

Application Type
Facility Type
Major / Minor

Renewal
Municipal
Minor

**NPDES PERMIT FACT SHEET
INDIVIDUAL SEWAGE**

Application No. PA0028886
APS ID 8670
Authorization ID 1497144

Applicant and Facility Information

Applicant Name	<u>Quarryville Borough Authority</u>	Facility Name	<u>Quarryville STP</u>
Applicant Address	<u>300 Saint Catherine Street</u> <u>Quarryville, PA 17566</u>	Facility Address	<u>2350 Old Road</u> <u>New Providence, PA 17560</u>
Applicant Contact	<u>John Chase</u>	Facility Contact	<u>John Chase</u>
Applicant Phone	<u>(717) 786-2404</u>	Facility Phone	<u>(717) 786-2404</u>
Client ID	<u>40068</u>	Site ID	<u>451929</u>
Ch 94 Load Status	<u>Not Overloaded</u>	Municipality	<u>Providence Township</u>
Connection Status	<u>No Limitations</u>	County	<u>Lancaster</u>
Date Application Received	<u>August 28, 2024</u>	EPA Waived?	<u>No</u>
Date Application Accepted	<u>September 18, 2024</u>	If No, Reason	<u>Significant CB Discharge, Pequea Creek TMDL</u>
Purpose of Application	<u>NPDES Renewal</u>		

Summary of Review

Quarryville Borough Authority has applied to the Pennsylvania Department of Environmental Protection (DEP) for reissuance of its National Pollutant Discharge Elimination System (NPDES) permit. The existing permit was issued on February 26, 2020, and became effective on March 1, 2020, authorizing discharge of treated sewage from the facility into UNT to South Fork Big Beaver Creek. The existing permit expiration date was February 28, 2025, and the permit has been administratively extended since that time.

Per the previous fact sheet, the Quarryville WWTP serves the Borough of Quarryville, East Drumore Township, Eden Township and Providence Township for a total of 2,197 equivalent dwelling units (EDUs). At full build out, in 2026, the WWTP will serve 3,384 EDUs. The WWTP was expanded from 0.4 mgd to 0.6 mgd to meet planned growth.

Changes in this renewal: E. Coli monitoring has been added to the permit. A monitoring requirement for Total Copper and Total Zinc has been added to the permit.

Sludge use and disposal description and location(s): Sludge holding tank with offsite disposal.

Supplemental information for this facility is provided at the end of this fact sheet.

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request

Approve	Deny	Signatures	Date
X		Benjamin R. Lockwood Benjamin R. Lockwood / Environmental Engineering Specialist	June 16, 2025
X		Maria D. Bebeneck for Daniel W. Martin, P.E. / Environmental Engineer Manager	July 2, 2025

Summary of Review

or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Discharge, Receiving Waters and Water Supply Information

Outfall No.	001	Design Flow (MGD)	.6
Latitude	39° 54' 23.1"	Longitude	76° 11' 6.7"
Quad Name		Quad Code	
Wastewater Description:	Sewage Effluent		
Receiving Waters	UNT to South Fork Big Beaver Creek (TSF, MF)	Stream Code	7479
NHD Com ID	57467749	RMI	0.08
Drainage Area	2.74 mi ²	Yield (cfs/mi ²)	0.0799
Q ₇₋₁₀ Flow (cfs)	0.345	Q ₇₋₁₀ Basis	USGS Gage #01576000
Elevation (ft)	418	Slope (ft/ft)	
Watershed No.	7-K	Chapter 93 Class.	TSF, MF
Existing Use	N/A	Existing Use Qualifier	N/A
Exceptions to Use	N/A	Exceptions to Criteria	N/A
Assessment Status	Impaired		
Cause(s) of Impairment	Pathogens, Siltation, Nutrients, Organic Enrichment, Habitat Alterations, pH Source Unknown, Agriculture, Agriculture, Agriculture, Habitat Modification – Other		
Source(s) of Impairment	Than Hydromodification, Habitat Modification – Other than Hydromodification		
TMDL Status	Final	Name	Pequea Creek
Nearest Downstream Public Water Supply Intake	PPL Holtwood Electric Plant		
PWS Waters	Susquehanna River	Flow at Intake (cfs)	
PWS RMI		Distance from Outfall (mi)	26.7

Changes Since Last Permit Issuance: A drainage area of 2.74 mi² and a Q₇₋₁₀ flow of 0.345 cubic feet per second (cfs) were determined by establishing a correlation to the yield of USGS Gage Station # 01576000 on the Susquehanna River. The Q₇₋₁₀ and drainage area at the gage are 3,270 cfs and 25,990 mi², respectively. These values are taken from the USGS document "Selected Streamflow Statistics for Streamgage Locations in and near Pennsylvania." The Q₇₋₁₀ runoff rate at the gate station was calculated as follows:

$$\text{Yield} = (3,270 \text{ cfs}) / 25,990 \text{ mi}^2 = 0.126 \text{ cfs/mi}^2$$

The drainage area at the discharge point, taken from USGS PA StreamStats = 2.74 mi²

The Q₇₋₁₀ at the discharge point = 2.74 mi² x 0.126 cfs/mi² = 0.345 cfs

Other Comments: None

Treatment Facility Summary				
Waste Type	Degree of Treatment	Process Type	Disinfection	Avg Annual Flow (MGD)
Sewage	Secondary	SBR	UV	0.6
Hydraulic Capacity (MGD)	Organic Capacity (lbs/day)	Load Status	Biosolids Treatment	Biosolids Use/Disposal
0.6	1,500	Not Overloaded	Aerobic Digestion	Other WWTP

Changes Since Last Permit Issuance: None

Other Comments: The treatment process consists of: Headworks with screening and grit removal, two sequencing batch reactors (SBRs), two post equalization pump stations, equalization tank, two UV disinfection banks, aerobic digestion, Outfall 001 to UNT to South Fork Big Beaver Creek

Compliance History	
Summary of DMRs:	A summary of past DMR effluent data is presented on the next page of this fact sheet.
Summary of Inspections:	5/7/2020: An administrative inspection was conducted. All treatment units were operable, and there were no outstanding issues or need at the time of inspection. 7/11/2024: A routine inspection was conducted. The post equalization tank contents appeared clear with a slight algae coloration. The effluent appeared clear, and the field sampling results were within permitted limits.

Other Comments: There are currently no open violations associated with the Applicant.

Compliance History

DMR Data for Outfall 001 (from May 1, 2024 to April 30, 2025)

Parameter	APR-25	MAR-25	FEB-25	JAN-25	DEC-24	NOV-24	OCT-24	SEP-24	AUG-24	JUL-24	JUN-24	MAY-24
Flow (MGD) Average Monthly	0.292	0.266	0.278	0.257	0.266	0.247	0.283	0.320	0.331	0.312	0.330	0.349
Flow (MGD) Daily Maximum	0.418	0.309	0.427	0.314	0.391	0.296	0.342	0.386	0.495	0.412	0.433	0.387
pH (S.U.) Instantaneous Minimum	6.8	6.7	6.8	6.5	6.6	6.7	6.7	6.8	6.8	6.8	6.9	6.8
pH (S.U.) Instantaneous Maximum	7.4	7.3	7.6	7.3	7.5	7.4	7.4	7.5	7.6	7.5	7.5	7.5
DO (mg/L) Instantaneous Minimum	8.6	8.9	9.4	9.4	9.0	8.0	7.5	7.9	7.5	7.5	7.7	7.9
CBOD5 (lbs/day) Average Monthly	< 5.1	< 5.2	< 6.4	< 7.5	< 6.9	< 4.3	< 4.8	< 6.2	< 5.9	< 6.8	< 6.4	< 6.5
CBOD5 (lbs/day) Weekly Average	6.1	6.3	8.3	13.9	11.1	5.0	< 5.1	8.9	< 8.3	13.2	7.7	7.7
CBOD5 (mg/L) Average Monthly	< 2.3	< 2.4	< 3.1	< 3.5	< 3.0	< 2.0	< 2.1	< 2.4	< 2.0	< 2.6	< 2.4	< 2.2
CBOD5 (mg/L) Weekly Average	2.8	2.7	4.2	6.3	5.2	2.1	2.4	3.6	< 2.0	5.0	2.7	2.7
BOD5 (lbs/day) Raw Sewage Influent Average Monthly	417	476	511	547	400	593	612	603	517	479	553	729
BOD5 (lbs/day) Raw Sewage Influent Daily Maximum	531	750	627	662	461	648	786	736	670	645	717	934
BOD5 (mg/L) Raw Sewage Influent Average Monthly	191	211	236	258	187	284	264	234	185	185	204	249
TSS (lbs/day) Average Monthly	< 12.3	< 11.1	< 10.4	< 10.6	< 13.5	11.0	< 11.5	< 16.0	< 19.3	< 15.0	< 15.7	< 14.6
TSS (lbs/day) Raw Sewage Influent Average Monthly	571	501	316	261	229	484	574	692	440	603	690	761

NPDES Permit Fact Sheet
Quarryville STP

NPDES Permit No. PA0028886

TSS (lbs/day) Raw Sewage Influent Daily Maximum	787	1012	7.2	556	289	608	648	936	853	704	783	978
TSS (lbs/day) Weekly Average	15.3	12.8	< 10.9	< 11.3	19.1	< 11.9	< 12.8	22.1	26.0	22.4	22.7	< 15.5
TSS (mg/L) Average Monthly	< 5.6	< 5.0	< 5.0	< 5.0	< 6.0	< 5.3	< 5.0	< 6.3	< 6.8	< 5.8	< 5.8	< 5.0
TSS (mg/L) Raw Sewage Influent Average Monthly	260	220	151	120	103	232	252	269	158	232	255	259
TSS (mg/L) Weekly Average	7.0	5.0	5.0	< 5.0	9.0	6.0	5.0	9.0	10.0	9.0	8.0	5.0
Fecal Coliform (No./100 ml) Geometric Mean	< 1	< 1	< 1	< 4	< 2	< 1	< 1	3	1	< 2	1	< 2
Fecal Coliform (No./100 ml) Instantaneous Maximum	1	1	1	161	6	2	5	26	2	5	3	7
Nitrate-Nitrite (mg/L) Average Monthly	1.77	< 1.8	2.03	< 1.5	< 2.2	2.6	2.4	2.59	2.01	1.9	< 1.7	1.83
Nitrate-Nitrite (lbs) Total Monthly	120.6	< 121.2	127.7	< 99.5	< 150.7	157	171.6	200.8	174.9	154.7	< 138	166.9
Total Nitrogen (mg/L) Average Monthly	3.49	< 9.57	10.08	< 8.7	< 3.7	4.2	3.5	3.78	< 3.52	2.88	< 2.73	2.87
Total Nitrogen (lbs) Total Monthly	238.5	< 636.5	645.8	< 565.2	< 252.7	253.6	256.3	292.7	< 308.4	233.7	< 221.9	261
Total Nitrogen (lbs) Effluent Net Total Annual								< 3559				
Total Nitrogen (lbs) Total Annual								< 3559				
Ammonia (lbs/day) Average Monthly	0.21	13.84	14.43	11.47	< 0.30	< 0.09	< 0.13	< 0.08	< 0.13	0.13	0.12	0.10
Ammonia (mg/L) Average Monthly	0.09	6.43	6.15	5.92	< 0.14	< 0.04	< 0.06	< 0.03	< 0.05	0.05	0.05	0.03
Ammonia (lbs) Total Monthly	6.4	429.1	403.9	355.53	< 9.2	< 2.6	< 4.1	< 2.4	< 3.9	4.3	3.7	3.1
Ammonia (lbs) Total Annual								< 64				
TKN (mg/L) Average Monthly	1.7	7.4	8.1	7.1	1.5	1.6	1.2	1.2	< 1.5	1.0	1.0	1
TKN (lbs) Total Monthly	117.9	491.3	518.1	465.7	102	96.6	84.7	91.9	< 133.5	79	84	94.1

NPDES Permit Fact Sheet
Quarryville STP

NPDES Permit No. PA0028886

Total Phosphorus (lbs/day)											
Average Monthly	0.28	< 0.23	0.26	< 0.41	0.38	0.64	0.68	0.49	0.65	0.96	0.79
Total Phosphorus (mg/L)											
Average Monthly	0.12	< 0.11	0.12	< 0.19	0.17	0.32	0.29	0.19	0.22	0.37	0.28
Total Phosphorus (lbs)											
Total Monthly	8.5	< 7.0	7.4	< 12.4	11.6	19.3	21.1	14.6	20.2	33.1	23.6
Total Phosphorus (lbs)											
Effluent Net Total Annual								< 243			
Total Phosphorus (lbs)								< 243			
Total Annual											
UV Dosage (mWsec/cm ²)											
Instantaneous Minimum	61045	47479	60049	47479	49586	47479	47479	54262	47479	47479	52591
											39914

Existing Effluent Limitations and Monitoring Requirements

Outfall 001

Parameter	Effluent Limitations						Monitoring Requirements	
	Mass Units (lbs/day)		Concentrations (mg/L)				Minimum Measurement Frequency	Required Sample Type
	Average Monthly	Weekly Average	Minimum	Average Monthly	Weekly Average	Instant. Maximum		
Flow (MGD)	Report	Report Daily Max	XXX	XXX	XXX	XXX	Continuous	Measured
pH (S.U.)	XXX	XXX	6.0 Inst Min	XXX	XXX	9.0	1/day	Grab
Dissolved Oxygen	XXX	XXX	5.0 Inst Min	XXX	XXX	XXX	1/day	Grab
UV Light Dosage (mWsec/cm ²)	XXX	XXX	Report	XXX	XXX	XXX	1/day	Measured
Carbonaceous Biochemical Oxygen Demand (CBOD5)	125.0	200.0	XXX	25.0	40.0	50.0	1/week	24-Hr Composite
Biochemical Oxygen Demand (BOD5) Raw Sewage Influent	Report	Report Daily Max	XXX	Report	XXX	XXX	1/week	24-Hr Composite
Total Suspended Solids	150.0	225.0	XXX	30.0	45.0	60.0	1/week	24-Hr Composite
Total Suspended Solids Raw Sewage Influent	Report	Report Daily Max	XXX	Report	XXX	XXX	1/week	24-Hr Composite
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	XXX	XXX	XXX	2,000 Geo Mean	XXX	10,000	1/week	Grab
Fecal Coliform (No./100 ml) May 1 - Sep 30	XXX	XXX	XXX	200 Geo Mean	XXX	1,000	1/week	Grab
Ammonia-Nitrogen Nov 1 - Apr 30	37.0	XXX	XXX	7.5	XXX	15.0	2/week	24-Hr Composite
Ammonia-Nitrogen May 1 - Oct 31	12.0	XXX	XXX	2.5	XXX	5.0	2/week	24-Hr Composite
Total Phosphorus	6.5	XXX	XXX	2.0	XXX	4.0	2/week	24-Hr Composite

Samples taken in compliance with the monitoring requirements specified above shall be taken at the following location(s):

at Outfall 001

Parameter	Effluent Limitations						Monitoring Requirements	
	Mass Units (lbs/day)		Concentrations (mg/L)				Minimum Measurement Frequency	Required Sample Type
	Monthly	Annual	Monthly	Monthly Average	Maximum	Instant. Maximum		
Ammonia--N	Report	Report	XXX	Report	XXX	XXX	2/week	24-Hr Composite
Kjeldahl--N	Report	XXX	XXX	Report	XXX	XXX	2/week	24-Hr Composite
Nitrate-Nitrite as N	Report	XXX	XXX	Report	XXX	XXX	2/week	24-Hr Composite
Total Nitrogen	Report	Report	XXX	Report	XXX	XXX	1/month	Calculation
Total Phosphorus	Report	Report	XXX	Report	XXX	XXX	2/week	24-Hr Composite
Net Total Nitrogen	XXX	7,306	XXX	XXX	XXX	XXX	1/year	Calculation
Net Total Phosphorus	XXX	974	XXX	XXX	XXX	XXX	1/year	Calculation

Samples taken in compliance with the monitoring requirements specified above shall be taken at the following location(s):

at Outfall 001

Development of Effluent Limitations

Outfall No. 001
Latitude 39° 54' 23.1"
Wastewater Description: Sewage Effluent

Design Flow (MGD) .6
Longitude 76° 11' 6.7"

Technology-Based Limitations

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Pollutant	Limit (mg/l)	SBC	Federal Regulation	State Regulation
CBOD ₅	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
	40	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)
Total Suspended Solids	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
	45	Average Weekly	133.102(b)(2)	92a.47(a)(2)
pH	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform (5/1 – 9/30)	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
Fecal Coliform (5/1 – 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform (10/1 – 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
Fecal Coliform (10/1 – 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)
Total Residual Chlorine	0.5	Average Monthly	-	92a.48(b)(2)

Water Quality-Based Limitations

CBOD₅, NH₃-N

Pursuant to 40 CFR § 122.44(d)(1)(i), more stringent requirements should be considered when pollutants are discharged at the levels which have the reasonable potential to cause or contribute to excursions above water quality standards.

WQM 7.0 ver. 1.1b is a water quality model designed to assist DEP in determining appropriate water quality based effluent limits (WQBELs) for carbonaceous biochemical oxygen demand (CBOD₅), ammonia (NH₃-N) and dissolved oxygen (D.O.). DEP's Technical Guidance No. 391-2000-007 provides the technical methods contained in WQM 7.0 for determining wasteload allocations and for determining recommended NPDES effluent limits for point source discharges. The model was utilized for this permit renewal. Stream pH and temperature inputs for this model run were based on data acquired from the National Water Quality Monitoring Council website. Data was analyzed from the Water Quality Network (WQN) Station ID 204 on Pequea Creek from October 1998 to January 2019 for pH, and from October 1998 to October 2017 for temperature. DEP's Standard Operating Procedure (SOP) No. BPNPSM-PMT-033 (Establishing Effluent Limitations for Individual Sewage Permits) recommends using the 90th percentile of long-term data for background and discharge characteristics when using WQM 7.0. A 90th percentile analysis was performed on the data and resulted in a Stream pH of 7.6 and a Stream Temperature of 13.75°C. The flow data used to run the model was acquired from USGS PA StreamStats and is included in the attachment. The model output indicated a CBOD₅ average monthly limit of 25 mg/l, an NH₃-N average monthly limit of 2.49 mg/l, and a D.O. minimum limit of 5.0 mg/l were protective of water quality. The existing NH₃-N and CBOD₅ limits are the same as the model limits, which will remain in the renewal.

Toxics

Effluent sample results for toxic pollutants reported on the renewal application were entered into DEP's Toxics Management Spreadsheet Version 1.4 to develop appropriate permit requirements for toxic pollutants of concern. The Toxics Management Spreadsheet combines the functions of PENTOXSD and DEP's Toxics Screening Analysis. The stream hardness reported on the application was used in modeling, and a default discharge hardness of 100 mg/l was used. Based on effluent sample results reported on the application, the Toxics Management Spreadsheet recommended monitoring for Total Copper and Total Zinc.

This data was analyzed based on the guidelines found in DEP's Water Quality Toxics Management Strategy (Document No. 361-0100-003) and DEP's SOP No. BPNPSM-PMT-033. The results are attached to this fact sheet. The Toxics Management Spreadsheet uses the following logic:

- a. Establish average monthly and instantaneous maximum (IMAX) limits in the draft permit where the maximum reported concentration exceeds 50% of the WQBEL.
- b. For non-conservative pollutants, establish monitoring requirements where the maximum reported concentration is between 25% - 50% of the WQBEL.
- c. For conservative pollutants, establish monitoring requirements where the maximum reported concentration is between 10%-50% of the WQBEL.

Since the reported maximum concentrations were above 10% of their respective WQBEL, monitoring is required for these parameters. As a result, Total Copper and Total Zinc monitoring has been added to the permit, with a monitoring frequency of 1/month.

Additional Considerations

Chesapeake Bay Total Maximum Daily Load (TMDL)

DEP developed a strategy to comply with the EPA and Chesapeake Bay Foundation requirements by reducing point source loadings of Total Nitrogen (TN) and Total Phosphorus (TP). This strategy can be located in the *Pennsylvania Chesapeake Watershed Implementation Plan* (WIP), dated January 11, 2011. Subsequently, an update to the WIP was published as the Phase 2 WIP. As part of the Phase 2 WIP, a *Phase 2 Watershed Implementation Plan Wastewater Supplement* (Phase 2 Supplement) was developed, providing an update on TMDL implementation for point sources and DEP's current implementation strategy for wastewater. A new update to the WIP was published as the Phase 3 WIP in August 2019. As part of the Phase 3 WIP, a *Phase 3 Watershed Implementation Plan Wastewater Supplement* (Phase 3 Supplement) was developed, and was most recently revised on July 29, 2022, and is the basis for the development of any Chesapeake Bay related permit parameters. Sewage discharges have been prioritized based on their design flow to the Bay. The highest priority (Phases 1, 2, and 3) dischargers will receive annual Cap Loads based on their design flow on August 29, 2005 and concentrations of 6 mg/l TN and 0.8 mg/l TP. These limits may be achieved through a combination of treatment technology, credits, or offsets. For Phase 4 and 5 facilities, Cap Loads are not currently being implemented for renewed or amended permits for facilities that do not increase design flow.

Quarryville WWTP is a Phase 3 significant discharger. The facility's waste load allocation (WLA) is tracked under an individual WLA as a significant discharger in the Phase 3 Supplement. The following Cap Loads specified in the current Phase 3 Supplement will be included in the draft permit:

NPDES Permit No.	Phase	Facility	Latest Permit Issuance Date	Permit Expiration Date	Cap Load Compliance Start Date	TN Cap Load (lbs/yr)	TN Offsets Included in Cap Load (lbs/yr)	TP Cap Load (lbs/yr)	TN Delivery Ratio	TP Delivery Ratio
PA0028886	3	Quarryville Borough Authority	2/26/2020	2/28/2025	10/1/2014	7,306	-	974	0.493	0.553

The Cap Loads are unchanged from the previous renewal. DEP's SOP for New and Reissuance Sewage Individual NPDES Permit Applications recommends that Significant Chesapeake Bay sewage discharges should monitor for nutrients at a minimum of 1/week as 24-hour composites. The Phase 3 Supplement states that "the minimum monitoring frequency for TN species and TP in new or renewed NPDES permits for significant sewage dischargers will be 2/week." The monitoring frequency of 2/week is consistent with the existing permit limits.

Dissolved Oxygen

A minimum D.O. limit of 5.0 mg/L is a D.O. water quality criterion found in 25 Pa. Code § 93.7(a). This limit is included in the existing NPDES permit based BPJ. It is still recommended to include this limit in the draft permit to ensure that the facility continues to achieve compliance with DEP water quality standards.

Total Phosphorus

For Total Phosphorus (TP), the current NPDES permit requires the permittee to comply with average monthly and IMAX limits of 2.0 mg/L and 4.0 mg/L, respectively. DEP's Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams (Guidance No. 391-2000-018) was used to evaluate if phosphorus limitations were necessary. According to the guidance, phosphorus limits would be needed if the contributions from this facility exceeded 0.25% of the total phosphorus load of all discharges in the Lower Susquehanna River Basin. The calculated 23.5 lbs/day was 0.62% of the loading after delivery ratios to the lower Susquehanna River were applied; therefore, a TP limit of 2 mg/l was included in the permit. The existing TP limit of 2.0 mg/l will remain unchanged in the permit to protect the Lower Susquehanna River.

Fecal Coliform

PA Code § 92a.47.(a)(4) requires a monthly average limit of 200/100 mL as a geometric mean and an instantaneous maximum limit not greater than 1,000/100 mL from May through September for fecal coliform. PA Code § 92a.47.(a)(5) requires a monthly average limit of 2,000/100 mL as a geometric mean and an instantaneous maximum limit not greater than 10,000/100 mL from October through April for fecal coliform. These limits are consistent with the existing permit.

E. Coli

PA Code § 92a.61 requires IMAX reporting of E. Coli. Per DEP's SOP No. BCW-PMT-033, sewage dischargers with a design flow of ≥ 0.05 mgd and < 1 mgd will include E. Coli monitoring with a frequency of 1/quarter. This parameter has been added to the renewal permit.

Pequea Creek TMDL

A TMDL was established for Pequea Creek on March 2, 2001 (revisions June 16, 2006 and August 18, 2006). The report allocated an annual load of 1,218 lbs/yr for TP at a permitted design flow of 0.4 mgd. DEP's Chesapeake Bay Tributary Strategy allocated an annual phosphorus loading of 974 lbs/yr. The annual load of 974 lbs/yr is more stringent, and will remain in the permit.

UV Monitoring

DEP's SOP No. BPNPSM-PMT-033 recommends at a minimum, routine monitoring of UV transmittance, dosage, or intensity when the facility is utilizing a UV disinfection system. The monitoring should occur at the same frequency as would be used for TRC. This recommendation was implemented as a part of the proper operation and maintenance requirement specified in Part B of the NPDES permit, requesting permittees to demonstrate the effectiveness of UV disinfection system. This approach has been assigned to other facilities equipped with similar technology. Accordingly, a parameter for UV Dosage will be included in the permit.

Sampling Frequency & Sample Type

The monitoring requirements were established based on BPJ and/or Table 6-3 of DEP's Technical Guidance No. 362-0400-001.

Flow Monitoring

Flow monitoring is recommended by DEP's technical guidance and is also required by 25 PA Code §§ 92a.27 and 92a.61.

Influent BOD₅ and Total Suspended Solids (TSS) Monitoring

As a result of negotiation with US EPA, influent monitoring of TSS and BOD₅ are required for any publicly owned treatment works (POTWs); therefore, influent sampling of BOD₅ and TSS will remain in the permit.

Mass Loading Limitation

All mass loading effluent limitations recommended in the draft permit are concentration-based, calculated using a formula: design flow (MGD) x concentration limit (mg/l) x conversion factor of 8.34.

Anti-Degradation

The effluent limits for this discharge have been developed to ensure that existing instream water uses and the level of water quality necessary to protect the existing uses are maintained and protected. No High Quality Waters are impacted by this discharge. No Exceptional Value Waters are impacted by this discharge.

303(d) Listed Streams

The discharge is located on a stream segment that is designated on the 303(d) list as impaired. There is a recreational impairment due to pathogens from an unknown source. There is an aquatic life impairment due to nutrients and siltation from agriculture, organic enrichment from agriculture, habitat alterations from habitat modification – other than hydromodification, and pH from habitat modification – other than hydromodification.

Class A Wild Trout Fisheries

No Class A Wild Trout Fisheries are impacted by this discharge.

Anti-Backsliding

Pursuant to 40 CFR § 122.44(l)(1), all proposed permit requirements addressed in this fact sheet are at least as stringent as the requirements implemented in the existing NPDES permit unless any exceptions are addressed by DEP in this fact sheet.

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (386-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

Parameter	Effluent Limitations						Monitoring Requirements	
	Mass Units (lbs/day) ⁽¹⁾		Concentrations (mg/L)				Minimum ⁽²⁾ Measurement Frequency	Required Sample Type
	Average Monthly	Weekly Average	Instantaneous Minimum	Average Monthly	Weekly Average	Instant. Maximum		
Flow (MGD)	Report	Report Daily Max	XXX	XXX	XXX	XXX	Continuous	Measured
pH (S.U.)	XXX	XXX	6.0	XXX	XXX	9.0	1/day	Grab
DO	XXX	XXX	5.0	XXX	XXX	XXX	1/day	Grab
CBOD5	125.0	200.0	XXX	25.0	40.0	50	1/week	24-Hr Composite
BOD5 Raw Sewage Influent	Report	Report Daily Max	XXX	Report	XXX	XXX	1/week	24-Hr Composite
TSS Raw Sewage Influent	Report	Report Daily Max	XXX	Report	XXX	XXX	1/week	24-Hr Composite
TSS	150.0	225.0	XXX	30.0	45.0	60	1/week	24-Hr Composite
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	XXX	XXX	XXX	2000 Geo Mean	XXX	10000	1/week	Grab
Fecal Coliform (No./100 ml) May 1 - Sep 30	XXX	XXX	XXX	200 Geo Mean	XXX	1000	1/week	Grab
E. Coli (No./100 ml)	XXX	XXX	XXX	XXX	XXX	Report	1/quarter	Grab
Ammonia Nov 1 - Apr 30	37.0	XXX	XXX	7.5	XXX	15	2/week	24-Hr Composite
Ammonia May 1 - Oct 31	12.0	XXX	XXX	2.5	XXX	5	2/week	24-Hr Composite
Total Phosphorus	6.5	XXX	XXX	2.0	XXX	4	2/week	24-Hr Composite
UV Dosage (mWsec/cm ²)	XXX	XXX	Report	XXX	XXX	XXX	1/day	Measured

Outfall 001, Continued (from Permit Effective Date through Permit Expiration Date)

Parameter	Effluent Limitations						Monitoring Requirements	
	Mass Units (lbs/day) ⁽¹⁾		Concentrations (mg/L)				Minimum ⁽²⁾ Measurement Frequency	Required Sample Type
	Average Monthly	Weekly Average	Instantaneous Minimum	Average Monthly	Weekly Average	Instant. Maximum		
Total Copper	XXX	XXX	XXX	XXX	Report Daily Max	XXX	1/month	24-Hr Composite
Total Zinc	XXX	XXX	XXX	XXX	Report Daily Max	XXX	1/month	24-Hr Composite

Compliance Sampling Location: Outfall 001

Other Comments: None

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, to comply with Pennsylvania's Chesapeake Bay Tributary Strategy.

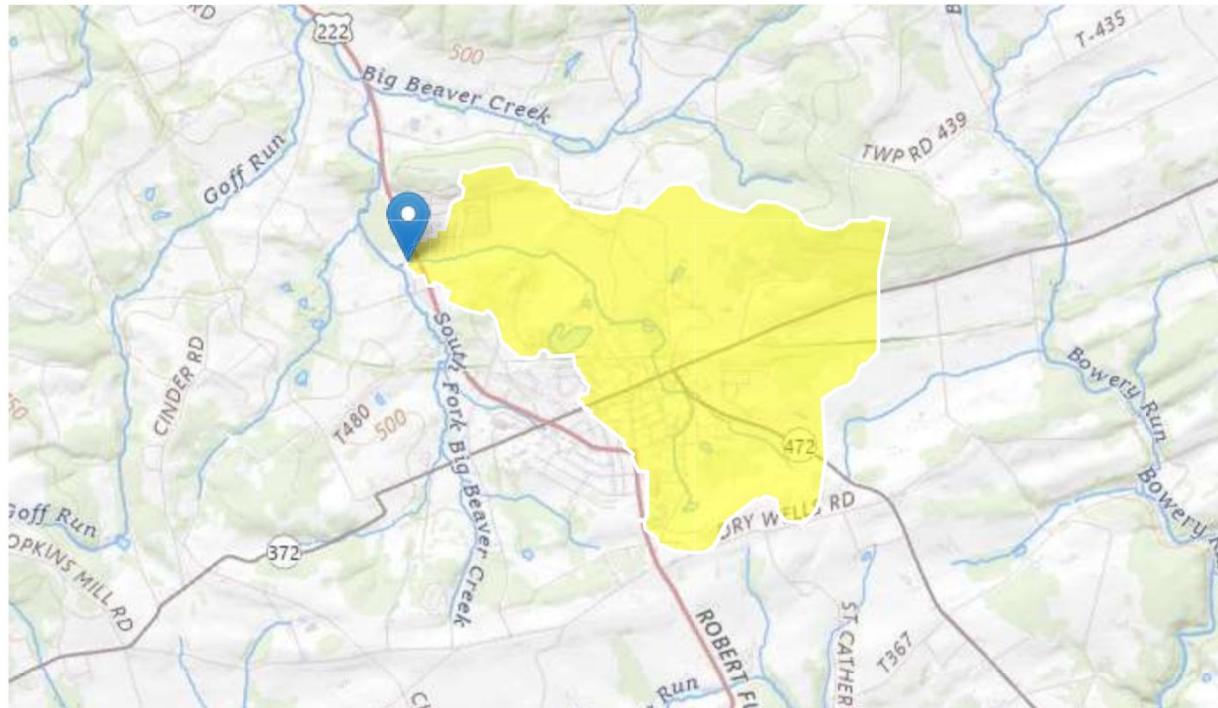
Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

Parameter	Effluent Limitations						Monitoring Requirements	
	Mass Units (lbs/day) ⁽¹⁾		Concentrations (mg/L)				Minimum ⁽²⁾ Measurement Frequency	Required Sample Type
	Monthly	Annual	Monthly	Monthly Average	Maximum	Instant. Maximum		
Ammonia--N	Report	Report	XXX	Report	XXX	XXX	2/week	24-Hr Composite
Kjeldahl--N	Report	XXX	XXX	Report	XXX	XXX	2/week	24-Hr Composite
Nitrate-Nitrite as N	Report	XXX	XXX	Report	XXX	XXX	2/week	24-Hr Composite
Total Nitrogen	Report	Report	XXX	Report	XXX	XXX	1/month	Calculation
Total Phosphorus	Report	Report	XXX	Report	XXX	XXX	2/week	24-Hr Composite
Net Total Nitrogen	XXX	7,306	XXX	XXX	XXX	XXX	1/year	Calculation
Net Total Phosphorus	XXX	974	XXX	XXX	XXX	XXX	1/year	Calculation

Compliance Sampling Location: Outfall 001

Other Comments: None

Tools and References Used to Develop Permit	
<input checked="" type="checkbox"/>	WQM for Windows Model (see Attachment [REDACTED])
<input checked="" type="checkbox"/>	Toxics Management Spreadsheet (see Attachment [REDACTED])
<input type="checkbox"/>	TRC Model Spreadsheet (see Attachment [REDACTED])
<input type="checkbox"/>	Temperature Model Spreadsheet (see Attachment [REDACTED])
<input checked="" type="checkbox"/>	Water Quality Toxics Management Strategy, 361-0100-003, 4/06.
<input checked="" type="checkbox"/>	Technical Guidance for the Development and Specification of Effluent Limitations, 386-0400-001, 10/97.
<input type="checkbox"/>	Policy for Permitting Surface Water Diversions, 386-2000-019, 3/98.
<input type="checkbox"/>	Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 386-2000-018, 11/96.
<input type="checkbox"/>	Technology-Based Control Requirements for Water Treatment Plant Wastes, 386-2183-001, 10/97.
<input type="checkbox"/>	Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 386-2183-002, 12/97.
<input type="checkbox"/>	Pennsylvania CSO Policy, 386-2000-002, 9/08.
<input type="checkbox"/>	Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03.
<input type="checkbox"/>	Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 386-2000-008, 4/97.
<input checked="" type="checkbox"/>	Determining Water Quality-Based Effluent Limits, 386-2000-004, 12/97.
<input type="checkbox"/>	Implementation Guidance Design Conditions, 386-2000-007, 9/97.
<input checked="" type="checkbox"/>	Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen, Version 1.0, 386-2000-016, 6/2004.
<input type="checkbox"/>	Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 386-2000-012, 10/1997.
<input type="checkbox"/>	Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments, 386-2000-009, 3/99.
<input checked="" type="checkbox"/>	Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 386-2000-015, 5/2004.
<input type="checkbox"/>	Implementation Guidance for Section 93.7 Ammonia Criteria, 386-2000-022, 11/97.
<input type="checkbox"/>	Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 386-2000-013, 4/2008.
<input type="checkbox"/>	Implementation Guidance Total Residual Chlorine (TRC) Regulation, 386-2000-011, 11/1994.
<input type="checkbox"/>	Implementation Guidance for Temperature Criteria, 386-2000-001, 4/09.
<input type="checkbox"/>	Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 386-2000-021, 10/97.
<input type="checkbox"/>	Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 386-2000-020, 10/97.
<input type="checkbox"/>	Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 386-2000-005, 3/99.
<input type="checkbox"/>	Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 386-2000-010, 3/1999.
<input type="checkbox"/>	Design Stream Flows, 386-2000-003, 9/98.
<input type="checkbox"/>	Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 386-2000-006, 10/98.
<input type="checkbox"/>	Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 386-3200-001, 6/97.
<input type="checkbox"/>	Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07.
<input checked="" type="checkbox"/>	SOP: BCW-PMT-033, BCW-PMT-002
<input type="checkbox"/>	Other: [REDACTED]


Quarryville Borough Authority PA0028886 Outfall 001

Region ID: PA

Workspace ID: PA20250616114223557000

Clicked Point (Latitude, Longitude): 39.90649, -76.18519

Time: 2025-06-16 07:42:46 -0400

 [Collapse All](#)

➤ Basin Characteristics

Parameter Code	Parameter Description	Value	Unit
BSLOPD	Mean basin slope measured in degrees	3.3631	degrees
DRNAREA	Area that drains to a point on a stream	2.74	square miles
ROCKDEP	Depth to rock	5	feet
URBAN	Percentage of basin with urban development	7.8485	percent

➤ Low-Flow Statistics

Low-Flow Statistics Parameters [Low Flow Region 1]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
BSLOPD	Mean Basin Slope degrees	3.3631	degrees	1.7	6.4
DRNAREA	Drainage Area	2.74	square miles	4.78	1150
ROCKDEP	Depth to Rock	5	feet	4.13	5.21
URBAN	Percent Urban	7.8485	percent	0	89

Low-Flow Statistics Disclaimers [Low Flow Region 1]

One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors.

Low-Flow Statistics Flow Report [Low Flow Region 1]

Statistic	Value	Unit
7 Day 2 Year Low Flow	0.517	ft^3/s
30 Day 2 Year Low Flow	0.704	ft^3/s
7 Day 10 Year Low Flow	0.219	ft^3/s
30 Day 10 Year Low Flow	0.309	ft^3/s
90 Day 10 Year Low Flow	0.548	ft^3/s

Low-Flow Statistics Citations

Stuckey, M.H., 2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006-5130, 84 p. (<http://pubs.usgs.gov/sir/2006/5130/>)

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government

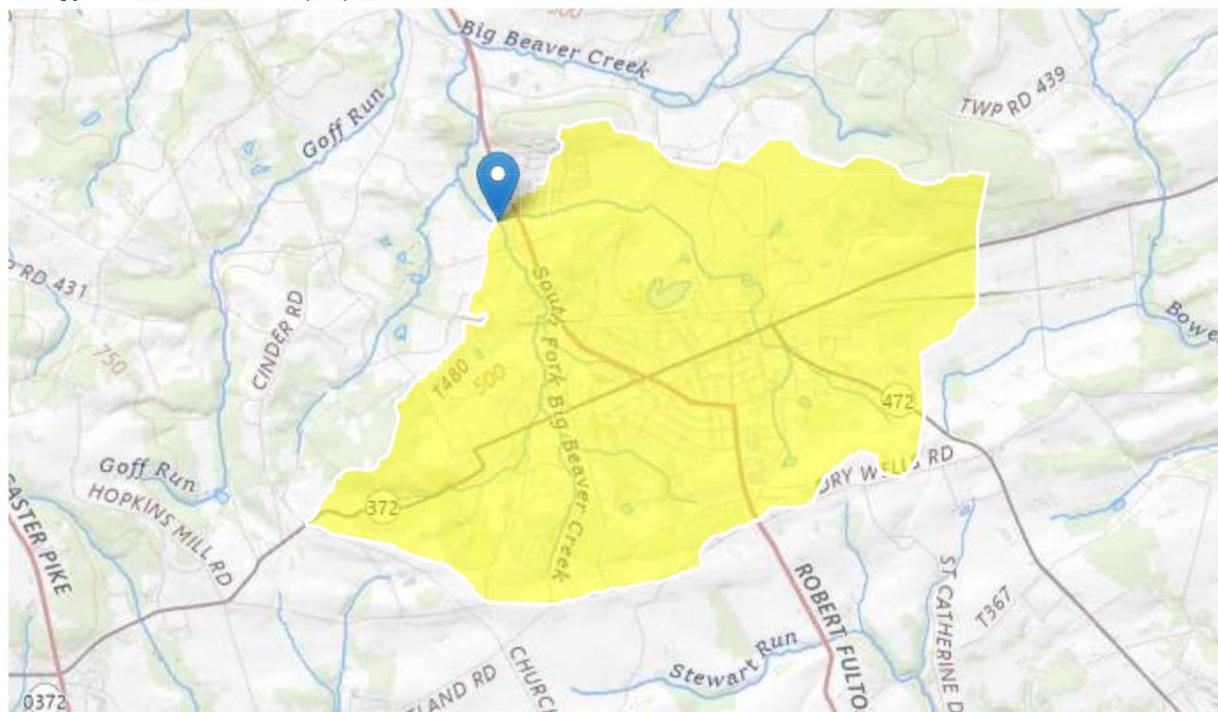
as to the functionality of the software and related material nor shall the fact of release constitute any such warranty. Furthermore, the software is released on condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized use.

USGS Product Names Disclaimer: Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Application Version: 4.29.1

StreamStats Services Version: 1.2.22

NSS Services Version: 2.2.1


Quarryville Borough Authority PA0028886 RMI = 0.0

Region ID: PA

Workspace ID: PA20250616150553990000

Clicked Point (Latitude, Longitude): 39.90623, -76.18613

Time: 2025-06-16 11:06:20 -0400

[Collapse All](#)

➤ Basin Characteristics

Parameter Code	Parameter Description	Value	Unit
BSLOPD	Mean basin slope measured in degrees	3.7766	degrees
DRNAREA	Area that drains to a point on a stream	5.34	square miles
ROCKDEP	Depth to rock	5	feet
URBAN	Percentage of basin with urban development	10.5019	percent

➤ Low-Flow Statistics

Low-Flow Statistics Parameters [Low Flow Region 1]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
BSLOPD	Mean Basin Slope degrees	3.7766	degrees	1.7	6.4
DRNAREA	Drainage Area	5.34	square miles	4.78	1150
ROCKDEP	Depth to Rock	5	feet	4.13	5.21
URBAN	Percent Urban	10.5019	percent	0	89

Low-Flow Statistics Flow Report [Low Flow Region 1]

PIL: Lower 90% Prediction Interval, PIU: Upper 90% Prediction Interval, ASEp: Average Standard Error of Prediction, SE: Standard Error, PC: Percent Correct, RMSE: Root Mean Squared Error, PseudoR²: Pseudo R Squared (other -- see report)

Statistic	Value	Unit	SE	ASEp
7 Day 2 Year Low Flow	1.23	ft ³ /s	46	46
30 Day 2 Year Low Flow	1.62	ft ³ /s	38	38
7 Day 10 Year Low Flow	0.568	ft ³ /s	51	51
30 Day 10 Year Low Flow	0.769	ft ³ /s	46	46
90 Day 10 Year Low Flow	1.27	ft ³ /s	41	41

Low-Flow Statistics Citations

Stuckey, M.H., 2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006-5130, 84 p. (<http://pubs.usgs.gov/sir/2006/5130/>)

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government

as to the functionality of the software and related material nor shall the fact of release constitute any such warranty. Furthermore, the software is released on condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized use.

USGS Product Names Disclaimer: Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Application Version: 4.29.1

StreamStats Services Version: 1.2.22

NSS Services Version: 2.2.1

Input Data WQM 7.0

SWP Basin	Stream Code	Stream Name			RMI	Elevation (ft)	Drainage Area (sq mi)	Slope (ft/ft)	PWS Withdrawal (mgd)	Apply FC
07K		7479	Trib	07479 to S Fork Big Beaver Cr	0.080	418.00	2.74	0.00000	0.00	<input checked="" type="checkbox"/>
Stream Data										
Design Cond.	LFY (cfsm)	Trib Flow (cfs)	Stream Flow (cfs)	Rch Trav Time (days)	Rch Velocity (fps)	WD Ratio	Rch Width (ft)	Rch Depth (ft)	Tributary Temp (°C)	Stream Temp (°C)
Q7-10	0.100	0.00	0.34	0.000	0.000	0.0	0.00	0.00	20.00	7.00
Q1-10		0.00	0.00	0.000	0.000					
Q30-10		0.00	0.00	0.000	0.000					
Discharge Data										
	Name	Permit Number	Existing Disc Flow (mgd)	Permitted Disc Flow (mgd)	Design Disc Flow (mgd)	Reserve Factor		Disc Temp (°C)	Disc pH	
	Quarryville	PA0028886	0.6000	0.6000	0.6000	0.000	25.00	7.00		
Parameter Data										
	Parameter Name		Disc Conc (mg/L)	Trib Conc (mg/L)	Stream Conc (mg/L)	Fate Coef (1/days)				
	CBOD5		25.00	2.00	0.00	1.50				
	Dissolved Oxygen		5.00	8.24	0.00	0.00				
	NH3-N		25.00	0.00	0.00	0.70				

Input Data WQM 7.0

SWP Basin	Stream Code	Stream Name			RMI	Elevation (ft)	Drainage Area (sq mi)	Slope (ft/ft)	PWS Withdrawal (mgd)	Apply FC
07K		7479	Trib 07479 to S Fork Big Beaver Cr		0.000	416.00	5.34	0.00000	0.00	<input checked="" type="checkbox"/>
Stream Data										
Design Cond.	LFY (cfsm)	Trib Flow (cfs)	Stream Flow (cfs)	Rch Trav Time (days)	Rch Velocity (fps)	WD Ratio	Rch Width (ft)	Rch Depth (ft)	Tributary Temp (°C)	Stream Temp (°C)
Q7-10 0.100 0.00 0.67 0.000 0.000 0.0 0.00 0.00 20.00 7.00 13.75 7.60 Q1-10 0.00 0.00 0.000 0.000 Q30-10 0.00 0.00 0.000 0.000										
Discharge Data										
		Name	Permit Number	Existing Disc Flow (mgd)	Permitted Disc Flow (mgd)	Design Disc Flow (mgd)	Reserve Factor	Disc Temp (°C)	Disc pH	
				0.0000	0.0000	0.0000	0.000	0.00	7.00	
Parameter Data										
				Disc Conc (mg/L)	Trib Conc (mg/L)	Stream Conc (mg/L)	Fate Coef (1/days)			

WQM 7.0 Hydrodynamic Outputs

<u>SWP Basin</u>			<u>Stream Code</u>		<u>Stream Name</u>								
07K			7479		Trib 07479 to S Fork Big Beaver Cr								
RMI	Stream Flow	PWS Wth	Net Stream Flow	Disc Analysis Flow	Reach Slope	Depth	Width	W/D Ratio	Velocity	Reach Trav Time	Analysis Temp	Analysis pH	
	(cfs)	(cfs)	(cfs)	(cfs)	(ft/ft)	(ft)	(ft)		(fps)	(days)	(°C)		
Q7-10 Flow													
0.080	0.34	0.00	0.34	.9282 0.00473	.521	12.73	24.41	0.19	0.025	21.95	7.10		
Q1-10 Flow													
0.080	0.22	0.00	0.22	.9282 0.00473	NA	NA	NA	0.18	0.027	22.84	7.07		
Q30-10 Flow													
0.080	0.47	0.00	0.47	.9282 0.00473	NA	NA	NA	0.20	0.024	21.22	7.13		

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	<input checked="" type="checkbox"/>
WLA Method	EMPR	Use Inputted W/D Ratio	<input type="checkbox"/>
Q1-10/Q7-10 Ratio	0.64	Use Inputted Reach Travel Times	<input type="checkbox"/>
Q30-10/Q7-10 Ratio	1.36	Temperature Adjust Kr	<input checked="" type="checkbox"/>
D.O. Saturation	90.00%	Use Balanced Technology	<input checked="" type="checkbox"/>
D.O. Goal	5		

WQM 7.0 Wasteload Allocations

<u>SWP Basin</u>		<u>Stream Code</u>	<u>Stream Name</u>									
07K	7479	Trib 07479 to S Fork Big Beaver Cr										
NH3-N Acute Allocations												
RMI	Discharge Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction					
0.080	Quarryville	12.45	15.41	12.45	15.41	0	0					
NH3-N Chronic Allocations												
RMI	Discharge Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction					
0.080	Quarryville	1.65	2.49	1.65	2.49	0	0					
Dissolved Oxygen Allocations												
RMI	Discharge Name	<u>CBOD5</u>		<u>NH3-N</u>		<u>Dissolved Oxygen</u>						
0.08	Quarryville	25	25	2.49	2.49	5	5					
		Critical Reach				Critical Reach	Percent Reduction					
						0	0					

WQM 7.0 D.O.Simulation

<u>SWP Basin</u>	<u>Stream Code</u>	<u>Stream Name</u>			
07K	7479	Trib 07479 to S Fork Big Beaver Cr			
<u>RMI</u>		<u>Total Discharge Flow (mgd)</u>	<u>Analysis Temperature (°C)</u>	<u>Analysis pH</u>	
0.080		0.600	21.952	7.098	
<u>Reach Width (ft)</u>		<u>Reach Depth (ft)</u>	<u>Reach WDRatio</u>	<u>Reach Velocity (fps)</u>	
12.729		0.521	24.412	0.192	
<u>Reach CBOD5 (mg/L)</u>		<u>Reach Kc (1/days)</u>	<u>Reach NH3-N (mg/L)</u>	<u>Reach Kn (1/days)</u>	
18.77		1.456	1.81	0.813	
<u>Reach DO (mg/L)</u>		<u>Reach Kr (1/days)</u>	<u>Kr Equation</u>	<u>Reach DO Goal (mg/L)</u>	
5.879		9.039	Tsivoglou	5	
<u>Reach Travel Time (days)</u>		Subreach Results			
0.025		TravTime (days)	CBOD5 (mg/L)	NH3-N (mg/L)	D.O. (mg/L)
		0.003	18.69	1.81	5.82
		0.005	18.62	1.81	5.76
		0.008	18.54	1.80	5.70
		0.010	18.47	1.80	5.64
		0.013	18.39	1.79	5.59
		0.015	18.32	1.79	5.53
		0.018	18.24	1.79	5.48
		0.020	18.17	1.78	5.43
		0.023	18.09	1.78	5.38
		0.025	18.02	1.78	5.34

WQM 7.0 Effluent Limits

<u>SWP Basin</u>		<u>Stream Code</u>	<u>Stream Name</u>				
07K	7479	Trib 07479 to S Fork Big Beaver Cr					
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
0.080	Quarryville	PA0028886	0.600	CBOD5	25		
				NH3-N	2.49	4.98	
				Dissolved Oxygen			5

Discharge Information

Instructions Discharge Stream

Facility: Quarryville Borough Authority NPDES Permit No.: PA0028886 Outfall No.: 001

Evaluation Type: Major Sewage / Industrial Waste Wastewater Description: Sewage effluent

Discharge Characteristics						
Design Flow (MGD)*	Hardness (mg/l)*	pH (SU)*	Partial Mix Factors (PMFs)			Complete Mix Times (min)
			AFC	CFC	THH	
0.6	100	7.5				

		Discharge Pollutant	Units	Max Discharge Conc	Trib Conc	Stream Conc	Daily CV	Hourly CV	Stream CV	Fate Coeff	FOS	Criteria Mod	Chem Transl
Group 1	Total Dissolved Solids (PWS)	mg/L		710									
	Chloride (PWS)	mg/L		235									
	Bromide	mg/L	<	2									
	Sulfate (PWS)	mg/L		85.6									
	Fluoride (PWS)	mg/L											
Group 2	Total Aluminum	µg/L											
	Total Antimony	µg/L											
	Total Arsenic	µg/L											
	Total Barium	µg/L											
	Total Beryllium	µg/L											
	Total Boron	µg/L											
	Total Cadmium	µg/L											
	Total Chromium (III)	µg/L											
	Hexavalent Chromium	µg/L											
	Total Cobalt	µg/L											
	Total Copper	mg/L		0.0043									
	Free Cyanide	µg/L											
	Total Cyanide	µg/L											
	Dissolved Iron	µg/L											
	Total Iron	µg/L											
	Total Lead	mg/L	<	0.00033									
	Total Manganese	µg/L											
	Total Mercury	µg/L											
	Total Nickel	µg/L											
	Total Phenols (Phenolics) (PWS)	µg/L											
	Total Selenium	µg/L											
	Total Silver	µg/L											
	Total Thallium	µg/L											
	Total Zinc	mg/L		0.037									
	Total Molybdenum	µg/L											
	Acrolein	µg/L	<										
	Acrylamide	µg/L	<										
	Acrylonitrile	µg/L	<										
	Benzene	µg/L	<										
	Bromoform	µg/L	<										

Stream / Surface Water Information

Toxics Management Spreadsheet
Version 1.4, May 2023

Quarryville Borough Authority, NPDES Permit No. PA0028886, Outfall 001

Instructions **Discharge** Stream

Receiving Surface Water Name: UNT to South Fork Big Beaver Creek

No. Reaches to Model: 1

- Statewide Criteria
- Great Lakes Criteria
- ORSANCO Criteria

Location	Stream Code*	RMI*	Elevation (ft)*	DA (mi ²)*	Slope (ft/ft)	PWS Withdrawal (MGD)	Apply Fish Criteria*
Point of Discharge	007479	0.08	418	2.74			Yes
End of Reach 1	007479	0	416	5.34			Yes

Q₇₋₁₀

Location	RMI	LFY (cfs/mi ²)*	Flow (cfs)	W/D Ratio	Width (ft)	Depth (ft)	Velocity (fps)	Travel Time (days)	Tributary	Stream
	Stream	Tributary							Hardness	pH
Point of Discharge	0.08	0.1	0.345						214	7.6
End of Reach 1	0	0.1	0.67						214	7.6

Q_h

Location	RMI	LFY (cfs/mi ²)*	Flow (cfs)	W/D Ratio	Width (ft)	Depth (ft)	Velocity (fps)	Travel Time (days)	Tributary	Stream
	Stream	Tributary							Hardness	pH
Point of Discharge	0.08									
End of Reach 1	0									

Model Results

Quarryville Borough Authority, NPDES Permit No. PA0028886, Outfall 001

Instructions

RETURN TO INPUTS

SAVE AS PDF

PRINT

PRINT All

○ Results ○ Limits

□ *Hydrodynamics*

Waste/Load Allocations

AFC

CCT (min): PMF: Analysis Has:

Analysis pH: 7.52

Pollutants	Stream Conc (µg/L)		Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
	Conc (µg/L)	CV						
Total Dissolved Solids (PWS)	0	0	0	0	N/A	N/A	N/A	
Chloride (PWS)	0	0	0	0	N/A	N/A	N/A	
Sulfate (PWS)	0	0	0	0	N/A	N/A	N/A	
Total Copper	0	0	0	0	17.319	18.0	24.7	Chem Translator of 0.96 applied
Total Lead	0	0	0	0	86.466	115	158	Chem Translator of 0.752 applied
Total Zinc	0	0	0	0	147.201	151	206	Chem Translator of 0.978 applied

CFC	CCT (min):	0.629	PMF:	1	Analysis Hardness (mg/l):	130.89	Analysis pH:	7.52
-----	------------	-------	------	---	---------------------------	--------	--------------	------

1

CCT (min):

CFC

Pollutants	Stream Conc (µg/L)	Stream CV	Trb Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0	0	0	N/A	N/A	N/A	
Chloride (PWS)	0	0	0	0	N/A	N/A	N/A	
Sulfate (PWS)	0	0	0	0	N/A	N/A	N/A	
Total Copper	0	0	0	0	11.27	11.7	16.1	Chem Translator of 0.96 applied
Total Lead	0	0	0	0	3.369	4.48	6.15	Chem Translator of 0.752 applied
Total Zinc	0	0	0	0	148.405	151	206	Chem Translator of 0.986 applied

Water Quality Data Log						
Parameter	Sample Info		Analysis			Comments
	Sample ID	Date Collected	Method	Conc (mg/L)	Unit	
THH	CCT (min): 0.629	PMF: 1	Analysis Hardness (mg/L): N/A	Analysis pH: N/A	Analysis WLA: N/A	
Pollutants	Stream Conc (µmol/L)	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WLA (µg/L)
Total Dissolved Solids (PWS)	0	0	0	0	500,000	500,000
Chloride (PWS)	0	0	0	0	250,000	250,000
Sulfate (PWS)	0	0	0	0	250,000	250,000
Total Copper	0	0	0	0	N/A	N/A
Total Lead	0	0	0	0	N/A	N/A
Total Zinc	0	0	0	0	N/A	N/A

744	CCT (min): 0.629	DME: 1	Analysis Hardness (mHV): N/A	Analysis pH: N/A
-----	---------------------	-----------	---------------------------------	---------------------

PME-1

CCT (min): 06

7

CRL		CCT (min): 2.378		PMF: 1		Analysis Hardness (mg/l): N/A		Analysis pH: N/A		Analysis WLA (µg/L): N/A	
Pollutants	Stream	Conc (µmol/L)	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments		
Total Dissolved Solids (PWS)		0	0	0	0	N/A	N/A	N/A			
Chloride (PWS)		0	0	0	0	N/A	N/A	N/A			
Sulfate (PWS)		0	0	0	0	N/A	N/A	N/A			
Total Copper		0	0	0	0	N/A	N/A	N/A			
Total Lead		0	0	0	0	N/A	N/A	N/A			
Total Zinc		0	0	0	0	N/A	N/A	N/A			

Recommended WQBELs & Monitoring Requirements

No. Samples/Month:

Pollutants	Mass Limits				Concentration Limits				Comments
	AML (lbs/day)	MDL (lbs/day)	AML	MDL	IMAX	Units	Governing WQBEL	WQBEL Basis	
Total Copper	Report	Report	Report	Report	Report	mg/L	0.016	CFC	Discharge Conc > 10% WQBEL (no RP)
Total Zinc	Report	Report	Report	Report	Report	mg/L	0.15	AFC	Discharge Conc > 10% WQBEL (no RP)

Other Pollutants without Limits or Monitoring

The following pollutants do not require effluent limits or monitoring based on water quality because reasonable potential to exceed water quality criteria was not determined and the discharge concentration was less than thresholds for monitoring, or the pollutant was not detected and a sufficiently sensitive analytical method was used (e.g., < Target QL).

Pollutants	Governing WQBEL	Units	Comments
Total Dissolved Solids (PWS)	N/A	N/A	PWS Not Applicable
Chloride (PWS)	N/A	N/A	PWS Not Applicable
Bromide	N/A	N/A	No WQS
Sulfate (PWS)	N/A	N/A	PWS Not Applicable
Total Lead	N/A	N/A	Discharge Conc < TQL

