

Application Type	Renewal
	Non-
Facility Type	Municipal
Major / Minor	Minor

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

Application No.	PA0027952
APS ID	613648
Authorization ID	1308052

Applicant and Facility Information

Applicant Name	HMS	Host Corp	Facility Name	Lawn Service Plaza		
Applicant Address	PO Bo	x 8	Facility Address	Pa Turnpike Route 76 West Mile Marker 258 8		
	Middle	etown, PA 17057-0008		Lawn, PA 17041		
Applicant Contact	Shaw	n Leslie	Facility Contact	Grace Marlowe		
Applicant Phone	443-206-6899		Facility Phone	610-389-4198		
Client ID	25088	39	Site ID	3030		
Ch 94 Load Status	Not O	verloaded	Municipality	South Londonderry Township		
Connection Status	No Lir	nitations	County	Lebanon		
Date Application Rece	ived	March 2, 2020	EPA Waived?	Yes		
Date Application Acce	pted	March 16, 2020	If No, Reason			
Purpose of Application	l	Permit renewal for discharge	of treated sewage			

Summary of Review

1.0 General discussion

This factsheet supports the renewal of an existing NPDES permit for a discharge of treated domestic sewage from the Pa. Turnpike Lawn Service Plaza. A design flow of 0.05 MGD has been permitted to be discharged to an unnamed tributary of Conewago Creek since 1952. The plant was replaced in 1984 (WQM Permit No. 3884404) with an extended aeration package plant with equalization, tertiary sand filters, and chlorine disinfection. This facility has also rust badly and was replaced with another metal extended aeration plant in 2010 under WQM Part II Permit No. 3808403. The STP discharges to a dry stream. A field investigation was conducted in 1983 and determined that the stream supported some minnows at a culvert where the stream crosses the road (T38066) about 2,200 feet downstream of the discharge. The stream then travels another 1,700 feet to another tributary. The stream in this area is completely wooded with very little slope (<0.008 ft/ft). This road culvert has been accepted as the point of first use since the 1984 NPDES. Tertiary Dry Stream limits were issued in the 1984 NPDES and also have been continued since then. The current extended aeration plant with filters were designed to meet the existing tertiary limits and has had consistent compliance. The existing NPDES permit was issued on August 18, 2015 with an effective date of September 1, 2015 and expiration date of August 31, 2020. The applicant submitted permit renewal application to the Department and is currently operating under the terms and conditions in the existing permit pending Department action on the renewal application. A topographic map showing the discharge location is presented in attachment A.

1.1 Sludge use and disposal description and location(s):

Digested sludge is hauled out periodically by a license hauler.

Approve	Deny	Signatures	Date
х		J. Pascal Kwedza J. Pascal Kwedza, P.E. / Environmental Engineer	October 1, 2021
х		Maria D. Bebenek, for Daniel W. Martin, P.E. / Environmental Engineer Manager	October 7, 2021
х		Maria D. Bebenek Maria D. Bebenek, P.E./ Program Manager	October 7, 2021

Summary of Review

1.2 Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

1.3 Changes to the existing permit

- Monitoring frequency for Total Nitrogen, TKN and nitrate-Nitrite have been reduced to monthly.
- Annual monitoring of E- Coli has been added.

1.4 Existing limits and monitoring requirements

			Effluent I	imitations			Monitoring Requiremen			
Discharge	Mass Units	(lbs/day)		Concer	ntrations (mg/l	_)	Minimum	Required		
Parameter	Monthly Average	Daily Maximum	Minimum	Monthly Average	Daily Maximum	Instantaneous Maximum	Measurement Frequency	Sample Type		
Flow (mgd)	Report	Report	XXX	XXX	XXX	XXX	Continuous	Measured		
pH (S.U.)	XXX	XXX	6.0	XXX	XXX	9.0	1/Day	Grab		
Dissolved Oxygen	ХХХ	XXX	5.0	XXX	XXX	XXX	1/Day	Grab		
TRC	XXX	XXX	XXX	0.5	XXX	1.6	1/Day	Grab		
TSS	XXX	XXX	XXX	10	XXX	20	2/month	8-hr comp		
CBOD ₅	XXX	XXX	XXX	10	XXX	20	2/month	8-hr comp		
Ammonia-Nitrogen May 1 - Oct 31	XXX	XXX	XXX	3	XXX	6.0	2/month	8-hr comp		
Ammonia-Nitrogen Nov 1 - Apr 30	XXX	XXX	XXX	9	XXX	18.0	2/month	8-hr comp		
Nitrate-Nitrite	xxx	xxx	xxx	Report	xxx	xxx	2/month	8-Hr Composite		
Total Nitrogen	xxx	xxx	xxx	Report	xxx	xxx	1/month	Calculation		
Total Phosphorus	XXX	XXX	XXX	2.0	XXX	4.0	2/month	8-hr comp		
Fecal Coliform (5/1 to 9/30) ⁽⁵⁾	XXX	XXX	XXX	200	XXX	XXX	2/month	Grab		
Fecal Coliform (10/1 to 4/30)	XXX	XXX	XXX	2,000	XXX	XXX	2/month	Grab		
TKN	XXX	xxx	xxx	Report	XXX	xxx		8-Hr Composite		
Tetel Dheenhen	Demont				~~~~	~~~~	2/month	Octobel		
i otal Phosphorus	Report Monthly Total	XXX	XXX	XXX	XXX		2/month	Calculate		
Total Phosphorus	304 Annual Total	XXX	XXX	XXX	XXX	XXX	1/year	Calculate		

Outfall No. 001	Design Flow (MGD)	
Outfall No. 001	Design Flow (MGD)	
$10^{\circ} 12^{\circ} 210^{\circ}$	200.g (0.05
	Longitude	76° 34' 31.00"
Quad Name Elizabethtown	Quad Code	1733
Wastewater Description: Sewage		
Unnamed Tributary of Conewago		
Receiving Waters Creek	Stream Code	09282
NHD Com ID56403189	RMI	0.7
Drainage Area 0.22	Yield (cfs/mi ²)	USGS Gage Station
Q ₇₋₁₀ Flow (cfs) 0.0293	Q ₇₋₁₀ Basis	
Elevation (ft)	Slope (ft/ft)	
Watershed No. 7-G	Chapter 93 Class.	TSF
Existing Use	- Existing Use Qualifier	
Exceptions to Use	Exceptions to Criteria	
Assessment Status Attaining Use(s)	_	
Cause(s) of Impairment		
Source(s) of Impairment		
TMDL Status Final, 04/09/2001	Name Conewago	Creek Watershed
Background/Ambient Data	Data Source	
pH (SU)		
Temperature (°F)		
Hardness (mg/L)		
Other:		
Nearest Downstream Public Water Supply Intake	Columbia Water Company	
PWS Waters Susquehanna River	Flow at Intake (cfs)	
PWS RMI	Distance from Outfall (mi)	31

Changes Since Last Permit Issuance: None

1.5.1 Public Water Supply Intake

The nearest water supply intake is 31 miles downstream at Columbia Borough on the Susquehanna River by the Columbia Water Company. No impact is expected from this discharge.

2.0 Treatment Facility Summary Treatment Facility Name: Sunoco Inc. - Lawn Service Plaza Turnpike WQM Permit No. **Issuance Date** 3808403 3/25/2009 Degree of Avg Annual Waste Type Treatment Process Type Flow (MGD) Disinfection Extended Aeration With Chlorine With De-Sewage Tertiary Solids Removal chlorination 0.05 **Hydraulic Capacity Organic Capacity** Biosolids (MGD) (lbs/day) Load Status **Biosolids Treatment** Use/Disposal 0.05 100 Not Overloaded Aerobic Digestion Other WWTP

Changes Since Last Permit Issuance: None

2.1 Treatment System

The treatment system consists of comminutor, influent screening unit, equalization tank (25,000 gallons) followed by a dual train of extended aeration, clarifier and aerated sludge tank, a two-cell 35 ft² tertiary sand filter and chlorine disinfection with de-chlorination and post aeration.

3.0 Compliance History

3.1 DMR Data for Outfall 001 (from August 1, 2020 to July 31, 2021)

Parameter	JUL-21	JUN-21	MAY-21	APR-21	MAR-21	FEB-21	JAN-21	DEC-20	NOV-20	OCT-20	SEP-20	AUG-20
Flow (MGD)												
Average Monthly	0.0097	0.008	0.0079	0.006	0.0058	0.0051	0.0052	0.0046	0.0046	0.0048	0.0049	0.0072
Flow (MGD)												
Daily Maximum	0.0187	0.0196	0.0143	0.01	0.0171	0.009	0.011	0.0095	0.0074	0.0099	0.0098	0.0111
pH (S.U.)												
Minimum	6.51	7.05	7.12	7.13	6.9	7.2	6.8	7.3	7.4	7.0	6.9	7.2
pH (S.U.)												
Instantaneous												
Maximum	8.18	8.23	8.31	8.08	7.9	8.9	8.0	8.2	8.3	8.1	8.2	8.2
DO (mg/L)												
Minimum	7.06	7.42	8.16	9.46	8.1	9.0	7.6	9.6	8.6	8.1	7.1	6.6
TRC (mg/L)												
Average Monthly	0.1	< 0.1	< 0.1	0.1	0.1	0.2	0.1	< 0.1	< 0.2	< 0.1	0.2	0.1
TRC (mg/L)												
Instantaneous												
Maximum	0.19	0.4	0.6	0.24	0.3	0.8	0.8	1.2	0.8	1.1	1.1	0.6
CBOD5 (mg/L)												
Average Monthly	< 2	< 2	< 2	< 2	5	5	2	3	5	< 2	< 2	< 2
TSS (mg/L)												
Average Monthly	< 4	< 7	< 4	< 4	7	6	4	< 5	< 4	6	< 4	< 4
Fecal Coliform												
(CFU/100 ml)		_	-				_					
Average Monthly	135	< 7	< 8	14	24	< 19	< 2	299	< 14	50	18	153
Fecal Coliform												
(CFU/100 ml)												
Instantaneous	150	10		10-			_	1000	100		10	
Maximum	152	48	/2	105	31	358	5	1300	196	60	48	2600
Nitrate-Nitrite (mg/L)	100.0	1010	1 10 0	. 110.0	. 70.0	. 00 5	. 04. 0	100.0	00.75	101 5		10.0
Average Monthly	< 129.6	< 134.2	< 140.6	< 116.8	< 79.3	< 88.5	< 81.2	< 109.3	86.75	< 124.5	< 55.3	< 46.9
Nitrate-INItrite (IDS)	. 204	. 204	. 510	. 0.47	105	. 111	. 0	. 101	01	. 104	. 5.4	. 02
	< 204	< 304	< 519	< 247	< 165	< 114	< 3	< 124	91	< 134	< 54	< 93
I otal Nitrogen (mg/L)	. 100 11	. 104.0	. 1 1 1 1	. 110.0	. 01 15	. 00 7	. 00 4	. 110 11	02.0	. 105.04	. 56.00	. 47 40
	< 130.41	< 134.8	< 141.1	< 116.8	< 81.15	< 89.7	< 82.4	< 110.41	93.9	< 125.84	< 56.93	< 47.42
Total Nitrogen (IDS)	< 206	< 206	< 520	- 249	- 160	- 116	- 102	- 126	100	- 126	- 56	- 01
	< 200	< 300	< 520	< 240	< 109		< 103	< 120	100	< 130	< 00	< 94
Ammonia (mg/L)	101	101	101	101	101	10.1	.01	101	A E	101	101	101
Average wonthly	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.4	< 0.1	< 0.1	4.5	< 0.1	< 0.1	< 0.1

Ammonia (lbs)												
Total Monthly	< 0.2	< 0.2	< 0.3	< 0.2	< 0.2	< 0.5	< 0.1	< 0.1	7	< 0.1	< 0.1	< 0.2
TKN (mg/L)												
Average Monthly	0.86	< 0.65	0.75	< 0.5	1.9	1.25	1.2	1.11	7.15	1.34	1.63	< 0.57
TKN (lbs)												
Total Monthly	2	< 2	2	< 1	4	2	2	1	10	1	2	< 1
Total Phosphorus												
(mg/L)												
Average Monthly	1.8	1.1	1.3	0.7	1.3	0.7	0.8	1.1	1.7	1.5	0.9	1.2
Total Phosphorus (lbs)												
Total Monthly	3	3	4	1	3	0.9	1	1	2	2	0.9	2
Total Phosphorus (lbs)												
Total Annual											14	

3.2 Summary of DMRs:

Discharge Monitoring Reports (DMRs) review for the facility for the last 12 months of operation presented on the table above indicate permit limits have been met consistently. No effluent violation occurred during the past 12 months

3.3 Summary of Inspections:

The facility has been inspected a couple of times during the past permit cycle. Inspection reports review for the facility during the period indicate permit limits have been met most of the time. The reports indicate lack access to the facility and records. The permittee should endeavor to address these issues. It is recommended to improve operation and maintenance of the facility.

	4.0 Develo	opment of Effluent Limitations		
Outfall No.	001	Design Flow (MGD)	.05	
Latitude	40° 12' 34.00"	Longitude	-76º 34' 31.00"	
Wastewater D	escription: Sewage Effluent			_

4.1 Basis for Effluent Limitations

In general, the Clean Water Act(AWA) requires that the effluent limits for a particular pollutant be the more stringent of either technology-based limits or water quality-based limits. Technology-based limits are set according to the level of treatment that is achievable using available technology. A water quality-based effluent limit is designed to ensure that the water quality standards applicable to a waterbody are being met and may be more stringent than technology-based effluent limits.

4.2 Technology-Based Limitations

4.2.1 CBOD₅/TSS/NH_{3:}

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable: The Department's Guidance for Evaluating Wastewater Discharges to Drainage Swales and Ditches (ID #391-2000-014) has been used to establish the current and past permit limits that requires tertiary treatment with the use of sand filters.(CBOD₅/TSS =10mg/l, Summer NH₃-N =3mg/l) This Guidance was revised on April 12, 2008 applicable to new and expanding discharges. The definition of tertiary treatment has been revised in the new guideline to include 5 mg/l TN and 0.5 mg/l TP. Since this facility is not new and is not expanding, the revised dry stream limits are not applicable at this time.

4.3 Water Quality-Based Limitations

4.3.1 Receiving Stream

The receiving stream is an unnamed tributary of Conewago Creek which is dry at the point of discharge. According to 25 PA § 93.90, this stream is protected for Trout Stocking (TSF) and Migratory Fishes (MF). It is located in Drainage List O and State Watershed 7-G It has been assigned stream code 09282. According to the Department's *Integrated Water Quality Monitoring and Assessment Report*, this segment of the stream is attaining its designated uses. A TMDL was developed for Conewago Watershed for Total phosphorus and was approved by EPA in 2001. See further discussion under Total Phosphorus section for waste load allocation to this discharge.

4.3.2 Stream flows

Streamflows flows were determined by correlating with the yield of USGS gage station No. 01571500 on Susquehanna River at Harrisburg. The Q₇₋₁₀ and drainage area at the gage is 3200ft³/s and 24100mi² respectively. The resulting yields are as follows:

- Q₇₋₁₀ = (3200ft³/s)/24100 mi² = 0.133 ft³/s/ mi²
- Q₃₀₋₁₀ / Q₇₋₁₀ = 1.15
- $Q_{1-10} / Q_{7-10} = 0.94$

The drainage area taken from the previous permit= 0.22mi²

The Q_{7-10} at discharge = 0.22 mi² x 0.133 ft³/s/mi² = 0.0293 ft³/s.

4.3.3 NH₃N Calculations

 $NH_{3}N$ calculations will be based on the Department's Implementation Guidance of Section 93.7 Ammonia Criteria, dated 11/4/97 (ID No. 391-2000-013). The following data is necessary to determine the instream $NH_{3}N$ criteria used in the attached computer model of the stream:

STP pH = 7.2 (DMR Median Jul – Sept.)

STP Temp	=	25°C (Default)
Stream pH	=	8.2 (Taken from WQN station at Harrisburg)
Stream Temp	=	23.5°C (Taken from WQN station at Harrisburg)
Background NH ₃ N	=	0 mg/l (Assumed)

4.3.4 CBOD₅

For water quality analysis at the POFU, WQM7.0 which is a steady state model that simplifies many natural processes into a reach-by-reach simulation was used. The attached result of the WQM 7.0 stream model (attachment B) indicates 25mg/l CBOD₅ is adequate to protect the water quality of the stream. The recommended limit is less stringent than the existing limit of 10mg/l based on dry stream guidance, therefore the existing limit will remain in the permit. Past DMRs and inspection reports show the STP can meet the limitation.

<u>4.3.5 NH₃-N</u>

The attached results of the WQM 7.0 stream model also indicates that a summer limitation of $2mg/l NH_3$ -N as a monthly average is necessary to protect the aquatic life from toxicity effects at the POFU. This is more stringent than the existing limit of 3mg/l established at the discharge point however, the 2,000 feet of dry stream will reduce the point of discharge limit of 3 mg/l to 2 mg/l or less at the POFU. Therefore, existing limit will remain

4.3.6 Dissolved Oxygen

The existing permit contains a limit of 6 mg/l for Dissolved Oxygen (DO) based on the TSF designation of the stream. DEP's Technical Guidance for the Development and Specification of Effluent Limitations (362-0400-001, 10/97) suggests that either the adopted minimum stream D.O. criteria for the receiving stream or the effluent level determined through water quality modeling be used for the limit. Therefore, the existing minimum D.O. of 6.0 mg/l, limit will be continued in the renewed permit with a daily monitoring requirement per DEP guidance.

4.3.7 Phosphorus:

The limit of 2 mg/l established in the existing permit was for the protection of the Lower Susquehanna River basin has been superseded by the Chesapeake Bay Strategy but will remain in the permit due to anti-backsliding. This STP was designed to remove phosphorus and contains phosphorus limits in all previous permits. Past DMRs and inspection reports show that the STP is in compliance with effluent levels.

4.3.8 Total Maximum Daily Load (TMDL)

A TMDL for the Conewago Creek basin was completed and approved on March 2, 2001 and revised on November 15, 2006. The TMDL allocates a Phosphorus annual load of 304 lbs/yr (Subbasin A) based on the design flow of 0.05 MGD and a concentration of 2 mg/l. This allocation will be incorporated into the NPDES permit requirements.

4.3.9 Total Residual Chlorine

The attached TRC results utilize the equations and calculations as presented in the Department's May 1, 2003 Implementation Guidance for Total Residual Chlorine (TRC) (ID No. 391-2000-015) for developing chlorine limitations. The Guidance references Chapter 92a, Section 92a.48 (b) which establishes a standard BAT limit of 0.5 mg/l unless a facility-specific BAT has been developed. The attached results presented in attachment C indicates that a water quality limit of 0.054 mg/l would be needed to prevent toxicity concerns at POFU. Past DMRs document that the STP has been capable of achieving about 0.25mg/l on an average at discharge point. Given the volatilization that will occur in the 2,000-foot long dry stream channel, it can be concluded that the standard technology limit of 0.5 mg/l at discharge point should be adequate to protect the water quality at the POFU. This conclusion follows the recommendation of previous NPDES permits. The existing limit of 0.5 mg/l will be applied for another permit cycle. De-chlorination is being used (sodium bisulfite tablets) to keep TRC values low.

4.3.10 Toxics

The facility treats mainly domestic sewage, there are no parameters of concern associated with this discharge.

4.3.11 Chesapeake Bay Strategy

The Department formulated a strategy to comply with the EPA and Chesapeake Bay Foundation requirements by reducing point source loadings of Total Nitrogen (TN) and Total Phosphorus (TP). Sewage discharges have been prioritized based on their delivered TN and TP loadings to the Bay. The highest priority (Phases 1, 2, and 3) dischargers will receive annual loading caps based on their design flow on August 29, 2005 and concentrations of 6 mg/l TN and 0.8 mg/l TP. These limits may be achieved through a combination of treatment technology, credits, or offsets if approved by DEP. Phase 4 (0.2 - 0.4mgd) and Phase 5(below 0.2mdg) will be required to monitor and report TN and TP during permit renewal. Any facility in Phases 4 and 5 that undergoes expansion is subjected to cap load right away. This facility is 0.05mgd plant, classified as a phase 5, and has been monitoring Nitrate-Nitrite as N, Total Kjeldahl Nitrogen and Total Nitrogen and will continue to monitor them throughout next permit cycle. Total Phosphorus monitoring is not required since a Total phosphorus limitation in the permit. A reduced monitoring frequency of once per month is required for Total Nitrogen, Nitrate-Nitrite as N, and Total Kjeldahl Nitrogen to support a reduced monitoring frequency.

4.3.12 Fecal Coliform and E. coli

The existing Fecal Coliform limit is consistent with the technology limit recommended in 92a.47(a)(4) and (a)(5) and will remain in the permit. Annual monitoring of E,Coli is required in the permit following DEP recommendation of 1/year monitoring of E.coli at a minimum for this type of facility.

5.0 Other Requirements

5.1 Anti-backsliding

Not applicable to this permit

5.2 Stormwater:

No storm water outfall is associated with this facility

5.3 Special Permit Conditions

The permit will contain the following special conditions:

Stormwater Prohibition, Approval Contingencies, Management of collected screenings, slurries, sludges and other solids, dry stream discharge condition and Chlorine minimization

5.4 Antidegradation (93.4):

The effluent limits for this discharge have been developed to ensure that existing instream water uses and the level of water quality necessary to protect the existing uses are maintained and protected. No High-Quality Waters are impacted by this discharge. No Exceptional Value Waters are impacted by this discharge.

5.5 Class A Wild Trout Fisheries:

No Class A Wild Trout Fisheries are impacted by this discharge.

5.6 303d listed stream

The discharge is not located on a 303d listed stream segment. However, the main stem of the Conewago Creek downstream was listed as impaired due to excessive nutrient and sediment loads from agriculture. A TMDL was approved on March 2, 2001 and revised November 15, 2006. The TMDL allocated 304 lbs/yr to this facility based on a design flow of 0.05 MGD and concentration of 2 mg/l. The facility is meeting the TMDL limitations consistently. See DMR summary section for details.

5.7 Basis for Effluent and Surface Water Monitoring

Section 308 of the CWA and federal regulation 40 CFR 122.44(i) require monitoring in permits to determine compliance with effluent limitations. Monitoring may also be required to gather effluent and surface water data to determine if additional effluent limitations are required and/or to monitor effluent impacts on receiving water quality. The permittee is responsible for conducting the monitoring and for reporting results on Discharge Monitoring Reports (DMRs).

5.8 Effluent Monitoring Frequency

Monitoring frequencies are based on the nature and effect of the pollutant, as well as a determination of the minimum sampling necessary to adequately monitor the facility's performance. Permittees have the option of taking more frequent samples than are required under the permit. These samples can be used for averaging if they are conducted using EPA-approved test methods (generally found in 40 CFR 136) and if the Method Detection Limits are less than the effluent limits. The sampling location must be after the last treatment unit and prior to discharge to the receiving water. If no discharge occurs during the reporting period, "no discharge" shall be reported on the DMR.

6.0 Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

		Monitoring Re	quirements					
Peremeter	Mass Units	; (lbs/day) ⁽¹⁾		Concentrat		Minimum ⁽²⁾	Required	
Farameter	Average	Average		Average		Instant.	Measurement	Sample
	Monthly	Weekly	Minimum	Monthly	Maximum	Maximum	Frequency	Туре
		Report						
Flow (MGD)	Report	Daily Max	XXX	XXX	XXX	XXX	Continuous	Measured
			6.0					
pH (S.U.)	XXX	XXX	Inst Min	XXX	XXX	9.0	1/day	Grab
			5.0					
DO	XXX	XXX	Daily Min	XXX	XXX	XXX	1/day	Grab
TRO	VVV	~~~	~~~	0.5	~~~	1.6	1/dov	Croh
IRC	~~~	~~~	~~~	0.5	~~~	1.0	1/day	
CBOD5	YYY	XXX		10	XXX	20	2/month	0-⊓i Composite
СВОДЗ	~~~~			10		20	2/1101101	8-Hr
TSS	XXX	XXX	XXX	10	XXX	20	2/month	Composite
Fecal Coliform (No./100 ml)								
Oct 1 - Apr 30	XXX	XXX	XXX	2000	XXX	10000	2/month	Grab
Fecal Coliform (No./100 ml)								
May 1 - Sep 30	XXX	XXX	XXX	200	XXX	1000	2/month	Grab
								8-Hr
Nitrate-Nitrite	XXX	XXX	XXX	Report	XXX	XXX	1/month	Composite
	VVV	XXXX	N/V/V	XXXX	XXXX	Dement	4 4	Quel
	***	***	***	***	***	Report	1/year	Grab
Total Nitrogen	XXX	xxx	xxx	Report	xxx	xxx	1/month	Calculation
Ammonia								8-Hr
Nov 1 - Apr 30	XXX	XXX	XXX	9.0	XXX	18	2/month	Composite
Ammonia								8-Hr
May 1 - Oct 31	XXX	XXX	XXX	3.0	XXX	6	2/month	Composite

Outfall 001, Continued (from Permit Effective Date through Permit Expiration Date)

		Monitoring Requirements						
Baramotor	Mass Units	(lbs/day) ⁽¹⁾		Concentrat	Minimum ⁽²⁾	Required		
Falameter	Average Monthly	Average	Minimum	Average Monthly	Movimum	Instant.	Measurement	Sample
	wontiny	weekiy	winninum	wontiny	Maximum	Waximum	Frequency	Туре
								8-Hr
TKN	XXX	XXX	XXX	Report	XXX	XXX	1/month	Composite
								8-Hr
Total Phosphorus	XXX	XXX	XXX	2.0	XXX	4	2/month	Composite
		304						
Total Phosphorus (lbs)	XXX	Total Annual	XXX	XXX	XXX	XXX	1/year	Calculation
	Report							
Total Phosphorus (lbs)	Total Mo	XXX	XXX	XXX	XXX	XXX	1/month	Calculation

Compliance Sampling Location: Outfall 001

	7.0 Tools and References Used to Develop Permit
	WQM for Windows Model (see Attachment B)
<u> </u>	Toxics Management Spreadsheet (see Attachment)
	TRC Model Spreadsheet (see Attachment C)
	Temperature Model Spreadsheet (see Attachment)
\square	Water Quality Toxics Management Strategy, 361-0100-003, 4/06.
\square	Technical Guidance for the Development and Specification of Effluent Limitations, 362-0400-001, 10/97.
	Policy for Permitting Surface Water Diversions, 362-2000-003, 3/98.
\square	Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 362-2000-008, 11/96.
	Technology-Based Control Requirements for Water Treatment Plant Wastes, 362-2183-003, 10/97.
	Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 362-2183-004, 12/97.
	Pennsylvania CSO Policy, 385-2000-011, 9/08.
	Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03.
	Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 391-2000-002, 4/97.
\square	Determining Water Quality-Based Effluent Limits, 391-2000-003, 12/97.
	Implementation Guidance Design Conditions, 391-2000-006, 9/97.
	Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen, Version 1.0, 391-2000-007, 6/2004.
	Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 391-2000-008, 10/1997.
	Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments, 391-2000-010, 3/99.
	Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 391-2000-011, 5/2004.
\square	Implementation Guidance for Section 93.7 Ammonia Criteria, 391-2000-013, 11/97.
\square	Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 391-2000-014, 4/2008.
\square	Implementation Guidance Total Residual Chlorine (TRC) Regulation, 391-2000-015, 11/1994.
	Implementation Guidance for Temperature Criteria, 391-2000-017, 4/09.
	Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 391-2000-018, 10/97.
	Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 391-2000-019, 10/97.
	Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 391-2000-021, 3/99.
	Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 391-2000-022, 3/1999.
	Design Stream Flows, 391-2000-023, 9/98.
	Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 391-2000-024, 10/98.
	Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 391-3200-013, 6/97.
\square	Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07.
\square	SOP: Establishing effluent limitations for individual NPDES sewage permit
	Other:

8. Attachments

A. Topographical Map

Г

B. WQM Model Results

	<u>SWP Basin</u> <u>Str</u>	szaz	<u>Stream Name</u> Trib 09282 of Conewago Creek						
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)		
0.320	HMS Host	PA002795	0.050	CBOD5	25				
				NH3-N	2.05	4.1			
				Dissolved Oxygen			5		

	SWP Basin	Strea Cod	m le	Str	eam Name		RMI	Eleva (fi	tion)	Drainage Area (sq mi)	s Slo (ft	npe P With /ft) (r	WS hdrawal ngd)	Apply FC
	07G	92	282 Trib 09	9282 of C	onewago Cr	eek	0.32	0 4	40.00	0.	22 0.0	0000	0.00	
Design	LFY	Trib Flow	Stream Flow	Rch Trav	Rch Velocity	ream Data WD Ratio	Rch Width	Rch Depth	Temp	<u>Fributary</u> p p	н	<u>Stree</u> Temp	am pH	
Q7-10 Q1-10 Q30-10	(cfsm) 0.133	(cfs) 0.00 0.00 0.00	(cfs) 0.00 0.00 0.00	(days) 0.000 0.000 0.000	(fps) 0.000 0.000 0.000	0.0	(ft) 0.00	(ft) 0.00	(°C) 20	.00	7.00	(°C) 0.00	0.00	
			Name	Pe	DI rmit Number	scharge D Existing Disc r Flow (mgd)	Permitte Disc Flow (mgd)	d Design Disc Flow (mgd)	Rese Fac	erve T tor	Disc 'emp (°C)	Disc pH		
		HMS	Host	PA	002795 Pa	0.0500 Irameter D	0.0500 Nata	0.050	0 0	.000	25.00	7.20	-	
		Parameter Nam e				Die Co (mg	ic Ti inc Ci a/L) (m	rib St onc (g/L) (r	ream Conc ng/L)	Fate Coef (1/days)				
	-		CBOD5	0		2	5.00	2.00	0.00	1.50)			
			NH3-N	Oxygen		2	5.00	0.00	0.00	0.70	,			
						Manajara d	1							an 1 of 2

			de	Stre	eam Name		P.MI	Ele	(ft)	Area (sq mi)	(ft/ft)	Withdra (mgd	wal)	FC
	07G	9	282 Trib 09	282 of C	onewago C	reek	0.0	10	435.00	0.24	0.00000		0.00	¥
					S	tream Da	ta			-				
Design	LFY	Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	<u>Tributary</u> p pH	Ten	np	рH	
Cond.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)	(°C	:)		
27-10 21-10 230-10	0.133	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000 0.000 0.000	0.0	0.00	0.0	0 20	0.00 7.	00	0.00	0.00	
					D	lacharge	Data							
	Name Permit Number				Existing Disc er Flow (mgd)	Permitt Disc Flow (mgd)	ed Desi Dis Flo (mg	gn c Res w Fa d)	Dis erve Ter ctor (%	sc Di mp p x)	isc oH			
					_	0.000	0 0.000	0.0 0.0	000 (0.000	0.00	7.00		
					P	arameter D	Data isc 1	Frib	Stream	Fate				
			I	Paramete	r Nam e	C (n	tanc C ng/L) (n	conc ng/L)	Canc (mg/L)	Coef (1/days)				
	-		CBOD5				25.00	2.00	0.00	1.50				
			Dissolved	Oxygen			5.00	8.24	0.00	0.00				
			NH3-N				25.00	0.00	0.00	0.70				

Friday, October 1, 2021

Version 1.1

Page 2 of 2

		_	Name	tream I	5		Code	Stream	SWP Basin	
		Creek	newago (of Co	Trib 09282		2	92	07 G	
				na Basalina Multinia Multinia				ations	Acute Alloo	NH3-N
n	Reduction	Reach	tiple /LA g/L)	Mul W (m	Multiple Criterion (mg/L)	WLA (mg/L)	aseline Sriterion (mg/L)	Name	Discharge	RMI
_	0	0	14.65		10.81	14.65	10.81		0 HMS Host	0.32
	Dercent	Critical	olo (Marks	Multiple	ealian	5	ocation	Chronic Al	NH3-N (
_	Reduction	Reach	A /L)	WL (mg	(mg/L)	WLA mg/L)	terion ng/L)	lame C	Discharge N	RMI
_	0	0	2.05		1.43	2.05	1.43		0 HMS Host	0.32
		d Owner	Disector		NH2 N	005	ons	Allocat	ed Oxygen	Dissolve
Percent Reduction	Critical Reach	Multiple (mg/L)	Baseline (mg/L)	ultiple 1g/L)	aseline M (mg/L) (n	Multiple (mg/L)	Baseline (mg/L)	ge Name	Dischar	RMI
0	0	5	5	2.05	2.05	25	25		2 HMS Host	0.3

RMI Total Discharge Flow (mgd) Anslysis Temperature (°C) Analysis pil 0.320 3.464 Beach Degah (fi) Beach Wild (fi) Beach Degah (fi) Beach Wild (fi) Beach Wild (fi) 0.050 18.69 1.448 Reach CBOOS (mg1) Reach K: (1/days) Reach NI/3 N (mg1) 0.925 Reach Ni/4 N (mg1) 0.925 14.46 Reach Trace (find (fi	<u>\$WPBasin</u> 07G	tream Code 9282		Trib 092	<u>Stream Name</u> 282 of Conewago Cree	ĸ
(days) (mgL) (mgL) (mgL) 0.024 17.95 1.45 6.18 0.047 17.24 1.42 6.37 0.071 18.58 1.39 6.50 0.094 15.91 1.38 6.61 0.118 15.28 1.33 6.70 0.141 14.68 1.30 6.78 0.165 14.10 1.27 6.85 0.189 13.54 1.25 6.92 0.212 13.01 1.22 6.98 0.236 12.49 1.19 7.04	RMI 0.320 Reach Width (ft) 3.464 Reach CBOD5 (mg/L) 18.69 Reach DO (mg/L) 5.890 Reach Travel Time (days) 0.236	Total Discharge 0.05 <u>Reach De</u> 0.38 <u>Reach Kc</u> 1.44 <u>Reach Kr (</u> 25.7)	Elow (mgd 0 pth (ft) 3 <u>1/days</u>) 6 <u>1/days</u>) 8 Subreac ? CBOD5	I) <u>Anai</u> Results NH3-N	lysis Temperature (°C) 23.628 <u>Reach WDRatio</u> 9.041 each NH3-N (mg/L) 1.48 <u>Kr Equation</u> Owens D.O.	Analysis pH 7.135 Reach Velocity (fps) 0.080 Reach Kn (1/days) 0.925 Reach DO Goal (mg/L) 5
		(days) 0.024 0.047 0.071 0.094 0.118 0.141 0.165 0.189 0.212 0.236	(mg/L) 17.95 17.24 16.56 15.91 15.28 14.68 14.10 13.54 13.01 12.49	(mg/L) 1.45 1.42 1.39 1.36 1.33 1.30 1.27 1.25 1.22 1.19	(mg/L) 6.18 6.37 6.50 6.61 6.70 6.78 6.85 6.92 6.98 7.04	

3800-PM-BPNPSM0011 Rev. 10/2014 Permit

Permit No. PA0027952

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	V
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.94	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.15	Temperature Adjust Kr	M
D.O. Saturation	90.00%	Use Balanced Technology	V
D.O. Goal	5		

Friday, October 1, 2021

Version 1.1

Page 1 of 1

	SW	P Basin	<u>strea</u>	m Code				<u>stream</u>	Name			
		07G	9	282			Trib 0928	2 of Co	newago (Creek		
RMI	Stream Flow	PWS With	Net Stream Flow	Disc Analysis Flow	Reach Slope	Depth	Width	W/D Ratio	Velocity	Reach Trav Time	Analysis Temp	Analysis pH
	(cfs)	(cfs)	(cfs)	(cfs)	(ft/ft)	(ft)	(ft)		(fps)	(days)	(°C)	
Q7-1() Flow											
0.320	0.03	0.00	0.03	.0773	0.00305	.383	3.46	9.04	0.08	0.236	23.63	7.14
Q1-1() Flow											
0.320	0.03	0.00	0.03	.0773	0.00305	NA	NA	NA	0.08	0.238	23.69	7.14

Friday, October 1, 2021

Version 1.1

Page 1 of 1

C. TRC Calculations Results

1A	В	С	D	Е	F	G
2	TRC EVALL	JATION		Enter I	Facility Nam	e in E3
3	Input appropri	ate values i	n B4:B8 and E4:E7			
4	0.0242	= Q stream	(cfs)	0.5	= CV Daily	
5	0.05	= Q discha	rge (MGD)	0.5	= CV Hourly	
6	30	= no. samp	les	1	= AFC_Partia	l Mix Factor
7	0.3	= Chlorine	Demand of Stream	1	= CFC_Partia	I Mix Factor
8	0	= Chlorine	Demand of Dischar	15	= AFC_Criter	ia Compliance Time (min)
9	0.5	= BAT/BPJ	Value	720	= CFC_Criter	ia Compliance Time (min)
ш	Course		of Safety (FUS)			OFO Oplawlations
# #				0 110	A 2 2 iii	$WI \Lambda of c = 0.108$
# #		1.3.2.III 5 1a	I TAMULT afc =	0.119	5.10	VLA CIC = 0.100
#	PENTOXSD TRG	LTA afc=	0.044	5.1d	LTA cfc = 0.063	
#						
#	Source		Effluent	Limit Calo	culations	
#	PENTOXSD TRG	5.1f	AMI	L MULT =	1.231	
#	PENTOXSD TRG	5.1g	AVG MON LIMI	T (mg/l) =	0.054	AFC
#			INST MAX LIMI	T (mg/l) =	0.178	
	14/I A ofo	(010/0/ 4*		o*Oo* 0:	10/04*~(**^5	(C +o))
	VVLA alc	$(\Delta + Xd + (\Delta +$	FC_Yc*Qs*Xs/Qd)]*	(1-FOS/	19/000 8(-K AF 100)	0_10//
	LTAMULT afc	EXP((0.5*LN	(cvh^2+1))-2.326*LN((r-1 00) (cvh^2+1)	^0.5)	
	LTA_afc	wla_afc*LTA	MULT_afc	,	,	
	WLA_cfc	(.011/e(-k*	CFC_tc) + [(CFC_Yc	*Qs*.01	1/Qd*e(-k*CF	C_tc))
		+ Xd + (C	FC_Yc*Qs*Xs/Qd)]*	*(1-FOS/	100)	
	LTAMULT_cfc	EXP((0.5*LN	(cvd ² /no_samples+1))-2.326*	LN(cvd^2/no_sa	mples+1)^0.5)
	LTA_cfc	wla_cfc*LTA	MULT_cfc			
	AML MULT	EXP(2.326*1	N((cvd^2/no_samples	s+1)^0.5)-	0.5*LN(cvd^2/n	o samples+1))
	AVG MON LIMIT	MIN(BAT BF	PJ,MIN(LTA afc,LTA	cfc)*AML	MULT)	
	INST MAX LIMIT	1.5*((av_m	on_limit/AML_MULT)/LTAML	, ILT_afc)	