

 Application Type
 Renewal

 Facility Type
 Municipal

 Major / Minor
 Minor

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

 Application No.
 PA0028720

 APS ID
 326511

 Authorization ID
 999541

Applicant and Facility Information

5 Bernville Road ding, PA 19605-9400 y Sroka	Facility Address	2501 Bernville Road Reading, PA 19605
		Reading, PA 19605
y Sroka		
•	Facility Contact	Terry Sroka
) 372-4666	Facility Phone	(610) 372-4666
35	Site ID	253636
Overloaded	Municipality	Bern Township
imitations	County	Berks
October 23, 2013	EPA Waived?	Yes
October 31, 2013	If No, Reason	
This is an application for NPDES rel	newal.	
0	25 Overloaded imitations October 23, 2013 October 31, 2013	25 Site ID Overloaded Municipality imitations County October 23, 2013 EPA Waived?

Approve	Deny	Signatures	Date
		Nicholas Hong, P.E. / Environmental Engineer	December 9, 2021
Х		Nick Hong (via electronic signature)	December 9, 2021
		Daniel W. Martin, P.E. / Environmental Engineer Manager	
x		Maria D. Bebenek for Daniel W. Martin	December 15, 2021
		Maria D. Bebenek, P.E. / Environmental Program Manager	
x		Maria D. Bebenek	December 15, 2021

Summary of Review

The application submitted by the applicant requests a NPDES renewal permit for the Reading Regional Airport Authority located at 2501 Bernville Road, Reading, PA 19605 in Berks County, municipality of Bern Township. The existing permit became effective on June 1, 2009 and expired on May 31, 2014. The application for renewal was received by DEP Southcentral Regional Office (SCRO) on October 31, 2013. A revised application was received on May 24, 2018.

The purpose of this Fact Sheet is to present the basis of information used for establishing the proposed NPDES permit effluent limitations. The Fact Sheet includes a description of the facility, a description of the facility's receiving waters, a description of the facility's receiving waters attainment/non-attainment assessment status, and a description of any changes to the proposed monitoring/sampling frequency. Section 6 provides the justification for the proposed NPDES effluent limits derived from technology based effluent limits (TBEL), water quality based effluent limits (WQBEL), total maximum daily loading (TMDL), antidegradation, anti-backsliding, and/or whole effluent toxicity (WET). A brief summary of the outlined descriptions has been included in the Summary of Review section.

The subject facility is a 0.42 MGD annual average design flow treatment facility. As of the revised/updated application submitted in May 2018, the applicant did not anticipate any proposed upgrades to the treatment facility in the next five years. The NPDES application has been processed as a Minor Sewage Facility due to the type of sewage and the design flow rate for the facility. The applicant disclosed the Act 14 via the Act 67, 68, and 127 requirements to Berks County Planning Commission and Bern Township and the notice was received by the parties on July 23, 2013. A planning approval letter was not necessary as the facility is neither new or expanding.

Utilizing the DEP's web-based Emap-PA information system, the receiving waters has been determined to be the Schuylkill River. The sequence of receiving streams that the Schuylkill River discharges into are the Delaware River which eventually drains into the Delaware Bay. The receiving water has protected water usage for warm water fishes (WWF) and migratory fishes (MF). No Class A Wild Trout fisheries are impacted by this discharge. The absence of high quality and/or exceptional value surface waters removes the need for an additional evaluation of anti-degradation requirements.

The Schuylkill River is a Category 2 and 4a stream listed in the 2020 Integrated List of All Waters (formerly 303d Listed Streams). This stream is an attaining stream that supports aquatic life, recreational uses, and potable water supply. The receiving stream is also impaired for fish consumption due to PCBs from an unknown source. The receiving waters is subject to the Schuylkill River PCB total maximum daily load (TMDL) plan to improve water quality in the subject facility's watershed.

The existing permit and proposed permit differ as follows:

- Adjustment to permit limit for TDS due to typographical error in existing permit
- Due to EPA triennial, E- Coli shall be monitored
- Monitoring for stormwater parameters on a 2x/yr basis

Sludge use and disposal description and location(s): Sewage Sludge/Biosolids is disposed at the Exeter Township in Berks County under DEP Permit No. PA0026972 and/or Lehigh County Authority WWTP in Lehigh County under DEP Permit No. PAS902202

The proposed permit will expire five (5) years from the effective date.

Based on the review in this report, it is recommended that the permit be drafted. DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Any additional information or public review of documents associated with the discharge or facility may be available at PA DEP Southcentral Regional Office (SCRO), 909 Elmerton Avenue, Harrisburg, PA 17110. To make an appointment for file review, contact the SCRO File Review Coordinator at 717.705.4700.

1.0 Applicant

1.1 General Information

This fact sheet summarizes PA Department of Environmental Protection's review for the NPDES renewal for the following subject facility.

Facility Name:	Reading Regional Airport Authority
NPDES Permit #	PA0028720
Physical Address:	2501 Bernville Road Reading, PA 19605
Mailing Address:	2501 Bernville Road Reading, PA 19605
Contact:	Terry Sroka Manager tsroka@readingairport.org
Consultant:	Christina Crawford, PE/MBA Spotts, Stevens, and McCoy christina.crawford@ssmgroup.com

1.2 Permit History

Description of Facility

On February 10, 2017, DEP issued a letter to the facility informing that DEP no longer considers the storm sewer system within the facility's jurisdiction to be a regulated small MS4. As a result, DEP does not expect a submittal for NOI or permit application for stormwater.

Reading Regional Airport Authority (RRAA) reportedly sold a 154-acre track of land to Berks County Industrial Development Authority (BCIDA). The parcel of land included the original stormwater outfalls 002, 003, and 004. RRAA continues to hold the parcel that includes stormwater outfalls 005, 006, 007, and 008.

In prior issued NPDES permits, the facility was categorized as Sewage- Non-public. This has been corrected to Sewage-Public. By regulatory definition, an authority is public. The facility is also considered municipal. This seems appropriate since wastewater contributions prior to around 2006 did not include St. Joseph Hospital and Bern Township.

Sources of Water

The facility receives wastewater contributions from the locations summarized in the table.

Tributary Information				
Municipalities Served	Flow Contribution			
Airport and the Airport Industrial Park	27%			
Saint Joseph Medical Center	47%			
Bern Township	26%			
Total	100%			

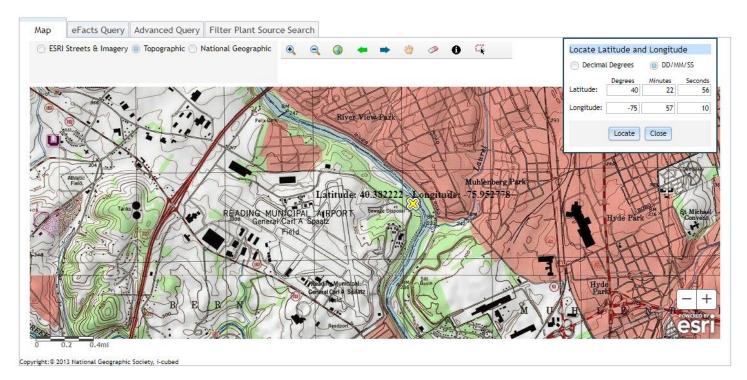
DRBC Docket

On June 12, 2019, the Delaware River Basin Commission, issued Docket No D-1986-038 CP-4 for the Reading Regional Airport Authority. The docket was issued for the renewal of the existing WWTP and its discharge in conjunction with the PA DEP NPDES permit.

Section 3.10.4D.2. of the Commission's *Water Quality Regulations* (*WQR*) establishes the basin-wide total dissolved solids (TDS) effluent standard as 1,000 mg/l. A variance to the Commission's TDS effluent limit was approved on an average monthly and instantaneous maximum basis of 2,605 mg/l and 5,210 mg/l, respectively.

The docket expires on June 30, 2025.

Permit submittal included the following information.


- NPDES Application
- Flow Diagrams
- Influent Sample Data
- Effluent Sample Data

2.0 Treatment Facility Summary

2.1.1 Site location

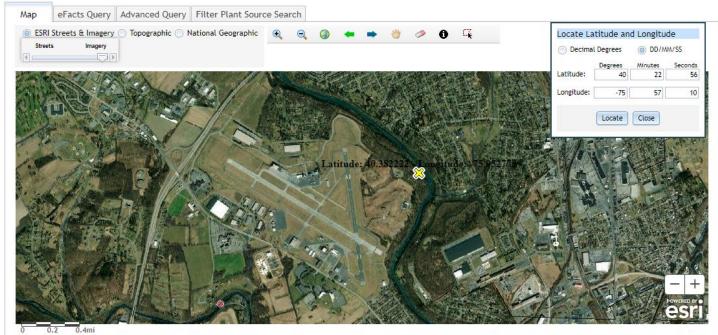

The physical address for the facility is 2501 Bernville Road, Reading, PA 19605. A topographical and an aerial photograph of the facility are depicted as Figure 1 and Figure 2.

Figure 1: Topographical map of the subject facility

NPDES Permit Fact Sheet Reading Region Airport

Figure 2: Aerial Photograph of the subject facility

Imagery: Source: Esri, Maxar, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA, USGS, AeroGRID, IGN, and the GIS User Community; ESRI Streets: Sources: Esri, HERE, Garmin, USGS, Intermap, INCREMENT P, NRCan, Esri Japan, METI, Esri China (Hong Kong), Esri Korea, Esri (Thailand), NGCC, (c) OpenStreetMap contributors, and the GIS User Community

.....

-15

2.1.2 Sources of Wastewater/Stormwater

The NPDES application notes that there is one industrial user. Industrial Metal Plating discharges approximately 0.0204 MGD. The facility uses a pretreatment system that processes wastewater from their metal finishing process. The facility is not a significant industrial user.

The table summarizes the facility's industrial/commercial users.

		RRAA SEWER 1	ENANTS					
Meter Location	Сотрану	Business Type	2017 Qtr 1 Usage	2017 Qtr 2 Usage	2017 Qtr 3 Usage	2017 Qtr 4 Usage	ANNUAL TOTAL	AVERAGI GALLON USED PER I
TERM	READING AIRPORT	AVIATION	5,000	3,000	7,000	4,000	19,000	52
ARFE	READING AIRPORT	EMERGENCY SERVICES	7,170	12,650	900	7.000	27,720	75
SHOP	READING AIRPORT	MAINTENANCE	8,650	23,910	18,010	13,440	64,010	175
STP	READING AIRPORT	SEWAGE TREATMENT	196,300	251,500	303,000	186,100	936,900	2,560
Har 406	GALIYANO ASSOC	OFFICE	4,780	4,630	3,920	2,970	16.300	4
Hgr 515	ATLANTIC COAST AIRCRAFT SVC	AVIATION	15,600	17,400	12,200	15,500	60,700	16
ngi oro	BARCO INC	MANUFACTURING	15,000	13,300	10,900	18,500	57,700	15
	BURGOE REALTY	WAREHOUSING	14,100	12,500	10,500	10,300	47,400	12
	BURGOE REALTY	WAREHOUSING	39,100	24,900	24,300	21,200	109,500	30
		WAREHOUSING	288,300	24,900	382,700	369,500	1,280,500	3.50
	BURGOE REALTY					309,500	1,200,500	3,50
3ldg 207	CIVIL AIR PATROL	OFFICE	710	2,920	810			
Tower	FAA AIRWAYS FACILITIES	AVIATION	21,016	28,144	16,767	22,683	88.610	24
G&T	G & T INDUSTRIES	WAREHOUSING	71,760	63,600	66,330	65,260	266,950	73
	KLINGER'S AT THE AIRPORT	RESTAURANT		59,100	63,700		256,600	
	HOLIDAY INN EXPRESS	HOTEL.	705,500	700,700	804,400	629,300	2,839,900	7,78
Landis	INDCOR PROPERTIÉS INC.	OFFICE	5,100	13,600	25,000	15,300	59,000	16
	INDUSTRIAL METAL PLATING	MANUFACTURING	2,159,500	1,698,600	1.858,300	1,729,500	7.445.900	20.39
3ldg 206	MID ATLANTIC AIR MUSEUM	AVIATION	2,710	11,760	26,840	2,170	43,480	11
3ldg 205	MID ATLANTIC AIR MUSEUM	AVIATION	5,180	6,720	5,130	5,200	22,230	6
Hgr 514	PENN NATNL GAMING (RDG NORTHERN)	AVIATION	1,600	1,500	1,800	35,200	40,100	10
meter 2	PHILLIPS VAN HEUSEN	MANUFACTURING	27,000	27,000	26,000	30,000	110,000	30
meter 1	PHILLIPS VAN HEUSEN	MANUFACTURING	123,620	77,810	85,090	93,790	380,310	1,04
3ldg 404	READING AERO CLUB	AVIATION	870	1,410	1,120	1,190	4,590	1
Hgr 401	READING JET CENTER	AVIATION	30	10	-	-	40	
Hgr 402	READING JET CENTER	AVIATION	2,660	2,190	2,330	1,650	8,830	2
Hgr 407	READING JET CENTER	AVIATION	9,040	9,100	11,330	9,990	39,460	10
dg 203-A	READING JET CTR (AFS OR R.A.C.)	AVIATION	1,350	1.880	2,205	1,687	7,122	1
Hgr 3	READING JET CTR (AFS OR R.A.C.)	AVIATION	2,720	2,940	1,030	1,150	7,840	10
ldg 203	READING JET CTR (AFS OR R.A.C.)	AVIATION	5,210	8,870	15,530	8,500	38,110	
Ndg 233	READING POLICE DEPARTMENT	POLICE	1,370	1,940 730	2,130	1,900	7,340	2
Mdg 238	READING POLICE DEPARTMENT		1,740	1,340	1,030	1.000	2,770	1
Rdg 130	RON MACHINE SUPPLY ONE PLASTICS	MANUFACTURING MANUFACTURING	5,605	6,315	5,060	7,390	24,370	6
Prologis Prologis	SUPPLY ONE PLASTICS	MANUFACTURING	21,680	23,410	20,460	7,390	24,370 83,390	22
O Comm	INDCOR PROPS/FORMERLY X O COMMUNICATIONS	COMMUNICATIONS	13,200	10,200	11,300	14,300	49,000	13
o couen	DIRECT LINK	OFFICE	2,133,800	2,381,900	2,838,400	2,259,000	9,613,100	26,33
	ST. JOSEPH'S MEDICAL CENTER	HOSPITAL	3,354,380	3,658,180	3,877,210	4,142,140	15,031,910	41,18
	BTMA (METER 1)	COMMERCIAL/RESIDENTIAL	1,400,400	1,002,000	948,200	743,900	4,094,500	11.21
	BTMA (METER 1) BTMA (METER 2)	COMMERCIAL/RESIDENTIAL	1,526,900	1,145,500	1.052.900	1,321,400	5,047,700	13.82
	RRAA (STP)	AVIATION	2,670,420	4,616,020	5,644,190	4,829,260	17,759,890	48.65
	(110)	010190	2,010,720	-10101020	0,011,100		1111 001000	

RRAA TENANTS	6,001,361	5,747,479	5,666,532	5,663,740	24,079,212
ST JOE'S/BTMA/RRAA	8,952,100	10,422,700	11,522,500	11,038,700	41,934,000

The facility has the following outfall information for stormwater.

Outfall No.	Outfall No. 002		0
Latitude	Latitude 40° 22' 32.09"		-75º 57' 21.91"
Wastewater D	escription: Stormwater; Some deicing activities		

Outfall No.	003			Design Flow (MGD)	0
Latitude	40° 22' 47.77	711		Longitude	-75º 57' 36.04"
Wastewater Description: Stormwater: Runways and taxiways, turf. etc. Some deicing activities.					vities.

Outfall No.	004			Design Flow (MGD)	0
Latitude	40° 22' 59.6			Longitude	-75º 57' 34.97"
Wastewater Description: Stormwater: Runways and taxiways, turf, etc. Some deicing activities					ities

astewater Description: Stormwater; Runways and taxiways, turf, etc. Some deicing activities.

Outfall No.	005		Design Flow (MGD)	0
Latitude	40° 23' 8.85'	1	Longitude	-75º 57' 58.68"
Wastewater Description: Stormwater; The drainage area Wastewater Description: runways and taxiways, light mark		Stormwater; The drainage area is appr runways and taxiways, light manufactu aboveground fuel storage tanks, woode	ring, auto parking lot, aircr	aft hanger, aircraft parking apron,

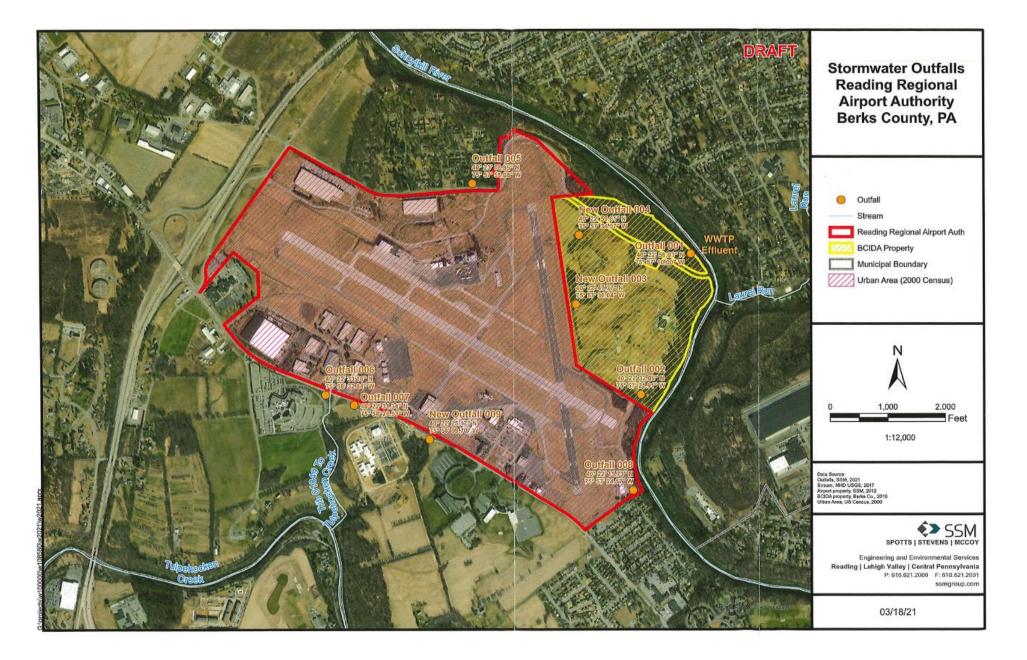
Outfall No.	tfall No. 006		Design Flow (MGD) 0	
Latitude	titude 40° 22' 33.16"		Longitude	-75º 58' 32.84"
Wastewater Description: runways and taxiways, office buil		Stormwater; The drainage area is appr runways and taxiways, office building, a lot, and turf.		

Outfall No.	007		Design Flow (MGD)	0
Latitude	40º 22' 31.34	1"	Longitude	-75º 58' 26.53"
Wastewater Description:		Stormwater; The drainage area is approximately 93.35 acres. The stormwater originates from aircraft		
		hanger, warehousing, truck parking lot,	auto parking lot, and turf.	Some deicing activities.

Outfall No.	008		Design Flow (MGD)	0			
Latitude	40º 22' 15.73	3"	Longitude	-75º 57' 24.17"			
Wastewater D	oscription:	Stormwater; The drainage area is approximately 21.15 acres. The stormwater originates from airport					
wastewater D	escription.	maintenance garage, runway and taxiway, auto parking lot, and turf.					

Outfall No.	009		Design Flow (MGD)	0
Latitude	40° 22' 25.17	7"	Longitude	-75º 58' 9.70"
Wastewater Description:		Stormwater; Some deicing activities.		

The locations of the stormwater outfalls are depicted in the map.

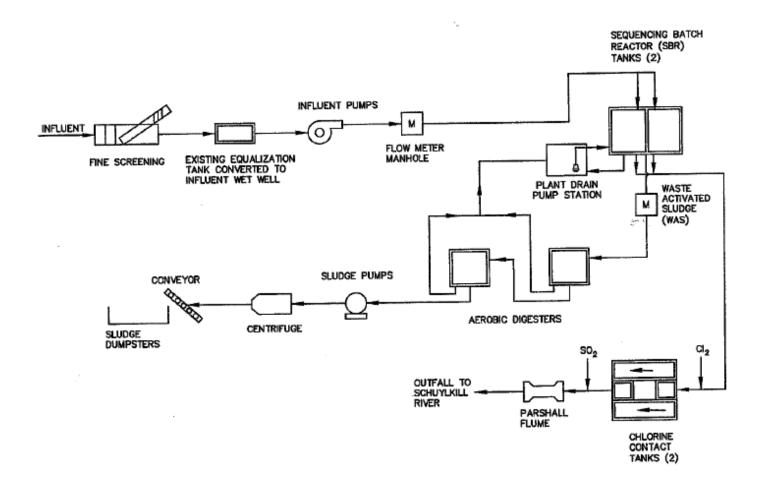

The red outline encircles the Reading Regional Airport Authority property. The yellow outline encircles the BCIDA property.

Outfall 002 is just outside the airport parcel and will receive little contribution from BCIDA stormwater. The facility will seek permission from BCIDA to continue sampling at this outfall.

Outfalls 003 and 004 were relocated to move the outfalls upstream from the BCIDA property as much as possible to avoid drainage from the BCIDA site. Due to the sale of the property to BCIDA, the facility will no longer have access to the stormwater outfalls.

Outfall 009 is a new outfall.

NPDES Permit Fact Sheet Reading Region Airport


2.2 Description of Wastewater Treatment Process

The subject facility is a 0.42 MGD design flow facility. The subject facility treats wastewater using a sequencing batch reactor(s) (SBR) and a chlorine contact tank prior to discharge through the outfall. The facility is being evaluated for flow, pH, dissolved oxygen, TRC, TSS, CBOD, oil and grease, ammonia-nitrogen, TDS, PCBs, and fecal coliform. The existing permits limits for the facility is summarized in Section 2.4.

The treatment process is summarized in the table.

	Treatment Facility Summary											
Freatment Facility Nar	ne: Reading Region Airport	STP										
Waste Type	Degree of Treatment	Process Type	Disinfection	Avg Annual Flow (MGD)								
Sewage	Secondary	Sequencing Batch Reactor	Chlorine With Dechlorination	0.42								
Hydraulic Capacity (MGD)	Organic Capacity (Ibs/day)	Load Status	Biosolids Treatment	Biosolids Use/Disposal								
0.504	1043	Not Overloaded	Aerobic Digestion	Combination of methods								

A process flow diagram for the facility is depicted.

2.3 Facility Outfall Information

The facility has the following outfall information for wastewater.

Outfall No.	001		Design Flow (MGD)	.42
Latitude	40° 22' 58.15"		Longitude	-75º 57' 11.29"
Wastewater D	escription:	Sewage Effluent		

2.3.1 Operational Considerations- Chemical Additives

Chemical additives are chemical products introduced into a waste stream that is used for cleaning, disinfecting, or maintenance and which may be detected in effluent discharged to waters of the Commonwealth. Chemicals excluded are those used for neutralization of waste streams, the production of goods, and treatment of wastewater.

The subject facility utilizes the following chemicals as part of their treatment process.

- Chlorine for chlorination
- Sulfur dioxide for dichlorination

2.4 Existing NPDES Permits Limits

The existing NPDES permit limits are summarized in the table.

PART A - EFFLUENT LIMITATIONS, MONITORING, RECORD KEEPING AND REPORTING REQUIREMENTS

I. EFFLUENT LIMITATIONS AND MONITORING REQUIREMENTS

A. For Outfall 001, Latitude 40°22'56", Longitude 75°57'10", River Mile Index 80.3, Stream Code 00833, Discharging to Schuylkill River which receives wastewater from the wastewater treatment plant.

- 1. The permittee is authorized to discharge during the period from June 1, 2009 through May 31, 2014.
- Based on the anticipated wastewater characteristics and flows described in the permit application and its supporting documents and/or amendments, the following effluent limitations and monitoring requirements apply (see also Additional Requirements, Footnotes, and Supplemental Information).

			Efflu	ent Limitati	ons	-		Monitoring Requirements		
Black and Back of the	Mass U	nits (lbs/day) ⁽¹⁾		Co	ncentrations	s (mg/L)			1.12	
Discharge Parameter	Monthly Average	Weekly Average	Minimum	Monthly Average	Weekly Average	Maximum Daily	Instantaneous Maximum	Minimum ⁽³⁾ Measurement Frequency	Required Sample Type	
Flow (mgd)	Report	Report Daily Max	XXX	XXX	XXX	XXX	XXX	Continuous	Measured	
Influent (BOD ₅ and TSS) ⁽⁴⁾	Report	Report Daily Max	XXX	Report	XXX	XXX	XXX	2/Month	24-hr comp	
pH (S.U.)	XXX	XXX	6,0	XXX	XXX	XXX	9.0	1/Day	Grab	
Dissolved Oxygen	XXX	XXX	5.0	XXX	XXX	XXX	XXX	1/Day	Grab	
Total Residual Chlorine	XXX	XXX	XXX	0.5	XXX	XXX	1.60	1/Day	Grab	
Total Suspended Solids	105	157	XXX	30	45	XXX	60	1/Week	24-hr comp	
CBOD ₅	87	140	XXX	25	40	XXX	50	1/Week	24-hr comp	
Oil and Grease	52	XXX	XXX	15	XXX	xxx	30	1/Week	24-hr comp	
NH ₃ -N	70	XXX	XXX	20	XXX	XXX	40	1/Week	24-hr comp	
Total Dissolved Solids	XXX	XXX	XXX	2,625	XXX	5,210	5,210	1/Week	24-hr comp	
Total PCBs ⁽⁵⁾	XXX	XXX	XXX	Report	XXX	XXX	XXX	2/Year	24-hr comp	
Fecal Coliform ⁽⁶⁾ (5/1 to 9/30)	xxx	XXX	xxx	200	XXX	XXX	XXX	1/Week	Grab	
Fecal Coliform ^{(5),(6)} (10/1 to 4/30)	xxx	XXX	XXX	2,000	XXX	xxx	XXX	1/Week	Grab	

Samples taken in compliance with the monitoring requirements specified above shall be taken at the following location(s):

at discharge from facility.

PART A - EFFLUENT LIMITATIONS, MONITORING, RECORDICEPING, AND REPORTING REQUIREMENTS

 Monocluster in the second secon	MONITORING RE	QUIREMENTS
Parameter	Grab Sample (mg/l)	Monitor Frequency
CBOD ₅	Monitor & Report	1/year
Chemical Oxygen Demand	Monitor & Report	1/year
Total Suspended Solids	Monitor & Report	1/year
Total Potassium	Monitor & Report	1/year
Diethylene Glycol	Monitor & Report	1/year
Propylene Glycol	Monitor & Report	1/year
Ethylene Glycol	Monitor & Report	1/year
oH (S.U.)	Monitor & Report	1/year
Dil and Grease	Monitor & Report	1/year
otal Iron	Monitor & Report	1/year

B. Monitoring Requirements for Stormwater Outfalls 002, 003, 004, 005, 006, 007, and 008.⁽⁷⁾

3.0 Facility NPDES Compliance History

3.1 Summary of Inspections

A summary of the most recent inspections during the existing permit review cycle is as follows.

The DEP inspector noted the following during the inspection.

07/06/2016:

- The raw influent was tinted orange/red. The facility suspects the industrial metal plating may be responsible for the dye in the influent. Metal sampling was conducted around June 27, 2016.
- A charcoal and sand mixture were observed in the influent channel. The facility noticed the grit beginning on June 7 over the course of about a week. The grit resembles a media used in the industrial metal plating pretreatment process.

04/11/2017:

• The inspection was precipitated by an incident. Approximately 3,000 gallons was overflow due to a PLC failure. Lime was applied to the ground in the area of overflow.

07/02/2018:

- The following repairs/replacements were made since the last inspection: Effluent sampler, utility water pump rebuilt, gasket gate valves repaired, influent screen had new brushes and wear plates, blower #3 rebuilt, PLC power supply fixed.
- The SCADA system was adjusted so it would not register a storm event when entering in fill decant mode.
- The industrial metal plating pretreatment was upgraded.
- The pump station is maintained by Bern Township.
- The flow to the treatment plant from Bern township is monitored along Leisczs Bridge Road.

3.2 Summary of DMR Data

A review of approximately 1-year of DMR data shows that the monthly average flow data for the facility below the design capacity of the treatment system. The maximum average flow data for the DMR reviewed was 0.185 MGD in March 2021. The hydraulic design capacity of the treatment system is 0.504 MGD.

The off-site laboratory used for the analysis of the parameters were QCL, QC Laboratories located at 1205 Industrial Blvd, PO Box 514 Southampton, PA 18966 and Atlantic Coast Laboratories located at 630 Churchmans Road, Newark, DE 19702.

NPDES Permit Fact Sheet Reading Region Airport

NPDES Permit No. PA0028720

DMR Data for Outfall 001 (from October 1, 2020 to September 30, 2021)

Parameter	SEP-21	AUG-21	JUL-21	JUN-21	MAY-21	APR-21	MAR-21	FEB-21	JAN-21	DEC-20	NOV-20	OCT-20
Flow (MGD)												
Average Monthly	0.157	0.098	0.090	0.085	0.065	0.107	0.185	0.093	0.079	0.182	0.113	0.117
Flow (MGD)												
Daily Maximum	0.303	0.160	0.126	0.131	0.134	0.213	0.269	0.219	0.105	1.337	0.340	0.171
pH (S.U.)												
Minimum	6.0	7.1	7.2	7.1	6.7	7.0	7.0	6.9	6.7	6.2	6.9	7.0
pH (S.U.)												
Instantaneous												
Maximum	7.4	7.8	7.6	7.6	7.8	7.6	7.6	7.6	7.9	7.6	7.6	7.8
DO (mg/L)												
Minimum	5.4	5.2	5.7	5.9	6.8	7.1	7.8	8.3	7.0	6.1	7.2	7.1
TRC (mg/L)												
Minimum	0.01	0.01	0.01	< 0.1	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
TRC (mg/L)												
Average Monthly	0.1	0.1	0.03	0.1	0.1	0.1	0.1	0.2	0.1	0.2	0.1	0.1
TRC (mg/L)												
Instantaneous												
Maximum	0.4	0.3	0.1	0.7	1.0	0.8	0.4	1.4	0.6	1.0	0.4	0.1
CBOD5 (lbs/day)												
Average Monthly	4	< 2	< 2	< 2	< 1	2	< 6	3	< 2	6	< 2	< 2
CBOD5 (lbs/day)	_		_	-		_		_	_		_	_
Weekly Average	5	< 3	2	< 2	< 1	3	13	5	3	17	< 2	< 2
CBOD5 (mg/L)		_	_	-	_	_		_	_		_	_
Average Monthly	3	< 2	< 2	< 2	< 2	2	< 4	5	< 3	4	< 2	< 2
CBOD5 (mg/L)	_						10					
Weekly Average	5	< 2	2	< 2	2	3	10	6	3	9	< 2	< 2
BOD5 (lbs/day)												
Raw Sewage Influent												
 Average	0.4	110	404	201	004	00	400	000	400	400	100	407
Monthly	94	118	194	204	221	83	136	202	139	162	108	137
BOD5 (lbs/day)												
Raw Sewage Influent	134	136	232	269	301	84	156	227	178	190	116	157
 br/> Daily Maximum BOD5 (mg/L)	134	130	232	209	301	04	100	221	1/0	190	110	157
Raw Sewage Influent												
<pre> Average</pre>												
Monthly	60	131	221	214	260	77	80	198	181	220	104	133
TSS (lbs/day)	00	151	<u> </u>	214	200		00	130	101	220	104	155
Average Monthly	29	< 5	< 4	< 3	< 2	< 4	< 14	9	< 6	< 8	7	5
Average Monthly	29	< 0	< 4	< 3	< Z	< 4	< 14	3	< 0	< 0	1	5

TSS (lbs/day) Raw Sewage Influent Average												
Monthly	77	111	198	220	140	73	139	187	99	85	108	121
TSS (lbs/day)												
Raw Sewage Influent												
 br/> Daily Maximum	103	156	218	226	162	74	167	234	108	93	161	161
TSS (lbs/day)												
Weekly Average	38	< 5	4	< 3	< 3	6	30	11	12	< 15	9	7
TSS (mg/L)												
Average Monthly	23	< 5	< 4	< 4	< 4	< 4	< 10	16	< 8	< 7	8	5
TSS (mg/L)												
Raw Sewage Influent												
 Average	50	404	000	000	405	00	00	400	400	440	400	445
Monthly	50	124	223	232	165	68	82	182	132	116	108	115
TSS (mg/L) Weekly Average	51	< 4	5	4	< 4	5	22	20	15	11	10	6
Total Dissolved Solids	51	< 4	5	4	< 4	5		20	15		10	0
(mg/L)												
Average Monthly	816.3	1544.0	1527.5	1364.0	1190.0	894.0	716.4	1053.5	1016.5	1121.2	1155.0	1137.5
Total Dissolved Solids	010.0	1011.0	1021.0	1001.0	1100.0	001.0	710.1	1000.0	1010.0	1121.2	1100.0	1107.0
(mg/L)												
Daily Maximum	992.0	1620.0	1610.0	1450.0	1220.0	1070.0	874.0	1220.0	1090.0	1300.0	1200.0	1180.0
Oil and Grease												
(lbs/day)												
Average Monthly	< 9	< 5	< 6	< 4	< 3	< 5	< 9	< 4	< 4	< 8	< 5	< 6
Oil and Grease (mg/L)												
Average Monthly	< 6	< 5	< 7	< 5	< 6	< 5	< 6	< 5	< 6	< 5	< 5	< 5
Fecal Coliform												
(CFU/100 ml)												
Geometric Mean	> 4573	< 14	2	11	< 4	36	8	< 2	5	< 48	553	51
Ammonia (lbs/day)												
Average Monthly	< 0.2	< 0.1	< 0.1	< 0.1	< 0.1	1	3	< 2	< 0.1	< 9	< 0.1	< 0.1
Ammonia (mg/L)												
Average Monthly	< 0.2	< 0.1	< 0.1	< 0.1	< 0.1	1	2	< 2.4	< 0.1	< 3	< 0.1	< 0.1
PCBs (Dry Weather)												
(ng/L)										0.044		
Average Monthly										0.641		
PCBs (Wet Weather)												
(ng/L)										0 700		
Average Monthly										0.703		

NPDES Permit Fact Sheet Reading Region Airport

NPDES Permit No. PA0028720

DMR Data for Outfall 005 (from October 1, 2020 to September 30, 2021)

Parameter	SEP-21	AUG-21	JUL-21	JUN-21	MAY-21	APR-21	MAR-21	FEB-21	JAN-21	DEC-20	NOV-20	OCT-20
pH (S.U.)												
Average Monthly										6.74		
CBOD5 (mg/L)												
Average Monthly										< 2.0		
COD (mg/L)												
Average Monthly										E		
TSS (mg/L)												
Average Monthly										4.8		
Oil and Grease (mg/L)												
Average Monthly										< 5.0		
Total Iron (mg/L)												
Average Monthly										0.15		
Total Potassium												
(mg/L)												
Average Monthly										0.983		
Ethylene Glycol												
(mg/L)												
Average Monthly										< 5.0		
Propylene Glycol												
(mg/L)												
Average Monthly										< 5.0		
Diethylene Glycol												
(mg/L)												
Average Monthly										< 5.0		

DMR Data for Outfall 006 (from October 1, 2020 to September 30, 2021)

Parameter	SEP-21	AUG-21	JUL-21	JUN-21	MAY-21	APR-21	MAR-21	FEB-21	JAN-21	DEC-20	NOV-20	OCT-20
pH (S.U.)												
Average Monthly										7.13		
CBOD5 (mg/L)												
Average Monthly										< 2.0		I
COD (mg/L)												
Average Monthly										E		I
TSS (mg/L)												
Average Monthly										7.2		
Oil and Grease (mg/L)												
Average Monthly										< 5.0		
Total Iron (mg/L)												
Average Monthly										0.106		
Total Potassium												
(mg/L)												
Average Monthly										0.853		
Ethylene Glycol												
(mg/L)												
Average Monthly										< 5.0		
Propylene Glycol												
(mg/L)												
Average Monthly										< 5.0		
Diethylene Glycol												
(mg/L)												
Average Monthly										< 5.0		

DMR Data for Outfall 007 (from October 1, 2020 to September 30, 2021)

Parameter	SEP-21	AUG-21	JUL-21	JUN-21	MAY-21	APR-21	MAR-21	FEB-21	JAN-21	DEC-20	NOV-20	OCT-20
pH (S.U.)												
Average Monthly										7.20		
CBOD5 (mg/L)												
Average Monthly										< 2.0		
COD (mg/L)												
Average Monthly										E		
TSS (mg/L)												
Average Monthly										7.6		
Oil and Grease (mg/L)												
Average Monthly										< 5.0		

Total Iron (mg/L) Average Monthly				< 0.05	
Total Potassium				× 0.00	
(mg/L)					
Average Monthly				< 0.5	
Ethylene Glycol					
(mg/L)					
Average Monthly				< 5.0	
Propylene Glycol					
(mg/L)					
Average Monthly				< 5.0	
Diethylene Glycol					
(mg/L)					
Average Monthly				< 5.0	

DMR Data for Outfall 008 (from October 1, 2020 to September 30, 2021)

Parameter	SEP-21	AUG-21	JUL-21	JUN-21	MAY-21	APR-21	MAR-21	FEB-21	JAN-21	DEC-20	NOV-20	OCT-20
pH (S.U.)												ĺ
Average Monthly										6.80		l
CBOD5 (mg/L)												
Average Monthly										2.3		
COD (mg/L)												
Average Monthly										E		<u> </u>
TSS (mg/L)												l
Average Monthly										4.5		
Oil and Grease (mg/L)												l
Average Monthly										< 5.3		<u> </u>
Total Iron (mg/L)												l
Average Monthly										0.107		<u> </u>
Total Potassium												l
(mg/L)												l
Average Monthly										3.14		
Ethylene Glycol												l
(mg/L)												l
Average Monthly										< 5.0		
Propylene Glycol												l
(mg/L)												l
Average Monthly										< 5.0		
Diethylene Glycol												
(mg/L)										5.0		l
Average Monthly										< 5.0		<u> </u>

3.3 Non-Compliance

3.3.1 Non-Compliance- NPDES Effluent

A summary of the non-compliance to the permit limits for the existing permit cycle is as follows.

From the DMR data beginning in June 1, 2009 and ending November 20, 2021, the following were the observed effluent non-compliances.

Summary of Non-Compliance with NPDES Permit Limits Beginning June 1, 2009 and Ending November 20, 2021

NON COMPLIANCE DATE	PARAMETER	SAMPLEVALUE	VIOLATION CONDITION	PERMIT VALUE	UNIT OF MEASURE	STATISTICAL BASE CODE
06/07/2017	Total Suspended Solids	54	>	45	mg/L	Weekly Average
02/15/2018	Total Suspended Solids	47	>	45	mg/L	Weekly Average
03/15/2018	Total Suspended Solids	84	>	45	mg/L	Weekly Average
05/20/2018	Total Suspended Solids	53	>	45	mg/L	Weekly Average
09/27/2019	Fecal Coliform	230	>	200	CFU/100 ml	Geometric Mean
01/21/2020	Total Residual Chlorine (TRC)	2.0	>	1.6	mg/L	Instantaneous
04/27/2020	Total Suspended Solids	51	>	45	mg/L	Weekly Average
10/27/2021	Fecal Coliform	> 4573	>	200	CFU/100 ml	Geometric Mean
10/27/2021	Total Suspended Solids	51	>	45	mg/L	Weekly Average

3.3.2 Non-Compliance- Enforcement Actions

A summary of the non-compliance enforcement actions for the current permit cycle is as follows:

Beginning in June 1, 2009 to December 7, 2021, there were no observed enforcement actions.

19

3.4 Summary of Biosolids Disposal

	20	21			
Sewage Sludge / Biosolids Production Information					
	Hauled	Off-Site			
Date (YEAR)	Gallons	% Solids	Dry Tons		
January			0		
February			0		
March			0		
April			0		
May			0		
June			0		
July	34,600	2.8	4.041		
August			0		
September			0		
Notes:					

A summary of the biosolids disposed of from the facility is as follows.

Sewage Sludge/Biosolids disposed at Exeter Township in Berks County under DEP Permit No. PA0026972 and Lehigh County Authority WWTP in Lehigh County under DEP Permit No. PAS902202

3.5 Open Violations

No open violations existed as of December 2021.

4.0 Receiving Waters and Water Supply Information Detail Summary

4.1 Receiving Waters

The receiving waters has been determined to be the Schuylkill River. The sequence of receiving streams that the Schuylkill River discharges into are the Delaware River which eventually drains into the Delaware Bay.

4.2 Public Water Supply (PWS) Intake

The closest PWS to the subject facility is the Pottstown Borough Water Authority (PWS ID #1460037) located approximately 23 miles downstream of the subject facility on the Schuylkill River. Based upon the distance and the flow rate of the facility, the PWS should not be impacted.

4.3 Class A Wild Trout Streams

Class A Wild Trout Streams are waters that support a population of naturally produced trout of sufficient size and abundance to support long-term and rewarding sport fishery. DEP classifies these waters as high-quality coldwater fisheries.

The information obtained from EMAP suggests that no Class A Wild Trout Fishery will be impacted by this discharge.

4.4 2020 Integrated List of All Waters (303d Listed Streams):

Section 303(d) of the Clean Water Act requires States to list all impaired surface waters not supporting uses even after appropriate and required water pollution control technologies have been applied. The 303(d) list includes the reason for impairment which may be one or more point sources (i.e. industrial or sewage discharges) or non-point sources (i.e. abandoned mine lands or agricultural runoff and the pollutant causing the impairment such as metals, pH, mercury or siltation).

States or the U.S. Environmental Protection Agency (EPA) must determine the conditions that would return the water to a condition that meets water quality standards. As a follow-up to listing, the state or EPA must develop a Total Maximum Daily Load (TMDL) for each waterbody on the list. A TMDL identifies allowable pollutant loads to a waterbody from both point and non-point sources that will prevent a violation of water quality standards. A TMDL also includes a margin of safety to ensure protection of the water.

The water quality status of Pennsylvania's waters uses a five-part categorization (lists) of waters per their attainment use status. The categories represent varying levels of attainment, ranging from Category 1, where all designated water uses are met to Category 5 where impairment by pollutants requires a TMDL for water quality protection.

The receiving waters is listed in the 2020 Pennsylvania Integrated Water Quality Monitoring and Assessment Report as a Category 2 and 4a waterbody. The surface waters is an attaining stream that supports aquatic life, recreational uses, and a potable water supply. The receiving waters is impaired for fish consumption due to PCBs from an unknown source. The designated use has been classified as protected waters for warm water fishes (WWF) and migratory fishes (MF).

4.5 Low Flow Stream Conditions

Water quality modeling estimates are based upon conservative data inputs. The data are typically estimated using either a stream gauge or through USGS web based StreamStats program. The NPDES effluent limits are based upon the combined flows from both the stream and the facility discharge.

A conservative approach to estimate the impact of the facility discharge using values which minimize the total combined volume of the stream and the facility discharge. The volumetric flow rate for the stream is based upon the seven-day, 10-year low flow (Q710) which is the lowest estimated flow rate of the stream during a 7 consecutive day period that occurs once in 10 -year time period. The facility discharge is based upon a known design capacity of the subject facility.

The closest WQN station to the subject facility is the Schuylkill River station (WQN111). This WQN station is located approximately 26 miles downstream of the subject facility.

The closest gauge station to the subject facility is the Schuylkill River station at Reading, PA (USGS station number 1471510). This gauge station is located approximately 4 miles downstream of the subject facility.

For WQM modeling, pH and stream water temperature data from the water quality network station was used. pH was estimated to be 8.05 and the stream water temperature was estimated to be 23.3 C.

The hardness of the stream was estimated from the water quality network to be 136 mg/l CaCO₃.

The low flow yield and the Q710 for the subject facility was estimated using StreamStats.

The low flow yield is 0.24 ft³/s/mi².

The Q710 is 153 ft³/s. This Q710 estimate is consistent with the consultant's Q710 reported in the Application for the Discharge of Pollutants into Surface Waters or Groundwaters of the Delaware River Basin, Section C- Receiving Waterbody Information.

6.1 Summary of Discharg	e, Receiving Waters and	Water Supply Information		
Outfall No. 001		Design Flow (MGD)	.42	
Latitude 40° 22' 59.0	8"	Longitude	-75º 57' 10.33"	
Quad Name		Quad Code		
Wastewater Description:	Sewage Effluent	-		
Dessiving Waters Salu		Streem Code	000	
	ylkill River (WWF, MF)	Stream Code	833	
	0386	RMI	79.4	
Drainage Area <u>648</u>		Yield (cfs/mi ²)	0.24	
Q ₇₋₁₀ Flow (cfs) <u>153</u>		Q7-10 Basis	StreamStats	
Elevation (ft) 228		Slope (ft/ft)		
Watershed No. <u>3-C</u>		Chapter 93 Class.	WWF, MF	
·	e as Chapter 93 class.	Existing Use Qualifier		
Exceptions to Use		Exceptions to Criteria		
Assessment Status	Impaired			
Cause(s) of Impairment	POLYCHLORINATED B	IPHENYLS (PCBS)		
Source(s) of Impairment	SOURCE UNKNOWN			
TMDL Status	Final	Name Schuylkill Ri	iver PCB TMDL	
Background/Ambient Data		Data Source		
pH (SU)	8.05	WQN111; Median July to Sep	ot	
Temperature (°C)	23.3	WQN111; Median July to Sep		
Hardness (mg/L)	136	WQN111; Historical Median		
Other:				
Nearest Downstream Publ	ic Water Supply Intake	Pottstown Borough Water Aut	thority	
	ill River	Flow at Intake (cfs)		
PWS RMI 56		Distance from Outfall (mi)	23	

Discharge, Re	ceiving Waters and Water Supply Inform	ation	
Outfall No.	002	Design Flow (MGD)	0
Latitude	40° 22' 32.09"	Longitude	-75º 57' 21.91"
Quad Name		Quad Code	
Wastewater	Description: Stormwater		
Receiving W NHD Com ID		Stream Code RMI	

eiving	Waters and Water Supply Inforn	nation	
003		Design Flow (MGD)	0
40º 22	2' 47.77"	Longitude	-75º 57' 36.04"
Quad Name		Quad Code	
Descrip	otion: Stormwater		
aters	Schuylkill River (WWF, MF)	Stream Code	
	26000390	RMI	
	003 40° 22 Descrip	003 40° 22' 47.77" Description: Stormwater aters Schuylkill River (WWF, MF)	40° 22' 47.77" Longitude Quad Code Quad Code Description: Stormwater aters Schuylkill River (WWF, MF) Stream Code

Discharge, Red	Discharge, Receiving Waters and Water Supply Information					
Outfall No.	004		Design Flow (MGD)	0		
Latitude	40º 2	2' 59.61"	Longitude	75° 57' 34.97"		
Quad Name			Quad Code			
Wastewater I	Descrip	otion: Stormwater				
Receiving Wa	aters	Schuylkill River (WWF, MF)	Stream Code			
NHD Com ID)	26000386	RMI			

Discharge, Receiving	Discharge, Receiving Waters and Water Supply Information						
Outfall No. 005 Latitude 40º 23 Quad Name Wastewater Descrip		Design Flow (MGD) Longitude Quad Code	0 -75º 57' 58.68"				
Receiving Waters	Schuylkill River (WWF, MF) 26000386	Stream Code RMI					

Discharge, Receiving Waters and Water Supply Information						
Outfall No. <u>006</u> Latitude <u>40º 2</u> Quad Name Wastewater Descrip	2' 33.16" otion: Stormwater	Design Flow (MGD) Longitude Quad Code	0 -75º 58' 32.84"			
Receiving Waters NHD Com ID	Unnamed Tributary of Tulpehocken Creek (WWF) 26000278	Stream Code RMI				

Discharge, Receiving Waters and Water Supply Information						
Quad Name	2' 31.34"	Design Flow (MGD) Longitude Quad Code	0 -75º 58' 26.53"			
Wastewater Descri Receiving Waters NHD Com ID	ption: <u>Stormwater</u> Unnamed Tributary to Schuylkill River (WWF) 26000252	Stream Code RMI				

Discharge, Re	ceiving Waters and Water Supply Inform	nation	
Outfall No.	008	Design Flow (MGD)	0
Latitude	40º 22' 15.73"	Longitude	-75º 57' 24.17"
Quad Name		Quad Code	
Wastewater	Description: Stormwater		
Receiving W	aters Schuylkill River (WWF, MF)	Stream Code	

Discharge, Receivin	g Waters and Water Supply Information	on	
Outfall No. 009 Latitude 40° 2	22' 25.17"	Design Flow (MGD) Longitude	<u>0</u> -75º 58' 9.7"
Quad Name			
Wastewater Descri	ption: Stormwater		
Receiving Waters	Unnamed Tributary of Tulpehocken Creek (WWF, MF)	Stream Code	
NHD Com ID	25992838	RMI	0.3000
	. <u> </u>		

5.0: Overview of Presiding Water Quality Standards

5.1 General

There are at least six (6) different policies which determines the effluent performance limits for the NPDES permit. The policies are technology based effluent limits (TBEL), water quality based effluent limits (WQBEL), antidegradation, total maximum daily loading (TMDL), anti-backsliding, and whole effluent toxicity (WET) The effluent performance limitations enforced are the selected permit limits that is most protective to the designated use of the receiving waters. An overview of each of the policies that are applicable to the subject facility has been presented in Section 6.

5.2.1 Technology-Based Limitations

TBEL treatment requirements under section 301(b) of the Act represent the minimum level of control that must be imposed in a permit issued under section 402 of the Act (40 CFR 125.3). Available TBEL requirements for the state of Pennsylvania are itemized in PA Code 25, Chapter 92a.47.

The presiding sources for the basis for the effluent limitations are governed by either federal or state regulation. The reference sources for each of the parameters is itemized in the tables. The following technology-based limitations apply, subject to water quality analysis and best professional judgement (BPJ) where applicable:

Parameter	Limit (mg/l)	SBC	Federal Regulation	State Regulation
	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
	40	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)
Total Suspended	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
Solids	45	Average Weekly	133.102(b)(2)	92a.47(a)(2)
рН	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform				
(5/1 – 9/30)	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
Fecal Coliform				
(5/1 – 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform				
(10/1 – 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
Fecal Coliform				
(10/1 – 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)
Total Residual Chlorine	0.5	Average Monthly	-	92a.48(b)(2)

Industrial facilities are commonly restricted to effluent limitations established by federal effluent limitation guidelines (ELG). The applicable ELG for this type of industrial facility is Airport Deicing Subcategory (i.e. 40 CFR 449)

NPDES Permit Fact Sheet Reading Region Airport

The Effluent Guidelines require existing and new primary airports with 1,000 or more annual jet departures that discharge wastewater associated with airfield pavement deicing to use non-urea-containing deicers, or alternatively, meet a numeric effluent limitation for ammonia.

New airports with 10,000 annual departures located in certain cold climate zones are required to collect 60 percent of aircraft deicing fluid after deicing. Airports that discharge the collected aircraft deicing fluid directly to waters of the U.S. must also meet numeric discharge requirements for chemical oxygen demand.

Spotts, Stevens, and McCoy, the facility's consultant, suggested that there are no discharges subject to ELG since the facility is not a primary airport. The facility has approximately 1,544 passengers boarding/yr and all the passengers are by way of chartered flights. There is minimal commercial flights. The airport does not have scheduled airline services.

5.2.2 Mass Based Limits

For publicly owned treatment works (POTW), mass loadings are calculated based upon design flow rate of the facility and the permit limit concentration. The generalized calculation for mass loadings is shown below:

$$Quantity \left(\frac{lb}{day}\right) = (MGD)(Concentration)(8.34)$$

5.3 Water Quality-Based Limitations

WQBEL are based on the need to attain or maintain the water quality criteria and to assure protection of designated and existing uses (PA Code 25, Chapter 92a.2). The subject facility that is typically enforced is the more stringent limit of either the TBEL or the WQBEL.

Determination of WQBEL is calculated by spreadsheet analysis or by a computer modeling program developed by DEP. DEP permit engineers utilize the following computing programs for WQBEL permit limitations: (1) MS Excel worksheet for Total Residual Chorine (TRC); (2) WQM 7.0 for Windows Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen Version 1.1 (WQM Model) and (3) Toxics using DEP Toxics Management Spreadsheet for Toxics pollutants.

The modeling point nodes utilized for this facility are summarized below.

General Data 1		
(Modeling Point	Input Value	Units
#1)		
Stream Code	833	
River Mile Index	79.4	miles
Elevation	228	feet
Latitude	40.382222	
Longitude	-75.952778	
Drainage Area	648	sq miles
Reach Slope	Default	ft/ft
Low Flow Yield	0.24	cfs/sq mile
Potable Water		
Supply	Default	mgd
Withdrawal		
General Data 2		
(Modeling Point	Input Value	Units
#2)		
Stream Code	833	
River Mile Index	77.57	miles
Elevation	201	feet
Latitude	40.364273	
Longitude	-75.941234	
Drainage Area	658	sq miles
Reach Slope	Default	ft/ft
Low Flow Yield	0.24	cfs/sq mile
Potable Water		
Supply	Default	mgd
Withdrawal		

5.3.1 Water Quality Modeling 7.0

The WQM Model is a computer model that is used to determine NPDES discharge effluent limitations for Carbonaceous BOD (CBOD5), Ammonia Nitrogen (NH3-N), and Dissolved Oxygen (DO) for single and multiple point source discharges scenarios. WQM Model is a complete-mix model which means that the discharge flow and the stream flow are assumed to instantly and completely mixed at the discharge node.

WQM recommends effluent limits for DO, CBOD5, and NH₃-N in mg/l for the discharge(s) in the simulation.

Four types of limits may be recommended. The limits are

- (a) a minimum concentration for DO in the discharge as 30-day average;
- (b) a 30-day average concentration for CBOD5 in the discharge;
- (c) a 30-day average concentration for the NH₃-N in the discharge;
- (d) 24-hour average concentration for NH_3 -N in the discharge.

The WQM Model requires several input values for calculating output values. The source of data originates from either EMAP, the National Map, or Stream Stats. Data for stream gauge information, if any, was abstracted from USGS Low-Flow,

Base-Flow, and Mean-Flow Regression Equations for Pennsylvania Streams authored by Marla H. Stuckey (Scientific Investigations Report 2006-5130).

The applicable WQM Effluent Limit Type are discussed in Section 6 under the corresponding parameter which is either DO, CBOD, or ammonia-nitrogen.

5.3.2 Toxics Modeling

The Toxics Management Spreadsheet model is a computer model that is used to determine effluent limitations for toxics (and other substances) for single discharge wasteload allocations. This computer model uses a mass-balance water quality analysis that includes consideration for mixing, first-order decay, and other factors used to determine recommended water quality-based effluent limits. Toxics Management Spreadsheet does not assume that all discharges completely mix with the stream. The point of compliance with water quality criteria are established using criteria compliance times (CCTs). The available CCTs are either acute fish criterion (AFC), chronic fish criterion (CFC), or human health criteria (THH & CRL).

Acute Fish Criterion (AFC) measures the criteria compliance time as either the maximum criteria compliance time (i.e.15 minutes travel time downstream of the current discharge) or the complete mix time whichever comes first. AFC is evaluated at Q710 conditions.

Chronic Fish Criterion (CFC) measures the criteria compliance time as either the maximum criteria compliance time (i.e. 12 hours travel time downstream of the current discharge) or the complete mix time whichever comes first. CFC is evaluated at Q710 conditions.

Threshold Human Health (THH) measures the criteria compliance time as either the maximum criteria compliance time (i.e. 12 hours travel time downstream of the current discharge) or the estimated travel time downstream to the nearest potable water supply intake whichever comes first. THH is evaluated at Q710 conditions.

Cancer Risk Level (CRL) measures the criteria compliance time as either the maximum criteria compliance time (i.e. 12 hours travel time downstream of the current discharge) or the complete mix time whichever comes first. CRL is evaluated at Qh (harmonic mean or normal flow) conditions.

The Toxics Model requires several input values for calculating output values. The source of data originates from either EMAP, the National Map, or Stream Stats. Data for stream gauge information, if any, was abstracted from USGS Low-Flow, Base-Flow, and Mean-Flow Regression Equations for Pennsylvania Streams authored by Marla H. Stuckey (Scientific Investigations Report 2006-5130).

5.3.2.1 Determining if NPDES Permit Will Require Monitoring/Limits in the Proposed Permit for Toxic Pollutants

To determine if Toxics modeling is necessary, DEP has developed a Toxics Management Spreadsheet to identify toxics of concern. Toxic pollutants whose maximum concentrations as reported in the permit application or on DMRs are greater than the most stringent applicable water quality criterion are pollutants of concern. A Reasonable Potential Analysis was utilized to determine (a) if the toxic parameters modeled would require monitoring or (b) if permit limitations would be required for the parameters. The toxics reviewed for reasonable potential were the following pollutants- TDS, chloride, bromide, sulfate, total copper, total lead, and total zinc.

Based upon the SOP- Establishing Water Quality-Based Effluent Limitations (WQBELs) and Permit Conditions for Toxic Pollutants (Revised January 10, 2019), monitoring and/or limits will be established as follows.

- (a) When reasonable potential is demonstrated, establish limits where the maximum reported concentration equals or exceeds 50% of the WQBEL.
- (b) For non-conservative pollutants, establish monitoring requirements where the maximum reported concentration is between 25% 50% of the WQBEL.
- (c) For conservative pollutants, establish monitoring requirements where the maximum reported concentration is between 10% 50% of the WQBEL.

Toxics Management Spreadsheet did not observe toxics with reasonable potential.

The Toxics Management Spreadsheet output has been included in Attachment B.

5.3.3 Whole Effluent Toxicity (WET)

The facility is not subject to WET limits.

5.4 Total Maximum Daily Loading (TMDL)

5.4.1 TMDL

The goal of the Clean Water Act (CWA), which governs water pollution, is to ensure that all of the Nation's waters are clean and healthy enough to support aquatic life and recreation. To achieve this goal, the CWA created programs designed to regulate and reduce the amount of pollution entering United States waters. Section 303(d) of the CWA requires states to assess their waterbodies to identify those not meeting water quality standards. If a waterbody is not meeting standards, it is listed as impaired and reported to the U.S. Environmental Protection Agency. The state then develops a plan to clean up the impaired waterbody. This plan includes the development of a Total Maximum Daily Load (TMDL) for the pollutant(s) that were found to be the cause of the water quality violations. A Total Maximum Daily Load (TMDL) calculates the maximum amount of a specific pollutant that a waterbody can receive and still meet water quality standards.

A TMDL for a given pollutant and waterbody is composed of the sum of individual wasteload allocations (WLAs) for point sources and load allocations (LAs) for nonpoint sources and natural background levels. In addition, the TMDL must include an implicit or explicit margin of safety (MOS) to account for the uncertainty in the relationship between pollutant loads and the quality of the receiving waterbody. The TMDL components are illustrated using the following equation:

$\mathsf{TMDL} = \Sigma W \mathsf{LAs} + \Sigma \ \mathsf{LAs} + \mathsf{MOS}$

Pennsylvania has committed to restoring all impaired waters by developing TMDLs and TMDL alternatives for all impaired waterbodies. The TMDL serves as the starting point or planning tool for restoring water quality.

5.4.1.1 Local TMDL

The subject facility discharges into a local TMDL- PCB TMDL Development for the Schuylkill River, Pennsylvania. The TMDL was published in April 2007.

The Schuylkill River, in southeastern Pennsylvania, is the focus of the TMDL study. The Schuylkill River watershed is the largest subwatershed in the Delaware River Basin. Pennsylvania's 2004 section 303(d) list includes multiple mainstem and tributary segments in the Schuylkill River Basin as impaired due to elevated polychlorinated biphenyl (PCB) concentrations. The elevated PCB concentrations were found in fish tissue and sediment samples taken throughout the basin.

Pennsylvania's 1996 303(d) list identifies 73.5 miles along the mainstem of the Schuylkill River as impaired due to PCBs.

PCBs are a group of synthetic chemicals that consist of 209 individual compounds (known as congeners). Physically, they are either oily liquids or solids. They are colorless to light yellow in color and have no known smell or taste. PCBs made in the United States were marketed under the trade name Aroclor.

Review of the USEPA's Permit Compliance System (PCS) and DRBC monitoring data presented in the 2003 Delaware River PCBs TMDL identified 40 likely and potential point sources in the Schuylkill River watershed. They include 21 publicly owned wastewater treatment plants (POTWs) with pretreatment facilities that had historically been permitted for PCB discharges, 1 POTW that has been explicitly permitted for PCB discharges, 1 PCB-contaminated industrial site contributing storm water discharges, and 3 industrial facilities identified by the DRBC as discharging PCBs.

Of the 40 facilities identified, 27 on and discharging directly to the mainstem of the Schuylkill River are considered explicitly by the steady-state model. In addition, four facilities suspected of PCB-contaminated storm water discharges are considered as well. Point source facilities (including storm water dischargers) and the model segments and subsegments to which they are assigned are presented in Table 3-1 of the TMDL.

Reading Regional Airport is not listed as one of the 40 likely and potential point soutces in the Schuylkill River watershed (Refer to Figure 3-1 of the PCB TMDL for the Schuylkill River, Page 57).

5.5 Anti-Degradation Requirement

Chapter 93.4a of the PA regulations requires that surface water of the Commonwealth of Pennsylvania may not be degraded below levels that protect the existing uses. The regulations specifically state that *Existing instream water uses and the level of water quality necessary to protect the existing uses shall be maintained and protected*. Antidegradation requirements are implemented through DEP's guidance manual entitled Water Quality Antidegradation Implementation Guidance (Document #391-0300-02).

The policy requires DEP to protect the existing uses of all surface waters and the existing quality of High Quality (HQ) and Exceptional Value (EV) Waters. Existing uses are protected when DEP makes a final decision on any permit or approval for an activity that may affect a protected use. Existing uses are protected based upon DEP's evaluation of the best available information (which satisfies DEP protocols and Quality Assurance/Quality Control (QA/QC) procedures) that indicates the protected use of the waterbody.

For a new, additional, or increased point source discharge to an HQ or EV water, the person proposing the discharge is required to utilize a nondischarge alternative that is cost-effective and environmentally sound when compared with the cost of the proposed discharge. If a nondischarge alternative is not cost-effective and environmentally sound, the person must use the best available combination of treatment, pollution prevention, and wastewater reuse technologies and assure that any discharge is nondegrading. In the case of HQ waters, DEP may find that after satisfaction of intergovernmental coordination and public participation requirements lower water quality is necessary to accommodate important economic or social development in the area in which the waters are located. In addition, DEP will assure that cost-effective and reasonable best management practices for nonpoint source control in HQ and EV waters are achieved.

The subject facility's discharge will be to a non-special protection waters and the permit conditions are imposed to protect existing instream water quality and uses. Neither HQ waters or EV waters is impacted by this discharge.

5.6 Anti-Backsliding

Anti-backsliding is a federal regulation which prohibits a permit from being renewed, reissued, or modified containing effluent limitations which are less stringent than the comparable effluent limitations in the previous permit (40 CFR 122.I.1 and 40 CFR 122.I.2). A review of the existing permit limitations with the proposed permit limitations confirm that the facility is consistent with anti-backsliding requirements. The facility has proposed effluent limitations that are as stringent as the existing permit.

6.0 NPDES Parameter Details

The basis for the proposed sampling and their monitoring frequency that will appear in the permit for each individual parameter are itemized in this Section. The final limits are the more stringent of technology based effluent treatment (TBEL) requirements, water quality based (WQBEL) limits, TMDL, antidegradation, anti-degradation, or WET.

The reader will find in this section:

- a) a justification of recommended permit monitoring requirements and limitations for each parameter in the proposed NPDES permit;
- b) a summary of changes from the existing NPDES permit to the proposed permit; and
- c) a summary of the proposed NPDES effluent limits.

6.1 Recommended Monitoring Requirements and Effluent Limitations

A summary of the recommended monitoring requirements and effluent limitations are itemized in the tables. The tables are categorized by (a) Conventional Pollutants and Disinfection, (b) Nitrogen Species and Phosphorus, and (c) Toxics.

6.1.1.1 Conventional Pollutants and Disinfection (Sewage Outfall)

Parameter	Permit Limitation	Reading Regional Airport, PA0028720 Recommendation
	Required by ¹ :	
		Monitoring: The monitoring frequency shall be daily as a grab sample (Table 6-3).
pH (S.U.)	TBEL	Effluent Limit: Effluent limits may range from pH = 6.0 to 9.0
		Rationale: The monitoring frequency has been assigned in accordance with Table 6-3 and the effluent limits assigned by Chapter 95.2(1).
		Monitoring: The monitoring frequency shall be daily as a grab sample (Table 6-3).
Dissolved	BPJ	Effluent Limit: Effluent limits shall be greater than 5.0 mg/l.
Oxygen		Rationale: The monitoring frequency has been assigned in accordance with Table 6-3 and the effluent limits assigned by best professional judgement.
		Monitoring: The monitoring frequency shall be 1x/wk as a 24-hr composite sample (Table 6-3).
		Effluent Limit: Effluent limits shall not exceed 87 lbs/day and 25 mg/l as an average monthly.
CBOD	TBEL	The monitoring frequency has been assigned in accordance with Table 6-3 and the effluent Rationale: limits assigned by Chapter 92a.47(a)(1). WQM modeling indicates that the TBEL is more stringent than the WQBEL. Thus, the permit limit is confined to TBEL.
		Monitoring: The monitoring frequency shall be 1x/wk as a 24-hr composite sample (Table 6-3).
		Effluent Limit: Effluent limits shall not exceed 105 lbs/day and 30 mg/l as an average monthly.
TSS	TBEL	Rationale: The monitoring frequency has been assigned in accordance with Table 6-3 and the effluent limits assigned by Chapter 92a.47(a)(1). While there is no WQM modeling for this parameter, the permit limit for TSS is generally assigned similar effluent limits as CBOD or BOD. Since the TBEL is more stringent than TBEL, TBEL will apply.
		Monitoring: The monitoring frequency shall be on a daily basis as a grab sample (Table 6-3).
TRC	TBEL	Effluent Limit: The average monthly limit should not exceed 0.5 mg/l and/or 1.6 mg/l as an instantaneous maximum.
		Rationale: Chlorine in both combined (chloramine) and free form is extremely toxic to freshwater fish and other forms of aquatic life (Implementation Guidance Total Residual Chlorine 1). The TRC effluent limitations to be imposed on a discharger shall be the more stringent of either the WQBEL or TBEL requirements and shall be expressed in the NPDES permit as an average monthly and instantaneous maximum effluent concentration (Implementation Guidance Total Residual Chlorine 4). Based on the stream flow rate (lowest 7-day flow rate in 10 years) and the design flow rate of the subject facility calculated by the TRC Evaluation worksheet, the TBEL is more stringent than the WQBEL. The monitoring frequency has been assigned in accordance with Table 6-3 and the effluent limits assigned by Chapter 92a.48(b)(2)
		Monitoring: The monitoring frequency shall be 1x/wk as a grab sample (Table 6-3).
Fecal Coliform	TBEL	Effluent Limit: Summer effluent limits shall not exceed 200 No./100 mL as a geometric mean. Winter effluent limits shall not exceed 2000 No./100 mL as a geometric mean.
comorni		Rationale: The monitoring frequency has been assigned in accordance with Table 6-3 and the effluent limits assigned by Chapter 92a.47(a)(4) and 92a.47(a)(5).
		Monitoring: The monitoring frequency shall be 1x/quarter as a grab sample (SOP).
	SOP; Chapter	Effluent Limit: No effluent requirements.
E. Coli	92a.61	Consistent with the SOP- Establishing Effluent Limitations for Individual Sewage Permits Rationale: (Revised March 22, 2019) and under the authority of Chapter 92a.61, the facility will be required to monitor for E.Coli.
		Monitoring: The monitoring frequency shall be 1x/wk as a 24-hr composite sample.
Oil and Grease	TBEL; BPJ	Effluent Limit: Effluent limits shall not exceed 15 mg/l as an average monthly and 30 mg/l as an instantaneous maximum.
		Rationale: The monitoring frequency has been assigned in accordance with best professional judgment and the effluent limits assigned by Chapter 95.2.(2)(ii)
Notes:		
The NPDES	permit was limited	by (a) anti-Backsliding, (b) Anti-Degradation, (c) SOP, (d) TBEL, (e) TMDL, (f) WQBEL, (g) WET, or (h) Other
2 Monitoring f	requency based on f	ow rate of 0.42 MGD.
	• ·	rements for Sewage Discharges) in Technical Guidance for the Development and Specification of Effluent ditions in NPDES Permits) (Document # 362-0400-001) Revised 10/97

4 Water Quality Antidegradation Implementaton Guidance (Document # 391-0300-002)

5 Phase 2 Watershed Implementation Plan Wastewater Supplement, Revised September 6, 2017

6.1.1.2 Nitrogen Species and Phosphorus (Sewage Outfall)

	Summary of Proposed NPDES Parameter Details for Nitrogen Species and Phosphorus						
		Reading Regional Airport, PA0028720					
Parameter	Permit Limitation Required by ¹ :	Recommendation					
Ammonia- Nitrogen	WQBEL	Monitoring:The monitoring frequency shall be 1x/wk as a 24-hr composite sampleEffluent Limit:Effluent limits shall not exceed 70 lbs/day and 20 mg/l as an average monthly.Rationale:Water quality modeling recommends limits.					
Nata a	•						

Notes:

1 The NPDES permit was limited by (a) anti-Backsliding, (b) Anti-Degradation, (c) SOP, (d) TBEL, (e) TMDL, (f) WQBEL, (g) WET, or (h) Other

2 Monitoring frequency based on flow rate of 0.42 MGD.

3 Table 6-3 (Self Monitoring Requirements for Sewage Discharges) in Technical Guidance for the Development and Specification of Effluent Limitations and Other Permit Conditions in NPDES Permits) (Document # 362-0400-001) Revised 10/97

4 Water Quality Antidegradation Implementaton Guidance (Document # 391-0300-002)

5 Phase 2 Watershed Implementation Plan Wastewater Supplement, Revised September 6, 2017

6.1.1.3 Toxics (Sewage Outfall)

Parameter	ľ	Effluent Limit:	Recommendation The monitoring frequency shall be 1x/wk as a 24-hr composite sample Effluent limits shall not exceed 2,605 mg/l as an average monthly and 5,210 mg/l as a daily
TDS	ľ	Effluent Limit:	
TDS	DRBC Docket	Effluent Limit:	Effluent limits shall not exceed 2,605 mg/l as an average monthly and 5,210 mg/l as a daily
			maximum.
		Rationale:	Based on the DRBC docket, monitoring and effluent limits are required.
		Monitoring:	The monitoring frequency shall be 2x/yr as a 24-hr composite sample.
Total PCBs	TMDL	Effluent Limit:	No effluent requirements.
		Rationale.	Due to the TMDL, monitoring shall be required. The monitoring frequency has been assigned in accordance with best professional judgment.
Notes:			
1 The NPDES pe	ermit was limited b	oy (a) anti-Bac	ksliding, (b) Anti-Degradation, (c) SOP, (d) TBEL, (e) TMDL, (f) WQBEL, (g) WET, or (h) Other
2 Monitoring freq	quency based on fl	ow rate of 0.42	2 MGD.
· ·	U 1		wage Discharges) in Technical Guidance for the Development and Specification of Effluent ES Permits) (Document # 362-0400-001) Revised 10/97

5 Phase 2 Watershed Implementation Plan Wastewater Supplement, Revised September 6, 2017

6.1.2.1 Stormwater Monitoring

Consistent with the PAG03 general permit, the requirements in Appendix G (Air Transportation Facility) apply to stormwater discharges associated with industrial activity from Air Transportation facilities as identified by the following SIC Codes: 4512-4581.

The GIF form reported the facility is classified by SIC code 4581.

This General Permit authorizes stormwater discharges from only those portions of the air transportation facility that are involved in vehicle maintenance (including vehicle rehabilitation, mechanical repairs, painting, fueling and lubrication), equipment cleaning operations or deicing operations.

An individual NPDES permit is required for the following discharges:

- Discharges of aircraft, ground vehicle, runway and equipment wash waters.
- Dry weather discharges containing deicing chemicals.
- Runoff containing urea from airfield pavement deicing at existing and new primary airports with 1,000 or more annual non-propeller aircraft departures, subject to effluent limitation guidelines in 40 CFR Part 449.

The permittee must monitor and report analytical results for the parameters listed below on Discharge Monitoring Reports (DMRs) for representative outfalls, subject to footnotes provided. The benchmark values listed below are not effluent limitations, and exceedances do not constitute permit violations. However, if the permittee's sampling demonstrates exceedances of benchmark values for two consecutive monitoring periods, the permittee shall submit a corrective action plan within 90 days of the end of the monitoring period triggering the plan.

Parameter	Monitoring Requirements ⁽¹⁾	Sample Type	Benchmark Values	Units
рН	1/6 months	Grab	XXX	SU
BOD	1/6 months	Grab	30	mg/l
COD	1/6 months	Grab	120	mg/l
TSS	1/6 months	Grab	100	mg/l
Ammonia-Nitrogen	1/6 months	Grab	XXX	mg/l
TDS	1/6 months	Grab	XXX	mg/l

Footnotes

(1) The permittee shall monitor the listed parameters only at those outfalls that receive runoff from areas where deicing activities occur. The permittee shall conduct the required monitoring during the deicing season, which is defined for the purpose of this appendix as the period from October 1 – March 31. One sample must be collected during the period October 1 – December 31 (to be submitted on a DMR due January 28) and one sample must be collected during the period January 1 – March 31 (to be submitted on a DMR due July 28). Additional monitoring outside of the deicing season is optional.

Consistent with the March 17, 2021 letter from Spotts, Stevens, and McCoy, (a) the facility is not considered a primary airport; (b) there are no dry weather discharges (c) only Outfalls 006 and 008 are not affected by de-icing contributions (d) the facility will obtain permission from BCIDA to sample Outfall 002.

6.1.3.2 Toxics (Stormwater Outfall)

	Reading	Regional Air	port; PA0028720; Outfalls 002, 003, 004, 005, 006, 007, 008, and 009
Parameter F	Permit Limitation Required by ¹ :		Recommendation
Oil and		Monitoring:	The monitoring frequency shall be 2x/yr as a grab sample
Grease	Antibacksliding		No effluent requirement.
0.0400		Rationale:	Due to antibacksliding regulations, this parameter shall continue to be monitored.
Total	otal	Monitoring:	The monitoring frequency shall be 2x/yr as a grab sample
Potassium	Antibacksliding	Effluent Limit:	No effluent requirement.
		Rationale:	Due to antibacksliding regulations, this parameter shall continue to be monitored.
Distington	Antibacksliding	Monitoring:	The monitoring frequency shall be 2x/yr as a grab sample
Diethylene Glycol		Effluent Limit:	No effluent requirement.
Giycol		Rationale:	Due to antibacksliding regulations, this parameter shall continue to be monitored.
	Antibacksliding	Monitoring:	The monitoring frequency shall be 2x/yr as a grab sample
Propylene Glycol		Effluent Limit:	No effluent requirement.
Giycol		Rationale:	Due to antibacksliding regulations, this parameter shall continue to be monitored.
		Monitoring:	The monitoring frequency shall be 2x/yr as a grab sample
Ethylene Glycol	Antibacksliding	Effluent Limit:	No effluent requirement.
Giycol		Rationale:	Due to antibacksliding regulations, this parameter shall continue to be monitored.
		Monitoring:	The monitoring frequency shall be 2x/yr as a grab sample
Total Iron	Antibacksliding	Effluent Limit:	No effluent requirement.
	_	Rationale:	Due to antibacksliding regulations, this parameter shall continue to be monitored.
Notes:			

2 Monitoring frequency based on PAG03- Appendix G

3 Table 6-3 (Self Monitoring Requirements for Sewage Discharges) in Technical Guidance for the Development and Specification of Effluent Limitations and Other Permit Conditions in NPDES Permits) (Document # 362-0400-001) Revised 10/97

4 Water Quality Antidegradation Implementaton Guidance (Document # 391-0300-002)

5 Chesapeake Bay Phase 3 Watershed Implementation Plan Wastewater Supplement, Revised September 13, 2021

6.2 Summary of Changes From Existing Permit to Proposed Permit

A summary of how the proposed NPDES permit differs from the existing NPDES permit is summarized as follows.

This table summarizes changes for sewage effluent.

Changes in Permit Monitoring or Effluent Quality (Sewage Effluent)						
Parameter	Existing Permit	Draft Permit				
E.Coli	No monitoring or effluent limits	Due to EPA directive, monitoring shall be required on				
E.COII		a 1x/quarter basis				
		Effluent limits shall not exceed 2,605 mg/l as an				
TDS	Effluent limits not to exceed 2,625 mg/l as an average	average monthly and 5,210 mg/l as a daily maximum				
105	monthly and 5,210 mg/l as a daily maximum.	The current permit may have had a typographical err				
		with a limit of 2,625 mg/l.				

This table summarizes changes for stormwater monitoring.

	Changes in Permit Monitoring or Effluent Quality (Stormwater)							
Parameter	Existing Permit	Draft Permit						
pH, CBOD,TSS, Oil and Grease, Total Potassium, Diethylene Glycol, Propylene Glycol, Ethylene Glycol, Total Iron	Monitoring is required 1x/yr.	Consistent with other monitoring parameters in PAG03- Appendix G, monitoring shall be required on a 2x/yr basis.						
Ammonia-Nitrogen	No monitoring or effluent limits	Consistent with PAG03- Appendix G, monitoring shall be required on a 2x/yr basis.						
TDS	No monitoring or effluent limits	Consistent with PAG03- Appendix G, monitoring shall be required on a 2x/yr basis.						

6.3.1 Summary of Proposed NPDES Effluent Limits

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

The proposed NPDES effluent limitations are summarized in the table below.

PART A - EFFLUENT LIMITATIONS, MONITORING, RECORDKEEPING AND REPORTING REQUIREMENTS

I. A.	For Outfall 001	_, Latitude _40° 22' 58.03" _, Longitude _75° 57' 10.00" _, River Mile Index _79.4 _, Stream Code _833
	Receiving Waters:	Schuylkill River (WWF, MF)
	Type of Effluent:	Sewage Effluent

The permittee is authorized to discharge during the period from <u>Permit Effective Date</u> through <u>Permit Expiration Date</u>.

 Based on the anticipated wastewater characteristics and flows described in the permit application and its supporting documents and/or amendments, the following effluent limitations and monitoring requirements apply (see also Additional Requirements and Footnotes).

			Effluent L	imitations.			Monitoring Re	quirements	
Parameter	Mass Units	e (llþø/day) 🕫		Concentrat	tions (mg/L)		Minimum ⁽²⁾ Requi		
Parameter	Average Monthly	Weekly Average	Minimum	Average Monthly	Weekly Average	instant. Maximum	Measurement Frequency	Sample Type	
		Report							
Flow (MGD)	Report	Daily Max	XXX	XXX	XXX	XXX	Continuous	Measured	
pH (S.U.)	XXX	XXX	6.0 Inst Min	XXX	XXX	9.0	1/day	Grab	
Dissolved Oxygen	XXX	XXX	5.0 Inst Min	XXX	XXX	XXX	1/day	Grab	
Total Residual Chlorine (TRC)	XXX	XXX	XXX	0.5	XXX	1.6	1/day	Grab	
Carbonaceous Biochemical Oxygen Demand (CBOD5)	87	140	XXX	25.0	40.0	50	1/week	24-Hr Composite	
Biochemical Oxygen Demand (BOD5) Raw Sewage Influent	Report	Report Daily Max	XXX	Report	XXX	XXX	1/week	24-Hr Composite	
Total Suspended Solids	105	157	XXX	30.0	45.0	60	1/week	24-Hr Composite	
Total Suspended Solids Raw Sewage Influent	Report	Report Daily Max	XXX	Report	XXX	XXX	1/week	24-Hr Composite	
Total Dissolved Solids	Report	XXX	XXX	2605.0	5210.0 Daily Max	5210	1/week	24-Hr Composite	
Oil and Grease	52	XXX	XXX	15.0	XXX	30	1/week	Grab	
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	XXX	XXX	XXX	2000 Geo Mean	XXX	XXX	1/week	Grab	

Outfail001, Continued (from Permit Effective Date through Permit Expiration Date)

			Effluent L	Imitations.	ons Monitorin			
Parameter	Mass Units (lbs/day) (1)			Concentrations (mg/L)				Required
Parameter	Average	Weekly		Average	Weekly	Instant.	Measurement	Sample
	Monthly	Average	Minimum	Monthly	Average	Maximum	Frequency	Туре
Fecal Coliform (No./100 ml)				200				
May 1 - Sep 30	XXX	XXX	XXX	Geo Mean	XXX	XXX	1/week	Grab
					Report			
E. Coli (No./100 ml)	XXX	XXX	XXX	XXX	Daily Max	XXX	1/quarter	Grab
								24-Hr
Ammonia-Nitrogen	70	XXX	XXX	20.0	XXX	40	1/week	Composite

Samples taken in compliance with the monitoring requirements specified above shall be taken at the following location(s):

at Outfall 001

			Effluent L	Imitations			Monitoring Red	quirements	
Parameter	Mass Units	(lbs/day) (*)		Concentrat	lons (mg/L)		Minimum (II)	Required	
Parameter	Average Monthly	Average Weekly	Minimum	Semi-Annual Average	Maximum	Instant. Maximum	Measurement Frequency	Sample Type	
pH (S.U.)	XXX	XXX	XXX	Report	XXX	XXX	1/6 months	Grab	
Carbonaceous Biochemical Oxygen Demand (CBOD5)	XXX	XXX	XXX	Report	XXX	XXX	1/6 months	Grab	
Chemical Oxygen Demand (COD)	XXX	XXX	XXX	Report	XXX	XXX	1/6 months	Grab	
Total Suspended Solids	XXX	XXX	XXX	Report	XXX	XXX	1/6 months	Grab	
Total Dissolved Solids	XXX	XXX	XXX	Report	XXX	XXX	1/6 months	Grab	
Oil and Grease	XXX	XXX	XXX	Report	XXX	XXX	1/6 months	Grab	
Iron, Total	XXX	XXX	XXX	Report	XXX	XXX	1/6 months	Grab	
Potassium, Total	XXX	XXX	XXX	Report	XXX	XXX	1/6 months	Grab	
Ethylene Glycol	XXX	XXX	XXX	Report	XXX	XXX	1/6 months	Grab	
Propylene Glycol	XXX	XXX	XXX	Report	XXX	XXX	1/6 months	Grab	
Diethylene Glycol	XXX	XXX	XXX	Report	XXX	XXX	1/6 months	Grab	

For Storwater Outfallos 002 to 009, the table summarizes the monitoring requirements.

6.3.2 Summary of Proposed Permit Part C Conditions

The subject facility has the following Part C conditions.

- Chlorine Minimization
- SBR Batch Discharge Condition
- Hauled-in Waste Restrictions
- Solids Management for Non-Lagoon Treatment Systems
- Stormwater Requirements
- Stormwater BMPs
- Schuylkill River PCB TMDL- Monitoring Requirements
- Schuylkill River PCB TMDL- Submit Plan

	Tools and References Used to Develop Permit
	WQM for Windows Model (see Attachment)
	Toxics Management Spreadsheet (see Attachment)
	TRC Model Spreadsheet (see Attachment)
	Temperature Model Spreadsheet (see Attachment)
	Water Quality Toxics Management Strategy, 361-0100-003, 4/06.
	Technical Guidance for the Development and Specification of Effluent Limitations, 362-0400-001, 10/97.
	Policy for Permitting Surface Water Diversions, 362-2000-003, 3/98.
<u> </u>	Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 362-2000-008, 11/96.
	Technology-Based Control Requirements for Water Treatment Plant Wastes, 362-2183-003, 10/97.
	Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 362-2183-004, 12/97.
	Pennsylvania CSO Policy, 385-2000-011, 9/08.
	Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03.
	Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 391-2000-002, 4/97.
	Determining Water Quality-Based Effluent Limits, 391-2000-003, 12/97.
	Implementation Guidance Design Conditions, 391-2000-006, 9/97.
	Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen, Version 1.0, 391-2000-007, 6/2004.
	Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 391-2000-008, 10/1997.
	Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments, 391-2000-010, 3/99.
	Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 391-2000-011, 5/2004.
	Implementation Guidance for Section 93.7 Ammonia Criteria, 391-2000-013, 11/97.
	Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 391-2000-014, 4/2008.
	Implementation Guidance Total Residual Chlorine (TRC) Regulation, 391-2000-015, 11/1994.
	Implementation Guidance for Temperature Criteria, 391-2000-017, 4/09.
	Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 391-2000-018, 10/97.
	Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 391-2000-019, 10/97.
	Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 391-2000-021, 3/99.
	Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 391-2000-022, 3/1999.
	Design Stream Flows, 391-2000-023, 9/98.
	Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 391-2000-024, 10/98.
	Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 391-3200-013, 6/97.
	Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07.
\boxtimes	SOP: New and Reissuance Sewage Individual NPDES permit Applications, rev January 6, 2020
	Other:

Attachment A

Stream Stats/Gauge Data

10 Selected Streamflow Statistics for Streamgage Locations in and near Pennsylvania

Table 1. List of U.S. Geological Survey streamgage locations in and near Pennsylvania with updated streamflow statistics.-Continued

[Latitude and Longitude in decimal degrees; mi², square miles]

Streamgage number	Streamgage name	Latitude	Longitude	Drainage area (mi²)	Regulated ¹
01465780	Poquessing Creek above Byberry Creek at Phila., Pa.	40.070	-74.975	13.2	N
01465798	Poquessing Creek at Grant Ave. at Philadelphia, Pa.	40.057	-74.985	21.4	Ν
01465850	South Branch Rancocas Creek at Vincentown, N.J.	39.94	-74.763	64.5	N
01466500	McDonalds Branch in Byrne State Forest, N.J.	39.885	-74.505	2.35	Ν
01467000	North Branch Rancocas Creek at Pemberton, N.J.	39.97	-74.684	118	Ν
01467042	Pennypack Creek at Pine Road, at Philadelphia, Pa.	40.090	-75.069	37.9	N
01467048	Pennypack Creek at Lower Rhawn St Bdg, Phila., Pa.	40.050	-75.033	49.8	N
01467050	Wooden Bridge Run at Philadelphia, Pa.	40.055	-75.022	3.35	N
01467081	South Branch Pennsauken Creek at Cherry Hill, N.J.	39.942	-75.001	8.98	Ν
01467086	Tacony Creek ab Adams Avenue, Philadelphia, Pa.	40.047	-75.111	16.7	N
01467087	Frankford Creek at Castor Ave, Philadelphia, Pa.	40.016	-75.097	30.4	N
01467089	Frankford Creek at Torresdale Ave., Phila., Pa.	40.007	-75.092	33.8	Ν
01467150	Cooper River at Haddonfield, N.J.	39.903	-75.021	17.0	N
01467500	Schuylkill River at Pottsville, Pa.	40.684	-76.186	53.4	N
01468500	Schuylkill River at Landingville, Pa.	40.629	-76.125	133	Ν
01469500	Little Schuylkill River at Tamaqua, Pa.	40.807	-75.972	42.9	N
01470500	Schuylkill River at Berne, Pa.	40.523	-75.998	355	N
01470756	Maiden Creek at Virginville, Pa.	40.514	-75.883	159	N
01470779	Tulpehocken Creek near Bernville, Pa.	40.413	-76.172	66.5	Ν
01470853	Furnace Creek at Robesonia, Pa.	40.340	-76.143	4.18	N
01470960	Tulpehocken Creek at Blue Marsh Damsite near Reading, Pa.	40.371	-76.025	175	Y
01471000	Tulpehocken Creek near Reading, Pa.	40.369	-75.979	211	Y
01471510	Schuylkill River at Reading, Pa.	40.335	-75.936	880	Y
01471875	Manatawny Creek near Spangsville, Pa.	40.340	-75.742	56.9	N
01471980	Manatawny Creek near Pottstown, Pa.	40.273	-75.680	85.5	N
01472000	Schuylkill River at Pottstown, Pa.	40.242	-75.652	1,147	Y
01472157	French Creek near Phoenixville, Pa.	40.151	-75.601	59.1	N
01472174	Pickering Creek near Chester Springs, Pa.	40.090	-75.630	5.98	N
01472198	Perkiomen Creek at East Greenville, Pa.	40.394	-75.515	38.0	N
01472199	West Branch Perkiomen Creek at Hillegass, Pa.	40.374	-75.522	23.0	N
01472500	Perkiomen Creek near Frederick, Pa.	40.275	-75.455	152	N
01472620	East Branch Perkiomen Creek near Dublin, Pa.	40.404	-75.234	4.05	LF
01472810	East Branch Perkiomen Creek near Schwenksville, Pa.	40.259	-75.429	58.7	LF
01473000	Perkiomen Creek at Graterford, Pa.	40.230	-75.452	279	LF
01473120	Skippack Creek near Collegeville, Pa.	40.165	-75.433	53.7	N
01473169	Valley Creek at Pa. Turnpike Br near Valley Forge, Pa.	40.079	-75.461	20.8	N
01473500	Schuylkill River at Norristown, Pa.	40.111	-75.347	1,760	N
01473900	Wissahickon Creek at Fort Washington, Pa.	40.124	-75.220	40.8	N
01473950	Wissahickon Creek at Bells Mill Rd, Phila., Pa.	40.080	-75.226	53.6	N
01473980	Wissahickon Creek at Livezey Lane, Phila., Pa.	40.050	-75.214	59.2	N
01474000	Wissahickon Creek at Mouth, Philadelphia, Pa.	40.015	-75.207	64.0	N
01474500	•				
01474500	Schuylkill River at Philadelphia, Pa.	39.968	-75.189	1,893	N
01475000	Schuylkill River at Philadelphia, Pa. Mantua Creek at Pitman, N.J.	39.968 39.737	-75.113	6.05	N N
	Schuylkill River at Philadelphia, Pa.				

22 Selected Streamflow Statistics for Streamgage Locations in and near Pennsylvania

Table 2. Selected low-flow statistics for streamgage locations in and near Pennsylvania.—Continued

[ft³/s; cubic feet per second; —, statistic not computed; <, less than]

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Streamgage number	Period of record used in analysis ¹	Number of years used in analysis	1-day, 10-year (ft³/s)	7-day, 10-year (ft³/s)	7-day, 2-year (ft³/s)	30-day, 10-year (ft³/s)	30-day, 2-year (ft³/s)	90-day, 10-year (ft³/s)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	01453000	³ 1904–1927	18	237	312	447	378	546	472
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	01454700	1968-2005	38	471	510	745	600	902	760
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	01455500	1930-2008	52	0	.4	7.8	—	—	6.0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	01457000	1905-2008	89	40.6	45.6	70.5	52.2	81.7	62.5
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	01459500	21975-2008	34	1.9	2.1	4.1	2.9	7.1	5.7
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	01459500	31937-1973	37	.4	.9	2.1	1.3	3.6	2.9
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	01463500	1914-2008	95	1,540	1,720	2,700	1,960	3,120	2,430
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	01463620	1974-2008	19	2.4	2.7	7.6	4.8	10.6	8.6
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	01464000	1925-2008	84	9.4	14.2	25.7	18.7	34.2	29.3
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	01464500	1942-2008	65	16.4	18.9	34.0	24.4	42.3	37.3
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	01464645	1987-2008	22	3.3	3.6	12.3	4.4	13.6	5.4
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	01464720	1992-2008	17	3.0	3.6	5.8	4.5	7.3	6.2
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	01465000	1886-1934	28	_	3.4	10.1	4.9	15.0	12.9
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	01465500	1936-2008	73	9.0	12.7	26.4	17.3	37.4	28.6
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	01465770	1966-1982	16	.3	.4	1.2	.8	1.7	1.7
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	01465798	1967-2008	42	1.0	1.2	3.6	3.0	6.8	7.9
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	01465850	1963-2008	19	5.2	8.5	13.2	12.1	19.5	17.1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	01466500	1955-2008	54	.8	.8	1.1	.9	1.2	.9
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	01467000	1923-2008	86	26.2	34.2	51.8	41.6	63.2	53.2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	01467042	1966-1981	16	8.6	9.3	16.8	11.3	21.5	17.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	01467048	1967-2008	42	10.7	12.1	18.9	16.6	27.2	26.6
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	01467050	1967-1981	15	.3	.4	.8	.7	1.3	1.6
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	01467081	1969-2008	38	2.4	2.9	4.1	3.9	6.0	6.3
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	01467086	1967-1988	23	3.3	4.4	6.9	6.6	9.9	10.4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	01467087	1984-2008	25	1.6	2.1	6.1	4.8	10.1	12.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	01467089	1968-1982	15	4.8	6.6	9.6	10.3	16.0	20.1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	01467150	1965-2008	44	3.9	5.4	10.1	7.3	13.2	11.5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	01467500	1945-1969	25	14.6	17.2	24.5	19.8	28.5	23.4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	01468500	1949-2008	40	40.8	44.5	70.6	52.1	82.4	65.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	01469500	1921-2008	88	4.8	5.5	10.9	7.3	14.4	10.1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	01470500	1949-2008	60	69.2	82.3	137	102	164	133
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	01470756	1974-1995	22	14.8	16.7	30.5	23.4	43.9	35.5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	01470779	1976-2008	33	21.9	24.6	39.3	29.4	45.2	34.8
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	01470853	1984-2005	22	.2	.4	1.2	.8	1.6	1.1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	01470960	21980-2008	29	29.4	31.8	52.4	47.0	74.7	66.3
01471000 ² 1980-20082936.943.469.458.993.981.001471000 ³ 1952-19782741.847.677.155.391.268.601471510 ² 1980-20082922224434727442234001471510 ³ 1916-193010142173279206337245014718751995-20081410.911.821.214.125.319.0014719801976-20042916.517.829.221.734.929.701472000 ² 1980-200829276301432349527453									
0147100031952-19782741.847.677.155.391.268.60147151021980-2008292222443472744223400147151031916-193010142173279206337245014718751995-20081410.911.821.214.125.319.0014719801976-20042916.517.829.221.734.929.70147200021980-200829276301432349527453									
01471510*1980-20082922224434727442234001471510*1916-193010142173279206337245014718751995-20081410.911.821.214.125.319.0014719801976-20042916.517.829.221.734.929.701472000*1980-200829276301432349527453									
01471510 ³ 1916–1930 10 142 173 279 206 337 245 01471875 1995–2008 14 10.9 11.8 21.2 14.1 25.3 19.0 01471980 1976–2004 29 16.5 17.8 29.2 21.7 34.9 29.7 01472000 ² 1980–2008 29 276 301 432 349 527 453									
01471875 1995–2008 14 10.9 11.8 21.2 14.1 25.3 19.0 01471980 1976–2004 29 16.5 17.8 29.2 21.7 34.9 29.7 01472000 ² 1980–2008 29 276 301 432 349 527 453									
01471980 1976-2004 29 16.5 17.8 29.2 21.7 34.9 29.7 01472000 ² 1980-2008 29 276 301 432 349 527 453		1995-2008							
01472000 ² 1980–2008 29 276 301 432 349 527 453									
01472157 1970-2008 39 9.5 10.2 17.2 12.5 21.8 17.0	01472157	1970-2008	39	9.5	10.2		12.5	21.8	

Attachment B

WQM 7.0 Modeling Output Values Toxics Management Spreadsheet Output Values

	<u>SWP Basin</u> 03F	Stream Code 833		Stream Name SCHUYLKILL RIV	-		
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
9.400	Reading RA	PA0028720	0.420	CBOD5	25		
				NH3-N	20	40	
				Dissolved Oxygen			5

WQM 7.0 Effluent Limits

	<u>SWP Basin</u> 03F		<u>m Code</u> 833			<u>ream Name</u> YLKILL RIVE	R	
NH3-N	Acute Allocat	tion	s					
RMI	Discharge Na	ame	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
79.4	00 Reading RA		2.76	40	2.76	40	0	0
			2.70	10	2.70	10		•
	Chronic Allo	catio		40	2.70	10	Ū	
		I		Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
NH3-N RMI	Chronic Allo	I	D NS Baseline Criterion	Baseline WLA	Multiple Criterion	Multiple WLA	Critical	Percent

	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)		
79.40 Reading RA	25	25	20	20	5	5	0	0

Monday, November 22, 2021

Input Data WQM 7.0

	SWP Basir			Stre	am Name		RMI		vation (ft)	Drainage Area (sq mi)		Wit	PWS hdrawal mgd)	Apply FC
	03F		833 SCHU	YLKILL R	IVER		79.4	00	228.00	648.0	0.0 0.0	0000	0.00	✓
					St	ream Dat	a							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	<u>Tributary</u> np p	н	<u>Stre</u> Temp	am pH	
	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C)		
Q7-10 Q1-10 Q30-10	0.240	0.00 0.00 0.00	0.00	0.000 0.000 0.000	0.000 0.000 0.000	0.0	0.00	0.0	10 2	3.30	8.05	0.00	0.00	
		Discharge Data												
			Name	Per	mit Numbe	Disc	Permitt Disc Flow (mgd	Dis Flo	ac Res w Fa	erve T ctor	Disc emp (°C)	Disc pH		
		Read	ling RA	PA	0028720	0.420	0 0.420	00 0.4	200	0.000	25.00	7.23	5	
					Pa	arameter	Data							
				Paramete	r Name			Trib Conc	Stream Conc	Fate Coef				
						(m	ng/L) (I	ng/L)	(mg/L)	(1/days)				
			CBOD5				25.00	2.00	0.00	1.50				
			Dissolved	Oxygen			5.00	8.24	0.00	0.00				
			NH3-N				20.00	0.00	0.00	0.70				

Input Data WQM 7.0

	SWP Basin			Stre	eam Name		RMI		vation (ft)	Drainage Area (sq mi)		ope V/ft)	PWS Vithdrawal (mgd)	Apply FC
	03F	1	333 SCHU	YLKILL R	IVER		77.57	70	201.00	658.0	0.0 0.0	0000	0.00	✓
					St	ream Dat	a							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	<u>Tributary</u> p p	н	<u>S</u> Temp	<u>tream</u> pH	
	(cfsm) (cfs) (days) (fps) (ft) (ft) (°C) (°C)													
Q7-10 Q1-10 Q30-10	0.240	0.00 0.00 0.00	0.00	0.000 0.000 0.000	0.000 0.000 0.000	0.0	0.00	0.0	0 23	3.30	8.05	0.(00 0.00)
		Discharge Data												
			Name	Per	mit Numbe	Disc	Permitte Disc Flow (mgd)	Dis Flo	c Res w Fa	erve T ctor	Disc emp (ºC)	Disc pH		
						0.000	0 0.000	0.0	000 0	0.000	25.00) 7.	.00	
					P	arameter	Data							
				Paramete	r Nama			Trib Conc	Stream Conc	Fate Coef				
				raiamete	manne	(m	ng/L) (n	ng/L)	(mg/L)	(1/days)				
			CBOD5				25.00	2.00	0.00	1.50				
			Dissolved	Oxygen			3.00	8.24	0.00	0.00				
			NH3-N				25.00	0.00	0.00	0.70				

<u>SWP Basin</u> 03F	Stream Code 833		so	Stream Name	R	
RMI 79.400	Total Discharge 0.42) Anal	vsis Temperature 23.307	(°C) Analysis pH 8.040	
Reach Width (ft)	Reach De	-		Reach WDRatio		
187.607	1.11			0.745		
Reach CBOD5 (mg/L)	Reach Kc	(1/days)	R	each NH3-N (mg/l	L) Reach Kn (1/days)	
2.10	0.06	6	_	0.08	0.903	
Reach DO (mg/L)	Reach Kr ((1/days)		Kr Equation	Reach DO Goal (mg/l)
8.229	10.49	97		Tsivoglou	5	
Reach Travel Time (days	E)	Subreach	Deculte			
0.150	TravTime		NH3-N	D.O.		
	(days)	(mg/L)	(mg/L)	(mg/L)		
	0.015	2.09	0.08	7.76		
	0.030	2.09	0.08	7.76		
	0.045	2.09	0.08	7.76		
	0.060	2.09	0.08	7.76		
	0.075	2.08	0.08	7.76		
	0.090	2.08	0.08	7.76		
	0.105	2.08	0.08	7.76		
	0.120	2.08	0.07	7.76		
	0.135	2.07	0.07	7.76		
	0.150	2.07	0.07	7.76		

WQM 7.0 D.O.Simulation

		<u>P Basin</u> 03F		m Code 833	-	-	50	Stream	<u>Name</u> LL RIVER			
		001										
RMI	Stream Flow	PWS With	Net Stream Flow	Disc Analysis Flow	Reach Slope	Depth	Width	W/D Ratio	Velocity	Reach Trav Time	Analysis Temp	Analysis pH
	(cfs)	(cfs)	(cfs)	(cfs)	(ft/ft)	(ft)	(ft)		(fps)	(days)	(°C)	
Q7-1	0 Flow											
79.400	155.52	0.00	155.52	.6497	0.00279	1.118	187.61	167.82	0.74	0.150	23.31	8.04
Q1-1	0 Flow											
79.400	141.52	0.00	141.52	.6497	0.00279	NA	NA	NA	0.71	0.158	23.31	8.04
Q30-	10 Flow	,										
79.400	174.18	0.00	174.18	.6497	0.00279	NA	NA	NA	0.79	0.141	23.31	8.04

WQM 7.0 Hydrodynamic Outputs

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.91	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.12	Temperature Adjust Kr	✓
D.O. Saturation	90.00%	Use Balanced Technology	✓
D.O. Goal	5		

Toxics Management Spreadsheet Version 1.3, March 2021

Discharge Information

Instructions Dis	charge Stream		
Facility: Readi	ng Regional Airport	NPDES Permit No.: PA0028720	Outfall No.: 001
Evaluation Type:	Major Sewage / Industrial Waste	Wastewater Description: Sewage Effluent	

	Discharge Characteristics									
Design Flow	Design Flow Hardness (mg/l)*		P	artial Mix Fa	Complete Mix Times (min)					
(MGD)*	naruness (mg/l)	pH (SU)*	AFC	CFC	THH	CRL	Q ₇₋₁₀	Q _h		
0.42	100	7.23								

					0 if lef	t blank	0.5 if le	ft blank	0) if left blan	k	1 if left	t blank
	Discharge Pollutant	Units	Ма	x Discharge Conc	Trib Conc	Stream Conc	Daily CV	Hourly CV	Strea m CV	Fate Coeff	FOS	Criteri a Mod	Chem Transl
	Total Dissolved Solids (PWS)	mg/L		1628									
5	Chloride (PWS)	mg/L		303									
Group	Bromide	mg/L		0.22									
5	Sulfate (PWS)	mg/L		366									
	Fluoride (PWS)	mg/L											
	Total Aluminum	µg/L											
	Total Antimony	µg/L											
	Total Arsenic	µg/L											
	Total Barium	µg/L											
	Total Beryllium	µg/L											
	Total Boron	µg/L											
	Total Cadmium	µg/L											
	Total Chromium (III)	µg/L											
	Hexavalent Chromium	µg/L											
	Total Cobalt	µg/L											
	Total Copper	mg/L		0.132									
2	Free Cyanide	µg/L											
Group	Total Cyanide	µg/L											
5	Dissolved Iron	µg/L											
-	Total Iron	µg/L											
	Total Lead	mg/L	<	0.002									
	Total Manganese	µg/L											
	Total Mercury	µg/L											
	Total Nickel	µg/L											
	Total Phenols (Phenolics) (PWS)	µg/L											
	Total Selenium	µg/L											
	Total Silver	µg/L											
	Total Thallium	µg/L											
1	Total Zinc	mg/L		0.0649									
	Total Molybdenum	µg/L											
	Acrolein	µg/L	<										
	Acrylamide	µg/L	<										
	Acrylonitrile	µg/L	<										
	Benzene	µg/L	<										
	Bromoform	µg/L	<										

Toxics Management Spreadsheet Version 1.3, March 2021

Page 4

Stream / Surface Water Information

Reading Regional Airport, NPDES Permit No. PA0028720, Outfall 001

Instructions Discharge Stream

Receiving Surface Water Name: Schuylkill River

No. Reaches to Model: 1

Location	Stream Code*	RMI*	Elevation (ft)*	DA (mi²)*	Slope (ft/ft)	PWS Withdrawal (MGD)	Apply Fish Criteria*
Point of Discharge	000833	79.4	228	648			Yes
End of Reach 1	000833	77.57	201	658			Yes

Statewide Criteria
 Great Lakes Criteria
 ORSANCO Criteria

~	
Q	7 40
	1-10

Location	RMI	LFY	Flow	(cfs)	W/D	Width	Depth	Velocit	Time	Tributa	ary	Strear	m	Analys	sis
Location	TXIVII	(cfs/mi ²)*	Stream	Tributary	Ratio	(ft)	(ft)	y (fps)	(days)	Hardness	pН	Hardness*	pH*	Hardness	pН
Point of Discharge	79.4	0.24										136	8.05		
End of Reach 1	77.57	0.24										136	8.05		

Q_h

	Location	RMI	LFY	Flov	v (cfs)	W/D	Width	Depth	Velocit	Time	Tributa	агу	Strear	m	Analys	sis
	Location	T XIVII	(cfs/mi ²)	Stream	Tributary	Ratio	(ft)	(ft)	y (fps)	(days)	Hardness	pН	Hardness	pН	Hardness	pН
F	Point of Discharge	79.4														
	End of Reach 1	77.57														

Stream / Surface Water Information

☑ Recommended WQBELs & Monitoring Requirements

No. Samples/Month: 4

	Mass	Limits	Concentration Limits						
Pollutants	AML (Ibs/day)	MDL (lbs/day)	AML	MDL	IMAX	Units	Governing WQBEL	WQBEL Basis	Comments
Total Copper	Report	Report	Report	Report	Report	mg/L	0.41	AFC	Discharge Conc > 10% WQBEL (no RP)

12/2/2021

Attachment C TRC Evaluation

В	С	D	E	F	G	
TRC EVALU						
		B4:B8 and E4:E7				
	=Qstream (•		= CV Daily		
	=Qdischarg			= CV Hourty		
	= no. sample	emand of Siream		= AFC_Partial N = CFC_Partial N		
		emand of Discharge		_	ix racior Compliance Time (min)	
	= BAT/BPJ V			_	Compliance Time (min)	
		of Safety (FOS)		=Decay Coeffic		
Source	Reference	AFC Calculations		Reference	CFC Calculations	
TRC	1.32.iii	WLA afc =	75.137	1.32.iii	WLA cfc = 73.245	
PENTOXSD TRG		LTAMULT afc =	0.373	5.1c	LTAMULT cfc = 0.581	
PENTOXSD TRG	5.1b	LTA_afc=	27.998	5.1d	LTA_cfc = 42.581	
		1				
Source			Limit Cale			
PENTOXSD TRG					DATED	
PENTOXSD TRG	5.1g	AVG MON LIMI INST MAX LIMI			BAT/BPJ	
			. (
WLA afc (.019/e(-k*AFC_tc))+ [(AFC_Yc*Qs*.019/Qd*e(-k*AFC_tc)) + Xd + (AFC_Yc*Qs*Xs/Qd)]*(1-FOS/100)						
	EXP//0.5*LN	(cvh^2+1))-2.326*LN(c	.vh^2+1)^	0.5)		
LTAMULT afc	EM ((0.5 EN)			,		
LTAMULT afc LTA_afc	wla_afc*LTA			,		
	wla_afc*LTA (.011/e(-k*Cl		*.011/Qd*			
LTA_afc WLA_cfc LTAMULT_cfc	wla_afc*LTA (.011/e(-k*Cl + Xd + (CF EXP((0.5*LN	MULT_afc F C_tc) + [(CFC_Yc*Qs C_Yc*Qs*Xs/Qd)]*(1-F (cvd*2/no_samples+1)	*.011/Qd* OS/100)	e(-k*CFC_tc))		
LTA_afc WLA_cfc	wla_afc*LTA (.011/e(-k*Cl + Xd + (CF	MULT_afc F C_tc) + [(CFC_Yc*Qs C_Yc*Qs*Xs/Qd)]*(1-F (cvd*2/no_samples+1)	*.011/Qd* OS/100)	e(-k*CFC_tc))		
LTA_afc WLA_cfc LTAMULT_cfc	wla_afc*LTA (.011/e(-k*Cl +Xd+(CF EXP((0.5*LN wla_cfc*LTA	MULT_afc F C_tc) + [(CFC_Yc*Qs C_Yc*Qs*Xs/Qd)]*(1-F (cvd*2/no_samples+1)	*.011/Qd* 06/100)))-2.326*L	e(-k*CFC_tc)) N(cvd^2/no_sam	ples+1)^0.5)	

Attachment D DRBC Docket

DOCKET NO. D-1986-038 CP-4

DELAWARE RIVER BASIN COMMISSION

Reading Regional Airport Authority Wastewater Treatment Plant Bern Township, Berks County, Pennsylvania

PROCEEDINGS

This docket is issued in response to an application submitted to the Delaware River Basin Commission (DRBC or Commission) on May 23, 2018 (Application), for renewal of the existing wastewater treatment plant (WWTP) and its discharge. National Pollutant Discharge Elimination System (NPDES) Permit No. PA0028720 for this discharge was issued by the Pennsylvania Department of Environmental Protection (PADEP) on May 6, 2009. The NPDES Permit renewal is pending. The application was reviewed for continuation of the project in the Comprehensive Plan and approval under Section 3.8 of the *Delaware River Basin Compact*. The Berks County Planning Commission has been notified of pending action. A public hearing on this project was held by the DRBC on May 15, 2019.

A. DESCRIPTION

 <u>Purpose</u>. The purpose of this docket is to renew approval of the docket holder's existing 0.42 million gallons per day (mgd) WWTP and its discharge.

 <u>Location</u>. The docket holder's WWTP is located at Bernville Road in Bern Township, Berks County, Pennsylvania. The WWTP will continue to discharge treated effluent to the Schuylkill River at River Mile 92.47 – 80.3 (Delaware River – Schuylkill River) via Outfall No. 001.

The WWTP outfall is located in the Schuylkill River Watershed as follows:

OUTFALL NO.	LATITUDE (N)	LONGITUDE (W)
001	40° 22' 56"	75° 57' 10"

3. <u>Area Served</u>. The docket holder's WWTP will continue to serve the Reading Regional Airport, which includes the tenants of 3 Airport Industrial Parks and contained businesses, the Direct Link Building, and the Riveredge Restaurant. The WWTP also serves the St. Joseph Hospital and Medical Center, Water District (A), and the West Shore Area, which are all located within the limits of Bern Township, Berks County, Pennsylvania. For the purpose of defining the

2

Area Served, Section B (Type of Discharge) and D (Service Area) of the docket holder's Application are incorporated herein by reference, to the extent consistent with all other conditions contained in the DECISION Section of this docket.

 <u>Design Criteria</u>. The docket holder's 0.42 mgd WWTP utilizes a sequencing batch reactor (SBR) treatment process with chlorine disinfection.

 <u>Facilities</u>. The WWTP facilities consist of a fine influent screen, an influent wet well, 2 SBR treatment units, 2 aerobic digesters, 2 chlorine contact tanks, a Parshall flume, a sludge dewatering centrifuge, and a sludge holding tank.

The WWTP facilities are not located in the 100-year floodplain

Wasted sludge will continue to be hauled off-site by a licensed hauler for disposal at a state approved facility.

 <u>Water withdrawals</u>. The potable water supply in the project service area is provided by the Reading Area Water Authority (RAWA). The RAWA water withdrawal is described in detail in Docket No. D-2000-059 CP-2, which was approved on May 11, 2011

7. <u>NPDES Permit / DRBC Effluent Requirements</u>. NPDES Permit No. PA0028720 was issued by the PADEP on May 6, 2009 and includes final effluent limitations for the project discharge to surface waters classified by the PADEP as supporting migratory fishes (MF) and warm water fishes (WWF). EFFLUENT TABLES C-1 & C-2 included in the DECISION section of this docket, contain effluent requirements for DRBC parameters that must be met as a condition of this approval (See DECISION Condition C.1.). Effluent requirements for Outfall No. 001 are based on a discharge rate of 0.42 mgd.

 <u>Relationship to the Comprehensive Plan</u>. The existing WWTP was added to the Comprehensive Plan by Docket No. D-1986-038 CP on September 17, 1986. The WWTP approval was modified and renewed by Docket Nos. D-1986-038 CP-2 and D-1986-038 CP-3, on September 27, 2006 and September 12, 2013, respectively. Issuance of this docket will renew and continue the approval of the WWTP and its discharge in the Comprehensive Plan.

B. FINDINGS

The purpose of this docket is to renew the approval of the docket holder's existing 0.42 mgd WWTP and its related discharge.

1. Total Dissolved Solids

Section 3.10.4D.2. of the Commission's *Water Quality Regulations (WQR)* establishes the basin-wide total dissolved solids (TDS) effluent standard as 1,000 mg/l. The Commission's basin-wide in-stream criteria outlines that the TDS concentration of the receiving stream exhibit a

3

resultant of less than 133% of the background TDS concentration, in conjunction with a TDS less than 500 mg/l (Sections 3.10.3B.1b and 3.10.3B.2 of the Commission's WQR).

The 133% of the background TDS requirement is implemented for the protection of aquatic life. The 500 mg/l TDS requirement is utilized to protect the use of the receiving stream as a drinking water source; whereas, the EPA's Safe Drinking Water Act's secondary standard for TDS is 500 mg/l.

Background TDS is to be the observed concentration of TDS during Q_{7-10} conditions or, in the absence thereof, an acceptable estimate to the Commission in accordance with Section 3.10.6G of the Commission's WQR. A letter from the Commission to the docket holder dated August 4, 2003 established the in-stream background TDS concentration and accompanying Q_{7-10} flow at the WWTP's discharge as 400 mg/l and 101 mgd, respectively.

Within the referenced letter and Docket Nos. D-1986-38 CP-2 and D-1986-38 CP-3, a variance to the Commission's TDS effluent limit was approved on an average monthly and instantaneous maximum basis of 2,605 mg/l and 5,210 mg/l, respectively. The established instream background TDS concentration and Q₇₋₁₀ low flow evaluated at the docket holder's WWTP existing 0.42 mgd flow does not increase the stream's resultant concentration greater than the Commission's WQR criteria. Therefore, this docket continues an average monthly TDS effluent limit of 2,605 mg/l and an instantaneous maximum TDS effluent limit of 5,210 mg/l.

2. Other

At the docket holder's WWTP discharge, the Schuylkill River has an estimated seven-day low flow with a recurrence interval of ten years (Q₇₋₁₀) of 99.5 mgd (154 cfs). The ratio of this low flow to the hydraulic design wastewater discharge from the 0.42 mgd WWTP is 237 to 1.

The nearest surface water intake of record for public water supply is located on Schuylkill River approximately 24 River Miles downstream of the docket holder's WWTP and is operated by Pottstown Borough Authority.

The project does not conflict with the Comprehensive Plan and is designed to prevent substantial adverse impact on the water resources related environment, while sustaining the current and future water uses and development of the water resources of the Basin.

The effluent limits in the NPDES Permit are in compliance with Commission effluent quality requirements, where applicable.

The project is designed to produce a discharge meeting the effluent requirements as set forth in the Commission's Water Quality Regulations (WQR).

4

C. DECISION

Effective on the approval date for Docket No. D-1986-038 CP-4 below, the project described in Docket No. D-1986-038 CP-3 is removed from the Comprehensive Plan to the extent that they are not included in Docket No. D-1986-038 CP-4; Docket No. D-1986-038 CP-3 is terminated and replaced by Docket No. D-1986-038 CP-4; and the project and the appurtenant facilities described in Section A. DESCRIPTION of this docket shall be continued in the Comprehensive Plan. The project and appurtenant facilities as described in Section A of this docket are approved pursuant to Section 3.8 of the *Compact*, subject to the following conditions

Monitoring and Reporting

The docket holder shall comply with the requirements contained in the EFFLUENT 1. TABLES below. The docket holder shall submit the required monitoring results electronically to the DRBC Project Review Section via email aemr@drbc.state.nj.us on the Annual Effluent Form this web address: Monitoring Report located at http://www.state.nj.us/drbc/programs/project/pr/info.html. The monitoring results shall be submitted annually, absent any observed limit violations, by January 31. If a DRBC effluent limit is violated, the docket holder shall submit the result(s) to the DRBC within 30 days of the violation(s) and provide a written explanation that states the action(s) the docket holder has taken to correct the violation(s) and protect against any future violations. The following average monthly effluent limits are among those listed in the NPDES Permit and meet or are more stringent than the effluent requirements of the DRBC.

OUTFAL	L 001 (Discharging to Schuylkill)	River)
PARAMETER	LIMIT	MONITORING
pH (Standard Units)	6 to 9 at all times	As required by NPDES Permit
Total Suspended Solids	30 mg/l	As required by NPDES Permit
CBOD ₅ (at 20° C)	25 mg/l	As required by NPDES Permit
Ammonia Nitrogen	20 mg/l	As required by NPDES Permit
Fecal Coliform (5-1 to 9-30)	200 colonies per 100 ml as a geo.	As required by NPDES Permit
(10-1 to 4-30)	avg. 2000 colonies per 100 ml as a geo. avg.	
Total Dissolved Solids*	2,605 mg/l (Average Monthly)** 5,210 mg/l (Instantaneous Max.)	As required by NPDES Permit

* See DECISION Condition C.5.

** DRBC requirement; NPDES Permit does not match the approved DRBC limit value of 2,605 mg/l.

The following monitoring requirements and average monthly effluent limits are for DRBC parameters not listed in the NPDES Permit.

5

OUTFALL 001 (Discharging to Schuylkill River)			
PARAMETER	LIMIT	MONITORING	
CBOD ₅ (at 20° C)	Monitor & Report Influent	Monthly, paired with CBOD ₅	
		effluent monitoring sample	
CBOD ₅ (at 20° C)	85% Minimum Removal	Monthly	

EFFLUENT TABLE C-2: DRBC Parameters Not Included in NPDES Permit

Other Conditions

2. Nothing in this docket constitutes a defense to any penalty action for past conduct of the docket holder or ongoing activity not authorized by this approval. In particular, renewal of this docket does not resolve violations – whether in the past or continuing – of provisions of the Delaware River Basin Compact ("Compact") or any rule, regulation, order or approval duly issued by the Commission or the Executive Director pursuant to the Compact. The Commission reserves its right to take appropriate enforcement action against the docket holder, including but not limited to recovery of financial penalties consistent with Section 14.17 of the Compact, for any and all such prior or continuing violations.

3. Except as otherwise authorized by this docket, if the docket holder seeks relief from any limitation based upon a DRBC water quality standard or minimum treatment requirement, the docket holder shall apply for approval from the Executive Director or for a docket revision in accordance with Section 3.8 of the Compact and the Rules of Practice and Procedure.

4. The docket holder may request of the Executive Director in writing the substitution of specific conductance for TDS. The request should include information that supports the effluent specific correlation between TDS and specific conductance. Upon review, the Executive Director may modify the docket to allow the substitution of specific conductance for TDS monitoring.

5. The docket holder is responsible for timely submittal to the DRBC of a docket renewal application on the appropriate application form including the appropriate docket application filing fee (see 18 CFR 401.43) at least 6 months in advance of the docket expiration date set forth below. The docket holder will be subject to late filed renewal surcharges in the event of untimely submittal of its renewal application, whether or not DRBC issues a reminder notice in advance of the deadline or the docket holder receives such notice. In the event that a timely and complete application for renewal has been submitted and the DRBC is unable, through no fault of the docket holder, to reissue the docket before the expiration date below, the terms and conditions of the current docket will remain fully effective and enforceable against the docket holder pending the grant or denial of the application for docket approval.

6. The docket holder is permitted to treat and discharge wastewater as set forth in the Area Served Section of this docket, which incorporates by reference Sections B (Type of Discharge) and D (Service Area) of the docket holder's Application to the extent consistent with all other conditions of this DECISION Section.

The docket holder is prohibited from treating/pre-treating any hydraulic fracturing wastewater from sources in or out of the Basin at this time. Should the docket holder wish to

б

treat/pre-treat hydraulic fracturing wastewater in the future, the docket holder will need to first apply to the Commission to renew this docket and be issued a revised docket allowing such treatment and an expanded service area. Failure to obtain this approval prior to treatment/pretreatment will result in action by the Commission.

 The facility and operational records shall be available at all times for inspection by the DRBC.

The facility shall be operated at all times to comply with the requirements of the Commission's WQR.

10. If at any time the receiving treatment plant proves unable to produce an effluent that is consistent with the requirements of this docket approval, no further connections shall be permitted until the deficiency is remedied.

 Nothing herein shall be construed to exempt the docket holder from obtaining all necessary permits and/or approvals from other State, Federal or local government agencies having jurisdiction over this project.

12. The docket holder shall discharge wastewater in such a manner as to avoid injury or damage to fish or wildlife and shall avoid any injury to public or private property.

 No sewer service connections shall be made to newly constructed premises with plumbing fixtures and fittings that do not comply with water conservation performance standards contained in Resolution No. 88-2 (Revision 2).

14. The issuance of this docket approval shall not create any private or proprietary rights in the waters of the Basin, and the Commission reserves the right to amend, suspend or rescind the docket for cause, in order to ensure proper control, use and management of the water resources of the Basin.

 The docket holder shall be subject to applicable DRBC regulatory program fees, in accordance with duly adopted DRBC resolutions and/or regulations (see 18 CFR 401.43).

16. This approval is transferable by request to the DRBC Executive Director provided that the project purpose and area served approved by the Commission in this docket will not be materially altered because of the change in project ownership. The request shall be submitted on the appropriate form and be accompanied by the appropriate fee (see 18 CFR 401.43).

17. The docket holder shall request a name change of the entity to which this approval is issued if the name of the entity to which this approval is issued changes its name. The request for name change shall be submitted on the appropriate form and be accompanied by the appropriate fee (see 18 CFR 401.43).

18. The Executive Director may modify or suspend this approval or any condition thereof, or require mitigating measures pending additional review, if in the Executive Director's judgment such modification or suspension is required to protect the water resources of the Basin.

7

19. Any person who objects to a docket decision by the Commission may request a hearing in accordance with Article 6 of the Rules of Practice and Procedure. In accordance with Section 15.1(p) of the *Delaware River Basin Compact*, cases and controversies arising under the *Compact* are reviewable in the United States district courts.

BY THE COMMISSION

APPROVAL DATE:	June 12, 2019
EXPIRATION DATE:	June 30, 2025

Attachment E

Correspondence

Spotts, Stevens and McCoy 1047 N. Park Road > P.O. Box 6307 > Reading PA 19610-0307 610.621.2000 > F. 610.621.2001 > SSMGROUP.COM

May 21, 2018

Ms. Bonnie Boylan, Environmental Engineering Specialist Clean Water Program Department of Environmental Protection Southcentral Regional Office 909 Elmerton Avenue Harrisburg PA 17110-8200

RE: Reading Regional Airport Authority (RRAA) NPDES Permit Renewal Application Permit No. PA 0028720 SSM File 108580.0019

Ms. Boylan:

As you are aware, RRAA submitted the NPDES permit renewal application to the PADEP. On February 13, 2018 you responded to an email requesting information pertaining to the NPDES permit renewal and the stormwater outfall locations. We are formally providing a response to the February 13, 2018 email to be included with our original permit renewal application.

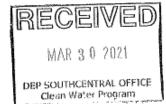
- We included a list of industrial and commercial users for 2017 that were included in the 2017 Chapter 94 report. The list is slightly different from the 2013 customer list that was provided in the NPDES application. Several of the restaurant/nightclubs have closed down and a new restaurant (Klingers) was opened in the Airport terminal building. We have highlighted the changes between the two list to reflect that minimal changes have occurred from 2013 to 2017.
- No additional influent/effluent sampling was performed that was not already submitted to the PADEP through the monthly reporting and/or the chapter 94 reporting.
- 3. As per the email, RRAA has sold a 154 acre portion of their property to Berks County Industrial Development Authority. They no longer own nor have access to stormwater outfall locations 002, 003, and 004. We have provided the attached Site Plan that shows the area in which the airport owns and the area in which BCIDA owns. Stormwater locations for 005, 006, 007 and 008 are shown in this figure. Outfall 001 is the NPDES permit outfall location for the wastewater treatment plant. An excerpt of module 1 is provided to show the four remaining outfalls for RRAA.
- 4. As per the contract operator, Peter Juzyk, Miller Environmental, sampling requirements under the NPDES permit are to be collected as a grab sample during the first 30 minutes but no later than 1 hour of the discharge resulting from a storm event that occurs at least 72 hours from the previously measurable storm event.

Ms. Bonnie Boylan | PADEP SSM File 108580.0019 May 21, 2018 Page 2 of 2

Sampling at outfalls 003, 006, 007 and 008 had no flow during rain events in 2017 that meet the requirements. Sampling at outfalls 002, 003, 006, 007 and 008 had no flow during rain events in 2016 that meet the above requirements.

- 5. As per your email we have provided an excerpt from the 3800-PM-BCW0009b form. The industrial user portion was completed for Industrial Metal Plating which is not considered a significant industrial user as it does not supply more than 20% of the WWTP flow.
- We are also attaching the DRBC docket renewal application that must be submitted to the DRBC by May 31, 2018, one year prior to the May 31, 2019 expiration date.
- 7. There have been no other changes that we are aware of since the 2013 submission.

Please contact us should you have any questions or require any additional information.


Sincerely, SSM Group, Inc.

Christina Crawford, PE/MBA Water and Wastewater Services christina.crawford@ssmgroup.com

Enclosures

cc: Terry Sroka, Manager – RRAA Delaware River Basin Commission (included with DRBC Docket Application)

Spotts, Stevens and McCoy 1047 N. Park Road > P.O. Box 6307 > Reading PA 19610-0307 610.621.2000 > F. 610.621.2001 > SSMGROUP.COM

March 17, 202

Mr. Daniel W. Martin, P.E. Environmental Engineer Manager Clean Water Program Department of Environmental Protection Southcentral Regional Office 909 Elmerton Avenue Harrisburg PA 17110-8200 [Via Email: daniemarti@pa.gov]

RE: Reading Regional Airport Authority (RRAA) NPDES Permit Renewal Application – Stormwater Permitting Permit No. PA 0028720 SSM File 108580.2021

Dear Mr. Martin:

We are writing in response to your March 2, 2021 correspondence relative to the Reading Regional Airport Authority (RRAA), Berks County, and the NPDES Permit Renewal Application to the Department. The NPDES Permit Renewal has been under Technical Review by the Department since October 31, 2013. In 2018, we provided supplemental information to the Department relative to the stormwater outfall locations.

In this supplemental information, we had provided an update to the Department relative to the Berks County Industrial Development Authority (BCIDA) and the purchase of a 154-acre property from the RRAA. Due to the sale and development of this property, the RRAA no longer has access to the Stormwater Outfalls previously labelled Outfall 003 and Outfall 004, or no longer feel that these Outfalls are representative of the RRAA stormwater discharge. Attached is a Site Plan showing the delineation of the RRAA ownership as well as the BCIDA ownership.

In the Department's March 2021 correspondence, the Department has requested additional information in response to new federal regulations as well as the sale of the property to the BCIDA. This correspondence is updated information in response to the Department's request:

- (1) Are there dry weather discharges from the airport runway areas? If so, a) what activities generate these discharges and what are the "known or believed present" parameters in the discharges? b) are there any sampling results for dry weather discharges from the airport runway areas to add to the permit application? c) where do these discharges leave the airport's property (specific outfall numbers or latitude and longitude locations)?
 - a. No, there are no dry weather discharges. The only washing that occurs is within the hangar buildings, which have floor drains that discharge to the Authority's Wastewater Treatment Plant (WWTP).
 - b. Not applicable there are no dry weather discharges.

ENGINEERING | SURVEYING | ENVIRONMENTAL SERVICES

Mr. Daniel Martin | PADEP SSM File 108580.2021 March 18, 2021 Page 2 of 3

c. The Outfall latitude and longitude locations are provided in the attached Outfall Location Map.

(2) Are their discharges subject to the federal Effluent Limitation Guidelines for Airport Deicing, 40 CFR 449, discharges from de-icing operations at "Primary Airports"? "Primary airport" is defined in 49 U.S. Code 47102 as a commercial service airport with more than 10,000 passenger boardings each year.

There are no discharges subject to federal Effluent Limitation Guidelines for Airport Deicing for operations at "Primary Airports." This item is not applicable, as this facility is not considered a Primary Airport; there are currently about 1,544 passengers boarding per year, and all passengers are by way of Chartered flights. There is minimal commercial flights, again by way of Charter only. The Reading Regional Airport Authority does not have scheduled airline services.

(3) Are there less than 1000 annual non-propeller aircraft departures at this airport? 'Annual non-propeller aircraft departures' means the average number of commercial turbine-engine aircraft that are propelled by jet, i.e., turbojet or turbofan, that take off from an airport on an annual basis, as tabulated by the Federal Aviation Administration (FAA).

The only <u>commercial</u>, turbine-engine aircraft departures are by Southwest Airlines for "seasonal" Charters, which average about 10 to 15 departures per year. The only other aircraft departures with jets (turbojet or turbofan) are private or corporate-owned.

(4) Is area used for de-icing operations or will it be used during the next five years? If so, where do these discharges leave the airport's property (specific outfall numbers or latitude and longitude locations)?

Yes, there are several locations within the RRAA property containing de-icing operations. The deicing locations are depicted in the attached Outfall Location Map, as well as the attached Stormwater Module. The only Stormwater Outfalls not affected by de-icing contributions are Outfalls 006 and 008, per the attached.

(5) Please submit a drainage map for the stormwater leaving the property with current outfalls shown and with proposed sampling locations shown for stormwater since the sale of a portion of the property to Berks County Industrial Development Authority (BCIDA). If former outfalls 002, 003, and 004 are no longer on airport property but there is still stormwater runoff from the runways, taxiways, hangars, fuel storage tanks, treatment plant area, etc., more appropriate monitoring locations would be before the stormwater leaves the airport property, whether it is monitoring from storm drains or monitoring of runoff. For each proposed sampling location other than outfalls 005, 006, and 008, please provide the latitude and longitude. For outfall 007, please also provide the latitude and longitude. (The latitude and longitude for outfall 007 in Part C of the 2009 NPDES permit does not match the map submitted to DEP by SSM consultants in May 2018 and may need to be corrected.)

A drainage map depicting each of the Authority's Stormwater Outfalls and the associated drainage areas for each Outfall are attached herein for the Department's use and reference. Outfall 002 will remain, as there is very little contribution from the BCIDA property. The RRAA will obtain permission from the BCIDA to continue sampling at this location. Outfalls 003 and 004 are being relocated (see attached Outfall Location Map) in order to move the Outfalls upstream from the BCIDA property as much as possible and to avoid any drainage from the BCIDA site. The latitude Mr. Daniel Martin | PADEP SSM File 108580.2021 March 18, 2021 Page 3 of 3

and longitude coordinates for each of the Stormwater Outfalls is also contained in the attached Mapping. The BCIDA has also added Outfall 009, as provided herein.

(6) Alternatively, if the airport proposes to continue using outfalls 002, 003, and 004 for monitoring of stormwater generated on the airport's property, a) it would need to have BCIDA's permission to access the stormwater outfalls and b) stormwater generated on BCIDA's property should not be mingled with the airport's stormwater. If BCIDA generates 'stormwater associated with industrial activity' now or in the future, they will be required to have their own NPDES permit for stormwater.

As stated above, Outfall 002 will remain in the same sampling location, and RRAA will obtain permission to continue sampling at this location. Outfalls 003 and 004 are being relocated to the Headwalls upstream of the BCIDA Property, as shown in the attachments.

(7) Are there any changes to the previously submitted permit application, other than the sale of a portion of the property to BCIDA?

All revisions to the existing NPDES Permit Application have already been provided to the Department.

Please contact us should you have any questions or require any additional information.

Sincerely, Spotts, Stevens and McCoy

Jamie D Lorah

Jamie D. Lorah, P.E. Manager, Process Engineering jamie.lorah@ssmgroup.com

Enclosures

cc: Terry Sroka, Manager – RRAA Bonnie Boylan, PA DEP [Via Email: <u>bboylan@pa.gov</u>]