

Southcentral Regional Office CLEAN WATER PROGRAM

Application Type

Facility Type

Major / Minor

Minor

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

 Application No.
 PA0028347

 APS ID
 11276

 Authorization ID
 1380686

Applicant Name		nsburg Borough Municipal ority Blair County	Facility Name	Martinsburg STP
Applicant Address	133 E	Alleghney Street	Facility Address	393 S Nicodemus Street
	Martin	sburg, PA 16662-1142	<u></u>	Martinsburg, PA 16662
Applicant Contact	Richa	rd Brantner	Facility Contact	Richard Brantner
Applicant Phone	(814)	793-3213	Facility Phone	(814) 793-3213
Client ID	34222		Site ID	249451
Ch 94 Load Status	Not O	verloaded	Municipality	Martinsburg Borough
Connection Status	No Lir	nitations	County	Blair
Date Application Rece	eived	December 29, 2021	EPA Waived?	No
Date Application Acce	pted	January 18, 2022	If No, Reason	Significant CB Discharge

Approve	Deny	Signatures	Date
х		Nicholas Hong, P.E. / Environmental Engineer Nick Hong (via electronic signature)	May 23, 2022
х		Daniel W. Martin, P.E. / Environmental Engineer Manager Maria D. Bebenek for	May 31, 2022
х		Maria D. Bebenek, P.E. / Environmental Program Manager Maria D. Bebenek	May 31, 2022

Summary of Review

The application submitted by the applicant requests a NPDES renewal permit for the Martinsburg WWTP located at 393 S Nicodemus Street, Martinsburg, PA 16662 in Blair County, municipality of Martinsburg. The existing permit became effective on July 1, 2017 and expires(d) on June 30, 2022. The application for renewal was received by DEP Southcentral Regional Office (SCRO) on December 29, 2021.

The purpose of this Fact Sheet is to present the basis of information used for establishing the proposed NPDES permit effluent limitations. The Fact Sheet includes a description of the facility, a description of the facility's receiving waters, a description of the facility's receiving waters attainment/non-attainment assessment status, and a description of any changes to the proposed monitoring/sampling frequency. Section 6 provides the justification for the proposed NPDES effluent limits derived from technology based effluent limits (TBEL), water quality based effluent limits (WQBEL), total maximum daily loading (TMDL), antidegradation, anti-backsliding, and/or whole effluent toxicity (WET). A brief summary of the outlined descriptions has been included in the Summary of Review section.

The subject facility is a 0.7 MGD treatment facility. The applicant does not anticipate any proposed upgrades to the treatment facility in the next five years. The NPDES application has been processed as a Minor Sewage Facility (Level 2) due to the type of sewage and the design flow rate for the facility. The applicant disclosed the Act 14 requirement to Blair County Commissioners and North Woodbury Township Supervisors, and Martinsburg Borough and the notice was received by the parties on November 1, 2021. A planning approval letter was not necessary as the facility is neither new or expanding.

Utilizing the DEP's web-based Emap-PA information system, the receiving waters has been determined to be Plum Creek. The sequence of receiving streams that Plum Creek discharges into are Halter Creek, Frankstown Branch Juniata River, Juniata River and the Susquehanna River which eventually drains into the Chesapeake Bay. The subject site is subject to the Chesapeake Bay implementation requirements. The receiving water has protected water usage for warm water fishes (WWF) and migratory fishes (MF). No Class A Wild Trout fisheries are impacted by this discharge. The absence of high quality and/or exceptional value surface waters removes the need for an additional evaluation of anti-degradation requirements.

The Plum Creek is a Category 4a and 5 stream listed in the 2020 Integrated List of All Waters (formerly 303d Listed Streams). This stream is an impaired stream for aquatic life due to siltation and nutrients from agriculture. The receiving waters is subject to the Plum Creek Sediment total maximum daily load (TMDL) plan to improve water quality in the subject facility's watershed.

The existing permit and proposed permit differ as follows:

- Due to the EPA Triennial review, E. Coli shall be monitored.
- Based upon TRC site specific study, TRC limits have been reduced to 0.37 mg/l as an average monthly and 1.20 mg/l as an instantaneous maximum.
- Monitoring for total copper, total lead, and total zinc on a 2x/yr basis.
- Consistent with the Plum Creek Headwaters Subwatershed Sediment TMDL, this discharge will be subject to a TSS TMDL loading of 63,875 lbs/yr.

Sludge use and disposal description and location(s): Sewage Sludge/Biosolids disposed at Smith Farm in Martinsburg, Blair County for agricultural utilization

The proposed permit will expire five (5) years from the effective date.

Based on the review in this report, it is recommended that the permit be drafted. DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Summary of Review
Any additional information or public review of documents associated with the discharge or facility may be available at PA DEP Southcentral Regional Office (SCRO), 909 Elmerton Avenue, Harrisburg, PA 17110. To make an appointment for file review, contact the SCRO File Review Coordinator at 717.705.4700.

1.0 Applicant

1.1 General Information

This fact sheet summarizes PA Department of Environmental Protection's review for the NPDES renewal for the following subject facility.

Facility Name: Martinsburg WWTP

NPDES Permit # PA0028347

Physical Address: 393 S Nicodemus Street

Martinsburg, PA 16662

Mailing Address: 133 E Alleghney Street

Martinsburg, PA 16662

Contact: Richard Brantner

Manager

rbrantner@martinsburgpa.org

Consultant: Ned Mitrovich, PE

LSSE Civil Engineers and Surveyors

(412) 264-4400

1.2 Permit History

Permit submittal included the following information.

- NPDES Application
- Flow Diagrams
- Effluent Sample Data
- Chlorine Demand Study

2.0 Treatment Facility Summary

2.1.1 Site location

The physical address for the facility is 393 S Nicodemus Street, Martinsburg, PA 16662. A topographical and an aerial photograph of the facility are depicted as Figure 1 and Figure 2.

Figure 1: Topographical map of the subject facility

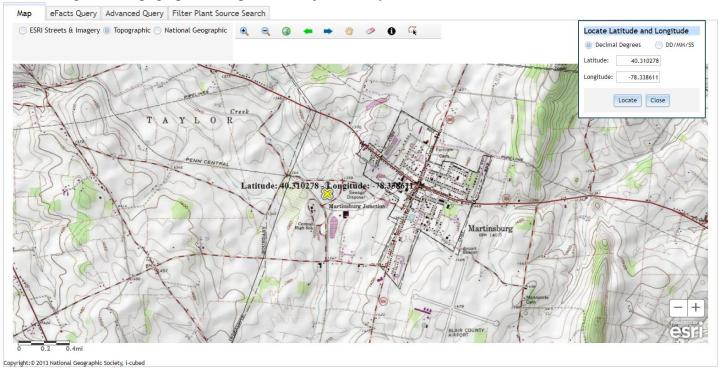
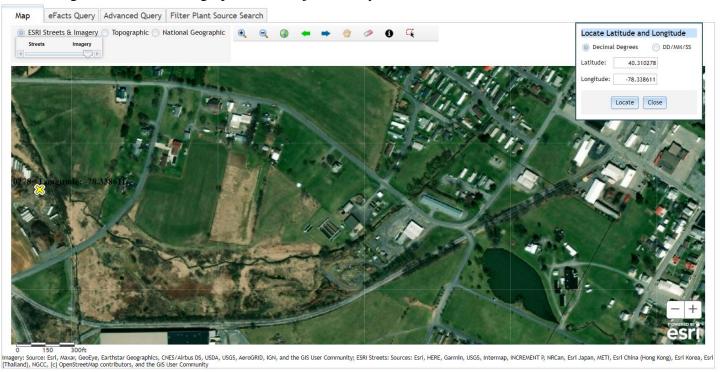



Figure 2: Aerial Photograph of the subject facility

2.1.2 Sources of Wastewater/Stormwater

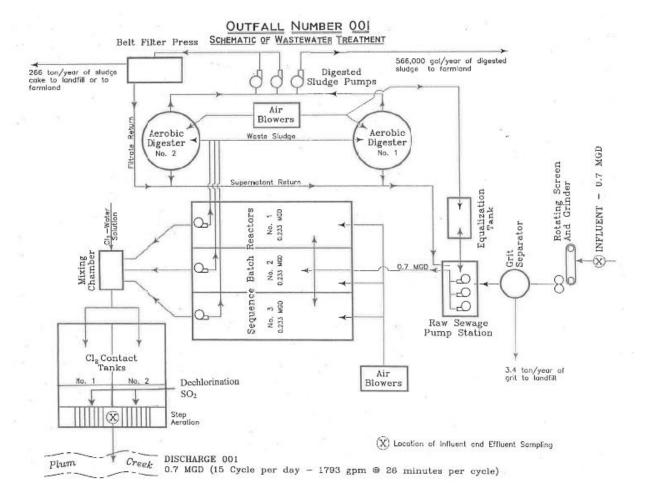
The WWTP receives wastewater contributions as summarized in the table.

Municipalities Served	Flow Contribution
Borough of Martinsburg	97%
North Woodbury Township	3%
Total	100%

The table summarizes the facility's industrial/commercial wastewater contributions. The facility does not have an EPA-approved pretreatment program.

Industrial/Commercial Wastewater Contributions						
Business Name Type of Business Average Wastewater Flow (MGD)						
Snowberger Meats	Slaughterhouse/Meat Production	0.001				
Cove Shoe Company	Shoe Manufacturing	0.006				
Roaring Spring Blank Book Company	paper Products Manufacturing	0.002				

The facility did not receive hauled in wastes in the last three years. The facility does not anticipate receiving hauled in wastes in the next five years.


2.2 Description of Wastewater Treatment Process

The subject facility is a 0.7 MGD average annual design flow facility. The hydraulic design flow for the facility is 0.9 MGD. The subject facility treats wastewater using an equalization tank, a SBR(s), and a chlorine contact chamber for disinfection prior to discharge through the outfall. For solids, treatment occurs in an aerobic digester(s). Final solids disposal is land application for farmland. The facility is being evaluated for flow, pH, dissolved oxygen, CBOD5, TSS, TRC, fecal coliform, nitrogen species, and phosphorus. The existing permits limits for the facility is summarized in Section 2.4.

The treatment process is summarized in the table.

	Treatment Facility Summary							
Treatment Facility Nar	ne: Martinsburg STP							
Waste Type	Degree of Treatment	Process Type	Disinfection	Avg Annual Flow (MGD)				
Sewage	Secondary With Ammonia Reduction	Extended Aeration	Gas Chlorine	0.7				
Hydraulic Capacity (MGD)	Organic Capacity (lbs/day)	Load Status	Biosolids Treatment	Biosolids Use/Disposal				
0.9	1800	Not Overloaded	Aerobic Digestion	Combination of methods				

A schematic of the process is shown in the figure.

2.3 Facility Outfall Information

The facility has the following outfall information for wastewater.

Outfall No.	001	Design Flow (MGD)	.7
Latitude	40° 18' 37.68"	Longitude	-78° 20' 18.26"
Wastewater [Description: Sewage Effluent		

2.3.1 Operational Considerations- Chemical Additives

Chemical additives are chemical products introduced into a waste stream that is used for cleaning, disinfecting, or maintenance and which may be detected in effluent discharged to waters of the Commonwealth. Chemicals excluded are those used for neutralization of waste streams, the production of goods, and treatment of wastewater.

The subject facility utilizes the following chemicals as part of their treatment process.

- Chlorine gas for disinfection
- Sulfur dioxide for dechlorination
- Polyaluminum chloride for phosphorus treatment

2.4 Existing NPDES Permits Limits

The existing NPDES permit limits are summarized in the table.

PART	A - EFFLUENT LIMITA	TIONS, MONITORING, RECORDKEEPING AND REPORTING REQUIREMENTS
I. A.	For Outfall 001	, Latitude <u>40° 18' 37.68"</u> , Longitude <u>78° 20' 18.26"</u> , River Mile Index <u>6.25</u> , Stream Code <u>16504</u>
	Receiving Waters:	Plum Creek
	Type of Effluent:	Sewage Effluent

^{2.} Based on the anticipated wastewater characteristics and flows described in the permit application and its supporting documents and/or amendments, the following effluent limitations and monitoring requirements apply (see also Additional Requirements and Footnotes).

		Monitoring Re	quirements						
Parameter	Mass Units (lbs/day) (1)			Concentrations (mg/L)				Required	
Parameter	Average Monthly	Weekly Average	Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type	
		Report			_				
Flow (MGD)	Report	Daily Max	XXX	XXX	XXX	XXX	Continuous	Measured	
					9.0				
pH (S.U.)	XXX	XXX	6.0	XXX	Max	XXX	1/day	Grab	
Dissolved Oxygen	XXX	XXX	5.0	XXX	XXX	XXX	1/day	Grab	
Total Residual Chlorine (TRC)	XXX	xxx	xxx	0.5	xxx	1.6	1/day	Grab	
Carbonaceous Biochemical								24-Hr	
Oxygen Demand (CBOD5)	146	233	XXX	25.0	40.0	50	1/week	Composite	
Biochemical Oxygen Demand (BOD5)		Report						24-Hr	
Raw Sewage Influent	Report	Daily Max	XXX	Report	XXX	XXX	1/week	Composite	
								24-Hr	
Total Suspended Solids	175	263	XXX	30.0	45.0	60	1/week	Composite	
Total Suspended Solids		Report						24-Hr	
Raw Sewage Influent	Report	Daily Max	XXX	Report	XXX	XXX	1/week	Composite	
Fecal Coliform (CFU/100 ml)				2000					
Oct 1 - Apr 30	XXX	XXX	XXX	Geo Mean	XXX	10,000	1/week	Grab	
Fecal Coliform (CFU/100 ml)				200					
May 1 - Sep 30	XXX	XXX	XXX	Geo Mean	XXX	1.000	1/week	Grab	

Outfall 001, Continued (from July 1, 2017 through June 30, 2022)

		Monitoring Requirements						
Parameter	Mass Units	(lbs/day) (1)	Concentrations (mg/L)				Minimum (2)	Required
Parameter	Average	Weekly		Average	Weekly	Instant.	Measurement	Sample
	Monthly	Average	Minimum	Monthly	Average	Maximum	Frequency	Type
Ammonia-Nitrogen								24-Hr
Nov 1 - Apr 30	35	XXX	XXX	6.0	XXX	12	2/week	Composite
Ammonia-Nitrogen								24-Hr
May 1 - Oct 31	11.5	XXX	XXX	2.0	XXX	4	2/week	Composite
								24-Hr
Total Phosphorus	11.5	XXX	XXX	2.0	XXX	4	2/week	Composite

Samples taken in compliance with the monitoring requirements specified above shall be taken at the following location(s):

at Outfall 001

^{1.} The permittee is authorized to discharge during the period from July 1, 2017 through June 30, 2022.

PART	ART A - EFFLUENT LIMITATIONS, MONITORING, RECORDKEEPING AND REPORTING REQUIREMENTS								
I.B.	For Outfall 001	, Latitude40° 18' 37.68", Longitude78° 20' 18.26", River Mile Index6.25, Stream Code16504	_						
	Receiving Waters:	Plum Creek							
	Type of Effluent:	Sewage Effluent	_						

The permittee is authorized to discharge during the period from <u>July 1, 2017</u> through <u>June 30, 2022</u>.

Based on the anticipated wastewater characteristics and flows described in the permit application and its supporting documents and/or amendments, the following effluent limitations and monitoring requirements apply (see also Additional Requirements and Footnotes)

	Effluent Limitations						Monitoring Requirement	
Parameter	Mass Units	(lbs/day) (1)	Concentrations (mg/L)				Minimum (2)	Required
Parameter	Monthly	Annual	Monthly	Monthly Average	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
AmmoniaN	Report	Report	XXX	Report	xxx	XXX	2/week	24-Hr Composite
KjeldahlN	Report	XXX	XXX	Report	XXX	XXX	2/week	24-Hr Composite
Nitrate-Nitrite as N	Report	XXX	XXX	Report	XXX	XXX	2/week	24-Hr Composite
Total Nitrogen	Report	Report	XXX	Report	XXX	XXX	1/month	Calculation
Total Phosphorus	Report	Report	XXX	Report	XXX	XXX	2/week	24-Hr Composite
Net Total Nitrogen	Report	12,785	XXX	XXX	XXX	XXX	1/month	Calculation
Net Total Phosphorus	Report	1.705	XXX	XXX	xxx	XXX	1/month	Calculation

Samples taken in compliance with the monitoring requirements specified above shall be taken at the following location(s)

at Outfall 001

Footnotes

(1) See Part C for Chesapeake Bay Requirements.

3.0 Facility NPDES Compliance History

3.1 Summary of Inspections

A summary of the most recent inspections during the existing permit review cycle is as follows.

The DEP inspector noted the following during the inspection.

06/05/2018:

- The equalization tanks are usually empty except during heavy rain events. The tanks had an accumulation of weeds and brush at the bottom and are not being properly maintained. The facility may want to leave water in the tanks to a level just above the diffusers and feeding a small amount of air.
- The grit chamber had a bad bearing and was out of service for about 5 months.
- The muffin monster was rebuilt and has new cutting teeth.
- A new sludge pump was delivered and would be installed soon.

05/16/2019:

- The Pista grit system was repaired and was back in service. Grit chamber is on a timer.
- The equalization tanks are normally only used during high flow periods.
- The facility should construct a SOP to include tasks to be completed by a non-certified operator during a routine check of the treatment plant.

⁽²⁾ This is the minimum number of sampling events required. Permittees are encouraged, and it may be advantageous in demonstrating compliance, to perform more than the minimum number of sampling events required.

NPDES Permit Fact Sheet Martinsburg STP

01/08/2021:

• The inspection was an administrative review of the Chesapeake Bay reporting.

08/19/2021:

- The facility contacted DEP to report that rainfall from the tropical storm had caused extremely high flow at the treatment plant and overwhelmed the headworks. Some of the influent was being pumped into a nearby stream bypassing the treatment plant.
- Leaks in the collection system are having an effect on the performance of the treatment plant.

12/14/2021:

- The facility reported a sanitary sewer overflow on September 1, 2021 due to high flows related to tropical storm Ida. Both EQ tanks were put in use but influent pumps could not keep up with the flow and external pumps were put in place to bypass some of the wastewater to a nearby stream.
- A similar bypass occurred on August 18, 2021 due to heavy rain event. The total flow for the day
 was 1.75 MGD. Average flow to the plant is normally about 0.40 MGD. The excessive flow is likely
 the result of inflow and infiltration (I&I) in the collection system. The Authority had recently replaced
 some sections of piping but there was not a system wide investigation into the sources of I&I.
- The operator ordered replacement of one SBR pump. Other planned maintenance work includes upgrading the grit removal system and cleaning out the SBR tanks.

3.2 Summary of DMR Data

A review of approximately 1-year of DMR data shows that the monthly average flow data for the facility below the design capacity of the treatment system. The maximum average flow data for the DMR reviewed was 0.79 MGD in September 2021. The design capacity of the treatment system is 0.9 MGD.

The off-site laboratory used for the analysis of the parameters was Fairway Laboratories, Inc. located at 2019 Ninth Avenue, Altoona, PA 16603.

NPDES Permit No. PA0028347

DMR Data for Outfall 001 (from December 1, 2020 to November 30, 2021)

Parameter	NOV-21	OCT-21	SEP-21	AUG-21	JUL-21	JUN-21	MAY-21	APR-21	MAR-21	FEB-21	JAN-21	DEC-20
Flow (MGD)												
Average Monthly	0.324	0.334	0.796	0.428	0.322	0.370	0.422	0.366	0.554	0.472	0.438	0.477
Flow (MGD)												
Daily Maximum	0.451	0.647	3.233	1.747	0.665	0.651	0.844	0.592	1.513	2.281	0.915	2.202
pH (S.U.)												
Minimum	7.0	7.0	7.2	6.8	7.0	7.0	7.1	7.1	7.0	6.9	6.8	7.1
pH (S.U.)												
Maximum	7.5	7.5	7.6	7.5	7.6	7.4	7.4	7.5	7.4	7.4	7.5	7.4
DO (mg/L)												
Minimum	6.9	6.7	7.2	6.0	6.1	6.3	6.7	7.1	7.4	7.7	7.7	7.2
TRC (mg/L)												
Average Monthly	0.04	0.02	0.04	0.03	0.02	0.02	0.03	0.02	0.02	0.1	0.04	0.02
TRC (mg/L)												
Instantaneous												
Maximum	0.2	0.1	0.2	0.1	0.1	0.1	0.1	0.1	0.1	0.3	0.5	0.04
CBOD5 (lbs/day)												
Average Monthly	10	11	31	43	< 12.5	15	15	13	22	28	18	20
CBOD5 (lbs/day)												
Weekly Average	12	17	40	103	16.8	20	24	21	38	59	22	24
CBOD5 (mg/L)												
Average Monthly	3.9	4.3	6.1	7.6	< 5.0	4.9	4.0	4.5	5.0	7.1	5.5	6.5
CBOD5 (mg/L)												
Weekly Average	4.5	5.8	7.7	15.0	6.3	6.0	4.6	6.0	7.2	8.6	7.1	8.8
BOD5 (lbs/day)												
Raw Sewage Influent												
 Average	4000			0.40	004				440=	4074	201	4440
Monthly	1086	831	701	649	831	762	823	784	1105	1074	821	1149
BOD5 (lbs/day)												
Raw Sewage Influent	4.457	4000	000	4400	000	4044	4004	4.400	4704	4 404	070	4.400
 	1457	1003	836	1196	990	1014	1084	1430	1704	1431	873	1429
BOD5 (mg/L)												
Raw Sewage Influent												
 Average Monthly	441.5	330.5	148.3	207.8	336.5	253.8	245.6	283.5	286.3	327.5	264.3	388.8
TSS (lbs/day)	441.0	330.3	140.3	201.0	330.3	255.0	240.0	203.3	200.3	321.3	204.3	300.0
` ',	< 9	10	11	< 31	8.6	15	16	8	21	20	13	13
Average Monthly	< 9	10		< 31	٥.٥	15	01	Ö	Z I	20	13	13

NPDES Permit Fact Sheet Martinsburg STP

NPDES Permit No. PA0028347

TSS (lbs/day)												
Raw Sewage Influent												
 br/> Average												
Monthly	1028	1084	822	643	1211	818	789	1284	1250	703	655	826
TSS (lbs/day)												
Raw Sewage Influent												
 br/> Daily Maximum	1354	1672	1084	1032	1650	872	1054	3516	2715	1031	679	1159
TSS (lbs/day)												
Weekly Average	12	14	30	93	11.0	24	25	11	39	46	19	19
TSS (mg/L)												
Average Monthly	< 3.9	4.2	1.7	< 4.6	3.5	5.0	4.2	2.9	4.8	5.0	4.2	4.3
TSS (mg/L)												
Raw Sewage Influent												
 br/> Average												
Monthly	418.0	433.0	166.8	179.8	486.0	279.2	233.3	472.8	320.4	204.0	211.8	277.6
TSS (mg/L)												
Weekly Average	5.6	5.6	3.2	6.4	4.8	7.2	6.4	4.0	5.4	6.8	6.8	8.0
Fecal Coliform												
(CFU/100 ml)												
Geometric Mean	< 6	< 17	< 27	< 26	313	59	< 69	< 22	< 31	< 117	< 68	< 260
Fecal Coliform												
(CFU/100 ml)												
Instantaneous												
Maximum	< 10	85	121	465	706	528	384	233	189	6488	932	5172
Nitrate-Nitrite (mg/L)												
Average Monthly	< 1.5	< 1.2	< 3.4	< 1.5	< 1.2	< 1.2	< 1.3	< 1.2	< 1.7	< 2.5	< 3.4	< 3.2
Nitrate-Nitrite (lbs)	404.0	4040		0.17.0		4000	4=0.4	440 =	000.4			0.50
Total Monthly	< 121.2	< 104.2	< 525.7	< 217.6	< 97.7	< 108.9	< 150.1	< 113.5	< 226.4	< 380.7	< 390.6	< 352.3
Total Nitrogen (mg/L)	0.0	0.0	4.0	0.5	4.0	0.4	0.0	0.0	0.0		5 0	0.7
Average Monthly	< 3.9	< 2.9	< 4.6	< 2.5	< 1.9	< 3.1	< 2.6	< 2.9	< 3.3	< 5.0	< 5.3	< 6.7
Total Nitrogen (lbs)												
Effluent Net Tatal Manathle	000.0	000 5	700.0	050.0	455.0	000.0	004.4	074.0	440.4	050.0	000	007.4
Total Monthly	< 300.3	< 239.5	< 708.6	< 353.0	< 155.6	< 286.6	< 301.1	< 271.0	< 442.1	< 653.6	< 606	< 697.1
Total Nitrogen (lbs)	000.0	000 5	700.0	050.0	455.0	000.0	004.4	074.0	440.4	050.0	000	007.4
Total Monthly	< 300.3	< 239.5	< 708.6	< 353.0	< 155.6	< 286.6	< 301.1	< 271.0	< 442.1	< 653.6	< 606	< 697.1
Total Nitrogen (lbs)												
Effluent Net Total Appual			1 E46E									
Total Annual			< 5165									
Total Nitrogen (lbs)			5405									
Total Annual			< 5165									

NPDES Permit Fact Sheet Martinsburg STP

NPDES Permit No. PA0028347

Ammonia (lbs/day)			1							1		
Average Monthly	3	1.9	< 1.8	< 2.6	2.5	4.7	3.4	4.4	6	8.8	< 3.1	3.4
Ammonia (mg/L)			10	12.0			<u> </u>			0.0	, , , , ,	<u> </u>
Average Monthly	1.0	0.7	< 0.4	< 0.6	1.0	1.5	1.0	1.4	1.6	2.2	< 1.1	1.2
Ammonia (lbs)												
Total Monthly	77.8	58.5	< 52.6	< 80.4	77.7	139.7	104.2	131.5	197	247.4	< 97.3	104.4
Ammonia (lbs)												
Total Annual			< 1411									
TKN (mg/L)												
Average Monthly	2.3	1.7	1.2	< 1.1	< 0.7	< 1.9	1.3	1.7	1.7	2.6	1.9	3.5
TKN (lbs)												
Total Monthly	179.0	135.4	182.9	< 135.3	< 57.9	< 177.7	151.0	157.6	216	272.9	215.4	344.8
Total Phosphorus												
(lbs/day)												
Average Monthly	1.9	1.3	2.3	2.7	2.2	1.6	1.6	1.0	0.9	1.1	0.8	0.7
Total Phosphorus												
(mg/L)												
Average Monthly	0.8	0.5	0.5	0.8	0.8	0.5	0.5	0.3	0.2	0.3	0.3	0.3
Total Phosphorus (lbs)												
Effluent Net 												
Total Monthly	57.3	41.2	68.0	83.7	66.7	46.9	49.7	29.0	27.4	30.2	23.7	22.4
Total Phosphorus (lbs)												
Total Monthly	57.3	41.2	68.0	83.7	66.7	46.9	49.7	29.0	27.4	30.2	23.7	22.4
Total Phosphorus (lbs)												
Effluent Net 												
Total Annual			530									
Total Phosphorus (lbs)												
Total Annual			530									

3.2.1 Chesapeake Bay Truing

The table summarizes the facility's compliance with Chesapeake Bay cap loads.

Che	esapeake Bay Annu	al Nutrient Summa	iry		
	Martinsbu	rg WWTP			
	PA002	28347			
	Net Efflu	ent Limits	Compliant with Permit Limits (Yes/No)		
Year for Truing Period (Oct 1 - Nov 28)	Nitrogen (lbs)	Nitrogen (lbs) Phosphorus (lbs)		Phoenhorus	
	12,785	1,705	Nitrogen	Phosphorus	
2018	9,662	698	Yes	Yes	
2019	11,021	698	Yes	Yes	
2020	4828	875	Yes	Yes	
2021	5165	530	Yes	Yes	

3.3 Non-Compliance

3.3.1 Non-Compliance- NPDES Effluent

A summary of the non-compliance to the permit limits for the existing permit cycle is as follows.

From the DMR data beginning on July 1, 2017 to February 6, 2022, the following were observed effluent non-compliances.

Outfall	Non Compliance Date	Non Compliance Type Description	Non Compliance Category	Parameter	Sample Value	Violation Condition	Permit Value	Unit of Measure	Statistical Base Code	Discharge Comments	Facility Comments
	8/12/2017	Violation of permit schedule	Other Violations								
001	8/12/2017	Sample collection less frequent than required	Other Violations	Ammonia- Nitrogen							
001	8/12/2017	Sample collection less frequent than required	Other Violations	Nitrate-Nitrite as N							
001	8/12/2017	Sample collection less frequent than required	Other Violations	Total Kjeldahl Nitrogen							
001	8/12/2017	Sample collection less frequent than required	Other Violations	Total Phosphorus							
	3/15/2018		Unauthorized Discharges							See attached letter	
001	7/18/2018	Violation of permit condition	Effluent	Fecal Coliform	9678	>	1000	CFU/100 ml	Instantaneous Maximum		See monitoring and facility comments.
001	6/19/2019	Violation of permit condition	Effluent	Fecal Coliform	3282	>	1000	CFU/100 ml	Instantaneous Maximum		No understandable reason can be determined for non-compliance.
001	8/24/2021	Violation of permit condition	Effluent	Fecal Coliform	313	>	200	CFU/100 ml	Geometric Mean		Pressure reducing valve caused chlorine addition to fluctuate, resulting in fecal coliform counts to be above monthly average parameters. Pressure reducing valve was adjusted to prevent chlorine fluctuation.
	9/27/2021		Unauthorized Discharges							See letter sent to Fred Cark of DEP August 19,2021. Fred Cark did a sewage inspection 8/19/2021.	
	9/3/2021		Unauthorized Discharges							Basements of houses were being filled with sewage.	
	9/3/2021	_	Unauthorized Discharges							Revised notification. Basements of homes were being filled with sewage.	
	9/3/2021		Unauthorized Discharges							tropical storm	

3.3.2 Non-Compliance- Enforcement Actions

A summary of the non-compliance enforcement actions for the current permit cycle is as follows:

Beginning in July 1, 2017 to February 6, 2022, there were no observed enforcement actions.

3.4 Summary of Biosolids Disposal

A summary of the biosolids disposed of from the facility is as follows. Data reporting is suspect as there are not data for each month.

			2021					
	Sewage Sludge / Biosolids Production Information							
		Н	auled Off-Site					
2021	Gallons	% Solids	Dry Tons	Tons Dewatered	% Solids	Dry Tons		
January	142,600	0.79	4.7	3.64	13.1	0.48		
February								
March	288,200	0.885	10.62					
April								
May	242,000	0.725	7.15					
June								
July								
August								
September								
October								
November								
December	142,600	0.84	4.99					
Notes:								

Sewage Sludge/Biosolids disposed at Smith Farm in Martinsburg, Blair County for agricultural utilizations

3.5 Open Violations

No open violations existed as of May 2022.

4.0 Receiving Waters and Water Supply Information Detail Summary

4.1 Receiving Waters

The receiving waters has been determined to be Plum Creek. The sequence of receiving streams that Plum Creek discharges into are Halter Creek, Frankstown Branch Juniata River, Juniata River and the Susquehanna River which eventually drains into the Chesapeake Bay.

4.2 Public Water Supply (PWS) Intake

The closest PWS to the subject facility is Mifflintown Municipal Authority (PWS ID #4340008) located approximately 111 miles downstream of the subject facility on the Juniata River. Based upon the distance and the flow rate of the facility, the PWS should not be impacted.

4.3 Class A Wild Trout Streams

Class A Wild Trout Streams are waters that support a population of naturally produced trout of sufficient size and abundance to support long-term and rewarding sport fishery. DEP classifies these waters as high-quality coldwater fisheries.

The information obtained from EMAP suggests that no Class A Wild Trout Fishery will be impacted by this discharge.

4.4 2020 Integrated List of All Waters (303d Listed Streams)

Section 303(d) of the Clean Water Act requires States to list all impaired surface waters not supporting uses even after appropriate and required water pollution control technologies have been applied. The 303(d) list includes the reason for impairment which may be one or more point sources (i.e. industrial or sewage discharges) or non-point sources (i.e. abandoned mine lands or agricultural runoff and the pollutant causing the impairment such as metals, pH, mercury or siltation).

States or the U.S. Environmental Protection Agency (EPA) must determine the conditions that would return the water to a condition that meets water quality standards. As a follow-up to listing, the state or EPA must develop a Total Maximum Daily Load (TMDL) for each waterbody on the list. A TMDL identifies allowable pollutant loads to a waterbody from both point and non-point sources that will prevent a violation of water quality standards. A TMDL also includes a margin of safety to ensure protection of the water.

The water quality status of Pennsylvania's waters uses a five-part categorization (lists) of waters per their attainment use status. The categories represent varying levels of attainment, ranging from Category 1, where all designated water uses are met to Category 5 where impairment by pollutants requires a TMDL for water quality protection.

The receiving waters is listed in the 2020 Pennsylvania Integrated Water Quality Monitoring and Assessment Report as a Category 4a and 5 waterbody. The surface water is an impaired stream for aquatic life due to siltation/nutrients from agriculture. The designated use has been classified as protected waters for warm water fishes (WWF) and migratory fishes (MF).

4.5 Low Flow Stream Conditions

Water quality modeling estimates are based upon conservative data inputs. The data are typically estimated using either a stream gauge or through USGS web based StreamStats program. The NPDES effluent limits are based upon the combined flows from both the stream and the facility discharge.

A conservative approach to estimate the impact of the facility discharge using values which minimize the total combined volume of the stream and the facility discharge. The volumetric flow rate for the stream is based upon the seven-day, 10-year low flow (Q710) which is the lowest estimated flow rate of the stream during a 7 consecutive day period that occurs once in 10 -year time period. The facility discharge is based upon a known design capacity of the subject facility.

The closest WQN station to the subject facility is the Frankstown Branch Juniata station (WQN224). This WQN station is located approximately 30 miles downstream of the subject facility.

The closest gauge station to the subject facility is the Frankstown Branch Juniata River at Williamsburg, PA (USGS station number 1556000). This gauge station is located approximately 28 miles downstream of the subject facility.

For WQM modeling, pH and stream water temperature data from the water quality network station was used. pH was estimated to be 7.84 and the stream water temperature was estimated to be 22 C.

The hardness of the stream was estimated from the water quality network to be 135 mg/l CaCO₃.

NPDES Permit Fact Sheet Martinsburg STP

The low flow yield and the Q710 for the subject facility was estimated as shown below.

Gauge Station Data						
USGS Station Number 1556000						
Station Name	Frankstown Branch Juniata River at Williamsburg, PA					
Q710	47.8	ft ³ /sec				
Drainage Area (DA)	291	mi ²				

Calculations

The low flow yield of the gauge station is:

Low Flow Yield (LFY) = Q710 / DA

LFY =
$$(47.8 \, \text{ft}^3/\text{sec}/291 \, \text{mi}^2)$$

LFY = 0.1643 ft³/sec/mi²

The low flow at the subject site is based upon the DA of

4.97 mi²

Q710 = (LFY@gauge station)(DA@Subject Site)

 $Q710 = (0.1643 \text{ ft}^3/\text{sec/mi}^2)(4.97 \text{ mi}^2)$

Q710 = 0.816 ft³/sec

4.6 Summary of Discharg	e, Receiving Waters and W	later Supply Information					
Outfall No. 001		Design Flow (MGD)	.7				
Latitude 40° 18' 37	7.65"	Longitude	-78º 20' 18.31"				
Quad Name		Quad Code					
Wastewater Description:	: Sewage Effluent						
Receiving Waters Plu	ım Creek (WWF)	Stream Code	16504				
NHD Com ID 656	610220	RMI	6.34				
Drainage Area 4.9	7	Yield (cfs/mi²)	0.1643				
Q ₇₋₁₀ Flow (cfs) 0.8	16	Q ₇₋₁₀ Basis	StreamStats/Streamgauge				
Elevation (ft) 133	37	Slope (ft/ft)					
Watershed No. 11-	-A	Chapter 93 Class.	WWF, MF				
Existing Use Sa	me as Chapter 93 class	Existing Use Qualifier					
Exceptions to Use		Exceptions to Criteria					
Assessment Status	Impaired						
Cause(s) of Impairment	NUTRIENTS, SILTATIO	N					
Source(s) of Impairment	AGRICULTURE, AGRIC	CULTURE					
TMDL Status	Final	Name Plum Creek Sediment TMDL					
Background/Ambient Da	ıta	Data Source					
pH (SU)	7.84	WQN224; median July to Sep	ot				
Temperature (°C)	22	WQN224; median July to Sep	ot				
Hardness (mg/L)	Hardness (mg/L) 135		WQN224; historical median				
Other:							
Nearest Downstream Pu	ublic Water Supply Intake	Mifflintown MA					
PWS Waters Junia	ta River	Flow at Intake (cfs)					
PWS RMI 37		Distance from Outfall (mi) 111					

5.0: Overview of Presiding Water Quality Standards

5.1 General

There are at least six (6) different policies which determines the effluent performance limits for the NPDES permit. The policies are technology based effluent limits (TBEL), water quality based effluent limits (WQBEL), antidegradation, total maximum daily loading (TMDL), anti-backsliding, and whole effluent toxicity (WET) The effluent performance limitations enforced are the selected permit limits that is most protective to the designated use of the receiving waters. An overview of each of the policies that are applicable to the subject facility has been presented in Section 6.

5.2.1 Technology-Based Limitations

TBEL treatment requirements under section 301(b) of the Act represent the minimum level of control that must be imposed in a permit issued under section 402 of the Act (40 CFR 125.3). Available TBEL requirements for the state of Pennsylvania are itemized in PA Code 25, Chapter 92a.47.

The presiding sources for the basis for the effluent limitations are governed by either federal or state regulation. The reference sources for each of the parameters is itemized in the tables. The following technology-based limitations apply, subject to water quality analysis and best professional judgement (BPJ) where applicable:

Parameter	Limit (mg/l)	SBC	Federal Regulation	State Regulation
CBOD₅	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
CBOD5	40	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)
Total Suspended	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
Solids	45	Average Weekly	133.102(b)(2)	92a.47(a)(2)
pН	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform				
(5/1 - 9/30)	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
Fecal Coliform				
(5/1 – 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform				
(10/1 - 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
Fecal Coliform				
(10/1 - 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)
Total Residual Chlorine	0.5	Average Monthly	-	92a.48(b)(2)

5.2.2 Mass Based Limits

For publicly owned treatment works (POTW), mass loadings are calculated based upon design flow rate of the facility and the permit limit concentration. The generalized calculation for mass loadings is shown below:

Quantity
$$\left(\frac{lb}{day}\right) = (MGD)(Concentration)(8.34)$$

5.3 Water Quality-Based Limitations

WQBEL are based on the need to attain or maintain the water quality criteria and to assure protection of designated and existing uses (PA Code 25, Chapter 92a.2). The subject facility that is typically enforced is the more stringent limit of either the TBEL or the WQBEL.

Determination of WQBEL is calculated by spreadsheet analysis or by a computer modeling program developed by DEP. DEP permit engineers utilize the following computing programs for WQBEL permit limitations: (1) MS Excel worksheet for Total Residual Chorine (TRC); (2) WQM 7.0 for Windows Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen Version 1.1 (WQM Model) and (3) Toxics using DEP Toxics Management Spreadsheet for Toxics pollutants.

The modeling point nodes utilized for this facility are summarized below.

General Data 1 (Modeling Point #1)	Input Value	Units
Stream Code	16504	
River Mile Index	6.34	miles
Elevation	1337	feet
Latitude	40.310278	
Longitude	-78.338611	
Drainage Area	4.97	sq miles
Low Flow Yield	0.1643	cfs/sq mile
General Data 2 (Modeling Point #2)	Input Value	Units
Stream Code	16504	
River Mile Index	4.4	miles
Elevation	1065	feet
Latitude	40.35217	
Longitude	-78.406417	
Drainage Area	32.1	sq miles
Low Flow Yield	0.1643	cfs/sq mile

5.3.1 Water Quality Modeling 7.0

The WQM Model is a computer model that is used to determine NPDES discharge effluent limitations for Carbonaceous BOD (CBOD5), Ammonia Nitrogen (NH3-N), and Dissolved Oxygen (DO) for single and multiple point source discharges scenarios. WQM Model is a complete-mix model which means that the discharge flow and the stream flow are assumed to instantly and completely mixed at the discharge node.

WQM recommends effluent limits for DO, CBOD5, and NH₃-N in mg/l for the discharge(s) in the simulation.

Four types of limits may be recommended. The limits are

- (a) a minimum concentration for DO in the discharge as 30-day average;
- (b) a 30-day average concentration for CBOD5 in the discharge;
- (c) a 30-day average concentration for the NH₃-N in the discharge;
- (d) 24-hour average concentration for NH₃-N in the discharge.

The WQM Model requires several input values for calculating output values. The source of data originates from either EMAP, the National Map, or Stream Stats. Data for stream gauge information, if any, was abstracted from USGS Low-Flow, Base-Flow, and Mean-Flow Regression Equations for Pennsylvania Streams authored by Marla H. Stuckey (Scientific Investigations Report 2006-5130).

The applicable WQM Effluent Limit Type are discussed in Section 6 under the corresponding parameter which is either DO, CBOD, or ammonia-nitrogen.

5.3.2 Toxics Modeling

The Toxics Management Spreadsheet model is a computer model that is used to determine effluent limitations for toxics (and other substances) for single discharge wasteload allocations. This computer model uses a mass-balance water quality analysis that includes consideration for mixing, first-order decay, and other factors used to determine recommended water quality-based effluent limits. Toxics Management Spreadsheet does not assume that all discharges completely mix with the stream. The point of compliance with water quality criteria are established using criteria compliance times (CCTs). The available CCTs are either acute fish criterion (AFC), chronic fish criterion (CFC), or human health criteria (THH & CRL).

Acute Fish Criterion (AFC) measures the criteria compliance time as either the maximum criteria compliance time (i.e.15 minutes travel time downstream of the current discharge) or the complete mix time whichever comes first. AFC is evaluated at Q710 conditions.

Chronic Fish Criterion (CFC) measures the criteria compliance time as either the maximum criteria compliance time (i.e. 12 hours travel time downstream of the current discharge) or the complete mix time whichever comes first. CFC is evaluated at Q710 conditions.

Threshold Human Health (THH) measures the criteria compliance time as either the maximum criteria compliance time (i.e. 12 hours travel time downstream of the current discharge) or the estimated travel time downstream to the nearest potable water supply intake whichever comes first. THH is evaluated at Q710 conditions.

Cancer Risk Level (CRL) measures the criteria compliance time as either the maximum criteria compliance time (i.e. 12 hours travel time downstream of the current discharge) or the complete mix time whichever comes first. CRL is evaluated at Qh (harmonic mean or normal flow) conditions.

The Toxics Model requires several input values for calculating output values. The source of data originates from either EMAP, the National Map, or Stream Stats. Data for stream gauge information, if any, was abstracted from USGS Low-Flow, Base-Flow, and Mean-Flow Regression Equations for Pennsylvania Streams authored by Marla H. Stuckey (Scientific Investigations Report 2006-5130).

5.3.2.1 Determining if NPDES Permit Will Require Monitoring/Limits in the Proposed Permit for Toxic Pollutants

To determine if Toxics modeling is necessary, DEP has developed a Toxics Management Spreadsheet to identify toxics of concern. Toxic pollutants whose maximum concentrations as reported in the permit application or on DMRs are greater than the most stringent applicable water quality criterion are pollutants of concern. A Reasonable Potential Analysis was utilized to determine (a) if the toxic parameters modeled would require monitoring or (b) if permit limitations would be required for the parameters. The toxics reviewed for reasonable potential were the following pollutants: TDS, chloride, bromide, sulfate, total copper, total lead, and total zinc.

Based upon the SOP- Establishing Water Quality-Based Effluent Limitations (WQBELs) and Permit Conditions for Toxic Pollutants (Revised January 10, 2019), monitoring and/or limits will be established as follows.

- (a) When reasonable potential is demonstrated, establish limits where the maximum reported concentration equals or exceeds 50% of the WQBEL.
- (b) For non-conservative pollutants, establish monitoring requirements where the maximum reported concentration is between 25% 50% of the WQBEL.
- (c) For conservative pollutants, establish monitoring requirements where the maximum reported concentration is between 10% 50% of the WQBEL.

Applicable monitoring or permit limits for toxics are summarized in Section 6.

The Toxics Management Spreadsheet output has been included in Attachment B.

5.3.3 Whole Effluent Toxicity (WET)

The facility is not subject to WET.

5.4 Total Maximum Daily Loading (TMDL)

5.4.1 TMDL

The goal of the Clean Water Act (CWA), which governs water pollution, is to ensure that all of the Nation's waters are clean and healthy enough to support aquatic life and recreation. To achieve this goal, the CWA created programs designed to regulate and reduce the amount of pollution entering United States waters. Section 303(d) of the CWA requires states to assess their waterbodies to identify those not meeting water quality standards. If a waterbody is not meeting standards, it is listed as impaired and reported to the U.S. Environmental Protection Agency. The state then develops a plan to clean up the impaired waterbody. This plan includes the development of a Total Maximum Daily Load (TMDL) for the pollutant(s) that

NPDES Permit Fact Sheet Martinsburg STP

were found to be the cause of the water quality violations. A Total Maximum Daily Load (TMDL) calculates the maximum amount of a specific pollutant that a waterbody can receive and still meet water quality standards.

A TMDL for a given pollutant and waterbody is composed of the sum of individual wasteload allocations (WLAs) for point sources and load allocations (LAs) for nonpoint sources and natural background levels. In addition, the TMDL must include an implicit or explicit margin of safety (MOS) to account for the uncertainty in the relationship between pollutant loads and the quality of the receiving waterbody. The TMDL components are illustrated using the following equation:

TMDL =
$$\Sigma WLAs + \Sigma LAs + MOS$$

Pennsylvania has committed to restoring all impaired waters by developing TMDLs and TMDL alternatives for all impaired waterbodies. The TMDL serves as the starting point or planning tool for restoring water quality.

5.4.1.1 Local TMDL

The subject facility discharges into a local TMDL called the Plum Creek Sediment TMDL.

Plum Creek is a tributary of Halter Creek, with the junction about a mile north of the Borough of Roaring Spring in Blair County. The Total Maximum Daily Load (TMDL) document was prepared to address the siltation from agriculture impairments listed for the headwaters area of Plum Creek Watershed per the 2018 Final Integrated Report (see Appendix A for a description of assessment methodology). The study subwatershed was approximately 10 square miles and occurred entirely within Blair County. It contained approximately 16.9 stream miles, all of which are designated Warm Water Fishes (WWF) and Migratory Fishes (MF).

The removal of natural vegetation and soil disturbance associated with agriculture increases soil erosion leading to sediment deposition in streams. Excessive fine sediment deposition may destroy the coarse-substrate habitats required by many stream organisms.

While agriculture has been identified as the source of the impairments, the TMDL document was applicable to all significant sources of solids that may settle to form deposits.

According to NLCD 2011 landcover data, as reported by Model My Watershed, land use in the study watershed was estimated to be 10% forest/naturally vegetated lands, 69% agriculture, and 20% mixed development. The agricultural lands were dominated by croplands, which accounted for 53% of landcover, whereas hay/pasture lands were only 16% of the watershed's landcover. There was one NPDES permitted point source discharge in the watershed with significant concentration limits relevant to sedimentation, the wastewater treatment plant serving the Borough of Martinsburg.

According to discharge monitoring report data, it was estimated that the Martinsburg Sewage Treatment Plant contributed on average 5,046 pounds of sediment per year to the watershed. However, if they continuously discharged at their monthly average TSS loading limit per their permit, their mean annual sediment discharge would be 63,875 lbs/yr. Since the wastewater treatment plant was not identified as the cause of the impairments and the permit-based load value would constitute a relatively minor fraction of the overall watershed sediment load, the TMDL gave this wasteload allocation consistent with this higher permit-based value. (Plum Creek Headwaters Subwatershed Sediment TMDL, May 2021)

5.4.1.2 Chesapeake Bay TMDL Requirement

The Chesapeake Bay Watershed is a large ecosystem that encompasses approximately 64,000 square miles in Maryland, Delaware, Virginia, West Virginia, Pennsylvania, New York and the District of Columbia. An ecosystem is composed of interrelated parts that interact with each other to form a whole. All of the plants and animals in an ecosystem depend on each other in some way. Every living thing needs a healthy ecosystem to survive. Human activities affect the Chesapeake Bay ecosystem by adding pollution, using resources and changing the character of the land.

Most of the Chesapeake Bay and many of its tidal tributaries have been listed as impaired under Section 303(d) of the federal Water Pollution Control Act ("Clean Water Act"), 33 U.S.C. § 1313(d). While the Chesapeake Bay is outside the boundaries of Pennsylvania, more than half of the State lies within the watershed. Two major rivers in Pennsylvania are part of the Chesapeake Bay Watershed. They are (a) the Susquehanna River and (b) the Potomac River. These two rivers total 40 percent of the entire Chesapeake Bay watershed.

The overall management approach needed for reducing nitrogen, phosphorus and sediment are provided in the Bay TMDL document and the Phase I, II, and III WIPs which is described in the Bay TMDL document and Executive Order 13508.

The Bay TMDL is a comprehensive pollution reduction effort in the Chesapeake Bay watershed identifying the necessary pollution reductions of nitrogen, phosphorus and sediment across the seven Bay watershed jurisdictions of Delaware, Maryland, New York, Pennsylvania, Virginia, West Virginia and the District of Columbia to meet applicable water quality standards in the Bay and its tidal waters.

The Watershed Implementation Plans (WIPs) provides objectives for how the jurisdictions in partnership with federal and local governments will achieve the Bay TMDL's nutrient and sediment allocations.

Phase 3 WIP provides an update on Chesapeake Bay TMDL implementation activities for point sources and DEP's current implementation strategy for wastewater. The latest revision of the supplement was September 13, 2021.

The Chesapeake Bay TMDL (Appendix Q) categorizes point sources into four sectors:

- · Sector A- significant sewage dischargers;
- Sector B- significant industrial waste (IW) dischargers;
- Sector C- non-significant dischargers (both sewage and IW facilities); and
- Sector D- combined sewer overflows (CSOs).

All sectors contain a listing of individual facilities with NPDES permits that were believed to be discharging at the time the TMDL was published (2010). All sectors with the exception of the non-significant dischargers have individual wasteload allocations (WLAs) for TN and TP assigned to specific facilities. Non-significant dischargers have a bulk or aggregate allocation for TN and TP based on the facilities in that sector that were believed to be discharging at that time and their estimated nutrient loads.

Cap Loads will be established in permits as Net Annual TN and TP loads (lbs/yr) that apply during the period of October 1 – September 30. For facilities that have received Cap Loads in any other form, the Cap Loads will be modified accordingly when the permits are renewed.

Offsets have been incorporated into Cap Loads in several permits issued to date. From this point forward, permits will be issued with the WLAs as Cap Loads and will identify Offsets separately to facilitate nutrient trading activities and compliance with the TMDL.

Based upon the supplement the subject facility has been categorized as a Sector A discharger. The supplement defines Sector A as a sewage facility is considered significant if it has a design flow of at least 0.4 MGD.

Table 5 of the Phase 3 WIP (revised September 13, 2021) presents all NPDES permits for Significant Sewage dischargers with Cap Loads. The NPDES Permit No., phase, facility name, latest permit issuance date, expiration date, Cap Load compliance start date, TN and TP Cap Loads, and TN and TP Delivery Ratios are presented. In addition, if TN Offsets were incorporated into the TN Cap Loads when the permit was issued, the amount is shown; these Offsets will be removed from Cap Loads upon issuance of renewed permits to implement Section IV of this document (i.e., a facility may use Offsets for compliance but may not register them as credits).

The total nitrogen (TN) and total phosphorus (TP) cap loads itemized by Table 5 for the subject facility are as follows:

TN Cap Load (lbs/yr)	12,785
TN Delivery Ratio	0.88
TP Cap Load (lbs/yr)	1,705
TP Delivery Ratio	0.436

Expansions by any Significant Sewage discharger will not result in any increase in Cap Loads. Where non-significant facilities expand to a design flow of 0.4 MGD or greater, the lesser of baseline Cap Loads of 7,306 lbs/yr TN and 974 lbs/yr TP or existing performance will be used for permits, and the load will be moved from the Non-Significant sector load to the Significant Sewage sector load. If considered necessary for environmental protection, DEP may decide to move load from the Point Source Reserve to the Significant Sewage sector in the future.

The minimum monitoring frequency for TN species and TP in new or renewed NPDES permits for Significant Sewage dischargers is 2/week.

This facility is subject to Sector A monitoring requirements. Monitoring shall be required at least 2x/wk.

NPDES Permit Fact Sheet Martinsburg STP

Reporting

Cap Loads will be established in permits as Net Annual TN and TP loads (lbs/yr) that apply during the period of October 1 – September 30.

Facilities with NPDES permits must use DEP's eDMR system for reporting, except small flow treatment facilities. An Annual DMR must be submitted by the end of the Truing Period, November 28. As attachments to the Annual DMR a facility must submit a completed Annual Chesapeake Bay Spreadsheet, available through DEP's Supplemental Reports website, which contains an Annual Nutrient Monitoring worksheet and an Annual Nutrient Budget worksheet. This Spreadsheet will be submitted once per Compliance Year only, and reflect all nutrient sample results (for the period October 1 – September 30), Credit transactions (including the Truing Period) and Offsets applied during the Compliance Year.

5.5 Anti-Degradation Requirement

Chapter 93.4a of the PA regulations requires that surface water of the Commonwealth of Pennsylvania may not be degraded below levels that protect the existing uses. The regulations specifically state that Existing instream water uses and the level of water quality necessary to protect the existing uses shall be maintained and protected. Antidegradation requirements are implemented through DEP's guidance manual entitled Water Quality Antidegradation Implementation Guidance (Document #391-0300-02).

The policy requires DEP to protect the existing uses of all surface waters and the existing quality of High Quality (HQ) and Exceptional Value (EV) Waters. Existing uses are protected when DEP makes a final decision on any permit or approval for an activity that may affect a protected use. Existing uses are protected based upon DEP's evaluation of the best available information (which satisfies DEP protocols and Quality Assurance/Quality Control (QA/QC) procedures) that indicates the protected use of the waterbody.

For a new, additional, or increased point source discharge to an HQ or EV water, the person proposing the discharge is required to utilize a nondischarge alternative that is cost-effective and environmentally sound when compared with the cost of the proposed discharge. If a nondischarge alternative is not cost-effective and environmentally sound, the person must use the best available combination of treatment, pollution prevention, and wastewater reuse technologies and assure that any discharge is nondegrading. In the case of HQ waters, DEP may find that after satisfaction of intergovernmental coordination and public participation requirements lower water quality is necessary to accommodate important economic or social development in the area in which the waters are located. In addition, DEP will assure that cost-effective and reasonable best management practices for nonpoint source control in HQ and EV waters are achieved.

The subject facility's discharge will be to a non-special protection waters and the permit conditions are imposed to protect existing instream water quality and uses. Neither HQ waters or EV waters is impacted by this discharge.

5.6 Anti-Backsliding

Anti-backsliding is a federal regulation which prohibits a permit from being renewed, reissued, or modified containing effluent limitations which are less stringent than the comparable effluent limitations in the previous permit (40 CFR 122.I.1 and 40 CFR 122.I.2). A review of the existing permit limitations with the proposed permit limitations confirm that the facility is consistent with anti-backsliding requirements. The facility has proposed effluent limitations that are as stringent as the existing permit.

6.0 NPDES Parameter Details

The basis for the proposed sampling and their monitoring frequency that will appear in the permit for each individual parameter are itemized in this Section. The final limits are the more stringent of technology based effluent treatment (TBEL) requirements, water quality based (WQBEL) limits, TMDL, antidegradation, anti-degradation, or WET.

The reader will find in this section:

- a) a justification of recommended permit monitoring requirements and limitations for each parameter in the proposed NPDES permit;
- b) a summary of changes from the existing NPDES permit to the proposed permit; and
- c) a summary of the proposed NPDES effluent limits.

6.1 Recommended Monitoring Requirements and Effluent Limitations

A summary of the recommended monitoring requirements and effluent limitations are itemized in the tables. The tables are categorized by (a) Conventional Pollutants and Disinfection, (b) Nitrogen Species and Phosphorus, and (c) Toxics.

6.1.1 Conventional Pollutants and Disinfection

	Dannaid Liveriani		Martinsburg Borough MA; PA0028347					
Parameter	Permit Limitation Required by ¹ :		Recommendation					
		Monitoring:	The monitoring frequency shall be daily as a grab sample (Table 6-3).					
pH (S.U.)	TBEL	Effluent Limit:	Effluent limits may range from pH = 6.0 to 9.0					
p (e.e.,	.522	Rationale:	The monitoring frequency has been assigned in accordance with Table 6-3 and the effluent limits assigned by Chapter 95.2(1).					
		Monitoring:	The monitoring frequency shall be daily as a grab sample (Table 6-3).					
Dissolved	BPJ	Effluent Limit:	Effluent limits shall be greater than 5.0 mg/l.					
Oxygen	51.0	Rationale:	The monitoring frequency has been assigned in accordance with Table 6-3 and the effluent limits assigned by best professional judgement.					
		Monitoring:	The monitoring frequency shall be 1x/wk as a 24-hr composite sample (Table 6-3).					
		Effluent Limit:	Effluent limits shall not exceed 146 lbs/day and 25 mg/l as an average monthly.					
CBOD	TBEL	Rationale:	The monitoring frequency has been assigned in accordance with Table 6-3 and the effluent limits assigned by Chapter 92a.47(a)(1). WQM modeling indicates that the TBEL is more stringent than the WQBEL. Thus, the permit limit is confined to TBEL.					
			The monitoring frequency shall be 1x/wk as a 24-hr composite sample (Table 6-3).					
TSS TBEL/TMDL		Effluent Limit:	Effluent limits shall not exceed 63,875 lbs/yr, 175 lbs/day and 30 mg/l as an average monthly					
	TBEL/TMDL Rationale:		The monitoring frequency has been assigned in accordance with Table 6-3 and the effluent limits assigned by Chapter 92a.47(a)(1). While there is no WQM modeling for this paramethe permit limit for TSS is generally assigned similar effluent limits as CBOD or BOD. Since TBEL is more stringent than TBEL, TBEL will apply. The Plum Creek TMDL regulates sed loading from the facility. The TMDL assigned the wasteload allocation consistent with the permit-based value.					
		Monitoring:	The monitoring frequency shall be on a daily basis as a grab sample (Table 6-3).					
		Effluent Limit:	The average monthly limit should not exceed 0.37 mg/l as an average monthly and/or 1.20 mg as an instantaneous maximum.					
TRC	WQBEL	other forms of to be imposed shall be expre concentration Based on the facility calcula The monitorin	lorine in both combined (chloramine) and free form is extremely toxic to freshwater fish and a aquatic life (Implementation Guidance Total Residual Chlorine 1). The TRC effluent limitations of on a discharger shall be the more stringent of either the WQBEL or TBEL requirements and essed in the NPDES permit as an average monthly and instantaneous maximum effluent (Implementation Guidance Total Residual Chlorine 4). Stream flow rate (lowest 7-day flow rate in 10 years) and the design flow rate of the subject ated by the TRC Evaluation worksheet, the WQBEL is more stringent than the TBEL. In grequency has been assigned in accordance with Table 6-3. Site specific TRC study was deminimum values for chlorine demand included in TRC evaluation worksheet.					
		Monitoring:	The monitoring frequency shall be 1x/wk as a grab sample (Table 6-3).					
Fecal Coliform	TBEL	Effluent Limit:	Summer effluent limits shall not exceed 200 No./100 mL as a geometric mean. Winter effluent limits shall not exceed 2000 No./100 mL as a geometric mean.					
Comorni		Rationale:	The monitoring frequency has been assigned in accordance with Table 6-3 and the effluent limits assigned by Chapter 92a.47(a)(4) and 92a.47(a)(5).					
		Monitoring:	The monitoring frequency shall be 1x/quarter as a grab sample (SOP).					
	COD: Observe	Effluent Limit:	No effluent requirements.					
E. Coli	SOP; Chapter 92a.61	Rationale:	Consistent with the SOP- Establishing Effluent Limitations for Individual Sewage Permits (Revised March 22, 2019) and under the authority of Chapter 92a.61, the facility will be require to monitor for E.Coli.					

¹ The NPDES permit was limited by (a) anti-Backsliding, (b) Anti-Degradation, (c) SOP, (d) TBEL, (e) TMDL, (f) WQBEL, (g) WET, or (h) Other

² Monitoring frequency based on flow rate of 0.70 MGD.

³ Table 6-3 (Self Monitoring Requirements for Sewage Discharges) in Technical Guidance for the Development and Specification of Effluent Limitations and Other Permit Conditions in NPDES Permits) (Document # 362-0400-001) Revised 10/97

⁴ Water Quality Antidegradation Implementation Guidance (Document # 391-0300-002)

⁵ Chesapeake Bay Phase 3 Watershed Implementation Plan Wastewater Supplement, Revised September 13, 2021

6.1.2 Nitrogen Species and Phosphorus

Summary of Proposed NPDES Parameter Details for Nitrogen Species and Phosphorus

Martinsburg Borough MA; PA0028347 **Permit Limitation** Recommendation **Parameter** Required by 1: Monitoring: The monitoring frequency shall be 2x/wk as a 24-hr composite sample During the months of May 1 to October 31, effluent limits shall not exceed 11.5 lbs/day and 2.0 Effluent Limit: mg/l as an average monthly. During the months of November 1 to April 30, effluent limits shall Ammonia-**WQBEL** not exceed 35 lbs/day and 6.0 mg/l as an average monthly. Nitrogen Rationale: Water quality modeling recommends permit limits. Monitoring: The monitoring frequency shall be 2x/wk as a 24-hr composite sample Nitrate-Chesapeake Bay Effluent Limit: No effluent requirements. Nitrite as N **TMDL** Due to the Chesapeake Bay Implementation Plan, the facility is required to be monitored on a Rationale: frequency at least 2x/wk. Monitoring: The monitoring frequency shall be 1x/mo as a calculation. Total Effluent Limit: No effluent requirements. Chesapeake Bay Nitrogen **TMDL** Due to the Chesapeake Bay Implementation Plan, the facility is required to be monitored on a Rationale: frequency at least 1x/mo. Monitoring: The monitoring frequency shall be 2x/wk as a 24-hr composite sample Effluent Limit: No effluent requirements. Chesapeake Bay **TKN TMDL** Due to the Chesapeake Bay Implementation Plan, the facility is required to be monitored on a Rationale: frequency at least 2x/wk. Monitoring: The monitoring frequency shall be 2x/wk as a 24-hr composite sample Effluent Limit: Effluent limits shall not exceed 11.5 lbs/day and 2.0 mg/l as an average monthly. Total Antibacksliding The current permit limit for phosphorus was implemented to control nutrient problems in Plum **Phosphorus** Rationale: Creek. Due to antibacksliding regulations, the current permit shall continue to the proposed permit. Monitoring: The monitoring frequency shall be 1x/yr as a calculation Chesapeake Bay **Net Total** Effluent Limit: Effluent limits shall not exceed 12,785 lbs/day. Nitrogen **TMDL** Rationale: Due to the Chesapeake Bay Implementation Plan, the facility has a cap limit. The monitoring frequency shall be 1x/yr as a calculation Monitoring: **Net Total** Chesapeake Bay Effluent Limit: Effluent limits shall not exceed 1,705 lbs/day. Phosphorus **TMDL** Rationale: Due to the Chesapeake Bay Implementation Plan, the facility has a cap limit. Notes:

¹ The NPDES permit was limited by (a) anti-Backsliding, (b) Anti-Degradation, (c) SOP, (d) TBEL, (e) TMDL, (f) WQBEL, (g) WET, or (h) Other

² Monitoring frequency based on flow rate of 0.70 MGD.

³ Table 6-3 (Self Monitoring Requirements for Sewage Discharges) in Technical Guidance for the Development and Specification of Effluent Limitations and Other Permit Conditions in NPDES Permits) (Document # 362-0400-001) Revised 10/97

⁴ Water Quality Antidegradation Implementaton Guidance (Document # 391-0300-002)

⁵ Chesapeake Bay Phase 3 Watershed Implementation Plan Wastewater Supplement, Revised September 13, 2021

6.1.3 Toxics

Summary of Proposed NPDES Parameter Details for Toxics

Martinsburg Borough MA; PA0028347

Parameter	Permit Limitation Required by ¹ :		Recommendation
		Monitoring:	Monitoring shall be 2x/yr as a 24-hr composite sample
Total		Effluent Limit:	No effluent limits
Copper	WQBEL	Rationale:	Toxics Management Spreadsheet recommends monitoring. Monitoring shall occur to collect more samples to determine impacts. Pending favorable sampling results, future renewals may reduce or eliminate monitoring requirements
		Monitoring:	Monitoring shall be 2x/yr as a 24-hr composite sample
		Effluent Limit:	No effluent limits
Total Lead	WQBEL	Rationale:	Toxics Management Spreadsheet recommends effluent limits. Monitoring shall occur to collect more samples to determine impacts. Pending favorable sampling results, future renewals may reduce or eliminate monitoring requirements
		Monitoring:	Monitoring shall be 2x/yr as a 24-hr composite sample
		Effluent Limit:	No effluent limits
Total Zinc	WQBEL	Rationale:	Toxics Management Spreadsheet recommends monitoring. Monitoring shall occur to collect more samples to determine impacts. Pending favorable sampling results, future renewals may reduce or eliminate monitoring requirements
Notes:			

¹ The NPDES permit was limited by (a) anti-Backsliding, (b) Anti-Degradation, (c) SOP, (d) TBEL, (e) TMDL, (f) WQBEL, (g) WET, or (h) Other 2 Monitoring frequency based on flow rate of 0.70 MGD.

6.1.3.1 Implementation of Regulation- Chapter 92a.61

Chapter 92a.61 provides provisions to DEP to monitor for pollutants that may have an impact on the quality of waters of the Commonwealth. Based upon DEP policy directives issued on March 22, 2021 and in conjunction with EPA's 2017 Triennial Review, monitoring for E. Coli shall be required.

³ Table 6-3 (Self Monitoring Requirements for Sewage Discharges) in Technical Guidance for the Development and Specification of Effluent Limitations and Other Permit Conditions in NPDES Permits) (Document # 362-0400-001) Revised 10/97

⁴ Water Quality Antidegradation Implementation Guidance (Document # 391-0300-002)

⁵ Chesapeake Bay Phase 3 Watershed Implementation Plan Wastewater Supplement, Revised September 13, 2021

6.2 Summary of Changes From Existing Permit to Proposed Permit

A summary of how the proposed NPDES permit differs from the existing NPDES permit is summarized as follows.

	Changes in Permit Monitoring or Effluent Quality						
Parameter	Existing Permit	Draft Permit					
TSS	No annual loading	Consistent with the Plum Creek Headwaters Subwatershed Sediment TMDL, Figure 4 has a TSS TMDL loading of 63,875 lbs/yr.					
TRC	Monitoring is daily. Effluent limits are 0.5 mg/l as an average monthly and 1.6 mg/l as an instantaneous maximum.	Based upon site specific TRC study, the monitoring frequency is daily. The effluent limits shall be 0.37 mg/l and 1.20 mg/l as an instantaneous maximum					
E. Coli	No monitoring or effluent limits.	Consistent with the SOP- Establishing Effluent Limitations for Individual Sewage Permits (Revised March 22, 2019) and under the authority of Chapter 92a.61, the facility will be required to monitor for E.Coli on a 1x/quarter basis.					
Total Copper	No monitoring or effluent limits.	Monitoring shall be 2x/yr as a 24-hr composite. Pending favorable results, future renewals may reduce or eliminate monitoring requirements.					
Total Lead	No monitoring or effluent limits.	Monitoring shall be 2x/yr as a 24-hr composite. Pending favorable results, future renewals may reduce or eliminate monitoring requirements.					
Total Zinc	No monitoring or effluent limits.	Monitoring shall be 2x/yr as a 24-hr composite. Pending favorable results, future renewals may reduce or eliminate monitoring requirements.					

6.3.1 Summary of Proposed NPDES Effluent Limits

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

The proposed NPDES effluent limitations are summarized in the table below.

PART	A - EFFLUEN	T LIMITAT	TIONS, MONIT	TORING, RECORDK	EEPING AND	REPORTING REQUI	REMENTS			
I. A.	For Outfall	001	Latitude	40° 18' 37.68"	Longitude	78° 20′ 18.26°	River Mile Index	6.34,	Stream Code	16504
	Receiving Wa	aters:	Plum Creek ((WWF)						
	Type of Efflue	ent:	Sewage Efflu	ient						
	ū									

Based on the anticipated wastewater characteristics and flows described in the permit application and its supporting documents and/or amendments, the following effluent limitations and monitoring requirements apply (see also Additional Requirements and Footnotes).

		Monitoring Requirement						
Parameter	Mass Units	s (lbs/day) (1)		Concentrati	Minimum (2)	Required		
i didilietei	Average Monthly	Weekly Average	Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report Daily Max	XXX	XXX	xxx	XXX	Continuous	Measured
pH (S.U.)	XXX	XXX	6.0 Inst Min	XXX	XXX	9.0	1/day	Grab
Dissolved Oxygen	XXX	XXX	5.0 Inst Min	XXX	XXX	XXX	1/day	Grab
Total Residual Chlorine (TRC)	XXX	XXX	XXX	0.37	XXX	1.20	1/day	Grab
Carbonaceous Biochemical Oxygen Demand (CBOD5)	146	233	XXX	25.0	40.0	50	1/week	24-Hr Composite
Biochemical Oxygen Demand (BOD5) Raw Sewage Influent	Report	Report Daily Max	XXX	Report	XXX	xxx	1/week	24-Hr Composite
Total Suspended Solids	175	263	XXX	30.0	45.0	60	1/week	24-Hr Composite
Total Suspended Solids Raw Sewage Influent	Report	Report Daily Max	XXX	Report	XXX	XXX	1/week	24-Hr Composite
TSS (Load, lbs/mo or lbs/year) (lbs/year)	XXX	63875 Total Annual	XXX	XXX	XXX	XXX	1/year	Calculation
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	XXX	XXX	XXX	2000 Geo Mean	XXX	10000	1/week	Grab

Outfall 001, Continued (from Permit Effective Datethrough Permit Expiration Date)

			Effluent L	imitations			Monitoring Re	quirements
Parameter	Mass Units	(lbs/day) (1)		Concentrat	Minimum (2)	Required		
	Average Monthly	Weekly Average	Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type
Fecal Coliform (No./100 ml) May 1 - Sep 30	XXX	XXX	XXX	200 Geo Mean	XXX	1000	1/week	Grab
E. Coli (No./100 ml)	XXX	XXX	XXX	XXX	Report Daily Max	XXX	1/quarter	Grab
Ammonia-Nitrogen Nov 1 - Apr 30	35	XXX	XXX	6.0	XXX	12	2/week	24-Hr Composite
Ammonia-Nitrogen May 1 - Oct 31	11.5	XXX	XXX	2.0	XXX	4	2/week	24-Hr Composite
Total Phosphorus	11.5	XXX	XXX	2.0	XXX	4	2/week	24-Hr Composite
Copper, Total	Report SEMI AVG	XXX	XXX	Report SEMI AVG	XXX	XXX	1/6 months	24-Hr Composite
Lead, Total	Report SEMI AVG	XXX	XXX	Report SEMI AVG	XXX	XXX	1/6 months	24-Hr Composite
Zinc, Total	Report SEMI AVG	XXX	XXX	Report SEMI AVG	XXX	XXX	1/6 months	24-Hr Composite

Samples taken in compliance with the monitoring requirements specified above shall be taken at the following location(s):

at Outfall 001

The permittee is authorized to discharge during the period from <u>Permit Effective Date</u> through <u>Permit Expiration Date</u>.

PART	A - EFFLUENT	LIMITAT	TIONS, MONIT	ORING, RECORDK	EEPING AND	REPORTING RE	QUIREMENT	S			
I.B.	For Outfall	001	, Latitude	40° 18' 37.68"	Longitude	78° 20′ 18.26°	, River M	lile Index	6.34 .	Stream Code	16504
	Receiving Wa	ters:	Plum Creek (WWF)							
	Type of Efflue	nt:	Sewage Efflu	ent							

Based on the anticipated wastewater characteristics and flows described in the permit application and its supporting documents and/or amendments, the following effluent limitations and monitoring requirements apply (see also Additional Requirements and Footnotes).

		Monitoring Requirements						
Parameter	Mass Units	(lbs/day) (1)		Concentrat	Minimum (2)	Required		
1 didiletei	Monthly	Annual	Monthly	Monthly Average	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
AmmoniaN	Report	Report	XXX	Report	XXX	XXX	2/week	24-Hr Composite
KjeldahlN	Report	XXX	XXX	Report	XXX	xxx	2/week	24-Hr Composite
Nitrate-Nitrite as N	Report	XXX	XXX	Report	XXX	XXX	2/week	24-Hr Composite
Total Nitrogen	Report	Report	XXX	Report	XXX	XXX	1/month	Calculation
Total Phosphorus	Report	Report	xxx	Report	XXX	XXX	2/week	24-Hr Composite
Net Total Nitrogen	XXX	12785	XXX	XXX	XXX	XXX	1/year	Calculation
Net Total Phosphorus	XXX	1705	XXX	XXX	XXX	XXX	1/year	Calculation

Samples taken in compliance with the monitoring requirements specified above shall be taken at the following location(s):

at Outfall 001

Footnotes:

6.3.2 Summary of Proposed Permit Part C Conditions

The subject facility has the following Part C conditions.

- Chlorine Minimization
- SBR Batch Discharge Condition
- Hauled-in Waste Restrictions
- Chesapeake Bay Nutrient Definitions
- Solids Management for Non-Lagoon Treatment Systems

^{1.} The permittee is authorized to discharge during the period from Permit Effective Date through Permit Expiration Date.

See Part C for Chesapeake Bay Requirements.
 This is the minimum number of sampling events required. Permittees are encouraged, and it may be advantageous in demonstrating compliance, to perform more than the minimum number of sampling events required.

	Tools and References Used to Develop Permit
\square	TWOMAN WELL AND LIKE
	WQM for Windows Model (see Attachment)
	Toxics Management Spreadsheet (see Attachment)
	TRC Model Spreadsheet (see Attachment)
	Temperature Model Spreadsheet (see Attachment)
	Water Quality Toxics Management Strategy, 361-0100-003, 4/06.
	Technical Guidance for the Development and Specification of Effluent Limitations, 362-0400-001, 10/97.
	Policy for Permitting Surface Water Diversions, 362-2000-003, 3/98.
	Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 362-2000-008, 11/96.
	Technology-Based Control Requirements for Water Treatment Plant Wastes, 362-2183-003, 10/97.
	Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 362-2183-004, 12/97.
	Pennsylvania CSO Policy, 385-2000-011, 9/08.
	Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03.
	Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 391-2000-002, 4/97.
	Determining Water Quality-Based Effluent Limits, 391-2000-003, 12/97.
	Implementation Guidance Design Conditions, 391-2000-006, 9/97.
	Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen, Version 1.0, 391-2000-007, 6/2004.
	Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 391-2000-008, 10/1997.
	Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments, 391-2000-010, 3/99.
	Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 391-2000-011, 5/2004.
	Implementation Guidance for Section 93.7 Ammonia Criteria, 391-2000-013, 11/97.
	Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 391-2000-014, 4/2008.
	Implementation Guidance Total Residual Chlorine (TRC) Regulation, 391-2000-015, 11/1994.
	Implementation Guidance for Temperature Criteria, 391-2000-017, 4/09.
	Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 391-2000-018, 10/97.
	Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 391-2000-019, 10/97.
	Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 391-2000-021, 3/99.
	Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 391-2000-022, 3/1999.
	Design Stream Flows, 391-2000-023, 9/98.
	Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 391-2000-024, 10/98.
	Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 391-3200-013, 6/97.
	Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07.
	SOP: New and Reissuance Sewage Individual NPDES Permit Applications; revised 2/3/2022
	Other:

Attachment A Stream Stats/Gauge Data

Table 1 13

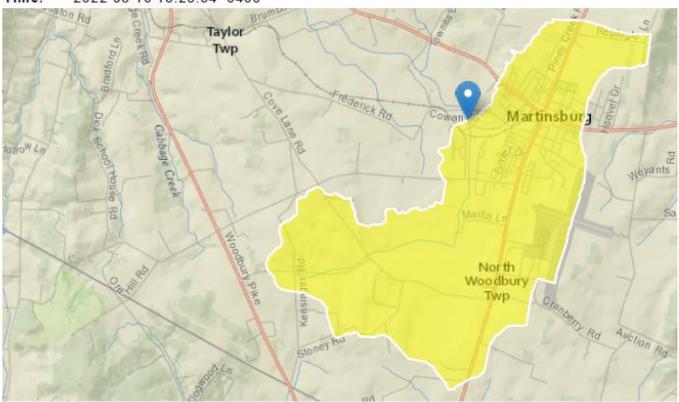
Table 1. List of U.S. Geological Survey streamgage locations in and near Pennsylvania with updated streamflow statistics.—Continued [Latitude and Longitude in decimal degrees; mi², square miles]

Streamgage number	Streamgage name	Latitude	Longitude	Drainage area (mi²)	Regulated ¹
01541303	West Branch Susquehanna River at Hyde, Pa.	41.005	-78.457	474	Y
01541308	Bradley Run near Ashville, Pa.	40.509	-78.584	6.77	N
01541500	Clearfield Creek at Dimeling, Pa.	40.972	-78.406	371	Y
01542000	Moshannon Creek at Osceola Mills, Pa.	40.850	-78.268	68.8	N
01542500	WB Susquehanna River at Karthaus, Pa.	41.118	-78.109	1,462	Y
01542810	Waldy Run near Emporium, Pa.	41.579	-78.293	5.24	N
01543000	Driftwood Branch Sinnemahoning Creek at Sterling Run, Pa.	41.413	-78.197	272	N
01543500	Sinnemahoning Creek at Sinnemahoning, Pa.	41.317	-78.103	685	N
01544000	First Fork Sinnemahoning Creek near Sinnemahoning, Pa.	41.402	-78.024	245	Y
01544500	Kettle Creek at Cross Fork, Pa.	41.476	-77.826	136	N
01545000	Kettle Creek near Westport, Pa.	41.320	-77.874	233	Y
01545500	West Branch Susquehanna River at Renovo, Pa.	41.325	-77.751	2,975	Y
01545600	Young Womans Creek near Renovo, Pa.	41.390	-77.691	46.2	N
01546000	North Bald Eagle Creek at Milesburg, Pa.	40.942	-77.794	119	N
01546400	Spring Creek at Houserville, Pa.	40.834	-77.828	58.5	N
01546500	Spring Creek near Axemann, Pa.	40.890	-77.794	87.2	N
01547100	Spring Creek at Milesburg, Pa.	40.932	-77.786	142	N
01547200	Bald Eagle Creek below Spring Creek at Milesburg, Pa.	40.943	-77.786	265	N
01547500	Bald Eagle Creek at Blanchard, Pa.	41.052	-77.604	339	Y
01547700	Marsh Creek at Blanchard, Pa.	41.060	-77.606	44.1	N
01547800	South Fork Beech Creek near Snow Shoe, Pa.	41.024	-77.904	12.2	N
01547950	Beech Creek at Monument, Pa.	41.112	-77.702	152	N
01548005	Bald Eagle Creek near Beech Creek Station, Pa.	41.081	-77.549	562	Y
01548500	Pine Creek at Cedar Run, Pa.	41.522	-77.447	604	N
01549000	Pine Creek near Waterville, Pa.	41.313	-77.379	750	N
01549500	Blockhouse Creek near English Center, Pa.	41.474	-77.231	37.7	N
01549700	Pine Creek below Little Pine Creek near Waterville, Pa.	41.274	-77.324	944	Y
01550000	Lycoming Creek near Trout Run, Pa.	41.418	-77.033	173	N
01551500	WB Susquehanna River at Williamsport, Pa.	41.236	-76.997	5,682	Y
01552000	Loyalsock Creek at Loyalsockville, Pa.	41.325	-76.912	435	N
01552500	Muncy Creek near Sonestown, Pa.	41.357	-76.535	23.8	N
01553130	Sand Spring Run near White Deer, Pa.	41.059	-77.077	4.93	N
01553500	West Branch Susquehanna River at Lewisburg, Pa.	40.968	-76.876	6,847	Y
01553700	Chillisquaque Creek at Washingtonville, Pa.	41.062	-76.680	51.3	N
01554000	Susquehanna River at Sunbury, Pa.	40.835	-76.827	18,300	Y
01554500	Shamokin Creek near Shamokin, Pa.	40.810	-76.584	54.2	N
01555000	Penns Creek at Penns Creek, Pa.	40.867	-77.048	301	N
01555500	East Mahantango Creek near Dalmatia, Pa.	40.611	-76.912	162	N
01556000	Frankstown Branch Juniata River at Williamsburg, Pa.	40.463	-78.200	291	N
01557500	Bald Eagle Creek at Tyrone, Pa.	40.684	-78.234	44.1	N
01558000	Little Juniata River at Spruce Creek, Pa.	40.613	-78.141	220	N
01559000	Juniata River at Huntingdon, Pa.	40.485	-78.019	816	LF
01559500	Standing Stone Creek near Huntingdon, Pa.	40.524	-77.971	128	N
		39.978	-78.619	5.28	
01559700	Sulphur Springs Creek near Manns Choice, Pa.	39.910	-/0.019	3.20	N

26 Selected Streamflow Statistics for Streamgage Locations in and near Pennsylvania

Table 2. Selected low-flow statistics for streamgage locations in and near Pennsylvania.—Continued [ft³/s; cubic feet per second; —, statistic not computed; <, less than]

Streamgage number	Period of record used in analysis¹	Number of years used in analysis	1-day, 10-year (ft³/s)	7-day, 10-year (ft³/s)	7-day, 2-year (ft³/s)	30-day, 10-year (ft³/s)	30-day, 2-year (ft³/s)	90-day, 10-year (ft³/s)
01546000	1912-1934	17	1.8	2.2	6.8	3.7	12.1	11.2
01546400	1986-2008	23	13.5	14.0	19.6	15.4	22.3	18.7
01546500	1942-2008	67	26.8	29.0	41.3	31.2	44.2	33.7
01547100	1969-2008	40	102	105	128	111	133	117
01547200	1957-2008	52	99.4	101	132	106	142	115
01547500	21971-2008	38	28.2	109	151	131	172	153
01547500	31956-1969	14	90.0	94.9	123	98.1	131	105
01547700	1957-2008	52	.5	.6	2.7	1.1	3.9	2.:
01547800	1971-1981	11	1.6	1.8	2.4	2.1	2.9	3.
01547950	1970-2008	39	12.1	13.6	28.2	17.3	36.4	23.
01548005	21971-2000	25	142	151	206	178	241	223
01548005	31912-1969	58	105	114	147	125	165	140
01548500	1920-2008	89	21.2	24.2	50.1	33.6	68.6	49.
01549000	1910-1920	11	26.0	32.9	78.0	46.4	106	89.
01549500	1942-2008	67	.6	.8	2.5	1.4	3.9	2.
01549700	1959-2008	50	33.3	37.2	83.8	51.2	117	78.
01550000	1915-2008	94	6.6	7.6	16.8	11.2	24.6	18.
01551500	21963-2008	46	520	578	1,020	678	1,330	919
01551500	31901-1961	61	400	439	742	523	943	752
01552000	1927-2008	80	20.5	22.2	49.5	29.2	69.8	49.
01552500	1942-2008	67	.9	1.2	3.1	1.7	4.4	3.
01553130	1969-1981	13	1.0	1.1	1.5	1.3	1.8	1.
01553500	² 1968–2008	41	760	838	1,440	1,000	1,850	1,470
01553500	³1941–1966	26	562	619	880	690	1,090	881
01553700	1981-2008	28	9.1	10.9	15.0	12.6	17.1	15.
01554000	21981-2008	28	1,830	1,990	3,270	2,320	4,210	3,160
01554000	31939–1979	41	1,560	1,630	2,870	1,880	3,620	2,570
01554500	1941–1993	53	16.2	22.0	31.2	25.9	35.7	31.
01555000	1931–2008	78	33.5	37.6	58.8	43.4	69.6	54.
01555500	1931-2008	78	4.9	6.5	18.0	9.4	24.3	16.
01556000	1918-2008	91	43.3	47.8	66.0	55.1	75.0	63.
01557500	1946-2008	63	2.8	3.2	6.3	4.2	8.1	5.
01558000	1940-2008	69	56.3	59.0	79.8	65.7	86.2	73.
01559000	1943-2008	66	104	177	249	198	279	227
01559500	1931–1958	28	9.3	10.5	15.0	12.4	17.8	15.
01559700 01560000	1963-1978 1941-2008	16 68	.1 8.5	.1 9.4	.2 15.6	.1 12.0	.3 20.2	16.
01561000		27	8.3 .4	.5	1.6	.8	20.2	10.
	1932-1958							
01562000	1913-2008	96 27	64.1	67.1	106	77.4	122 5.4	94.
01562500	1931–1957	27	1.1	1.6	3.8	2.3		3.
01562200	21974-2008	35	_	_	- 061	112	266	129
01563200	31040 1070	26						
01563200	31948-1972	25	10.3	28.2	86.1	64.5	113	95.
	31948-1972 21974-2008 31939-1972	25 35 34	10.3 384 153	28.2 415 242	519 343	441 278	580 399	493 333


StreamStats Report

Region ID: PA

Workspace ID: PA20220316172832546000

Clicked Point (Latitude, Longitude): 40.31046, -78.33844

Time: 2022-03-16 13:28:54 -0400

Martinsburg Borough PA0028347 Modeling Point #1 March 2022

Parameter			
Code	Parameter Description	Value	Unit
DRNAREA	Area that drains to a point on a stream	4.97	square miles
PRECIP	Mean Annual Precipitation	37	inches
STRDEN	Stream Density total length of streams divided by	1.74	miles per
	drainage area		square mile
ROCKDEP	Depth to rock	5.7	feet
CARBON	Percentage of area of carbonate rock	95.67	percent

Low-Flow Statistics Parameters [Low Flow Region 2]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	4.97	square miles	4.93	1280
PRECIP	Mean Annual Precipitation	37	inches	35	50.4
STRDEN	Stream Density	1.74	miles per square mile	0.51	3.1
ROCKDEP	Depth to Rock	5.7	feet	3.32	5.65
CARBON	Percent Carbonate	95.67	percent	0	99

Low-Flow Statistics Disclaimers [Low Flow Region 2]

One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors

Low-Flow Statistics Flow Report [Low Flow Region 2]

Statistic	Value	Unit
7 Day 2 Year Low Flow	1.33	ft^3/s
30 Day 2 Year Low Flow	1.44	ft^3/s
7 Day 10 Year Low Flow	0.959	ft^3/s
30 Day 10 Year Low Flow	1.02	ft^3/s
90 Day 10 Year Low Flow	1.09	ft^3/s

Low-Flow Statistics Citations

Stuckey, M.H.,2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006-5130, 84 p. (http://pubs.usgs.gov/sir/2006/5130/)

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

NPDES Permit Fact Sheet Martinsburg STP

USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the functionality of the software and related material nor shall the fact of release constitute any such warranty. Furthermore, the software is released on condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized use.

USGS Product Names Disclaimer: Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Application Version: 4.7.0

StreamStats Services Version: 1.2.22

NSS Services Version: 2.1.2

StreamStats Report

Region ID: PA

Workspace ID: PA20220316173129695000

Clicked Point (Latitude, Longitude): 40.35223, -78.40655

Time: 2022-03-16 13:31:49 -0400

Martinsburg Borough PA0028347 Modeling Point #2 March 2022

Parameter			
Code	Parameter Description	Value	Unit
DRNAREA	Area that drains to a point on a stream	32.1	square miles
PRECIP	Mean Annual Precipitation	37	inches
STRDEN	Stream Density total length of streams divided by drainage area	1.99	miles per square mile
ROCKDEP	Depth to rock	5.5	feet
CARBON	Percentage of area of carbonate rock	68.13	percent

Low-Flow Statistics Parameters [Low Flow Region 2]

Parameter Code	Parameter Name	Value Units	Min Limit	Max Limit
DRNAREA	Drainage Area	32.1 square miles	4.93	1280
PRECIP	Mean Annual Precipitation	37 inches	35	50.4
STRDEN	Stream Density	1.99 miles per squ mile	are 0.51	3.1
ROCKDEP	Depth to Rock	5.5 feet	3.32	5.65
CARBON	Percent Carbonate	68.13 percent	0	99

Low-Flow Statistics Flow Report [Low Flow Region 2]

PII: Prediction Interval-Lower, Plu: Prediction Interval-Upper, ASEp: Average Standard Error of Prediction, SE: Standard Error (other -- see report)

Statistic	Value	Unit	SE	ASEp
7 Day 2 Year Low Flow	6.9	ft^3/s	38	38
30 Day 2 Year Low Flow	7.71	ft^3/s	33	33
7 Day 10 Year Low Flow	5.02	ft^3/s	51	51
30 Day 10 Year Low Flow	5.46	ft^3/s	46	46
90 Day 10 Year Low Flow	6.08	ft^3/s	36	36

Low-Flow Statistics Citations

Stuckey, M.H.,2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006-5130, 84 p. (http://pubs.usgs.gov/sir/2006/5130/)

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the

NPDES Permit Fact Sheet Martinsburg STP

functionality of the software and related material nor shall the fact of release constitute any such warranty. Furthermore, the software is released on condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized use.

USGS Product Names Disclaimer: Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Application Version: 4.7.0

StreamStats Services Version: 1.2.22

NSS Services Version: 2.1.2

Attachment B

WQM 7.0 Modeling Output Values
Toxics Management Spreadsheet Output
Values

WQM 7.0 Effluent Limits

	SWP Basin Stream 11A 165			Stream Name	_		
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
6.340	Martinsburg STP	PA0028347	0.700	CBOD5	25		
				NH3-N	2.19	4.38	
				Dissolved Oxygen			5

WQM 7.0 Wasteload Allocations

		•	(141 / 1	o mas	CIOUU	Allo	Cutio	110		
	SWP Basin S	tream C	<u>ode</u>			Stream	Name			
	11A	16504				PLUM (CREEK			
NH3-N	Acute Allocat	ions								
RMI	Discharge Na	me Cr	seline iterion ng/L)	Baseline WLA (mg/L)	Multiple Criterio (mg/L)	n '	ultiple WLA mg/L)	Critical Reach	Percent Reductio	
6.34	0 Martinsburg ST	P	7.82	13.19	7.	82	13.19	0	0	_
NH3-N	Chronic Alloc Discharge Nam	Base ne Crite		Baseline WLA (mg/L)	Multiple Criterion (mg/L)	W	tiple 'LA g/L)	Critical Reach	Percent Reduction	_
6.34	0 Martinsburg ST	P	1.17	2.19	1.	17	2.19	0	0	
Dissolve	ed Oxygen Al	locatio		BOD5	NH3	3-N	Dissolv	ved Oxygen		_
RMI	Discharge	Name	Baselin (mg/L)	e Multiple		Multiple (mg/L)		e Multiple	Critical	Percen Reduction
6.3	4 Martinsburg ST	Р	2	5 25	2.19	2.19	5	5	0	0

Input Data WQM 7.0

						put Dut	u 11 Q.							
	SWP Basir			Stre	eam Nam	e	RMI	Eleva (ft		Drainage Area (sq mi)	Slop (ft/f	Witho	VS Irawal gd)	Apply FC
	11A	165	504 PLUM	CREEK			6.3	40 13	37.00	4.9	7 0.00	000	0.00	•
						Stream Dat	ta							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	Tributary p pl	1	<u>Strear</u> Temp	<u>n</u> pH	
cond.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C)		
Q7-10 Q1-10 Q30-10	0.164	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000)	0.00	0.00	2	2.00	7.84	0.00	0.00	
						Discharge	Data						1	
			Name	Per	rmit Numl	Disc	Disc Flow	Flow	Res Fa	erve Te	isc emp °C)	Disc pH		
		Martir	nsburg STF	PA(0028347	0.700	0 0.700	00 0.700	00	0.000	25.00	7.24		
						Parameter	Data							
			ı	Paramete	r Name				tream Conc	Fate Coef				
	_					(n	ng/L) (r	ng/L) (r	mg/L)	(1/days)				
			CBOD5				25.00	2.00	0.00	1.50				
			Dissolved	Oxygen			5.00	8.24	0.00	0.00				
			NH3-N				25.00	0.00	0.00	0.70				

Input Data WQM 7.0

SWP Stream Stream Name RMI Elevation Drainage Slope Area (sq mi) (ft/ft)	PWS A Withdrawal (mgd)
Stream Data LFY Trib Stream Rch Rch WD Ratio Rch Rch Tributary	0.00
LFY Trib Stream Rch Rch WD Ratio Rch Rch <u>Tributary</u>	
Cond. Time	<u>Stream</u> np pH
(cfsm) (cfs) (cfs) (days) (fps) (ft) (ft) (°C) (°C))
Q7-10	0.00 0.00
Discharge Data	
Existing Permitted Design Disc Disc Disc Disc Disc Disc Disc Reserve Temp pl Name Permit Number Flow Flow Factor (mgd) (mgd) (mgd) (°C)	sc hH
0.0000 0.0000 0.0000 0.000 25.00	7.00
Parameter Data	
Disc Trib Stream Fate Conc Conc Conc Coef Parameter Name	
(mg/L) (mg/L) (mg/L) (1/days)	
CBOD5 25.00 2.00 0.00 1.50	
Dissolved Oxygen 3.00 8.24 0.00 0.00	
NH3-N 25.00 0.00 0.00 0.70	

WQM 7.0 D.O.Simulation

SWP Basin S	Stream Code 16504			Stream Name PLUM CREEK	
RMI 6.340	Total Discharge 0.70) Ana	lysis Temperature 23.710	e (ºC) Analysis pH 7.409
Reach Width (ft) 13.457	Reach De 0.58			Reach WDRatio 23.159	Reach Velocity (fps) 0.243
Reach CBOD5 (mg/L) 15.11 Reach DO (mg/L) 6.394	Reach Kc (1.36 Reach Kr (66.92	9 1/days)	<u>R</u>	each NH3-N (mg/ 1.25 <u>Kr Equation</u> Tsivoglou	/L) Reach Kn (1/days) 0.931 Reach DO Goal (mg/L) 5
Reach Travel Time (days 0.488	TravTime (days)	Subreach CBOD5 (mg/L)	Results NH3-N (mg/L)	D.O. (mg/L)	
	0.049		1.19 1.14	7.71 7.71	
	0.146 0.195	11.91	1.09	7.71 7.71 7.71	
	0.244	10.17	1.00	7.71	
	0.293 0.342		0.95 0.91	7.71 7.71	
	0.390 0.439	7.41	0.87 0.83	7.71 7.71	
	0.488	6.84	0.79	7.71	

WQM 7.0 Hydrodynamic Outputs

	SW	P Basin	Strea	m Code				Stream	Name			
	11A 16504					PLUM CREEK						
RMI	Stream Flow	PWS With		Disc Analysis	Reach Slope	Depth	Width	W/D Ratio	Velocity	Trav	Analysis Temp	Analysis pH
	(cfs)	(cfs)	Flow (cfs)	Flow (cfs)	(ft/ft)	(ft)	(ft)		(fps)	Time (days)	(°C)	
Q7-10 Flow												
6.340	0.82	0.00	0.82	1.0829	0.02655	.581	13.46	23.16	0.24	0.488	23.71	7.41
Q1-1	0 Flow											
6.340	0.74	0.00	0.74	1.0829	0.02655	NA	NA	NA	0.24	0.499	23.78	7.40
Q30-	10 Flow	,										
6.340	0.94	0.00	0.94	1.0829	0.02655	NA	NA	NA	0.25	0.471	23.61	7.43

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.91	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.15	Temperature Adjust Kr	✓
D.O. Saturation	90.00%	Use Balanced Technology	✓
D.O. Goal	5		

Toxics Management Spreadsheet Version 1.3, March 2021

Discharge Information

Instructions	Discha	ge Stream				
Facility:	Martinsb	urg Borough		NPDES Permit No.:	PA0028347	Outfall No.: 001
Evaluation T	ype: N	lajor Sewage / Ind	dustrial Waste	Wastewater Descrip	tion: Sewage effluent	

	Discharge Characteristics											
Design Flow	Hardness (mg/l)*	pH (SU)*	P	artial Mix Fa	actors (PMF	s)	Complete Mix	(Times (min)				
(MGD)*	naruness (mg/i)	pn (30)	AFC	CFC	THH	CRL	Q ₇₋₁₀	Q_h				
0.7	100	7.24										

					0 if lef	t blank	0.5 if le	eft blank	0) if left blan	k	1 if left blank	
	Discharge Pollutant	Units	Ma	x Discharge Conc	Trib Conc	Stream Conc	Daily CV	Hourly CV	Strea m CV	Fate Coeff	FOS		Chem Transl
	Total Dissolved Solids (PWS)	mg/L		1010									
7	Chloride (PWS)	mg/L		476									
Group	Bromide	mg/L	<	0.036									
ច	Sulfate (PWS)	mg/L		37									
	Fluoride (PWS)	mg/L											
	Total Aluminum	μg/L											
	Total Antimony	μg/L											
	Total Arsenic	μg/L											
	Total Barium	μg/L											
	Total Beryllium	μg/L											
	Total Boron	μg/L											
	Total Cadmium	μg/L											
	Total Chromium (III)	μg/L											
	Hexavalent Chromium	μg/L											
	Total Cobalt	μg/L											
	Total Copper	mg/L		0.00396									
2	Free Cyanide	μg/L											
Group	Total Cyanide	μg/L											
5	Dissolved Iron	μg/L											
	Total Iron	μg/L											
	Total Lead	mg/L		0.00533									
	Total Manganese	μg/L											
	Total Mercury	μg/L											
	Total Nickel	μg/L											
	Total Phenols (Phenolics) (PWS)	μg/L											
	Total Selenium	μg/L											
	Total Silver	μg/L											
	Total Thallium	μg/L											
	Total Zinc	mg/L		0.038									
	Total Molybdenum	μg/L											
\vdash	Acrolein	μg/L	<										
	Acrylamide	μg/L	<										
	Acrylonitrile	μg/L	<										
	Benzene	μg/L	<										
	Bromoform	μg/L	<										

1	Carbon Tetrachloride	μg/L	<					
	Chlorobenzene	μg/L						
	Chlorodibromomethane	μg/L	<					
	Chloroethane	μg/L	<					
			<					
	2-Chloroethyl Vinyl Ether	μg/L	<					
	Chloroform Dichlorobromomethane	μg/L						
		μg/L	<					
	1,1-Dichloroethane	μg/L	<					
2	1,2-Dichloroethane	μg/L	<					
Group	1,1-Dichloroethylene	μg/L	<					
18	1,2-Dichloropropane	μg/L	<					
	1,3-Dichloropropylene	μg/L	<					
	1,4-Dioxane	μg/L	<					
	Ethylbenzene	μg/L	<					
	Methyl Bromide	μg/L	<					
	Methyl Chloride	μg/L	<					
	Methylene Chloride	μg/L	<					
	1,1,2,2-Tetrachloroethane	μg/L	<					
	Tetrachloroethylene	μg/L	<					
	Toluene	μg/L	<					
	1,2-trans-Dichloroethylene	μg/L	<					
	1,1,1-Trichloroethane	μg/L	٧					
	1,1,2-Trichloroethane	μg/L	<					
	Trichloroethylene	μg/L	<					
	Vinyl Chloride	μg/L	<					
	2-Chlorophenol	μg/L	<					
	2,4-Dichlorophenol	μg/L	<					
	2,4-Dimethylphenol	μg/L	<					
	4,6-Dinitro-o-Cresol	μg/L	<					
4	2,4-Dinitrophenol	μg/L	<					
Group	2-Nitrophenol	μg/L	<					
12	4-Nitrophenol	μg/L	<					
	p-Chloro-m-Cresol	μg/L	<					
	Pentachlorophenol	μg/L	<					
	Phenol	μg/L	<					
	2,4,6-Trichlorophenol	μg/L	<					
\vdash	Acenaphthene	μg/L	<					
	Acenaphthylene	µg/L	<					
	Anthracene	μg/L	<					
	Benzidine	μg/L	<					
	Benzo(a)Anthracene	μg/L	<					
	Benzo(a)Pyrene	μg/L	<					
	3,4-Benzofluoranthene		<					
		μg/L	-					
	Benzo(ghi)Perylene	µg/L	<					
	Benzo(k)Fluoranthene Bis(2-Chloroethoxy)Methane	µg/L	<					
	Bis(2-Chloroethoxy)Methane Bis(2-Chloroethyl)Ether	µg/L	<					
	Bis(2-Chloroisopropyl)Ether	µg/L	<					
	Bis(2-Chlorolsopropyl)Ether Bis(2-Ethylhexyl)Phthalate	µg/L	<					
		µg/L	<					
	4-Bromophenyl Phenyl Ether	μg/L	-					
	Butyl Benzyl Phthalate	µg/L	<					
	2-Chloronaphthalene	μg/L	<					
	4-Chlorophenyl Phenyl Ether	μg/L	<					
	Chrysene	μg/L	<					
	Dibenzo(a,h)Anthrancene	μg/L	<					
	1,2-Dichlorobenzene	μg/L	<					
	1,3-Dichlorobenzene	μg/L	<					
2	1,4-Dichlorobenzene	μg/L	<					
후	3,3-Dichlorobenzidine	μg/L	<					
Group	Diethyl Phthalate	μg/L	<					
	Dimethyl Phthalate	μg/L	<					
	Di-n-Butyl Phthalate	μg/L	<					
1	2,4-Dinitrotoluene	μg/L	<					

I	2,6-Dinitrotoluene	μg/L	<						
	Di-n-Octyl Phthalate	μg/L	<		-				
	1,2-Diphenylhydrazine	μg/L	<						
			_		-				
	Fluoranthene	μg/L	<						
	Fluorene	μg/L	<						
	Hexachlorobenzene	μg/L	<						
	Hexachlorobutadiene	μg/L	<						
	Hexachlorocyclopentadiene	μg/L	<						
	Hexachloroethane	μg/L	<						
	Indeno(1,2,3-cd)Pyrene	μg/L	<						
	Isophorone	μg/L	<						
	Naphthalene	μg/L	<						
	Nitrobenzene	μg/L	<						
	n-Nitrosodimethylamine	μg/L	<						
	n-Nitrosodi-n-Propylamine	μg/L	<						
	n-Nitrosodiphenylamine	μg/L	<						
	Phenanthrene	μg/L	<						
	Pyrene	μg/L	<						
	1,2,4-Trichlorobenzene	μg/L	<						
	Aldrin	μg/L	<						
	alpha-BHC	μg/L	<						
	beta-BHC	μg/L	<						
	gamma-BHC	μg/L	<						
	delta BHC	μg/L	<						
	Chlordane	μg/L	<						
	4.4-DDT	µg/L	<		-				
	4.4-DDE	µg/L	<						
	4,4-DDD	μg/L	<						
	Dieldrin		<		-				
	alpha-Endosulfan	µg/L	<		-				
	aipna-⊏ndosulfan beta-Endosulfan	μg/L	_						
9		μg/L	<						
9	Endosulfan Sulfate	μg/L	<		-				
Group (Endrin	μg/L	<						
g	Endrin Aldehyde	μg/L	<						
	Heptachlor	μg/L	<		-				
	Heptachlor Epoxide	μg/L	<						
	PCB-1016	μg/L	<						
	PCB-1221	μg/L	<						
	PCB-1232	μg/L	<						
	PCB-1242	μg/L	<						
	PCB-1248	μg/L	<						
	PCB-1254	μg/L	<						
	PCB-1260	μg/L	<						
	PCBs, Total	μg/L	<						
	Toxaphene	μg/L	<						
	2,3,7,8-TCDD	ng/L	<						
	Gross Alpha	pCi/L							
	Total Beta	pCi/L	<						
Group	Radium 226/228	pCi/L	<						
ō	Total Strontium	μg/L	<						
G	Total Uranium	μg/L	<						
	Osmotic Pressure	mOs/kg							

Toxics Management Spreadsheet Version 1.3, March 2021

Stream / Surface Water Information

Martinsburg Borough, NPDES Permit No. PA0028347, Outfall 001

Instructions Disch	arge Str	ream														
Receiving Surface W	/ater Name:	Plum Cree	k				No. Rea	aches to N	Model:	1	_	~	tewide Criteri at Lakes Crit			
Location	Stream Co	de* RM	Elevat	L DΛ /mi ²)* Slo	pe (ft/ft)		Withdrawa MGD)		ly Fish iteria*	1	OR:	SANCO Crite	eria		
Point of Discharge	016504	6.3	4 133	7 4.97					,	Yes						
End of Reach 1	016504	4.4	1 106	5 32.1					,	Yes						
Q ₇₋₁₀		LFY	Flow	v (cfs)	W/D	Width	Depth	Velocit	таче		Tributa	arv	Strea	m	Analys	sis
Location	RMI	(cfs/mi ²)*	Stream	Tributary	Ratio	(ft)	(ft)	y (fps)	Time (days		lardness	pH	Hardness*	pH*	Hardness	pН
Point of Discharge	6.34	0.1643							mays				135	7.84		
End of Reach 1	4.4	0.1643											135	7.84		
Q _h																
Location	RMI	LFY	Flow	v (cfs)	W/D	Width	Depth	Velocit	Time		Tributa	ary	Strea	m	Analys	sis
Location	KIVII	(cfs/mi ²)	Stream	Tributary	Ratio	(ft)	(ft)	y (fps)	(days		lardness	pН	Hardness	pН	Hardness	pН
Point of Discharge	6.34															
End of Reach 1	4.4															

Toxics Management Spreadsheet Version 1.3, March 2021

Model Results

Martinsburg Borough, NPDES Permit No. PA0028347, Outfall 001

Instructions Results	RETURN	TO INPU	тѕ (:	SAVE AS	PDF	PRIN	r)	.ll					
Hydrodynamics													
Wasteload Allocations													
✓ AFC CCT (min): 0.636 PMF: 1 Analysis Hardness (mg/l): 115.05 Analysis pH: 7.41													
Pollutants Conc Stream Trib Conc Fate WQC WQ Obj WLA (μg/L) Comments													
Tatal Disastered Calida (DMC)	(ug/L)	CV	(µg/L)	Coef	(µg/L)	(µg/L)							
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A						
Chloride (PWS)	0	0		0	N/A N/A	N/A N/A	N/A N/A						
Sulfate (PWS) Total Copper	0	0		0	15.336	16.0	28.0	Chara Tarantata at 0.00 and ind					
								Chem Translator of 0.96 applied					
Total Lead 0 0 75.203 97.6 171 Chem Translator of 0.771 applied													
Total Zinc	0	0		0	131.957	135	237	Chem Translator of 0.978 applied					
	T (min): 0.	636	PMF:	1		135 Ilysis Hardne		Chem Translator of 0.978 applied 115.05 Analysis pH: 7.41					
	T (min): 0.0		PMF: Trib Conc (µg/L)					115.05 Analysis pH: 7.41					
☑ CFC CC	T (min): 0.0	636 Stream	Trib Conc	1 Fate	Ana	llysis Hardne	ess (mg/l):	115.05 Analysis pH: 7.41					
✓ CFC CC	T (min): 0.0	636 Stream CV	Trib Conc	1 Fate Coef	Ana WQC (µg/L)	WQ Obj (µg/L)	ess (mg/l): WLA (µg/L)	115.05 Analysis pH: 7.41					
Pollutants Total Dissolved Solids (PWS)	T (min): 0.0	Stream CV 0	Trib Conc	1 Fate Coef 0	Ana WQC (μg/L) N/A	WQ Obj (µg/L) N/A	ess (mg/l): WLA (μg/L) N/A	115.05 Analysis pH: 7.41					
Pollutants Total Dissolved Solids (PWS) Chloride (PWS)	T (min): 0.0	Stream CV 0	Trib Conc	1 Fate Coef 0	Ana WQC (μg/L) N/A N/A	WQ Obj (μg/L) N/A	WLA (µg/L) N/A N/A	115.05 Analysis pH: 7.41					
Pollutants Total Dissolved Solids (PWS) Chloride (PWS) Sulfate (PWS)	T (min): 0.0	Stream CV 0 0	Trib Conc	1 Fate Coef 0 0 0	WQC (μg/L) N/A N/A	WQ Obj (μg/L) N/A N/A	WLA (µg/L) N/A N/A N/A	115.05 Analysis pH: 7.41 Comments					
Pollutants Total Dissolved Solids (PWS) Chloride (PWS) Sulfate (PWS) Total Copper	T (min): 0.9	Stream CV 0 0 0 0 0	Trib Conc	1 Fate Coef 0 0 0 0	MQC (μg/L) N/A N/A N/A 10.095	WQ Obj (µg/L) N/A N/A N/A 10.5	SSS (mg/l): WLA (μg/L) N/A N/A N/A 18.4	Comments Chem Translator of 0.96 applied					
Pollutants Total Dissolved Solids (PWS) Chloride (PWS) Sulfate (PWS) Total Copper Total Lead Total Zinc	T (min): 0.1 Sueam Conc (un/1) 0 0 0 0 0 T (min): 0.1	Stream CV 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Trib Conc	1 Fate Coef 0 0 0 0 0 0	MQC (μg/L) N/A N/A 10.095 2.931 133.036	WQ Obj (µg/L) N/A N/A N/A 10.5	WLA (μg/L) N/A N/A N/A 18.4 6.67 237	Comments Chem Translator of 0.96 applied Chem Translator of 0.771 applied					
Pollutants Total Dissolved Solids (PWS) Chloride (PWS) Sulfate (PWS) Total Copper Total Lead Total Zinc	T (min): 0.1 Sueam Conc (ual) 0 0 0 0 0 T (min): 0.1	Stream CV 0 0 0 0 0	Trib Conc (µg/L)	1 Fate Coef 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	MQC (μg/L) N/A N/A 10.095 2.931 133.036	WQ Obj (µg/L) N/A N/A N/A 10.5 3.8 135	WLA (μg/L) N/A N/A N/A 18.4 6.67 237	Comments Chem Translator of 0.96 applied Chem Translator of 0.771 applied Chem Translator of 0.986 applied					
Pollutants Total Dissolved Solids (PWS) Chloride (PWS) Sulfate (PWS) Total Copper Total Lead Total Zinc THH CCC	T (min): 0.1 Sueam Conc (mall) 0 0 0 0 T (min): 0.1	Stream CV 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Trib Conc (µg/L) PMF: Trib Conc	Fate Coef 0 0 0 0 0 0 1 1 Fate	WQC (μg/L) N/A N/A 10.095 2.931 133.036 Ana	WQ Obj (µg/L) N/A N/A N/A 10.5 3.8 135	WLA (μg/L) N/A N/A N/A 18.4 6.67 237	Comments Chem Translator of 0.96 applied Chem Translator of 0.771 applied Chem Translator of 0.986 applied Chem Translator of 0.986 applied N/A Analysis pH: N/A					
Pollutants Total Dissolved Solids (PWS) Chloride (PWS) Sulfate (PWS) Total Copper Total Lead Total Zinc THH CCC	T (min): 0.1 Stream Conc (mall) 0 0 0 0 0 T (min): 0.1	Stream	Trib Conc (µg/L) PMF: Trib Conc	Fate Coef 0 0 0 0 1 Fate Coef	WQC (μg/L) N/A N/A 10.095 2.931 133.036 Ana	llysis Hardne WQ Obj (µg/L) N/A N/A N/A 10.5 3.8 135 llysis Hardne WQ Obj (µg/L)	WLA (μg/L) N/A N/A N/A 18.4 6.67 237 PSS (mg/l):	Comments Chem Translator of 0.96 applied Chem Translator of 0.771 applied Chem Translator of 0.986 applied Chem Translator of 0.986 applied N/A Analysis pH: N/A					

Model Results 3/21/2022 Page 5

NPDES Permit Fact Sheet Martinsburg STP

Total Copper	0	0	0	N/A	N/A	N/A	
Total Lead	0	0	0	N/A	N/A	N/A	
Total Zinc	0	0	0	N/A	N/A	N/A	

☑ CRL CCT (min): 1.026 PMF: 1 Analysis Hardness (mg/l): N/A Analysis pH: N/A

Pollutants	Conc	Stream	Trib Conc	Fate	WQC	WQ Obj	WLA (µg/L)	Comments
1 Ollutarits	(ug/L)	CV	(µg/L)	Coef	(µg/L)	(µg/L)	VVLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A	
Chloride (PWS)	0	0		0	N/A	N/A	N/A	
Sulfate (PWS)	0	0		0	N/A	N/A	N/A	
Total Copper	0	0		0	N/A	N/A	N/A	
Total Lead	0	0		0	N/A	N/A	N/A	
Total Zinc	0	0		0	N/A	N/A	N/A	

☑ Recommended WQBELs & Monitoring Requirements

No. Samples/Month: 4

	Mass	Limits		Concentra	tion Limits				
Pollutants	AML (lbs/day)	MDL (lbs/day)	AML	MDL	IMAX	Units	Governing WQBEL	WQBEL Basis	Comments
Total Copper	Report	Report	Report	Report	Report	mg/L	0.018	AFC	Discharge Conc > 10% WQBEL (no RP)
Total Lead	0.039	0.061	0.007	0.01	0.017	mg/L	0.007	CFC	Discharge Conc ≥ 50% WQBEL (RP)
Total Zinc	Report	Report	Report	Report	Report	mg/L	0.15	AFC	Discharge Conc > 10% WQBEL (no RP)

☑ Other Pollutants without Limits or Monitoring

The following pollutants do not require effluent limits or monitoring based on water quality because reasonable potential to exceed water quality criteria was not determined and the discharge concentration was less than thresholds for monitoring, or the pollutant was not detected and a sufficiently sensitive analytical method was used (e.g., <= Target QL).

Pollutants	Governing WQBEL	Units	Comments
Total Dissolved Solids (PWS)	N/A	N/A	PWS Not Applicable
Chloride (PWS)	N/A	N/A	PWS Not Applicable
Bromide	N/A	N/A	No WQS
Sulfate (PWS)	N/A	N/A	PWS Not Applicable

3/21/2022 **Model Results** Page 6

Attachment C TRC Evaluation

Martinsburg NPDES Chlorine Study Results

Martinsburg Municipal Authority completed a chlorine study that consisted of collected samples from the NPDS Discharge # PA0028347 and Plum Creek (WWF) on a bi-weekly basis for the duration of one (1) year. The following information was recorded: Sample Number, Date, Stream Flow During Sampling, Discharge Flow During Sampling, Chlorine Demand of the Stream, Chlorine Demand of the Discharge, pH and Temperature. The following table displays the averages from this stream study that consists of 26 separate sampling events:

Table 1: Chlorine Study Results:

Average	Min. Chlorine	Min. Chlorine	Average pH	Average
Discharge Flow	Demand of Plum	Demand of		Temperature
(MGD)	Creek (mg/L)	Discharge (mg/L)		
0.413	0.53	0.37	7.88	16.1

^{*}The values were calculated in Table 1 using the following methods/calculations:

Discharge Flow: Metered, recorded and averaged.

<u>Chlorine Discharge of the Stream</u>: Calculated by using adding the "Adjusted Initial Total Residual Chlorine" and the "Chlorine Dose Added" together, then taking that total and subtracting the "Total Residual Chlorine" for each day, recorded and reported the minimum value.

<u>The Chlorine Demand of the Discharge:</u> Calculated by adding the "Initial Total Residual Chlorine" and the "Chlorine Dose Added", then subtracting the "Final Total Residual Chlorine" for each day, recorded and reported the minimum value.

pH- Analyzed, recorded and averaged.

Temperature: Analyzed, recorded and averaged.

Martinsburg Borouย PA0028347	gh		ın #1 It Values			May 2022
1A B		D	Е	F	G	
4 0.81637800 5 0. 6 3 7 0.	7 = Q stream (7 = Q discharg 0 = no. sample 3 = Chlorine D 0 = Chlorine D	e (MGD) s emand of Stream emand of Discharge	0.5 1 1 15	_	flix Factor Compliance Time (mi	-
-	5 = BAT/BPJ V 0 = % Factor o			= CFC_Criteria =Decay Coeffic	Compliance Time (mi ient (K)	n)
10 Source 11 TRC 12 PENTOXSD TRO 13 PENTOXSD TRO 14		AFC Calculations WLA afc = LTAMULT afc = LTA_afc=	0.373	Reference 1.3.2.iii 5.1c 5.1d	CFC Calculations WLA cfc = LTAMULT cfc = LTA_cfc =	0.581
15 Source 16 PENTOXSD TRO 17 PENTOXSD TRO 18						
WLA afc LTAMULT afc LTA_afc	+ Xd + (AF	FC_tc)) + [(AFC_Yc*Qs C_Yc*Qs*Xs/Qd)]*(1-F (cvh^2+1))-2.326*LN(d MULT_afc	OS/100)			
WLA_cfc LTAMULT_cfc LTA_cfc	+ Xd + (CF	FC_tc) + [(CFC_Yc*Qs C_Yc*Qs*Xs/Qd)]*(1-F (cvd^2/no_samples+1) MULT_cfc	OS/100)			
AML MULT AVG MON LIMIT INST MAX LIMIT	MIN(BAT_BP	N((cvd^2/no_samples J,MIN(LTA_afc,LTA_c n_limit/AML_MULT)/LT	fc)*AML_l	MULT)	_samples+1))	

	h	Ru	ın #2		May 2
0028347		Site Sp	ecific TRC		
A В	С	D	Е	F	G
TRC EVALU	ATION				
Input appropri	ate values in	B4:B8 and E4:E7			
0.82	2 = Q stream (cfs)	0.5	= CV Daily	
0.7	7 = Q discharg	e (MGD)	0.5	= CV Hourly	
26	= no. sample	s	1	= AFC_Partial M	ix Factor
0.53	= Chlorine D	emand of Stream	1	= CFC_Partial M	ix Factor
0.37	= Chlorine D	emand of Discharge	15	= AFC_Criteria (Compliance Time (min)
0.5	= BAT/BPJ V	alue	720	= CFC_Criteria (Compliance Time (min)
(= % Factor o	of Safety (FOS)	0	=Decay Coeffici	ent (K)
Source	Reference	AFC Calculations		Reference	CFC Calculations
TRC	1.3.2.iii	WLA afc =	0.803	1.3.2.iii	WLA cfc = 0.789
PENTOXSD TRG	5.1a	LTAMULT afc =	0.373	5.1c	LTAMULT cfc = 0.581
PENTOXSD TRG	5.1b	LTA_afc=	0.299	5.1d	$LTA_cfc = 0.459$
!					
Source			Limit Cald		
PENTOXSD TRG			L MULT =	1.250	
PENTOXSD TRG	E 4				
	5.1g	AVG MON LIMI			AFC
B	5 5.1g	INST MAX LIMI			AFC
	5.1g				AFC
3		INST MAX LIMI	T (mg/l) =	1.204	AFC
	(.019/e(-k*AF	INST MAX LIMI 	T (mg/l) =	1.204	AFC
WLA afc	(.019/e(-k*AF	INST MAX LIMI FC_to)) + [(AFC_Yc*Qs C_Yc*Qs*Xs/Qd)]*(1-F	T (mg/l) = s*.019/Qd* OS/100)	1.204 'e(-k*AFC_tc))	AFC
WLA afc	(.019/e(-k*AF + Xd + (AFC EXP((0.5*LN(INST MAX LIMI FC_tc)) + [(AFC_Yc*Qs C_Yc*Qs*Xs/Qd)]*(1-F (cvh^2+1))-2.326*LN(c	T (mg/l) = s*.019/Qd* OS/100)	1.204 'e(-k*AFC_tc))	AFC
WLA afc	(.019/e(-k*AF	INST MAX LIMI FC_tc)) + [(AFC_Yc*Qs C_Yc*Qs*Xs/Qd)]*(1-F (cvh^2+1))-2.326*LN(c	T (mg/l) = s*.019/Qd* OS/100)	1.204 'e(-k*AFC_tc))	AFC
WLA afc LTAMULT afc LTA_afc	(.019/e(-k*AF + Xd + (AF(EXP((0.5*LN(wla_afc*LTA	INST MAX LIMI FC_tc)) + [(AFC_Yc*Qs C_Yc*Qs*Xs/Qd)]*(1-F (cvh^2+1))-2.326*LN(c MULT_afc	T (mg/l) = *.019/Qd' OS/100) vvh^2+1)^	1.204 *e(-k*AFC_tc)) 0.5)	AFC
WLA afc	(.019/e(-k*AF + Xd + (AFC EXP((0.5*LN) wla_afc*LTA (.011/e(-k*CF	INST MAX LIMI FC_tc)) + [(AFC_Yc*Qs C_Yc*Qs*Xs/Qd)]*(1-F (cvh^2+1))-2.326*LN(c	T (mg/l) = *.019/Qd' OS/100) cvh^2+1)^ *.011/Qd*	1.204 *e(-k*AFC_tc)) 0.5)	AFC
WLA afc LTAMULT afc LTA_afc	(.019/e(-k*AF + Xd + (AFC EXP((0.5*LN) wla_afc*LTA (.011/e(-k*CF + Xd + (CFC	INST MAX LIMI C_tc)) + [(AFC_Yc*Qs C_Yc*Qs*Xs/Qd)]*(1-F(cvh^2+1))-2.326*LN(c MULT_afc C_tc) + [(CFC_Yc*Qs	T (mg/l) = **.019/Qd' OS/100) cvh^2+1)^ *.011/Qd* OS/100)	1.204 *e(-k*AFC_tc)) 0.5) e(-k*CFC_tc))	
WLA afc LTAMULT afc LTA_afc WLA_cfc	(.019/e(-k*AF + Xd + (AFC EXP((0.5*LN) wla_afc*LTA (.011/e(-k*CF + Xd + (CFC	INST MAX LIMI FC_tc)) + [(AFC_Yc*Qs C_Yc*Qs*Xs/Qd)]*(1-F(cvh^2+1))-2.326*LN(c MULT_afc FC_tc) + [(CFC_Yc*Qs*C_Yc*Qs*Xs/Qd)]*(1-F(cvd^2/no_samples+1)	T (mg/l) = **.019/Qd' OS/100) cvh^2+1)^ *.011/Qd* OS/100)	1.204 *e(-k*AFC_tc)) 0.5) e(-k*CFC_tc))	
WLA afc LTAMULT afc LTA_afc WLA_cfc LTAMULT_cfc	(.019/e(-k*AF + Xd + (AF(EXP((0.5*LN(wla_afc*LTA (.011/e(-k*CF + Xd + (CF(EXP((0.5*LN(wla_cfc*LTA	INST MAX LIMI FC_tc)) + [(AFC_Yc*Qs C_Yc*Qs*Xs/Qd)]*(1-F(cvh^2+1))-2.326*LN(c MULT_afc FC_tc) + [(CFC_Yc*Qs*C_Yc*Qs*Xs/Qd)]*(1-F(cvd^2/no_samples+1)	T (mg/l) = *.019/Qd* OS/100) *.011/Qd* OS/100))-2.326*L	1.204 *e(-k*AFC_tc)) 0.5) e(-k*CFC_tc)) N(cvd^2/no_sam	ples+1)^0.5)
WLA afc LTAMULT afc LTA_afc WLA_cfc LTAMULT_cfc LTA_cfc	(.019/e(-k*AF + Xd + (AF(EXP((0.5*LN(wla_afc*LTA (.011/e(-k*CF + Xd + (CF(EXP((0.5*LN(wla_cfc*LTA EXP(2.326*L(INST MAX LIMI FC_tc)) + [(AFC_Yc*Qs C_Yc*Qs*Xs/Qd)]*(1-F(cvh^2+1))-2.326*LN(c MULT_afc FC_tc) + [(CFC_Yc*Qs C_Yc*Qs*Xs/Qd)]*(1-F(cvd^2/no_samples+1) MULT_cfc	T (mg/l) = *.019/Qd* OS/100) *.011/Qd* OS/100)))-2.326*L +1)^0.5)-0	1.204 *e(-k*AFC_tc)) 0.5) e(-k*CFC_tc)) N(cvd^2/no_sam .5*LN(cvd^2/no_	ples+1)^0.5)