benzo(k)Fluoranthene	0	0		÷		0	0.0038	0.004	0.76	
	0	0		+		0	0.038	0.004	6.03	
Bis(2-Chloroethyl)Ether	0	0	┝──┤	+	++-	0	0.03 N/A	N/A	0.03 N/A	
Bis(2-Chloroisopropyl)Ether Bis(2-Ethylhexyl)Phthalate	0	0		÷		0	1.2	1.2	241	
4-Bromophenyl Phenyl Ether	0	0		+		0	1.2 N/A	1.2 N/A	241 N/A	
	0	0	╞┼╤┤	+	+++	0	N/A N/A	N/A N/A	N/A	
Butyl Benzyl Phthalate	0	0				0	N/A N/A	N/A N/A	N/A N/A	
2-Chloronaphthalene	0	0		+	<u> </u>	0	0.0038	0.004	0.76	
Chrysene	0	0	┝──┤	┿	+++	0	0.0038	0.004	0.76	
Dibenzo(a,h)Anthrancene	0	0		÷		0			0.76 N/A	
1,2-Dichlorobenzene 1.3-Dichlorobenzene	0	0		+	++-	0	N/A N/A	N/A N/A	N/A	
	_		╞╧	╪	+++	-				
1,4-Dichlorobenzene	0	0		+		0	N/A 0.021	N/A 0.021	N/A 4.22	
3,3-Dichlorobenzidine	-	0		+	<u> </u>	-				
Diethyl Phthalate	0	0	╞╧	+	+++	0	N/A	N/A	N/A	
Dimethyl Phthalate	0	-		+		0	N/A	N/A	N/A	
Di-n-Butyl Phthalate 2.4-Dinitrotoluene	0	0		+		0	N/A 0.05	N/A 0.05	N/A 10.0	
	-	-		+		-		0.05	10.0	
2,6-Dinitrotoluene	0	0 0		-		0	0.05	0.05	7.24	
1,2-Diphenylhydrazine Fluoranthene	0	0		-		0	0.036 N/A	0.036 N/A	7.24 N/A	
Fluoranthene	0	0		+		0	N/A N/A	N/A N/A	N/A N/A	
	0	0					0.00028	0.0003	0.056	
Hexachlorobenzene	_			_		0	0.00028	0.0003	88.4	
Hexachlorobutadiene	0	0		+		0				
Hexachlorocyclopentadiene	0	0		-		0	N/A	N/A	N/A	
Hexachloroethane	0	0	μ.,	_		0	1.4	1.4	281	
Indeno(1,2,3-cd)Pyrene	0	0		+		0	N/A	N/A	N/A	
Isophorone	0	0				0	N/A	N/A	N/A	
Naphthalene	0	0	H	_	44	0	N/A	N/A	N/A	
Nitrobenzene	0	0		-		0	N/A	N/A	N/A	
n-Nitrosodimethylamine	0	0				0	0.00069	0.0007	0.14	
n-Nitrosodi-n-Propylamine	0	0				0	0.005	0.005	1.0	

Model Results

2/3/2021

n-Nitrosodiphenylamine	0	0		0	3.3	3.3	663	
Phenanthrene	0	0		0	N/A	N/A	N/A	
Pyrene	0	0		0	N/A	N/A	N/A	
1,2,4-Trichlorobenzene	0	0		0	N/A	N/A	N/A	
Aldrin	0	0		0	0.000049	0.00005	0.01	
alpha-BHC	0	0		0	0.0026	0.003	0.52	
beta-BHC	0	0		0	0.0091	0.009	1.83	
gamma-BHC	0	0		0	N/A	N/A	N/A	
Chlordane	0	0		0	0.0008	0.0008	0.16	
4,4-DDT	0	0		0	0.00022	0.0002	0.044	
4,4-DDE	0	0		0	0.00022	0.0002	0.044	
4,4-DDD	0	0		0	0.00031	0.0003	0.062	
Dieldrin	0	0		0	0.000052	0.00005	0.01	
alpha-Endosulfan	0	0		0	N/A	N/A	N/A	
beta-Endosulfan	0	0		0	N/A	N/A	N/A	
Endrin	0	0		0	N/A	N/A	N/A	
Endrin Aldehyde	0	0		0	N/A	N/A	N/A	
Heptachlor	0	0		0	0.000079	0.00008	0.016	
Heptachlor Epoxide	0	0		0	0.000039	0.00004	0.008	
Toxaphene	0	0		0	0.00028	0.0003	0.056	

☑ Recommended WQBELs & Monitoring Requirements

No. Samples/Month: 4

	Mass	Limits		Concentra	tion Limits				
Pollutants	AML (lbs/day)	MDL (lbs/day)	AML	MDL	IMAX	Units	Governing WQBEL	WQBEL Basis	Comments
Total Copper	Report	Report	Report	Report	Report	µg/L	65.9	AFC	Discharge Conc > 10% WQBEL (no RP)

Other Pollutants without Limits or Monitoring

The following pollutants do not require effluent limits or monitoring based on water quality because reasonable potential to exceed water quality criteria was not determined and the discharge concentration was less than thresholds for monitoring, or the pollutant was not detected and a sufficiently sensitive analytical method was used (e.g., <= Target QL).

Governing WQBEL	Units	Comments
N/A	N/A	PWS Not Applicable
N/A	N/A	PWS Not Applicable
N/A	N/A	No WQS
N/A	N/A	PWS Not Applicable
3,255	µg/L	Discharge Conc ≤ 10% WQBEL
229	µg/L	Discharge Conc ≤ 10% WQBEL
408	µg/L	Discharge Conc ≤ 10% WQBEL
91,145	µg/L	Discharge Conc ≤ 10% WQBEL
N/A	N/A	No WQS
	WQBEL N/A N/A N/A 3,255 229 408 91,145	WQBEL Units N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 229 μg/L 408 μg/L 91,145 μg/L

Model Results

2/3/2021

Total Boron	35,156	µg/L	Discharge Conc ≤ 10% WQBEL
Total Cadmium	10.1	µg/L	Discharge Conc < TQL
Total Chromium (III)	3,560	µg/L	Discharge Conc ≤ 10% WQBEL
Hexavalent Chromium	70.7	µg/L	Discharge Conc ≤ 10% WQBEL
Total Cobalt	412	µg/L	Discharge Conc ≤ 10% WQBEL
Free Cyanide	95.5	µg/L	Discharge Conc ≤ 25% WQBEL
Total Cyanide	N/A	N/A	No WQS
Dissolved Iron	12.253	µg/L	Discharge Conc ≤ 10% WQBEL
Total Iron	150,762	µg/L	Discharge Conc ≤ 10% WQBEL
Total Lead	130,702	µg/L	Discharge Conc ≤ 10% WQBEL
Total Manganese	40.844	µg/L	Discharge Conc ≤ 10% WQBEL
Total Mercury	2.04		Discharge Conc < TQL
Total Nickel	2.04	µg/L	Discharge Conc ≤ 10% WQBEL
Total Phenols (Phenolics) (PWS)	2,100	µg/L	.
	004	µg/L	PWS Not Applicable
Total Selenium	204	µg/L	Discharge Conc ≤ 10% WQBEL
Total Silver	19.1	µg/L	Discharge Conc ≤ 10% WQBEL
Total Thallium	9.8	µg/L	Discharge Conc < TQL
Total Zinc	560	µg/L	Discharge Conc ≤ 10% WQBEL
Total Molybdenum	N/A	N/A	No WQS
Acrolein	13.0	µg/L	Discharge Conc < TQL
Acrylonitrile	10.2	µg/L	Discharge Conc < TQL
Benzene	241	µg/L	Discharge Conc < TQL
Bromoform	864	µg/L	Discharge Conc < TQL
Carbon Tetrachloride	46.2	µg/L	Discharge Conc < TQL
Chlorobenzene	5,208	µg/L	Discharge Conc ≤ 25% WQBEL
Chlorodibromomethane	80.4	µg/L	Discharge Conc < TQL
Chloroethane	N/A	N/A	No WQS
2-Chloroethyl Vinyl Ether	78,124	µg/L	Discharge Conc < TQL
Chloroform	1,146	µg/L	Discharge Conc < TQL
Dichlorobromomethane	111	µg/L	Discharge Conc < TQL
1,1-Dichloroethane	N/A	N/A	No WQS
1,2-Dichloroethane	76.4	µg/L	Discharge Conc < TQL
1,1-Dichloroethylene	1,348	µg/L	Discharge Conc < TQL
1,2-Dichloropropane	47,743	µg/L	Discharge Conc < TQL
1,3-Dichloropropylene	68.3	µg/L	Discharge Conc < TQL
1,4-Dioxane	N/A	N/A	No WQS
Ethylbenzene	12,587	µg/L	Discharge Conc < TQL
Methyl Bromide	1,920	µg/L	Discharge Conc < TQL
Methyl Chloride	121,527	µg/L	Discharge Conc < TQL
Methylene Chloride	924	µg/L	Discharge Conc < TQL
1,1,2,2-Tetrachloroethane	34.2	µg/L	Discharge Conc < TQL
Tetrachloroethylene	139	µg/L	Discharge Conc < TQL
Toluene	7,378	µg/L	Discharge Conc ≤ 25% WQBEL
1,2-trans-Dichloroethylene	5,718	µg/L	Discharge Conc < TQL
1,1,1-Trichloroethane	13,021	µg/L	Discharge Conc < TQL

2/3/2021

1,1,2-Trichloroethane	119	µg/L	Discharge Conc < TQL
Trichloroethylene	502	µg/L	Discharge Conc < TQL
Vinyl Chloride	5.02	µg/L	Discharge Conc < TQL
2-Chlorophenol	2,431	µg/L	Discharge Conc ≤ 25% WQBEL
2,4-Dichlorophenol	3,145	µg/L	Discharge Conc ≤ 25% WQBEL
2,4-Dimethylphenol	2,865	µg/L	Discharge Conc ≤ 25% WQBEL
4,6-Dinitro-o-Cresol	347	µg/L	Discharge Conc ≤ 25% WQBEL
2,4-Dinitrophenol	2,818	µg/L	Discharge Conc ≤ 25% WQBEL
2-Nitrophenol	34,722	µg/L	Discharge Conc ≤ 25% WQBEL
4-Nitrophenol	9,983	µg/L	Discharge Conc ≤ 25% WQBEL
p-Chloro-m-Cresol	694	µg/L	Discharge Conc ≤ 25% WQBEL
Pentachlorophenol	39.3	µg/L	Discharge Conc < TQL
Phenol	424,781	µg/L	Discharge Conc ≤ 25% WQBEL
2,4,6-Trichlorophenol	281	µg/L	Discharge Conc ≤ 25% WQBEL
Acenaphthene	360	µg/L	Discharge Conc ≤ 25% WQBEL
Acenaphthylene	N/A	N/A	No WQS
Anthracene	339,008	µg/L	Discharge Conc ≤ 25% WQBEL
Benzidine	0.017	µg/L	Discharge Conc < TQL
Benzo(a)Anthracene	0.76	µg/L	Discharge Conc < TQL
Benzo(a)Pyrene	0.76	µg/L	Discharge Conc < TQL
3,4-Benzofluoranthene	0.76	µg/L	Discharge Conc < TQL
Benzo(ghi)Perylene	N/A	N/A	No WQS
Benzo(k)Fluoranthene	0.76	µg/L	Discharge Conc < TQL
Bis(2-Chloroethoxy)Methane	N/A	N/A	No WQS
Bis(2-Chloroethyl)Ether	6.03	µg/L	Discharge Conc < TQL
Bis(2-Chloroisopropyl)Ether	57,182	µg/L	Discharge Conc ≤ 25% WQBEL
Bis(2-Ethylhexyl)Phthalate	241	µg/L	Discharge Conc ≤ 25% WQBEL
4-Bromophenyl Phenyl Ether	1,172	µg/L	Discharge Conc ≤ 25% WQBEL
Butyl Benzyl Phthalate	608	µg/L	Discharge Conc ≤ 25% WQBEL
2-Chloronaphthalene	40,844	µg/L	Discharge Conc ≤ 25% WQBEL
4-Chlorophenyl Phenyl Ether	N/A	N/A	No WQS
Chrysene	0.76	µg/L	Discharge Conc < TQL
Dibenzo(a,h)Anthrancene	0.76	µg/L	Discharge Conc < TQL
1,2-Dichlorobenzene	3,559	µg/L	Discharge Conc ≤ 25% WQBEL
1,3-Dichlorobenzene	1,519	µg/L	Discharge Conc ≤ 25% WQBEL
1,4-Dichlorobenzene	3,168	µg/L	Discharge Conc ≤ 25% WQBEL
3,3-Dichlorobenzidine	4.22	µg/L	Discharge Conc < TQL
Diethyl Phthalate	17,361	µg/L	Discharge Conc ≤ 25% WQBEL
Dimethyl Phthalate	10,851	µg/L	Discharge Conc ≤ 25% WQBEL
Di-n-Butyl Phthalate	477	µg/L	Discharge Conc ≤ 25% WQBEL
2,4-Dinitrotoluene	10.0	µg/L	Discharge Conc < TQL
2,6-Dinitrotoluene	10.0	µg/L	Discharge Conc ≤ 25% WQBEL
Di-n-Octyl Phthalate	N/A	N/A	No WQS
1,2-Diphenylhydrazine	7.24	µg/L	Discharge Conc < TQL
Fluoranthene	868	µg/L	Discharge Conc ≤ 25% WQBEL

2/3/2021

Fluorene	44,929	µg/L	Discharge Conc ≤ 25% WQBEL
Hexachlorobenzene	0.056	µg/L	Discharge Conc < TQL
Hexachlorobutadiene	43.4	µg/L	Discharge Conc ≤ 25% WQBEL
Hexachlorocyclopentadiene	21.7	µg/L	Discharge Conc < TQL
Hexachloroethane	260	µg/L	Discharge Conc ≤ 25% WQBEL
Indeno(1,2,3-cd)Pyrene	0.16	µg/L	Discharge Conc < TQL
Isophorone	1,430	µg/L	Discharge Conc ≤ 25% WQBEL
Naphthalene	608	µg/L	Discharge Conc ≤ 25% WQBEL
Nitrobenzene	694	µg/L	Discharge Conc ≤ 25% WQBEL
n-Nitrosodimethylamine	0.14	µg/L	Discharge Conc < TQL
n-Nitrosodi-n-Propylamine	1.0	µg/L	Discharge Conc < TQL
n-Nitrosodiphenylamine	663	µg/L	Discharge Conc ≤ 25% WQBEL
Phenanthrene	21.7	µg/L	Discharge Conc < TQL
Pyrene	33,901	µg/L	Discharge Conc ≤ 25% WQBEL
1,2,4-Trichlorobenzene	564	µg/L	Discharge Conc ≤ 25% WQBEL
Aldrin	0.01	µg/L	Discharge Conc < TQL
alpha-BHC	0.52	µg/L	Discharge Conc < TQL
beta-BHC	1.83	µg/L	Discharge Conc < TQL
gamma-BHC	4.0	µg/L	Discharge Conc ≤ 25% WQBEL
delta BHC	N/A	N/A	No WQS
Chlordane	0.16	µg/L	Discharge Conc < TQL
4,4-DDT	0.041	µg/L	Discharge Conc < TQL
4,4-DDE	0.041	µg/L	Discharge Conc < TQL
4,4-DDD	0.041	µg/L	Discharge Conc < TQL
Dieldrin	0.01	µg/L	Discharge Conc < TQL
alpha-Endosulfan	0.95	µg/L	Discharge Conc < TQL
beta-Endosulfan	0.95	µg/L	Discharge Conc < TQL
Endosulfan Sulfate	N/A	N/A	No WQS
Endrin	0.37	µg/L	Discharge Conc < TQL
Endrin Aldehyde	11.8	µg/L	Discharge Conc < TQL
Heptachlor	0.016	µg/L	Discharge Conc < TQL
Heptachlor Epoxide	0.008	µg/L	Discharge Conc < TQL
Toxaphene	0.008	µg/L	Discharge Conc < TQL

2/3/2021

Applicant:	North Huntingdon Township MA
Name of plant:	Youghiogheny STP
Permit Number:	PA0027243
Municipality:	North Huntingdon Township
County:	Westmoreland
Receiving stream:	Youghiogheny River

The following program will calulate partial mix factors for acute and chronic conditions:

calculated fields

net stream flow (Qs cfs)=	510
discharge flow (Qd mgd)=	3.313
velocity (fps)=	1.8
width (feet) =	246
depth (feet) =	1.16
slope (ft/ft) =	0.00021
complete mix time (min) =	4490.55
complete mix time (mm) =	4490.00

or

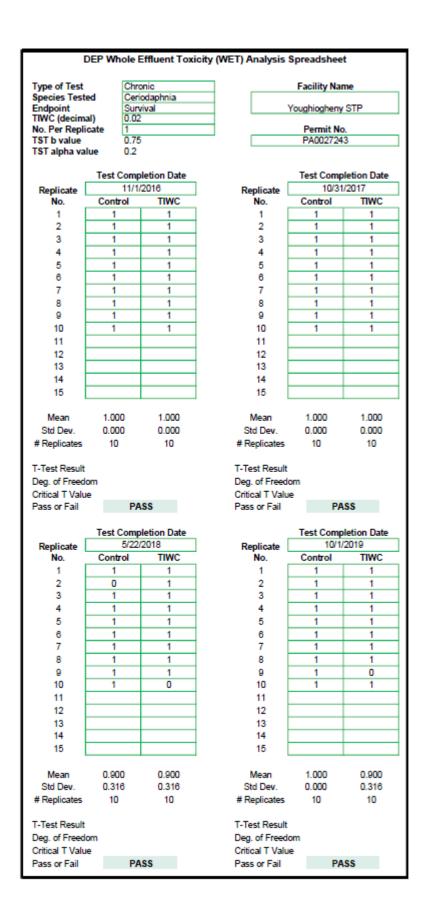
complete mix time (min) =

FOR ACUTE CONDITIONS: IF COMPLETE MIX TIME < 15 MINUTES THEN PMF = 1, IF > 15 MINUTES CALCULATE PMFa

PMFa =

0.058 5.78 %

FOR CHRONIC CONDITIONS: IF COMPLETE MIX TIME < 720 MINUTES THEN PMF = 1, IF > 720 MINUTES CALCULATE PMFc


PMFc =	or	0.400 40.04 %]	
IWCc=[Qd * 1.547] / [(Q	s*PMFc	c)+(Qd*1.547)] =	0.0245	
Target IWCc=IWCc/1=	I	0.024		2.45 %
IWCa=[Qd * 1.547] / [(Q	s*PMFa	a) + (Qd * 1.547)] =	0.1481	
Target IWCa=IWCa/0.3=	I	0.494 or		49.37 %
WET tests should pass if than the target IWCa (act		•		50 are greater

Program written by David Ponchione on April 8, 1999

W. Mitchell Program run by : February 3, 2021 on

For Department use only

		- (A	the OMET Anothering					
Type of Test		onic	city (WET) Analysis \$	Facility Na				
Species Test		ephales		Facility Na	ne			
Endpoint	Gro	wth	- N	Youghiogheny STP				
TIWC (decim		2						
No. Per Repl				Permit No. PA0027243				
TST b value TST alpha va	0.75 Jue 0.25			PA002729	3			
ror apria va		·						
	Test Comp	pletion Date		Test Comp	letion Date			
Replicate	11/1	/2016	Replicate	10/31	/2017			
No.	Control	TIWC	No.	Control	TIWC			
1	0.439	0.419	1 [0.448	0.394			
2	0.391	0.506	2	0.463	0.448			
3	0.403	0.318	3	0.414	0.443			
4	0.45	0.5311	4	0.37	0.476			
5			5					
6			6					
7			7					
8			8					
9			9					
10			10					
11			11					
12			12					
13			13					
14			14					
15			15					
Mean	0.421	0.444	Mean	0.424	0.440			
Std Dev.	0.028	0.096	Std Dev.	0.041	0.034			
# Replicates	4	4	# Replicates	4	4			
T-Test Result								
		908	T-Test Result		181			
Deg. of Freed	lom	3	Deg. of Freedo	m	5			
Critical T Valu	lom Je 0.7	3 '649	Deg. of Freedo Critical T Value	im (5 267			
-	lom Je 0.7	3	Deg. of Freedo	im (5			
Critical T Valu	lom Je 0.7 P/	3 649 \\$\$	Deg. of Freedo Critical T Value	e 0.7 PA	5 267 ISS			
Critical T Valu Pass or Fail	lom ue 0.7 P# Test Comp	3 649 ASS Detion Date	Deg. of Freedo Critical T Value Pass or Fail	e 0.7 PA Test Comp	5 267 ISS Netion Date			
Critical T Valu Pass or Fail Replicate	lom ue 0.7 P# Test Comp 5/22	3 649 ASS oletion Date /2018	Deg. of Freedo Critical T Value Pass or Fail Replicate	e 0.7 PA Test Comp 10/1/	5 267 ISS Iletion Date (2019			
Critical T Valu Pass or Fail Replicate No.	lom Je 0.7 P# Test Comp 5/22 Control	3 649 ISS Detion Date /2018 TIWC	Deg. of Freedo Critical T Value Pass or Fail Replicate No.	e 0.7 PA Test Comp 10/1/ Control	5 267 ISS Idetion Date 2019 TIWC			
Critical T Valu Pass or Fail Replicate No. 1	om Je 0.7 P4 Test Comp 5/22 Control 0.18	3 (649 (SS) (2018 TIWC 0.293	Deg. of Freedo Critical T Value Pass or Fail Replicate No. 1	e 0.7 PA Test Comp 10/1/ Control 0.314	5 267 ISS Ietion Date 2019 TIWC 0.321			
Critical T Valu Pass or Fail Replicate No. 1 2	om je 0.7 PA Test Comp 5/22 Control 0.18 0.258	3 649 ASS /2018 TIWC 0.293 0.176	Deg. of Freedo Critical T Value Pass or Fail Replicate No.	e 0.7 PA Test Comp 10/1/ Control 0.314 0.296	5 267 ISS Idetion Date 2019 TIWC			
Critical T Valu Pass or Fail Replicate No. 1	om Je 0.7 P4 Test Comp 5/22 Control 0.18	3 649 ASS /2018 TIWC 0.293 0.176 0.185	Deg. of Freedo Critical T Value Pass or Fail Replicate No. 1 2	e 0.7 PA Test Comp 10/1/ Control 0.314 0.296 0.29	5 267 SS 2019 2019 TIWC 0.321 0.274 0.284			
Critical T Valu Pass or Fail Replicate No. 1 2 3 4	om Je 0.7 P/ Test Comp 5/22 Control 0.18 0.258 0.255	3 649 ASS /2018 TIWC 0.293 0.176	Deg. of Freedo Critical T Value Pass or Fail Replicate No. 1 2 3 4	e 0.7 PA Test Comp 10/1/ Control 0.314 0.296	5 267 SS 2019 2019 TIWC 0.321 0.274			
Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5	om Je 0.7 P/ Test Comp 5/22 Control 0.18 0.258 0.255	3 649 ASS /2018 TIWC 0.293 0.176 0.185	Deg. of Freedo Critical T Value Pass or Fail Replicate No. 1 2 3 4 5	e 0.7 PA Test Comp 10/1/ Control 0.314 0.296 0.29	5 267 SS 2019 2019 TIWC 0.321 0.274 0.284			
Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6	om Je 0.7 P/ Test Comp 5/22 Control 0.18 0.258 0.255	3 649 ASS /2018 TIWC 0.293 0.176 0.185	Deg. of Freedo Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6	e 0.7 PA Test Comp 10/1/ Control 0.314 0.296 0.29	5 267 SS 2019 2019 TIWC 0.321 0.274 0.284			
Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5	om Je 0.7 P/ Test Comp 5/22 Control 0.18 0.258 0.255	3 649 ASS /2018 TIWC 0.293 0.176 0.185	Deg. of Freedo Critical T Value Pass or Fail No. 1 2 3 4 5 6 7	e 0.7 PA Test Comp 10/1/ Control 0.314 0.296 0.29	5 267 SS 2019 2019 TIWC 0.321 0.274 0.284			
Critical T Valu Pass or Fail No. 1 2 3 4 5 6 7 8	om Je 0.7 P/ Test Comp 5/22 Control 0.18 0.258 0.255	3 649 ASS /2018 TIWC 0.293 0.176 0.185	Deg. of Freedo Critical T Value Pass or Fail No. 1 2 3 4 5 6 7 8	e 0.7 PA Test Comp 10/1/ Control 0.314 0.296 0.29	5 267 SS 2019 2019 TIWC 0.321 0.274 0.284			
Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7	om Je 0.7 P/ Test Comp 5/22 Control 0.18 0.258 0.255	3 649 ASS /2018 TIWC 0.293 0.176 0.185	Deg. of Freedo Critical T Value Pass or Fail No. 1 2 3 4 5 6 7	e 0.7 PA Test Comp 10/1/ Control 0.314 0.296 0.29	5 267 SS 2019 2019 TIWC 0.321 0.274 0.284			
Critical T Valu Pass or Fail No. 1 2 3 4 5 6 7 8 9	om Je 0.7 P/ Test Comp 5/22 Control 0.18 0.258 0.255	3 649 ASS /2018 TIWC 0.293 0.176 0.185	Deg. of Freedo Critical T Value Pass or Fail No. 1 2 3 4 5 6 7 8 9	e 0.7 PA Test Comp 10/1/ Control 0.314 0.296 0.29	5 267 SS 2019 2019 TIWC 0.321 0.274 0.284			
Critical T Valu Pass or Fail No. 1 2 3 4 5 6 7 8 9 10	om Je 0.7 P/ Test Comp 5/22 Control 0.18 0.258 0.255	3 649 ASS /2018 TIWC 0.293 0.176 0.185	Deg. of Freedo Critical T Value Pass or Fail No. 1 2 3 4 5 6 7 8 9 10	e 0.7 PA Test Comp 10/1/ Control 0.314 0.296 0.29	5 267 SS 2019 2019 TIWC 0.321 0.274 0.284			
Critical T Valu Pass or Fail No. 1 2 3 4 5 6 7 8 9 10 11	om Je 0.7 P/ Test Comp 5/22 Control 0.18 0.258 0.255	3 649 ASS /2018 TIWC 0.293 0.176 0.185	Deg. of Freedo Critical T Value Pass or Fail No. 1 2 3 4 5 6 7 8 9 10 11	e 0.7 PA Test Comp 10/1/ Control 0.314 0.296 0.29	5 267 SS 2019 2019 TIWC 0.321 0.274 0.284			
Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12	om Je 0.7 P/ Test Comp 5/22 Control 0.18 0.258 0.255	3 649 ASS /2018 TIWC 0.293 0.176 0.185	Deg. of Freedo Critical T Value Pass or Fail No. 1 2 3 4 5 6 7 8 9 10 11 12	e 0.7 PA Test Comp 10/1/ Control 0.314 0.296 0.29	5 267 SS 2019 2019 TIWC 0.321 0.274 0.284			
Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13	om Je 0.7 P/ Test Comp 5/22 Control 0.18 0.258 0.255	3 649 ASS /2018 TIWC 0.293 0.176 0.185	Deg. of Freedo Critical T Value Pass or Fail No. 1 2 3 4 5 6 7 8 9 10 11 12 13	e 0.7 PA Test Comp 10/1/ Control 0.314 0.296 0.29	5 267 SS 2019 2019 TIWC 0.321 0.274 0.284			
Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14	om Je 0.7 P/ Test Comp 5/22 Control 0.18 0.258 0.255	3 649 ASS /2018 TIWC 0.293 0.176 0.185	Deg. of Freedo Critical T Value Pass or Fail No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14	e 0.7 PA Test Comp 10/1/ Control 0.314 0.296 0.29	5 267 SS 2019 2019 TIWC 0.321 0.274 0.284			
Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14	om Je 0.7 P/ Test Comp 5/22 Control 0.18 0.258 0.255	3 649 ASS /2018 TIWC 0.293 0.176 0.185	Deg. of Freedo Critical T Value Pass or Fail No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14	e 0.7 PA Test Comp 10/1/ Control 0.314 0.296 0.29	5 267 SS 2019 2019 TIWC 0.321 0.274 0.284			
Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	om Jue 0.7 PA Test Comp 5/22 Control 0.18 0.258 0.255 0.3211	3 649 ASS Deletion Date /2018 TIWC 0.293 0.176 0.185 0.291	Deg. of Freedo Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	m 9 9 0.7 PA Test Comp 10/1/ Control 0.314 0.296 0.29 0.254	5 267 25 267 2019 TIWC 0.321 0.274 0.284 0.329			
Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean	0000 Jue 0.7 PA Test Comp 5/22 Control 0.18 0.258 0.255 0.3211 0.255 0.3211 0.254	3 649 ASS Detion Date /2018 TIWC 0.293 0.176 0.185 0.291 	Deg. of Freedo Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean	0.289	5 267 25 267 2019 2019 TIWC 0.321 0.274 0.284 0.329			
Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev.	0000 Jue 0.7 PA Test Comp 5/22 Control 0.18 0.258 0.255 0.3211 0.255 0.3211 0.254 0.058	3 649 ASS Detion Date /2018 TIWC 0.293 0.176 0.185 0.291 	Deg. of Freedo Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev.	0.289 0.25	5 267 25 267 2019 2019 TIWC 0.321 0.274 0.284 0.329 0.329 0.329 0.302 0.302 0.027			
Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev.	0m De 0.7 Fest Comp 5/22 Control 0.18 0.258 0.255 0.3211 0.3211 0.254 0.058 4	3 649 ASS Detion Date /2018 TIWC 0.293 0.176 0.185 0.291 	Deg. of Freedo Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev.	0.289 0.254	5 267 25 267 2019 2019 TIWC 0.321 0.274 0.284 0.329 0.329 0.329 0.302 0.302 0.027			
Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates	om Jue 0.7 P/ Test Comp 5/22 Control 0.18 0.258 0.255 0.3211 0.255 0.3211 0.255 0.3211 0.255 0.3211 0.255 0.3211 0.254 0.058 4	3 649 ASS 2018 TIWC 0.293 0.176 0.185 0.291 0.293 0.291 0.291 0.293 0.004 0.004 4	Deg. of Freedo Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 15 Mean Std Dev. # Replicates	0.289 0.225 0.289 0.255	5 267 ISS 1019 TIWC 0.321 0.274 0.329 0.329 0.329 0.322 0.302 0.027 4			
Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result	0m Jue 0.7 P/ Test Comp 5/22 Control 0.18 0.258 0.255 0.3211 0.3211 0.254 0.058 4 1.1 Iom	3 649 ASS 0letion Date (2018 TIWC 0.293 0.176 0.185 0.291 0.291 0.291 0.291 0.291 0.291 0.291 0.291 0.291 0.293 0.084 4 873	Deg. of Freedo Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 15 Mean Std Dev. # Replicates T-Test Result	0.289 0.2254 0.289 0.225 0.254	5 267 ISS 1019 TIWC 0.321 0.274 0.284 0.329 0.329 0.322 0.202 0.302 0.027 4			
Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result Deg. of Freed	00m 10e 0.7 P/ Test Comp 5/22 Control 0.18 0.258 0.255 0.3211 0.3211 0.258 0.3251 0.3211 0.258 0.3251 0.3211 0.058 4 1.1 100 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0	3 649 ASS Detion Date (2018 TIWC 0.293 0.176 0.185 0.291 0.291 0.291 0.291 0.291 0.204 4 873 5	Deg. of Freedo Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 14 15 Mean Std Dev. # Replicates T-Test Result Deg. of Freedo	0.289 0.025 4 0.7 0.289 0.025 0.289 0.025 0.025 0.025	5 267 257 257 2019 TIWC 0.321 0.274 0.284 0.329 0.329 0.329 0.302 0.027 4 900 5			

	DEP Whole	Effluent Toxic	city (WET) Analysis	Spreadshee	et.				
	Type of Test Chronic			Facility Name					
Species Test Endpoint	Sun	ephales vival	,	Youghiogheny STP					
TIWC (decim No. Per Repli		2	_	Permit No.					
TST b value TST alpha va	0.75 Ilue 0.25			PA0027243					
Replicate		/2016	Replicate	Test Completion Date 10/31/2017					
No.	Control	TIWC	No.	Control	тикс				
1	1	0.8	1	1	1				
2	0.8	0.8	2	1	1				
4	1	1	4	1	1				
5			5						
6			6						
7			7						
8			8						
10			10						
11			11						
12			12						
13 14			13 14		<u> </u>				
14			14						
13			15						
Mean	0.950	0.900	Mean	1.000	1.000				
Std Dev.	0.100	0.115	Std Dev.	0.000	0.000				
# Replicates	4	4	# Replicates	4	4				
T-Test Result 5.7698 T-Test Result									
1-Test IVesuit	5.7	698	T-Test Result						
Deg. of Freed		'698 5	T-Test Result Deg. of Freed						
Deg. of Freed Critical T Valu	lom Je 0.7	5 267	Deg. of Freed Critical T Valu	om e					
Deg. of Freed	lom Je 0.7	5	Deg. of Freed	om e	155				
Deg. of Freed Critical T Valu	lom Je 0.7 P/	5 267 ASS	Deg. of Freed Critical T Valu	om e PA					
Deg. of Freed Critical T Valu	lom ue 0.7 P# Test Comp	5 267	Deg. of Freed Critical T Valu	om e PA Test Comp	ASS Detion Date /2019				
Deg. of Freed Critical T Valu Pass or Fail Replicate No.	lom Je 0.7 P# Test Comp 5/22 Control	5 (267 (SS)letion Date (2018 TIWC	Deg. of Freed Critical T Valu Pass or Fail Replicate No.	om e Test Comp 10/1 Control	oletion Date /2019 TIWC				
Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1	om je 0.7 P4 Test Comp 5/22 Control 0.5	5 1267 ASS 2010 Date /2018 TIWC 0.9	Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1	om e Test Comp 10/1 Control 0.9	oletion Date /2019 TIWC 1				
Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2	lom Je 0.7 P# Test Comp 5/22 Control	5 267 ASS /2018 TIWC 0.9 0.5	Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2	om e Test Comp 10/1 Control 0.9 0.5	oletion Date /2019 TIWC 1 0.7				
Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1	om je 0.7 PA Test Comp 5/22 Control 0.5 0.9	5 1267 ASS 2010 Date /2018 TIWC 0.9	Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1	om e Test Comp 10/1 Control 0.9	oletion Date /2019 TIWC 1				
Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5	om Je 0.7 P/ Test Comp 5/22 Control 0.5 0.9 1	5 267 ASS /2018 TIWC 0.9 0.5 0.6	Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5	om e Test Comp 10/1 Control 0.9 0.5 0.8	oletion Date /2019 TIWC 1 0.7 0.9				
Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6	om Je 0.7 P/ Test Comp 5/22 Control 0.5 0.9 1	5 267 ASS /2018 TIWC 0.9 0.5 0.6	Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6	om e Test Comp 10/1 Control 0.9 0.5 0.8	oletion Date /2019 TIWC 1 0.7 0.9				
Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7	om Je 0.7 P/ Test Comp 5/22 Control 0.5 0.9 1	5 267 ASS /2018 TIWC 0.9 0.5 0.6	Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7	om e Test Comp 10/1 Control 0.9 0.5 0.8	oletion Date /2019 TIWC 1 0.7 0.9				
Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6	om Je 0.7 P/ Test Comp 5/22 Control 0.5 0.9 1	5 267 ASS /2018 TIWC 0.9 0.5 0.6	Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6	om e Test Comp 10/1 Control 0.9 0.5 0.8	oletion Date /2019 TIWC 1 0.7 0.9				
Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8	om Je 0.7 P/ Test Comp 5/22 Control 0.5 0.9 1	5 267 ASS /2018 TIWC 0.9 0.5 0.6	Deg. of Freed Critical T Valu Pass or Fail No. 1 2 3 4 5 6 7 8	om e Test Comp 10/1 Control 0.9 0.5 0.8	oletion Date /2019 TIWC 1 0.7 0.9				
Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11	om Je 0.7 P/ Test Comp 5/22 Control 0.5 0.9 1	5 267 ASS /2018 TIWC 0.9 0.5 0.6	Deg. of Freed Critical T Valu Pass or Fail No. 1 2 3 4 5 6 7 8 9 10 11	om e Test Comp 10/1 Control 0.9 0.5 0.8	oletion Date /2019 TIWC 1 0.7 0.9				
Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12	om Je 0.7 P/ Test Comp 5/22 Control 0.5 0.9 1	5 267 ASS /2018 TIWC 0.9 0.5 0.6	Deg. of Freed Critical T Valu Pass or Fail No. 1 2 3 4 5 6 7 8 9 10 11 12	om e Test Comp 10/1 Control 0.9 0.5 0.8	oletion Date /2019 TIWC 1 0.7 0.9				
Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13	om Je 0.7 P/ Test Comp 5/22 Control 0.5 0.9 1	5 267 ASS /2018 TIWC 0.9 0.5 0.6	Deg. of Freed Critical T Valu Pass or Fail No. 1 2 3 4 5 6 7 8 9 10 11 12 13	om e Test Comp 10/1 Control 0.9 0.5 0.8	oletion Date /2019 TIWC 1 0.7 0.9				
Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12	om Je 0.7 P/ Test Comp 5/22 Control 0.5 0.9 1	5 267 ASS /2018 TIWC 0.9 0.5 0.6	Deg. of Freed Critical T Valu Pass or Fail No. 1 2 3 4 5 6 7 8 9 10 11 12	om e Test Comp 10/1 Control 0.9 0.5 0.8	oletion Date /2019 TIWC 1 0.7 0.9				
Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14	lom Jue 0.7 PA Test Comp 5/22 Control 0.5 0.9 1 0.9 1 0.9 1 0.9 1 0.9	5 (267 ASS (2018 1000 0.9 0.5 0.6 0.9 100 100 100 100 100 100 100 100 100 10	Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14	om e Test Comp 10/1 Control 0.9 0.5 0.8	oletion Date /2019 TIWC 1 0.7 0.9				
Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean	0m Jue 0.7 PA Test Comp 5/22 Control 0.5 0.9 1 0.9 0 0.9 1 0.9 0 0.9 1 0.9 0 0.9 1 0.9 0 0.9 0 0.9 0 0.9 0 0.9 0 0.9 0 0.9 0 0.9 0 0.9 0 0.9 0 0.9 0 0.9 0 0.9 0 0.9 0 0.9 0 0.9 0 0.9 0 0.9 0 0.9 0 0 0.9 0 0 0 0 0 0 0 0 0 0 0 0 0	5 (267 (257 (257 (257 (257 (257 (257 (257 (25	Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean	om e Test Comp 10/1 Control 0.9 0.5 0.8 1	0.875				
Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev.	0m Jue 0.7 PA Test Comp 5/22 Control 0.5 0.9 1 0.9 1 0.9 	5 267 ASS 2018 TIWC 0.9 0.5 0.6 0.9 	Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev.	om e Test Comp 10/1 Control 0.9 0.5 0.8 1 1 	0.875 0.2019				
Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean	0m Jue 0.7 PA Test Comp 5/22 Control 0.5 0.9 1 0.9 0 0.9 1 0.9 0 0.9 1 0.9 0 0.9 1 0.9 0 0.9 0 0.9 0 0.9 0 0.9 0 0.9 0 0.9 0 0.9 0 0.9 0 0.9 0 0.9 0 0.9 0 0.9 0 0.9 0 0.9 0 0.9 0 0.9 0 0.9 0 0.9 0 0 0.9 0 0 0 0 0 0 0 0 0 0 0 0 0	5 (267 (257 (257 (257 (257 (257 (257 (257 (25	Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean	om e Test Comp 10/1 Control 0.9 0.5 0.8 1	0.875				
Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev.	lom Jue 0.7 Test Comp 5/22 Control 0.5 0.9 1 0.9 0 0 0 0 0 0 0 0 0 0 0 0 0	5 267 ASS 2018 TIWC 0.9 0.5 0.6 0.9 	Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev.	om e Test Comp 10/1 Control 0.9 0.5 0.8 1 1 	0.875 0.2019				
Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result Deg. of Freed	lom Jue 0.7 P/ Test Compr 5/22 Control 0.5 0.9 1 0.9 0 0 0 0 0 0 0 0 0 0 0 0 0	5 267 ASS Detion Date /2018 TIWC 0.9 0.5 0.6 0.9 0.5 0.6 0.9 0.5 0.6 0.9 0.5 0.6 0.9 0.5 0.6 0.9 0.5 0.206 4 1754 5	Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result Deg. of Freed	om e Test Comp 10/1 Control 0.9 0.5 0.8 1 1 0.800 0.216 4 4.4 om	Deletion Date /2019 TIWC 1 0.7 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9				
Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result	lom Jue 0.7 Test Comp 5/22 Control 0.5 0.9 1 0.9 0 0 0 0 0 0 0 0 0 0 0 0 0	5 267 ASS Deletion Date /2018 TIWC 0.9 0.5 0.6 0.9 0.6 0.9 0.5 0.6 0.9 0.5 0.6 0.9 0.5 0.6 0.9 0.5 0.206 4	Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result	om e Test Comp 10/1 Control 0.9 0.5 0.8 1 1 0.800 0.216 4 4 e 0.7	0.875 0.126 4394				

-	DEP Whole F	Effluent Toxicity	y (WET) Analysis S	preadshee	t	
Type of Test Chronic			Facility Name			
Species Test		odaphnia				
Endpoint Reproduction TIWC (decimal) 0.02			Youghiogheny STP			
No. Per Replicate 1			Permit No.			
TST b value			PA0027243			
TST alpha va	lue 0.2					
Test Completion Date			Test Completion Date			
Replicate	11/1/2016		Replicate	10/31	/2017	
No.	Control	TIWC	No.	Control	тис	
1	35	29	1	21	23	
2	35	33	2	13	21	
3	34	35	3	20	21	
4	36	37	4	22	22	
5	35	37	5	18	24	
6	38	34	6	21	22	
7	30	36	7	19	22	
-						
8	34	36	8	20	20	
9	37	34	9	25	23	
10	34	41	10	27	18	
11			11			
12			12			
13			13			
14			14			
15			15			
Mean	35,200	35,200	Mean	20.600	21,400	
Std Dev.	1.398	3.120	Std Dev.	3.806	1.776	
# Replicates	10	10	# Replicates	10	10	
T-Test Result 8.4548			T-Test Result			
Deg. of Freed	iom 1	3	Deg. of Freedor			
Critical T Valu	Je 0.8	702	Critical T Value			
Pass or Fail	PA	SS	Pass or Fail	PA	SS	
	Test Comp	letion Date		letion Date		
Replicate	Test Completion Date 5/22/2018					
	5/22/	2018	Replicate	10/1/	2019 1	
			Replicate No	10/1/ Control		
No.	Control	TIWC	No.	Control	TIWC	
No. 1	Control 32	TIWC 35	No. 1	Control 35	TIWC 29	
No. 1 2	Control 32 0	TIWC 35 32	No. 1 2	Control 35 34	TIWC 29 29	
No. 1 2 3	Control 32 0 31	TIWC 35 32 31	No. 1 2 3	Control 35 34 35	TIWC 29 29 33	
No. 1 2 3 4	Control 32 0 31 32	TIWC 35 32 31 34	No. 1 2 3 4	Control 35 34 35 32	TIWC 29 29 33 38	
No. 1 2 3	Control 32 0 31 32 34	TIWC 35 32 31	No. 1 2 3	Control 35 34 35 32 32 34	TIWC 29 29 33	
No. 1 2 3 4 5 6	Control 32 0 31 32 34 26	TIWC 35 32 31 34 36 37	No. 1 2 3 4 5 6	Control 35 34 35 32 32 34 37	TIWC 29 29 33 38 30 36	
No. 1 2 3 4 5	Control 32 0 31 32 34	TIWC 35 32 31 34 38	No. 1 2 3 4 5	Control 35 34 35 32 32 34	TIWC 29 29 33 38 30	
No. 1 2 3 4 5 6	Control 32 0 31 32 34 26	TIWC 35 32 31 34 36 37	No. 1 2 3 4 5 6	Control 35 34 35 32 32 34 37	TIWC 29 29 33 38 30 36	
No. 1 2 3 4 5 6 7	Control 32 0 31 32 34 26 29	TIWC 35 32 31 34 36 37 35	No. 1 2 3 4 5 6 7	Control 35 34 35 32 34 37 34 34	TIWC 29 29 33 38 30 36 33	
No. 1 2 3 4 5 6 7 8	Control 32 0 31 32 34 26 29 30	TIWC 35 32 31 34 36 37 35 38	No. 1 2 3 4 5 6 7 8	Control 35 34 35 32 34 37 34 26 34	TIWC 29 29 33 38 30 36 33 33 32	
No. 1 2 3 4 5 6 7 8 9 10	Control 32 0 31 32 34 26 29 30 27	TIWC 35 32 31 34 36 37 35 36 34	No. 1 2 3 4 5 6 7 8 9 9	Control 35 34 35 32 34 37 34 26	TIWC 29 29 33 38 30 36 33 32 0	
No. 1 2 3 4 5 6 7 8 9 10 11	Control 32 0 31 32 34 26 29 30 27	TIWC 35 32 31 34 36 37 35 36 34	No. 1 2 3 4 5 6 7 8 9 10 11	Control 35 34 35 32 34 37 34 26 34	TIWC 29 29 33 38 30 36 33 32 0	
No. 1 2 3 4 5 6 7 8 9 10 11 12	Control 32 0 31 32 34 26 29 30 27	TIWC 35 32 31 34 36 37 35 36 34	No. 1 2 3 4 5 6 7 8 9 10 11 12	Control 35 34 35 32 34 37 34 26 34	TIWC 29 29 33 38 30 36 33 32 0	
No. 1 2 3 4 5 6 7 8 9 10 11 12 13	Control 32 0 31 32 34 26 29 30 27	TIWC 35 32 31 34 36 37 35 36 34	No. 1 2 3 4 5 6 7 8 9 10 11 12 13	Control 35 34 35 32 34 37 34 26 34	TIWC 29 29 33 38 30 36 33 32 0	
No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14	Control 32 0 31 32 34 26 29 30 27	TIWC 35 32 31 34 36 37 35 36 34	No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14	Control 35 34 35 32 34 37 34 26 34	TIWC 29 29 33 38 30 36 33 32 0	
No. 1 2 3 4 5 6 7 8 9 10 11 12 13	Control 32 0 31 32 34 26 29 30 27	TIWC 35 32 31 34 36 37 35 36 34	No. 1 2 3 4 5 6 7 8 9 10 11 12 13	Control 35 34 35 32 34 37 34 26 34	TIWC 29 29 33 38 30 36 33 32 0	
No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	Control 32 0 31 32 34 26 29 30 27 31 	TIWC 35 32 31 34 36 37 35 36 34 0	No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	Control 35 34 35 32 34 37 34 26 34 35 35	TIWC 29 29 33 38 30 36 33 32 0 30	
No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean	Control 32 0 31 32 34 26 29 30 27 31 	TIWC 35 32 31 34 38 37 35 36 34 0	No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean	Control 35 34 35 32 34 37 34 26 34 35 35 35 33.600	TIWC 29 29 33 38 30 36 33 32 0 30 30 29.000	
No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev.	Control 32 0 31 32 34 26 29 30 27 31 	TIWC 35 32 31 34 36 37 35 36 34 0 	No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev.	Control 35 34 35 32 34 37 34 26 34 35 35 35 33.600 2.951	TIWC 29 29 33 38 30 38 33 32 0 30 30 29.000 10.614	
No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean	Control 32 0 31 32 34 26 29 30 27 31 	TIWC 35 32 31 34 38 37 35 36 34 0	No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean	Control 35 34 35 32 34 37 34 26 34 35 35 35 33,600	TIWC 29 29 33 38 30 36 33 32 0 30 30 29.000	
No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev.	Control 32 0 31 32 34 26 29 30 27 31 27 31 27 21 27 21 0 9.852 10	TIWC 35 32 31 34 36 37 35 36 34 0 	No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev.	Control 35 34 35 32 34 37 34 26 34 35 34 35 34 35 34 26 34 35 34 26 34 35 34 36 28 34 37 34 20 34 37 34 20 34 37 34 36 32 34 37 34 36 37 34 36 37 34 36 37 34 36 37 34 36 37 34 36 36 37 34 36 36 37 34 36 36 36 36 36 37 34 36 36 36 36 36 36 36 36 36 36	TIWC 29 29 33 38 30 38 33 32 0 30 30 29.000 10.614	
No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result	Control 32 0 31 32 34 26 29 30 27 31 27 31 27 21 27 200 9.852 10 2.5	TIWC 35 32 31 34 36 37 35 36 34 0 	No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result	Control 35 34 35 32 34 37 34 26 34 35 34 35 34 35 34 26 34 35 10 1.1	TIWC 29 29 33 38 30 36 33 32 0 30 30 29.000 10.614 10 083	
No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result Deg. of Freed	Control 32 0 31 32 34 26 29 30 27 31 27 31 27 31 27 31 27 31 27 31 27 31 27 31 27 31 27 31 27 31 27 30 27 31 27 31 27 30 27 31 27 30 27 31 27 31 27 30 27 31 31 27 31 27 31 27 31 27 27 31 27 31 27 31 31 27 31 27 31 31 31 31 27 31 27 31 27 31 27 31 27 31 27 31 27 31 31 31 31 27 27 31 27 31 27 31 27 31 27 31 27 31 27 31 27 31 31 27 31 27 31 31 31 31 31 31 31 31 31 31	TIWC 35 32 31 34 36 37 35 38 34 0 	No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result Deg. of Freedon	Control 35 34 35 32 34 37 34 26 34 35 34 35 34 35 34 26 34 35 10 1.1 1.1 1.1 1.1	TIWC 29 29 33 38 30 36 33 32 0 30 29.000 10.614 10 083 1	
No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result	Control 32 0 31 32 34 26 29 30 27 31 27 31 27 31 27 31 27 31 27 31 27 31 27 31 27 31 27 31 28 29 30 27 31 27 31 28 29 30 27 31 27 31 28 29 30 27 31 27 31 28 29 30 27 31 27 31 28 29 30 27 31 27 31 28 29 30 27 31 27 31 28 29 30 27 31 27 31 28 29 30 27 31 27 31 28 29 30 27 31 27 31 28 29 30 27 31 27 31 28 29 30 27 31 27 31 28 29 30 27 31 27 31 28 29 30 27 31 27 20 9.852 10 20 20 20 20 20 20 20 20 20 2	TIWC 35 32 31 34 36 37 35 36 34 0 	No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result	Control 35 34 35 32 34 37 34 26 34 35 34 35 34 35 34 26 34 35 10 1.1 1.1 0.8	TIWC 29 29 33 38 30 36 33 32 0 30 30 29.000 10.614 10 083	

WET Summary and Evaluation									
				Erandation					
Facility Name Permit No.	Youghiogheny STP								
	PA0027243 3.313								
Design Flow (MGD)									
Q ₇₋₁₀ Flow (cfs)	510								
PMFa	0.058								
PMFc	0.4								
				Test Result					
		Test Da		Test Date	Test Date	Test Date			
Species	Endpoint	11/1/16		10/31/17	5/22/18	10/1/19			
Pimephales	Growth	PASS		PASS	PASS	PASS			
					s (Pass/Fail)				
		Test Da		Test Date	Test Date	Test Date			
Species	Endpoint	11/1/16	j	10/31/17	5/22/18	10/1/19			
Ceriodaphnia	Survival	PASS		PASS	PASS	PASS			
				T (D)	(5				
		Test Da	-	Test Results Test Date	, ,	Test Date			
Constant Inc.	Enderside	11/1/16		10/31/17	Test Date 5/22/18	10/1/19			
Species Pimephales	Endpoint Survival	PASS		PASS	PASS	PASS			
Pimephales	Survival	PASS		PASS	PASS	PASS			
				Test Decult	s (Pass/Fail)				
		Test Date		Test Date	Test Date	Test Date			
Species	Endpoint	11/1/16		10/31/17	5/22/18	10/1/19			
Ceriodaphnia	Reproduction	PASS		PASS	PASS	PASS			
Conodaprina	rtoproduction	17100		11100	17100				
Reasonable Potentia	Reasonable Potential? NO								
Permit Recommenda	tions								
Test Type	Chronic								
TIWC	2	% Effluent	t						
Dilution Series	1, 2,	30, 60, 1	100 9	% Effluent					
Permit Limit	None								
Permit Limit Species									