

 Application Type
 Renewal

 Facility Type
 Municipal

 Major / Minor
 Minor

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

 Application No.
 PA0028975

 APS ID
 11689

 Authorization ID
 1269240

Applicant and Facility Information

Womelsdorf Sewer Authority Berks County	Facility Name	Womelsdorf STP		
498 North Water Street	Facility Address	498 North Water Street		
Womelsdorf, PA 19567-9792	_	Womelsdorf, PA 19567-9792		
Paul Hoppel	Facility Contact	Dean Miller		
(610) 589-4725	Facility Phone	(610) 376-9162		
64772	Site ID	451768		
Not Overloaded	Municipality	Womelsdorf Borough		
No Limitations	County	Berks		
edApril 2, 2019	EPA Waived?	Yes		
ed April 17, 2019	If No, Reason			
	498 North Water Street Womelsdorf, PA 19567-9792 Paul Hoppel (610) 589-4725 64772 Not Overloaded No Limitations edApril 2, 2019	498 North Water StreetFacility AddressWomelsdorf, PA 19567-9792Facility ContactPaul HoppelFacility Contact(610) 589-4725Facility Phone64772Site IDNot OverloadedMunicipalityNo LimitationsCountyedApril 2, 2019EPA Waived?		

Approve	Deny	Signatures	Date
		Nicholas Hong, P.E. / Environmental Engineer	
Х		Nick Hong (via electronic signature)	May 11, 2021
		Daniel W. Martin, P.E. / Environmental Engineer Manager	
x		Maria D. Bebenek for Daniel W. Martin	May 12, 2021
		Maria D. Bebenek, P.E. / Environmental Program Manager	*
x		Maria D. Bebenek	May 40, 0004
			May 12, 2021

Summary of Review

The application submitted by the applicant requests a NPDES renewal permit for the Womelsdorf STP located at 498 N. Water Street, Womelsdorf, PA 19567 in Berks County, municipality of Heidelberg Township. The existing permit became effective on October 1, 2014 and expired on September 30, 2019. The application for renewal was received by DEP Southcentral Regional Office (SCRO) on April 2, 2019.

The purpose of this Fact Sheet is to present the basis of information used for establishing the proposed NPDES permit effluent limitations. The Fact Sheet includes a description of the facility, a description of the facility's receiving waters, a description of the facility's receiving waters attainment/non-attainment assessment status, and a description of any changes to the proposed monitoring/sampling frequency. Section 6 provides the justification for the proposed NPDES effluent limits derived from technology based effluent limits (TBEL), water quality based effluent limits (WQBEL), total maximum daily loading (TMDL), antidegradation, anti-backsliding, and/or whole effluent toxicity (WET). A brief summary of the outlined descriptions has been included in the Summary of Review section.

The subject facility is a 0.475 MGD hydraulic design treatment facility. The applicant does not anticipate any proposed upgrades to the treatment facility in the next five years. The NPDES application has been processed as a Minor Sewage Facility (Level 2) due to the type of sewage and the design flow rate for the facility. The applicant disclosed the Act 14 requirement to Berks County Commissioners and Heidelberg Township and the notice was received by the parties on February 15, 2019. A planning approval letter was not necessary as the facility is neither new or expanding.

Utilizing the DEP's web-based Emap-PA information system, the receiving waters has been determined to be the Tulpehocken Creek. The sequence of receiving streams that the Tulpehocken Creek discharges into are the Schuylkill River, the Delaware River which eventually drains into the Delaware Bay. The subject site is not subject to the Chesapeake Bay implementation requirements. The receiving water has protected water usage for trout stocking fishes (TSF) and migratory fishes (MF). No Class A Wild Trout fisheries are impacted by this discharge. The absence of high quality and/or exceptional value surface waters removes the need for an additional evaluation of anti-degradation requirements.

The Tulpehocken Creek is a Category 5 stream listed in the 2020 Integrated List of All Waters (formerly 303d Listed Streams). This stream is an impaired stream due to nutrients/siltation/sediment from agriculture. The stream is also impaired for recreational uses due to pathogens from an unknown source. The receiving waters is not subject to a total maximum daily load (TMDL) plan to improve water quality in the subject facility's watershed.

The existing permit and proposed permit differ as follows:

- Due to the EPA triennial review, E. coli shall be monitored on a 1x/quarter basis.
- Total copper and total zinc shall be monitored on a 1x/quarter basis.

Sludge use and disposal description and location(s): Sewage sludge disposed at Lehigh County Authority WWTP in Lehigh County, Allentown

The proposed permit will expire five (5) years from the effective date.

Based on the review in this report, it is recommended that the permit be drafted. DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Any additional information or public review of documents associated with the discharge or facility may be available at PA DEP Southcentral Regional Office (SCRO), 909 Elmerton Avenue, Harrisburg, PA 17110. To make an appointment for file review, contact the SCRO File Review Coordinator at 717.705.4700.

1.0 Applicant

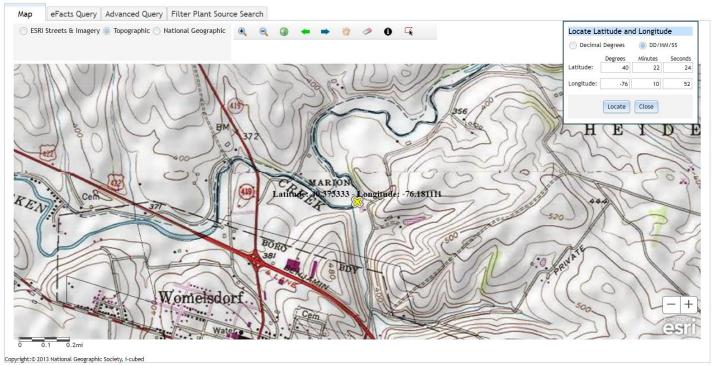
1.1 General Information

This fact sheet summarizes PA Department of Environmental Protection's review for the NPDES renewal for the following subject facility.

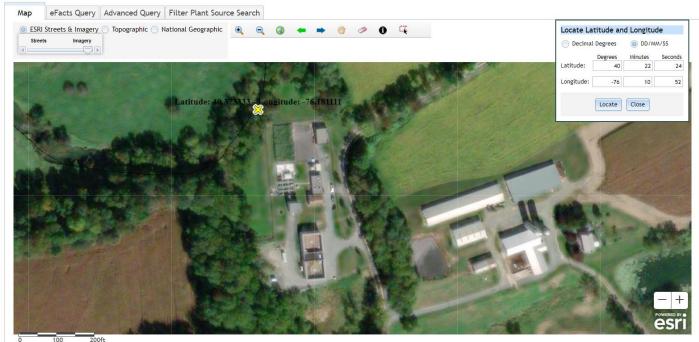
Facility Name:	Womelsdorf Sewer Authority
NPDES Permit #	PA028975
Physical Address:	498 North Water Street Womelsdorf, PA 19567
Mailing Address:	498 North Water Street Womelsdorf, PA 19567
Contact:	Paul Hoppel Authority Chairman <u>plhoppel@comcast.net</u>
	Dean Miller Miller Environmental 610.376.9162 wwwtp@comcast.net
Consultant:	Jamie Lorah, PE Spotts, Stevens, and McCoy 1047 N. Park Road Reading, PA 19610 Jamie.lorah@ssmgroup.com

1.2 Permit History

Permit submittal included the following information.


- NPDES Application
- Flow Diagrams

2.0 Treatment Facility Summary


2.1.1 Site location

The physical address for the facility is 498 North Water Street, Womelsdorf, PA 19567. A topographical and an aerial photograph of the facility are depicted as Figure 1 and Figure 2.

Figure 1: Topographical map of the subject facility

Figure 2: Aerial Photograph of the subject facility

Lourt Langen: Source: Esrl, Maxar, GeoRye, Barthar Geographics, CNES/Airbus DS, USDA, USDA, USDA, LVGA, AeroGRID, IGN, and the GIS User Community; ESRI Streets: Sources: Esrl, HERE, Garmin, USGS, Intermap, INCREMENT P, NRCan, Esrl Japan, METI, Esrl China (Hong Kong), Esrl Korea, Esrl (Thalland), NGCC, (c) OpenStreetMap contributors, and the GIS User Community

2.1.2 Sources of Wastewater/Stormwater

The wastewater treatment plant receives wastewater contributions from the following municipalities

Womelsdorf Borough82%Heidelberg Township1%Marion Township17%

The facility receives wastewater contributions from the following industrial/commercial businesses.

 The meat processing facility of John F. Martin and Sons, LLC. The average wastewater flow generated is 0.0351 MGD.

The facility does not have a pretreatment program.

The facility does not receive hauled-in wastes.

2.2 Description of Wastewater Treatment Process

The subject facility is a 0.475 MGD hydraulic design flow facility. The subject facility treats wastewater using a SBR(s), a chlorine contact tank(s), and a post aeration system prior to discharge through the outfall. Solids are processed using a thickener, an aerobic digester tank(s), and a reed bed unit(s). The facility is being evaluated for flow, pH, DO, TRC, CBOD5, TSS, fecal coliform, ammonia-nitrogen, total nitrogen, phosphorus, and total dissolved solids. The existing permits limits for the facility is summarized in Section 2.4.

The treatment process is summarized in the table.

	Tre	atment Facility Summa	ry	
Treatment Facility Nar	ne: Womelsdorf STP			
Waste Type	Degree of Treatment	Process Type	Disinfection	Avg Annual Flow (MGD)
Sewage	Secondary	Sequencing Batch Reactor	Gas Chlorine	0.475
Hydraulic Capacity (MGD)	Organic Capacity (Ibs/day)	Load Status	Biosolids Treatment	Biosolids Use/Disposal
0.475	1188	Not Overloaded	Aerobic Digestion	Landfill

2.3 Facility Outfall Information

The facility has the following outfall information for wastewater.

Outfall No.	001		Design Flow (MGD)	.475
Latitude	40° 22' 23.23) II)	Longitude	-76º 10' 52.29"
Wastewater D	escription:	Sewage Effluent		

2.3.1 Operational Considerations- Chemical Additives

Chemical additives are chemical products introduced into a waste stream that is used for cleaning, disinfecting, or maintenance and which may be detected in effluent discharged to waters of the Commonwealth. Chemicals excluded are those used for neutralization of waste streams, the production of goods, and treatment of wastewater.

The subject facility utilizes the following chemicals as part of their treatment process.

- Gaseous chlorine for disinfection
- Aluminum sulfate for settling/phosphorus removal
- Soda ash for pH control
- Sodium Bicarbonate for alkalinity buffering

2.4 Existing NPDES Permits Limits

The existing NPDES permit limits are summarized in the table.

PART A - EFFLUENT LIMITATIONS, MONITORING, RECORDKEEPING AND REPORTING REQUIREMENTS

I. A. For Outfall 001 , Latitude 40° 22' 24" , Longitude 76° 10' 52" , River Mile Index 24.9 , Stream Code 1846

Receiving Waters: <u>Tulpehocken</u> Creek

Type of Effluent: Treated sewage

1. The permittee is authorized to discharge during the period from October 1, 2014 through September 30, 2019.

2. Based on the anticipated wastewater characteristics and flows described in the permit application and its supporting documents and/or amendments, the following effluent limitations and monitoring requirements apply (see also Additional Requirements and Footnotes).

			Effluent L	imitations.			Monitoring Requireme	
Parameter	Mass Units	; (<u>lbs</u> /day) ⁽¹⁾		Concentrat	ions (mg/L)		Minimum ⁽²⁾	Required
Falameter	Average Monthly	Daily Maximum	Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report	XXX	xxx	XXX	xxx	Continuous	Measured
pH (S.U.)	XXX	XXX	6.0	xxx	XXX	9.0	1/day	Grab
Dissolved Oxygen	xxx	xxx	5.0	xxx	XXX	XXX	1/day	Grab
Total Residual Chlorine	XXX	XXX	XXX	0.5	XXX	1.6	1/day	Grab
CBOD5	99	158 Wkly Avg	XXX	25	40	50	1/week	24-Hr Composite
BOD5 Raw Sewage Influent	Report	Report	XXX	Report	XXX	XXX	1/week	24-Hr Composite
Total Suspended Solids Raw Sewage Influent	Report	Report	XXX	Report	XXX	XXX	1/week	24-Hr Composite
Total Suspended Solids	118	178 Wkly Avg	xxx	30	45	60	1/week	24-Hr Composite
Fecal Coliform (CFU/100 ml) May 1 - Sep 30	XXX	XXX	XXX	200 Geo Mean	XXX	1.000	1/week	Grab
Fecal Coliform (CFU/100 ml) Oct 1 - Apr 30	XXX	XXX	XXX	2,000 Geo Mean	XXX	10,000	1/week	Grab

NPDES Permit Fact Sheet Womelsdorf STP

Outfall 001, Continued (from October 1, 2014 through September 30, 2019)

			Effluent L	imitations			Monitoring Requirements	
Parameter	Mass Units	(lbs/day) ⁽¹⁾		Concentrat	ions (mg/L)		Minimum ⁽²⁾	Required
Farameter	Average	Daily		Average	Weekly	Instant.	Measurement	Sample
	Monthly	Maximum	Minimum	Monthly	Average	Maximum	Frequency	Type
Ammonia-Nitrogen								24-Hr
May 1 - Oct 31	61	XXX	XXX	15.3	XXX	30.6	1/week	Composite
Ammonia-Nitrogen								24-Hr
Nov 1 - Apr 30	79	XXX	XXX	20	XXX	40	1/week	Composite
								24-Hr
Total Phosphorus	3.9	XXX	XXX	1.0	XXX	2.0	1/week	Composite
•	Report			Report				24-Hr
Total Nitrogen	Qrtrly Avg	XXX	XXX	Qrtrly Avg	XXX	XXX	1/quarter	Composite
	Report			1,000				24-Hr
Total Dissolved Solids	Qrtrly Avg	XXX	XXX	Qrtrly Avg	XXX	XXX	1/quarter	Composite

Samples taken in compliance with the monitoring requirements specified above shall be taken at the following location(s):

at discharge from the facility

3.0 Facility NPDES Compliance History

3.1 Summary of Inspections

A summary of the most recent inspections during the existing permit review cycle is as follows.

The DEP inspector noted the following during the inspection.

01/5/2017:

- The facility was in the process of televising and line jetting the collection system. Approximately 40% of the work had been completed at that time.
- The facility was considering moving the influent sampling location from the influent channel downstream of the headworks building to inside of the headworks building after the screen. The proposed location had a deeper channel. The facility was instructed to provide notification before moving the sampler.
- channel. The facility was instructed to provide notification before moving the sampler.
- The ORPs and DO probes were installed but not yet hooked up to the SCADA system. The facility estimates that the probes be hooked up within the next 6 months.

04/12/2018:

- The facility was instructed to attach the supplemental forms to the eDMR submission for each month.
- The facility was in the process of televising and line jetting the collection system. Approximately 40% of the work had been completed at that time.
- The facility was considering moving the influent sampling location from the influent channel downstream of the headworks building to inside of the headworks building after the screen. The proposed location had a deeper channel. The facility was instructed to provide notification before moving the sampler.
- The ORPs and DO probes were installed but not yet hooked up to the SCADA system. The facility estimates that the probes be hooked up within the next 6 months.

More recent Inspection Reports were not available.

3.2 Summary of DMR Data

A review of approximately 1-year of DMR data shows that the monthly average flow data for the facility below the design capacity of the treatment system. The maximum average flow data for the DMR reviewed was 0.373 MGD in August 2020. The design capacity of the treatment system is 0.475 MGD.

The off-site laboratory used for the analysis of the parameters was Suburban Testing Labs located at 1037F MacArthur Road, Reading, PA 19605.

DMR Data for Outfall 001 (from March 1, 2020 to February 28, 2021)

Parameter	FEB-21	JAN-21	DEC-20	NOV-20	OCT-20	SEP-20	AUG-20	JUL-20	JUN-20	MAY-20	APR-20	MAR-20
Flow (MGD)												
Average Monthly	0.3053	0.293	0.314	0.261	0.276	0.264	0.373	0.270	0.301	0.320	0.328	0.290
Flow (MGD)												
Daily Maximum	0.5650	0.376	0.777	0.354	0.525	0.350	0.845	0.338	0.392	0.432	0.465	0.452
pH (S.U.)												
Minimum	7.0	6.9	6.9	7.0	6.8	7.2	7.0	7.0	7.1	7.1	7.1	7.1
pH (S.U.)												
Instantaneous												
Maximum	8.0	8.0	8.0	7.9	7.9	7.7	7.6	8.0	8.1	7.9	7.9	7.9
DO (mg/L)												
Minimum	10.2	8.0	7.5	9.0	6.2	7.9	7.6	7.1	8.6	7.8	7.1	7.4
TRC (mg/L)												
Average Monthly	0.43	0.4	0.5	0.4	0.4	0.3	0.3	0.3	0.4	0.4	0.4	0.4
TRC (mg/L)												
Instantaneous	4.00		4.5	07	4.0	0 F	0.5			0.5		0.5
Maximum	1.08	0.9	1.5	0.7	1.0	0.5	0.5	0.9	1.1	0.5	0.8	0.5
CBOD5 (lbs/day)	5.0	0	-			0	10	-		0		-
Average Monthly	5.9	< 6	< 5	< 4	< 4	6	12	< 5	< 6	< 6	< 8	< 5
CBOD5 (lbs/day)	5.0	7	C	< 5	< 6	0	15	5	7	7	14	
Weekly Average CBOD5 (mg/L)	5.9	1	6	< 5	< 0	8	15	5	1	1	14	< 6
Average Monthly	2.4	< 2	< 2	< 2	< 2	3	4	< 2	< 2	< 2	< 3	< 2
CBOD5 (mg/L)	2.4	< 2	< 2	< 2	< <u>2</u>	5	4	< <u>2</u>	< 2	< 2	< 5	< 2
Weekly Average	2.4	3	2	2	< 2	3	6	2	3	3	4	2
BOD5 (lbs/day)	2.7	5		2	~ 2	5	0		5	5		2
Raw Sewage Influent												
 Average												
Monthly	484	515	492	476	491	539	618	540	472	506	509	530
BOD5 (lbs/day)	101	010	102		101	000	010	0.10		000	000	000
Raw Sewage Influent												
 br/> Daily Maximum	551	570	560	544	567	646	1028	967	573	577	729	752
BOD5 (mg/L)				_						_	_	
Raw Sewage Influent												
 Average												
Monthly	195	223	223	222	224	230	173	242	187	198	189	212
TSS (lbs/day)												
Average Monthly	10.0	< 9	< 9	< 9	< 9	< 10	< 15	< 9	< 10	< 10	< 11	< 10

TSS (lbs/day) Raw Sewage Influent Average												
Monthly	347	369	334	334	415	387	481	390	437	379	427	394
TSS (lbs/day)	0.11		001	001			101	000	101	010		001
Raw Sewage Influent												
 br/> Daily Maximum	379	540	390	418	468	463	718	456	634	403	529	420
TSS (lbs/day)												
Weekly Average	10.0	< 11	< 12	< 9	< 11	15	< 19	10	< 12	< 11	< 13	< 11
TSS (mg/L) Average Monthly	4.0	< 4	< 4	< 4	< 4	< 4	< 4	< 4	< 4	< 4	< 4	< 4
TSS (mg/L) Raw Sewage Influent Average												
Monthly	140	158	151	156	189	164	133	174	170	149	157	161
TSS (mg/L)												
Weekly Average	4.0	4	< 4	< 4	< 4	6	5	4	4	< 4	< 4	< 4
Total Dissolved Solids (lbs/day)												
Average Quarterly			1413			1311			1377			1195
Total Dissolved Solids			1410			1011			10/1			1100
(mg/L)												
Average Quarterly			702.0			598.0			562.0			530.0
Fecal Coliform (CFU/100 ml)												
Geometric Mean	2.0	< 2	< 1	4	< 2	6	5	4	11	< 3	< 32	< 1
Fecal Coliform (CFU/100 ml)												
Instantaneous				_								
Maximum	3.0	6	4	5	10	14	9	12	412	31	8100	2
Total Nitrogen (Ibs/day)												
Average Quarterly			11.7			7.67			8.62			10.64
Total Nitrogen (mg/L)			11.7			1.01			0.02			10.04
Average Quarterly			5.79			3.50			3.52			4.72
Ammonia (lbs/day)												
Average Monthly	0.50	< 0.3	< 0.3	< 0.2	< 0.2	< 0.5	< 0.6	< 0.2	< 0.7	< 0.4	< 2	< 0.2
Ammonia (mg/L)												
Average Monthly	0.19	< 0.1	< 0.1	< 0.1	< 0.1	< 0.2	< 0.2	< 0.1	< 0.3	< 0.1	< 0.5	< 0.1
Total Phosphorus (lbs/day)												
(ibs/day) Average Monthly	0.67	0.7	0.7	1.0	0.9	1.3	2.1	1.3	1.0	1.3	0.7	0.7
, tronago montiny	0.07	0.7	0.7	1.0	0.0	1.0	<u> </u>	1.0	1.0	1.0	0.1	0.7

NPDES Permit No. PA0028975

Total Phosphorus												
(mg/L)												
Average Monthly	0.26	0.3	0.3	0.5	0.4	0.6	0.7	0.6	0.4	0.5	0.3	0.3

3.3 Non-Compliance

3.3.1 Non-Compliance- NPDES Effluent

A summary of the non-compliance to the permit limits for the existing permit cycle is as follows.

From the DMR data beginning in October 1, 2014 to April 21, 2021, the following were the observed effluent non-compliances.

Summary of Non-Compliance with NPDES Permit Limits Beginning October 1, 2014 and ending April 21, 2021

NON COMPLIANCE DATE	NON COMPLIANCE CATEGORY	PARAMETER	SAMPLE VALUE	VIOLATION	PERMIT VALUE	UNIT OF MEASURE	STATISTICAL BASE CODE
09/18/2018	Concentration 3 Effluent	Fecal Coliform	5008	>	1000	CFU/100 ml	Instantaneous
	Violation						Maximum
08/27/2019	Concentration 3 Effluent	Fecal Coliform	1300	>	1000	CFU/100 ml	Instantaneous
	Violation						Maximum
12/28/2019	Concentration 2 Effluent	Total Residual Chlorine	0.6	>	0.5	mg/L	Average Monthly
	Violation	(TRC)					
01/20/2020	Concentration 2 Effluent	Total Residual Chlorine	0.6	>	0.5	mg/L	Average Monthly
	Violation	(TRC)					

3.3.2 Non-Compliance- Enforcement Actions

A summary of the non-compliance enforcement actions for the current permit cycle is as follows:

Beginning in October 1, 2014 and ending April 21, 2021, there were no observed enforcement actions.

3.4 Summary of Biosolids Disposal

	20	20			
Sewage Slu	ıdge / Biosolid	s Production In	formation		
	Hauled	Off-Site			
Date (YEAR)	Gallons	% Solids	Dry Tons		
January	22,000	2.1	1.927		
February	33,000	1.9	2.614		
March	27,500	2.4	2.684		
April	22,000	2.2	2.018		
May	26,500	2.0	2.21		
June	50,400	2.2	4.414		
July	33,300	2.3	3.179		
August	46,200	2.2	4.15		
September	16,800	2.1	1.437		
October	0				
November	16,800	2.5	1.752		
December	12,600	3.9	2.049		
Notes:					
Sewage sludge d	lisposed at Leh	igh County Auth	ority WWTP i		

A summary of the biosolids disposed of from the facility is as follows.

3.5 Open Violations

No open violations existed as of May 2021.

4.0 Receiving Waters and Water Supply Information Detail Summary

4.1 Receiving Waters

The receiving waters has been determined to be the Tulpehocken Creek. The sequence of receiving streams that the Tulpehocken Creek discharges into are the Schuylkill River, the Delaware River which eventually drains into the Delaware Bay.

4.2 Public Water Supply (PWS) Intake

The closest PWS to the subject facility is Western Berks Water Authority located approximately 19 miles downstream of the subject facility on the Tulpehocken Creek. Based upon the distance and the flow rate of the facility, the PWS should not be impacted.

4.3 Class A Wild Trout Streams

Class A Wild Trout Streams are waters that support a population of naturally produced trout of sufficient size and abundance to support long-term and rewarding sport fishery. DEP classifies these waters as high-quality coldwater fisheries.

The information obtained from EMAP suggests that no Class A Wild Trout Fishery will be impacted by this discharge.

4.4 2020 Integrated List of All Waters (303d Listed Streams)

Section 303(d) of the Clean Water Act requires States to list all impaired surface waters not supporting uses even after appropriate and required water pollution control technologies have been applied. The 303(d) list includes the reason for impairment which may be one or more point sources (i.e. industrial or sewage discharges) or non-point sources (i.e. abandoned mine lands or agricultural runoff and the pollutant causing the impairment such as metals, pH, mercury or siltation).

States or the U.S. Environmental Protection Agency (EPA) must determine the conditions that would return the water to a condition that meets water quality standards. As a follow-up to listing, the state or EPA must develop a Total Maximum Daily Load (TMDL) for each waterbody on the list. A TMDL identifies allowable pollutant loads to a waterbody from both point and non-point sources that will prevent a violation of water quality standards. A TMDL also includes a margin of safety to ensure protection of the water.

The water quality status of Pennsylvania's waters uses a five-part categorization (lists) of waters per their attainment use status. The categories represent varying levels of attainment, ranging from Category 1, where all designated water uses are met to Category 5 where impairment by pollutants requires a TMDL for water quality protection.

The receiving waters is listed in the 2020 Pennsylvania Integrated Water Quality Monitoring and Assessment Report as a Category 5 waterbody. The surface waters is impaired for aquatic life due to nutrients/siltation/sediment from agriculture. The stream is also impaired for recreational uses due to pathogens from an unknown source. The designated use has been classified as protected waters for trout stocking fishes (TSF) and migratory fishes (MF).

4.5 Low Flow Stream Conditions

Water quality modeling estimates are based upon conservative data inputs. The data are typically estimated using either a stream gauge or through USGS web based StreamStats program. The NPDES effluent limits are based upon the combined flows from both the stream and the facility discharge.

A conservative approach to estimate the impact of the facility discharge using values which minimize the total combined volume of the stream and the facility discharge. The volumetric flow rate for the stream is based upon the seven-day, 10-year low flow (Q710) which is the lowest estimated flow rate of the stream during a 7 consecutive day period that occurs once in 10 -year time period. The facility discharge is based upon a known design capacity of the subject facility.

The closest WQN station to the subject facility is the Tulpehocken Creek station (WQN117). This WQN station is located approximately 23 miles downstream of the subject facility.

The closest gauge station to the subject facility is the Tulpehocken Creek station near Bernville, PA (USGS station number 1470779). This gauge station is located approximately 5 miles downstream of the subject facility.

For WQM modeling, pH and stream water temperature data from the water quality network station was used. pH was estimated to be 7.59 and the stream water temperature was estimated to be 20 C.

The hardness of the stream was estimated from the water quality network to be 154 mg/l CaCO₃.

The low flow yield and the Q710 for the subject facility was estimated as shown below.

	Gauge Station Data		
USGS Station Number	1470779		
Station Name	Tulpehocken Creek near	Bernville, PA	
Q710	24.6	ft ³ /sec	
Drainage Area (DA)	mi ²		
Calculations			
The low flow yield of the	gauge station is:		
Low Flow Yield (LFY) = Q7	1		
LFY =	(24.6 ft ³ /sec / 66.5 mi ²)		
LFY =	0.3699	ft ³ /sec/mi ²	
The low flow at the subje	ct site is based upon the DA of	64.5	mi ²
Q710 = (LFY@gauge stati	on)(DA@Subject Site)		
Q710 = (0.3699 ft ³ /sec/m	ni ²)(64.5 mi ²)		
Q710 =	23.860	ft ³ /sec	

4.6 Summary of Discharge, Receiving Waters and	Water Supply Information
Outfall No. 001	Design Flow (MGD)475
Latitude 40° 22' 23.67"	Longitude -76º 10' 52.77"
Quad Name	Quad Code
Wastewater Description: Sewage Effluent	
Receiving Waters	Stream Code 1846
NHD Com ID26004182	RMI24
Drainage Area64.5	Yield (cfs/mi ²)
Q ₇₋₁₀ Flow (cfs)	Q7-10 Basis StreamStats/Streamgauge
Elevation (ft) <u>345</u>	Slope (ft/ft)
Watershed No. <u>3-C</u>	Chapter 93 Class. TSF, MF
Existing Use Same as Chapter 93 class	Existing Use Qualifier
Exceptions to Use	Exceptions to Criteria
Assessment Status Impaired for aquatic li	ife due to nutrients/siltation/sediment
Cause(s) of Impairment <u>NUTRIENTS, SILTAT</u>	FION, SEDIMENT
Source(s) of Impairment AGRICULTURE, AGR	RICULTURE
TMDL Status Not applicable	Name
Background/Ambient Data	Data Source
pH (SU)	WQN117; Median July to Sept
Temperature (°C) 20	WQN117; Median July to Sept
Hardness (mg/L)154	WQN117; historical Median
Other:	
Nearest Downstream Public Water Supply Intake	Western Berks Water Authority
PWS Waters Tulpehocken Creek	Flow at Intake (cfs)
PWS RMI <u>6</u>	Distance from Outfall (mi) 19

5.0: Overview of Presiding Water Quality Standards

5.1 General

There are at least six (6) different policies which determines the effluent performance limits for the NPDES permit. The policies are technology based effluent limits (TBEL), water quality based effluent limits (WQBEL), antidegradation, total maximum daily loading (TMDL), anti-backsliding, and whole effluent toxicity (WET) The effluent performance limitations enforced are the selected permit limits that is most protective to the designated use of the receiving waters. An overview of each of the policies that are applicable to the subject facility has been presented in Section 6.

5.2.1 Technology-Based Limitations

TBEL treatment requirements under section 301(b) of the Act represent the minimum level of control that must be imposed in a permit issued under section 402 of the Act (40 CFR 125.3). Available TBEL requirements for the state of Pennsylvania are itemized in PA Code 25, Chapter 92a.47.

The presiding sources for the basis for the effluent limitations are governed by either federal or state regulation. The reference sources for each of the parameters is itemized in the tables. The following technology-based limitations apply, subject to water quality analysis and best professional judgement (BPJ) where applicable:

Parameter	Limit (mg/l)	SBC	Federal Regulation	State Regulation
CBOD ₅	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
CBOD5	40	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)
Total Suspended	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
Solids	45	Average Weekly	133.102(b)(2)	92a.47(a)(2)
рН	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform (5/1 – 9/30)	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
Fecal Coliform (5/1 – 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform (10/1 – 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
Fecal Coliform (10/1 – 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)
Total Residual Chlorine	0.5	Average Monthly	-	92a.48(b)(2)

5.2.2 Mass Based Limits

For publicly owned treatment works (POTW), mass loadings are calculated based upon design flow rate of the facility and the permit limit concentration. The generalized calculation for mass loadings is shown below:

Quantity
$$\left(\frac{lb}{day}\right) = (MGD)(Concentration)(8.34)$$

5.3 Water Quality-Based Limitations

WQBEL are based on the need to attain or maintain the water quality criteria and to assure protection of designated and existing uses (PA Code 25, Chapter 92a.2). The subject facility that is typically enforced is the more stringent limit of either the TBEL or the WQBEL.

Determination of WQBEL is calculated by spreadsheet analysis or by a computer modeling program developed by DEP. DEP permit engineers utilize the following computing programs for WQBEL permit limitations: (1) MS Excel worksheet for Total Residual Chorine (TRC); (2) WQM 7.0 for Windows Wasteload Allocation Program for Dissolved Oxygen and

Ammonia Nitrogen Version 1.1 (WQM Model) and (3) Toxics using DEP Toxics Management Spreadsheet for Toxics pollutants.

5.3.1 Water Quality Modeling 7.0

The WQM Model is a computer model that is used to determine NPDES discharge effluent limitations for Carbonaceous BOD (CBOD5), Ammonia Nitrogen (NH3-N), and Dissolved Oxygen (DO) for single and multiple point source discharges scenarios. WQM Model is a complete-mix model which means that the discharge flow and the stream flow are assumed to instantly and completely mixed at the discharge node.

WQM recommends effluent limits for DO, CBOD5, and NH₃-N in mg/l for the discharge(s) in the simulation.

Four types of limits may be recommended. The limits are

- (a) a minimum concentration for DO in the discharge as 30-day average;
- (b) a 30-day average concentration for CBOD5 in the discharge;
- (c) a 30-day average concentration for the NH_3 -N in the discharge;
- (d) 24-hour average concentration for NH_3 -N in the discharge.

The WQM Model requires several input values for calculating output values. The source of data originates from either EMAP, the National Map, or Stream Stats. Data for stream gauge information, if any, was abstracted from USGS Low-Flow, Base-Flow, and Mean-Flow Regression Equations for Pennsylvania Streams authored by Marla H. Stuckey (Scientific Investigations Report 2006-5130).

The input values utilized for the modeling are summarized in the table which can be found in Attachment B.

The applicable WQM Effluent Limit Type are discussed in Section 6 under the corresponding parameter which is either DO, CBOD, or ammonia-nitrogen.

5.3.2 Toxics Modeling

The Toxics Management Spreadsheet model is a computer model that is used to determine effluent limitations for toxics (and other substances) for single discharge wasteload allocations. This computer model uses a mass-balance water quality analysis that includes consideration for mixing, first-order decay, and other factors used to determine recommended water quality-based effluent limits. Toxics Management Spreadsheet does not assume that all discharges completely mix with the stream. The point of compliance with water quality criteria are established using criteria compliance times (CCTs). The available CCTs are either acute fish criterion (AFC), chronic fish criterion (CFC), or human health criteria (THH & CRL).

Acute Fish Criterion (AFC) measures the criteria compliance time as either the maximum criteria compliance time (i.e.15 minutes travel time downstream of the current discharge) or the complete mix time whichever comes first. AFC is evaluated at Q710 conditions.

Chronic Fish Criterion (CFC) measures the criteria compliance time as either the maximum criteria compliance time (i.e. 12 hours travel time downstream of the current discharge) or the complete mix time whichever comes first. CFC is evaluated at Q710 conditions.

Threshold Human Health (THH) measures the criteria compliance time as either the maximum criteria compliance time (i.e. 12 hours travel time downstream of the current discharge) or the estimated travel time downstream to the nearest potable water supply intake whichever comes first. THH is evaluated at Q710 conditions.

Cancer Risk Level (CRL) measures the criteria compliance time as either the maximum criteria compliance time (i.e. 12 hours travel time downstream of the current discharge) or the complete mix time whichever comes first. CRL is evaluated at Qh (harmonic mean or normal flow) conditions.

The Toxics Model requires several input values for calculating output values. The source of data originates from either EMAP, the National Map, or Stream Stats. Data for stream gauge information, if any, was abstracted from USGS Low-Flow, Base-Flow, and Mean-Flow Regression Equations for Pennsylvania Streams authored by Marla H. Stuckey (Scientific Investigations Report 2006-5130).

The input values utilized for the modeling are summarized in the table which can be found in Attachment B.

5.3.2.1 Determining if NPDES Permit Will Require Monitoring/Limits in the Proposed Permit for Toxic Pollutants

To determine if Toxics modeling is necessary, DEP has developed a Toxics Management Spreadsheet to identify toxics of concern. Toxic pollutants whose maximum concentrations as reported in the permit application or on DMRs are greater than the most stringent applicable water quality criterion are pollutants of concern. A Reasonable Potential Analysis was utilized to determine (a) if the toxic parameters modeled would require monitoring or (b) if permit limitations would be required for the parameters. The toxics reviewed for reasonable potential were the following pollutants: TDS, chloride, bromide, Total Copper, Total Lead, and Total Zinc.

Based upon the SOP- Establishing Water Quality-Based Effluent Limitations (WQBELs) and Permit Conditions for Toxic Pollutants (Revised January 10, 2019), monitoring and/or limits will be established as follows.

- (a) When reasonable potential is demonstrated, establish limits where the maximum reported concentration equals or exceeds 50% of the WQBEL.
- (b) For non-conservative pollutants, establish monitoring requirements where the maximum reported concentration is between 25% 50% of the WQBEL.
- (c) For conservative pollutants, establish monitoring requirements where the maximum reported concentration is between 10% 50% of the WQBEL.

Applicable monitoring or permit limits for toxics are summarized in Section 6.

The Toxics Management Spreadsheet output has been included in Attachment B.

5.3.3 Whole Effluent Toxicity (WET)

The facility is not subject to WET.

5.4 Total Maximum Daily Loading (TMDL)

5.4.1 TMDL

The goal of the Clean Water Act (CWA), which governs water pollution, is to ensure that all of the Nation's waters are clean and healthy enough to support aquatic life and recreation. To achieve this goal, the CWA created programs designed to regulate and reduce the amount of pollution entering United States waters. Section 303(d) of the CWA requires states to assess their waterbodies to identify those not meeting water quality standards. If a waterbody is not meeting standards, it is listed as impaired and reported to the U.S. Environmental Protection Agency. The state then develops a plan to clean up the impaired waterbody. This plan includes the development of a Total Maximum Daily Load (TMDL) for the pollutant(s) that were found to be the cause of the water quality violations. A Total Maximum Daily Load (TMDL) calculates the maximum amount of a specific pollutant that a waterbody can receive and still meet water quality standards.

Pennsylvania has committed to restoring all impaired waters by developing TMDLs and TMDL alternatives for all impaired waterbodies. The TMDL serves as the starting point or planning tool for restoring water quality.

5.4.1.1 Local TMDL

The subject facility does not discharge into a local TMDL.

5.5 Anti-Degradation Requirement

Chapter 93.4a of the PA regulations requires that surface water of the Commonwealth of Pennsylvania may not be degraded below levels that protect the existing uses. The regulations specifically state that *Existing instream water uses and the level of water quality necessary to protect the existing uses shall be maintained and protected*. Antidegradation requirements are

implemented through DEP's guidance manual entitled Water Quality Antidegradation Implementation Guidance (Document #391-0300-02).

The policy requires DEP to protect the existing uses of all surface waters and the existing quality of High Quality (HQ) and Exceptional Value (EV) Waters. Existing uses are protected when DEP makes a final decision on any permit or approval for an activity that may affect a protected use. Existing uses are protected based upon DEP's evaluation of the best available information (which satisfies DEP protocols and Quality Assurance/Quality Control (QA/QC) procedures) that indicates the protected use of the waterbody.

For a new, additional, or increased point source discharge to an HQ or EV water, the person proposing the discharge is required to utilize a nondischarge alternative that is cost-effective and environmentally sound when compared with the cost of the proposed discharge. If a nondischarge alternative is not cost-effective and environmentally sound, the person must use the best available combination of treatment, pollution prevention, and wastewater reuse technologies and assure that any discharge is nondegrading. In the case of HQ waters, DEP may find that after satisfaction of intergovernmental coordination and public participation requirements lower water quality is necessary to accommodate important economic or social development in the area in which the waters are located. In addition, DEP will assure that cost-effective and reasonable best management practices for nonpoint source control in HQ and EV waters are achieved.

The subject facility's discharge will be to a non-special protection waters and the permit conditions are imposed to protect existing instream water quality and uses. Neither HQ waters or EV waters is impacted by this discharge.

5.6 Anti-Backsliding

Anti-backsliding is a federal regulation which prohibits a permit from being renewed, reissued, or modified containing effluent limitations which are less stringent than the comparable effluent limitations in the previous permit (40 CFR 122.I.1 and 40 CFR 122.I.2). A review of the existing permit limitations with the proposed permit limitations confirm that the facility is consistent with anti-backsliding requirements. The facility has proposed effluent limitations that are as stringent as the existing permit.

6.0 NPDES Parameter Details

The basis for the proposed sampling and their monitoring frequency that will appear in the permit for each individual parameter are itemized in this Section. The final limits are the more stringent of technology based effluent treatment (TBEL) requirements, water quality based (WQBEL) limits, TMDL, antidegradation, anti-degradation, or WET.

The reader will find in this section:

- a) a justification of recommended permit monitoring requirements and limitations for each parameter in the proposed NPDES permit;
- b) a summary of changes from the existing NPDES permit to the proposed permit; and
- c) a summary of the proposed NPDES effluent limits.

6.1 Recommended Monitoring Requirements and Effluent Limitations

A summary of the recommended monitoring requirements and effluent limitations are itemized in the tables. The tables are categorized by (a) Conventional Pollutants and Disinfection, (b) Nitrogen Species and Phosphorus, and (c) Toxics.

Delaware River Basin Commission (DRBC): In accordance with State regulations and an interagency agreement, a copy of the Fact Sheet and draft permit will also be sent to the DRBC. The DRBC docket for this facility is D-1967-084 CP4 which was approved December 12, 2018 and expires on September 30, 2024. Permit limits in DRBC dockets are generally incorporated in the NPDES permits.

6.1.1 Conventional Pollutants and Disinfection

Summary of Proposed NPDES Parameter Details for Conventional Pollutants and Disinfection Womelsdorf STP; PA0028975 Permit Limitation Recommendation Parameter Required by¹: The monitoring frequency shall be daily as a grab sample (Table 6-3). Monitoring: Effluent Limit: Effluent limits may range from pH = 6.0 to 9.0 pH (S.U.) TBEL The monitoring frequency has been assigned in accordance with Table 6-3 and the effluent limits Rationale: assigned by Chapter 95.2(1). The monitoring frequency shall be daily as a grab sample (Table 6-3). Monitoring: Effluent Limit: Effluent limits shall be greater than 5.0 mg/l. Dissolved BPJ Oxygen The monitoring frequency has been assigned in accordance with Table 6-3 and the effluent limits Rationale: assigned by best professional judgement. Monitoring: The monitoring frequency shall be 1x/week as a 24-hr composite sample (Table 6-3). Effluent limits shall not exceed 99 lbs/day and 25 mg/l as an average monthly. Effluent Limit: CBOD TBEL The monitoring frequency has been assigned in accordance with Table 6-3 and the effluent limits Rationale: assigned by Chapter 92a.47(a)(1). WQM modeling indicates that the TBEL is more stringent than the WQBEL. Thus, the permit limit is confined to TBEL. Monitoring: The monitoring frequency shall be 1x/week as a 24-hr composite sample (Table 6-3). Effluent Limit: Effluent limits shall not exceed 118 lbs/day and 30 mg/l as an average monthly. The monitoring frequency has been assigned in accordance with Table 6-3 and the effluent limits TSS TBEL assigned by Chapter 92a.47(a)(1). While there is no WQM modeling for this parameter, the Rationale: permit limit for TSS is generally assigned similar effluent limits as CBOD or BOD. Since the TBEL is more stringent than TBEL, TBEL will apply. The monitoring frequency shall be on a daily basis as a grab sample (Table 6-3). Monitoring: The average monthly limit should not exceed 0.5 mg/l and/or 1.6 mg/l as an instantaneous Effluent Limit: maximum. Rationale: Chlorine in both combined (chloramine) and free form is extremely toxic to freshwater fish and other forms of aquatic life (Implementation Guidance Total Residual Chlorine 1). The TRC effluent limitations to be imposed on a discharger shall be the more stringent of either the WQBEL or TBEL requirements and shall be TRC TBEL expressed in the NPDES permit as an average monthly and instantaneous maximum effluent concentration (Implementation Guidance Total Residual Chlorine 4). Based on the stream flow rate (lowest 7-day flow rate in 10 years) and the design flow rate of the subject facility calculated by the TRC Evaluation worksheet, the TBEL is more stringent than the WQBEL. The monitoring frequency has been assigned in accordance with Table 6-3 and the effluent limits assigned by Chapter 92a.48(b)(2) Monitoring: The monitoring frequency shall be 1x/week as a grab sample (Table 6-3). Summer effluent limits shall not exceed 200 No./100 mL as a geometric mean. Winter effluent Fecal Effluent Limit: TBEL limits shall not exceed 2000 No./100 mL as a geometric mean. Coliform The monitoring frequency has been assigned in accordance with Table 6-3 and the effluent limits Rationale: assigned by Chapter 92a.47(a)(4) and 92a.47(a)(5). The monitoring frequency shall be 1x/quarter as a grab sample (SOP). Monitoring:

Effluent Limit: No effluent requirements. SOP; Chapter E. Coli Consistent with the SOP- Establishing Effluent Limitations for Individual Sewage Permits (Revised 92a.61 Rationale: March 22, 2019) and under the authority of Chapter 92a.61, the facility will be required to monitor for E.Coli.

Notes:

1 The NPDES permit was limited by (a) anti-Backsliding, (b) Anti-Degradation, (c) SOP, (d) TBEL, (e) TMDL, (f) WQBEL, (g) WET, or (h) Other 2 Monitoring frequency based on flow rate of 0.475 MGD.

3 Table 6-3 (Self Monitoring Requirements for Sewage Discharges) in Technical Guidance for the Development and Specification of Effluent Limitations and Other Permit Conditions in NPDES Permits) (Document # 362-0400-001) Revised 10/97

4 Water Quality Antidegradation Implementaton Guidance (Document # 391-0300-002)

5 Phase 2 Watershed Implementation Plan Wastewater Supplement, Revised September 6, 2017

6.1.2 Nitrogen Species and Phosphorus

Womelsdorf STP; PA0028975								
Parameter	Permit Limitation Required by ¹ :		Recommendation					
		Monitoring:	The monitoring frequency shall be 1x/week as a 24-hr composite sample					
Ammonia- Nitrogen	Anti-backsliding	Effluent Limit:	During the months of May 1 to October 31, the effluent limits shall not exceed 61 lbs/day and 15.3 mg/l. During the months of November 1 to April 30, the effluent limits shall not exceed 79 lbs/day and 20 mg/l.					
		Rationale:	Due to anti-backsliding regulations, this effluent limit shall continue to the proposed permit.					
	SOP	Monitoring:	The monitoring frequency shall be 1x/quarter as a 24-hr composite sample					
Total		Effluent Limit:	No effluent requirements.					
Nitrogen		Rationale:	Consistent with the SOP, Establishing Effluent Limitations for Individual Sewage Permits, dischargers with flows greater than 2,000 GPD shall require monitoring for total nitrogen where the facility dischargers to nutroent-impaired waters.					
		Monitoring:	The monitoring frequency shall be 1x/week as a 24-hr composite sample					
		Effluent Limit:	Effluent limits shall not exceed 3.9 lbs/day and 1.0 mg/l as an average monthly.					
Total Phosphorus	Anti-backsliding	Rationale:	As a result of a 1987 PADEP study of the Blue Marsh Reservoir, it was recommended that a phosphorus limit of 1.0 mg/l be included in all permits for facilities which discharge upstream of the reservoir. This limit is currently in the permit and will be maintained to meet anti-backsliding requirements and to protect the Reservoir.					
Notes:								

3 Table 6-3 (Self Monitoring Requirements for Sewage Discharges) in Technical Guidance for the Development and Specification of Effluent Limitations and Other Permit Conditions in NPDES Permits) (Document # 362-0400-001) Revised 10/97

4 Water Quality Antidegradation Implementaton Guidance (Document # 391-0300-002)

5 Phase 2 Watershed Implementation Plan Wastewater Supplement, Revised September 6, 2017

<u>6.1.3 Toxics</u>

· · · ·			Womelsdorf STP; PA0028975
Parameter	Permit Limitation Required by ¹ :		Recommendation
		Monitoring:	The monitoring frequency shall be 1x/quarter as a 24-hr composite sample
TDS	DRBC Docket	Effluent Limit:	Effluent limits shall not exceed 1,000 mg/l as a quarterly average.
		Rationale:	The effluent limit is required by DRBC Water Quality Regulations Section 3.10.4.D.2
		Monitoring:	The monitoring frequency shall be 1x/quarter as a 24-hr composite sample
Total	WQBEL	Effluent Limit:	No effluent requirements.
Copper		Rationale:	Toxics Management Spreadsheet recommends monitoring. Pending favorable results from sampling in the proposed permit, monitoring in future renewals may be reduced or eliminated.
		Monitoring:	The monitoring frequency shall be 1x/quarter as a 24-hr composite sample
Total Zinc	WQBEL	Effluent Limit:	No effluent requirements.
	WQBEL	Rationale:	Toxics Management Spreadsheet recommends monitoring. Pending favorable results from sampling in the proposed permit, monitoring in future renewals may be reduced or eliminated.
otes:			
The NPDES	permit was limited b	y (a) anti-Back	ssliding, (b) Anti-Degradation, (c) SOP, (d) TBEL, (e) TMDL, (f) WQBEL, (g) WET, or (h) Othe
Monitoring fre	equency based on f	low rate of 0.4	75 MGD.

5 Phase 2 Watershed Implementation Plan Wastewater Supplement, Revised September 6, 2017

6.2 Summary of Changes From Existing Permit to Proposed Permit

A summary of how the proposed NPDES permit differs from the existing NPDES permit is summarized as follows.

	Changes in Permit Monitoring or Effluent Quality								
Parameter	Existing Permit	Draft Permit							
E. Coli	No monitorring or effluent requirements	Consistent with the SOP- Establishing Effluent Limitations for Individual Sewage Permits (Revised March 22, 2019) and under the authority of Chapter 92a.61, the facility will be required to monitor for E.Coli on a 1x/quarter basis							
Total Copper	No monitorring or effluent requirements	Toxics Management Spreadsheet recommends monitoring. Monitoring shall be on a 1x/quarter basis Pending favorable results from sampling in the proposed permit, monitoring in future renewals may reduced or eliminated.							
Total Zinc	No monitorring or effluent requirements	Toxics Management Spreadsheet recommends monitoring. Monitoring shall be on a 1x/quarter basis. Pending favorable results from sampling in the proposed permit, monitoring in future renewals may be reduced or eliminated.							

6.3.1 Summary of Proposed NPDES Effluent Limits

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

The proposed NPDES effluent limitations are summarized in the table below.

PART	PART A - EFFLUENT LIMITATIONS, MONITORING, RECORDKEEPING AND REPORTING REQUIREMENTS										
I. A.	For Outfall 001	, Latitude <u>40° 22' 23.23"</u> , Longitude <u>76° 10' 52.29"</u> , River Mile Index <u>24.77</u> , Stream Code <u>1846</u>									
	Receiving Waters:	Tulpehocken Creek (TSF)									
	Type of Effluent:	Sewage Effluent									

1. The permittee is authorized to discharge during the period from Permit Effective Date through Permit Expiration Date.

 Based on the anticipated wastewater characteristics and flows described in the permit application and its supporting documents and/or amendments, the following effluent limitations and monitoring requirements apply (see also Additional Requirements and Footnotes).

			Effluent L	imitations			Monitoring Re	quirements
Parameter	Mass Units	(lbs/day) (1)		Concentrations (mg/L)				Required
rannieter	Average Monthly	Weekly Average	Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report Daily Max	xxx	xxx	XXX	xxx	Continuous	Measured
pH (S.U.)	xxx	xxx	6.0 Inst Min	xxx	XXX	9.0	1/day	Grab
Dissolved Oxygen	XXX	xxx	5.0 Inst Min	XXX	XXXX	XXX	1/day	Grab
Total Residual Chlorine (TRC)	XXX	xxx	XXX	0.5	XXX	1.6	1/day	Grab
Carbonaceous Biochemical Oxygen Demand (CBOD5)	99	158	xxx	25	40	50	1/week	24-Hr Composite
Biochemical Oxygen Demand (BOD5) Raw Sewage Influent	Report	Report Daily Max	xxx	Report	xxx	xxx	1/week	24-Hr Composite
Total Suspended Solids	118	178	XXX	30	45	60	1/week	24-Hr Composite
Total Suspended Solids Raw Sewage Influent	Report	Report Daily Max	XXX	Report	XXX	XXX	1/week	24-Hr Composite
Total Dissolved Solids	Report Avg Qrtly	XXX	XXX	1000.0 Avg Qrtly	XXX	хох	1/quarter	24-Hr Composite
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	xxx	xxx	xxx	2000 Geo Mean	XXX	10000	1/week	Grab

Outfall 001, Continued (from Permit Effective Date through Permit Expiration Date)

		Monitoring Requirements						
Parameter	Mass Units	(lbs(day) (1)		Concentrat		Minimum (2)	Required	
Talameter	Average Monthly	Weekly Average	Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type
Fecal Coliform (No./100 ml) May 1 - Sep 30	XXX	XXX	XXX	200 Geo Mean	XXX	1000	1/week	Grab
Total Nitrogen	Report Avg Qrtly	XXX	XXX	Report Avg Qrtly	XXX	XXX	1/quarter	24-Hr Composite
Ammonia-Nitrogen Nov 1 - Apr 30	79	XXX	XXX	20	XXX	40	1/week	24-Hr Composite
Ammonia-Nitrogen May 1 - Oct 31	61	XXX	XXX	15.3	XXX	30.6	1/week	24-Hr Composite
Total Phosphorus	3.9	XXX	XXX	1.0	XXX	2	1/week	24-Hr Composite
Copper, Total	Report Avg Qrtly	XXX	XXX	Report Avg Qrtly	XXX	XXX	1/quarter	24-Hr Composite
Zinc, Total	Report Avg Qrtly	XXX	XXX	Report Avg Qrtly	XXX	XXX	1/quarter	24-Hr Composite

Samples taken in compliance with the monitoring requirements specified above shall be taken at the following location(s):

at Outfall 001

6.3.2 Summary of Proposed Permit Part C Conditions

The subject facility has the following Part C conditions.

- Chlorine Minimization
- SBR Batch Discharge Condition
- DRBC May Have Other Requirements
- Hauled-in Waste Restrictions
- Solids Management for Non-Lagoon Treatment Systems

WQM for Windows Model (see Attachment) Toxics Management Spreadsheet (see Attachment) Temperature Model Spreadsheet (see Attachment) Temperature Model Spreadsheet (see Attachment) Water Quality Toxics Management Strategy, 361-0100-003, 4/06.) Policy for Permitting Surface Water Diversions, 362-2000-003, 3/98.) Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 362-2000-008, 11/96.) Technical Guidance for Ibevelopment of NPDES Permit Requirements Steam Electric Industry, 362-2183-003, 10/97.) Technical Reviews of Minor NPDES Permit Requirements Steam Electric Industry, 362-2183-004, 12/97.) Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 391-2000-002, 4/97. Determining Water Quality-Based Effluent Limits, 391-2000-003, 12/97. Implementation Guidance Design Conditions, 391-2000-004, 9/97. Technical Reference Guide (TRG) WOM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Anmonia Nitrogen, Version 1.0, 391-2000-007, 4/204. Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 391-2000-011, 3/99. Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 391-2000-011, 5/204. Impl		Tools and References Used to Develop Permit
X Toxics Management Spreadsheet (see Attachment TRC Model Spreadsheet (see Attachment		
TRC Model Spreadsheet (see Attachment Temperature Model Spreadsheet (see Attachment Water Quality Toxics Management Strategy, 361-0100-003, 4/06. Technical Guidance for the Development and Specification of Effluent Limitations, 362-0400-001, 10/97. Policy for Permitting Surface Water Diversions, 362-2000-003, 3/98. Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 362-2000-008, 11/96. Technology-Based Control Requirements for Water Treatment Plant Wastes, 362-2183-003, 10/97. Technology-Based Control Requirements for Water Treatment Plant Wastes, 362-2183-003, 10/97. Technology-Based Control Requirements for Water Treatment Plant Wastes, 362-2183-003, 10/97. Technology-Based Control Requirements for Water Treatment Plant Wastes, 362-2183-003, 10/97. Technology-Based Control Requirements for Water Treatment Plant Wastes, 362-2183-003, 10/97. Tepmeratation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 391-2000-002, 4/97. Determining Water Quality-Based Effluent Limits, 391-2000-003, 12/97. Implementation Guidance Design Conditions, 391-2000-006, 9/97. Technical Reference Guide (TRG) WOM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Armonia Nitrogen, Version 1.0, 391-2000-0107, 6/2004. Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 391-2000-010, 3/93. Technical Reference G		
Temperature Model Spreadsheet (see Attachment) Water Quality Toxics Management Strategy, 361-0100-003, 4/06.) Technical Guidance for the Development and Specification of Effluent Limitations, 362-0400-001, 10/97.) Policy for Permitting Surface Water Diversions, 362-2000-003, 3/98.) Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 362-2000-008, 11/96.) Technology-Based Control Requirements for Water Treatment Plant Wastes, 362-2183-003, 10/97.) Technology-Based Control Requirements for Water Treatment Plant Wastes, 362-2183-003, 10/97.) Technology-Based Control Requirements for Water Treatment Plant Wastes, 362-2183-004, 12/97.) Implementation Guidance Evaluation Implementation Guidance, 391-0300-002, 11/03.) Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 391-2000-000, 4/97.) Determining Water Quality-Based Effluent Limits, 391-2000-003, 12/97.) Implementation Guidance Posign Conditions, 391-2000-006, 9/97. Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen, Version 1.0, 391-2000-007, 6/2004.) Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 391-2000-010, 3/91-2000-011, 5/2004.)		
Water Quality Toxics Management Strategy, 361-0100-003, 4/06. Technical Guidance for the Development and Specification of Effluent Limitations, 362-0400-001, 10/97. Policy for Permitting Surface Water Diversions, 362-2000-003, 3/98. Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 362-2000-008, 11/96. Technology-Based Control Requirements for Water Treatment Plant Wastes, 362-2183-003, 10/97. Technology-Based Control Requirements for Water Treatment Plant Wastes, 362-2183-003, 10/97. Technology-Based Control Requirements for Water Treatment Plant Wastes, 362-2183-003, 10/97. Technology-Based Control Requirements for Water Treatment Plant Wastes, 362-2183-003, 10/97. User Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03. Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 391-2000-002, 4/97. Determining Water Quality-Based Effluent Limits, 391-2000-003, 12/97. Implementation Guidance Design Conditions, 391-2000-007, 8/200-40. Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, and Industrial Discharges, 391-2000-010, 3/2004. Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments, 391-2000-013, 4/97. Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swatescon 95.9 Mamonia Criteria, 391-2000-013, 11/97.		
Technical Guidance for the Development and Specification of Effluent Limitations, 362-0400-001, 10/97. Policy for Permitting Surface Water Diversions, 362-2000-003, 3/98. Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 362-2000-008, 11/96. Technology-Based Control Requirements for Water Treatment Plant Wastes, 362-2183-003, 10/97. Technolad Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 362-2183-004, 12/97. Pennsylvania CSO Policy, 385-2000-011, 9/08. Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03. Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 391-2000-002, 4/97. Determining Water Quality-Based Effluent Limits, 391-2000-003, 12/97. Implementation Guidance Design Conditions, 391-2000-003, 12/97. Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 391-2000-008, 10/1997. Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen, Version 1.0, 391-2000-017, 6/2004. Intrim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 391-2000-010, 3/99. Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 391-2000-011, 4/2008. Implementation Guidance for Section 93.7 Ammonia Criteria, 391-2000-013, 11/97.		
Policy for Permitting Surface Water Diversions, 362-2000-003, 3/98. Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 362-2000-008, 11/96. Technology-Based Control Requirements for Water Treatment Plant Wastes, 362-2183-003, 10/97. Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 362-2183-004, 12/97. Pennsylvania CSO Policy, 385-2000-011, 9/08. Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03. Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 391-2000-006, 24/97. Determining Water Quality-Based Effluent Limits, 391-2000-006, 9/97. Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen, Version 1.0, 391-2000-007, 6/2004. Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 391-2000-008, 10/1997. Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments, 391-2000-011, 5/2004. Implementation Guidance for Section 93.7 Ammonia Criteria, 391-2000-013, 11/97. Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 391-2000-014, 4/2008. Implementation Guidance for Section 95.6) Phosphorus Discharges to Free Flowing Streams, 391-2000-018, 10/97. Field Data Collection and Evaluation Wa		
Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 362-2000-008, 11/96. Technology-Based Control Requirements for Water Treatment Plant Wastes, 362-2183-003, 10/97. Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 362-2183-004, 12/97. Pennsylvania CSO Policy, 385-2000-011, 9/08. Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03. Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 391-2000-002, 4/97. Determining Water Quality-Based Effluent Limits, 391-2000-006, 9/97. Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Ammornia Nitrogen, Version 1.0, 391-2000-07, 6/2004. Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 391-2000-008, 10/1997. Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments, 391-2000-011, 5/2004. Implementation Guidance for Section 93.7 Ammonia Criteria, 391-2000-013, 11/97. Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 391-2000-014, 4/2008. Implementation Guidance for Section 95.7 Phosphorus Discharges to Free Flowing Streams, 391-2000-018, 10/97. Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 391-2000-018, 10/97.		
Technology-Based Control Requirements for Water Treatment Plant Wastes, 362-2183-003, 10/97. Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 362-2183-004, 12/97. Pennsylvania CSO Policy, 385-2000-011, 9/08. Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03. Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 391-2000-002, 4/97. Determining Water Quality-Based Effluent Limits, 391-2000-003, 12/97. Implementation Guidance Design Conditions, 391-2000-006, 9/97. Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen, Version 1.0, 391-2000-007, 6/2004. Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 391-2000-008, 10/1997. Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments, 391-2000-011, 5/2004. Implementation Guidance for Section 95.7 Ammonia Criteria, 391-2000-013, 11/97. Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Severs, 391-2000-014, 4/2008. Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 391-2000-018, 10/97. Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 391-2000-018, 10/97. Implementation Guidance for Sectio		
Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 362-2183-004, 12/97. Pennsylvania CSO Policy, 385-2000-011, 9/08. Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03. Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 391-2000-002, 4/97. Determining Water Quality-Based Effluent Limits, 391-2000-003, 12/97. Implementation Guidance Design Conditions, 391-2000-006, 9/97. Technical Reference Guide (TRG) WOM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen, Version 1.0, 391-2000-007, 6/2004. Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 391-2000-008, 10/1997. Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments, 391-2000-011, 5/2004. Implementation Guidance for Section 93.7 Ammonia Criteria, 391-2000-013, 11/97. Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 391-2000-014, 4/2008. Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 391-2000-018, 10/97. Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 391-2000-018, 10/97. Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Flucinde		
12/97. Pennsylvania CSO Policy, 385-2000-011, 9/08. Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03. Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 391-2000-002, 4/97. Determining Water Quality-Based Effluent Limits, 391-2000-003, 12/97. Implementation Guidance Design Conditions, 391-2000-006, 9/97. Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen, Version 1.0, 391-2000-007, 6/2004. Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 391-2000-008, 10/1997. Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments, 391-2000-010, 3/99. Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 391-2000-011, 5/2004. Implementation Guidance for Section 93.7 Ammonia Criteria, 391-2000-013, 11/97. Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 391-2000-014, 4/2008. Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 391-2000-019, 10/97. Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 391-2000-022, 3/98.		
Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03. Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 391- 2000-002, 4/97. Determining Water Quality-Based Effluent Limits, 391-2000-003, 12/97. Implementation Guidance Design Conditions, 391-2000-006, 9/97. Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen, Version 1.0, 391-2000-007, 6/2004. Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 391-2000-008, 10/1997. Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 391-2000-011, 5/2004. Implementation Guidance for Section 93.7 Ammonia Criteria, 391-2000-013, 11/97. Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 391-2000-014, 4/2008. Implementation Guidance for Temperature Criteria, 391-2000-015, 11/1994. Implementation Guidance for Temperature Criteria, 391-2000-015, 11/1994. Implementation Guidance for Application of Section 93.6 (for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 391-2000-015, 11/1994. Implementation Guidance for Application of Section 93.6 (for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 391-2000-019, 10/97.		
Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 391-2000-002, 4/97. Determining Water Quality-Based Effluent Limits, 391-2000-003, 12/97. Implementation Guidance Design Conditions, 391-2000-006, 9/97. Technical Reference Guide (TRG) WOM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen, Version 1.0, 391-2000-007, 6/2004. Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 391-2000-008, 10/1997. Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments, 391-2000-010, 3/99. Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 391-2000-011, 5/2004. Implementation Guidance for Section 93.7 Ammonia Criteria, 391-2000-013, 11/97. Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 391-2000-014, 4/2008. Implementation Guidance for Temperature Criteria, 391-2000-017, 4/09. Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 391-2000-019, 10/97. Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 391-2000-022, 3/99. Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in		Pennsylvania CSO Policy, 385-2000-011, 9/08.
2000-002, 4/97. Determining Water Quality-Based Effluent Limits, 391-2000-003, 12/97. Implementation Guidance Design Conditions, 391-2000-006, 9/97. Technical Reference Guide (TRG) WOM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen, Version 1.0, 391-2000-007, 6/2004. Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 391-2000-008, 10/1997. Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments, 391-2000-011, 3/99. Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 391-2000-011, 5/2004. Implementation Guidance for Section 93.7 Ammonia Criteria, 391-2000-013, 11/97. Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 391-2000-014, 4/2008. Implementation Guidance for Temperature Criteria, 391-2000-017, 4/09. Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solds, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 391-2000-019, 10/97. Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 391-2000-021, 3/99. Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 391-2000-022, 3/1999. <th></th> <th></th>		
Implementation Guidance Design Conditions, 391-2000-006, 9/97. Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen, Version 1.0, 391-2000-007, 6/2004. Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 391-2000-008, 10/1997. Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments, 391-2000-010, 3/99. Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 391-2000-011, 5/2004. Implementation Guidance for Section 93.7 Ammonia Criteria, 391-2000-013, 11/97. Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 391-2000-014, 4/2008. Implementation Guidance for Temperature Criteria, 391-2000-017, 4/09. Implementation Guidance for Section 93.5 (e) for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 391-2000-019, 10/97. Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 391-2000-021, 3/99. Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 391-2000-022, 3/1999. Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Su		
Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen, Version 1.0, 391-2000-007, 6/2004. Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 391-2000-008, 10/1997. Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments, 391-2000-010, 3/99. Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 391-2000-011, 5/2004. Implementation Guidance for Section 93.7 Ammonia Criteria, 391-2000-013, 11/97. Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 391-2000-014, 4/2008. Implementation Guidance for Temperature Criteria, 391-2000-017, 4/09. Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 391-2000-018, 10/97. Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 391-2000-018, 10/97. Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 391-2000-019, 10/97. Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 391-2000-023, 9/98. Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 391-2000-024, 10/98. <th></th> <th>Determining Water Quality-Based Effluent Limits, 391-2000-003, 12/97.</th>		Determining Water Quality-Based Effluent Limits, 391-2000-003, 12/97.
and Ammonia Nitrogen, Version 1.0, 391-2000-007, 6/2004. Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 391-2000-008, 10/1997. Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments, 391-2000-010, 3/99. Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 391-2000-011, 5/2004. Implementation Guidance for Section 93.7 Ammonia Criteria, 391-2000-013, 11/97. Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 391-2000-014, 4/2008. Implementation Guidance Total Residual Chlorine (TRC) Regulation, 391-2000-015, 11/1994. Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 391-2000-018, 10/97. Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 391-2000-019, 10/97. Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 391-2000-021, 3/99. Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 391-2000-022, 3/1999. Design Stream Flows, 391-2000-023, 9/98. Evaluation of Phosphorus Discharges to Lakes, Ponds and Impoundments, 391-3200-013, 6/97.		Implementation Guidance Design Conditions, 391-2000-006, 9/97.
391-2000-008, 10/1997. Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments, 391-2000-010, 3/99. Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 391-2000-011, 5/2004. Implementation Guidance for Section 93.7 Ammonia Criteria, 391-2000-013, 11/97. Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 391-2000-014, 4/2008. Implementation Guidance for Temperature Criteria, 391-2000-017, 4/09. Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 391-2000-018, 10/97. Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 391-2000-019, 10/97. Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 391-2000-021, 3/99. Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 391-2000-022, 3/1999. Design Stream Flows, 391-2000-023, 9/98. Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 391-2000-024, 10/98. Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 391-3200-013, 6/97.		
 and Impoundments, 391-2000-010, 3/99. Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 391-2000-011, 5/2004. Implementation Guidance for Section 93.7 Ammonia Criteria, 391-2000-013, 11/97. Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 391-2000-014, 4/2008. Implementation Guidance Total Residual Chlorine (TRC) Regulation, 391-2000-015, 11/1994. Implementation Guidance for Temperature Criteria, 391-2000-017, 4/09. Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 391-2000-018, 10/97. Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 391-2000-019, 10/97. Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 391-2000-021, 3/99. Design Stream Flows, 391-2000-023, 9/98. Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 391-2000-024, 10/98. Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 391-3200-013, 6/97. Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07. SOP: New and Reissuance Sewage Individual NPDES Permit Applications, revised November 9, 2012 		
for Toxics, Version 2.0, 391-2000-011, 5/2004. Implementation Guidance for Section 93.7 Ammonia Criteria, 391-2000-013, 11/97. Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 391-2000-014, 4/2008. Implementation Guidance Total Residual Chlorine (TRC) Regulation, 391-2000-015, 11/1994. Implementation Guidance for Temperature Criteria, 391-2000-017, 4/09. Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 391-2000-018, 10/97. Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 391-2000-019, 10/97. Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 391-2000-021, 3/99. Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 391-2000-022, 3/1999. Design Stream Flows, 391-2000-023, 9/98. Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 391-2000-024, 10/98. Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 391-3200-013, 6/97. Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07. SOP: New and Reissuance Sewage Individual NPDES Permit App		
Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 391-2000-014, 4/2008. Implementation Guidance Total Residual Chlorine (TRC) Regulation, 391-2000-015, 11/1994. Implementation Guidance for Temperature Criteria, 391-2000-017, 4/09. Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 391-2000-018, 10/97. Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 391-2000-019, 10/97. Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 391-2000-021, 3/99. Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 391-2000-022, 3/1999. Design Stream Flows, 391-2000-023, 9/98. Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 391-2000-024, 10/98. Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 391-3200-013, 6/97. Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07. SOP: New and Reissuance Sewage Individual NPDES Permit Applications, revised November 9, 2012		
Channels and Swales, and Storm Sewers, 391-2000-014, 4/2008. Implementation Guidance Total Residual Chlorine (TRC) Regulation, 391-2000-015, 11/1994. Implementation Guidance for Temperature Criteria, 391-2000-017, 4/09. Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 391-2000-018, 10/97. Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 391-2000-019, 10/97. Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 391-2000-021, 3/99. Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 391-2000-022, 3/1999. Design Stream Flows, 391-2000-023, 9/98. Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 391-2000-024, 10/98. Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 391-3200-013, 6/97. Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07. SOP: New and Reissuance Sewage Individual NPDES Permit Applications, revised November 9, 2012		Implementation Guidance for Section 93.7 Ammonia Criteria, 391-2000-013, 11/97.
Implementation Guidance for Temperature Criteria, 391-2000-017, 4/09. Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 391-2000-018, 10/97. Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 391-2000-019, 10/97. Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 391-2000-021, 3/99. Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 391-2000-022, 3/1999. Design Stream Flows, 391-2000-023, 9/98. Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 391-2000-024, 10/98. Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 391-3200-013, 6/97. Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07. SOP: New and Reissuance Sewage Individual NPDES Permit Applications, revised November 9, 2012		
Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 391-2000-018, 10/97. Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 391-2000-019, 10/97. Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 391-2000-021, 3/99. Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 391-2000-022, 3/1999. Design Stream Flows, 391-2000-023, 9/98. Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 391-2000-024, 10/98. Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 391-3200-013, 6/97. Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07. SOP: New and Reissuance Sewage Individual NPDES Permit Applications, revised November 9, 2012		Implementation Guidance Total Residual Chlorine (TRC) Regulation, 391-2000-015, 11/1994.
Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 391-2000-019, 10/97. Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 391-2000-021, 3/99. Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 391-2000-022, 3/1999. Design Stream Flows, 391-2000-023, 9/98. Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 391-2000-024, 10/98. Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 391-3200-013, 6/97. Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07. SOP: New and Reissuance Sewage Individual NPDES Permit Applications, revised November 9, 2012		Implementation Guidance for Temperature Criteria, 391-2000-017, 4/09.
 Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 391-2000-019, 10/97. Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 391-2000-021, 3/99. Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 391-2000-022, 3/1999. Design Stream Flows, 391-2000-023, 9/98. Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 391-2000-024, 10/98. Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 391-3200-013, 6/97. Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07. SOP: New and Reissuance Sewage Individual NPDES Permit Applications, revised November 9, 2012 		Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 391-2000-018, 10/97.
Hardness, 391-2000-021, 3/99. Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 391-2000-022, 3/1999. Design Stream Flows, 391-2000-023, 9/98. Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 391-2000-024, 10/98. Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 391-3200-013, 6/97. Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07. SOP: New and Reissuance Sewage Individual NPDES Permit Applications, revised November 9, 2012		
of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 391-2000-022, 3/1999. Design Stream Flows, 391-2000-023, 9/98. Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 391-2000-024, 10/98. Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 391-3200-013, 6/97. Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07. SOP: New and Reissuance Sewage Individual NPDES Permit Applications, revised November 9, 2012		
Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 391-2000-024, 10/98. Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 391-3200-013, 6/97. Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07. SOP: New and Reissuance Sewage Individual NPDES Permit Applications, revised November 9, 2012		
and Other Discharge Characteristics, 391-2000-024, 10/98. Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 391-3200-013, 6/97. Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07. SOP: New and Reissuance Sewage Individual NPDES Permit Applications, revised November 9, 2012		
Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07. SOP: New and Reissuance Sewage Individual NPDES Permit Applications, revised November 9, 2012		
SOP: New and Reissuance Sewage Individual NPDES Permit Applications, revised November 9, 2012		
SOP: New and Reissuance Sewage Individual NPDES Permit Applications, revised November 9, 2012		Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07.
	\boxtimes	
		Other:

Attachment A Stream Stats/Gauge Data

10 Selected Streamflow Statistics for Streamgage Locations in and near Pennsylvania

 Table 1.
 List of U.S. Geological Survey streamgage locations in and near Pennsylvania with updated streamflow statistics.—Continued

 [Latitude and Longitude in decimal degrees; mi², square miles]

Streamgage number	Streamgage name	Latitude	Longitude	Drainage area (mi²)	Regulated
01465780	Poquessing Creek above Byberry Creek at Phila., Pa.	40.070	-74.975	13.2	N
01465798	Poquessing Creek at Grant Ave. at Philadelphia, Pa.	40.057	-74.985	21.4	N
01465850	South Branch Rancocas Creek at Vincentown, N.J.	39.94	-74.763	64.5	N
01466500	McDonalds Branch in Byrne State Forest, N.J.	39.885	-74.505	2.35	N
01467000	North Branch Rancocas Creek at Pemberton, N.J.	39.97	-74.684	118	N
01467042	Pennypack Creek at Pine Road, at Philadelphia, Pa.	40.090	-75.069	37.9	N
01467048	Pennypack Creek at Lower Rhawn St Bdg, Phila., Pa.	40.050	-75.033	49.8	N
01467050	Wooden Bridge Run at Philadelphia, Pa.	40.055	-75.022	3.35	N
01467081	South Branch Pennsauken Creek at Cherry Hill, N.J.	39.942	-75.001	8.98	N
01467086	Tacony Creek ab Adams Avenue, Philadelphia, Pa.	40.047	-75.111	16.7	N
01467087	Frankford Creek at Castor Ave, Philadelphia, Pa.	40.016	-75.097	30.4	N
01467089	Frankford Creek at Torresdale Ave., Phila., Pa.	40.007	-75.092	33.8	N
01467150	Cooper River at Haddonfield, N.J.	39,903	-75.021	17.0	N
01467500	Schuylkill River at Pottsville, Pa.	40.684	-76.186	53.4	N
01468500	Schuylkill River at Landingville, Pa.	40.629	-76.125	133	N
01469500	Little Schuylkill River at Tamaqua, Pa.	40,807	-75.972	42.9	N
01470500	Schuylkill River at Berne, Pa.	40.523	-75.998	355	N
01470756	Maiden Creek at Virginville. Pa.	40.514	-75.883	159	N
01470779	Tulpehocken Creek near Bernville. Pa	40.413	-76.172	66.5	N
01470853	Furnace Creek at Robesonia, Pa.	40,340	-76.143	4.18	N
01470960	Tulpehocken Creek at Blue Marsh Damsite near Reading, Pa.	40.371	-76.025	175	Y
01471000	Tulpehocken Creek near Reading, Pa.	40.369	-75.979	211	Y
01471510	Schuylkill River at Reading, Pa.	40.335	-75.936	880	Y
01471875	Manatawny Creek near Spangsville, Pa.	40,340	-75,742	56.9	N
01471980	Manatawny Creek near Pottstown, Pa.	40.273	-75.680	85.5	N
01472000	Schuylkill River at Pottstown, Pa.	40.242	-75.652	1,147	Y
01472157	French Creek near Phoenixville, Pa.	40.151	-75.601	59.1	N
01472174	Pickering Creek near Chester Springs, Pa.	40.090	-75.630	5.98	N
01472198	Perkiomen Creek at East Greenville, Pa.	40.394	-75.515	38.0	N
01472199	West Branch Perkiomen Creek at Hillegass, Pa.	40.374	-75.522	23.0	N
01472500	Perkiomen Creek near Frederick, Pa.	40.275	-75,455	152	N
01472620	East Branch Perkiomen Creek near Dublin, Pa.	40,404	-75.234	4.05	LF
01472810	East Branch Perkiomen Creek near Schwenksville, Pa.	40.259	-75.429	58.7	LF
01473000	Perkiomen Creek at Graterford, Pa.	40.230	-75.452	279	LF
01473120	Skippack Creek near Collegeville, Pa.	40.165	-75.433	53.7	N
01473169	Valley Creek at Pa. Tumpike Br near Valley Forge, Pa.	40.079	-75.461	20.8	N
01473500	Schuylkill River at Norristown, Pa.	40.111	-75.347	1,760	N
01473900	Wissahickon Creek at Fort Washington, Pa.	40.124	-75.220	40.8	N
01473950	Wissahickon Creek at Bells Mill Rd, Phila., Pa.	40.080	-75.226	53.6	N
01473980	Wissahickon Creek at Livezey Lane, Phila., Pa.	40.050	-75.214	59.2	N
01475980	Wissahickon Creek at Mouth, Philadelphia, Pa.	40.030	-75.207	64.0	N
01474500	Schuylkill River at Philadelphia, Pa.	39.968	-75.189	1,893	N
01474500	Mantua Creek at Pitman, N.J.	39.908	-75.189	6.05	N
	Darby Creek at Waterloo Mills near Devon, Pa.				
01475300	-	40.023	-75.422	5.15	N
01475510	Darby Creek near Darby, Pa.	39.929	-75.272	37.4	N

22 Selected Streamflow Statistics for Streamgage Locations in and near Pennsylvania

Table 2. Selected low-flow statistics for streamgage locations in and near Pennsylvania.—Continued

[ft³/s; cubic feet per second; ---, statistic not computed; <, less than]

Streamgage number	Period of record used in analysis ¹	Number of years used in analysis	1-day, 10-year (ft³/s)	7-day, 10-year (ft∛s)	7-day, 2-year (ft³/s)	30-day, 10-year (ft³/s)	30-day, 2-year (ft³/s)	90-day, 10-year (ft³/s)
01453000	31904–1927	18	237	312	447	378	546	472
01454700	1968-2005	38	471	510	745	600	902	760
01455500	1930-2008	52	0	.4	7.8	_	_	6.0
01457000	1905-2008	89	40.6	45.6	70.5	52.2	81.7	62.5
01459500	21975-2008	34	1.9	2.1	4.1	2.9	7.1	5.7
01459500	31937-1973	37	.4	.9	2.1	1.3	3.6	2.9
01463500	1914-2008	95	1,540	1,720	2,700	1,960	3,120	2,430
01463620	1974-2008	19	2.4	2.7	7.6	4.8	10.6	8.6
01464000	1925-2008	84	9.4	14.2	25.7	18.7	34.2	29.3
01464500	1942-2008	65	16.4	18.9	34.0	24.4	42.3	37.3
01464645	1987-2008	22	3.3	3.6	12.3	4.4	13.6	5.4
01464720	1992-2008	17	3.0	3.6	5.8	4.5	7.3	6.2
01465000	1886-1934	28	_	3.4	10.1	4.9	15.0	12.9
01465500	1936-2008	73	9.0	12.7	26.4	17.3	37.4	28.6
01465770	1966-1982	16	.3	.4	1.2	.8	1.7	1.7
01465798	1967-2008	42	1.0	1.2	3.6	3.0	6.8	7.9
01465850	1963-2008	19	5.2	8.5	13.2	12.1	19.5	17.1
01466500	1955-2008	54	.8	.8	1.1	.9	1.2	.9
01467000	1923-2008	86	26.2	34.2	51.8	41.6	63.2	53.2
01467042	1966-1981	16	8.6	9.3	16.8	11.3	21.5	17.0
01467048	1967-2008	42	10.7	12.1	18.9	16.6	27.2	26.6
01467050	1967-1981	15	.3	.4	.8	.7	1.3	1.6
01467081	1969-2008	38	2.4	2.9	4.1	3.9	6.0	6.3
01467086	1967-1988	23	3.3	4.4	6.9	6.6	9.9	10.4
01467087	1984-2008	25	1.6	2.1	6.1	4.8	10.1	12.0
01467089	1968-1982	15	4.8	6.6	9.6	10.3	16.0	20.1
01467150	1965-2008	44	3.9	5.4	10.1	7.3	13.2	11.5
01467500	1945-1969	25	14.6	17.2	24.5	19.8	28.5	23.4
01468500	1949-2008	40	40.8	44.5	70.6	52.1	82.4	65.0
01469500	1921-2008	88	4.8	5.5	10.9	7.3	14.4	10.1
01470500	1949-2008	60	69.2	82.3	137	102	164	133
01470756	1974-1995	22	14.8	16.7	30.5	23.4	43.9	35.5
01470779	1976-2008	33	21.9	24.6	39.3	29.4	45.2	34.8
01470853	1984-2005	22	.2	.4	1.2	.8	1.6	1.1
01470960	21980-2008	29	29.4	31.8	52.4	47.0	74.7	66.3
01470960	31967-1978	12	32.7	38.2	74.0	47.6	88.3	59.5
01471000	21980-2008	29	36.9	43.4	69.4	58.9	93.9	81.0
01471000	31952-1978	27	41.8	47.6	77.1	55.3	91.2	68.6
01471510	21980-2008	29	222	244	347	274	422	340
01471510	31916-1930	10	142	173	279	206	337	245
01471875	1995-2008	14	10.9	11.8	21.2	14.1	25.3	19.0
01471980	1976-2004	29	16.5	17.8	29.2	21.7	34.9	29.7
01472000	21980-2008	29	276	301	432	349	527	453
01472000	31929-1978	50	228	258	411	298	486	374
01472157	1970-2008	39	9.5	10.2	17.2	12.5	21.8	17.0

StreamStats

StreamStats Report

 Region ID:
 PA

 Workspace ID:
 PA20210506165505014000

 Clicked Point (Latitude, Longitude):
 40.37331, -76.18132

 Time:
 2021-05-06 12:55:22 -0400

Womelsdorf STP PA0028975 Modeling Point #1 May 2021

Basin Characte	ansues .		
Parameter			
Code	Parameter Description	Value	Unit
DRNAREA	Area that drains to a point on a stream	64.5	square miles
PRECIP	Mean Annual Precipitation	43	inches
STRDEN	Stream Density total length of streams divided by	0.96	miles per
	drainage area		square mile
ROCKDEP	Depth to rock	5.3	feet
CARBON	Percentage of area of carbonate rock	85.72	percent

https://streamstats.usgs.gov/ss/

1/3

StreamStats

_					
Parameter Code	Parameter Name	Value	Units	Min Limit	Max
Code	Parameter Name	value	Units	Limit	Limit
DRNAREA	Drainage Area	64.5	square miles	4.93	1280
PRECIP	Mean Annual Precipitation	43	inches	35	50.4
STRDEN	Stream Density	0.96	miles per square mile	0.51	3.1
ROCKDEP	Depth to Rock	5.3	feet	3.32	5.65
CARBON	Percent Carbonate	85.72	percent	0	99

Low-Flow Statistics Flow Report [100.0 Percent (64.5 square miles) Low Flow Region 2]

PII: Prediction Interval-Lower, PIu: Prediction Interval-Upper, SEp: Standard Error of Prediction, SE: Standard Error (other -- see report)

Statistic	Value	Unit	SE	SEp
7 Day 2 Year Low Flow	55.2	ft*3/s	38	38
30 Day 2 Year Low Flow	56.3	ft*3/s	33	33
7 Day 10 Year Low Flow	45.1	ft*3/s	51	51
30 Day 10 Year Low Flow	45.5	ft*3/s	46	46
90 Day 10 Year Low Flow	44.8	ft^3/s	36	36

Low-Flow Statistics Citations

Stuckey, M.H.,2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006-5130, 84 p. (http://pubs.usgs.gov/sir/2006/5130/)

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the

https://streamstats.usqs.gov/ss/

2/3

StreamStats

functionality of the software and related material nor shall the fact of release constitute any such warranty. Furthermore, the software is released on condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized use.

USGS Product Names Disclaimer: Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Application Version: 4.5.2 StreamStats Services Version: 1.2.22 NSS Services Version: 2.1.1

StreamStats


StreamStats Report

 Region ID:
 PA

 Workspace ID:
 PA20210506165849162000

 Clicked Point (Latitude, Longitude):
 40.38158, -76.17064

 Time:
 2021-05-06 12:59:05 -0400

Womelsdorf STP PA0028975 Modeling Point #2 May 2021

Basin Characte	nstics		
Parameter Code	Parameter Description	Value	Unit
DRNAREA	Area that drains to a point on a stream	65.2	square miles
PRECIP	Mean Annual Precipitation	43	inches
STRDEN	Stream Density total length of streams divided by drainage area	0.97	miles per square mile
ROCKDEP	Depth to rock	5.3	feet
CARBON	Percentage of area of carbonate rock	85.7	percent

https://streamstats.usgs.gov/ss/

StreamStats

Low-Flow Statist	-Flow Statistics Parameters [100.0 Percent (65.2 square miles) Low Flow Region 2]				
Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	65.2	square miles	4.93	1280
PRECIP	Mean Annual Precipitation	43	inches	35	50.4
STRDEN	Stream Density	0.97	miles per square mile	0.51	3.1
ROCKDEP	Depth to Rock	5.3	feet	3.32	5.65
CARBON	Percent Carbonate	85.7	percent	0	99

Low-Flow Statistics Flow Report [100.0 Percent (65.2 square miles) Low Flow Region 2]

PII: Prediction Interval-Lower, PIu: Prediction Interval-Upper, SEp: Standard Error of Prediction, SE: Standard Error (other -- see report)

Statistic	Value	Unit	SE	SEp
7 Day 2 Year Low Flow	55.3	ft*3/s	38	38
30 Day 2 Year Low Flow	56.5	ft*3/s	33	33
7 Day 10 Year Low Flow	45.2	ft*3/s	51	51
30 Day 10 Year Low Flow	45.6	ft*3/s	46	46
90 Day 10 Year Low Flow	44.9	ft^3/s	36	36

Low-Flow Statistics Citations

Stuckey, M.H.,2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006-5130, 84 p. (http://pubs.usgs.gov/sir/2006/5130/)

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the

https://streamstats.usgs.gov/ss/

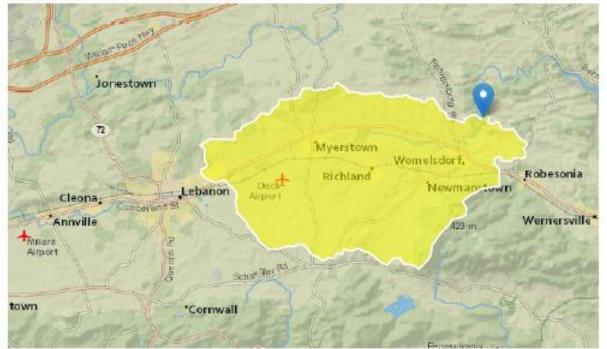
StreamStats

functionality of the software and related material nor shall the fact of release constitute any such warranty. Furthermore, the software is released on condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized use.

USGS Product Names Disclaimer: Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Application Version: 4.5.2 StreamStats Services Version: 1.2.22 NSS Services Version: 2.1.1

StreamStats


StreamStats Report

 Region ID:
 PA

 Workspace ID:
 PA20210506174454370000

 Clicked Point (Latitude, Longitude):
 40.38912, -76.16899

 Time:
 2021-05-06 13:45:11 -0400

Womelsdorf STP PA0028975 Modeling Point #3 May 2021

Basin Characte	nsues		
Parameter Code	Parameter Description	Value	Unit
DRNAREA	Area that drains to a point on a stream	67.7	square miles
PRECIP	Mean Annual Precipitation	43	inches
STRDEN	Stream Density total length of streams divided by drainage area	0.97	miles per square mile
ROCKDEP	Depth to rock	5.2	feet
CARBON	Percentage of area of carbonate rock	84,99	percent

https://streamstats.usgs.gov/ss/

5/6/2021

StreamStats

Low-Flow Statist	ics Parameters [100.0 Percent	(67.6 square	miles) Low Flow Region	2]	
Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	67.7	square miles	4.93	1280
PRECIP	Mean Annual Precipitation	43	inches	35	50.4
STRDEN	Stream Density	0.97	miles per square mile	0.51	3.1
ROCKDEP	Depth to Rock	5.2	feet	3.32	5.65
CARBON	Percent Carbonate	84.99	percent	0	99

Low-Flow Statistics Flow Report [100.0 Percent (67.6 square miles) Low Flow Region 2]

PII: Prediction Interval-Lower, PIu: Prediction Interval-Upper, SEp: Standard Error of Prediction, SE: Standard Error (other -- see report)

Statistic	Value	Unit	SE	SEp
7 Day 2 Year Low Flow	55.3	ft*3/s	38	38
30 Day 2 Year Low Flow	57	ft*3/s	33	33
7 Day 10 Year Low Flow	44.2	ft*3/s	51	51
30 Day 10 Year Low Flow	45.2	ft*3/s	46	46
90 Day 10 Year Low Flow	45	ft^3/s	36	36

Low-Flow Statistics Citations

Stuckey, M.H.,2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006-5130, 84 p. (http://pubs.usgs.gov/sir/2006/5130/)

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the

https://streamstats.usqs.gov/ss/

5/6/2021

StreamStats

functionality of the software and related material nor shall the fact of release constitute any such warranty. Furthermore, the software is released on condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized use.

USGS Product Names Disclaimer: Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Application Version: 4.5.2 StreamStats Services Version: 1.2.22 NSS Services Version: 2.1.1

Attachment B

WQM 7.0 Modeling Output Values Toxics Management Spreadsheet

		WQM 7	7.0 Ef	fluent Limits	5		
		m Code		Stream Name	-		
	03C 1	846					
RMI	Name	Permit Number	Disc Row (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)		Effl. Limit Minimum (mg/L)
24.770	Warnelsdarf STP	PA0028975	0.475	CB OD5	25		
				NH3-N	15.3	30.6	
				Dissolved Oxygen			5

Friday, May 7, 2021

Version 1.1

Page 1 of 1

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	\checkmark
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.89	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.2	Temperature Adjust Kr	~
D.O. Saturation	90.00%	Use Balanced Technology	~
D.O. Goal	6		

Friday, May 7, 2021

Version 1.1

Page 1 of 1

		am Code 1846			ream Name HOCKEN CRE	EK	
NH3-N A	Acute Allocation	s					
RMI	Discharge Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
24.77	0 Womelsdorf STP	7.99	30.6	7.99	30.6	0	0
23.40	0	NA	NA	7.99	NA	NA	NA
NH3-N (Chronic Allocati	ons					
RMI	Discharge Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
24.77	0 Womelsdorf STP	1.28	15.3	1.28	15.3	0	0
23.40	0	NA	NA	1.28	NA	NA	NA

WQM 7.0 Wasteload Allocations

Dissolved Oxygen Allocations

				CBOD5		NH3-N		l Oxygen	Critical	Percent	
_	RMI	Discharge Name	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	muluple	Baseline (mg/L)	wuluple	Reach	Reduction	
	24.77	Womelsdorf STP	25	25	15.3	15.3	5	5	0	0	
	23.40		NA	NA	NA	NA	NA	NA	NA	NA	

Input Data WQM 7.0	
--------------------	--

	SWP Basin			Str	eam Name		RMI		vation ft)	Drainage Area (sq mi)	Slop (ft/f	With	VS drawal gd)	Apply FC
	03C	18	346 TULPE	HOCKE	N CREEK		24.7	70	345.00	64.50	0.00	000	0.00	~
					St	ream Dat	ta							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Ten	<u>Tributary</u> 1p pH		<u>Strear</u> Temp	m pH	
Cond.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C)		
Q7-10 Q1-10 Q30-10	0.370	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000	0.0	0.00	0.00) 2	0.00 7	.59	0.00	0.00	
					D	ischarge	Data						1	
			Name	Pe	mit Numbe	Disc	Permitt Disc Flow (mgd)	Disc	Res v Fa	erve Te ictor	sc mp C)	Disc pH		
		Wom	elsdorf STI	P PA	0028975	0.475	0 0.475	50 0.47	750	0.000	25.00	7.46	`	
					P	arameter	Data							
		Parameter Name						Trib S Conc	Stream Conc	Fate Coef				
		Parameter Name					ng/L) (r	ng/L)	(mg/L)	(1/days)				
		CBOD5				25.00	2.00	0.00	1.50					
			Dissolved	Oxygen			5.00	8.24	0.00	0.00				
			NH3-N				15.30	0.00	0.00	0.70				

	SWP Basin	Strei Co		Stre	am Name		RMI		vation (ft)	Drainage Area (sq mi)	Slope (ft/ft)	PWS Withdrawal (mgd)	Apply FC
	03C	1	846 TULPE	EHOCKEN	I CREEK		23.40	00	341.00	65.20	0.00000	0.00	v
					S	tream Da	ta						
Design	LFY	Trib Flow	Stream Flow	Rch Trav	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	<u>Tributary</u> p pH	Tem	<u>Stream</u> p pH	
Cond.	(cfsm)	(cfs)	(cfs)	Time (days)	(fps)		(ft)	(ft)	(°C)	(°C)	
27-10	0.370	0.00	0.00	0.000	0.000	0.0	0.00	0.0	0 2	0.00 7.5	i9 (0.00 0.00	
Q1-10 Q30-10		0.00		0.000	0.000								

-	_		_
Input	Data	MOM	70
mput	Data		1.0

Name Permit Numb	er Flow Fl	nitted Desi isc Dis ow Flo Igd) (mg	c Reserve w Factor	Disc Temp (°C)	Disc pH
		0000 0.0	0000 0.000	0.00	7.00
,	Parameter Data				
Parameter Name	Disc Conc	Trib Conc		ate oef	
Parameter Name	(mg/L)	(mg/L)	(mg/L) (1/c	lays)	
CBOD5	25.00	2.00	0.00	1.50	
Dissolved Oxygen	3.00	8.24	0.00	0.00	
NH3-N	25.00	0.00	0.00	0.70	

	SWP Basir			Stre	am Name		RMI		ation ft)	Drainage Area (sq mi)	Slope (ft/ft)	PWS Withdrawal (mgd)	Apply FC
	03C	1	846 TULP	EHOCKEN	I CREEK		22.29	90	333.00	67.70	0.00000	0.0) 🗹
					S	tream Da	ta						
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	<u>Tributary</u> Ip pH	Tem	<u>Stream</u> p pH	
Cond.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)	(°C))	
Q7-10	0.370	0.00		0.000	0.000	0.0	0.00	0.00) 2	0.00 7.0	00 00	0.0 00.0	0
Q1-10 Q30-10		0.00 0.00		0.000 0.000	0.000								

Input	Data	WQM	7.0
-------	------	-----	-----

Name	Dis Permit Number	charge D Existing Disc Flow (mgd)	Permi Dis	ic W	esign Disc Flow (mgd)	Res		Disc Temp (°C)	Disc pH
	Par	0.0000 ameter D		000	0.000	0 (0.000	25.00	7.00
F	Parameter Name	Dis Co (mg	nc	Trib Conc (mg/L)	C	ream Conc ng/L)	Fate Coef (1/days)	1	
CBOD5		2	5.00	2.0	0	0.00	1.5	נ	
Dissolved	Oxygen	:	3.00	8.2	4	0.00	0.0	נ	
NH3-N		2	5.00	0.0	0	0.00	0.7	כ	

SWP Basin Stream Name 03C 1846 TULPENOCKEN CREEK Read: Coordination Flow (mod) Analysis Temperature (*C) Analysis DH 24.770 Cotal Discharge Flow (mod) Beach WCREIki Reach Deckting DH 26.973 Reach Cota (milation) Beach (WCREIkin) Reach NCREIkin Reach NCREIkin 26.9 0.374 0.45 79.237 Beach MCREIkin Beach MCREIkin 26.9 0.374 0.45 Notasion Reach NCREIkin Beach MCREIkin Beach MC	03C 18 RMI T(24.770 Reach Width (ft) 68.073 Reach CBODS (mgL) 2.69 Reach DO (mgL) 8.146 Reach Travel Time (days) 0.199 0.199 0.199 Reach Width (ft) 65.413 Reach CBODS (mgL) 2.49 Reach DO (mgL) 7.934 Reach Tine (days) 7.934	846 otal Discharge 0.473 Reach De 0.859 <u>Reach Kc (</u> 0.374 <u>Reach Kr (</u> 1.593 TravTime (days) 0.020 0.040 0.040 0.040 0.040 0.040 0.040 0.050 0.040 0.050 0.020 0.040 0.050 0.040 0.050 0.109 0.139 0.159 0.159	5 pth (ft) 9 1/days) 4 1/days) 4 1/days) 3 Subreach CBOD5 (mg/L) 2.67 2.65 2.63 2.61 2.59 2.57 2.55 2.53 2.51 2.49	Results NH3-N (mg/L) 0.45 0.44 0.43 0.43 0.43 0.43 0.43 0.43 0.42 0.41 0.41 0.40 0.40	PEHOCKEN CREEK <u>vsis Temperature (°C)</u> 20.149 <u>Reach WDRatio</u> 79.237 <u>each NH3-N (mg/L)</u> 0.46 <u>Kr Equation</u> Tsivogiou D.O. (mg/L) 8.12 8.09 8.07 8.04 8.02 8.00 7.98 7.96 7.95 7.95 7.93	7.585 Reach Velocity (fps) 0.421 Reach Kn (1/days) 0.708 Reach DO Goal (mg/L) 6
EMI Total Discharge Flow (mgd) Analysis Temperature (*C) Analysis pH 24.770 Beach Midh (ft) Beach Depth (ft) Beach MURatio Beach Velocity (fts) 68.073 0.859 79.237 0.419 7.585 Reach Cool (mgL) Beach Kc (fidays) Beach Kc (fidays) 0.421 Beach Kc (fidays) 0.199 Beach Kc (fidays) 0.374 0.46 0.708 Beach Kc (fidays) 0.199 Beach Kc (fidays) Subreach Results 0.708 Beach Kc (fidays) 0.708 0.199 Color (days) Travime CBOOS NH3-N D.0. 6 Beach Kc (fidays) 0.708 0.199 2.61 0.43 8.04 0.00 6 Beach Kc (fidays) Beach Kc (fida	RMI Ti 24.770 Reach Width.(ft) 68.073 Reach CBODS (mgL) 2.69 Reach DO (mgL) 8.146 Reach Travel Time (days) 0.199 0.199	total Discharge 0.47 Reach De 0.85 <u>Reach Kc (</u> 0.374 <u>Reach Kc (</u> 0.374 <u>Reach Kr (</u> 1.59 TravTime (days) 0.020 0.040 0.040 0.060 0.080 0.100 0.109 0.139 0.139 0.139	5 pth (ft) 9 1/days) 4 1/days) 4 1/days) 3 Subreach CBOD5 (mg/L) 2.67 2.65 2.63 2.61 2.59 2.57 2.55 2.53 2.51 2.49	Results NH3-N (mg/L) 0.45 0.44 0.43 0.43 0.43 0.43 0.43 0.43 0.42 0.41 0.41 0.40 0.40	Ivsis Temperature (°C) 20.149 Reach WDRatio 79.237 leach NH3-N (mg/L) 0.46 Kr Equation Tsivogiou D.O. (mg/L) 8.12 8.09 8.07 8.04 8.02 8.00 7.98 7.95 7.93	7.585 Reach Velocity (fps) 0.421 Reach Kn (1/days) 0.708 Reach DO Goal (mg/L) 6
24.770 0.475 20.149 7.855 Reach Uklith (ft) 66.073 Reach Depth (ft) 0.659 Reach WDFatio 7.9237 Reach Velocity (tps) 0.475 0.421 Reach CEODS (mgL) 8.146 Reach KC (tidays) 0.159 Reach KC (tidays) 0.159 KC Equation 1.593 Reach ND- Mode KC Equation 1.593 Reach ND- Cool (mgL) 0.45 8.146 Subreach Results 0.159 TravTime CEODS NH3-N 0.060 D.0.0 Reach ND Cool (mgL) 0.020 Reach ND Cool (mgL) 0.030 Reach ND Cool	24.770 Reach Width (ft) 68.073 Reach CBOD5 (mgil.) 2.69 Reach DO (mgil.) 8.146 Reach Travel Time (days) 0.199 0.199 Exact Vidth (ft) 65.413 Reach CBOD5 (mgil.) 2.49 Reach DO (mgil.) 7.934 Reach Travel Time (days)	0.475 <u>Reach Der</u> 0.855 <u>Reach Kc (</u> 0.374 <u>Reach Kr (</u> 1.593 TravTime (days) 0.020 0.040 0.060 0.060 0.060 0.080 0.100 0.119 0.139 0.139 0.159 0.179 0.199	5 pth (ft) 9 1/days) 4 1/days) 4 1/days) 3 Subreach CBOD5 (mg/L) 2.67 2.65 2.63 2.61 2.59 2.57 2.55 2.53 2.51 2.49	Results NH3-N (mg/L) 0.45 0.44 0.43 0.43 0.43 0.43 0.43 0.42 0.41 0.41 0.40 0.40	20.149 <u>Reach WDRatio</u> 79.237 leach NH3-N (mg/L) 0.46 <u>Kr Equation</u> Tsivogiou D.O. (mg/L) 8.12 8.09 8.07 8.04 8.02 8.00 7.98 7.96 7.95 7.93	7.585 Reach Velocity (fps) 0.421 Reach Kn (1/days) 0.708 Reach DO Goal (mg/L) 6
68.073 Image: Construction of the second secon	68.073 Reach CBOD5 (mgL) 2.69 Reach DO (mgL) 8.146 Reach Travel Time (days) 0.199 RMI Is 23.400 Reach Width (ft) 65.413 Reach CBOD5 (mgL) 2.49 Reach DO (mgL) 7.934 Reach Travel Time (days)	0.855 <u>Reach Kc (</u> 0.374 <u>Reach Kr ('</u> 1.593 TravTime (days) 0.020 0.040 0.040 0.060 0.060 0.060 0.080 0.100 0.119 0.139 0.139 0.159 0.179 0.199	9 1/days) 4 1/days) 3 Subreach CBOD5 (mg/L) 2.67 2.65 2.63 2.61 2.59 2.57 2.55 2.53 2.51 2.49	Results NH3-N (mg/L) 0.45 0.44 0.43 0.43 0.43 0.43 0.42 0.41 0.41 0.40 0.40	79.237 leach NH3-N (mg/L) 0.46 <u>Kr Equation</u> Tsivogiou D.O. (mg/L) 8.12 8.09 8.07 8.04 8.02 8.00 7.98 7.96 7.95 7.93	0.421 <u>Reach Kn (1/days)</u> 0.708 <u>Reach DO Goal (mg/L)</u> 6
Reach CEODS (mgL) 2.69 Reach Ko (1/days) 0.374 Reach NH3-N (mgL) 0.46 Reach Kn (1/days) 0.46 Reach Kn (1/days) 0.708 Reach ITavel Time (days) 0.199 1.593 Subreach Results 1.593 NH3-N (mgL) 0.0 Reach ITavel Time (days) 0.199 0.020 2.67 0.45 8.12 0.000 2.65 0.44 8.09 0.000 0.000 2.65 0.44 8.04 0.000 2.65 0.44 8.04 0.000 2.65 0.44 8.04 0.000 2.55 0.41 7.58 0.199 2.49 0.40 7.58 0.199 2.49 0.40 7.58 0.199 2.49 0.40 7.58 0.199 2.49 0.40 7.58 0.302 0.335 78.316 0.455 Reach ICODS (mgL) 2.49 Reach K1 (fidays) Reach K1 (fidays) Reach K1 (fidays) 0.302 0.302 0.39 0.708 Reach K1 (fidays) Reach ITavel ITime (days) Subreac	Reach CBODS (mgL) 2.69 Reach DO (mgL) 8.146 Reach Travel Time (days) 0.199	Reach Kc (0.374 Reach Kr (1.593 TravTime (days) 0.020 0.040 0.060 0.060 0.060 0.080 0.100 0.119 0.139 0.139 0.139 0.159 0.179	1/days) 4 1/days) 3 Subreach CBOD5 (mg/L) 2.67 2.65 2.63 2.61 2.59 2.57 2.55 2.53 2.51 2.49	Results NH3-N (mg/L) 0.45 0.44 0.43 0.43 0.43 0.43 0.42 0.41 0.41 0.40 0.40	Leach NH3-N (mg/L) 0.46 <u>Kr Equation</u> Tsivogiou D.O. (mg/L) 8.12 8.09 8.07 8.04 8.02 8.00 7.98 7.96 7.95 7.93	Reach Kn (1/days) 0.708 Reach DO Goal (mg/L) 6
2.69 0.374 0.45 0.45 0.708 Reach IC (mgL) 8.146 8.146 1.593 Butrach Results 0.708 Reach IC (mgL) 6 0.199 0.199 5ubreach Results 0.0 6 6 0.199 10.00 2.67 0.45 8.12 0.0 0.000 2.63 0.44 8.09 0.000 2.63 0.44 8.09 0.000 2.63 0.44 8.09 0.000 2.61 0.43 8.04 0.100 2.55 0.44 8.09 0.000 2.61 0.43 8.04 0.101 2.57 0.42 8.00 0.139 2.55 0.41 7.96 0.119 2.51 0.40 7.33 8 7.586 Reach NUCh (Ipt) 7.586 Reach Do (mgL) 0.322 0.335 78.316 0.455 Reach NUCh (Ipt) 0.455 Reach Do (mgL) 7.33 Reach NUCh (Ipt) Reach NUCh (Ipt) 0.455 0.405	2.69 Reach DO (mgL) 8.146 Reach Travel Time (days) 0.199	0.374 <u>Reach Kr (</u> 1.593 TravTime (days) 0.020 0.040 0.060 0.060 0.060 0.080 0.100 0.119 0.139 0.139 0.159 0.179 0.199	4 1/days) 3 Subreach CBOD5 (mg/L) 2.67 2.65 2.63 2.61 2.59 2.57 2.55 2.53 2.51 2.49	Results NH3-N (mg/L) 0.45 0.44 0.43 0.43 0.43 0.43 0.42 0.41 0.41 0.40 0.40	0.45 <u>Kr Equation</u> Tsivogiou D.O. (mg/L) 8.12 8.09 8.07 8.04 8.02 8.00 7.98 7.96 7.95 7.93	0.708 <u>Reach DO Goal (mg/L)</u> 6
Reach DO 8,146 Reach Kr (1)days) 1.593 Kr Equation Tsivogiou Reach DO Goal (mgil.) 6 0.199 1.593 TravTime CBODS (mgl.) Subreach Results 0.00 D.O. (mgl.) D.O. (mgl.) 0.199 TravTime (days) Subreach Results CBODS (mgl.) D.O. (mgl.) D.O. (mgl.) 0.020 2.67 0.45 8.12 0.040 2.65 0.44 8.07 0.050 2.63 0.44 8.07 0.050 2.65 0.44 8.07 0.050 2.65 0.44 8.07 0.199 2.49 0.40 7.95 0.199 2.49 0.40 7.95 0.199 2.49 0.40 7.95 0.199 2.49 0.40 7.95 0.302 0.39 Reach NECh (1)(1)(1) 8.83 0.835 78.316 Reach Kn (1)(1)(1) 0.455 Reach Do (mgl.) 0.302 Kr Equation 6 7.334 4.252 Tsivogiou 6 Reach Do (mgl.)	Reach DO (mgL) 8.146 Reach Travel Time (days) 0.199 0.	Reach Kr (1.593 TravTime (days) 0.020 0.040 0.060 0.060 0.060 0.080 0.109 0.139 0.139 0.159 0.179 0.199 0.199	1/days) 3 Subreach CBOD5 (mg/L) 2.67 2.65 2.63 2.61 2.59 2.57 2.55 2.53 2.51 2.49	NH3-N (mg/L) 0.45 0.44 0.43 0.43 0.43 0.42 0.41 0.41 0.40 0.40	Kr Equation Tsivogiou D.O. (mg/L) 8.12 8.09 8.07 8.04 8.02 8.00 7.98 7.96 7.95 7.93	Reach DO Goal (mgiL) 6
Istantor (ngl) Isp3 Tslvogiou 6 Reach Travel Time (days) 0.199 TravTime CGDOS NH3-N D.O. (day) (mgl) (mgl) 0.00 2.67 0.45 8.12 0.040 2.65 0.44 8.09 0.060 2.63 0.44 8.07 0.050 2.61 0.43 8.02 0.119 2.57 0.42 8.00 0.100 2.55 0.41 8.02 0.119 2.55 0.41 7.96 0.119 2.55 0.41 7.96 0.179 2.51 0.40 7.95 0.179 2.51 0.40 7.95 0.148 7.566 Reach Velock/utps) 6.455 Reach CBCODS (mgl) Reach Dechtin(th) Reach NC (tidays) Reach NC (tidays) Reach NC (tidays) 0.302 0.39 0.455 0.708 Reach ICCODS (mgl) 2.49 0.302 0.39 7.97 0.030 2.47 0.38 8.01 0.708 Reach I	8.146 Reach Travel Time (days) 0.199 0.19	1.59 TravTime (days) 0.020 0.040 0.040 0.060 0.080 0.100 0.119 0.139 0.159 0.159 0.179 0.199	3 Subreact CBOD5 (mg/L) 2.67 2.65 2.63 2.61 2.59 2.57 2.55 2.53 2.51 2.49	NH3-N (mg/L) 0.45 0.44 0.43 0.43 0.43 0.42 0.41 0.41 0.40 0.40	Tsivogiou D.O. (mg/L) 8.12 8.09 8.07 8.04 8.02 8.00 7.98 7.96 7.95 7.93	6
Beach Travel Time (days) Subtrach Results D.O. 0.199 TravTime CBODS NH3-N D.O. 0.199 0.020 2.67 0.45 8.12 0.000 2.65 0.44 8.09 0.060 0.000 2.65 0.44 8.09 0.060 0.000 2.65 0.43 8.04 0.100 2.55 0.41 7.96 0.119 2.57 0.42 8.00 0.119 2.57 0.42 8.00 0.119 2.51 0.40 7.95 0.119 2.51 0.40 7.95 0.119 2.51 0.40 7.95 0.119 2.49 0.40 7.33 Reach Width (fl) 0.835 78.316 Reach Nick(1/tdays) 0.249 0.302 0.39 Reach Nick(1/tdays) Reach Nick(1/tdays) 0.149 TravTime CBODS (mgL) 0.32 0.39 Reach Nick(1/tdays) 0.149 TravTime	Reach Travel Time (days) 0.199 0.199 Reach Z3.400 Reach Width (ft) 65.413 Reach CBOD5 (mgL) 2.49 Reach DO (mgL) 7.934 Reach Travel Time (days)	TravTime (days) 0.020 0.040 0.060 0.080 0.100 0.119 0.139 0.159 0.179 0.199	Subreact CBOD5 (mg/L) 2.67 2.65 2.63 2.61 2.59 2.57 2.55 2.53 2.51 2.49	NH3-N (mg/L) 0.45 0.44 0.43 0.43 0.43 0.42 0.41 0.41 0.40 0.40	D.O. (mg/L) 8.12 8.09 8.07 8.04 8.02 8.00 7.98 7.96 7.95 7.93	
0.199 TravTime CBOOS NHS-N D.O. (days) (mgL) (mgL) (mgL) (mgL) 0.020 2.67 0.45 8.12 0.040 2.65 0.44 8.09 0.060 2.63 0.44 8.07 0.080 2.61 0.43 8.04 0.199 2.53 0.41 7.96 0.119 2.57 0.42 8.00 0.139 2.53 0.41 7.96 0.179 2.51 0.40 7.93 Reach Width (ft) Reach Depth (ft) Reach WDRatio Reach Kr (lidays) Reach CBODS (mgL) 0.302 0.39 0.793 2.49 0.302 0.39 0.793 Reach ITravel Time (days) 0.1425 TravTime CBODS MH3-N 0.149 Reach Kr (lidays) Reach NH3-N (mgL) Reach NH3-N (mgL) 0.149 Reach Kr (lidays) Kr Equation Reach DO Cool (mgL) 0.149 0.0302 A17 0.38<	0.199 RMI II 23.400 Reach Width (ft) 65.413 Reach CBODS (mg/L) 2.49 Reach DO (mg/L) 7.934 Reach Travel Time (days)	(days) 0.020 0.040 0.060 0.080 0.100 0.119 0.139 0.139 0.159 0.179 0.199	CBOD5 (mg/L) 2.67 2.65 2.63 2.61 2.59 2.57 2.55 2.53 2.51 2.49	NH3-N (mg/L) 0.45 0.44 0.43 0.43 0.43 0.42 0.41 0.41 0.40 0.40	(mg/L) 8.12 8.09 8.07 8.04 8.02 8.00 7.98 7.96 7.95 7.93	Analysis oH
RMI Total Discharge Flow(mgd) Analysis Temperature (*C) Analysis pH 0.030 2.61 0.43 8.04 0.100 2.59 0.43 8.02 0.119 2.57 0.42 8.00 0.119 2.57 0.42 8.00 0.119 2.55 0.41 7.98 0.139 2.55 0.41 7.98 0.179 2.51 0.40 7.93 Reach Widh (ft) 65.413 0.835 78.316 0.435 Reach DCOIs (mgt) 7.834 78.316 0.455 2.49 0.302 0.39 0.708 Reach DC (mgt) 4.252 Telvoglou 6 Reach Kr (1/klays) Reach Travel Time (kays) 0.39 7.97 0.149 TravTime CBOOS NH3-N D.0. (days) (mg/L) (mg/L) (mg/L) 6 0.050 2.44 0.39 7.97 0.030 2.47	23.400 <u>Reach Width (ft)</u> 65.413 <u>Reach CBOD5 (mg/L)</u> 2.49 <u>Reach DO (mg/L)</u> 7.934 <u>Reach Travel Time (days)</u>	0.020 0.040 0.060 0.080 0.100 0.119 0.139 0.139 0.159 0.179 0.199	2.67 2.65 2.63 2.61 2.59 2.57 2.55 2.53 2.51 2.49	0.45 0.44 0.43 0.43 0.43 0.42 0.41 0.41 0.40 0.40	8.12 8.09 8.07 8.04 8.02 8.00 7.98 7.96 7.95 7.93	Analysis oH
RMI Iotal Discharge Flow (mgd) Analysis Temperature (*C) Analysis pH 2.49 0.40 7.93 0.455 0.44 8.09 119 2.57 0.42 8.00 0.0139 2.55 0.41 7.98 0.199 2.49 0.40 7.93 0.40 7.93 7.93 Reach Width (ft) Reach Depth (ft) Reach WDRatio Reach Velocity (fps) 0.455 Reach CRODS (mg1.) 2.49 0.302 0.39 0.455 Reach DO Goal (mg1.) 7.934 4.252 Travogiou 6 17.934 4.252 Travogiou 6 6 6 6 6 0.149 0.425 2.47 0.38 8.05 0.045 8 6 0.149 17.934 4.252 Travogiou 6 6 6 7 0.149 0.149 10.05 2.48 0.39 7.97 0.030 2.47 0.38 8.05 0.050 2.44 0.39 7.97	23.400 <u>Reach Width (ft)</u> 65.413 <u>Reach CBOD5 (mg/L)</u> 2.49 <u>Reach DO (mg/L)</u> 7.934 <u>Reach Travel Time (days)</u>	0.040 0.060 0.080 0.100 0.119 0.139 0.159 0.159 0.179 0.199	2.65 2.63 2.61 2.59 2.57 2.55 2.53 2.51 2.49	0.44 0.43 0.43 0.42 0.41 0.41 0.40 0.40	8.09 8.07 8.04 8.02 8.00 7.98 7.96 7.95 7.93	Analysis oH
BMI Iotal Discharge Flow (mgd) Analysis Temperature (*C) Analysis pH 23.400 0.43 0.44 8.07 Reach Width (ft) 0.43 8.02 0.119 2.57 0.42 8.00 0.159 2.53 0.41 7.98 0.139 2.55 0.41 7.98 0.179 2.51 0.40 7.95 0.199 2.49 0.40 7.93 Reach Width (ft) 65.413 0.475 78.316 0.455 78.316 0.455 Reach CRODS (mgL) 2.49 0.302 0.39 0.708 Reach Velocity (fps) 0.395 2.49 0.302 0.39 XF Equation Reach Strictidays) Reach Nr (1/days) Reach Strictidays) Reach Do Goal (mgL) 0.708 Reach Intravel Time (days) 0.149 TravTime CBOOS NH3-N D.0. (mgL) (mgL) 6 0.149 TravTime CBOOS NH3-N D.0. (mgL) (mgL) 6 0.149 0.103 2.47 0.38	23.400 <u>Reach Width (ft)</u> 65.413 <u>Reach CBOD5 (mg/L)</u> 2.49 <u>Reach DO (mg/L)</u> 7.934 <u>Reach Travel Time (days)</u>	0.060 0.080 0.100 0.119 0.139 0.159 0.159 0.179 0.199	2.63 2.61 2.59 2.57 2.55 2.53 2.51 2.49	0.44 0.43 0.43 0.42 0.41 0.41 0.40 0.40	8.07 8.04 8.02 8.00 7.98 7.96 7.95 7.93	Analysis oH
Reach CODS (mgL) Total Discharge Flow (mgd) Analysis Temperature (*C) Analysis pH 23.400 0.475 20.148 7.586 Reach Widh (ft) 65.413 0.835 78.316 0.455 Reach Widh (ft) 65.413 0.835 78.316 0.455 2.49 0.302 0.39 0.708 Reach Vidity (fps) 0.312 0.302 0.39 0.708 Reach Ki (1/days) Reach DO (mgL) 7.934 4.252 1stvogiou 6 Reach DO (mgL) 0.302 0.39 0.708 Reach DO Cool (mgL) 0.149 TarTime CBODS (mgL) 8.01 0.005 2.45 0.38 8.01 0.149 TarTime CBODS (mgL) 0.015 2.48 0.39 7.97 0.030 2.47 0.38 8.01 0.045 2.45 0.38 8.01 0.045 2.45 0.38 8.05 0.060 2.44 0.38 8.05 0.050 2.44 0.38 8.01 0.045	23.400 <u>Reach Width (ft)</u> 65.413 <u>Reach CBOD5 (mg/L)</u> 2.49 <u>Reach DO (mg/L)</u> 7.934 <u>Reach Travel Time (days)</u>	0.080 0.100 0.119 0.139 0.159 0.159 0.179 0.199	2.61 2.59 2.57 2.55 2.53 2.51 2.49	0.43 0.43 0.42 0.41 0.41 0.40 0.40	8.04 8.02 8.00 7.98 7.96 7.95 7.93	Analysis oH
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	23.400 <u>Reach Width (ft)</u> 65.413 <u>Reach CBOD5 (mg/L)</u> 2.49 <u>Reach DO (mg/L)</u> 7.934 <u>Reach Travel Time (days)</u>	0.100 0.119 0.139 0.159 0.179 0.199 0.199	2.59 2.57 2.55 2.53 2.51 2.49	0.43 0.42 0.41 0.41 0.40 0.40	8.02 8.00 7.98 7.96 7.95 7.93	Analysis oH
Rise Total Discharge Flow (mgd) Analysis Temperature (*C) Analysis pH 23.400 0.475 20.148 7.586 Reach Width (ft) Reach Qepth (ft) Reach WDRatio Reach Velocity (fps) 65.413 0.835 78.316 0.455 Reach CBODS (mgL) 0.302 0.39 0.708 2.49 0.400 7.93 0.455 Reach DO (mgL) 0.322 0.39 0.708 Reach DO (mgL) 7.934 7.934 7.586 Reach Travel Time (days) 0.102 0.39 0.302 0.149 TravTime CBODS NH3-N (mgL) (mgL) Reach DO Goal (mgL) 0.149 TravTime CBODS NH3-N (mgL) (mgL) (mgL) 6 0.15 2.48 0.39 7.97 0.030 2.47 0.38 8.01 0.045 2.45 0.38 8.05 0.050 2.44 0.38 8.05 0.060 2.44 0.38 8.05 0.060 2.44 0.36 <td< td=""><td>23.400 <u>Reach Width (ft)</u> 65.413 <u>Reach CBOD5 (mg/L)</u> 2.49 <u>Reach DO (mg/L)</u> 7.934 <u>Reach Travel Time (days)</u></td><td>0.119 0.139 0.159 0.179 0.199 0.199</td><td>2.57 2.55 2.53 2.51 2.49</td><td>0.42 0.41 0.41 0.40 0.40</td><td>8.00 7.98 7.96 7.95 7.93</td><td>Analysis oH</td></td<>	23.400 <u>Reach Width (ft)</u> 65.413 <u>Reach CBOD5 (mg/L)</u> 2.49 <u>Reach DO (mg/L)</u> 7.934 <u>Reach Travel Time (days)</u>	0.119 0.139 0.159 0.179 0.199 0.199	2.57 2.55 2.53 2.51 2.49	0.42 0.41 0.41 0.40 0.40	8.00 7.98 7.96 7.95 7.93	Analysis oH
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	23.400 <u>Reach Width (ft)</u> 65.413 <u>Reach CBOD5 (mg/L)</u> 2.49 <u>Reach DO (mg/L)</u> 7.934 <u>Reach Travel Time (days)</u>	0.139 0.159 0.179 0.199 0.199	2.55 2.53 2.51 2.49	0.41 0.41 0.40 0.40	7.98 7.96 7.95 7.93	Analysis oH
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	23.400 <u>Reach Width (ft)</u> 65.413 <u>Reach CBOD5 (mg/L)</u> 2.49 <u>Reach DO (mg/L)</u> 7.934 <u>Reach Travel Time (days)</u>	0.159 0.179 0.199 otal Discharge	2.53 2.51 2.49	0.41 0.40 0.40	7.96 7.95 7.93	Analysis oH
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	23.400 <u>Reach Width (ft)</u> 65.413 <u>Reach CBOD5 (mg/L)</u> 2.49 <u>Reach DO (mg/L)</u> 7.934 <u>Reach Travel Time (days)</u>	0.179 0.199 otal Discharge	2.51 2.49	0.40 0.40	7.95 7.93	Analysis oH
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	23.400 <u>Reach Width (ft)</u> 65.413 <u>Reach CBOD5 (mg/L)</u> 2.49 <u>Reach DO (mg/L)</u> 7.934 <u>Reach Travel Time (days)</u>	0.199 otal Discharge	2.49	0.40	7.93	Analysis oH
RMI Total Discharge Flow (mgd) Analysis Temperature (*C) Analysis pH 23.400 0.475 20.148 7.586 Reach Width (ft) Reach Depth (ft) Reach WDRatio Reach Velocity (fps) 0.475 0.335 78.316 0.455 Reach CBOD5 (mgL) Reach Kc (1/days) Reach NH3-N (mgL) Reach Kn (1/days) Reach Kn (1/days) Reach Kn (1/days) 0.302 0.39 0.708 2.49 0.302 0.39 0.708 Reach Kn (1/days) Reach Kn (1/days) 0.708 2.49 0.302 0.39 0.708 Reach Kn (1/days) 0.708 7.934 4.252 Tsivogiou 6 6 Reach Travel Time (days) TravTime CBODS NH3-N D.0. 0.149 TravTime CBODS NH3-N D.0. (mg/L) 0.030 2.47 0.38 8.01 0.045 2.45 0.38 8.05 0.045 2.45 0.38 8.05 0.060 2.44 0.36 8.17	23.400 <u>Reach Width (ft)</u> 65.413 <u>Reach CBOD5 (mg/L)</u> 2.49 <u>Reach DO (mg/L)</u> 7.934 <u>Reach Travel Time (days)</u>	otal Discharge				Analysis pH
23.400 0.475 20.148 7.586 Reach Width (ft) Reach Depth (ft) Reach WDRatio Reach Velocity (ftps) 65.413 0.835 78.316 0.455 Reach CBOD5 (mgL) Reach Kc (1/days) Reach NH3-N (mgL) Reach Kn (1/days) 2.49 0.302 0.39 0.708 Reach DO (mgL) Reach Kr (1/days) Kr Equation Reach DO Goal (mgL) 7.934 4.252 Tsivogiou 6 Reach Travel Time (days) Subreach Results (Gays) D.O. (mg/L) O.O 0.149 TravTime (CBOD5 (mg/L) 0.455 0.39 7.97 0.030 2.47 0.38 8.01 0.045 2.45 0.045 2.45 0.38 8.05 0.060 2.44 0.38 8.08 0.075 2.43 0.37 8.11 0.089 2.42 0.37 8.14 0.104 2.41 0.36 8.19 0.134 2.39 0.36 8.22	23.400 <u>Reach Width (ft)</u> 65.413 <u>Reach CBOD5 (mg/L)</u> 2.49 <u>Reach DO (mg/L)</u> 7.934 <u>Reach Travel Time (days)</u>		Flow (mgd) Ana	Ivsis Temperature (°C)	Analysis pH
65.413 0.835 78.316 0.455 Reach CBOD5 (mgL) Reach KC (1/days) Reach NH3-N (mgL) Reach Kn (1/days) Reach Kn (1/days) 2.49 0.302 0.39 0.708 Reach DO (moL) Reach Kr (1/days) Kr Equation Reach DO Goal (mgL) 7.934 4.252 Tsivogiou 6 Reach Travel Time (days) CBOD5 NH3-N D.O. 0.149 TravTime (days) CBOD5 NH3-N D.O. 0.149 0.015 2.48 0.39 7.97 0.030 2.47 0.38 8.01 0.045 2.45 0.38 8.05 0.060 2.44 0.38 8.08 0.075 2.43 0.37 8.11 0.089 2.42 0.37 8.14 0.104 2.41 0.36 8.19 0.134 2.39 0.36 8.22	65.413 <u>Reach CBOD5 (mg/L)</u> 2.49 <u>Reach DO (mg/L)</u> 7.934 <u>Reach Travel Time (days)</u>	0.475	5			
65.413 0.835 78.316 0.455 Reach CBOD5 (mgL) Reach KC (1/days) Reach NH3-N (mgL) Reach Kn (1/days) Reach Kn (1/days) 2.49 0.302 0.39 0.708 Reach DO (moL) Reach Kr (1/days) Kr Equation Reach DO Goal (mgL) 7.934 4.252 Tsivogiou 6 Reach Travel Time (days) CBOD5 NH3-N D.O. 0.149 TravTime (days) CBOD5 NH3-N D.O. 0.149 0.015 2.48 0.39 7.97 0.030 2.47 0.38 8.01 0.045 2.45 0.38 8.05 0.060 2.44 0.38 8.08 0.075 2.43 0.37 8.11 0.089 2.42 0.37 8.14 0.104 2.41 0.36 8.19 0.134 2.39 0.36 8.22	Reach CBOD5 (mg/L) 2.49 Reach DO (mg/L) 7.934 Reach Travel Time (days)	Reach Der	oth (ft)		Reach WDRatio	Reach Velocity (fps)
2.49 0.302 0.39 0.708 Reach DO (mgL) Reach Kr (1/days) Kr Equation Reach DO Goal (mgL) 7.934 4.252 Tsivogiou 6 Reach Travel Time (days) Subreach Results (mg/L) D.O. (mg/L) M3-N (mg/L) D.O. (mg/L) 0.149 TravTime (CBODS (mg/L)) 0.015 2.48 0.39 7.97 0.030 2.47 0.38 8.01 0.045 2.45 0.38 8.01 0.045 2.45 0.38 8.05 0.060 2.44 0.38 8.08 0.075 2.43 0.37 8.11 0.089 2.42 0.37 8.14 0.104 2.41 0.36 8.19 0.134 2.39 0.36 8.22	2.49 <u>Reach DO (mg/L)</u> 7.934 <u>Reach Travel Time (days)</u>	0.83	5		78.316	0.455
Reach DO (mgL) Reach Kr (1/days) Kr Equation Reach DO Goal (mgL) 7.934 4.252 Tsivogiou 6 Reach Travel Time (days) TravTime Subreach Results (days) D.O. (mg/L) Mi3-N D.O. (mg/L) 0.149 TravTime CBOD5 (mg/L) NH3-N (mg/L) D.O. (mg/L) 0.015 0.015 2.48 0.39 7.97 0.030 2.47 0.38 8.05 0.060 2.44 0.38 8.08 0.075 2.43 0.37 8.11 0.089 2.42 0.37 8.14 0.104 2.41 0.36 8.19 0.134 2.39 0.36 8.22	Reach DO (mg/L) 7.934 Reach Travel Time (days)			B		Reach Kn (1/days)
Total Local Title 4.252 Tsivogiou 6 Reach Travel Time (days) 0.149 TravTime CBOD5 (mg/L) NH3-N (mg/L) D.O. (mg/L) 6 0.149 TravTime (days) 0.015 2.48 0.39 7.97 0.030 2.47 0.38 8.01 0.045 2.45 0.38 8.05 0.060 2.44 0.38 8.08 0.075 2.43 0.37 8.11 0.089 2.42 0.37 8.14 0.104 2.41 0.36 8.17 0.119 2.40 0.36 8.19 0.134 2.39 0.36 8.22	7.934 Reach Travel Time (days)					
Reach Travel Time (days) Subreach Results D.O. 0.149 TravTime (days) CBOD5 (mg/L) NH3-N (mg/L) D.O. 0.015 2.48 0.39 7.97 0.030 2.47 0.38 8.01 0.045 2.45 0.38 8.05 0.060 2.44 0.38 8.08 0.075 2.43 0.37 8.11 0.089 2.42 0.37 8.14 0.104 2.41 0.36 8.17 0.104 2.41 0.36 8.19 0.134 2.39 0.36 8.22	Reach Travel Time (days)					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		4.20	2		ravogiou	•
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			CBOD5	NH3-N		
0.030 2.47 0.38 8.01 0.045 2.45 0.38 8.05 0.060 2.44 0.38 8.08 0.075 2.43 0.37 8.11 0.089 2.42 0.37 8.14 0.104 2.41 0.36 8.17 0.119 2.40 0.36 8.19 0.134 2.39 0.36 8.22		(days)	(mgr.)	(mgrL)	(mgrL)	
0.045 2.45 0.38 8.05 0.060 2.44 0.38 8.08 0.075 2.43 0.37 8.11 0.089 2.42 0.37 8.14 0.104 2.41 0.36 8.17 0.119 2.40 0.36 8.19 0.134 2.39 0.36 8.22		0.015	2.48	0.39	7.97	
0.060 2.44 0.38 8.08 0.075 2.43 0.37 8.11 0.089 2.42 0.37 8.14 0.104 2.41 0.36 8.17 0.119 2.40 0.36 8.19 0.134 2.39 0.36 8.22		0.030	2.47	0.38	8.01	
0.075 2.43 0.37 8.11 0.089 2.42 0.37 8.14 0.104 2.41 0.36 8.17 0.119 2.40 0.36 8.19 0.134 2.39 0.36 8.22		0.045	2.45	0.38	8.05	
0.089 2.42 0.37 8.14 0.104 2.41 0.36 8.17 0.119 2.40 0.36 8.19 0.134 2.39 0.36 8.22		0.060	2.44	0.38	8.08	
0.104 2.41 0.36 8.17 0.119 2.40 0.36 8.19 0.134 2.39 0.36 8.22		0.075	2.43	0.37	8.11	
0.119 2.40 0.36 8.19 0.134 2.39 0.36 8.22		0.089	2.42	0.37	8.14	
0.134 2.39 0.36 8.22		0.104	2.41	0.36	8.17	
0.149 2.38 0.35 8.22		0.134	2.39	0.36		
		0.149	2.38	0.35	8.22	
Friday, May 7, 2021 Version 1.1 Page 1 of 1	Friday, May 7, 2021					

WQM 7.0 D.O.Simulation

		WQI	1 7.0	Hydr	odyn	amic	Outr	outs			
SW	P Basin	Strea	m Code				Stream	Name			
	03C	1	846			TULP	EHOCK	EN CREE	ĸ		
Stream Flow	PWS With	Net Stream Flow	Disc Analysis Flow	Reach Slope	Depth	Width	W/D Ratio	Velocity	Reach Trav Time	Analysis Temp	Analysis pH
(cfs)	(cfs)	(cfs)	(cfs)	(ft/ft)	(ft)	(ft)		(fps)	(days)	(°C)	
0 Flow											
23.86	0.00	23.86	.7348	0.00055	.859	68.07	79.24	0.42	0.199	20.15	7.59
24.12	0.00	24.12	.7348	0.00137	.835	65.41	78.32	0.45	0.149	20.15	7.59
0 Flow											
21.23	0.00	21.23	.7348	0.00055	NA	NA	NA	0.39	0.212	20.17	7.58
21.46	0.00	21.46	.7348	0.00137	NA	NA	NA	0.43	0.159	20.17	7.59
10 Flow											
28.63	0.00	28.63	.7348	0.00055	NA	NA	NA	0.46	0.180	20.13	7.59
28.94	0.00	28.94	.7348	0.00137	NA	NA	NA	0.50	0.135	20.12	7.59
(Stream Flow (cfs) 0 Flow 23.86 24.12 0 Flow 21.23 21.46 10 Flow 28.63	Flow With (cfs) (cfs) 0 Flow 23.86 0.00 24.12 0.00 0 Flow 21.23 0.00 21.46 0.00 10 Flow 28.63 0.00	SWP Basin Stream 03C 1 Stream PWS Flow With (cfs) (cfs) 0 Flow 23.86 24.12 0.00 23.86 24.12 0.00 24.12 0 Flow 21.23 0.00 21.23 21.46 0.00 21.46 10 Flow 28.63 0.00 28.63	SWP Basin Stream Code 03C 1846 Stream PWS Flow Net With Disc Stream Flow Disc Analysis Flow (cfs) (cfs) 0 23.86 .7348 24.12 0.00 24.12 .7348 0 Flow 21.23 0.00 21.23 .7348 21.46 0.00 21.46 .7348 10 Flow 28.63 0.00 28.63 .7348	SWP Basin Stream Code 03C 1846 Stream PWS Flow Net With Disc Flow Reach Analysis (cfs) (cfs) (cfs) 0 0 0 (cfs) (cfs) 0 23.86 .7348 0.00055 24.12 0.00 24.12 .7348 0.00137 0 Flow 21.23 .000 21.23 .7348 0.00137 0 Flow 21.46 0.00 21.48 .7348 0.00137 10 Flow 28.63 0.00 28.63 .7348 0.00055	SWP Basin Stream Code 03C 1846 Stream PWS Flow Net With Disc Flow Reach Flow Depth (cfs) (cfs) (cfs) 0 1846 Disc Reach Flow Depth (cfs) (cfs) (cfs) 0 1846 Disc Reach Flow Depth (cfs) (cfs) (cfs) (ft) (ft) (ft) 0 Flow 23.86 0.00 23.86 .7348 0.00055 .859 24.12 0.00 24.12 .7348 0.00137 .835 0 Flow 21.23 0.00 21.23 .7348 0.00137 NA 10 Flow 28.63 0.00 28.63 .7348 0.00055 NA	SWP Basin Stream Code 03C 1846 TULP Stream PWS Flow Net With Disc Flow Reach Flow Depth Width (cfs) (cfs) (cfs) (cfs) (ft/ft) (ft) (ft) 0 Flow 23.86 0.00 23.86 .7348 0.00055 .859 68.07 24.12 0.00 24.12 .7348 0.00137 .835 65.41 0 Flow 21.23 0.00 21.23 .7348 0.00137 NA NA 21.46 0.00 21.46 .7348 0.00137 NA NA 10 Flow 28.63 0.00 28.63 .7348 0.00137 NA NA	SWP Basin Stream Code Stream I 03C 1846 TULPEHOCK Stream PWS Flow Net With Disc Stream Reach Analysis Depth Width W/D Ratio (cfs) (cfs) (cfs) (cfs) (ft) (ft) (ft) 0 Flow 23.86 .000 23.86 .7348 0.00055 .859 68.07 79.24 24.12 0.00 24.12 .7348 0.00137 .835 65.41 78.32 0 Flow 21.23 .000 21.23 .7348 0.00137 NA NA NA 10 Flow 28.63 0.00 28.63 .7348 0.00055 NA NA NA	03C 1846 TULPEHOCKEN CREE Stream Flow PWS With (cfs) Net Stream Flow (cfs) Disc Flow (cfs) Reach Flow (cfs) Depth (ft) Width (ft) W/D Ratio Velocity Ratio 0 Flow (cfs) O 23.86 .7348 0.00055 .859 68.07 79.24 0.42 24.12 0.00 24.12 .7348 0.00137 .835 65.41 78.32 0.45 0 Flow 21.23 0.00 21.23 .7348 0.00137 NA NA NA 0.43 10 Flow 28.63 0.00 28.63 .7348 0.00055 NA NA NA 0.43	SWP Basin Stream Code Stream Name 03C 1846 TULPEHOCKEN CREEK Stream PWS Flow Net With Disc Elow Reach Analysis Depth Width (ft) W/D Ratio Velocity Reach Trav Time (fps) Reach Trav (fps) 0 Flow cfs) (cfs) 7348 0.00055 .859 68.07 79.24 0.42 0.199 24.12 0.00 24.12 .7348 0.00137 .835 65.41 78.32 0.45 0.149 0 Flow 21.23 .7348 0.00137 NA NA NA 0.43 0.159 10 Flow 21.46 .7348 0.00137 NA NA NA 0.43 0.159 10 Flow 21.46 .7348 0.00137 NA NA NA 0.46 0.180	SWP Basin Stream Code Stream Name 03C 1846 TULPEHOCKEN CREEK Stream PWS Flow Net Stream Disc Analysis Reach Flow Depth Width (ft) W/D Ratio Velocity (res) Reach Trav Time Analysis Temp 0 Crfs (cfs) (cfs) 1846 Depth Width W/D Ratio Velocity (fps) Reach (days) Analysis Temp 0 (cfs) (cfs) (ft/ft) (ft) (ft) 0.00 20.15 0 Flow .7348 0.00055 .859 68.07 79.24 0.42 0.199 20.15 24.12 0.00 24.12 .7348 0.00137 .835 65.41 78.32 0.45 0.149 20.15 0 Flow 21.23 .7348 0.00137 NA NA NA 0.43 0.159 20.17 10 Flow 28.63 0.00 28.63 .7348 0.00055 NA NA NA 0.46

Discharge Information

Toxics Management Spreadsheet Version 1.3, March 2021

Instructions Disc	charge Stream		
Facility: Wom	elsdorf STP	NPDES Permit No.: PA0028975	Outfall No.: 001
Evaluation Type	Major Sewage / Industrial Waste	Wastewater Description: Sewage effluent	
	Direker	a Characteristics	

L				Discharge	Characteris	tics			
Γ	Design Flow	Hardness (mg/l)*	pH (SU)*	P	artial Mix Fa	actors (PMF	s)	Complete Mix	x Times (min)
	(MGD)*	naroness (ing/i)*	pn (30)*	AFC	CFC	THH	CRL	Q ₇₋₁₀	Qh
Ι	0.475	100	7.46						

					011	eft blank	0.5 M k	eft blank	0 if left blank			1 if left blank	
	Discharge Pollutant	Units	Ma	x Discharge Conc	Trib Conc	Stream Conc	Daily CV	Hourly CV	Strea m CV	Fate Coeff	FOS	Criteri a Mod	Chem Transl
	Total Dissolved Solids (PWS)	mg/L		792		Î							
2	Chloride (PWS)	mg/L		173									
	Bromide	mg/L	<	1									
5	Sulfate (PWS)	mg/L		33.2		î.							
	Fluoride (PWS)	mg/L				L.							
	Total Aluminum	µg/L											
	Total Antimony	µg/L				-							
	Total Arsenic	µg/L											
	Total Barium	µg/L				1							
	Total Beryllium	µg/L											
	Total Boron	µg/L											
	Total Cadmium	µg/L				Ϊ –							
	Total Chromium (III)	µg/L	<u> </u>										
	Hexavalent Chromium	µg/L	-										
	Total Cobalt	µg/L	<u> </u>										
	Total Copper	mg/L	<u> </u>	0.028									
2	Free Cyanide	µg/L	<u> </u>	0.020									
	Total Cyanide	µg/L	<u> </u>										
ē	Dissolved Iron		<u> </u>										
G	Total Iron	µg/L	<u> </u>			1							
	Total Lead	µg/L	<	0.002									
		mg/L	<	0.002									
	Total Manganese	µg/L				1							
	Total Mercury	µg/L											
	Total Nickel	µg/L											
	Total Phenols (Phenolics) (PWS)	µg/L				-							
	Total Selenium	µg/L											
	Total Silver	µg/L				Î							
	Total Thallium	µg/L				ļ.							
	Total Zinc	mg/L		0.154									
	Total Molybdenum	µg/L				Î							
	Acrolein	µg/L	<			Ļ							
	Acrylamide	µg/L	<										
	Acrylonitrile	µg/L	<			1							
	Benzene	µg/L	<										
	Bromoform	µg/L	<										
	Carbon Tetrachloride	µg/L	<										
	Chlorobenzene	µg/L											
	Chlorodibromomethane	µg/L	<										
	Chloroethane	µg/L	<			-							
	2-Chloroethyl Vinyl Ether	µg/L	<										

Discharge Information

Page 1

DEPARTMENT OF ENVIRONMENTAL PROTECTION

Toxics Management Spreadsheet Version 1.3, March 2021

Stream / Surface Water Information

Womelsdorf STP, NPDES Permit No. PA0028975, Outfall 001

Instructions Discharge Stream

Receiving Surface Water Name: Tulpehocken Creek

No. Reaches to Model: 1

- Statewide Criteria
- Great Lakes Criteria
- ORSANCO Criteria

Location	Stream Code*	RMI*	Elevation (ft)*	DA (mi ²)*	Slope (ft/ft)	PWS Withdr (MGD)	rawal	Apply Fish Criteria*
Point of Discharge	001846	24.77	345	64.5				Yes
End of Reach 1	001846	22.29	333	67.7				Yes

Q 7-10

Location	RMI	LFY	Flow	(cfs)	W/D	Width	Depth	Velocit	Travel	Tributa	ry	Stream	m	Analys	sis
Location	rsivii	(cfs/mi ²)*	Stream	Tributary	Ratio	(ft)	(ft)	y (fps)	Time	Hardness	pН	Hardness*	pH*	Hardness	pH
Point of Discharge	24.77	0.3699										154	7.59		
End of Reach 1	22.29	0.3699										154	7.59		

Q,

Location	RMI	LFY	Flow	(cfs)	W/D	Width	Depth	Velocit	Travel	Tributa	ary	Stream	m	Analys	sis
Location	1 SIVII	(cfs/mi ²)	Stream	Tributary	Ratio	(ft)	(ft)	y (fps)	Time	Hardness	pН	Hardness	pН	Hardness	pН
Point of Discharge	24.77														
End of Reach 1	22.29														

5/6/2021

Toxics Management Spreadsheet Version 1.3, March 2021

Model Results

Womelsdorf STP, NPDES Permit No. PA0028975, Outfall 001

Instructions Results	RETURN TO INPUTS	SAVE AS PDF	PRINT) AI) Inputs () Results () Limits
Hydrodynamics					

Wasteload Allocations

Recommended WQBELs & Monitoring Requirements

No. Samples/Month: 4

	Mass	Limits		Concentra	tion Limits				
Pollutants	AML	MDL	AML	MDL	IMAX	Units	Governing	WQBEL	Comments
Folidiants	(lbs/day)	(lbs/day)	- AME	MEA	INICOL	Offics	WQBEL	Basis	Comments
Total Copper	Report	Report	Report	Report	Report	mg/L	0.12	AFC	Discharge Conc > 10% WQBEL (no RP)
Total Zinc	Report	Report	Report	Report	Report	mg/L	0.97	AFC	Discharge Conc > 10% WQBEL (no RP)

Other Pollutants without Limits or Monitoring

The following pollutants do not require effluent limits or monitoring based on water quality because reasonable potential to exceed water quality criteria was not determined and the discharge concentration was less than thresholds for monitoring, or the pollutant was not detected and a sufficiently sensitive analytical method was used (e.g., <= Target QL).

Pollutants	Governing WQBEL	Units	Comments
Total Dissolved Solids (PWS)	N/A	N/A	PWS Not Applicable
Chloride (PWS)	N/A	N/A	PWS Not Applicable
Bromide	N/A	N/A	No WQS
Sulfate (PWS)	N/A	N/A	PWS Not Applicable
Total Lead	0.18	mg/L	Discharge Conc ≤ 10% WQBEL

Attachment C

TRC Evaluation

melsdorf STP 028975					May	
В	С	D	Е	F	G	
TRC EVALU	ATION					
Input appropri	iate values in	B4:B8 and E4:E7				
	i = Qstream (0.5	=CV Daily		
0.475 = Q discharge (MGD)		0.5	=CV Hourly			
30) = no. sample	в	1	= AFC_Partial N	lix Factor	
	3 = Chlorine D	emand of Stream	1	= CFC_Partial N	lix Factor	
0	0 = Chlorine Demand of Discharge		15	= AFC_Criteria	Compliance Time (min)	
0.5 = BAT/BPJ Value		720	= CFC_Criteria	Compliance Time (min)		
		f Safely (FOS)	0	=Decay Coeffic		
Source	Reference	AFC Calculations		Reference	CFC Calculations	
TRC	1.3.2.iii	WLA afc =		1.3.2.ii	WLA cfc = 10.109	
	PENTOXSD TRG 51a LTAMULT afc			5.1c	LTAMULT cfc = 0.581	
PENTOXSD TRO	∋ 5.1b	LTA_afc=	3.867	5.1d	LTA_cfc = 5.877	
Source		Effluent	Limit Cak	ulations		
PENTOXSD TRO	6.1f	5.1f AML MULT =				
PENTOXSD TRO	6 5.1g	AVG MON LIMIT (mg/l) = 0.500			BAT/BPJ	
		INST MAX LIMI	T (mg/l)=	1.635		
WLA afc		⁻ C_tc)) + [(AFC_Yc*Q C_Yc*Qs*Xs/Qd)]*(1-F		*e(-k*AFC_tc))		
LTAMULT afc	EXP((0.5*LN(cvh^2+1))-2.326*LN(cvh^2+1)^0.5)					
LTA_afc	wla_afc*LTAMULT_afc					
WLA_cfc	(.011/e(-k*CFC_tc) + [(CFC_Yc*Qs*.011/Qd*e(-k*CFC_tc)) +Xd + (CFC_Yc*Qs*Xs/Qd)]*(1-FOS/100)					
	EXP((0.5*LN(cvd^2/no_samples+1))-2.326*LN(cvd^2/no_samples+1)^0.5)					
LTAMULT_cfc	wla_cfc*LTAMULT_cfc					
LTAMULT_cfc LTA_cfc	wla_cfc*LTA	MOLI_CIC				
-	-	N((cvd^2/no_samples	+1)^0.5)-0	.5°LN(cvd^2/no	_samples+1))	
LTA_cfc	- EXP(2.326*LI	-			_samples+1))	