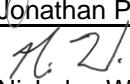


Application Type
Facility Type
Major / Minor

Renewal
Industrial
Minor

**NPDES PERMIT FACT SHEET
INDIVIDUAL INDUSTRIAL WASTE (IW)
AND IW STORMWATER**


Application No. **PA0027359**
APS ID **1087483**
Authorization ID **1437691**

Applicant and Facility Information

Applicant Name	<u>Danville Municipal Authority</u>	Facility Name	<u>Danville Water Treatment Plant</u>
Applicant Address	<u>463 Mill Street</u>	Facility Address	<u>1424 E Market Street</u>
Applicant Contact	<u>Danville, PA 17821-1012</u>	Facility Contact	<u>Danville, PA 17821-1842</u>
Applicant Phone	<u>Peter Rickert</u>	Facility Phone	<u>(570) 275-3091</u>
Client ID	<u>(570) 275-3091</u>	Site ID	<u>449</u>
SIC Code	<u>162979</u>	Municipality	<u>Danville Borough</u>
SIC Description	<u>4941</u>	County	<u>Montour</u>
Date Application Received	<u>Trans. & Utilities - Water Supply</u>	EPA Waived?	<u>Yes</u>
Date Application Accepted	<u>April 25, 2023</u>	If No, Reason	<u>May 8, 2023</u>
Purpose of Application	<u>Application for the renewal of the existing individual NPDES IW permit.</u>		

Summary of Review

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Approve	Deny	Signatures	Date
X		 Jonathan P. Peterman / Project Manager	January 10, 2025
X		 Nicholas W. Harranft, P.E. / Environmental Engineer Manager	January 13, 2025

Discharge, Receiving Waters and Water Supply Information			
Outfall No.	001	Design Flow (MGD)	0.25
Latitude	40° 56' 52.03"	Longitude	-76° 36' 20.90"
Quad Name	Danville	Quad Code	1133
Wastewater Description:	IW Process Effluent without ELG		
Receiving Waters	Susquehanna River (WWF)	Stream Code	6685
NHD Com ID	65641819	RMI	138
Drainage Area	11,220	Yield (cfs/mi ²)	0.1
Q ₇₋₁₀ Flow (cfs)	1,120	Q ₇₋₁₀ Basis	Gage No. 01540500
Elevation (ft)	438	Slope (ft/ft)	0.0007
Watershed No.	5-E	Chapter 93 Class.	WWF
Existing Use	WWF	Existing Use Qualifier	N/A
Exceptions to Use	None	Exceptions to Criteria	None
Assessment Status	Impaired, See TMDL Impairment Section Below		
Cause(s) of Impairment	Metals, PCB, Mercury		
Source(s) of Impairment	Source Unknown		
TMDL Status	Final, 03/12/1999	Name	Susquehanna River PCB
Nearest Downstream Public Water Supply Intake	Cherokee Pharmaceuticals, LLC.		
PWS Waters	Susquehanna River	Flow at Intake (cfs)	1,125
PWS RMI	135.7	Distance from Outfall (mi)	0.9

Changes Since Last Permit Issuance: None.

Other Comments: The updated Q₇₋₁₀ data was obtained from the updated stream gage information obtained from *Stuckey, M.H., and Roland, M.A., 2011, Selected Streamflow Statistics for Streamgage Locations In and Near Pennsylvania*. This report indicates that the Q₇₋₁₀ is 1,120 cfs. Given that the associated stream gage (01540500) is located approximately 0.5 river miles upstream of the discharge location, no comparative gage analysis is needed. The flows measured at the gage will be used directly and will be minimally conservative. Q₇₋₁₀ calculations are attached in Appendix A.

Treatment Facility Summary

Treatment Facility Name: Danville Water Treatment Plant

WQM Permit No.	Issuance Date	Notes:
4772201	3/9/72	Initial construction.

Treatment System Components for Outfall 001:

The filters are backwashed as needed into two (2) backwash lagoons and the overflow from the lagoons discharges into a culvert in the flood control dike. Outfall 001 discharges supernatant from the sludge lagoons approximately 4 hours a day, 7 days a week.

Changes Since Last Permit Issuance: None.

TMDL Impairment

The Department's Geographic Information System (GIS) shows that the Susquehanna River is impaired and a TMDL exists for the stream segment for PCB's. Given the nature of this facility and the associated discharges, it can be reasonable determined that this facility will not contribute to the impairment of the river. Therefore, no TMDL was considered when establishing effluent limits.

Chesapeake Bay Requirements

In accordance with the Phase III WIP Chesapeake Bay Strategy this facility has been identified previously by DEP as "insignificant dischargers" by virtue of having gross effluent discharges that do not exceed 75 lbs/day of TN or 25 lbs/day of TP. For these non-significant IW facilities, monitoring and reporting of TN and TP will be required throughout the permit term in renewed or amended permits anytime the facility has the potential to introduce a net TN or TP increase to the load contained within the intake water used in processing. No nutrient monitoring is required for this facility.

Existing Effluent Limitations and Monitoring Requirements

Existing Limits – Outfall 001

Parameter	Effluent Limitations						Monitoring Requirements	
	Mass Units (lbs/day) ⁽¹⁾		Concentrations (mg/L)				Minimum ⁽²⁾ Measurement Frequency	Required Sample Type
	Average Monthly	Average Weekly	Minimum	Average Monthly	Maximum	Instant. Maximum		
Flow (MGD)	Report	Report Daily Max	XXX	XXX	XXX	XXX	2/month	Estimate
pH (S.U.)	XXX	XXX	6.0 Inst Min	XXX	XXX	9.0	1/day	Grab
Total Residual Chlorine (TRC)	XXX	XXX	XXX	0.5	XXX	1.6	1/day	Grab
Total Suspended Solids	XXX	XXX	XXX	30	XXX	60	1/month	Grab
Aluminum, Total	XXX	XXX	XXX	4.0	XXX	8.0	1/month	Grab
Iron, Total	XXX	XXX	XXX	2.0	XXX	4.0	1/month	Grab
Manganese, Total	XXX	XXX	XXX	1.0	XXX	2.0	1/month	Grab

*The existing effluent limits for Outfall 001 were based on a design flow of 0.25 MGD.

Development of Effluent Limitations

Outfall No. 001
Latitude 40° 56' 52.20"
Wastewater Description: IW Process Effluent without ELG

Design Flow (MGD) 0.25
Longitude -76° 36' 20.90"

Technology-Based Limitations

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Pollutant	Limit (mg/l)	SBC	Federal Regulation	State Regulation
pH	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Total Residual Chlorine	0.5	Average Monthly	-	92a.48(b)(2)
Total Suspended Solids	30	Average Monthly		
	60	Daily Maximum		

Iron, Total	2.0	Average Monthly	Technology-Based Control Requirements for Water Treatment Plant Wastes (362-2183-003, 10/1/97)*
	4.0	Daily Maximum	
Aluminum, Total	4.0	Average Monthly	
	8.0	Daily Maximum	
Manganese, Total	1.0	Average Monthly	
	2.0	Daily Maximum	

*The abovementioned effluent limits are recommended by DEP guidance “Technology-Based Control Requirements for Water Treatment Plant Wastes” (362-2183-003) as best practicable control technology currently available (BPT) for water treatment plant wastewater.

Water Quality-Based Limitations

To establish whether or not water-quality based effluent limitations (WQBELs) are required, the Department models in-stream conditions. In order to determine limitations for toxics, the Department utilizes the PENTOXSD v2.0d model. The use of a WQM7.0 analysis is not required for this discharge type.

Toxics Management Spreadsheet

This model is a single discharge wasteload allocation program for toxics that uses a mass-balance water quality analysis to determine recommended water quality-based effluent limits. The model incorporates consideration for mixing, first-order decay and other factors to computes a Wasteload Allocation (WLA) for each applicable criterion. Finally, the model determines a maximum water quality-based effluent limitation (WQBEL) for each parameter and outputs the more stringent of the WQBEL or the input concentration. The output of which is the recommends average monthly and maximum daily effluent limitations.

Sampling for pollutant Groups was submitted with the application. This sampling information and the receiving stream information was entered into the Toxics Management Spreadsheet. This “Reasonable Potential Analysis” (See Appendix C) determined that there were no parameters that were considered candidates for monitoring or limitations.

Best Professional Judgement (BPJ) Limitations

Comments: None Required.

Anti-Backsliding

In accordance with 40 CFR 122.44(l)(1) and (2), this permit does not contain effluent limitations, standards, or conditions that are less stringent than the previous permit.

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst the abovementioned technology, water quality, and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the “NPDES Permit Writer’s Manual” (362-0400-001) and/or BPJ.

Proposed Limits - Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date

Parameter	Effluent Limitations						Monitoring Requirements	
	Mass Units (lbs/day) ⁽¹⁾		Concentrations (mg/L)				Minimum ⁽²⁾ Measurement Frequency	Required Sample Type
	Average Monthly	Average Weekly	Minimum	Average Monthly	Maximum	Instant. Maximum		
Flow (MGD)	Report	Report Daily Max	XXX	XXX	XXX	XXX	2/month	Estimate
pH (S.U.)	XXX	XXX	6.0 Inst Min	XXX	XXX	9.0	1/day	Grab
Total Residual Chlorine (TRC)	XXX	XXX	XXX	0.5	XXX	1.6	1/day	Grab

Parameter	Effluent Limitations						Monitoring Requirements	
	Mass Units (lbs/day) ⁽¹⁾		Concentrations (mg/L)				Minimum ⁽²⁾ Measurement Frequency	Required Sample Type
	Average Monthly	Average Weekly	Minimum	Average Monthly	Maximum	Instant. Maximum		
Total Suspended Solids	XXX	XXX	XXX	30	XXX	60	1/month	Grab
Aluminum, Total	XXX	XXX	XXX	4.0	XXX	8.0	1/month	Grab
Iron, Total	XXX	XXX	XXX	2.0	XXX	4.0	1/month	Grab
Manganese, Total	XXX	XXX	XXX	1.0	XXX	2.0	1/month	Grab

*The proposed effluent limits for Outfall 001 were based on a design flow of 0.25 MGD.

Effluent Limit Determination for Outfall 001

pH, Total Suspended Solids (TSS), Aluminum, Total Iron, and Total Manganese

The effluent limits for pH, TSS, Aluminum, Manganese, and total iron were previously derived directly from *Technology-Based Control Requirements for Water Treatment Plant Wastes* (362-2183-003, 10/1/97). These technology-based effluent limits are considered to be best practicable control technology currently available (BPT) for water treatment plant wastewater. Additionally, the effluent limits for aluminum, manganese, and iron were verified by imputing them into the TMS model. The results indicated that more stringent water quality-based limits are not required. (See Appendix C for modeling results) The existing technology-based effluent limits are protective of water quality and will remain.

Total Residual Chlorine (TRC)

In accordance with 25 Pa. 92a.48(b)(2) and *Technology-Based Control Requirements for Water Treatment Plant Wastes* (362-2183-003, 10/1/97), a best available technology (BAT) value of 0.5 mg/l was used in the TRC model evaluation. (See Appendix D for the spreadsheet results.) The attached TRC model indicates that the technology based effluent limit of 0.5 mg/L (Average Monthly) and 1.6 mg/L (Instantaneous Maximum) are protective of water quality and will remain.

Monitoring Frequencies

The existing monitoring frequencies and sample types for the abovementioned parameters are consistent with other water treatment plant wastewater discharges and will remain.

Compliance History

Summary of Inspections -The last inspection of the facilities was conducted on 2/9/24 by the Department which reveals the facility was operating normally. No issues were noted for this facility.

WMS Query Summary - A WMS Query was run at *Reports - Violations & Enforcements – Open Violations for Client Report* to determine whether there are any unresolved violations associated with the client that will affect issuance of the permit (per CSL Section 609). This query revealed that there were no unresolved violations.

DMRs Summary - Upon review of the last year of DMR's (provided below), the facility appears to be operating within the given effluent limits.

Compliance History

DMR Data for Outfall 001 (from December 1, 2023 to November 30, 2024)

Parameter	NOV-24	OCT-24	SEP-24	AUG-24	JUL-24	JUN-24	MAY-24	APR-24	MAR-24	FEB-24	JAN-24	DEC-23
Flow (MGD) Average Monthly	0.052	0.041	0.039	0.037	0.046	0.043	0.036	0.046	0.04	0.053	0.039	0.037
Flow (MGD) Daily Maximum	0.136	0.075	0.075	0.037	0.098	0.072	0.036	0.072	0.072	0.216	0.072	0.047
pH (S.U.) Instantaneous Minimum	7.3	7.4	7.5	7.1	7.4	7.4	7.4	7.0	7.1	6.6	7.0	6.8
pH (S.U.) Instantaneous Maximum	7.9	7.9	8.4	8.0	8.1	8.0	8.7	7.7	7.7	7.6	7.6	7.6
TRC (mg/L) Average Monthly	0.09	0.06	0.05	0.05	0.05	0.05	0.06	0.06	0.08	0.065	0.11	0.13
TRC (mg/L) Instantaneous Maximum	0.26	0.13	0.17	0.15	0.11	0.15	0.15	0.21	0.19	0.19	0.2	0.34
TSS (mg/L) Average Monthly	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	22	< 5	< 5
TSS (mg/L) Instantaneous Maximum	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	22	< 5	< 5
Total Aluminum (mg/L) Average Monthly	0.301	0.47	0.424	0.625	0.305	0.501	0.341	0.189	0.122	2.91	0.328	0.463
Total Aluminum (mg/L) Instantaneous Maximum	0.301	0.47	0.424	0.625	0.305	0.501	0.341	0.189	0.122	2.91	0.328	0.463
Total Iron (mg/L) Average Monthly	< 0.04	0.067	< 0.04	0.052	< 0.04	0.06	0.067	0.044	< 0.02	0.951	0.061	0.0790
Total Iron (mg/L) Instantaneous Maximum	< 0.04	0.067	< 0.04	0.052	< 0.04	0.06	0.067	0.044	< 0.02	0.951	0.061	0.0790
Total Manganese (mg/L) Average Monthly	< 0.02	< 0.020	< 0.02	0.025	0.025	0.347	0.027	0.023	0.029	0.095	0.02	< 0.02
Total Manganese (mg/L) Instantaneous Maximum	< 0.02	< 0.020	< 0.02	0.025	0.025	0.347	0.027	0.023	0.029	0.095	0.02	< 0.02

Tools and References Used to Develop Permit	
<input type="checkbox"/>	WQM for Windows Model (see Attachment [REDACTED])
<input checked="" type="checkbox"/>	Toxics Management Spreadsheet (see Attachment B)
<input checked="" type="checkbox"/>	TRC Model Spreadsheet (see Attachment C)
<input type="checkbox"/>	Temperature Model Spreadsheet (see Attachment [REDACTED])
<input checked="" type="checkbox"/>	Water Quality Toxics Management Strategy, 361-0100-003, 4/06.
<input checked="" type="checkbox"/>	Technical Guidance for the Development and Specification of Effluent Limitations, 386-0400-001, 10/97.
<input type="checkbox"/>	Policy for Permitting Surface Water Diversions, 386-2000-019, 3/98.
<input type="checkbox"/>	Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 386-2000-018, 11/96.
<input checked="" type="checkbox"/>	Technology-Based Control Requirements for Water Treatment Plant Wastes, 386-2183-001, 10/97.
<input type="checkbox"/>	Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 386-2183-002, 12/97.
<input type="checkbox"/>	Pennsylvania CSO Policy, 386-2000-002, 9/08.
<input checked="" type="checkbox"/>	Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03.
<input type="checkbox"/>	Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 386-2000-008, 4/97.
<input checked="" type="checkbox"/>	Determining Water Quality-Based Effluent Limits, 386-2000-004, 12/97.
<input type="checkbox"/>	Implementation Guidance Design Conditions, 386-2000-007, 9/97.
<input type="checkbox"/>	Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen, Version 1.0, 386-2000-016, 6/2004.
<input type="checkbox"/>	Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 386-2000-012, 10/1997.
<input type="checkbox"/>	Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments, 386-2000-009, 3/99.
<input checked="" type="checkbox"/>	Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 386-2000-015, 5/2004.
<input type="checkbox"/>	Implementation Guidance for Section 93.7 Ammonia Criteria, 386-2000-022, 11/97.
<input type="checkbox"/>	Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 386-2000-013, 4/2008.
<input checked="" type="checkbox"/>	Implementation Guidance Total Residual Chlorine (TRC) Regulation, 386-2000-011, 11/1994.
<input type="checkbox"/>	Implementation Guidance for Temperature Criteria, 386-2000-001, 4/09.
<input type="checkbox"/>	Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 386-2000-021, 10/97.
<input type="checkbox"/>	Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 386-2000-020, 10/97.
<input type="checkbox"/>	Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 386-2000-005, 3/99.
<input type="checkbox"/>	Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 386-2000-010, 3/1999.
<input checked="" type="checkbox"/>	Design Stream Flows, 386-2000-003, 9/98.
<input type="checkbox"/>	Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 386-2000-006, 10/98.
<input type="checkbox"/>	Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 386-3200-001, 6/97.
<input type="checkbox"/>	Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07.
<input type="checkbox"/>	SOP: [REDACTED]
<input type="checkbox"/>	Other: [REDACTED]

APPENDIX A

Q₇₋₁₀ ANALYSIS AND STREAM DATA

Prepared in cooperation with the Pennsylvania Department of Environmental Protection

Selected Streamflow Statistics for Streamgage Locations in and near Pennsylvania

Open-File Report 2011-1070

U.S. Department of the Interior
U.S. Geological Survey

12 Selected Streamflow Statistics for Streamgage Locations in and near Pennsylvania

Table 1. List of U.S. Geological Survey streamgage locations in and near Pennsylvania with updated streamflow statistics.—Continued
[Latitude and Longitude in decimal degrees; mi², square miles]

Streamgage number	Streamgage name	Latitude	Longitude	Drainage area (mi ²)	Regulated ¹
01508803	West Branch Tioughnioga River at Homer, N.Y.	42.638	-76.176	71.5	N
01509000	Tioughnioga River at Cortland, N.Y.	42.603	-76.159	292	N
01510000	Otselic River at Cincinnati, N.Y.	42.541	-75.900	147	N
01512500	Chenango River near Chenango Forks, N.Y.	42.218	-75.848	1,483	N
01515000	Susquehanna River near Waverly, N.Y.	41.985	-76.501	4,773	N
01516350	Tioga River near Mansfield, Pa.	41.797	-77.080	153	N
01516500	Corey Creek near Mainesburg, Pa.	41.791	-77.015	12.2	N
01518000	Tioga River at Tioga, Pa.	41.908	-77.129	282	Y
01518700	Tioga River at Tioga Junction, Pa.	41.953	-77.115	446	Y
01518862	Cowanesque River at Westfield, Pa.	41.923	-77.532	90.6	N
01520000	Cowanesque River near Lawrenceville, Pa.	41.997	-77.140	298	Y
01520500	Tioga River at Lindley, N.Y.	42.029	-77.132	771	Y
01521500	Canisteo River at Arkport, N.Y.	42.396	-77.711	30.6	Y
01523500	Canacadea Creek near Hornell, N.Y.	42.335	-77.683	57.9	Y
01524500	Canisteo River below Canacadea Creek at Hornell, N.Y.	42.314	-77.651	158	Y
01526500	Tioga River near Erwins, N.Y.	42.121	-77.129	1,377	Y
01527000	Cohocton River at Cohocton, N.Y.	42.500	-77.500	52.2	N
01527500	Cohocton River at Avoca, N.Y.	42.398	-77.417	152	N
01528000	Fivemile Creek near Kanona, N.Y.	42.388	-77.358	66.8	N
01529000	Mud Creek near Savona, N.Y.	42.308	-77.197	76.6	Y
01529500	Cohocton River near Campbell, N.Y.	42.253	-77.217	470	N
01529950	Chemung River at Corning, N.Y.	42.146	-77.057	2,006	Y
01530332	Chemung River at Elmira, N.Y.	42.086	-76.801	2,162	Y
01530500	Newtown Creek at Elmira, N.Y.	42.105	-76.798	77.5	Y
01531000	Chemung River at Chemung, N.Y.	42.002	-76.635	2,506	Y
01531500	Susquehanna River at Towanda, Pa.	41.765	-76.441	7,797	Y
01532000	Towanda Creek near Monroeton, Pa.	41.707	-76.485	215	N
01532850	MB Wyalusing Creek near Birchardville, Pa.	41.863	-76.007	5.67	N
01533400	Susquehanna River at Meshoppen, Pa.	41.607	-76.050	8,720	Y
01533500	North Branch Mehoopany Creek near Lovelton, Pa.	41.531	-76.156	35.2	N
01533950	SB Tunkhannock Creek near Montdale, Pa.	41.575	-75.642	12.6	N
01534000	Tunkhannock Creek near Tunkhannock, Pa.	41.558	-75.895	383	N
01534300	Lackawanna River near Forest City, Pa.	41.680	-75.472	38.8	Y
01534500	Lackawanna River at Archbald, Pa.	41.505	-75.542	108	Y
01536000	Lackawanna River at Old Forge, Pa.	41.359	-75.744	332	Y
01536500	Susquehanna River at Wilkes-Barre, Pa.	41.251	-75.881	9,960	Y
01537000	Toby Creek at Luzerne, Pa.	41.281	-75.896	32.4	Y
01537500	Solomon Creek at Wilkes-Barre, Pa.	41.228	-75.904	15.7	N
01538000	Wapwallopen Creek near Wapwallopen, Pa.	41.059	-76.094	43.8	N
01539000	Fishing Creek near Bloomsburg, Pa.	41.078	-76.431	274	N
01539500	Little Fishing Creek at Eyer's Grove, Pa.	41.080	-76.511	56.5	N
01540200	Trexler Run near Ringtown, Pa.	40.853	-76.280	1.77	N
01540500	Susquehanna River at Danville, Pa.	40.958	-76.619	11,220	Y
01541000	West Branch Susquehanna River at Bower, Pa.	40.897	-78.677	315	N
01541200	West Branch Susquehanna River near Curwensville, Pa.	40.961	-78.519	367	Y

Table 2. Selected low-flow statistics for streamgage locations in and near Pennsylvania.—Continued

[ft³/s; cubic feet per second; —, statistic not computed; <, less than]

Streamgage number	Period of record used in analysis ¹	Number of years used in analysis	1-day, 10-year (ft ³ /s)	7-day, 10-year (ft ³ /s)	7-day, 2-year (ft ³ /s)	30-day, 10-year (ft ³ /s)	30-day, 2-year (ft ³ /s)	90-day, 10-year (ft ³ /s)
01530500	1940–2008	69	5.0	6.1	11.0	7.6	13	9.0
01531000	² 1981–2008	28	138	147	237	169	296	203
01531000	³ 1905–1979	68	86.3	97.0	175	116	219	161
01531500	² 1981–2008	28	550	592	1,030	733	1,340	952
01531500	³ 1915–1979	65	539	571	990	675	1,230	928
01532000	1915–2008	94	2.2	2.8	9.7	4.6	14.4	9.4
01532850	1967–1979	13	.1	.2	.4	.3	.8	.7
01533400	² 1981–2008	28	602	648	1,110	790	1,430	1,060
01533500	1942–1958	17	.4	.6	1.5	.8	2.0	1.7
01533950	1962–1978	17	.2	.3	1.0	.6	1.4	1.0
01534000	1915–2008	94	15.2	17.3	35.9	24.2	51.0	38.7
01534300	1960–2008	49	1.1	1.7	5.1	2.8	7.6	4.8
01534500	² 1961–2008	48	16.7	18.8	29.2	21.9	35.8	27.6
01534500	³ 1941–1959	19	18.8	23.0	33.3	25.6	39.2	34.9
01536000	² 1961–2008	48	28.7	32.7	51.7	40.8	68.1	54.3
01536000	³ 1940–1959	20	77.8	93.9	119	105	138	124
01536500	² 1981–2008	28	828	872	1,450	1,030	1,830	1,350
01536500	³ 1901–1979	79	778	811	1,350	927	1,640	1,260
01537000	1943–1993	51	1.3	2.0	4.9	3.1	6.4	4.7
01537500	1941–1990	50	.2	.3	1.9	.5	3.1	1.6
01538000	1921–2008	88	3.1	3.6	7.1	5.0	9.3	7.5
01539000	1940–2008	69	15.4	16.8	36.8	21.1	51.1	36.8
01539500	1942–1958	17	.1	.3	1.4	1.0	3.3	2.3
01540200	1965–1981	17	0	0	.3	.1	.3	.1
01540500	² 1981–2008	28	1,080	1,120	1,870	1,320	2,330	1,690
01540500	³ 1906–1979	74	927	978	1,660	1,160	2,050	1,590
01541000	1915–2008	94	25.3	27.9	50.7	35.3	66.6	49.6
01541200	² 1967–2008	40	34.6	45.2	66.0	63.1	100	92.4
01541200	³ 1957–1965	9	22.9	24.7	44.7	27.7	58.2	36.4
01541303	1980–2008	29	53.4	58.5	94.0	74.4	123	102
01541308	1969–1979	11	1.3	1.3	1.9	1.6	2.4	2.1
01541500	² 1962–2008	47	39.0	41.9	66.5	51.9	86.3	70.6
01541500	³ 1915–1960	46	14.9	21.3	41.9	28.5	55.0	42.9
01542000	1942–1993	52	8.1	9.1	14.8	11.3	17.8	14.6
01542500	² 1967–2008	33	216	235	326	285	435	402
01542500	³ 1941–1965	20	—	131	189	152	243	221
01542810	1966–2008	43	.1	.1	.3	.2	.5	.3
01543000	1915–2008	94	2.9	4.2	16.0	9.6	27.4	19.2
01543500	1940–2008	69	10.7	14.5	44.9	26.6	74.9	50.5
01544000	² 1957–2008	52	3.3	6.9	19.0	11.2	31.1	19.0
01544500	1942–2008	67	4.2	4.9	12.5	7.5	17.4	11.7
01545000	² 1964–2008	45	6.8	8.2	21.2	12.0	32.7	20.7
01545500	² 1963–2008	46	217	238	446	306	629	428
01545500	³ 1909–1961	53	125	141	278	190	387	296
01545600	1966–2008	43	1.2	1.5	4.4	2.4	6.7	4.2

APPENDIX B

TOXICS MANAGEMENT SPREADSHEET

Discharge Information

Instructions	Discharge	Stream
--------------	-----------	--------

Facility: Danville Municipal Authority NPDES Permit No.: PA0027359 Outfall No.: 001

Evaluation Type: Major Sewage / Industrial Waste Wastewater Description: Water Treatment Plant Backwash

Discharge Characteristics								
Design Flow (MGD)*	Hardness (mg/l)*	pH (SU)*	Partial Mix Factors (PMFs)			Complete Mix Times (min)		
			AFC	CFC	THH	CRL	Q ₇₋₁₀	Q _h
0.25	100	7						

	Discharge Pollutant	Units	Max Discharge Conc	0 if left blank		0.5 if left blank		0 if left blank		1 if left blank	
				Trib Conc	Stream Conc	Daily CV	Hourly CV	Strea m CV	Fate Coeff	FOS	Criteri a Mod
Group 1	Total Dissolved Solids (PWS)	mg/L	132								
	Chloride (PWS)	mg/L	36.1								
	Bromide	mg/L	< 1								
	Sulfate (PWS)	mg/L	20.8								
	Fluoride (PWS)	mg/L	< 0.2								
Group 2	Total Aluminum	µg/L	300								
	Total Antimony	µg/L	< 1								
	Total Arsenic	µg/L	< 1								
	Total Barium	µg/L	21								
	Total Beryllium	µg/L	< 1								
	Total Boron	µg/L	< 10								
	Total Cadmium	µg/L	< 1								
	Total Chromium (III)	µg/L	< 1								
	Hexavalent Chromium	µg/L	0.00048								
	Total Cobalt	µg/L	0.17								
	Total Copper	µg/L	1.05								
	Free Cyanide	µg/L									
	Total Cyanide	µg/L	< 10								
	Dissolved Iron	µg/L	< 20								
	Total Iron	µg/L	41								
	Total Lead	µg/L	1								
	Total Manganese	µg/L	91								
	Total Mercury	µg/L	< 0.1								
	Total Nickel	µg/L	1.57								
	Total Phenols (Phenolics) (PWS)	µg/L	< 2								
	Total Selenium	µg/L	1.27								
	Total Silver	µg/L	< 5								
	Total Thallium	µg/L	0.27								
	Total Zinc	µg/L	27.7								
	Total Molybdenum	µg/L	0.49								
	Acrolein	µg/L	<								
	Acrylamide	µg/L	<								
	Acrylonitrile	µg/L	<								
	Benzene	µg/L	<								
	Bromoform	µg/L	<								

Stream / Surface Water Information

Danville Municipal Authority, NPDES Permit No. PA0027359, Outfall 001

Instructions **Discharge** Stream

Receiving Surface Water Name: _____

No. Reaches to Model: 1

Statewide Criteria
 Great Lakes Criteria
 ORSANCO Criteria

Location	Stream Code*	RMI*	Elevation (ft)*	DA (mi ²)*	Slope (ft/ft)	PWS Withdrawal (MGD)	Apply Fish Criteria*
Point of Discharge	006685	136.6	438	11220			Yes
End of Reach 1	006685	136.24	437	11270			Yes

Q₇₋₁₀

Location	RMI	LFY (cfs/mi ²)*	Flow (cfs)		W/D Ratio	Width (ft)	Depth (ft)	Velocity (fps)	Travel Time (days)	Tributary		Stream		Analysis	
			Stream	Tributary						Hardness	pH	Hardness*	pH*	Hardness	pH
Point of Discharge	136.6	0.1	1120									100	7		
End of Reach 1	136.24	0.1	1125												

Q_h

Location	RMI	LFY (cfs/mi ²)*	Flow (cfs)		W/D Ratio	Width (ft)	Depth (ft)	Velocity (fps)	Travel Time (days)	Tributary		Stream		Analysis	
			Stream	Tributary						Hardness	pH	Hardness*	pH*	Hardness	pH
Point of Discharge	136.6														
End of Reach 1	136.24														

Model Results

Danville Municipal Authority, NPDES Permit No. PA0027359, Outfall 001

Instructions	Results	RETURN TO INPUTS	SAVE AS PDF	PRINT	<input checked="" type="radio"/> All	<input type="radio"/> Inputs	<input type="radio"/> Results	<input type="radio"/> Limits
--------------	---------	----------------------------------	-----------------------------	-----------------------	--------------------------------------	------------------------------	-------------------------------	------------------------------

Hydrodynamics

Wasteload Allocations

AFC

CCT (min):

PMF:

Analysis Hardness (mg/l):

Analysis pH:

Pollutants	Stream Conc (µg/L)	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A	
Chloride (PWS)	0	0		0	N/A	N/A	N/A	
Sulfate (PWS)	0	0		0	N/A	N/A	N/A	
Fluoride (PWS)	0	0		0	N/A	N/A	N/A	
Total Aluminum	0	0		0	750	750	49,708	
Total Antimony	0	0		0	1,100	1,100	72,905	
Total Arsenic	0	0		0	340	340	22,534	Chem Translator of 1 applied
Total Barium	0	0		0	21,000	21,000	1,391,820	
Total Boron	0	0		0	8,100	8,100	536,845	
Total Cadmium	0	0		0	2,014	2.13	141	Chem Translator of 0.944 applied
Total Chromium (III)	0	0		0	569.763	1,803	119,501	Chem Translator of 0.316 applied
Hexavalent Chromium	0	0		0	16	16.3	1,080	Chem Translator of 0.982 applied
Total Cobalt	0	0		0	95	95.0	6,296	
Total Copper	0	0		0	13.439	14.0	928	Chem Translator of 0.96 applied
Dissolved Iron	0	0		0	N/A	N/A	N/A	
Total Iron	0	0		0	N/A	N/A	N/A	
Total Lead	0	0		0	64.581	81.6	5,411	Chem Translator of 0.791 applied
Total Manganese	0	0		0	N/A	N/A	N/A	
Total Mercury	0	0		0	1.400	1.65	109	Chem Translator of 0.85 applied
Total Nickel	0	0		0	468.236	469	31,096	Chem Translator of 0.998 applied
Total Phenols (Phenolics) (PWS)	0	0		0	N/A	N/A	N/A	
Total Selenium	0	0		0	N/A	N/A	N/A	Chem Translator of 0.922 applied
Total Silver	0	0		0	3.217	3.78	251	Chem Translator of 0.85 applied
Total Thallium	0	0		0	65	65.0	4,308	
Total Zinc	0	0		0	117.180	120	7,941	Chem Translator of 0.978 applied

Model Results

1/10/2025

Page 5

NPDES Permit Fact Sheet
Danville Municipal Water Authority

NPDES Permit No. PA0027359

CFC CCT (min): **720** PMF: **0.156** Analysis Hardness (mg/l): **100** Analysis pH: **7.00**

Pollutants	Stream Conc (µg/L)	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A	
Chloride (PWS)	0	0		0	N/A	N/A	N/A	
Sulfate (PWS)	0	0		0	N/A	N/A	N/A	
Fluoride (PWS)	0	0		0	N/A	N/A	N/A	
Total Aluminum	0	0		0	N/A	N/A	N/A	
Total Antimony	0	0		0	220	220	99,716	
Total Arsenic	0	0		0	150	150	67,988	Chem Translator of 1 applied
Total Barium	0	0		0	4,100	4,100	1,858,339	
Total Boron	0	0		0	1,600	1,600	725,205	
Total Cadmium	0	0		0	0.246	0.27	123	Chem Translator of 0.909 applied
Total Chromium (III)	0	0		0	74.115	86.2	39,061	Chem Translator of 0.86 applied
Hexavalent Chromium	0	0		0	10	10.4	4,712	Chem Translator of 0.962 applied
Total Cobalt	0	0		0	19	19.0	8,612	
Total Copper	0	0		0	8.956	9.33	4,228	Chem Translator of 0.96 applied
Dissolved Iron	0	0		0	N/A	N/A	N/A	
Total Iron	0	0		0	1,500	1,500	4,345,391	WQC = 30 day average; PMF = 1
Total Lead	0	0		0	2.517	3.18	1,442	Chem Translator of 0.791 applied
Total Manganese	0	0		0	N/A	N/A	N/A	
Total Mercury	0	0		0	0.770	0.91	411	Chem Translator of 0.85 applied
Total Nickel	0	0		0	52.007	52.2	23,643	Chem Translator of 0.997 applied
Total Phenols (Phenolics) (PWS)	0	0		0	N/A	N/A	N/A	
Total Selenium	0	0		0	4.600	4.99	2,261	Chem Translator of 0.922 applied
Total Silver	0	0		0	N/A	N/A	N/A	Chem Translator of 1 applied
Total Thallium	0	0		0	13	13.0	5,892	
Total Zinc	0	0		0	118.139	120	54,307	Chem Translator of 0.986 applied

THH CCT (min): **720** PMF: **0.156** Analysis Hardness (mg/l): **N/A** Analysis pH: **N/A**

Pollutants	Stream Conc (µg/L)	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0		0	500,000	500,000	N/A	
Chloride (PWS)	0	0		0	250,000	250,000	N/A	
Sulfate (PWS)	0	0		0	250,000	250,000	N/A	
Fluoride (PWS)	0	0		0	2,000	2,000	N/A	
Total Aluminum	0	0		0	N/A	N/A	N/A	
Total Antimony	0	0		0	5.6	5.6	2,538	
Total Arsenic	0	0		0	10	10.0	4,533	
Total Barium	0	0		0	2,400	2,400	1,087,808	
Total Boron	0	0		0	3,100	3,100	1,405,085	
Total Cadmium	0	0		0	N/A	N/A	N/A	
Total Chromium (III)	0	0		0	N/A	N/A	N/A	

Model Results

1/10/2025

Page 6

NPDES Permit Fact Sheet
Danville Municipal Water Authority

NPDES Permit No. PA0027359

Hexavalent Chromium	0	0		0	N/A	N/A	N/A	
Total Cobalt	0	0		0	N/A	N/A	N/A	
Total Copper	0	0		0	N/A	N/A	N/A	
Dissolved Iron	0	0		0	300	300	135,976	
Total Iron	0	0		0	N/A	N/A	N/A	
Total Lead	0	0		0	N/A	N/A	N/A	
Total Manganese	0	0		0	1,000	1,000	453,253	
Total Mercury	0	0		0	0.050	0.05	22.7	
Total Nickel	0	0		0	610	610	276,485	
Total Phenols (Phenolics) (PWS)	0	0		0	5	5.0	N/A	
Total Selenium	0	0		0	N/A	N/A	N/A	
Total Silver	0	0		0	N/A	N/A	N/A	
Total Thallium	0	0		0	0.24	0.24	109	
Total Zinc	0	0		0	N/A	N/A	N/A	

CRL

CCT (min): 720

PMF: 0.226

Analysis Hardness (mg/l):

N/A

Analysis pH: N/A

Pollutants	Stream Conc (µg/L)	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A	
Chloride (PWS)	0	0		0	N/A	N/A	N/A	
Sulfate (PWS)	0	0		0	N/A	N/A	N/A	
Fluoride (PWS)	0	0		0	N/A	N/A	N/A	
Total Aluminum	0	0		0	N/A	N/A	N/A	
Total Antimony	0	0		0	N/A	N/A	N/A	
Total Arsenic	0	0		0	N/A	N/A	N/A	
Total Barium	0	0		0	N/A	N/A	N/A	
Total Boron	0	0		0	N/A	N/A	N/A	
Total Cadmium	0	0		0	N/A	N/A	N/A	
Total Chromium (III)	0	0		0	N/A	N/A	N/A	
Hexavalent Chromium	0	0		0	N/A	N/A	N/A	
Total Cobalt	0	0		0	N/A	N/A	N/A	
Total Copper	0	0		0	N/A	N/A	N/A	
Dissolved Iron	0	0		0	N/A	N/A	N/A	
Total Iron	0	0		0	N/A	N/A	N/A	
Total Lead	0	0		0	N/A	N/A	N/A	
Total Manganese	0	0		0	N/A	N/A	N/A	
Total Mercury	0	0		0	N/A	N/A	N/A	
Total Nickel	0	0		0	N/A	N/A	N/A	
Total Phenols (Phenolics) (PWS)	0	0		0	N/A	N/A	N/A	
Total Selenium	0	0		0	N/A	N/A	N/A	
Total Silver	0	0		0	N/A	N/A	N/A	
Total Thallium	0	0		0	N/A	N/A	N/A	
Total Zinc	0	0		0	N/A	N/A	N/A	

Model Results

1/10/2025

Page 7

NPDES Permit Fact Sheet
Danville Municipal Water Authority

NPDES Permit No. PA0027359

Recommended WQBELs & Monitoring Requirements

No. Samples/Month: 4

Pollutants	Mass Limits		Concentration Limits				Governing WQBEL	WQBEL Basis	Comments
	AML (lbs/day)	MDL (lbs/day)	AML	MDL	IMAX	Units			

Other Pollutants without Limits or Monitoring

The following pollutants do not require effluent limits or monitoring based on water quality because reasonable potential to exceed water quality criteria was not determined and the discharge concentration was less than thresholds for monitoring, or the pollutant was not detected and a sufficiently sensitive analytical method was used (e.g., <= Target QL).

Pollutants	Governing WQBEL	Units	Comments
Total Dissolved Solids (PWS)	N/A	N/A	PWS Not Applicable
Chloride (PWS)	N/A	N/A	PWS Not Applicable
Bromide	N/A	N/A	No WQS
Sulfate (PWS)	N/A	N/A	PWS Not Applicable
Fluoride (PWS)	N/A	N/A	Discharge Conc < TQL
Total Aluminum	31,861	µg/L	Discharge Conc ≤ 10% WQBEL
Total Antimony	N/A	N/A	Discharge Conc < TQL
Total Arsenic	N/A	N/A	Discharge Conc < TQL
Total Barium	892,100	µg/L	Discharge Conc ≤ 10% WQBEL
Total Beryllium	N/A	N/A	No WQS
Total Boron	344,096	µg/L	Discharge Conc < TQL
Total Cadmium	90.6	µg/L	Discharge Conc ≤ 10% WQBEL
Total Chromium (III)	39,061	µg/L	Discharge Conc < TQL
Hexavalent Chromium	692	µg/L	Discharge Conc ≤ 10% WQBEL
Total Cobalt	4,036	µg/L	Discharge Conc ≤ 10% WQBEL
Total Copper	595	µg/L	Discharge Conc ≤ 10% WQBEL
Total Cyanide	N/A	N/A	No WQS
Dissolved Iron	135,976	µg/L	Discharge Conc < TQL
Total Iron	4,345,391	µg/L	Discharge Conc ≤ 10% WQBEL
Total Lead	1,442	µg/L	Discharge Conc ≤ 10% WQBEL
Total Manganese	453,253	µg/L	Discharge Conc ≤ 10% WQBEL
Total Mercury	22.7	µg/L	Discharge Conc < TQL
Total Nickel	19,931	µg/L	Discharge Conc ≤ 10% WQBEL
Total Phenols (Phenolics) (PWS)		µg/L	Discharge Conc < TQL
Total Selenium	2,261	µg/L	Discharge Conc ≤ 10% WQBEL
Total Silver	161	µg/L	Discharge Conc ≤ 10% WQBEL
Total Thallium	109	µg/L	Discharge Conc ≤ 10% WQBEL
Total Zinc	5,090	µg/L	Discharge Conc ≤ 10% WQBEL
Total Molybdenum	N/A	N/A	No WQS

Model Results

1/10/2025

Page 8

APPENDIX C

TRC SPREADSHEET

A	B	C	D	E	F	G						
2	TRC EVALUATION Danville MA PA0027359											
3 Input appropriate values in B4:B8 and E4:E7												
4	1120	= Q_stream (cfs)		0.6	= CV_Daily							
5	0.25	= Q_Discharge (MGD)		0.6	= CV_Hourly							
6	30	= no. samples		1	= AFC_Partial_Mix_Factor							
7	0.3	= Chlorine_Demand_of_Stream		1	= CFC_Partial_Mix_Factor							
8	0	= Chlorine_Demand_of_Discharge		16	= AFC_Criteria_Compliance_Time (min)							
9	0.6	= BAT/BPJ_Value		720	= CFC_Criteria_Compliance_Time (min)							
	0	= % Factor of Safety (FOS)		0	= Decay_Coefficient (K)							
10	Source	Reference	AFC Calculations	Reference	CFC Calculations							
11	TRC	1.3.2.III	WLA_afc = 923.820	1.3.2.III	WLA_cfc = 900.644							
12	PENTOXSD TRG	6.1a	LTAMULT_afc = 0.373	6.1c	LTAMULT_cfc = 0.581							
13	PENTOXSD TRG	6.1b	LTA_afc = 344.237	6.1d	LTA_cfc = 623.682							
14												
15	Source	Effluent Limit Calculations										
16	PENTOXSD TRG	5.1f	AML_MULT = 1.231									
17	PENTOXSD TRG	5.1g	AVG_MON_LIMIT (mg/l) = 0.500		BAT/BPJ							
18			INST_MAX_LIMIT (mg/l) = 1.636									
WLA_afc $(.018/e(-k*AFC_to)) + [(AFC_Yc*Qs*.018/Qd)*e(-k*AFC_to)]... \\ ... + Xd + (AFC_Yc*Qs*Xs/Qd)]*(1-FOS/100)$ LTAMULT_afc $\text{EXP}((0.6*\text{LN}(cvh^2+1))-2.326*\text{LN}(cvh^2+1)^{0.6})$ LTA_afc $wla_afc*LTAMULT_afc$ WLA_cfc $(.011/e(-k*CFC_to)) + [(CFC_Yc*Qs*.011/Qd)*e(-k*CFC_to)]... \\ ... + Xd + (CFC_Yc*Qs*Xs/Qd)]*(1-FOS/100)$ LTAMULT_cfc $\text{EXP}((0.6*\text{LN}(cvd^2/2/no_samples+1))-2.326*\text{LN}(cvd^2/2/no_samples+1)^{0.6})$ LTA_cfc $wla_cfc*LTAMULT_cfc$ AML_MULT $\text{EXP}(2.326*\text{LN}((cvd^2/no_samples+1)^{0.5})-0.6*\text{LN}(cvd^2/no_samples+1))$ AVG_MON_LIMIT $\text{MIN}(\text{BAT_BPJ},\text{MIN}(\text{LTA_afc},\text{LTA_cfc})*\text{AML_MULT})$ INST_MAXLIMIT $1.6*(\text{av_mon_limit}/\text{AML_MULT})/\text{LTAMULT_afc}$												

APPENDIX D

FACILITY MAP AND SCHEMATIC

FILE PATH: K:\411\W&WW ERD\55241 Danville Auth\WTP\NPDES Exhibits\Process Flow.dwg
DATE SAVED: 10/26/2017 9:28 AM BY: mklne DATE PLOTTED: 10/26/2017 9:29 AM

DANVILLE MUNICIPAL AUTHORITY WATER TREATMENT PLANT

PRE - CHEMICALS

POST - CHEMICALS

LEGEND

- PRIMARY
- SECONDARY
- FLOW METER M
- VALVES OR GATE X
- CHLORINE CL
- POWDERED ACTIVATED CARBON C
- POTASSIUM PERMANGANATE K
- SULFURIC ACID SO4
- ALUM AL
- POLYALUMINUM CHLORIDE PACL
- COAGULANT AID CA
- PHOSPHATE P

DANVILLE MUNICIPAL AUTHORITY
DANVILLE BOROUGH

ATTACHMENT III
WATER TREATMENT PLANT
PROCESS SCHEMATIC DIAGRAM

GANNETT FLEMING INC.

OCTOBER 2017