

Northeast Regional Office CLEAN WATER PROGRAM

Application Type

Facility Type

Major / Minor

Major

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

 Application No.
 PA0028568

 APS ID
 573100

 Authorization ID
 1198413

Applicant and Facility Information									
Applicant Name	_	or Borough Authority nampton County	Facility Name	Bangor Borough Authority WWTP					
Applicant Address	197 F	Pennsylvania Avenue	Facility Address	900 Lower South Main Street					
	Bang	or, PA 18013	<u></u>	Bangor, PA 18013-2834					
Applicant Contact	Barry	Schweitzer	Facility Contact	Dean Sanders					
Applicant Phone	(610)	588-2216	Facility Phone	(610) 588-3040					
Client ID	51313	3	Site ID	255589					
Ch 94 Load Status	Not C	Overloaded	Municipality	Washington Township					
Connection Status	No Li	mitations	County	Northampton					
Date Application Rece	eived	September 11, 2017	EPA Waived?	No					
Date Application Acce	epted	October 23, 2017	If No, Reason	Major Facility					
Purpose of Application	n	Renewal of Major Sewage NP	DES Permit.						

Summary of Review

This is a 1.6 MGD Major POTW NPDES Permit Renewal Application to Martins Creek (TSF; Stream Code# 4680), with new stormwater outfall/conditions being added in this permit cycle. Annual Average Daily flows were 1.07 MGD (2016), 1.19 MGD (2015), and 1.28 MGD (2014). Highest 2016 monthly average flow was 2.01 MGD (February), with 3.89 MGD highest peak instantaneous flow. See EDMR data for more recent flow data.

Background:

- Facility receives flows from Bangor Borough (~2,554 EDUs, 69% 74.4% in current application), Roseto (712 EDUs, 28% reduced to 20.7% in current application at two locations: North 9th Street & North 1st Street), and Washington Township (173 EDUs, 3% in current application 4.9%). Authority EIN# is 24-6002564.
- The DEP files indicate the Authority has had a long-term struggle with I&I issues, with 2018 flows substantially increased (record year of precipitation in NEPA). The facility shortens SBR cycle lengths to address flows up to 5,333 GPM (7.67 MGD) max SBR decant rate.
- The facility chose not to renew the General Permit NPDES No. PAG082217 (Non-Exceptional Quality Biosolids) which expired in December 2017 per application.
- No DRBC Docket update since 1988.

Special Conditions: New conditions bolded.

- Part C.I.A, B, and C: Stormwater prohibition; Necessary Property Rights; Residuals Management
- Part C.I.D: Chlorine Minimization
- Part C.I.E: New Special Chapter 94 Condition (allowing use of 1.9 MGD figure in Chapter 94 Reporting per November 15, 1999 Department letter).
- Part C.II: New Standard Solids Condition
- Part C.III: New Toxics WQBEL Condition (Chloroform)

Approve	Deny	Signatures	Date
х		James D. Berger, P.E. / Environmental Engineer	March 2, 2020
х		Amy M. Bellanca, P.E. / Environmental Engineer Manager	

Summary of Review

- Part C.IV: WET Test conditions
- <u>Part C.V</u>: Standard Stormwater Conditions with E.3 condition added in event of sheet flow areas require future stormwater sampling.

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Discharge, Receiving Waters and Water Supply Infor	mation	
		1.6 (001)
Outfall No. 001 and 002	Design Flow (MGD)	0 (Outfall 002 stormwater)
40° 51' 11.29" (001)	3 - (- ,	-75° 12' 19.90" (001)
Latitude 40° 51′ 12.19″ (002)	Longitude	-75° 12' 20.25" (002)
Quad Name Bangor	Quad Code	1244 (5.23.3)
Wastewater Description: Sewage Effluent (Outfall	No. 001) and Stormwater (Outfal	l No. 002)
Receiving Waters <u>Martins Creek</u>	Stream Code	4680
NHD Com ID 26029862	RMI	
Drainage Area19.9	Yield (cfs/mi²)	0.1592 (slate mining area)
Q ₇₋₁₀ Flow (cfs) 3.17	Q ₇₋₁₀ Basis	USGS PAStreamstats
Elevation (ft) 440 Feet	Slope (ft/ft)	
Watershed No. 1-F	Chapter 93 Class.	TSF, MF
Existing Use	- 1 d 11 0 110	
Exceptions to Use	Franchisco to Ouitonia	-
Source(s) of Impairment -		
TMDL Status -	Nama	
Background/Ambient Data	Data Source	
pH (SU) No data	-	
Temperature (°F) No data	-	
· · · · · · · · · · · · · · · · · · ·	NPDES Permit Renewal Appl	
Hardness (mg/L) 140	mining area.	
Other: No data		
Nearest Downstream Public Water Supply Intake	Easton	_
PWS Waters Delaware	Flow at Intake (cfs)	
PWS RMI	Distance from Outfall (mi)	15.2 per application

Changes Since Last Permit Issuance:

- This is a Natural Trout Reproduction stream subject to non-summer DO WQS. Existing site grandfathered.
- Outfall No. 002 is a new stormwater-only outfall addressing a 38,400 square foot area that discharges to a swale directing flow to Martins Creek.

Other Comments:

- HQ stream reach is ~5 miles downstream (from dam upstream of Old Fork Hill Road to Mouth), near municipality of Martins Creek per previous NPDES Permit Renewal Application file.
- Bangor Borough MS4 NPDES Permit No. PAG132249 outfalls upstream of WWTP discharge point.

	Treatment Facility Summary								
Treatment Facility Na	me: Bangor Borough Aut	hority WWTP							
WQM Permit No.	Issuance Date		Scope						
488 5 426	5/5/1989 Expansion and upgrade of existing 0.8 MGD STP to 1.6 MGD STP (4.8 MGD peak wet weather flow) including bar screens/grit removal, two SBRs, chlorination (two chlorine contact tanks), cascade post aeration. Two Aerobic digestion tanks. High I&I fraction (0.86 MGD out of 1.6 MGD) noted in Design Engineer Report.								
	Degree of			Avg Annual					
Waste Type	Treatment	Process Type	Disinfection	Flow (MGD)					
Sewage	Secondary	Sequencing Batch Reactor	Gas Chlorine with sodium bisulfite dechlorination	1.6					
Hydraulic Capacity	Organic Capacity			Biosolids					
(MGD)	(lbs/day)	Load Status	Biosolids Treatment	Use/Disposal					
1.6*	1975**	Not Overloaded	Aerobic Digestion***	Disposal****					

^{*1.9} MGD may be used in Chapter 94 Reporting. See below.

<u>Changes Since Last Permit Issuance</u>: Facility has developed a High Flow Management Plan (HFMP) for handling peak wet weather flows.

Other Comments:

- Facility uses SBRs (noncontinuous flows, no post-equalization).
- Chapter 94 Report/Hydraulic Overloading: No overloading in 2018. The facility would have been in hydraulic overload at 1.6 MGD during February April, August December 2018. Projected overloading 2019 2023 at 1.71 MGD 1.73 MGD flow. However, the Department previously allowed for the use of 1.9 MGD figure for Chapter 94 Reporting purposes by letter.
 - The WWTP Hydraulic Design Capacity is 1.6 MGD. The previous NPDES Fact Sheet used an incorrect citation for the 1.9 MGD figure, triggering concerns that the facility was hydraulically overloaded due to >1.6 MGD flows.
 - The facility obtained permission to use 1.9 MGD (peak wet weather monthly average flow) in Chapter 94
 Reporting by November 15, 1999 DEP Letter, but no WQM permit rerating occurred.
 - Boucher & James (consultant) believes the facility has the ability to treat full strength sewage up to 1.9 MGD, based upon Previous Authority Engineer (Buchart Horn Inc.) letters. That consultant believes the facility has the ability to treat 4.8 MGD peak wet weather flows, without loss of treatment efficiency until 3.8 MGD (when SBR cycles would be shortened). The cited correspondence included:
 - 9/15/1999 DEP Letter (Paul Swerdon, Permits Chief) indicated that Authority "may report maximum three month flows projected in Chapter 94 reports against the 1.9 MGD number". The 1.9 MGD flow is a wet weather flow figure.
 - 6/17/1999 Buchart Horn Letter "requesting acknowledgment of a 1.9 million gallons per day (MGD) wet weather hydraulic capacity" ... "In the Chapter 94 process", with a limited engineering evaluation that the SBRs can handle higher average flows.
 - 4/1/1999 Buchart Horn Letter asking for clarification whether the Chapter 94 Report projections should be compared against the 1.6 MGD or 1.9 MGD. The letter referenced a 3/30/1987 NPDES Permit Condition Part C condition: "The average monthly discharge of 1.9 MGD represents the design hydraulic capacity of the treatment facility which includes capacity to accommodate wet

^{**} The 1975 lbs BOD5/day loading would be equivalent to 148 mg/l BOD5 Influent @ 1.6 MGD flow.

^{***}Application indicates aerobic digesters are being used for sludge holding, followed by belt filter press.

^{****}Application indicates sewage sludge is being landfilled (Keystone Landfill), and that a previous biosolids GP No. PAG082217 was not going to be renewed because the disposal site has "dissolved".

weather related infiltration and inflow. The annual average discharge shall not exceed 1.6 MGD. This annual average flow shall be used by the Department in considering proposals under Act 537 Planning and Chapter 94 – Municipal Wasteload Management". The letter noted that they were approaching the 1.6 MGD permit capacity (3 month flow).

- 2018 Chapter 94 Information: The 2018 Chapter 94 Report indicates the facility has an aged sewer collection system and illegal connections (sump pumps and roof leaders) that the Authority has implemented a program to identify and remove (during real estate transfers) and is implementing lateral inspections. However, the Authority does not believe there is a conveyance capacity concern. The Authority also stated it intends to start a program to video tape inspect the entire collection system (~86,000 LF gravity sewers consisting mostly of clay pipes installed in the early 1960s). Open channel portable flow meters have been purchased for installation in manholes to monitor wet weather flows. They think inflow is the leading concern.
- Corrective Action Plan (CAP): The 2018 Chapter 94 Report contained a March 18, 2019 Corrective Action Plan (CAP) including:
 - January 2018 system data collection and analysis to: isolate apparent I&I flows; estimate target flow rate based on total number of connections; review EDU rating basis; review Roseto flow rates compared to Bangor Borough and Washington Township; review Walnut Street pump flows/connections; review previously collected manhole flow data; compare building permit records and water meter usage to determine if appropriate number of EDUs are allocated; determine high and low flows; and determine if data collection system needs upgrading.
 - Collection System mapping
 - High Flow Management Plan (HFMP) review and evaluation.
 - I&I Study to include recommendations for data collection points, investigation procedures, and corrective actions with three phases
 - Funding requirements will be considered.
 - System connection restrictions
- 7/25/2019 Response Letter information:
 - Roseto Borough flows appeared to represent as much as 75% of the excessive flow, while being only slightly more than 20% of the connected users. Roseto Borough Authority operates its own sewage collection system with 712 connections (mostly residential). Bangor Borough Authority received a set of plans and bid specification for Roseto Borough collection system repairs, but said it had no idea of the likely effectiveness.
 - The 2017 Chapter 94 Report-referenced "Capital Improvements Plan" was prepared by the former Authority engineer but not accepted for implementation by the Authority.
- <u>Sludge</u>: The Chapter 94 Report Solids Management (Sludge) Calculator Spreadsheet estimated they wasted 154% of expected volume wasted. This is outside the normal range of 85 115%. The sludge was hauled to Keystone Landfill.

2017 Chapter 94 Report Information: Walnut Street Pump Station had pumping rate of 80 GPM

85% Minimum Monthly Average Reduction: Facility did not achieve the minimum 85% monthly average reduction in a number of months in 2018 (per table below). The facility engineer (Boucher & James) attributes the problem to weak influent. The facility engineer indicated the Corrective Action Plan (CAP) is expected to reduce wet weather flows.

Compliance History

DMR Data for Outfall 001 (from January 1, 2019 to December 31, 2019)

Parameter	DEC-19	NOV-19	OCT-19	SEP-19	AUG-19	JUL-19	JUN-19	MAY-19	APR-19	MAR-19	FEB-19	JAN-19
Flow (MGD)												
Average Monthly	1.70	1.52	1.35	0.85	1.04	1.39	1.51	2.58	1.93	1.83	1.82	2.07
Flow (MGD)												
Daily Maximum	2.34	3.88	4.54	1.24	1.51	2.27	2.44	5.02	4.39	3.70	2.85	5.05
pH (S.U.)												
Minimum	6.6	6.6	6.7	6.7	6.7	6.8	6.6	6.6	6.6	6.6	6.6	6.7
pH (S.U.)												
Maximum	7.1	7.2	7.1	7.1	7.1	7.2	7.1	7.2	7.2	7.2	7.1	7.1
DO (mg/L)												
Minimum	8.0	7.4	7.0	6.5	6.8	7.0	7.0	7.2	7.2	6.8	7.6	7.9
TRC (mg/L)												
Average Monthly	< 0.03	0.04	0.04	0.03	0.02	0.04	< 0.04	< 0.07	< 0.03	< 0.04	0.05	0.03
TRC (mg/L)												
Instantaneous												
Maximum	0.07	0.24	0.24	0.25	0.05	0.17	0.39	0.26	0.17	0.14	0.18	0.12
CBOD5 (lbs/day)												
Average Monthly	< 30	< 27	< 24	< 15	< 18	< 24	< 52	177	47	45	93	87
CBOD5 (lbs/day)												
Weekly Average	< 36	< 37	< 32	< 18	< 21	< 30	< 67	339	59	82	147	256
CBOD5 (mg/L)												
Average Monthly	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 4.0	< 6.0	3.0	< 3.0	< 6.0	4
CBOD5 (mg/L)												
Weekly Average	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 5.0	< 11.0	4.0	5.0	10	10
TSS (lbs/day)												
Average Monthly	< 56	< 49	< 46	< 30	< 35	< 47	< 25	< 168	< 80.0	< 87	163	83
TSS (lbs/day)												
Weekly Average	< 72	< 64	< 65	< 36	< 41	< 60	< 29	366	< 134.0	180	293	114
TSS (mg/L)												
Average Monthly	< 4.0	< 4.0	< 4.0	< 4.0	< 4	< 4.0	< 2.0	< 6.0	< 5.0	< 6.0	< 11	< 5
TSS (mg/L)												
Weekly Average	< 4.0	< 4.0	< 4.0	< 4.0	< 4	< 4.0	< 2.0	10.0	< 7.0	11.0	20	6
Fecal Coliform												
(CFU/100 ml)												
Geometric Mean	36	< 12	< 10	9	8	15	8	92	< 6	< 3	< 14	< 12

NPDES Permit Fact Sheet Bangor Borough Authority

Fecal Coliform (CFU/100 ml) Instantaneous Maximum	2700	80	4800	256	71	124	33	8900	148	48	270	755.6
Ammonia (lbs/day)												
Average Monthly	< 4	< 2.0	< 1	< 1	< 1	< 1	< 1	< 14	23.0	49	41	17
Ammonia (mg/L)												
Average Monthly	< 0.31	< 0.2	< 0.11	< 0.16	< 0.15	< 0.1	< 0.1	< 0.48	1.98	3.48	2.72	0.847

DMR Data for Outfall 001 (from January 1, 2018 to December 31, 2018)

Parameter	DEC-18	NOV-18	OCT-18	SEP-18	AUG-18	JUL-18	JUN-18	MAY-18	APR-18	MAR-18	FEB-18	JAN-18
Flow (MGD)		_										
Average Monthly	2.13	2.58	1.68	1.98	1.76	0.98	1.10	1.69	1.68	1.84	2.05	1.39
Flow (MGD)												
Daily Maximum	4.27	4.62	3.56	4.54	4.80	1.85	2.94	3.69	3.64	4.18	3.78	3.2
pH (S.U.)												
Minimum	6.7	6.8	6.7	6.7	6.7	6.6	6.5	6.6	6.6	6.3	6.4	6.4
pH (S.U.)												
Maximum	7.1	7.1	7.1	7.3	7.2	7.2	7.0	7.0	7.0	7.0	7.0	7.0
DO (mg/L)												
Minimum	7.1	7.1	7.1	6.4	6.7	6.6	5.9	6.9	7.8	7.7	6.8	7.3
TRC (mg/L)												
Average Monthly	0.02	0.04	0.03	0.03	0.04	0.05	0.03	0.03	0.03	0.04	0.03	0.02
TRC (mg/L)												
Instantaneous												
Maximum	0.06	0.20	0.24	0.19	0.18	0.33	0.09	0.07	0.07	0.16	0.08	0.10
CBOD5 (lbs/day)												
Average Monthly	< 54	< 105	44	< 101	< 45	< 25	30	< 56	< 47	168	214	< 66
CBOD5 (lbs/day)												
Weekly Average	< 84	< 208	256	< 83	< 55	< 34	33	< 114	58	437	328	< 150
CBOD5 (mg/L)												
Average Monthly	< 3.0	< 4	< 3.0	< 5	< 3.0	< 3.0	< 3.0	< 4	< 3	9	10	< 6.0
CBOD5 (mg/L)												
Weekly Average	< 4.0	< 8	13.0	< 3	< 3.0	< 3.0	< 4.0	< 5	< 4	18	13	< 10.0
TSS (lbs/day)												
Average Monthly	< 76	< 134	< 58	< 55	< 40	< 47	< 28	< 106	118	188	404	< 87
TSS (lbs/day)												
Weekly Average	< 92	< 202	< 78	90	< 72	129	34	357	309	331	673	226
TSS (mg/L)												
Average Monthly	< 4.0	< 6	< 5.0	< 3	< 3.0	< 5.0	< 3.0	< 6	7	11	19	< 7.0

NPDES Permit Fact Sheet Bangor Borough Authority

NPDES Permit No. PA0028568

TSS (mg/L) Weekly Average	< 5.0	< 8	< 5.0	6	< 5.0	10	4.0	15	15	22	27	14.0
Fecal Coliform (CFU/100 ml)		_		_	_	_	_	_				
Geometric Mean	13	6	< 3.0	6	< 3	< 2	< 3	< 2	> 10	> 18	457	> 54
Fecal Coliform (CFU/100 ml) Instantaneous Maximum	261.3	13.5	47.3	41	12.1	90.9	21.3	9.7	> 2419.6	> 2419.6	> 2419.6	2419.6
Ammonia (lbs/day) Average Monthly	< 4	< 13	< 4	< 2	< 8	< 4	< 10	< 12	45	41	34	> 19
Ammonia (mg/L) Average Monthly	< 0.225	< 0.53	< 0.28	< 0.121	< 0.5	< 0.5	< 1.15	< 0.85	1.91	3.04	1.66	> 2.15

Compliance History

Effluent Violations for Outfall 001, from: February 1, 2018 To: December 31, 2019

Parameter	Date	SBC	DMR Value	Units	Limit Value	Units
TSS	02/28/18	Avg Mo	404	lbs/day	400	lbs/day
TSS	02/28/18	Wkly Avg	673	lbs/day	600	lbs/day
Fecal Coliform	05/31/19	IMAX	8900	CFU/100 ml	1000	CFU/100 ml

Summary of Inspections:

NPDES Permit No. PA0028568

					INSPECTION RESULT		# OF
FACILITY NAME	INSP PROGRAM	INSP ID	INSPECTED DATE	INSP TYPE	DESC	INSPECTOR ID	VIOLATIONS
BANGOR BORO AUTH WWTP	WPCNP	2929450	08/08/2019	Compliance Evaluation	No Violations Noted	00733079	0
BANGOR BORO AUTH WWTP	WPCNP	2915327	07/11/2019	Administrative/File Review	Violation(s) Noted	00733079	2
BANGOR BORO AUTH WWTP	WPCNP	2806047	10/17/2018	Administrative/File Review	Violation(s) Noted	00511586	1
BANGOR BORO AUTH WWTP	WPCNP	2736804	05/02/2018	Compliance Evaluation	No Violations Noted	00733079	0
BANGOR BORO AUTH WWTP	WPCNP	2687857	01/29/2018	Compliance Evaluation	No Violations Noted	00610365	0
BANGOR BORO AUTH WWTP	WPCNP	2646297	08/17/2017	Administrative/File Review	Violation(s) Noted	00733079	2
BANGOR BORO AUTH WWTP	WPCNP	2560696	02/10/2017	Compliance Evaluation	No Violations Noted	00610365	0
BANGOR BORO AUTH WWTP	WPCNP	2544299	10/26/2016	Administrative/File Review	Violation(s) Noted	00613405	1
BANGOR BORO AUTH WWTP	WPCNP	2453854	02/29/2016	Compliance Evaluation	No Violations Noted	00610365	0
BANGOR BORO AUTH WWTP	WPCNP	2417591	09/17/2015	Compliance Evaluation	Violation(s) Noted	00628030	1
BANGOR BORO AUTH WWTP	WPCNP	2351377	03/13/2015	Administrative/File Review	No Violations Noted	00610365	0
BANGOR BORO AUTH WWTP	WPCNP	2468171	02/13/2015	Compliance Evaluation	Violation(s) Noted	00628030	<u>2</u>
BANGOR BORO AUTH WWTP	WPCNP	2322013	10/20/2014	Compliance Evaluation	No Violations Noted	00628030	0
BANGOR BORO AUTH WWTP	WPCNP	2244065	02/10/2014	Administrative/File Review	No Violations Noted	00610365	0

Other Comments:

Notices of Violation: Besides late DMRs:

- 10/17/2018 NOV (WET Test Violations and 2018 TSS violations): DEP Biologist indicated 2018 WET Retest passed.
- 8/17/2017 NOV due to late NPDES Permit Renewal Application.
- 10/26/2016 NOV (fishkill related to excess chlorine in discharge)

NPDES Permit No. PA0028568

NPDES Permit Fact Sheet Bangor Borough Authority

- 10/27/2015 NOV due to fecal coliform IMAX and failure to do annual 2013 and 2014 WET Tests
- 2/13/2015 NOV due to TSS exceedances, Fecal Coliform IMAX exceedances
- 10/21/2013 NOV due to ammonia, Fecal Coliform and TSS issues

Complete and technically adequate application due: August 4, 2017 (Late). Permit expired 1/31/2018.

Facility did not achieve 85% minimum monthly average reductions in 2018. See above for details. Facility is proposing Corrective Action Plan to reduce I&I to come into compliance.

2/28/2020 WMS Query (Open Violations by Client No.): No open violations:

Permit: PA0028568 Client ID: 51313 Client: All

Open Violations: 0

No data was found using the criteria entered. Please revise your choices and try again

Table 1 (BOD and TSS Reduction)

Month	Monthly Average flow (MGD)	Influent BOD5 concentration (mg/l) from DMR Supplement	Influent TSS monthly Avg. from DMR Supplement	CBOD5 Effluent Monthly Average* (mg/l) plus 1:1.2 BOD5 conversion	TSS Effluent Monthly Average* Concentration (mg/l)	Estimated BOD5 Reduction (%)	Estimated TSS Reduction (%)
Dec 2018	2.108	56	62	3 (3.6)	4	94.6	93.5
Nov 2018	2.582	28	42	4 (4.8)	6	82.8	85.7
Oct 2018	1.675	43	72	3 (3.6)	5	91.6	93.0
Sept 2018	1.984	42	74	5 (6.0)	3	85.7	95.9
Aug 2018	1.763	39	70	3 (3.6)	3	90.7	95.7
July 2018	0.981	80	133	3 (3.6)	5	95.5	97.7
June 2018	1.102	97	129	3 (3.6)	3	96.2	97.6
May 2018	1.69	83	66	4 (4.8)	6	95.6	90.9
April 2018	1.684	113	97	3 (3.6)	7	96.8	92.7
March 2018	1.837	80	62	9 (10.8)	11	86.5	82.2
Feb 2018	2.051	58	57	10 (12)	19	79.3	66.6
Jan 2018	1.392	119	94	6 (7.2)	7	93.9	94.1

^{*}Non-detect concentrations assumed to be the constituent concentration in the absence of better data. BOD5/CBOD5 Correlation used in absence of site-specific correlation, based on regulatory BOD5/CBOD5 secondary treatment technology-based effluent limits equivalence and Metcalf & Eddy Correlation per DEP Central Office.

Development of Effluent Limitations									
Outfall No.	001	Design Flow (MGD)	1.6						
Latitude	40° 51' 11.05"	Longitude	-75° 12' 19.26"						
Wastewater D	Wastewater Description: Sewage Effluent								

Permit Limits & Monitoring: Changes Bolded

Parameter	Limit	SBC	Model/Basis
	(mg/l unless		
	otherwise		
	specified)		
CBOD5	334 Lbs/d	Monthly Average	Existing Technology limit (Chapter 92a.47)
	534 Lbs/d	Weekly Average	supported by water quality modeling.
	25 .0	Monthly Average	Significant digit added to concentration
	40 .0	Weekly Average	values.
	50 .0	IMAX	Application Data: 12 mg/l Max daily value of
			194 samples.
TSS	400 Lbs/d	Monthly Average	Existing Technology limit (Chapter 92a.47).
	600 Lbs/d	Weekly Average	Significant digit added to concentration
	30 .0	Monthly Average	values.
	45 .0	Weekly Average	Application Data: 10.4 mg/l Max daily value
	60 .0	IMAX	of 189 samples.
рН	6.0 – 9.0 SU	Inst. Min - IMAX	Existing Technology limit (Chapter 92a.47).
			Application Data: 6.3 – 7.2 SU range from
			365 samples.
Dissolved Oxygen (DO)	5.0	Inst. Minimum	Existing WQBEL supported by Water Quality
			Modeling.
			Application Data: 6 mg/l minimum from 365
			samples.
Fecal Coliform	200/ 100 ml	Geo Mean	Existing Technology limit (Chapter 92a.47).
(5/1 – 9/30)	1,000 /100 ml	IMAX	Application Data: 5800/100 ml max from 105
			samples (year-round).
Fecal Coliform	2,000 /100 ml	Geo Mean	See above.
(10/1 – 4/30)	10,000 ml /100 ml	IMAX	
			Existing WQBELs supported by updated
			water quality modeling. Antibacksliding
			prevents less stringent limit.
Total Residual Chlorine	0.18	Monthly Average	Application Data: 0.28 mg/l max value of 343
	0.42	IMAX	samples.
			Existing WQBELs supported by water quality
Ammonia-Nitrogen	32 Lbs/d	Monthly Average	modeling and standard multiplier.
(5/1 – 10/31)	2.4	Monthly Average	Application Data: 3.8 mg/l max from 189
(6/1 16/61)	Report	Daily Max	samples (year-round).
	4.8	IMAX	
A	96 Lbs/d	Monthly Average	
Ammonia-Nitrogen	7.2	Monthly Average	See above.
(11/1 – 4/30)	Report	Daily Max	
	14.4	IMAX	Mateiant manifesing halves at the Parit
Total Phosphorus	Donort I hold	Monthly Averers	Nutrient monitoring being added in this
-	Report Lbs/d	Monthly Average	permit cycle (Chapter 92a.61).
	Report Daily Max	Monthly Average Daily Max	Application Data: 2.22 mg/l max daily value of 3 samples.
	Report Lbs/d	Monthly Average	Nutrient monitoring being added in this
Total Nitrogen	Report	Monthly Average	permit cycle (Chapter 92a.61).
. J.a. Mil Ogoli	Report	Daily Max	Application Data:
	Kepoit	Daily Max	ripphoation bata.

(Nitrate-Nitrite-N + TKN measured in same sample)			Nitrate-Nitrite-N: 2.03 mg/l max of 3 samples. Total Kjehldahl Nitrogen: <0.402 mg/l J max of 3 samples.
TDS	Report Lb/d Report Report	Monthly Average Monthly Average Daily Max	Total Nitrogen: 3.592 mg/l max of 3 samples. Monitoring per Reasonable Potential Analysis and Chapter 92a.61. Application Data: 340 mg/l Max and average of 293.33 mg/l (3 samples)
Chlorides, Sulfates, and Bromide	Not Needed	-	Does not meet trigger level for monitoring.
Chloroform	Report (lb/d) 0.052 0.082 0.105	Monthly Average Monthly Average Daily Max IMAX	Permit limits required by Reasonable Potential Analysis. See below. Application data: 38.9 ug/l max and 24.4 mg/l average (3 samples). See below for additional sampling data. DEP Target QL of 0.5 ug/l.
Total Copper	Report (lb/d) Report Report	Monthly Average Monthly Average Daily Max	Monitoring Required by Reasonable Potential Analysis. Application data: 8.11 ug/l max and 6.46 mg/l average (3 samples). DEP Target QL of 4.0 ug/l.
Free Available Cyanide	Report (lb/d) Report Report	Monthly Average Monthly Average Daily Max	Monitoring Required by Reasonable Potential Analysis. Application data: 5.29 ug/l max value and <4.34 mg/l average (3 samples). DEP Target QL of 1.0 ug/l.
Total Mercury	Report (lb/d) Report Report	Monthly Average Monthly Average Daily Max	Monitoring Required by Reasonable Potential Analysis. Application data: 0.0287J ug/l max and average of 0.0195 ug/l (3 samples). DEP Target QL of 0.2 ug/l, but detected.
Acrylamide	Report (lb/d) Report Report	Monthly Average Monthly Average Daily Max	Monitoring upon request (Chapter 92a.61) during this permit cycle because of use of polyacrylamide sludge/wastewater treatment chemical at a facility subject to high peak wet weather flows. No application data.

Comments:

EDMR-related Updating: Updated to Instantaneous Minimums for grab sampling (pH, DO). Changed fecal coliform units to current standard (#/100 ml).

Nutrient Monitoring (TN and TP): 1/week for >1 MGD facility discharging to stream not impaired by nutrients.

No new Natural Trout DO limits as there is no new or increased discharge per DEP SOP guidance (i.e. stream was reclassified as Natural Trout Reproduction Stream after original DO limits set forth). The Department would recommend consideration of additional post-aeration in event of any proposed plant upgrades.

<u>Reasonable Potential Analysis-related data</u>: See attached Toxics Screening Spreadsheet and PENTOXSD modeling. Because the closest PWS intake is 15 miles downstream, no TDS water quality modeling was required.

<u>Acrylamide</u>: The facility uses "Keysource Chemical KC-020 Polyacrylamide Emulsion Polymer" for sludge treatment at 4 gal/min (1% solution) max usage rate and is subject to high peak wet weather flows (i.e. washout scenarios). Monitoring

upon request will be required in this permit cycle. The polymer is introduced prior to the Belt Filter Press. No acrylamide effluent data available.

NPDES Application Pollutant Identification and Analysis Section: No other potentially toxic pollutants are known or expected to be in the discharge. Facility has no Industrial Users and does not accept hauled-in wastes.

TRE Grab Sampling: 3/112019 and 3/12/2019 sampling

- 3,3-Dichlorobenzene (ND for all sampling; DEP Target QL of 5.0 ug/l):
 - Site 1 (Borough Hall Tap): <0.139 ug/l
 - Site 2 (WWTP Tap): <0.139 ug/l
 - Stream Before Outfall: <0.139 ug/l
 - o WWTP Influent: <0.139 ug/l
 - o WWTP Effluent: <0.139 ug/l
- Chloroform (DEP Target QL of 0.5 ug/l):
 - o Site 1 (Borough Hall Tap): 2.1 ug/l & 2.2 ug/l
 - o Site 2 (WWTP Tap): 1.8 ug/l & 2.2 ug/l
 - o Stream Before Outfall: <0.09 ug/l & <0.09 ug/l
 - WWTP Influent: 1.3 ug/l & 0.6 ug/l
 - WWTP Effluent: 0.4 ug/l & 0.4 ug/l

WWTP Effluent 24-Hour Composite Sampling:

- 3,3-Dichlorobenzene (ND for 4 samples): <0.139 ug/l. The insensitive ND application data (<7.74 ug/l) is superseded by the new sensitive ND data. No permit limits or monitoring is required.
- <u>Chloroform</u>: The application data (38.9 ug/l) was >50% the 52.576 ug/l WQBEL, with concentrations. The additional sampling data shows Chloroform is present in the effluent. As the facility uses chlorine gas disinfection, the higher effluent concentration (than above grab influent samples) is reasonable as a chlorine disinfection byproduct in event of excess chlorination (in addition to influent sources probably including water supply chlorination). Permit limits are required.
 - o 6/21/2019: 15.7 ug/l
 - o 6/20/2019: 11.9 ug/l
 - o 6/19/2019: 8.8 ug/l
 - o 6/18/2019: 10.9 ug/l
 - Average: 11.8 ug/l

Development of Effluent Limitations							
Outfall No.	002		Design Flow (MGD)	0			
Latitude	40° 51' 13.29		Longitude	-75° 12' 16.85"			
Wastewater Description: Stormwater associated with industrial activities							

Permit Limits and Monitoring:

Parameter	Limit (mg/l unless otherwise specified)	SBC	Model/Basis
BOD5	30.0	IMAX	This constituent would be present in event of stormwater contamination. General Permit PAG-03 Statewide BPJ benchmark for limit.
TSS	100.0	IMAX	See above.
Oil & Grease	30.0	IMAX	See above.
TKN	Report	IMAX	Monitoring per BPJ.
Total Iron	Report	IMAX	Monitoring per BPJ.
pH	6.0 – 9.0 SU	Inst. Min - IMAX	Chapter 95.2

Comments: New stormwater outfall monitoring requirement per 40 CFR 122.26(b).

- The above constituents are indicators of stormwater contamination.
- Application indicates site stormwater is discharged to grassy areas (sheet flow) and a vegetated swale. Special Condition Part C.IV.E.3 added in event stormwater monitoring is ever required for the stormwater sheet flow areas.

Whole Effluent Toxicity (WET)

For Outfall 001, **X Chronic** WET Testing was completed:

X Other: Five WET Tests (7/14/2015 (INVALID due to Eurofins LAB issue); 8/1/2016 (INVALID due to Eurofins LAB issue); 8/28/2017 (PASSED); July 2018 (INVALID due to temperature and holding times issues); 12/3/2018 (Retest PASSED). Subsequent 2019 WET Test received which passed.

The dilution series used for the tests was: 100%, 72%, 44%, 22%, and 11%. The Target Instream Waste Concentration (TIWC) to be used for analysis of the results is: 44%.

Summary of Four Most Recent Test Results

NOEC/LC50 Data Analysis: Invalid WET Test Data not inputted below.

	Ceriodaph	nia Results (% E	ffluent)	Pimephale			
Test Date	NOEC Survival	NOEC Reproduction	LC50	NOEC Survival	NOEC Growth	LC50	Pass? *
8/28/2017	100	100	>100%	100	100	>100	Yes
12/3/2018	100	100	>100	100	100	>100	Yes
8/13/2019**	100	100	>100	100	100	>100	Yes
-	-	-	-	-	-	-	-

^{*} A "passing" result is that which is greater than or equal to the TIWC value.

Is there reasonable potential for an excursion above water quality standards based on the results of these tests?

X NO (see below)

<u>Comments</u>: Due to invalid WET Test submittals (Lab issues and subsequent temperature/holding time issues invalidated WET tests, with Lab issues discovered too late to allow for retesting in those previous years), there are not four (4) valid WET Test available. The standard WET Test conditions will require another WET Test during the first year of the permit, bringing total to four (4), hence no requirement for quarterly testing for first year of new NPDES Permit term.

- In the absence of any industrial dischargers and implementation of Toxics Reasonable Potential Permit Limits/monitoring, plus an attaining stream, the <u>presumption</u> is that the facility will not have Reasonable Potential for WET Test failures.
- The Department retains broad authority to reopen the permit in event of future WET Test failures. Therefore, the standard WET conditions (no limits) should be sufficient to protect the waters of the Commonwealth.

Evaluation of Test Type, IWC and Dilution Series for Renewed Permit

Acute Partial Mix Factor (PMFa): 1 Chronic Partial Mix Factor (PMFc): 1

1. Determine IWC - Acute (IWCa):

$$(Q_d \times 1.547) / ((Q_{7-10} \times PMFa) + (Q_d \times 1.547))$$

 $[(1.6 \text{ MGD} \times 1.547) / ((3.17 \text{ cfs} \times 1) + (1.6 \text{ MGD} \times 1.547))] \times 100 = |WCa\% = 43.8\%$

Is IWCa < 1%? X NO

^{**}Received and reviewed by DEP Biologist after latest application update.

If the discharge is to the tidal portion of the Delaware River, indicate how the type of test was determined: NA

Type of Test for Permit Renewal: Chronic

- 2a. Determine Target IWCa (If Acute Tests Required): NA
- 2b. Determine Target IWCc (If Chronic Tests Required)

$$(Q_d \times 1.547) / (Q_{7-10} \times PMFc) + (Q_d \times 1.547)$$

$$[(1.6 MGD \times 1.547) / ((3.17 cfs \times 1) + (1.6 MGD \times 1.547))] \times 100 = TIWCc\% = 43.8\% (~44\%)$$

3. Determine Dilution Series

Dilution Series = 100%, 72%, 44%, 22%, and 11%.

WET Limits

Has reasonable potential been determined? X NO

Will WET limits be established in the permit? X NO

If WET limits will be established, identify the species and the limit values for the permit (TU): NA

If WET limits will not be established, but reasonable potential was determined, indicate the rationale for not establishing WET limits: See above. The Department retains authority in event future WET Test failures occur to reopen the permit to establish WET Limits.

Communications Log:

<u>9/25/2017</u>: Application incompleteness letter issued.

10/23/2017: Response to Application incompleteness letter received (still missing influent/effluent Total Phosphorus data)

12/13/2017: Revised application received.

3/1/2019: Technical Deficiency Letter issued

<u>3/6/2019</u>: Returned telephone call to Authority consultant (Mike Gable, Boucher James, at 484-894-9239) about deficiency letter.

- He is working on the 2018 Chapter 94 Report Roseto is 4.5 times its EDUs, with SSOs. They need to talk to DEP M&C about SSO reporting requirements.
- He indicated hydraulic overload in 2018, and SSO events. He was unsure where the 1.9 MGD hydraulic design capacity figure came from. Told him about SSO reporting requirements (SSO form and noncompliance form in addition to letter noted SSO reporting requirement).
- Eliminating prohibited stormwater discharges, some home connections become multifamily connections, lots of problems in Roseto.
- No CAP was done per Chapter 2017 Chapter 94 Report.
- Borough Manager is manager of Authority.

<u>3/29/2019</u>: Authority (Boucher & James) E-mail query about potential 3,3-Dichlorobenzidine quantitation limits <u>4/1/2019</u>: DEP (Berger) E-mail explaining Reasonable Potential Analysis, quantitation limits, and EPA sufficiently sensitive rule.

4/1/2019: Authority (Boucher & James) E-mail indicating non-detect 3,3-Dichlorobenzidine

<u>4/1/2019</u>: DEP (Berger) E-mail regarding insensitive application quantitation limit and EPA sufficiently sensitive rule <u>4/8/2019</u>: Authority (Boucher & James) E-mail indicating they were looking at facility design capacities (hydraulic and organic).

4/8/2019: DEP (Berger) E-mail regarding rerating options and related.

<u>6/12/2019</u>: Authority (Boucher & James) with preliminary grab sample results and asking if potential limits could be dropped.

<u>6/13/2019</u>: DEP (Berger) E-mail indicating permit limits would be determined after the technical review of the future response to DEP Technical Deficiency Letter.

6/13/2019: Authority (Boucher & James) E-mail asking if two grab samples are sufficient.

<u>6/13/2019</u>: DEP (Berger) E-mail noting four samples requirement of Technical Deficiency Letter and providing additional quidance.

6/13/2019: Authority (Boucher & James) E-mail indicating additional sampling would be done.

6/28/2019: HFMP and CAP submittals.

7/5/2019: Revised 2018 Chapter 94 Report received with clarification on facility's hydraulic capacity

7/26/2019: Response to 3/1/2019 DEP Technical Deficiency Letter received.

	Facility: Bangor Borough Authority Analysis Hardness (mplL): 132.11	WWTP		NPDGS Permit No.: PASSSEE Outfall: Discharge Flow (MGD): 1.8 Analysis pH (SU):						
	Stream Flow, Q ₁₁₀ (cfs): 3.17			Declarge Flow y	13	~	yels pH (SU):7			
	Parameter		salmum Concentration in splication or DRRs (ug/L)	Most Stringers Criterion (ug/L)	Candidate for PENTOXSD Modeling?	Most Stringent WQBEL (pg/L)	Screening Recommendation			
-	Total Dissalved Salids		340000	500000	Yes	10 10 10 10 10 10				
	Chloride	170	101000	250000	Mo	Secretaria del				
H	Bromide	<	6.6 42700	N/A 250000 -	Mo Mo	2.514.255.441.504				
	Sulfate Total Aluminant	-	5.02	750	No No	10.000.0000				
	Total Antimory	- 1	0.44	5.6	- No	77 7 7				
	Total Americ		0.9	10	No					
	Total Barium		32.4	3400	,No	1 1 1 1 1				
	Total Beryllium	\rightarrow	0.023	N/A	No					
ł	Total Baren	\rightarrow	0.0423	9000	No No					
ł	Total Cadmium Total Chromium	-	1.11	NW.	No No					
	Heavelierd Chromism	<	0.1	10.4	Ne (Value < QL)	-				
-	Total Cubuit	- 7	0.194	10	No					
	Total Copper	-	0.11	11.6	Yes	26.594	Monitor			
	Free Available Cyanide Total Cyanide	-	5.29 5.29	5.2 NA	Yes No	11,855	Moelter			
	Total Cyanide Disselved Iron		29.4	380	No No	. Colonia				
1	Total Iran	1	16.7	1500	No No	THE PERSON NAMED IN				
1	Total Lead		0.397	4.5	No No	1911 CONT. 1 THE				
Į	Total Manganese		6.88	1000	No	2020000000				
	Total Mercury Total Mickel		1.63	0.05	Yes No	0.544	Monitor			
	Total Phonois (Phonoics)		0.467	5	No (Value < QL)					
١	Total Selection	10	0.803	8.0	No.					
1	Total Silver	- <	0,154	6.1	No (Walue < CL)					
I	Total Theliare	- 3	0.0006	0.24	No (Value < QL)	,				
1	Total Zine Total Molybrierure	-	0.409	151.7	No No	27.00000				
	Acreloin	- 4	1.65	3	No (Value < QL)					
	Azrylositrilo	<	4.32	0.081	No (Value < QL)	- 1 Sala 19				
1	Sengone	<	0.479	1.2	No (Value < QL)	7.				
١	Bromotorn.	4.	0,345	4.3	No (Value < QL)					
ł	Carbon Totrochleride Chlorobeczene	< -	0.438 0.425	0.20	Mo (Value < QL)	S . S . C . C . C . C				
	Chlorodioromomelhana -		0.54	0.4	No (Velue < GL) Yes	3.68	No Limitstidoeliuri			
١	Chloroefhene	- 3	0.188	NA.	No	State Part State	THE CHIMOMOTRIES			
ı	2-Chloroethyl Viryl Ether	<	0.917	3800	Mo (Value < QL)	50,445 WEST				
	Chioraforn	400	36.0	5.7	Yes	52,676	Extends Limits			
	Dichlorobromomelitume	- 4	0.088 0.138	0.55 NAA	No (Value < QL)	UP-13/25/25/20-C				
	1, 1-Dicklorsethane 1, 2-Dicklorsethane	<	0.110	0.38	No (Velse < GL)					
	1,1-Dictiorashelana	13	0.30	23	No (Value < QL)					
I	1,2-Diotiorsprapane	. 4	0.444	2200	No (Value < QL)	7 1,781				
ij	1,3-Dictiorsprappiese	<	0.14	0.34	No (Veteo < GL)	11,000				
1	1,4-Diceane EFlythercone	- 4	8.4 0.581	MA. 510	No (Value < QL)	Supplied to the				
1	Methyl Eromide	- 2	0.261	47	No (Value < QL)	A STATE OF THE STATE OF				
	Melhyl Chloride	191	0,213	5800	No (Value < QL)	7				
	Mathylona Chlarida	1.6	0.147	4.0	No (Value < QL)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
Į	1,1,2,2-Teirachloroethane	- 3	0,187	0.17	No (Veleo < GL)	05/12/2011				
ı	Tetrachtoroethylene Tatuene	- 3	0.42	0.09	No (Value < QL) No (Value < QL)	1. 10013000000				
1	1,3 trans Dichloroethylene	- 2	0.112	140	No (Value + QL)		-			
	1,1,5-Trichieroethase		0.447	810	No (Value × QL)	- T. C. C.				
	1,1,2-Trichiaroethana	41	0.292	0.69	No (Value < QL)	75 150000				
ı	Trichtorsofisione	4	0.552	2.5	No (Value < QL)	F 4 25 STATE				
+	Viryl Chloride	< <	0.182	0.025	No (Value < QL)	7.1000				
1	2-Chlorophenol 2,4-Dichlorophenol	- 1	0.671	81	No (Value + QL)	113,750 11 107,7450				
	2.4-Directly/phend	13	0.909	170	No (Value < QL)	100.00	-			
-1	4.5-Clintro-o-Cressi	14.	6.36	13	No (Value < QL)	A				
١.	2,4-Dinitrophenol	<	5.34		No (Value < QL)	125000000000000000000000000000000000000				
	2-Nitrophonol	<	0.713	1600	No (Value + QL)	A Secondary				
	4-Nitrophonal	. 4	0.319	470	No (Value < QL)	North College				
1	p-Chioro-m-Crosol	- 4	0.673	20	No (Value < QL)	s of knowletts				
ı	Pentachtorophenol Phenol	- 4	2.30 0.467	10400	No (Value < QL) No (Value < QL)	100000000000000000000000000000000000000				
	2.4.9-Trishlanghensi	- 2	DARK	1.4	No (Value < QL)					

	Acensghilherse	< 1	0.728	17	No (Value < QL)	37.7	
	Acensgl dryleno	<	0.736	160%	No	#129 YAQ 5	
	Anthescene	*	0.546	8300	No (Value < CL)	10.5	
	Honeidino	<	19.6	0.000086	No (Makes < QL)	43.57.7	
	BenzojogAethracene	<	0.512	0.0038	No (Value < QL)	0.011	
- }	GenzojajPyrene 3,4-Benzofusnistitorio	2	0.500 0.451	0.0038	No (Value < QL) No (Value < QL)	-	
	(Annooghiji Parylese	4	0.440	N/A	No		
	(Jerus)k) Russethees	6	0.532	0.0038	No (Vision < QL)	-	
	Sis(2-Chloroethosy)fileshane	<	0.743	NW	No	100,000	
ı	Bis(2-Chloroethyl)Ether	<	0.062	0.03	No (Value < QL)	100	
1	Bis(2-Chloroisopropyl)Gither	4	0.74	1400	No france < GL)	11,059	No Limits/Meniloring
- 1	Str.(2-Ethylhexy()Phthalete	<	2.66 0.544	1.2	Yes No (Value < QL)	11,000	No Limitary and anothing
- 1	4 Exureopheayi Phanyl Ether Sulyl Genzyl Phtholatie	4	0.605	95	No (Value < GL)		
- 1	2-Chlorosaphfusiana	4	0.7	1000	No (Value < GL)		
- 1	4-Chlorophenyl Phenyl Citier	<	0.684	NM.	No		
- 1	Chysese	<	0.589	0.0036	Mo (Value < QL)		
	Dibenzo(a,h)Anthrascene	4	0.585	8000.0	No (Water < QL)		
	1,2-Dichloroberszene	<	0.292	160	No (Value < QL)		
.	1,3-Dictionsbergene 1,4-Dictionsbergene	4	0.147	158	No (Value < QL)		
2	1,4-Cictionsensine 3,3-Cictionsensine	3	0.130	0.021	No (Value < QL) No (Value < QL)	-	
	Diotryl Phthalate	3	0.504	800	No (Value < QL)		
5	Directlyl Phtholaire	4	0.686	500	No (Value ≠ QL)		
	Di-e-Dutyl Phihalate	4	0.679	21	No (Water < QL)	0.00	
- [2,4-Distrototsona	3	0.608	0.05	No (Value < QL)	died for destrict	
	2,6-Distrotolares	4	0.588	0.05	No (Velse < QL)	327 17 1 1427	
	Di-e-Octyl Phihalata 1.3 Disharationhouse	2	0.662	MA. 0.096	No (Value < QL)		
	1.2-Dighereffydiodne Fluoranthene	4	0.464	40	No (Value < QL)		
	Florene	3	0.627	1190	No (Value < QL)		
	Hexachtorobengene	<	0,546	0,00029	Ho (Value ≠ QL)	7	
- [Hexachlorobutacliene	<	0.009	0.44	No (Make < QL)		
- 1	Hasachtorocystopentediona	<	0.38	1	No (Make < QL)		
	Hauschlossethane	4	0.09	1.4	No (Value + QL)		
	Indens(1,2,3-cd)Pyress	3	0.426	0.0008	No (Value < QL)		
	Toggherono Piagárbolese	<	0.140	43	No (Value + QL)	0.176.2	
- 1	Nitroberosna	4	0.704	17	No (Value < QL)		
- 1	n-Nitreadmefigianine	<	0.279	0,000000	No (Volue < QL)	7.7	
	In-Nitresedi-e-Prepulamine	<	0.800	0.005	No (Value < QL)		
	n-Nitrosodiphenylamine	<	0.572	3.3	No (Value = QL)		
	Phenethrese	<	0.501	1	Ne protue < GL)	-	
	1,2,6-TscMorobengene	<	0.405	890 26	No (value < QL)		
_	Aldrin.	4	110000000000000000000000000000000000000	0.000049	100 (1000 - 30)		
	alpha-BHC	<		0.0026		2.7	
	beta-RHC	<	3.20,000,000,000,000,000	0.0091		501 -0.000	
	gamma-BHC	4	CONTRACTOR CONTRACTOR	0.058			
	dette BHC Chloridane	<		NA. 0.0008			-
	4.4-DDT	4	OCCUPATION OF THE PROPERTY OF	0.00022		20 C 8 C C C	
	4.400E	<	to protecting the	0.00022		-	
*	4,4,000	<	protection by well by	0.00001		1,217 1999	
8	Dielárin	14	Alternative and the	0.000052		1	
ĕ	alpha-Endosullan	46		0.058		-	
	boto-Endosullan	4	77 - 1 - 1 - 1 - 1 - 1 - 1	0.058			
	Endosuites Suitate Endris	4		MA. 0.036			
	Excite Aldebyde	3		0.29			
	Hegischior	4		0.000079		77,52	
	Heptachior Eposide	4	1 00 1 104 1	0.000039			
	Texaphere	<		0.0002		3.575	
_	2,3,7,8-TGDB	4	100000000000000000000000000000000000000	0.00000000S N/A		7 7 1 1 1 1 1 1	
ь	Gross Alpha (pCI/L) Total Bete (pCI/L)	4		N/A N/A		-	
3	Hadan 226/226 (pCRL)	1		N/A			
Greenp	Total Stroetium	4	- 10 1 1 C C 1 1 C C C C C C C C C C C C	4000		77.1	
-	Total Ursalum	14.	toding a re-	N/A		V 2 X 1 1 1	
	The state of the s		2000 0000 20				
	Advisor transfer legal a regional		A TANKER OF THE PARTY.			* * A A	
	The state of the s					1,111,111,111	
		-		-			
						100	
	The state of the s						
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1				1000	
			1 1 10 11 11			2.77	
			13.8951			1 1	
	611 15 200 17 1 1		2,127				

WQM 7.0 Effluent Limits

		Code 80	Stream Name MARTINS CREEK				
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
2,110	Bangor Nor Auth	PA0028568	1.600	CBOD5	25		
				NH3-N	2.4	4.8	
				Dissolved Oxygen			5

MERCURY

THH

0.114

PENTOXSD Analysis Results

Recommended Effluent Limitations

SWP Basin	Stream Code:			Stream	Name:		
01F	4680			MARTINS	CREEK		
RMI	Name		rmit mber	Disc Flow (mgd)			
2.11	Bangor Bor Auth	PA00	28568	1.6000	-		
		Effluent Limit			Max.	Most S	tringent
	Parameter	(µg/L)	Govern Criter		Daily Limit (µg/L)	WQBEL (µg/L)	WQBEL Criterion
3,3'-DICHLOF	RO-BENZIDINE	0.194	CRL	-	0.302	0.194	CRL
BIS(2-ETHYL	HEXYL) PHTHALATE	2.69	INPU	IT	4.197	11.069	CRL
CHLORODIB	ROMOMETHANE	0.54	INPU	IT	0.842	3.69	CRL
CHLOROFOR	ŘΜ	38.9	INPU	T	60.69	52.576	CRL
COPPER		8.11	INPU	T	12.653	26.594	AFC
CYANIDE, FF	REE	5.29	INPU	T	8.253	11.856	CFC

TRC_CALC

INPUT

0.029

0.045

nnut appropriate						
i ibat abbi obi iato	values in A	3:A9 and D3:D9				
3.17 =	Q stream (c	efs)	0.5	= CV Daily		
1.6 =	Q discharge	e (MGD)	0.5	= CV Hourly		
30 =	no. sample:	s	1	= AFC_Partial N	lix Factor	
0.3	Chlorine De	emand of Stream		= CFC_Partial N		
		emand of Discharge	15	= AFC_Criteria	Compliance Time (min)	
0.5 =	BAT/BPJ V	alue	720	= CFC_Criteria	Compliance Time (min)	
0 =	% Factor o	f Safety (FOS)		=Decay Coeffic	ient (K)	
Source R	Reference	AFC Calculations		Reference	CFC Calculations	
TRC	1.3.2.iii	WLA afc =	0.428	1.3.2.iii	WLA cfc = 0.409	
PENTOXSD TRG	5.1a	LTAMULT afc =	0.373	5.1c	LTAMULT cfc = 0.581	
PENTOXSD TRG	5.1b	LTA_afc=	0.159	5.1d	LTA_cfc = 0.238	
Source		Efflue	nt Limit Calcu	lations		
PENTOXSD TRG	5.1f		AML MULT =	1.231		
PENTOXSD TRG	5.1g	AVG MON	LIMIT (mg/l) =	= 0.196 AFC		
		INST MAX	LIMIT (mg/l) =	0.641		