

Southwest Regional Office CLEAN WATER PROGRAM

Application TypeRenewalFacility TypeIndustrialMajor / MinorMinor

NPDES PERMIT FACT SHEET INDIVIDUAL INDUSTRIAL WASTE (IW) AND IW STORMWATER

Application No.	PA0027537
APS ID	727032
Authorization ID	1219039

Applicant and Facility Information

Applicant Name	Ham	oton Shaler Water Authority	Facility Name	Hampton Shaler Water Authority Water Treatment Plant
Applicant Address	3101	McCully Road P.O. Box 66	Facility Address	1037 East Ohio Street
	Alliso	n Park, PA 15101-1331		Pittsburgh, PA 15223-2018
Applicant Contact	Sam	Scarfone	Facility Contact	Sam Scarfone
Applicant Phone	412-4	86-4867	Facility Phone	412-486-4867
Client ID	7142	7	Site ID	263795
SIC Code	4941		Municipality	Shaler Township
SIC Description	Trans	. & Utilities - Water Supply	County	Allegheny
Date Application Rec	eived	March 1, 2018	EPA Waived?	Yes
Date Application Acc	epted	May 16, 2019	If No, Reason	

Summary of Review

The Department received an NPDES permit renewal application from Hampton Shaler Water Authority on March 1, 2018 for coverage of the discharge from its Hampton Shaler Water Authority Water Treatment Plant in Shaler Township of Allegheny County. The facility is a municipal water treatment plant with an SIC Code 4941 (Water Supply). The current NPDES permit was renewed on October 9, 2013 and expired on October 31, 2018.

Hampton Shaler Water Authority (HSWA) Water Treatment Plant (WTP) operates as a public drinking water treatment and supply facility providing potable drinking water to over 62,000 people daily in eleven municipalities. The plant has a design capacity of 9.0 MGD. HSWA treats groundwater from 12 wells along the banks of the Allegheny River to produce potable drinking water. The plant draws groundwater through two raw water lines. The water is divided into four raw water lines inside the plant and each line is pre-chlorinated with sodium hypochlorite.

The plant is divided into two main sections described as "old" and "new", with each receiving two of the four raw water lines. The "new" side of the plant treats approximately 40% of the water. Two (of six total) anthracite greensand filters are used for iron and manganese removal. The "old" side of the plant treats approximately 60% of the water and uses four filters for iron and manganese removal.

Approve	Deny	Signatures	Date
х		Lauren Nolfi, E.I.T. / Environmental Engineering Specialist	March 31, 2020
х		Michael E. Fifth, P.E. / Environmental Engineer Manager	April 17, 2020

Summary of Review

Chemical treatment includes sodium hypochlorite for disinfection of both source water and finished water for 4-log treatment and sodium chloride for zeolite regeneration. A 70,000-gallon capacity Softener Backwash Holding Tank collects initial filter and softener backwash wastewater. The backwash water is diluted and gradually discharged to the ALCOSAN sanitary sewer. Filters are backwashed with finished water from the 103,000-gallon Filter Backwash Holding Tank when head loss reaches 8 ft. or run time reaches 72 hours. The backwash water is retained for solids settling. The tank supernatant is returned to the head of the plant at the raw water line to Filters No. 5 and 6. The Filter Backwash Holding Tank also collects sludge from the reactor clarifier and the sedimentation basin whenever these units are removed from operation and drained for cleaning and inspection. Sludge from both the sedimentation basin and the backwash holding tanks is discharged to an ALCOSAN sewer. Rewash (flushing process water to wash out the brine) water from the filters and softeners and the spent brine from the softener regeneration process is collected in the Rewash Holding Tank and discharged through Outfall 001 to the Allegheny River.

The facility has one outfall, Outfall 001, which discharges to the Allegheny River, designated in 25 PA Code Chapter 93 as a Warm Water Fishery (WWF). Outfall 001 discharges rewash water through a partially open gate valve at the bottom of the Rewash Holding Tank. The partially open gate valve ensures that the outfall maintains a low flow rate. Outfall 001 discharges at an average flow of 0.082 MGD and maximum flow of 0.25 MGD. Several catch basins on the plant property also convey stormwater to Outfall 001. The stormwater is not affiliated with any industrial activities and no materials are stored outdoors. Most of the stormwater infiltrates at the drainage ditch between Route 28 and the railroad tracks, and reportedly does not significantly contribute to the flow at Outfall 001.

Sampling was previously conducted at the outfall pipe and at a lab sink when the outfall pipe is not accessible due to weather conditions. Since stormwater is commingled with the discharge at the outfall pipe outlet, it was recommended at the most recent inspection that sampling be conducted at a point prior to stormwater commingling with the process water discharge. An alternative sampling location at the Rewash Holding Tank is currently used to collect samples.

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Discharge, Receiv	Discharge, Receiving Waters and Water Supply Information						
Outfall No. 00	1		Design Flow (MGD)	0.082			
Latitude 40	° 29' 15.00)"	Longitude	-79º 57' 17.00"			
Quad Name	Pittsburgh	East	Quad Code	1506			
—		Rewash water from six filt	ers and six softeners and spent	brine from the softener			
Wastewater Des	cription:	regeneration process.					
Receiving Water	s Allegh	neny River (WWF)	Stream Code	42122			
NHD Com ID	12397	2952	RMI	4.7526			
Drainage Area	11,70	0 mi ²	Yield (cfs/mi ²)	0.2043			
				U.S. Army Corp of			
Q ₇₋₁₀ Flow (cfs)	2390		Q ₇₋₁₀ Basis	Engineers			
Elevation (ft)	704		Slope (ft/ft)	0.0000			
Watershed No.	18-A		Chapter 93 Class.	WWF			
Existing Use			Existing Use Qualifier				
Exceptions to Us	se		Exceptions to Criteria				
Assessment Stat	tus	Impaired)					
Cause(s) of Impa	airment	Polychlorinated Biphenyls	s (PCBs)				
Source(s) of Imp	airment	Source Unknown					
TMDL Status		Final	Name Allegheny R	iver			
Nearest Downstr	eam Publi	c Water Supply Intake	West View Water Authority				
PWS Waters	Vaters Ohio River		Flow at Intake (cfs)	61.89			
PWS RMI	35.38		Distance from Outfall (mi)	9.50			
			—				

Other Comments:

No changes have been made to Outfall 001 since last permit issuance.

The USGS Stream Stats Data for the drainage area is displayed in Attachment A.

Compliance History

DMR Data for Outfall 001 (from February 1, 2019 to January 31, 2020)

Parameter	JAN-20	DEC-19	NOV-19	OCT-19	SEP-19	AUG-19	JUL-19	JUN-19	MAY-19	APR-19	MAR-19	FEB-19
Flow (MGD)												
Average Monthly	0.095	0.089	0.098	0.097	0.101	0.157	0.104	0.102	0.105	0.108	0.116	0.121
Flow (MGD)												
Daily Maximum	0.148	0.165	0.148	0.160	0.224	0.109	0.168	0.161	0.161	0.181	0.201	0.215
pH (S.U.)												
Minimum	7.7	7.90	7.80	7.90	8.10	7.50	7.40	7.50	7.60	7.50	7.20	7.90
pH (S.U.)												
Maximum	7.9	8.10	8.20	7.90	8.20	8.10	7.70	7.90	7.90	7.90	7.90	8.10
TRC (mg/L)												
Average Monthly	0.19	0.22	0.19	0.095	< 0.10	0.21	0.09	< 0.10	0.135	0.14	0.185	0.14
TRC (mg/L)												
Instantaneous												
Maximum	0.22	0.23	0.22	0.14	< 0.10	0.27	0.14	< 0.10	0.22	0.17	0.20	0.21
TSS (mg/L)												
Average Monthly	16.5	13.25	< 3	7.25	3.75	8.25	4	< 3	< 3	2.25	< 3	< 3
TSS (mg/L)												
Instantaneous												
Maximum	23	25	< 3	13	6	15	4	< 3	< 3	3	< 3	< 3
Total Aluminum												
(mg/L)												
Average Monthly	< 0.1	< 0.10	< 0.10	0.1	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Total Aluminum												
(mg/L)												
Instantaneous		a 4 a		o 1 -		0.40					0.40	
Maximum	< 0.1	< 0.10	< 0.10	0.15	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Total Iron (mg/L)	0.005	0.045	0.05	0.45	0.04	0.005	0.045	0.00	0.075	0.045	0.07	0.04
Average Monthly	0.095	0.045	0.05	0.15	0.04	0.025	0.015	< 0.02	0.075	0.045	0.07	0.04
Total Iron (mg/L)												
Instantaneous	0.40	0.05	0.05	0.07	0.05	0.04	0.00	0.00	0.00	0.05	0.07	0.00
Maximum	0.12	0.05	0.05	0.27	0.05	0.04	0.02	< 0.02	0.09	0.05	0.07	0.06

NPDES Permit Fact Sheet Hampton Shaler Water Authority

Total Manganese (mg/L)												
Average Monthly	0.02	0.015	0.02	0.02	< 0.02	0.02	< 0.02	< 0.02	0.015	0.015	0.015	< 0.02
Total Manganese (mg/L)												
Instantaneous												
Maximum	0.02	0.02	0.03	0.02	< 0.02	0.03	< 0.02	< 0.02	0.02	0.02	0.02	< 0.02

Summary of Inspections: The last inspection conducted by the Department was on October 30, 2019 by Shawn Bell as a compliance evaluation. No violations were noted.

Other Comments:

Monitoring data from the past three years shows that all discharges have been below effluent limits. No DMR violations have been reported since February 2013.

The client has no open violations.

Development of Effluent Limitations					
Outfall No.	001	Design Flow (MGD)	0.082		
Latitude	40° 29' 15.00	" Longitude	-79º 57' 17.00"		
Wastewater I	Description:	Rewash water from six filters and six softeners, spent brine from stormwater runoff from plant catch basins.	the softener regeneration process and		

Stormwater Drainage Overview

Several catch basins on the plant property convey stormwater to Outfall 001. The stormwater is not affiliated with any industrial activities and no materials are stored outdoors. Most of the stormwater infiltrates at the drainage ditch between Route 28 and the railroad tracks, and reportedly does not significantly contribute to the flow at Outfall 001. Since stormwater is commingled with the discharge at the outfall pipe outlet, it was recommended at the most recent inspection that sampling be conducted at a point prior to stormwater commingling with the process water discharge. An alternative sampling location at the Rewash Holding Tank is currently used to collect samples.

Technology-Based Limitations (TBELs)

HSWA WTP is not subject to Federal Effluent Limitation Guidelines (ELGs) as the SIC code is not listed under 40 CFR parts 405 through 471.

Regulatory Effluent Standards and Monitoring Requirements

Flow monitoring is required pursuant to 25 Pa. Code § 92a.61(d)(1) as indicated in Table 1.

Effluent standards for pH pursuant to 25 Pa. Code §§ 95.2(1), as indicated in Table 1, are also imposed on all industrial wastes.

Pennsylvania regulations at 25 Pa. Code § 92a.48(b) require the imposition of technology-based TRC limits, as indicated in Table 1, for facilities that use chlorination and that are not already subject to TRC limits based on applicable federal ELGs or a facility-specific BPJ evaluation.

Table 1: Regulatory Effluent Standards					
Parameter Monthly Average Daily Maximum IMAX					
Flow (MGD)	Monitor	Monitor			
pH (S.U.)	Not less than 6.0 nor gre				
TRC	0.5 mg/l	1.0 mg/l	1.6 mg/l		

Best Practicable Control Technology Currently Achievable (BPT)

BPT for wastewater from treatment of water treatment plant (WTP) sludges and filter backwash is found in DEPs Technology-Based Control Requirements for Water Treatment Plant Wastes Document which recommends effluent limitations be imposed under Best Professional Judgement in accordance with 40 CFR § 125.3, and detailed in Table 2.

Table 2: BPT Limits for WTP sludge and filter backwash wastewater						
Parameter Monthly Average (mg/L) Daily Maximum (mg/L						
Total Suspended solids	30.0	60.0				
Total Iron	2.0	4.0				
Total Aluminum	4.0	8.0				
Total Manganese	1.0	2.0				
Flow (MGD)	Monitor and Report					
pH (S.U.)	Not less than 6.0 nor greater than 9.0 at all times					
Total Residual Chlorine	0.5	1.0				

Water Quality-Based Effluent Limitations (WQBELs)

Toxics Screening Analysis – Procedures for Evaluating Reasonable Potential and Developing WQBELs

DEP's procedures for evaluating reasonable potential are as follows:

- 1. For IW discharges, the design flow to use in modeling is the average flow during production or operation, and may be taken from the permit application.
- 2. Perform a Toxics Screening Analysis to identify toxic pollutants of concern. All toxic pollutants whose maximum concentrations, as reported in the permit application or on past DMRs, that are greater than the most stringent applicable water quality criterion are evaluated as pollutants of concern. [This includes pollutants reported as "Not Detectable" or as "<MDL" where the method detection limit for the analytical method used by the applicant is greater than the most stringent water quality criterion]. List all toxic pollutants of concern in a Toxics Screening Analysis section of the Fact Sheet (see Attachment C).</p>
- 3. For any outfall with an applicable design flow, perform PENTOXSD modeling for all pollutants of concern. Use the maximum reported value from the application form or from DMRs as the input concentration for the PENTOXSD model run.
- 4. Compare the actual WQBEL from PENTOXSD with the maximum concentration reported on DMRs or the permit application. Use WQN data or another source to establish the existing or background concentration for naturally occurring pollutants, but generally assume zero background concentration for non-naturally occurring pollutants.
 - Establish limits in the draft permit where the maximum reported concentration equals or exceeds 50% of the WQBEL. Use the average monthly and maximum daily limits for the permit as recommended by PENTOXSD. Establish an IMAX limit at 2.5 times the average monthly limit.
 - For non-conservative pollutants, establish monitoring requirements where the maximum reported concentration is between 25% 50% of the WQBEL.
 - For conservative pollutants, establish monitoring requirements where the maximum reported concentration is between 10% 50% of the WQBEL.

The information described above including the maximum reported discharge concentrations, the most stringent water quality criteria, the pollutant-of-concern (reasonable potential) determinations, the calculated WQBELs, and the WQBEL/monitoring recommendations are collected on a spreadsheet titled "Toxics Screening Analysis." (Attachment C).

Total Maximum Daily Load (TMDL)

Wastewater discharges from Hampton Shaler Water Authority are located in the Allegheny River Watershed, for which the Department has developed a TMDL. A TMDL establishes the amount of a pollutant that a water body can assimilate without exceeding the water quality criteria for that pollutant. TMDLs provide the scientific basis for a state to establish water quality-based controls to reduce pollution from both point and non-point sources in order to restore and maintain the quality of the state's water resources (USEPA 1991a). The TMDL was finalized on April 9, 2001 and addresses contamination of fish tissue, in the Allegheny River from Lock and Dam 3 (River Mile 14.5) to the mouth (River Mile 0.0), by PCB and chlordane. Water quality criteria for the TMDL watershed do not apply to the wastewater discharges from HSWA.

PENTOXSD Water Quality Modeling Program

PENTOXSD Version 2.0 for Windows is a single discharge, mass-balance water quality modeling program that includes consideration for mixing, first-order decay and other factors to determine recommended WQBELs for toxic substances and several non-toxic substances. Required input data including stream code, river mile index, elevation, drainage area, discharge name, NPDES permit number and discharge flow rate are entered into PENTOXSD to establish site-specific discharge conditions. Other data such as low flow yield, reach dimensions and partial mix factors may also be entered to further characterize the conditions of the discharge and receiving water. Pollutants are then selected for analysis based on those present or likely to be present in a discharge at levels that may cause, have the reasonable potential to cause, or contribute to excursions above state water quality standards (i.e., a reasonable potential analysis). Discharge concentrations for the selected pollutants are chosen to represent the "worst case" quality of the discharge (i.e., maximum reported discharge concentrations). PENTOXSD then evaluates each pollutant by computing a Waste Load Allocation for each applicable criterion, determining a recommended maximum WQBEL and comparing that recommended WQBEL with the input discharge concentration to determine which is more stringent. Based on this evaluation, PENTOXSD recommends average monthly and maximum daily WQBELs.

Reasonable Potential Analysis and WQBEL Development for Outfall 001

Discharges from Outfall 001 are evaluated based on concentrations reported on the application and on DMRs; data from those sources are used for toxics screening as described above. The PENTOXSD model is run with the discharge and receiving stream characteristics shown in Table 4. Since the nearest downstream public water supply intake is 9.50 miles downstream of Outfall 001, the intake flow was not included in the PENTOXSD model run.

The pollutants selected for analysis include those identified as candidates for modeling by the Toxics Screening Analysis spreadsheet (in accordance with Step 2 of the Toxics Screening Analysis procedure discussed above). Pollutants for which water quality standards have not been promulgated (e.g., TSS, oil and grease) are excluded from the analysis.

Based on the recommendations of the Toxics Screening Analysis, shown in Attachment C, Total Dissolved Solids, Chloride, Cadmium, Copper, Lead, Mercury, Phenols and Silver were candidates for PENTOXSD modeling. The maximum reported values for Cadmium, Lead, Mercury, Phenols and Silver were each reported as "non-detect" using a quantitation limit (QL) that exceeds the Department's Target QL.

Table 4: PENTOXSD Inputs					
Parameter	Value				
River Mile Index	4.7526				
Discharge Flow (MGD)	0.082				
Basin/Stream Characteristics					
Parameter	Value				
Area in Square Miles	11,700				
Q ₇₋₁₀ (cfs)	2390				
Low-flow yield (cfs/mi ²)	0.2043				
Elevation (ft)	704				
Slope	0.0004				

The WQBELs calculated using PENTOXSD are compared to the maximum reported effluent concentrations as described in the Toxics Screening Analysis section above to evaluate the need to impose WQBELs or monitoring requirements in the permit. Output from the PENTOXSD model runs is included in Attachment D.

Based on PENTOXSD modeling and the Toxics Screening Analysis, monitoring is to be imposed for the parameters Total Dissolved Solids, Chloride, Bromide and Sulfate, as shown below in Table 5. Total Dissolved Solids and Chloride are discussed further below.

Total Dissolved Solids (TDS)

Per Policy and Procedure for NPDES Permitting of Discharges of Total Dissolved Solids (TDS) – 25 Pa. Code §95.10 (DEP-ID: 385-2100-002), a monitoring requirement for TDS for any discharge that exceeds 2,000 mg/L TDS should be applied at minimum. The maximum reported TDS concentration at Outfall 001 is 1750 mg/L. Since the TDS discharge concentration is below 2,000 mg/L, no effluent limits will be applied for TDS or its constituent parameters.

Chloride

The maximum Chloride concentration at Outfall 001 is 1260 mg/L. The Toxics Screening Analysis spreadsheet recommended Chloride as a candidate for PENTOXSD modeling. In accordance with 25 Pa. Code §96.3(d) and since the nearest downstream Public Water Supply Intake is 9.50 miles downstream of the discharge, impacts on potable water supply withdrawals are not expected. No effluent limits will be applied for Chloride.

Table 5: Outfall 001 Water Quality Based Effluent Limits					
Parameter	Mass Units (Ibs/yr)	Concentrat	centrations (mg/L)		
Parameter	Total Annual	Monthly Average	Daily Maximum		
Total Dissolved Solids	XXX	Report	Report		
Chloride	XXX	Report	Report		
Bromide	XXX	Report	Report		
Sulfate	XXX	Report	Report		

Total Residual Chlorine (TRC)

To determine if WQBELs are required for discharges containing total residual chlorine, a discharge evaluation is performed using a DEP program called TRC_CALC created with Microsoft Excel for Windows. TRC_CALC calculates TRC Waste Load Allocations (WLAs) through the application of a mass balance model which considers TRC losses due to stream and discharge chlorine demands and first-order chlorine decay. Input values for the program include flow rates and chlorine demands for the receiving stream and the discharge, the number of samples taken per month, coefficients of TRC variability, partial mix factors, and an optional factor of safety. The mass balance model calculates WLAs for acute and chronic criteria that are then converted to long term averages using calculated multipliers. The multipliers are functions of the number of samples taken per month and the TRC variability coefficients (normally kept at default values unless site specific information is available). The most stringent limitation between the acute and chronic long-term averages is converted to an average monthly limit for comparison to the BAT average monthly limit of 0.5 mg/l from 25 Pa. Code § 92a.48(b)(2). The more stringent of these average monthly TRC limitations is imposed in the permit. The results of the modeling, included in Attachment E, indicate that no WQBELs will be imposed for TRC.

Anti-Backsliding

The effluent limitations and monitoring requirements in Table 6 below are from the current permit, issued on October 9, 2013. The draft permit does not propose any effluent limits that are less stringent than those imposed in the previous permit.

Table 6: Current Permit Effluent Limitations – Outfall 001					
Parameter	Units				
Flow	Monitor & Report MGD				
Total Residual Chlorine	0.5	1.0	mg/L		
Total Suspended Solids	30	60	mg/L		
Aluminum, total	4.0	8.0	mg/L		
Iron, total	2.0	4.0	mg/L		
Manganese, total	1.0	2.0	mg/L		
рН	Not less than 6.0 n	or greater than 9.0	S.U.		

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below in Table 7 are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Monitoring frequencies will remain twice per month for all parameters.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

	Table 7: Proposed Effluent Limits – Outfall 001								
			Effluent L	imitations			Monitoring Ree	quirements	
Parameter		(lbs/day) ⁽¹⁾		1	tions (mg/L)		Minimum ⁽²⁾	Required	
	Average Monthly	Daily Maximum	Daily Minimum	Average Monthly	Daily Maximum	Instant. Maximum	Measurement Frequency	Sample Type	
Flow (MGD)	Report	Report	XXX	ХХХ	XXX	XXX	2/month	Measured	
pH (S.U.)	xxx	XXX	6.0	XXX	XXX	9.0	2/month	Grab	
TRC	XXX	XXX	XXX	0.5	XXX	1.0	2/month	Grab	
TSS	XXX	XXX	XXX	30.0	60.0	XXX	2/month	Grab	
Total Dissolved Solids	XXX	XXX	XXX	Report	Report	XXX	2/month	Grab	
Total Aluminum	XXX	XXX	XXX	4.0	8.0	XXX	2/month	Grab	
Total Iron	XXX	XXX	XXX	2.0	4.0	XXX	2/month	Grab	
Total Manganese	XXX	XXX	XXX	1.0	2.0	XXX	2/month	Grab	
Sulfate	XXX	XXX	XXX	Report	Report	XXX	2/month	Grab	
Chloride	XXX	XXX	XXX	Report	Report	XXX	2/month	Grab	
Bromide	XXX	XXX	XXX	Report	Report	XXX	2/month	Grab	

Compliance Sampling Location: Outfall 001, Prior to commingling with stormwater runoff.

	Tools and References Used to Develop Permit
	WQM for Windows Model (see Attachment)
	PENTOXSD for Windows Model (see Attachment C)
	TRC Model Spreadsheet (see Attachment D)
	Temperature Model Spreadsheet (see Attachment)
	Toxics Screening Analysis Spreadsheet (see Attachment B)
	Water Quality Toxics Management Strategy, 361-0100-003, 4/06.
\square	Technical Guidance for the Development and Specification of Effluent Limitations, 362-0400-001, 10/97.
	Policy for Permitting Surface Water Diversions, 362-2000-003, 3/98.
	Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 362-2000-008, 11/96.
\square	Technology-Based Control Requirements for Water Treatment Plant Wastes, 362-2183-003, 10/97.
	Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 362-2183-004, 12/97.
	Pennsylvania CSO Policy, 385-2000-011, 9/08.
	Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03.
	Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 391-2000-002, 4/97.
	Determining Water Quality-Based Effluent Limits, 391-2000-003, 12/97.
	Implementation Guidance Design Conditions, 391-2000-006, 9/97.
	Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen
	and Ammonia Nitrogen, Version 1.0, 391-2000-007, 6/2004.
	Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges,
	391-2000-008, 10/1997.
	Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds,
	and Impoundments, 391-2000-010, 3/99. Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program
	for Toxics, Version 2.0, 391-2000-011, 5/2004.
	Implementation Guidance for Section 93.7 Ammonia Criteria, 391-2000-013, 11/97.
	Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage
	Channels and Swales, and Storm Sewers, 391-2000-014, 4/2008.
	Implementation Guidance Total Residual Chlorine (TRC) Regulation, 391-2000-015, 11/1994.
	Implementation Guidance for Temperature Criteria, 391-2000-017, 4/09.
	Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 391-2000-018, 10/97.
	Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved
	Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 391-2000-019, 10/97.
	Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 391-2000-021, 3/99.
	Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination
	of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 391-2000-022, 3/1999.
	Design Stream Flows, 391-2000-023, 9/98.
	Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV)
	and Other Discharge Characteristics, 391-2000-024, 10/98.
	Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 391-3200-013, 6/97.
	Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07.
	SOP:
	Other:

Attachments

Attachment A: StreamStats Report for Outfall 001 Attachment B: Toxics Screening Analysis Results for Outfall 001 Attachment C: PENTOXSD Modeling Results for Outfall 001 Attachment D: TRC Modeling Results for Outfall 001

ATTACHMENT A: StreamStats Report for Outfall 001

StreamStats Report

 Region ID:
 PA

 Workspace ID:
 PA20200318142400223000

 Clicked Point (Latitude, Longitude):
 40.48655, -79.95363

 Time:
 2020-03-18 10:24:26 -0400

Basin Characteristics			
Parameter Code	Parameter Description	Value	Unit
DRNAREA	Area that drains to a point on a stream	11700	square miles
ELEV	Mean Basin Elevation	1590.7	feet
PRECIP	Mean Annual Precipitation	43.B	inches

ft^3/s

1620

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	11700	square miles	2.33	1720
ELEV	Mean Basin Elevation	1590.7	feet	898	2700
PRECIP	Mean Annual Precipitation	43.8	inches	38.7	47.9
Low-Flow Statistics F	Parametersje Persent (405 square miles) Low	Flow Region 4			
Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	11700	square miles	2.26	1400
ELEV	Mean Basin Elevation	1590.7	feet	1050	2580
Low-Flow Statistics D	Disclaimerstes Percent (11200 aquese miles) (ow Flow Region 1	6		
One or more of th unknown errors Low-Flow Statistics F	Disclaimers(# Pecers (11200 square miles) u e parameters is outside the sug Flow Report(# Pecert (11200 square miles) (gested ran	ge. Estimates wer	e extrapolated Uni	
Dne or more of th unknown errors Low-Flow Statistics F Statistic	e parameters is outside the sug	gested ran	pe. Estimates wer 1 Value	Uni	t
One or more of the unknown errors Low-Flow Statistics F Statistic 7 Day 2 Year Low	e parameters is outside the sug flow Reportos Pecant (11200 aguas miles) is	gested ran	ge. Estimates wer 1 Value 1510	Uni ft^3	t I/s
One or more of the unknown errors	e parameters is outside the sug flow Reportss Perset (11200 space miles) r Flow	gested ran	pe. Estimates wer 1 Value	Uni	t I/s I/s

Low-Flow Statistics Disclaimers(4 Percent (485 equipmented) Low Flow Region 4)

90 Day 10 Year Low Flow

One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors Low-Flow Statistics Flow Reports Percent (485 equaremies) Low Flow Region 4]

Statistic	Value	Unit
7 Day 2 Year Low Flow	1530	ft*3/s
30 Day 2 Year Low Flow	1940	ft^3/s
7 Day 10 Year Low Flow	1000	ft^3/s
30 Day 10 Year Low Flow	1090	ft*3/s
90 Day 10 Year Low Flow	1500	ft^3/s

Low-Flow Statistics Flow Report/Ama-Averaged

Statistic	Value	Unit
7 Day 2 Year Low Flow	1510	ft^3/s
30 Day 2 Year Low Flow	1910	ft*3/s
7 Day 10 Year Low Flow	1000	ft^3/s
30 Day 10 Year Low Flow	1190	ft^3/s
90 Day 10 Year Low Flow	1610	ft^3/s

Low-Flow Statistics Citations

Stuckey, M.H., 2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006-5130, 84 p. (http://pubs.usgs.gov/sir/2006/5130/)

ATTACHMENT B:

Toxics Screening Analysis Results for Outfall 001

TOXICS SCREENING ANALYSIS WATER QUALITY POLLUTANTS OF CONCERN VERSION 2.7

CLEAR FORM

0027537 Outfall: 0	Outfall: 00	PA0027537	er Water Authority	haler	Hampton Sha	Facility:
Analysis pH (SU): 7	Analysis pH (SU): 7.	0.25	Analysis Hardness (mg/L): 86.3 Stream Flow, Q ₇₋₁₀ (cfs): 2390			
0.25	0.23		2390	-		

	Parameter		num Concentration in cation or DMRs (µg/L)	Most Stringent Criterion (µg/L)	Candidate for PENTOXSD Modeling?	Most Stringent WQBEL (µg/L)	Screening Recommendation
52 Q	Total Dissolved Solids		1750000	500000	Yes		Monitor
1	Chloride		1260000	250000	Yes		Monitor
Ino	Bromide	<	100	N/A	No		Monitor
Group	Sulfate		87700	250000	No		Monitor
	Fluoride	<	260	2000	No		
	Total Aluminum	<	100	750	No		
	Total Antimony	<	5	5.6	No		
	Total Arsenic		8	10	No		
	Total Barium		410	2400	No		
	Total Beryllium	<	2	N/A	No		
	Total Boron		110	1600	No		
	Total Cadmium	<	2	0.271	Yes	1170.901	No Limits/Monitoring
	Total Chromium	<	20	N/A	No		
	Hexavalent Chromium	<	5	10.4	No		
	Total Cobalt	<	5	19	No		
2	Total Copper		100	9.3	Yes	38822.46	No Limits/Monitoring
Group	Total Cyanide	<	10	N/A	No		
Gro	Total Iron		370	1500	No		
-	Dissolved Iron	<	20	300	No (Value < QL)		0
	Total Lead	<	5	3.2	Yes	13765.53	No Limits/Monitoring
	Total Manganese	<	20	1000	No		550 A
	Total Mercury	<	1	0.05	Yes	19.739	No Limits/Monitoring
	Total Molybdenum	<	5	N/A	No		
	Total Nickel	<	20	52.2	No		
	Total Phenols (Phenolics)	<	10	5	Yes	4100000	No Limits/Monitoring
	Total Selenium	<	5	5.0	No (Value < QL)		
	Total Silver	<	5	3.8	Yes	10494.76	No Limits/Monitoring
	Total Thallium	<	2	0.24	No (Value < QL)		
12	Total Zinc	<	20	119.8	No		

ATTACHMENT C: PENTOXSD Modeling Results for Outfall 001

PENTOXSD

	RMI	Elevation (ft)	Draina Area (sq m		Slope	PWS V (mg				pply FC				
42122	4.75	704.0			0.00000		0.00		6	~	-55			
					_		Stream D	ata						
	LFY			WD Ratio	Rch Width	Rch Depth	Rch Velocity	Rch Trav	<u>Tributar</u> Hard	У pH	Stream Hard	pH	<u>Analysi</u> Hard	<u>s</u> pH
	(cfsm)	(cfs)	(cfs)		(ft)	(ft)	(fps)	Time (days)	(mg/L)		(mg/L)		(mg/L)	
Q7-10	0.2043	0	2390	0	0	0	0	0	100	7	0	0	0	3
Qh		0	0	0	0	0	0	0	100	7	0	0	O	3
						Di	scharge [Data						
N	ame	Permit Number		-	ermitted Disc Flow	Design Disc Flow	Reserve Factor	AFC PMF	CFC PMF	THH PMF	CRL PMF	Disc Hard	Disc pH	
-			(mgd	_	(mgd)	(mgd)	65			282		(mg/L)		2
HSW	VA 001	PA00275	37 0.25		0	0	0	0.7	0.7	0	0	86.3	7.57	
							rameter D							
P	Parameter M	lame	100	lisc onc	Trib Conc	Disc Daily CV	Disc Hourl CV	y Con		Fate Coef		Crit Mod	Max Disc Conc	
CAPITO				g/L)	(µg/L			(µg/l				2	(µg/L)	
CADMIUM	10-2502023-001		100	2000	0	0.5		2 272	0	0	0	1	0	
COPPER	E (FWS)			0000	203 22	0.5		3 27.0	0	0	0	1	0	
LEAD				0000	5 C C C	0.5	8 83	10 H.T.	0	0	0	1	0	
MERCURY	Y			1000	0	0.5	0.5	5 0	0	0	0	1	0	
PHENOL			1	E+07	0	0.5	0.5	5 0	0	0	O	1	0	
SILVER			5	0000	0	0.5	0.5	5 0	0	0	0	1	0	
TOTAL DI	SSOLVED	SOLIDS (P	WS) 17	5000	0 0	0.5	0.5	5 0	0	0	0	1	0	
Stream Code	RMI	Elevation (ft)	Draina Area (sq m		Slope	PWS W				ply C				
42122	4.25			7										
		703.0	0 1170	-	0.00000		0.00		6	/	:			
		703.0	0 1170	-	0.00000	5		ata	6	Z				
	LFY	Trib S	tream \	-	Rch	Rch	0.00	ata Rch Trav Time	<u>Tributar</u> Hard		<u>Stream</u> Hard	рН	<u>Analysi</u> Hard	<u>∍</u> pH
2	LFY (cfsm)	Trib S Flow	tream \	0.50 VD	Rch	Rch	0.00 Stream D: Rch	Rch Trav Time	Tributar	У рН		рН		
27-10		Trib S Flow (cfs)	tream \ Flow F	0.50 VD	Rch Width	Rch Depth \	0.00 Stream D: Rch /elocity	Rch Trav Time	<u>Tributar</u> Hard	У рН	Hard	рН	Hard	рH
-	(cfsm)	Trib S Flow (cfs)	tream \ Flow F (cfs)	VD tatio	Roh Width (ft)	Rch Depth \ (ft)	0.00 Stream D: Rch /elocity (fps)	Rch Trav Time (days)	<u>Tributar</u> Hard (mg/L)	¥ pH	Hard (mg/L)	рН	Hard (mg/L)	pН
-	(cfsm)	Trib S Flow (cfs) 0 2	tream N Flow F (cfs) 2390.5	0.50 VD latio 0	Rch Width (ft) 0	Rch Depth \ (ft) 0	0.00 Stream D: Rch /elocity (fps)	Rch Trav Time (days) 0 0	Tributar Hard (mg/L) 100	Y pH 7	Hard (mg/L) 0	рн 0	Hard (mg/L) 0	рH
Qh	(cfsm)	Trib S Flow (cfs) 0 2	tream V Flow F (cfs) 2390.5 0 Existin	0.50 VD tatio 0 0	Rch Width (ft) 0	Rch Depth \ (ft) 0	0.00 Stream D: Rch /elocity (fps) 0 0	Rch Trav Time (days) 0 0 0	Tributar Hard (mg/L) 100	Y pH 7	Hard (mg/L) 0	рн 0	Hard (mg/L) 0	рH
Qh	(cfsm) 0.2043	Trib S Flow (cfs) 0 2 0 Permit	tream \ Flow F (cfs) 2390.5 0 Existin Disc	0.50 VD tatio 0 g Pe	Rch Width (ft) 0 0 ermitted Disc	Rch Depth V (ft) 0 0 Dir Design Disc	0.00 Stream D: Rch /elocity (fps) 0 0 Scharge E Reserve	Rch Trav Time (days) 0 0 0 0 0 0 0 0 0	Tributar Hard (mg/L) 100 100 CFC	у рн 7 7 7	Hard (mg/L) 0 0 CRL	pH 0 0 Disc Hard	Hard (mg/L) 0 Disc	рH
Qh	(cfsm) 0.2043	Trib S Flow (cfs) 0 2 0 Permit	tream \ Flow F (cfs) 2390.5 0 Existin Disc Flow	0.50 VD tatio 0 g Pe	Rch Width (ft) 0 0 ermitted Disc Flow	Rch Depth V (ft) 0 0 Design Disc Flow	0.00 Stream D: Rch /elocity (fps) 0 0 Scharge E Reserve	Rch Trav Time (days) 0 0 0 0 0 0 0 0 0	Tributar Hard (mg/L) 100 100 CFC	у рн 7 7 7	Hard (mg/L) 0 0 CRL	pH 0 0 Disc	Hard (mg/L) 0 Disc	pН
Qh	(cfsm) 0.2043	Trib S Flow (cfs) 0 2 0 Permit	tream (Flow F (cfs) 2390.5 0 Existin Disc Flow (mgd)	0.50 VD tatio 0 g Pe	Rch Width (ft) 0 0 ermitted Disc Flow mgd)	Rch Depth 1 (ft) 0 0 Design Disc Flow (mgd) 0	0.00 Stream D: Rch /elocity (fps) 0 0 scharge D Reserve Factor	Rch Trav Time (days) 0 0 0 0 0 0 0 0 0	Tributar Hard (mg/L) 100 100 CFC PMF	Y pH 7 7 THH PMF	Hard (mg/L) 0 0 CRL PMF	pH 0 0 Disc Hard (mg/L)	Hard (mg/L) 0 Disc pH	pН
2 h Na	(cfsm) 0.2043	Trib S Flow (cfs) 0 2 0 Permit Number	tream (Flow F (cfs) 2390.5 0 Existin Disc Flow (mgd) 0 C	0.50 VD atio 0 0 9 Pe ((isc onc	Rch Width (ft) 0 0 semitted Disc Flow mgd) 0 Trib Conc	Rch Depth 1 (ft) 0 0 Design Disc Flow (mgd) 0	0.00 Stream D: Rch /elocity (fps) 0 0 scharge D Reserve Factor	Rch Trav Time (days) 0 0 0 0 0 0 0 0 0 0 0 0 1 4 1 0 1 1 1 0 1 1 1 1	Tributar Hard (mg/L) 100 100 CFC PMF 0 CV	Y pH 7 7 THH PMF	Hard (mg/L) 0 0 CRL PMF 0 FOS	pH 0 0 Disc Hard (mg/L)	Hard (mg/L) 0 Disc pH 7 7 Max Disc Conc	рH
2 h Na	(cfsm) 0.2043 ame	Trib S Flow (cfs) 0 2 0 Permit Number	tream (Flow F (cfs) 2390.5 0 Existin Disc Flow (mgd) 0 C	0.50 VD tatio 0 0 9 Pe (Rch Width (ft) 0 ermitted Disc Flow mgd) 0 Trib	Rch Depth V (ft) 0 Design Disc Flow (mgd) 0 Pai Disc Daily	0.00 Stream D: Rch /elocity (fps) 0 0 Scharge D Reserve Factor 0 Disc Hourt CV	Rch Trav Time (days) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Tributar Hard (mg/L) 100 100 CFC PMF 0 CV	Y pH 7 7 THH PMF 0 Fate	Hard (mg/L) 0 0 CRL PMF 0 FOS	pH 0 Disc Hard (mg/L) 100 Crit	Hard (mg/L) 0 0 Disc pH 7 7 Max I Disc	рH
P: CADMIUM	(cfsm) 0.2043 ame	Trib S Flow (cfs) 0 2 0 Permit Number	tream (Flow F (cfs) 2390.5 0 Existin Disc Flow (mgd) 0 C	0.50 VD atio 0 0 0 9 Pe ((isc onc g/L)	Rch Width (ft) 0 0 ermitted Disc Flow mgd) 0 Trib Conc (µg/L)	Rch Depth 1 (ft) 0 0 Design Disc Flow (mgd) 0 Pai Disc Daily CV	0.00 Stream D: Rch /elocity (fps) 0 0 scharge D Reserve Factor 0 Disc Hourl CV 0.5	Rch Trav Time (days) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Tributar Hard (mg/L) 100 100 CFC PMF 0 CFC PMF	Y pH 7 7 THH PMF 0 Fate Coef	Hard (mg/L) 0 CRL PMF 0 FOS	pH 0 Disc Hard (mg/L) 100 Crit Mod	Hard (mg/L) 0 Disc pH 7 7 Max Disc Conc (µg/L)	рH
P: CADMIUM CHLORIDE	(cfsm) 0.2043 ame	Trib S Flow (cfs) 0 2 0 Permit Number	tream (Flow F (cfs) 2390.5 0 Existin Disc Flow (mgd) 0 C	0.50 VD tatio 0 0 g Pe (((sc onc onc 0 0	Rch Width (ft) 0 0 ermitted Disc Flow mgd) 0 Trib Conc (µg/L) 0	Rch Depth 1 (ft) 0 0 Design Disc Flow (mgd) 0 Pai Disc Daily CV 0.5	0.00 Stream D: Rch /elocity (fps) 0 0 scharge D Reserve Factor 0 0 0 constant 0 0 0 0 0 0 0 0 0 0 0 0 0	Rch Trav Time (days) 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0	Tributar Hard (mg/L) 100 100 CFC PMF 0 CFC PMF	y pH 7 7 THH PMF 0 Fate Coef	Hard (mg/L) 0 CRL PMF 0 FOS	pH 0 0 Disc Hard (mg/L) 100 Crit Mod	Hard (mg/L) 0 Disc pH 7 7 Max Disc Conc (µg/L) 0	
P: CADMIUM CHLORIDE COPPER	(cfsm) 0.2043 ame	Trib S Flow (cfs) 0 2 0 Permit Number	tream (Flow F (cfs) 2390.5 0 Existin Disc Flow (mgd) 0 C	0.50 VD tatio 0 0 0 0 0 0 0 0 0 0	Reh Width (ft) 0 0 ermitted Disc Flow mgd) 0 Trib Conc (µg/L) 0 0	Rch Depth 1 (ft) 0 0 Design Disc Flow (mgd) 0 Pai Disc Daily CV 0.5 0.5	0.00 Stream D: Rch /elocity (fps) 0 0 scharge D Reserve Factor 0 0 cameter D Disc Hourl CV 0.5 0.5 0.5 0.5 0.5	Rch Trav Time (days) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Tributar Hard (mg/L) 100 100 CFC PMF 0 CFC PMF 0 Stream CV .) 0	y pH 7 7 THH PMF 0 Fate Coef	Hard (mg/L) 0 CRL PMF 0 FOS 0 0	pH 0 0 Disc Hard (mg/L) 100 Crit Mod	Hard (mg/L) 0 Disc pH 7 7 Max Disc Conc (µg/L) 0 0	рH
P. CADMIUM CHLORIDE COPPER LEAD	(cfsm) 0.2043 ame arrameter N E (PWS)	Trib S Flow (cfs) 0 2 0 Permit Number	tream (Flow F (cfs) 2390.5 0 Existin Disc Flow (mgd) 0 C	0.50 VD tatio 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Reh Width (ft) 0 0 ermitted Disc Flow (mgd) 0 Trib Conc (µg/L) 0 0 0	Rch Depth 1 (ft) 0 0 Design Disc Flow (mgd) 0 Pai Disc Daily CV 0.5 0.5 0.5	0.00 Stream D: Rch /elocity (fps) 0 0 scharge D Reserve Factor 0 0 constant 0 0 0 0 0 0 0 0 0 0 0 0 0	Rch Trav Time (days) 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0	Tributar Hard (mg/L) 100 100 CFC PMF 0 CV .) 0 0 0 0	y pH 7 7 THH PMF 0 Fate Coef	Hard (mg/L) 0 CRL PMF 0 FOS 0 0 0 0	pH 0 0 Disc Hard (mg/L) 100 Crit Mod	Hard (mg/L) 0 0 Disc pH 7 7 7 Max Disc Conc Conc Conc (µg/L) 0 0 0 0 0	рH
	(cfsm) 0.2043 ame arrameter N E (PWS)	Trib S Flow (cfs) 0 2 0 Permit Number	tream (Flow F (cfs) 2390.5 0 Existin Disc Flow (mgd) 0 C	0.50 VD tatio 0 0 0 0 0 0 0 0 0 0	Rch Width (ft) 0 crmitted Disc Flow (mgd) 0 Trib Conc (µg/L) 0 0 0 0	Rch Depth 1 (ft) 0 0 Design Disc Flow (mgd) 0 Pai Disc Daily CV 0.5 0.5 0.5 0.5	0.00 Stream D: Rch /elocity (fps) 0 0 scharge D Reserve Factor 0 0 cv 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	Rch Trav Time (days) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Tributar Hard (mg/L) 100 100 CFC PMF 0 CFC PMF 0 Stream CV .) 0 0 0 0	Y pH 7 7 THH PMF 0 Fate Coef 0 0 0	Hard (mg/L) 0 0 CRL PMF 0 FOS 0 0 0 0 0	PH 0 0 Disc Hard (mg/L) 100 Crit Mod	Hard (mg/L) 0 Disc pH 7 7 Max Disc Conc Conc (µg/L) 0 0 0 0	рH

Hydrodynamics

S	WP Basi	<u>n</u>	Stream	m Code:			Strea	m Name	<u>.</u>		
	18A		42	2122			ALLEGH	ENY RIV	/ER		
RMI	Stream Flow	PWS With	Net Stream	Disc Analysis	Reach	Depth	Width	WD	Velocity	Reach Trav	СМТ
	(cfs)	(cfs)	Flow (cfs)	Flow (cfs)	Slope	(ft)	(ft)	Ratio	(fps)	Time (days)	(min)
					Q7	-10 Hyd	Irodyna	amics			
4.753	2390	C	2390	0.38675	0.0004	0.8524	1407.9	1651.7	1.9918	0.0153	1000-
4.253	2390.5	C	2390.5	5 NA	0	0	0	0	0	0	NA
					Q	h Hydr	odynan	nics			
4.753	6663.6	(6663.6	0.38675	0.0004	1.3383	1407.9	1052.0	3.5366	0.0086	1000+
4.253	6664.8	(6664.8	NA	0	0	0	0	0	0	NA

Wasteload Allocations

					Wast	eload Allo	cations			
RMI		Name	Permit M	Number						
4.75		HSWA 001	PA002	27537						
						AFC				
97	7-10:	CCT (min) 15	5 PMF	0.699	Analysis	pH 7	Analysis	Hardness	99.996
		Parameter	5 63	Stream Conc	Stream CV		Fate Coef	wac	WQ	WLA
S				(µg/L)		(µg/L)		(µg/L)	(µg/L)	(µg/L)
TOTAL	DISS	OLVED SOLIDS	(PWS)	0	0	0	0	NA	NA	NA
	CHL	ORIDE (PWS)		0	0	O	0	NA	NA	NA
		CADMIUM		0	o	0	0	2.014	2.133	9229.54
				Dissolved	WQC.	Chemical tra	anslator of	0.944 applied	L.	
		COPPER		0	0	0	0	13.439	13.999	60569.2
				Dissolved	WQC.	Chemical tra	anslator of	0.96 applied.		
		LEAD		0	0	0	0	64.579	81.642	353247.
				Dissolved	WQC.	Chemical tra	anslator of	0.791 applied	L	
	1	MERCURY		0	0	0	0	1.4	1.647	7126.48
				Dissolved	WQC.	Chemical tra	anslator of	0.85 applied.		
		PHENOL		0	0	0	0	NA	NA	NA
		SILVER		0	0	0	0	3.217	3.784	16373.5
				Dissolved	WQC.	Chemical tra	anslator of	0.85 applied.		
						CFC				
Q7-10:		CCT (min)	720	PMF	0.699	Analysis	pH 7	Analysis	s Hardness	99.996
	F	arameter		Stream Conc.	Stream CV	Conc.	Fate Coef	WQC	WQ Obj	WLA
				(µg/L)	0.000	(µg/L)	1000000	(µg/L)	(µg/L)	(µg/L)
TOTAL D	ISSO	LVED SOLIDS	PWS)	0	0	0	0	NA	NA	NA
	CHLO	RIDE (PWS)		O	0	0	0	NA	NA	NA
	C			0	0	0	0	0.246	0.271	1170.90
								0.909 applied		
	C	OPPER		0	0	0	0	8.956	9.329	40363.14
								0.96 applied.		
		LEAD		0	0	0	0	2.517	3.181	13765.5
								0.791 applied		
	M	ERCURY		0	0	0	0	0.77	0.906	3919.56
								0.85 applied.		
	P	HENOL		0	0	0	0	NA	NA	NA
	5	SILVER		0	0	0	0	NA	NA	NA

Wasteload Allocations

RMI	Name	Permit Number

4.75 HSWA 001 PA0027537

PHENOL

SILVER

THH Q7-10: CCT (min) 720 PMF 0.063 Analysis pH NA Analysis Hardness NA Trib WQC WQ WLA Stream Stream Fate Parameter Conc CV Conc Coef Obj (µg/L) (µg/L) (µg/L) (µg/L) (µg/L) TOTAL DISSOLVED SOLIDS (PWS) 0 0 0 0 500000 500000 NA CHLORIDE (PWS) 0 0 0 0 250000 250000 NA CADMIUM 0 0 0 0 NA NA NA COPPER 0 0 0 0 NA NA NA LEAD 0 0 0 0 NA NA NA 0 0 MERCURY 0 0 0.05 0.05 19.739

0

0

0

0

CRL									
Qh:	CCT (min)	720	PMF	0.089					
	Parameter		Stream Conc (µg/L)	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)
TOTAL D	ISSOLVED SOLIDS (P	WS)	0	0	0	0	NA	NA	NA
	CHLORIDE (PWS)		0	0	0	0	NA	NA	NA
	CADMIUM		0	o	0	0	NA	NA	NA
	COPPER		٥	0	0	0	NA	NA	NA
	LEAD		O	O	0	0	NA	NA	NA
	MERCURY		O	0	0	O	NA	NA	NA
	PHENOL		0	0	0	0	NA	NA	NA
	SILVER		0	0	0	0	NA	NA	NA

CRL

0

0

0

0

10400

NA

10400

NA

4100000

NA

23

	N.	commen	ueu L	inuent L	imitations	>	
SWP Basin Stream Code:		Stream Name:					
18A	42122	ж.	2	ALLEGHEN			
RMI	Name		rmit mber	Disc Flow (mgd)			
4.75	HSWA 001	PA00	27537	0.2500			
Parameter		Effluent			Max.	Most S	tringent
		Limit Governing		-		WQBEL	WQBEL
		(µg/L)	Crite	erion	(µg/L)	(µg/L)	Criterion
CADMIUM		1170.901	0.901 CFC		1826.794	1170.901	CFC
CHLORIDE (PWS)		1260000	260000 INPUT		1960000	NA	NA
COPPER		38822.46	.46 AFC		60569.29	38822.46	AFC
LEAD		13765.53	5.53 CFC		21476.44	13765.53	CFC
MERCURY		19.739	.739 THH		30.795	19.739	THH
PHENOL		4100000	00 THH		6400000	4100000	THH
SILVER		10494.76	AFC		16373.51	10494.76	AFC
TOTAL DISSOLVED SOLIDS (PWS		1750000	INPUT		2730000	NA	NA

ATTACHMENT D: TRC Modeling Results for Outfall 001

TRC EVALUATION

0.2	 Q stream (cfs) Q discharge (M a no. samples Chlorine Dema Chlorine Dema Chlorine Dema BAT/BPJ Value % Factor of Sa 	MGD) and of Stream and of Discharge	0.5 0.7 0.7 0 0		Mix Factor Compliance Time (min) Compliance Time (min)			
Source	Reference	AFC Calculations		Reference	CFC Calculations			
TRC PENTOXSD TRG PENTOXSD TRG	1.3.2.iii 5.1a 5.1b	WLA afc = 1379.947 LTAMULT afc = 0.373 LTA_afc= 514.201		1.3.2.iii 5.1c 5.1d	WLA cfc = 1345.332 LTAMULT cfc = 0.581 LTA_cfc = 782.113			
Source		Efflu	ent Limit Calcu	lations				
PENTOXSD TRG PENTOXSD TRG								
WLA afo LTAMULT afo LTA_afo	+ Xd + (AFC_Yo	c)) + [(AFC_Yc*Qs*.01 *Qs*Xs/Qd)]*(1-FOS/1 2+1))-2.326*LN(cvh^2+ T_afc	100)	C_tc))				
WLA_cfc LTAMULT_cfc LTA_cfc	(.011/e(-k*CFC_tc) + [(CFC_Yc*Qs*.011/Qd*e(-k*CFC_tc)) + Xd + (CFC_Yc*Qs*Xs/Qd)]*(1-FOS/100) EXP((0.5*LN(cvd^2/no_samples+1))-2.326*LN(cvd^2/no_samples+1)^0.5) wla_cfc*LTAMULT_cfc							
AML MULT AVG MON LIMIT INST MAX LIMIT	MIN(BAT_BPJ,MIN	d^2/no_samples+1)^0.5 (LTA_afc,LTA_cfc)*AN nit/AML_MULT)/LTAN	IL_MULT)	[\] 2/no_samples+1;))			