

Application Type	Renewal
	Non-
Facility Type	Municipal
Major / Minor	Minor

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

Application No.PA0029041APS ID744097Authorization ID1366485

Applicant and Facility Information

Applicant Name	Living Waters Camp And Conference Cntr	Facility Name	Living Waters Camp & Conference Cntr	
Applicant Address	300 Camp Living Water Road	Facility Address	300 Camp Living Water Road	
	Schellsburg, PA 15559-8379		Schellsburg, PA 15559-8379	
Applicant Contact	Joel Yoder	Facility Contact	Joel Yoder	
Applicant Phone	(814) 442-9342	Facility Phone	(814) 733-4212	
Client ID	286169	Site ID	452132	
Ch 94 Load Status	Not Overloaded	Municipality	Napier Township	
Connection Status		County	Bedford	
Date Application Receiv	ved August 24, 2021	EPA Waived?	Yes	
Date Application Accep	ted August 25, 2021	If No, Reason		
Purpose of Application	This is an application for NPDES re	enewal.		

Approve	Deny	Signatures	Date
x		Nicholas Hong, P.E. / Environmental Engineer Nick Hong (via electronic signature)	February 9, 2022
x		Daniel W. Martin, P.E. / Environmental Engineer Manager Maria D. Bebenek for	February 9, 2022
x		Maria D. Bebenek, P.E. / Environmental Program Manager Maria D. Bebenek	February 9, 2022

Summary of Review

The application submitted by the applicant requests a NPDES renewal permit for the Living Waters Camp and Conference Center located at 300 Camp Living Water Road, Schellsburg, PA 15559 in Bedford County, municipality of Napier Township. The existing permit became effective on March 1, 2017 and expires(d) on February 28, 2022. The application for renewal was received by DEP Southcentral Regional Office (SCRO) on August 24, 2021.

The purpose of this Fact Sheet is to present the basis of information used for establishing the proposed NPDES permit effluent limitations. The Fact Sheet includes a description of the facility, a description of the facility's receiving waters, a description of the facility's receiving waters attainment/non-attainment assessment status, and a description of any changes to the proposed monitoring/sampling frequency. Section 6 provides the justification for the proposed NPDES effluent limits derived from technology based effluent limits (TBEL), water quality based effluent limits (WQBEL), total maximum daily loading (TMDL), antidegradation, anti-backsliding, and/or whole effluent toxicity (WET). A brief summary of the outlined descriptions has been included in the Summary of Review section.

The subject facility is a 0.0078 MGD treatment facility. The applicant does not anticipate any proposed upgrades to the treatment facility in the next five years. The NPDES application has been processed as a Minor Sewage Facility due to the type of sewage and the design flow rate for the facility. The applicant disclosed the Act 14 requirement to Bedford County Commissioners and Napier Township Supervisors and the notice was received by the parties on July 28, 2021. A planning approval letter was not necessary as the facility is neither new or expanding.

Utilizing the DEP's web-based Emap-PA information system, the receiving waters has been determined to be Shawnee Branch. The sequence of receiving streams that the Shawnee Branch discharges into are the Raystown Juniata River, Juniata River, and the Susquehanna River which eventually drains into the Chesapeake Bay. The subject site is subject to the Chesapeake Bay implementation requirements. The receiving water has protected water usage for warm water fishes (WWF) and migratory fishes (MF). No Class A Wild Trout fisheries are impacted by this discharge. The absence of high quality and/or exceptional value surface waters removes the need for an additional evaluation of anti-degradation requirements.

The Shawnee Branch is a Category 2 stream listed in the 2020 Integrated List of All Waters (formerly 303d Listed Streams). This stream is an attaining stream that supports aquatic life. The receiving waters is not subject to a total maximum daily load (TMDL) plan to improve water quality in the subject facility's watershed.

The existing permit and proposed permit differ as follows:

- Due to the Chesapeake Bay WIP, monitoring for TKN and Nitrite-Nitrate shall be 1x/yr.
- Due to the EPA Triennial, E.Coli shall be monitored 1x/yr.

Sludge use and disposal description and location(s): Biosolids disposed at Lang Farms in Napier Township, Bedford County for agricultural utilization.

The proposed permit will expire five (5) years from the effective date.

Based on the review in this report, it is recommended that the permit be drafted. DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Any additional information or public review of documents associated with the discharge or facility may be available at PA DEP Southcentral Regional Office (SCRO), 909 Elmerton Avenue, Harrisburg, PA 17110. To make an appointment for file review, contact the SCRO File Review Coordinator at 717.705.4700.

1.0 Applicant

1.1 General Information

This fact sheet summarizes PA Department of Environmental Protection's review for the NPDES renewal for the following subject facility.

Facility Name:	Living Waters Camp & Conference Center
NPDES Permit #	PA0029041
Physical Address:	300 Camp Living Water Road Schellsburg, PA 15559
Mailing Address:	300 Camp Living Water Road Schellsburg, PA 15559
Contact:	Joel Yoder Plant Operator Jyoder106@gmail.com
Consultant:	There was not a consultant utilized for this NPDES renewal.

1.2 Permit History

The permit was transferred from Penn West Conference of the United Church of Christ.

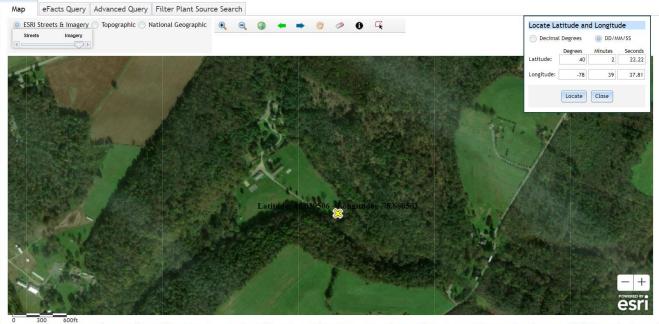
Joel Yoder states that the facility operates seasonally from April to October.

Permit submittal included the following information.

NPDES Application

2.0 Treatment Facility Summary

2.1.1 Site location


The physical address for the facility is 300 Camp Living Water Road, Schellsburg, PA 15559. A topographical and an aerial photograph of the facility are depicted as Figure 1 and Figure 2.

NPDES Permit Fact Sheet Living Waters Camp & Conference Cntr

Figure 1: Topographical map of the subject facility

Figure 2: Aerial Photograph of the subject facility

DOUTE DOUTE Imagery: Source: Esri, Maxar, GeoEye, Earthstar Geographics, CHES/Airbus DS, USDA, USGS, AeroGRID, IGN, and the GIS User Community; ESRI Streets: Sources: Esri, HERE, Garmin, USGS, Intermap, INCREMENT P, NRCan, Esri Japan, METI, Esri China (Hong Kong), Esri Korea, Esri (Thalland), NSCC, (c) OpenStreetMap contributors, and the GIS User Community

2.2 Description of Wastewater Treatment Process

The subject facility is a 0.0078 MGD design flow facility. The subject facility treats wastewater using a total of fourteen (14) tanks. The tanks include septic tank(s), two (2) adjacent sand filters, and a chlorine disinfection prior to discharge through the outfall. The facility is being evaluated for flow, pH, dissolved oxygen, TRC, CBOD5, TSS, fecal coliform, ammonianitrogen, total nitrogen, and phosphorus. The existing permits limits for the facility is summarized in Section 2.4.

The treatment process is summarized in the table.

	Treatment Facility Summary						
Freatment Facility Nar	me: Living Waters Camp &	Conference Center					
Waste Type	Degree of Treatment	Process Type	Disinfection	Avg Annual Flow (MGD)			
Sewage	Secondary	Septic Tank Sand Filter	Hypochlorite	0.0078			
Hydraulic Capacity (MGD)	Organic Capacity (Ibs/day)	Load Status	Biosolids Treatment	Biosolids Use/Disposal			
0.0078		Not Overloaded		•			

2.3 Facility Outfall Information

The facility has the following outfall information for wastewater.

Outfall No.	001		Design Flow (MGD)	.0078
Latitude	40° 2' 22.00"		Longitude	-78º 39' 35.14"
Wastewater De	escription:	Sewage Effluent		

2.3.1 Operational Considerations- Chemical Additives

Chemical additives are chemical products introduced into a waste stream that is used for cleaning, disinfecting, or maintenance and which may be detected in effluent discharged to waters of the Commonwealth. Chemicals excluded are those used for neutralization of waste streams, the production of goods, and treatment of wastewater.

The subject facility utilizes the following chemicals as part of their treatment process.

• Chlorine for disinfection

2.4 Existing NPDES Permits Limits

The existing NPDES permit limits are summarized in the table.

PART A - EFFLUENT LIMITATIONS, MONITORING, RECORDKEEPING AND REPORTING REQUIREMENTS

I. A. For Outfall ______. Latitude ______. Longitude ______. Rever Mile Index ______. Stream Code _______.

Receiving Waters: Shawnee Branch

Type of Effluent: Sewage Effluent

1. The permittee is authorized to discharge during the period from March 1, 2017 through February 28, 2022.

 Based on the anticipated wastewater characteristics and flows described in the permit application and its supporting documents and/or amendments, the following effluent limitations and monitoring requirements apply (see also Additional Requirements and Footnotes).

	Effluent Limitations							quirements
Parameter	Mass Units	(lbs/day) (1)		Concentrat	ions (mg/L)		Minimum (2)	Required
Fatameter	Average Monthly	Average Weekly	Minimum	Average Monthly	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report Daily Max	xxx	XXX	XXX	XXX	1/day	Measured
pH (S.U.)	XXX	XXX	6.0	XXX	XXX	9.0	1/day	Grab
Dissolved Oxygen	XXX	xxx	5.0	xxx	xxx	xxx	1/day	Grab
Total Residual Chlorine (TRC)	XXX	xxx	xxx	0.5	XXX	1.6	1/day	Grab
Carbonaceous Biochemical Oxygen Demand (CBOD5)	XXX	XXX	XXX	25.0	XXX	50	2/month	8-Hour Composite
Total Suspended Solids	XXX	XXX	XXX	30.0	XXX	60	2/month	8-Hour Composite
Fecal Coliform (CFU/100 ml) May 1 - Sep 30	xxx	xxx	xxx	200 Geo Mean	XXX	1000	2/month	Grab
Fecal Coliform (CFU/100 ml) Oct 1 - Apr 30	XXX	XXX	XXX	2000 Geo Mean	XXX	10,000	2/month	Grab
Ammonia-Nitrogen	XXX	XXX	xxx	Report	XXX	xxx	2/month	Grab
Total Nitrogen	XXX	XXX	XXX	XXX	XXX	Report	1/year	Grab
Total Phosphorus	XXX	XXX	xxx	xxx	xxx	Report	1/year	Grab

Samples taken in compliance with the monitoring requirements specified above shall be taken at the following location(s):

at Outfall 001

3.0 Facility NPDES Compliance History

3.1 Summary of Inspections

A summary of the most recent inspections during the existing permit review cycle is as follows.

The DEP inspector noted the following during the inspection.

08/15/2017:

- A sand bed was overgrown with weeds. Sand beds should be maintained on a regular basis and weeded as necessary.
- The facility was advised to complete a plant SOP.

08/07/2018:

- The facility completed the installation of a new effluent collection tank, chlorine contact tank, and effluent discharge pipe. The tablet chlorination was replaced with a liquid chlorine and a feed pump.
- A new pole building was constructed to house the new disinfection system.

07/17/2019:

- A small air pump was added to the chlorine contact tank to increase dissolved oxygen level.
- Dean Snyder is the new operator in charge of the treatment plant.
- The facility was advised to calibrate the pH meter each day it is used.
- Individual grab times for the 8-hr composite sample need to be recorded and kept as part of the monitoring records.

3.2 Summary of DMR Data

A review of approximately 1-year of DMR data shows that the monthly average flow data for the facility below the design capacity of the treatment system. The maximum average flow data for the DMR reviewed was 0.004 MGD in February 2021. The design capacity of the treatment system is 0.0078 MGD.

Joel Yoder stated via email correspondence on February 6, 2022 that data April, June and October had no discharge. The facility operates from April to October.

The off-site laboratory used for the analysis of the parameters was Geochemical Testing located at 2005 N. Center Avenue, Somerset, PA 15501.

Parameter	NOV-21	OCT-21	SEP-21	AUG-21	JUL-21	JUN-21	MAY-21	APR-21	MAR-21	FEB-21	JAN-21	DEC-20
Flow (MGD)												
Average Monthly			0.0008	0.0001	0.00001		0.00001		0.001	0.004	0.001	0.00087
Flow (MGD)												
Daily Maximum			0.0140	0.0018	0.00039		0.00016		0.017	0.007	0.013	0.01184
pH (S.U.)												
Minimum			6.3	7.1	6.5		6.0		6.0	6.0	6.0	6.3
pH (S.U.)												
Instantaneous												
Maximum			7.1	7.3	7.2		6.5		6.1	6.2	6.1	6.7
DO (mg/L)												
Minimum			6.1	7.7	8.3		9.7		10.9	11.6	11.0	10.62
TRC (mg/L)				0.40	a 1a				a 1a			
Average Monthly			0.4	0.40	0.40		0.50		0.40	0.50	0.70	0.5
TRC (mg/L)												
Instantaneous				0.75	0.00				0.04	0.07		4.40
Maximum	-		0.88	0.75	0.68		0.96		0.81	0.97	1.14	1.10
CBOD5 (mg/L)												
Average Monthly			< 2.0	< 2.0	< 2.0		< 2.0		< 2.0	< 2.0	< 2.0	< 2.0
TSS (mg/L)			. 2.0	< 2.0	< 2.0		< 2.0		< 3.0	. 2.0	< 2.0	< 2.0
Average Monthly Fecal Coliform			< 3.0	< 2.0	< 2.0		< 2.0		< 3.0	< 2.0	< 2.0	< 2.0
(CFU/100 ml)												
Geometric Mean			< 1.0	< 1.0	< 1.0		< 1.0		< 1.0	< 1.0	< 1.0	< 1.0
Fecal Coliform	+		< 1.0	< 1.0	< 1.0		< 1.0		< 1.0	< 1.0	< 1.0	< 1.0
(CFU/100 ml)												
Instantaneous												
Maximum			2.0	< 1.0	< 1.0		< 1.0		< 1.0	< 1.0	< 1.0	< 1.0
Total Nitrogen (mg/L)			2.0	< 1.0	< 1.0		< 1.0		< 1.0	< 1.0	< 1.0	< 1.0
Instantaneous												
Maximum											1.4	FF
Ammonia (mg/L)												
Average Monthly			< 0.17	0.59	0.13		< 0.10		< 0.10	0.11	< 0.10	< 0.10
Total Phosphorus			_							-		
(mg/L)												
Instantaneous												
Maximum											FF	FF

NPDES Permit Fact Sheet Living Waters Camp & Conference Cntr

3.3 Non-Compliance

3.3.1 Non-Compliance- NPDES Effluent

A summary of the non-compliance to the permit limits for the existing permit cycle is as follows.

From the DMR data beginning in March 1, 2017 to January 26, 2022, the following were observed effluent non-compliances.

Non Compliance	Non Compliance	Non Compliance	Parameter	Sample	Violation	Permit	Unit of	Statistical Base Code	Facility Comments
Date	Type Description	Category		Value	Condition	Value	Measure		
5/26/2017	Other	Other Violations							
5/26/2017	Sample collection less frequent than	Other Violations	Ammonia-Nitrogen						
9/28/2017	Violation of permit condition	Effluent	рН	9.5	>	9.0	S.U.	Instantaneous Maximum	As soon as high pH was detected, began slowly adding acidic solution (hydorchloric acid) to effluent in contact tanks, and bringing the pH within permit limits by the next day but slowly lowering pH to normal levels within 9 days.
9/28/2017	Violation of permit condition	Other Violations							
10/31/2017	Late DMR Submission	Other Violations							
10/31/2017	Violation of permit condition	Effluent	Dissolved Oxygen	1.9	<	5.0	mg/L	Minimum	High DO seemed to be in correlation with high pH due to new concrete contact tanks leaching into effluent; added hydrochloric acid in small amounts until pH normalized; DO normalized within a few days of getting pH back down to normal levels, and has remained consistent since then
11/5/2018	Sample collection less frequent than	Other Violations							
12/19/2018	Violation of permit condition	Effluent	Total Residual Chlorine (TRC)	0.6	>	.5	mg/L	Average Monthly	
2/5/2021	Violation of permit condition	Effluent	Total Residual Chlorine (TRC)	0.70	>	.5	mg/L	Average Monthly	The maintenance manager that checks the chemicals on a daily basis was not aware that the monthly average was a .5 and dosed the chlorine higher than that. I made him aware and we corrected the issue.

3.3.2 Non-Compliance- Enforcement Actions

A summary of the non-compliance enforcement actions for the current permit cycle is as follows:

Beginning in March 1, 2017 to January 26, 2022, there were no observed enforcement actions.

3.4 Summary of Biosolids Disposal

A summary of the biosolids disposed of from the facility is as follows.

The annual tank cleanout was conducted on July 1, 2021. A total of 3,000 gallons was pumped.

Biosolids disposed at Lang Farms in Napier Township, Bedford County for agricultural utilization.

3.5 Open Violations

No open violations existed as of January 2022.

4.0 Receiving Waters and Water Supply Information Detail Summary

4.1 Receiving Waters

The receiving waters has been determined to be Shawnee Branch. The sequence of receiving streams that the Shawnee Branch discharges into are the Raystown Juniata River, Juniata River, and the Susquehanna River which eventually drains into the Chesapeake Bay.

4.2 Public Water Supply (PWS) Intake

The closest PWS to the subject facility is Bedford Borough Water Authority (PWS ID #4050002) located approximately 11 miles downstream of the subject facility on the Raystown Branch. Based upon the distance and the flow rate of the facility, the PWS should not be impacted.

4.3 Class A Wild Trout Streams

Class A Wild Trout Streams are waters that support a population of naturally produced trout of sufficient size and abundance to support long-term and rewarding sport fishery. DEP classifies these waters as high-quality coldwater fisheries.

The information obtained from EMAP suggests that no Class A Wild Trout Fishery will be impacted by this discharge.

4.4 2020 Integrated List of All Waters (303d Listed Streams)

Section 303(d) of the Clean Water Act requires States to list all impaired surface waters not supporting uses even after appropriate and required water pollution control technologies have been applied. The 303(d) list includes the reason for impairment which may be one or more point sources (i.e. industrial or sewage discharges) or non-point sources (i.e. abandoned mine lands or agricultural runoff and the pollutant causing the impairment such as metals, pH, mercury or siltation).

States or the U.S. Environmental Protection Agency (EPA) must determine the conditions that would return the water to a condition that meets water quality standards. As a follow-up to listing, the state or EPA must develop a Total Maximum Daily Load (TMDL) for each waterbody on the list. A TMDL identifies allowable pollutant loads to a waterbody from both point and non-point sources that will prevent a violation of water quality standards. A TMDL also includes a margin of safety to ensure protection of the water.

The water quality status of Pennsylvania's waters uses a five-part categorization (lists) of waters per their attainment use status. The categories represent varying levels of attainment, ranging from Category 1, where all designated water uses are met to Category 5 where impairment by pollutants requires a TMDL for water quality protection.

The receiving waters is listed in the 2020 Pennsylvania Integrated Water Quality Monitoring and Assessment Report as a Category 2 waterbody. The surface waters is an attaining stream that supports aquatic life. The designated use has been classified as protected waters for warm water fishes (WWF) and migratory fishes (MF).

4.5 Low Flow Stream Conditions

Water quality modeling estimates are based upon conservative data inputs. The data are typically estimated using either a stream gauge or through USGS web based StreamStats program. The NPDES effluent limits are based upon the combined flows from both the stream and the facility discharge.

A conservative approach to estimate the impact of the facility discharge using values which minimize the total combined volume of the stream and the facility discharge. The volumetric flow rate for the stream is based upon the seven-day, 10-year low flow (Q710) which is the lowest estimated flow rate of the stream during a 7 consecutive day period that occurs once in 10 -year time period. The facility discharge is based upon a known design capacity of the subject facility.

The closest WQN station to the subject facility is the Raystown Branch Juniata station (WQN223). This WQN station is located approximately 67 miles downstream of the subject facility.

The closest gauge station to the subject facility is the Raystown Branch Juniata River at Saxton, PA (USGS station number 1562000). This gauge station is located approximately 67 miles downstream of the subject facility.

For WQM modeling, pH and stream water temperature data from the water quality network station was used. pH was estimated to be 8.00 and the stream water temperature was estimated to be 23.3 C.

The hardness of the stream was estimated from the water quality network to be 96 mg/l CaCO₃.

The low flow yield and the Q710 for the subject facility was estimated using StreamStats.

The low flow yield is 0.018 ft³/s/mi² and the Q710 is 0.328 ft³/s.

4.6 Summary of Dis	charge,	Receiving Waters and W	later Supply Information			
Outfall No. 001			Design Flow (MGD)	.0078		
Latitude <u>40°</u>	2' 21.89'	1	Longitude	-78º 39' 35.29"		
Quad Name			_ Quad Code			
Wastewater Descr	iption:	Sewage Effluent				
Receiving Waters	Shaw	vnee Branch (WWF)	Stream Code	15186		
NHD Com ID	6584		RMI	3.8		
Drainage Area	17.7	1100	Yield (cfs/mi ²)	0.018		
Q ₇₋₁₀ Flow (cfs)	0.328	3	Q ₇₋₁₀ Basis	StreamStats/Streamgauge		
Elevation (ft)	1191	·	Slope (ft/ft)			
Watershed No.	11-C		Chapter 93 Class.	WWF, MF		
Existing Use		e as Chapter 93 class	Existing Use Qualifier			
Exceptions to Use			Exceptions to Criteria			
Assessment Statu		Attaining Use(s) support	·			
Cause(s) of Impair	ment	Not app.	·			
Source(s) of Impai		Not app.				
TMDL Status		Not app.	Name			
Background/Ambi	ent Data	L	Data Source			
pH (SU)		8.00	Median July to Sept			
Temperature (°C)		23.3	Median July to Sept			
Hardness (mg/L)		96	Historical Median			
Other:						
Nearest Downstre	am Publ	ic Water Supply Intake	Bedford Borough Water Autho	pritv		
PWS Waters		wn Branch	Flow at Intake (cfs)	,		
PWS RMI			Distance from Outfall (mi) 11			

5.0: Overview of Presiding Water Quality Standards

5.1 General

There are at least six (6) different policies which determines the effluent performance limits for the NPDES permit. The policies are technology based effluent limits (TBEL), water quality based effluent limits (WQBEL), antidegradation, total maximum daily loading (TMDL), anti-backsliding, and whole effluent toxicity (WET) The effluent performance limitations enforced are the selected permit limits that is most protective to the designated use of the receiving waters. An overview of each of the policies that are applicable to the subject facility has been presented in Section 6.

5.2.1 Technology-Based Limitations

TBEL treatment requirements under section 301(b) of the Act represent the minimum level of control that must be imposed in a permit issued under section 402 of the Act (40 CFR 125.3). Available TBEL requirements for the state of Pennsylvania are itemized in PA Code 25, Chapter 92a.47.

The presiding sources for the basis for the effluent limitations are governed by either federal or state regulation. The reference sources for each of the parameters is itemized in the tables. The following technology-based limitations apply, subject to water quality analysis and best professional judgement (BPJ) where applicable:

Parameter	Limit (mg/l)	SBC	Federal Regulation	State Regulation
CBOD₅	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
CBOD5	40	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)
Total Suspended	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
Solids	45	Average Weekly	133.102(b)(2)	92a.47(a)(2)
рН	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform (5/1 – 9/30)	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
Fecal Coliform (5/1 – 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform (10/1 – 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
Fecal Coliform (10/1 – 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)
Total Residual Chlorine	0.5	Average Monthly	-	92a.48(b)(2)

5.3 Water Quality-Based Limitations

WQBEL are based on the need to attain or maintain the water quality criteria and to assure protection of designated and existing uses (PA Code 25, Chapter 92a.2). The subject facility that is typically enforced is the more stringent limit of either the TBEL or the WQBEL.

Determination of WQBEL is calculated by spreadsheet analysis or by a computer modeling program developed by DEP. DEP permit engineers utilize the following computing programs for WQBEL permit limitations: (1) MS Excel worksheet for Total Residual Chorine (TRC); (2) WQM 7.0 for Windows Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen Version 1.1 (WQM Model) and (3) Toxics using DEP Toxics Management Spreadsheet for Toxics pollutants.

The modeling point nodes utilized for this facility are summarized below.

General Data 1 (Modeling Point #1)	Input Value	Units
Stream Code	15186	
River Mile Index	3.8	miles
Elevation	1191	feet
Latitude	40.039506	
Longitude	-78.660503	
Drainage Area	17.7	sq miles
Low Flow Yield	0.0185	cfs/sq mile
General Data 2 (Modeling Point #2)	Input Value	Units
Stream Code	15186	
River Mile Index	2.84	miles
Elevation	1169	feet
Latitude	40.038142	
Longitude	-78.64471	
Drainage Area	18.3	sq miles
Low Flow Yield	0.0185	cfs/sq mile

5.3.1 Water Quality Modeling 7.0

The WQM Model is a computer model that is used to determine NPDES discharge effluent limitations for Carbonaceous BOD (CBOD5), Ammonia Nitrogen (NH3-N), and Dissolved Oxygen (DO) for single and multiple point source discharges scenarios. WQM Model is a complete-mix model which means that the discharge flow and the stream flow are assumed to instantly and completely mixed at the discharge node.

WQM recommends effluent limits for DO, CBOD5, and NH₃-N in mg/l for the discharge(s) in the simulation.

Four types of limits may be recommended. The limits are

- (a) a minimum concentration for DO in the discharge as 30-day average;
- (b) a 30-day average concentration for CBOD5 in the discharge;
- (c) a 30-day average concentration for the NH_3 -N in the discharge;
- (d) 24-hour average concentration for NH_3 -N in the discharge.

The WQM Model requires several input values for calculating output values. The source of data originates from either EMAP, the National Map, or Stream Stats. Data for stream gauge information, if any, was abstracted from USGS Low-Flow, Base-Flow, and Mean-Flow Regression Equations for Pennsylvania Streams authored by Marla H. Stuckey (Scientific Investigations Report 2006-5130).

The applicable WQM Effluent Limit Type are discussed in Section 6 under the corresponding parameter which is either DO, CBOD, or ammonia-nitrogen.

5.3.2 Toxics Modeling

The facility is not subject to toxics modeling.

5.3.3 Whole Effluent Toxicity (WET)

The facility is not subject to WET.

5.4 Total Maximum Daily Loading (TMDL)

5.4.1 TMDL

The goal of the Clean Water Act (CWA), which governs water pollution, is to ensure that all of the Nation's waters are clean and healthy enough to support aquatic life and recreation. To achieve this goal, the CWA created programs designed to regulate and reduce the amount of pollution entering United States waters. Section 303(d) of the CWA requires states to assess their waterbodies to identify those not meeting water quality standards. If a waterbody is not meeting standards, it is listed as impaired and reported to the U.S. Environmental Protection Agency. The state then develops a plan to clean up the impaired waterbody. This plan includes the development of a Total Maximum Daily Load (TMDL) for the pollutant(s) that were found to be the cause of the water quality violations. A Total Maximum Daily Load (TMDL) calculates the maximum amount of a specific pollutant that a waterbody can receive and still meet water quality standards.

Pennsylvania has committed to restoring all impaired waters by developing TMDLs and TMDL alternatives for all impaired waterbodies. The TMDL serves as the starting point or planning tool for restoring water quality.

5.4.1.1 Local TMDL

The subject facility does not discharge into a local TMDL.

5.4.1.2 Chesapeake Bay TMDL Requirement

The Chesapeake Bay Watershed is a large ecosystem that encompasses approximately 64,000 square miles in Maryland, Delaware, Virginia, West Virginia, Pennsylvania, New York and the District of Columbia. An ecosystem is composed of interrelated parts that interact with each other to form a whole. All of the plants and animals in an ecosystem depend on each other in some way. Every living thing needs a healthy ecosystem to survive. Human activities affect the Chesapeake Bay ecosystem by adding pollution, using resources and changing the character of the land.

Most of the Chesapeake Bay and many of its tidal tributaries have been listed as impaired under Section 303(d) of the federal Water Pollution Control Act ("Clean Water Act"), 33 U.S.C. § 1313(d). While the Chesapeake Bay is outside the boundaries of Pennsylvania, more than half of the State lies within the watershed. Two major rivers in Pennsylvania are part of the Chesapeake Bay Watershed. They are (a) the Susquehanna River and (b) the Potomac River. These two rivers total 40 percent of the entire Chesapeake Bay watershed.

The overall management approach needed for reducing nitrogen, phosphorus and sediment are provided in the Bay TMDL document and the Phase I, II, and III WIPs which is described in the Bay TMDL document and Executive Order 13508.

The Bay TMDL is a comprehensive pollution reduction effort in the Chesapeake Bay watershed identifying the necessary pollution reductions of nitrogen, phosphorus and sediment across the seven Bay watershed jurisdictions of Delaware, Maryland, New York, Pennsylvania, Virginia, West Virginia and the District of Columbia to meet applicable water quality standards in the Bay and its tidal waters.

The Watershed Implementation Plans (WIPs) provides objectives for how the jurisdictions in partnership with federal and local governments will achieve the Bay TMDL's nutrient and sediment allocations.

Phase 3 WIP provides an update on Chesapeake Bay TMDL implementation activities for point sources and DEP's current implementation strategy for wastewater. The latest revision of the supplement was December 17, 2019.

The Chesapeake Bay TMDL (Appendix Q) categorizes point sources into four sectors:

- Sector A- significant sewage dischargers;
- Sector B- significant industrial waste (IW) dischargers;
- Sector C- non-significant dischargers (both sewage and IW facilities); and
- Sector D- combined sewer overflows (CSOs).

All sectors contain a listing of individual facilities with NPDES permits that were believed to be discharging at the time the TMDL was published (2010). All sectors with the exception of the non-significant dischargers have individual wasteload allocations (WLAs) for TN and TP assigned to specific facilities. Non-significant dischargers have a bulk or aggregate

NPDES Permit Fact Sheet Living Waters Camp & Conference Cntr

allocation for TN and TP based on the facilities in that sector that were believed to be discharging at that time and their estimated nutrient loads.

Based upon the supplement the subject facility has been categorized as a Sector C discharger. The supplement defines Sector C as a non-significant discharger that includes sewage facilities (Phase 4 facilities: \geq 0.2 MGD and < 0.4 MGD and Phase 5 facilities: > 0.002 MGD and < 0.2 MGD), small flow/single residence sewage treatment facilities (\leq 0.002 MGD), and non-significant IW facilities, all of which may be covered by statewide General Permits or may have individual NPDES permits.

At this time, there are approximately 850 Phase 4 and 5 sewage facilities, approximately 715 small flow sewage treatment facilities covered by a statewide General Permit, and approximately 300 non-significant IW facilities.

For Phase 5 sewage facilities with individual permits (average annual design flow on August 29, 2005 > 0.002 MGD and < 0.2 MGD), DEP will issue individual permits with monitoring and reporting for TN and TP throughout the permit term at a frequency no less than annually, unless 1) the facility has already conducted at least two years of nutrient monitoring and 2) a summary of the monitoring results are included in the next permit's fact sheet. If, however, Phase 5 facilities choose to expand, the renewed or amended permits will contain Cap Loads based on the lesser of a) existing TN/TP concentrations at current design average annual flow or b) 7,306 lbs/yr TN and 974 lbs/yr TP.

If no data are available to determine existing concentrations for expanding Phase 4 or 5 facilities, default concentrations of 25 mg/l TN and 4 mg/l TP may be used (these are the average estimated concentrations of all non-significant sewage facilities).

DEP will not issue permits to existing Phase 4 and 5 facilities containing Cap Loads unless it is done on a broad scale or unless the facilities are expanding.

For new Phase 4 and 5 sewage discharges, in general DEP will issue new permits containing Cap Loads of "0" and new facilities will be expected to purchase credits and/or apply offsets to achieve compliance, with the exception of small flow and single residence facilities.

This facility is subject to Sector C monitoring requirements. Monitoring for nitrogen species and phosphorus shall be 1x/yr.

5.5 Anti-Degradation Requirement

Chapter 93.4a of the PA regulations requires that surface water of the Commonwealth of Pennsylvania may not be degraded below levels that protect the existing uses. The regulations specifically state that *Existing instream water uses and the level of water quality necessary to protect the existing uses shall be maintained and protected*. Antidegradation requirements are implemented through DEP's guidance manual entitled Water Quality Antidegradation Implementation Guidance (Document #391-0300-02).

The policy requires DEP to protect the existing uses of all surface waters and the existing quality of High Quality (HQ) and Exceptional Value (EV) Waters. Existing uses are protected when DEP makes a final decision on any permit or approval for an activity that may affect a protected use. Existing uses are protected based upon DEP's evaluation of the best available information (which satisfies DEP protocols and Quality Assurance/Quality Control (QA/QC) procedures) that indicates the protected use of the waterbody.

For a new, additional, or increased point source discharge to an HQ or EV water, the person proposing the discharge is required to utilize a nondischarge alternative that is cost-effective and environmentally sound when compared with the cost of the proposed discharge. If a nondischarge alternative is not cost-effective and environmentally sound, the person must use the best available combination of treatment, pollution prevention, and wastewater reuse technologies and assure that any discharge is nondegrading. In the case of HQ waters, DEP may find that after satisfaction of intergovernmental coordination and public participation requirements lower water quality is necessary to accommodate important economic or social development in the area in which the waters are located. In addition, DEP will assure that cost-effective and reasonable best management practices for nonpoint source control in HQ and EV waters are achieved.

The subject facility's discharge will be to a non-special protection waters and the permit conditions are imposed to protect existing instream water quality and uses. Neither HQ waters or EV waters is impacted by this discharge.

NPDES Permit Fact Sheet Living Waters Camp & Conference Cntr

5.6 Anti-Backsliding

Anti-backsliding is a federal regulation which prohibits a permit from being renewed, reissued, or modified containing effluent limitations which are less stringent than the comparable effluent limitations in the previous permit (40 CFR 122.I.1 and 40 CFR 122.I.2). A review of the existing permit limitations with the proposed permit limitations confirm that the facility is consistent with anti-backsliding requirements. The facility has proposed effluent limitations that are as stringent as the existing permit.

6.0 NPDES Parameter Details

The basis for the proposed sampling and their monitoring frequency that will appear in the permit for each individual parameter are itemized in this Section. The final limits are the more stringent of technology based effluent treatment (TBEL) requirements, water quality based (WQBEL) limits, TMDL, antidegradation, anti-degradation, or WET.

The reader will find in this section:

- a) a justification of recommended permit monitoring requirements and limitations for each parameter in the proposed NPDES permit;
- b) a summary of changes from the existing NPDES permit to the proposed permit; and
- c) a summary of the proposed NPDES effluent limits.

6.1 Recommended Monitoring Requirements and Effluent Limitations

A summary of the recommended monitoring requirements and effluent limitations are itemized in the tables. The tables are categorized by (a) Conventional Pollutants and Disinfection and (b) Nitrogen Species and Phosphorus.

6.1.1 Conventional Pollutants and Disinfection

Summary of Proposed NPDES Parameter Details for Conventional Pollutants and Disinfection

			ters Campground and Conference Center; PA0029041
Parameter	Permit Limitation Required by ¹ :		Recommendation
		Monitoring:	The monitoring frequency shall be daily as a grab sample (Table 6-3).
		Effluent Limit:	Effluent limits may range from pH = 6.0 to 9.0
рН (S.U.)	TBEL	Rationale:	The monitoring frequency has been assigned in accordance with Table 6-3 and the effluent limits assigned by Chapter 95.2(1).
		Monitoring:	The monitoring frequency shall be daily as a grab sample (Table 6-3).
Dissolved	551	Effluent Limit:	Effluent limits shall be greater than 5.0 mg/l.
Oxygen BPJ	Rationale:	The monitoring frequency has been assigned in accordance with Table 6-3 and the effluent limits assigned by best professional judgement.	
		Monitoring:	The monitoring frequency shall be 2x/month as an 8-hr composite sample (Table 6-3).
		<u>_</u>	Effluent limits shall not exceed 25 mg/l as an average monthly.
CBOD TBEL		Rationale:	The monitoring frequency has been assigned in accordance with Table 6-3 and the effluent limits assigned by Chapter 92a.47(a)(1). WQM modeling indicates that the TBEL is more stringent than the WQBEL. Thus, the permit limit is confined to TBEL.
		Monitoring:	The monitoring frequency shall be 2x/month as an 8-hr composite sample (Table 6-3).
			Effluent limits shall not exceed 30 mg/l as an average monthly.
TSS TBEL	Rationale:	The monitoring frequency has been assigned in accordance with Table 6-3 and the effluent limits assigned by Chapter 92a.47(a)(1). While there is no WQM modeling for this parameter, the permit limit for TSS is generally assigned similar effluent limits as CBOD or BOD. Since the TBEL is more stringent than TBEL, TBEL will apply.	
		Monitoring:	The monitoring frequency shall be on a daily basis as a grab sample (Table 6-3).
		Effluent Limit:	The average monthly limit should not exceed 0.5 mg/l and/or 1.6 mg/l as an instantaneous maximum.
TRC	TBEL	other forms of to be imposed shall be expre concentration Based on the facility calcula	lorine in both combined (chloramine) and free form is extremely toxic to freshwater fish and aquatic life (Implementation Guidance Total Residual Chlorine 1). The TRC effluent limitations d on a discharger shall be the more stringent of either the WQBEL or TBEL requirements and assed in the NPDES permit as an average monthly and instantaneous maximum effluent (Implementation Guidance Total Residual Chlorine 4). stream flow rate (lowest 7-day flow rate in 10 years) and the design flow rate of the subject ated by the TRC Evaluation worksheet, the TBEL is more stringent than the WQBEL. g frequency has been assigned in accordance with Table 6-3 and the effluent limits assigned by t8(b)(2)
		Monitoring:	The monitoring frequency shall be 2x/month as a grab sample (Table 6-3).
Fecal TBEL	Effluent Limit:	Summer effluent limits shall not exceed 200 No./100 mL as a geometric mean. Winter effluent limits shall not exceed 2000 No./100 mL as a geometric mean.	
Comorni		Rationale:	The monitoring frequency has been assigned in accordance with Table 6-3 and the effluent limits assigned by Chapter 92a.47(a)(4) and 92a.47(a)(5).
		Monitoring:	The monitoring frequency shall be 1x/yr as a grab sample (SOP).
	SOD. Chantar	Effluent Limit:	No effluent requirements.
E. Coli	SOP; Chapter 92a.61	Rationale:	Consistent with the SOP- Establishing Effluent Limitations for Individual Sewage Permits (Revised March 22, 2019) and under the authority of Chapter 92a.61, the facility will be required to monitor for E.Coli.
Notes:			
			ksliding (b) Anti-Degradation (c) SOP (d) TBEL (e) TMDL (f) WOBEL (d) WET or (b) Other

1 The NPDES permit was limited by (a) anti-Backsliding, (b) Anti-Degradation, (c) SOP, (d) TBEL, (e) TMDL, (f) WQBEL, (g) WET, or (h) Other

2 Monitoring frequency based on flow rate of 0.0078 MGD.

3 Table 6-3 (Self Monitoring Requirements for Sewage Discharges) in Technical Guidance for the Development and Specification of Effluent Limitations and Other Permit Conditions in NPDES Permits) (Document # 362-0400-001) Revised 10/97

4 Water Quality Antidegradation Implementaton Guidance (Document # 391-0300-002)

5 Phase 2 Watershed Implementation Plan Wastewater Supplement, Revised September 6, 2017

6.1.2 Nitrogen Species and Phosphorus

	Summar	y of Propose	d NPDES Parameter Details for Nitrogen Species and Phosphorus			
	Living Waters Campground and Conference Center; PA0029041					
Parameter	Permit Limitation Required by ¹ :		Recommendation			
		Monitoring:	The monitoring frequency shall be 2x/mo as grab sample			
Ammonia-	Anti-backsliding	Effluent Limit:	No effluent requirements.			
Nitrogen	Rationale:	Due to anti-backsliding, this parameter shall be continued to monitored on a 2x/mon basis.				
		Monitoring:	The monitoring frequency shall be 1x/yr as a grab sample			
Nitrate-	Chesapeake Bay	Chesapeake Bay	Effluent Limit:	No effluent requirements.		
Nitrite as N TMDL	Rationale:	Due to the Chesapeake Bay Implementation Plan, the facility is required to be monitored on a frequency at least 1x/yr.				
		Monitoring:	The monitoring frequency shall be 1x/yr as a calculation			
Total	Chesapeake Bay	Effluent Limit:	No effluent requirements.			
Nitrogen	TMDL	Rationale:	Due to the Chesapeake Bay Implementation Plan, the facility is required to be monitored on a frequency at least 1x/yr.			
		Monitoring:	The monitoring frequency shall be 1x/yr as a grab sample			
TKN	Chesapeake Bay	Effluent Limit:	No effluent requirements.			
	TMDL	Rationale:	Due to the Chesapeake Bay Implementation Plan, the facility is required to be monitored on a frequency at least 1x/yr.			
		Monitoring:	The monitoring frequency shall be 1x/yr as a grab sample			
Total	Chesapeake Bay	Effluent Limit:	No effluent requirements.			
Phosphorus	TMDL	Rationale:	Due to the Chesapeake Bay Implementation Plan, the facility is required to be monitored on a frequency at least 1x/yr.			
Notes:						

1 The NPDES permit was limited by (a) anti-Backsliding, (b) Anti-Degradation, (c) SOP, (d) TBEL, (e) TMDL, (f) WQBEL, (g) WET, or (h) Other

2 Monitoring frequency based on flow rate of 0.0078 MGD.

3 Table 6-3 (Self Monitoring Requirements for Sewage Discharges) in Technical Guidance for the Development and Specification of Effluent Limitations and Other Permit Conditions in NPDES Permits) (Document # 362-0400-001) Revised 10/97

4 Water Quality Antidegradation Implementaton Guidance (Document # 391-0300-002)

5 Phase 2 Watershed Implementation Plan Wastewater Supplement, Revised September 6, 2017

6.2 Summary of Changes From Existing Permit to Proposed Permit

A summary of how the proposed NPDES permit differs from the existing NPDES permit is summarized as follows.

Changes in Permit Monitoring or Effluent Quality					
Parameter	Existing Permit	Draft Permit			
E.Coli	No monitoring or effluent limits	Due to EPA Triennial Review, monitoring shall be 1x/yr.			
TKN	No monitoring or effluent limits	Due to the Chesapeake Bay WIP, monitoring shall be 1x/yr. This parameter shall be collected to complete the nitrogen species in total nitrogen			
Nitrite-Nitrate	No monitoring or effluent limits	Due to the Chesapeake Bay WIP, monitoring shall be 1x/yr. This parameter shall be collected to complete the nitrogen species in total nitrogen			

6.3.1 Summary of Proposed NPDES Effluent Limits

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

The proposed NPDES effluent limitations are summarized in the table below.

PART A - EFFLUENT LIMITATIONS, MONITORING, RECORDKEEPING AND REPORTING REQUIREMENTS

I.A. For Outfall __001___, Latitude __40° 2' 22.00"____, Longitude __78° 39' 35.14"___, River Mile Index __3.8____, Stream Code __15186___

 Receiving Waters:
 Shawnee Branch (WWF)

 Type of Effluent:
 Sewage Effluent

1. The permittee is authorized to discharge during the period from Permit Effective Date through Permit Expiration Date.

2. Based on the anticipated wastewater characteristics and flows described in the permit application and its supporting documents and/or amendments, the following effluent limitations and monitoring requirements apply (see also Additional Requirements and Footnotes).

			Effluent L	imitations			Monitoring Re	quirements
Parameter	Mass Units	(lbs/day) (1)		Concentrat	ions (mg/L)		Minimum ⁽²⁾	Required
Parameter	Average Monthly	Average Weekly	Minimum	Average Monthly	Daily Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report Daily Max	xxx	xxx	xxx	xxx	1/day	Measured
pH (S.U.)	XXX	xxx	6.0 Inst Min	xxx	XXX	9.0	1/day	Grab
Dissolved Oxygen	XXX	xxx	5.0 Inst Min	xxx	xxx	xxx	1/day	Grab
Total Residual Chlorine (TRC)	xxx	xxx	xxx	0.5	xxx	1.6	1/day	Grab
Carbonaceous Biochemical Oxygen Demand (CBOD5)	XXX	xxx	xxx	25.0	XXX	50	2/month	8-Hr Composite
Total Suspended Solids	XXX	xxx	xxx	30.0	XXX	60	2/month	8-Hr Composite
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	xxx	xxx	xxx	2000 Geo Mean	xxx	10000	2/month	Grab
Fecal Coliform (No./100 ml) May 1 - Sep 30	xxx	xxx	xxx	200 Geo Mean	xxx	1000	2/month	Grab
E. Coli (No./100 ml)	xxx	xxx	XXX	xxx	Report	XXX	1/year	Grab
Nitrate-Nitrite as N	xxx	xxx	xxx	Report Annl Avg	XXX	xxx	1/year	Grab
Nitrate-Nitrite as N (Total Load, Ibs) (Ibs)	Report Annl Avg	xxx	xxx	XXX	xxx	xxx	1/year	Grab

NPDES Permit Fact Sheet Living Waters Camp & Conference Cntr

Outfall001, Continued (from Permit Effective Datethrough Permit Expiration Date)

		Monitoring Requirements						
Parameter	Mass Units	(lbs/day) (1)	Concentrations (mg/L)				Minimum (2)	Required
Parameter	Average Monthly	Average Weekly	Minimum	Average Monthly	Daily Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Total Nitrogen	Report Annl Avg	XXX	XXX	Report Annl Avg	XXX	XXX	1/year	Grab
Ammonia-Nitrogen	xxx	XXX	XXX	Report	XXX	XXX	2/month	Grab
Total Kjeldahl Nitrogen	xxx	xxx	xxx	Report Annl Avg	XXX	XXX	1/year	Grab
Total Kjeldahl Nitrogen (Total Load, Ibs) (Ibs)	Report Annl Avg	XXX	XXX	xxx	XXX	XXX	1/year	Grab
Total Phosphorus	Report Annl Avg	XXX	XXX	Report Annl Avg	xxx	XXX	1/year	Grab

Samples taken in compliance with the monitoring requirements specified above shall be taken at the following location(s):

at Outfall 001

6.3.2 Summary of Proposed Permit Part C Conditions

The subject facility has the following Part C conditions.

- Chlorine Minimization
- Chesapeake Bay Nutrient Definitions
- Solids Management for Non-Lagoon Treatment Systems

Tools and References Used to Develop Permit
WQM for Windows Model (see Attachment)
Toxics Management Spreadsheet (see Attachment)
TRC Model Spreadsheet (see Attachment)
Temperature Model Spreadsheet (see Attachment)
Water Quality Toxics Management Strategy, 361-0100-003, 4/06.
Technical Guidance for the Development and Specification of Effluent Limitations, 362-0400-001, 10/97.
Policy for Permitting Surface Water Diversions, 362-2000-003, 3/98.
Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 362-2000-008, 11/96.
Technology-Based Control Requirements for Water Treatment Plant Wastes, 362-2183-003, 10/97.
Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 362-2183-004, 12/97.
Pennsylvania CSO Policy, 385-2000-011, 9/08.
Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03.
Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 391-2000-002, 4/97.
Determining Water Quality-Based Effluent Limits, 391-2000-003, 12/97.
Implementation Guidance Design Conditions, 391-2000-006, 9/97.
Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen, Version 1.0, 391-2000-007, 6/2004.
Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 391-2000-008, 10/1997.
Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments, 391-2000-010, 3/99.
Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 391-2000-011, 5/2004.
Implementation Guidance for Section 93.7 Ammonia Criteria, 391-2000-013, 11/97.
Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 391-2000-014, 4/2008.
Implementation Guidance Total Residual Chlorine (TRC) Regulation, 391-2000-015, 11/1994.
Implementation Guidance for Temperature Criteria, 391-2000-017, 4/09.
Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 391-2000-018, 10/97.
Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 391-2000-019, 10/97.
Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 391-2000-021, 3/99.
Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 391-2000-022, 3/1999.
Design Stream Flows, 391-2000-023, 9/98.
Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 391-2000-024, 10/98.
Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 391-3200-013, 6/97.
Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07.
SOP:
Other:

Attachment A

Stream Stats/Gauge Data

StreamStats Report

Region ID: PA
Workspace ID: PA20220118204515677000
Clicked Point (Latitude, Longitude): 40.03972, -78.66001
Time: 2022-01-18 15:45:36 -0500
Caimbrook Central City
New Paris
New Pans
912 m 912 m Schellsburg

Living Waters Camp and Conference Center PA0029041 Modeling Point #1 January 2022

Basin Characte	insucs		
Parameter			
Code	Parameter Description	Value	Unit
DRNAREA	Area that drains to a point on a stream	17.7	square miles
PRECIP	Mean Annual Precipitation	38	inches
STRDEN	Stream Density total length of streams divided by	2.14	miles per
	drainage area		square mile
ROCKDEP	Depth to rock	3.8	feet
CARBON	Percentage of area of carbonate rock	0	percent

Low-Flow Statistics Parameters	[100.0 Percent (17.7 sq	quare miles) Low Flow Region 2]
--------------------------------	-------------------------	---------------------------------

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	17.7	square miles	4.93	1280
PRECIP	Mean Annual Precipitation	38	inches	35	50.4
STRDEN	Stream Density	2.14	miles per square mile	0.51	3.1
ROCKDEP	Depth to Rock	3.8	feet	3.32	5.65
CARBON	Percent Carbonate	0	percent	0	99

Low-Flow Statistics Flow Report [100.0 Percent (17.7 square miles) Low Flow Region 2]

PII: Prediction Interval-Lower, PIu: Prediction Interval-Upper, ASEp: Average Standard Error of Prediction, SE: Standard Error (other -- see report)

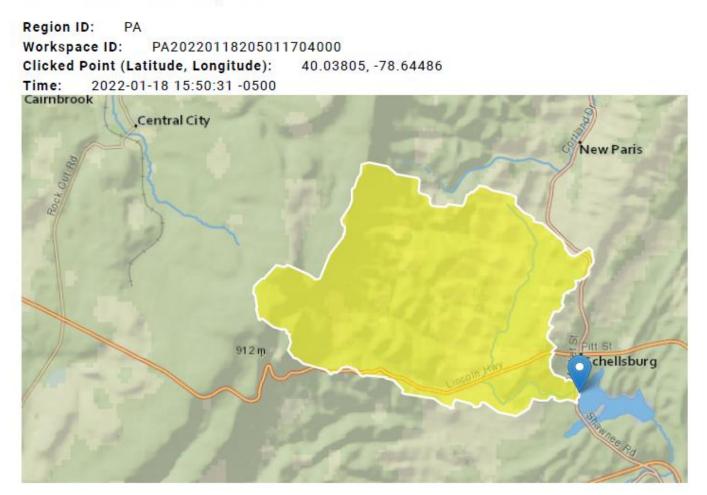
Statistic	Value	Unit	SE	ASEp
7 Day 2 Year Low Flow	0.886	ft^3/s	38	38
30 Day 2 Year Low Flow	1.32	ft^3/s	33	33
7 Day 10 Year Low Flow	0.328	ft^3/s	51	51
30 Day 10 Year Low Flow	0.506	ft^3/s	46	46
90 Day 10 Year Low Flow	0.935	ft^3/s	36	36

Low-Flow Statistics Citations

Stuckey, M.H.,2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006-5130, 84 p. (http://pubs.usgs.gov/sir/2006/5130/)

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the


NPDES Permit Fact Sheet Living Waters Camp & Conference Cntr

functionality of the software and related material nor shall the fact of release constitute any such warranty. Furthermore, the software is released on condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized use.

USGS Product Names Disclaimer: Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Application Version: 4.6.2 StreamStats Services Version: 1.2.22 NSS Services Version: 2.1.2

StreamStats Report

Living Waters Camp and Conference Center PA0029041 Modeling Point #2 January 2022

Basin Characte	nstics		
Parameter Code	Parameter Description	Value	Unit
DRNAREA	Area that drains to a point on a stream	18.3	square miles
PRECIP	Mean Annual Precipitation	38	inches
STRDEN	Stream Density total length of streams divided by drainage area	2.16	miles per square mile
ROCKDEP	Depth to rock	3.8	feet
CARBON	Percentage of area of carbonate rock	0	percent

Low-Flow Statistics Parameters	[100.0 Percent (18.3 square miles) Low Flow Region 2]
--------------------------------	---

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	18.3	square miles	4.93	1280
PRECIP	Mean Annual Precipitation	38	inches	35	50.4
STRDEN	Stream Density	2.16	miles per square mile	0.51	3.1
ROCKDEP	Depth to Rock	3.8	feet	3.32	5.65
CARBON	Percent Carbonate	0	percent	0	99

Low-Flow Statistics Flow Report [100.0 Percent (18.3 square miles) Low Flow Region 2]

PII: Prediction Interval-Lower, PIu: Prediction Interval-Upper, ASEp: Average Standard Error of Prediction, SE: Standard Error (other -- see report)

Statistic	Value	Unit	SE	ASEp
7 Day 2 Year Low Flow	0.912	ft^3/s	38	38
30 Day 2 Year Low Flow	1.36	ft^3/s	33	33
7 Day 10 Year Low Flow	0.338	ft^3/s	51	51
30 Day 10 Year Low Flow	0.521	ft^3/s	46	46
90 Day 10 Year Low Flow	0.962	ft^3/s	36	36

Low-Flow Statistics Citations

Stuckey, M.H.,2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006-5130, 84 p. (http://pubs.usgs.gov/sir/2006/5130/)

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the

functionality of the software and related material nor shall the fact of release constitute any such warranty. Furthermore, the software is released on condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized use.

USGS Product Names Disclaimer: Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Application Version: 4.6.2 StreamStats Services Version: 1.2.22 NSS Services Version: 2.1.2

14 Selected Streamflow Statistics for Streamgage Locations in and near Pennsylvania

Table 1. List of U.S. Geological Survey streamgage locations in and near Pennsylvania with updated streamflow statistics.-Continued

[Latitude and Longitude in decimal degrees; mi³, square miles]

D1561000 Brush Creek ar Gapsville, Pa. 39.956 -78.254 36.8 N D1560000 Great Tough Creek naar Marklesburg, Pa. 40.350 -78.265 756 N 01563200 Great Tough Creek naar Marklesburg, Pa. 40.350 -77.931 960 Y 01563200 Aughvick Creek naar Marklesburg, Pa. 40.429 -77.991 960 Y 01565500 Aughvick Creek nar Merke Spring, Pa. 40.213 -77.925 20.5 N 01565000 Kishacoquillas Creek at Reedsville, Pa. 40.655 -77.583 164 N 01565000 Linite Lost Creek at Okkland Mills, Pa. 40.656 -77.118 57.2 N 01565000 Cocolamus Creek nar Wayla, Pa. 40.566 -77.118 57.2 N 01565000 Justatan River at Newport, Pa. 40.371 -77.149 21.4 N 01565000 Justata River at Shermans Dale, Pa. 40.323 -77.119 3.2.5 N 01565000 Stony Creek nar Parbonok, Pa. 40.235 -77.139 21.6	Streamgage number	Streamgage name	Latitude	Longitude	Drainage area (mi²)	Regulated
01562500 Great Trough Creek near Marklesburg, Pa. 40.350 -78.130 84.6 N 01563200 Raystown Branch Juniata River below Rays Dam nr Huntingdon, Pa. 40.329 -77.991 960 Y 01563500 Juniata River at Mapleton Depot, Pa. 40.329 -77.925 2030 Y 0156500 Kizhacoguilas Creek at Reedsville, Pa. 40.655 -77.533 164 N 0156500 Lintle Lost Creek at Oakland Mills, Pa. 40.655 -77.511 6.52 N 01565000 Tuscarora Creek near Mallerstown, Pa. 40.556 -77.118 57.2 N 01565000 Cocolamus Creek near Millerstown, Pa. 40.478 -77.129 3.354 Y 01567000 Juniata River at Newport, Pa. 40.371 -77.402 15.0 N 01568000 Sherman Creek at Shermans Dale, Pa. 40.323 -77.169 207 N 01568000 Starty Creek near Carsonville, Pa. 40.323 -77.139 21.6 N 01569000 Stony Creek near Megetown, Pa. 40.325 -76.886 <th>01561000</th> <th>Brush Creek at Gapsville, Pa.</th> <th>39.956</th> <th>-78.254</th> <th>36.8</th> <th>N</th>	01561000	Brush Creek at Gapsville, Pa.	39.956	-78.254	36.8	N
01563200 Raystown Branch Juniata River below Rays Dam nr Huntingdon, Pa. 40.429 -77.991 960 Y 01563300 Juniata River at Mapleton Depot, Pa. 40.321 -77.925 203 Y 0156500 Kishacoguillas Creek at Reedsville, Pa. 40.655 -77.831 164 N 0156500 Little Lost Creek at Oakland Mills, Pa. 40.605 -77.311 6.52 N 01566000 Tuscarora Creek near Millerstown, Pa. 40.515 -77.119 214 N 01567000 Juniata River at Newport, Pa. 40.478 -77.129 3.354 Y 01567000 Bicler Run near Loysville, Pa. 40.371 -77.402 15.0 N 01568000 Sherman Creek at Shermans Dale, Pa. 40.330 -76.907 33.2 N 01568000 Latort Spring Run near Carlisle, Pa. 40.335 -77.139 21.6 N 01570000 Stonty Creek nar Dauphin, Pa. 40.335 -76.807 33.2 N 01568000 Latort Spring Run near Carlisle, Pa. 40.335 -77.021						
01563500 Juniata River at Mapleton Depot, Pa. 40.392 -77.935 2.030 Y 01564500 Aughwick Creek near Three Springs, Pa. 40.213 -77.925 205 N 01565000 Kishacoquillas Creek at Raedsville, Pa. 40.655 -77.583 164 N 0156500 Little Lost Creek at Okland Mills, Pa. 40.655 -77.419 214 N 01566000 Tuscarora Creek near Millerstown, Pa. 40.515 -77.419 214 N 01566000 Juniata River at Newport, Pa. 40.371 -77.402 15.0 N 01567000 Bixler Run near Loysville, Pa. 40.371 -77.402 15.0 N 01568000 Clark Creek near Carsonville, Pa. 40.333 -77.169 207 N 01568000 Letort Spring Run near Carisle, Pa. 40.333 -77.139 21.6 N 01569000 Letort Spring Run near Carisle, Pa. 40.252 -77.021 47.0 Y 01570000 Susquehanna River at Harrisburg, Pa. 40.338 -76.850 11.2 <						
01564500 Aughwick Creek near Three Springs, Pa. 40.213 -77.925 205 N 01565000 Kishacoguillas Creek at Reedsville, Pa. 40.655 -77.583 164 N 01565700 Lintle Lost Creek at Oakland Mills, Pa. 40.655 -77.518 164 N 01565000 Tuscarora Creek near Port Royal, Pa. 40.515 -77.119 214 N 01565000 Juniata River at Newport, Pa. 40.478 -77.129 3354 Y 01567000 Juniata River at Newport, Pa. 40.478 -77.129 3354 Y 01567000 Birdler Rum near Loysville, Pa. 40.371 -77.402 15.0 N 01568000 Clark Creek near Carsonville, Pa. 40.380 -76.9907 33.2 N 01569000 Letot Spring Rum near Carlisle, Pa. 40.255 -77.688 24.100 Y 01570000 Susquehama River at Harrisburg, Pa. 40.255 -76.886 24.100 Y 01570000 Susquehama River at Harrisburg, Pa. 40.323 -76.850 11.2 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>						
01565000 Kishacoquillas Creek at Reedoville, Pa. 40.655 -77.583 164 N 01565700 Little Lost Creek at Oakland Mills, Pa. 40.605 -77.311 6.52 N 01566000 Tuscarora Creek near Port Royal, Pa. 40.515 -77.419 214 N 01566700 Juniata River at Newport, Pa. 40.515 -77.118 57.2 N 01567000 Juniata River at Newport, Pa. 40.371 -77.402 15.0 N 01568000 Sherman Creek at Shermans Dale, Pa. 40.323 -77.169 20.7 N 01568000 Clark Creek near Caronville, Pa. 40.480 -76.571 22.5 LF 01569000 Clark Creek near Carony Pa. 40.252 -77.021 470 LF 01570000 Conodoguinet Creek near Carony Fa. 40.252 -77.021 470 LF 01570000 Susquehanma River at Harrisburg, Pa. 40.255 -76.886 24.100 Y 01570000 Pastor Creek near Carony Hill, Pa. 40.225 -76.898 213 N						
01565700 Little Lost Creek at Oakland Mills, Pn. 40,605 -77.311 6.52 N 01566000 Tuscarora Creek near Port Royal, Pn. 40,515 -77.419 214 N 01566500 Cocolannas Creek near Millerstown, Pn. 40,566 -77.118 57.2 N 01567000 Juniata River at Nærgourt, Pn. 40,478 -77.129 33.54 Y 01568000 Sherman Creek at Shermans Dale, Pn. 40,323 -77.169 20.7 N 01568000 Stong Creek near Carsonville, Pn. 40,460 -76.751 22.5 LF 01569800 Letort Spring Run near Carlisle, Pn. 40,235 -77.139 21.6 N 01570000 Conodoguinet Creek naer Hogestown, Pn. 40,255 -76.886 24,100 Y 01570000 Denodoguinet Creek naer Pathrok, Pa. 40,538 -76.377 34.3 N 01570000 Lower Little Swatara Creek naer Inwood, Pa. 40,538 -76.377 34.3 N 01570000 Lower Little Swatara Creek near Mine Grove, Pn. 40,403 -76.571 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
01566000 Tuscarora Creek near Port Royal, Pn. 40.515 -77.419 214 N 01566500 Cocolamas Creek near Millerstown, Pa. 40.566 -77.118 57.2 N 01567000 Juniata River at Newport, Pa. 40.478 -77.129 3.354 Y 01567000 Bixler Run near Loysville, Pa. 40.371 -77.402 15.0 N 01568000 Sherman Creek at Shermans Dale, Pa. 40.323 -77.169 207 N 01568000 Clark Creek near Carsonville, Pa. 40.380 -76.751 22.5 LF 01569000 Storty Creek nr Dauphin, Pa. 40.325 -77.139 21.6 N 01569000 Conodoguinet Creek near Hogestown, Pa. 40.252 -77.021 470 LF 01570000 Concodoguinet Creek near Camp Hill, Pa. 40.308 -76.850 11.2 N 01571000 Paxton Creek near Pine Grove, Pa. 40.533 -76.402 116 N 01572025 Swatara Creek near Ellegrove, Pa. 40.333 -76.402 116 N						-
01566500 Cocolannus Creek near Millerstown, Pa. 40.566 -77.118 57.2 N 01567000 Juniata River at Newport, Pa. 40.478 -77.129 3,354 Y 01567500 Bixler Run near Loysville, Pa. 40.371 -77.402 15.0 N 01568500 Sherman Creek at Shermans Dale, Pa. 40.323 -77.169 207 N 01568500 Clark Creek near Carsonville, Pa. 40.460 -76.751 22.5 LF 01569500 Stony Creek ner Carsonville, Pa. 40.235 -77.139 21.6 N 01569500 Letort Spring Run near Carlisle, Pa. 40.255 -76.806 24,100 Y 01570000 Donodoguinet Creek near Hagestown, Pa. 40.255 -76.886 21.3 N 01570000 Pavton Creek near Deprook, Pa. 40.308 -76.898 21.3 N 01571500 Yellow Breeches Creek near Grove, Pa. 40.538 -76.377 34.3 N 01572000 Lower Little Swatara Creek at Pine Grove, Pa. 40.433 -76.551 167	01565700					
01567000 Juniata River at Newport, Pa. 40.478 -77.129 3.354 Y 01567500 Bixler Run near Loysville, Pa. 40.371 -77.402 15.0 N 01568000 Sherman Creek at Shermans Dale, Pa. 40.323 -77.169 207 N 01568500 Clark Creek near Carsonville, Pa. 40.380 -76.751 22.5 LF 01569800 Letott Spring Run near Carlisle, Pa. 40.380 -76.907 33.2 N 01569800 Letott Spring Run near Carlisle, Pa. 40.255 -76.886 24.100 Y 01571000 Paston Creek near Hogestown, Pa. 40.255 -76.886 24.100 Y 01571000 Paston Creek near Camp Hill, Pa. 40.225 -76.890 11.2 N 01571200 Lower Little Swatara Creek at Pine Grove, Pa. 40.538 -76.377 34.3 N 01572025 Swatara Creek near Inwood, Pa. 40.333 -76.402 116 N 01573000 Swatara Creek at Harper Tavern, Pa. 40.333 -76.433 7.87 N	01566000					
01567500 Bixler Run near Loysville, Pa. 40.371 -77.402 15.0 N 01568000 Sherman Creek at Shermans Dale, Pa. 40.323 -77.169 207 N 01568500 Clark Creek near Carsonville, Pa. 40.460 -76.751 22.5 LF 01569900 Stony Creek near Carsonville, Pa. 40.380 -76.907 33.2 N 01569800 Letort Spring Run near Carisle, Pa. 40.235 -77.139 21.6 N 01570000 Concodoguinet Creek near Hogestown, Pa. 40.252 -76.886 24,100 Y 01571000 Paxton Creek near Penbrook, Pa. 40.308 -76.850 11.2 N 01571000 Paxton Creek near Camp Hill, Pa. 40.225 -76.898 213 N 01572000 Lower Little Swatara Creek at Pine Grove, Pa. 40.533 -76.402 116 N 01572005 Swatara Creek near Inwood, Pa. 40.403 -76.577 337 N 01573100 Swatara Creek at Harper Tavern, Pa. 40.323 -76.483 7.87 N						
01568000 Sherman Creek at Shermans Dale, Pa. 40.323 -77.169 207 N 01568500 Clark Creek near Carsonville, Pa. 40.460 -76.751 22.5 LF 01569800 Stony Creek nr Dauphin, Pa. 40.380 -76.907 33.2 N 01569800 Letort Spring Run near Carlisle, Pa. 40.255 -77.139 21.6 N 01570500 Conodoguinet Creek near Hogestown, Pa. 40.255 -76.886 24,100 Y 01571000 Paxton Creek near Penbrook, Pa. 40.308 -76.850 11.2 N 01571500 Vellow Breeches Creek near Comp Hill, Pa. 40.533 -76.4850 11.2 N 01570200 Lower Little Swatara Creek at Pine Grove, Pa. 40.533 -76.402 116 N 01572020 Swatara Creek near Inwood, Pa. 40.479 -76.571 337 N 01573000 Swatara Creek near Cleona, Pa. 40.323 -76.483 7.87 N 01573160 Quittapahilla Creek near Bellegrove, Pa. 40.343 -76.550 74.2		•			3,354	
01568500 Clark Creek near Carsonville, Pa. 40.460 -76.751 22.5 LF 01569000 Stony Creek nr Dauphin, Pa. 40.380 -76.907 33.2 N 01569800 Letort Spring Run near Carlisle, Pa. 40.235 -77.139 21.6 N 01570000 Conodoguinet Creek near Hogestown, Pa. 40.252 -77.021 470 LF 01571000 Paxton Creek near Hogestown, Pa. 40.308 -76.850 11.2 N 01571000 Paxton Creek near Camp Hill, Pa. 40.225 -76.898 213 N 015712000 Lower Little Swatara Creek at Pine Grove, Pa. 40.538 -76.377 34.3 N 01572000 Lower Little Swatara Creek near Creen, Pa. 40.533 -76.402 116 N 01572015 Swatara Creek near Inwood, Pa. 40.403 -76.571 33.7 N 01573000 Swatara Creek at Harper Tavern, Pa. 40.403 -76.577 337 N 01573000 Swatara Creek at Bellegrove, Pa. 40.343 -76.562 74.2 <		•				
01569000 Stony Creek nr Dauphin, Pa. 40.380 -76.907 33.2 N 01569800 Letort Spring Run near Carlisle, Pa. 40.235 -77.139 21.6 N 01570000 Conodoguinet Creek near Hogestown, Pa. 40.252 -77.021 470 LF 01571000 Paxton Creek near Harrisburg, Pa. 40.255 -76.886 24,100 Y 01571000 Paxton Creek near Centry Fill, Pa. 40.255 -76.896 213 N 01571000 Paxton Creek near Camp Hill, Pa. 40.225 -76.898 213 N 01572005 Swatara Creek near Pine Grove, Pa. 40.538 -76.377 34.3 N 01572005 Swatara Creek near Pine Grove, Pa. 40.533 -76.402 116 N 01573000 Swatara Creek near Cleona, Pa. 40.403 -76.577 337 N 01573000 Swatara Creek near Bellegrove, Pa. 40.343 -76.656 74.2 N 01573500 Manada Creek at Manada Gap, Pa. 40.397 -76.709 13.5 N						
01569800 Letort Spring Run near Carlisle, Pa. 40.235 -77.139 21.6 N 01570000 Conodoguinet Creek near Hogestown, Pa. 40.252 -77.021 470 LF 01570000 Susquehanna River at Harrisburg, Pa. 40.255 -76.886 24,100 Y 01571000 Paxton Creek near Penbrook, Pa. 40.308 -76.850 11.2 N 01571000 Lower Little Swatara Creek at Pine Grove, Pa. 40.538 -76.377 34.3 N 01572000 Lower Little Swatara Creek at Pine Grove, Pa. 40.533 -76.402 116 N 01572015 Swatara Creek near Theore, Pa. 40.533 -76.402 116 N 01572020 Lower Little Swatara Creek near Inwood, Pa. 40.479 -76.531 167 N 01573086 Beck Creek near Cleona, Pa. 40.323 -76.483 7.87 N 01573160 Quittapahilla Creek near Bellegrove, Pa. 40.324 -76.502 74.2 N 01573500 Manada Creek at Manada Gap, Pa. 40.298 -76.668 <td< td=""><td>01568500</td><td></td><td>40.460</td><td>-76.751</td><td></td><td></td></td<>	01568500		40.460	-76.751		
01570000 Conodoguinet Creek near Hogestown, Pa. 40.252 -77.021 470 LF 01570500 Susquehanna River at Harrisburg, Pa. 40.255 -76.886 24,100 Y 01571000 Paxton Creek near Penbrook, Pa. 40.308 -76.850 11.2 N 01571000 Vellow Breeches Creek near Camp Hill, Pa. 40.255 -76.898 213 N 01572000 Lower Little Swatara Creek at Pine Grove, Pa. 40.538 -76.377 34.3 N 01572025 Swatara Creek near Inwood, Pa. 40.479 -76.531 167 N 01573000 Swatara Creek at Harper Tavern, Pa. 40.403 -76.577 337 N 01573000 Swatara Creek near Cleona, Pa. 40.323 -76.483 7.87 N 01573000 Swatara Creek near Bellegrove, Pa. 40.397 -76.502 74.2 N 01573500 Manada Creek near Manchester, Pa. 40.397 -76.668 483 N 01573500 Swatara Creek near Manchester, Pa. 40.022 -76.709 13.5	01569000	· · ·	40.380		33.2	
01570500 Susquehanna River at Harrisburg, Pa. 40.255 -76.886 24,100 Y 01571000 Paxton Creek near Penbrook, Pa. 40.308 -76.850 11.2 N 01571500 Yellow Breeches Creek near Camp Hill, Pa. 40.225 -76.898 213 N 01572000 Lower Little Swatara Creek at Pine Grove, Pa. 40.538 -76.377 34.3 N 01572025 Swatara Creek near Inwood, Pa. 40.403 -76.531 167 N 01573000 Swatara Creek at Harper Tavern, Pa. 40.403 -76.577 337 N 01573000 Swatara Creek near Cleona, Pa. 40.323 -76.483 7.87 N 01573000 Swatara Creek near Bellegrove, Pa. 40.343 -76.562 74.2 N 01573500 Quittapahila Creek near Hershey, Pa. 40.397 -76.668 483 N 01573500 Swatara Creek near Hershey, Pa. 40.298 -76.668 483 N 01574000 West Conewago Creek near York, Pa. 39.879 -76.533 75.5 <t< td=""><td>01569800</td><td></td><td></td><td></td><td></td><td></td></t<>	01569800					
01571000 Paxton Creek near Penbrook, Pa. 40.308 -76.850 11.2 N 01571500 Yellow Breeches Creek near Camp Hill, Pa. 40.225 -76.898 213 N 01571000 Lower Little Swatara Creek at Pine Grove, Pa. 40.538 -76.377 34.3 N 01572025 Swatara Creek near Pine Grove, Pa. 40.533 -76.402 116 N 01572000 Swatara Creek near Inwood, Pa. 40.479 -76.531 167 N 01573000 Swatara Creek at Harper Tavern, Pa. 40.403 -76.777 337 N 01573000 Swatara Creek near Cleona, Pa. 40.323 -76.483 7.87 N 01573060 Beck Creek near Cleona, Pa. 40.397 -76.709 13.5 N 01573500 Manada Creek near Hershey, Pa. 40.397 -76.668 483 N 01574000 West Conewago Creek near Manchester, Pa. 40.082 -76.720 510 N 01575500 Codorus Creek near York, Pa. 39.921 -76.749 117 Y <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
01571500 Yellow Breeches Creek near Camp Hill, Pa. 40.225 -76.898 213 N 01572000 Lower Little Swatara Creek at Pine Grove, Pa. 40.538 -76.377 34.3 N 01572025 Swatara Creek near Pine Grove, Pa. 40.533 -76.402 116 N 01572025 Swatara Creek near Inwood, Pa. 40.479 -76.531 167 N 01573000 Swatara Creek at Harper Tavern, Pa. 40.403 -76.577 337 N 01573006 Beck Creek near Cleona, Pa. 40.323 -76.483 7.87 N 01573160 Quintapahilla Creek near Bellegrove, Pa. 40.343 -76.562 74.2 N 01573500 Manada Creek near Hershey, Pa. 40.397 -76.709 13.5 N 01573500 Swatara Creek near Manchester, Pa. 40.082 -76.720 510 N 01574000 West Conewago Creek near Manchester, Pa. 39.879 -76.853 75.5 Y 01575500 Codorus Creek near York, Pa. 39.946 -76.755 222					24,100	
01572000 Lower Little Swatara Creek at Pine Grove, Pa. 40.538 -76.377 34.3 N 01572025 Swatara Creek near Pine Grove, Pa. 40.533 -76.402 116 N 01572190 Swatara Creek near Inwood, Pa. 40.479 -76.531 167 N 01573000 Swatara Creek at Harper Tavern, Pa. 40.403 -76.577 337 N 01573086 Beck Creek near Cleona, Pa. 40.323 -76.483 7.87 N 01573000 Quittapahilla Creek near Bellegrove, Pa. 40.343 -765.62 74.2 N 01573500 Manada Creek at Manada Gap, Pa. 40.397 -76.608 483 N 01573500 Manada Creek near Hershey, Pa. 40.298 -76.668 483 N 01573500 West Conewago Creek near Manchester, Pa. 40.082 -76.720 510 N 01574000 West Conewago Creek near York, Pa. 39.921 -76.749 117 Y 01575000 South Branch Codorus Creek near York, Pa. 39.946 -76.531 25.990						
01572025 Swatara Creek near Pine Grove, Pa. 40.533 -76.402 116 N 01572190 Swatara Creek near Inwood, Pa. 40.479 -76.531 167 N 01573000 Swatara Creek at Harper Tavern, Pa. 40.403 -76.577 337 N 01573086 Beck Creek near Cleona, Pa. 40.323 -76.483 7.87 N 01573160 Quittapahilla Creek near Bellegrove, Pa. 40.343 -76.562 74.2 N 01573500 Manada Creek at Manada Gap, Pa. 40.397 -76.668 483 N 01573560 Swatara Creek near Hershey, Pa. 40.298 -76.668 483 N 01574000 West Conewago Creek near Manchester, Pa. 40.082 -76.720 510 N 01574500 Codorus Creek near York, Pa. 39.879 -76.531 25.97 Y 01575000 South Branch Codorus Creek near York, Pa. 39.946 -76.755 222 Y 01576000 Susquehanna River at Marietta, Pa. 40.055 -76.531 25,990 Y						
01572190 Swatara Creek near Inwood, Pa. 40.479 -76.531 167 N 01573000 Swatara Creek at Harper Tavern, Pa. 40.403 -76.577 337 N 01573006 Beck Creek near Cleona, Pa. 40.323 -76.483 7.87 N 01573100 Quittapahilla Creek near Bellegrove, Pa. 40.343 -76.562 74.2 N 01573500 Manada Creek at Manada Gap, Pa. 40.397 -76.709 13.5 N 01573600 Swatara Creek near Hershey, Pa. 40.298 -76.668 483 N 01574000 West Conewago Creek near Manchester, Pa. 40.082 -76.720 510 N 01574000 West Conewago Creek near York, Pa. 39.879 -76.853 75.5 Y 01575000 South Branch Codorus Creek near York, Pa. 39.921 -76.749 117 Y 01575000 South Branch Codorus Creek near York, Pa. 39.946 -76.531 25.990 Y 01576000 Susquehanna River at Marietta, Pa. 40.055 -76.531 25.990		Lower Little Swatara Creek at Pine Grove, Pa.				
01573000 Swatara Creek at Harper Tavern, Pa. 40.403 -76.577 337 N 01573086 Beck Creek near Cleona, Pa. 40.323 -76.483 7.87 N 01573160 Quittapahilla Creek near Bellegrove, Pa. 40.343 -76.562 74.2 N 01573500 Manada Creek at Manada Gap, Pa. 40.397 -76.709 13.5 N 01573500 Swatara Creek near Hershey, Pa. 40.298 -76.668 483 N 01574000 West Conewago Creek near Manchester, Pa. 40.082 -76.720 510 N 01574000 West Conewago Creek near York, Pa. 39.879 -76.853 75.5 Y 01575000 South Branch Codorus Creek near York, Pa. 39.921 -76.749 117 Y 01575000 South Branch Codorus Creek near York, Pa. 39.921 -76.531 25.990 Y 01576000 Susquehanna River at Marietta, Pa. 40.055 -76.531 25.990 Y 01576000 Susquehanna River at Lancaster, Pa. 40.050 -76.277 324		Swatara Creek near Pine Grove, Pa.				
01573086 Beck Creek near Cleona, Pa. 40.323 -76.483 7.87 N 01573160 Quittapahilla Creek near Bellegrove, Pa. 40.343 -76.562 74.2 N 01573500 Manada Creek at Manada Gap, Pa. 40.397 -76.709 13.5 N 01573500 Swatara Creek near Hershey, Pa. 40.298 -76.668 483 N 01573500 West Conewago Creek near Manchester, Pa. 40.082 -76.720 510 N 01574000 West Conewago Creek near Manchester, Pa. 40.082 -76.720 510 N 01574500 Codorus Creek at Spring Grove, Pa. 39.879 -76.853 75.5 Y 01575000 South Branch Codorus Creek near York, Pa. 39.921 -76.749 117 Y 01575000 Susquehanna River at Marietta, Pa. 39.946 -76.531 25.990 Y 01576000 Susquehanna River at Marietta, Pa. 40.055 -76.531 25.990 Y 01576000 Conestoga River at Lancaster, Pa. 40.050 -76.277 324						
01573160 Quittapahilla Creek near Bellegrove, Pa. 40.343 -76.562 74.2 N 01573500 Manada Creek at Manada Gap, Pa. 40.397 -76.709 13.5 N 01573500 Swatara Creek near Hershey, Pa. 40.298 -76.668 483 N 01574500 West Conewago Creek near Manchester, Pa. 40.082 -76.720 510 N 01574500 Codorus Creek at Spring Grove, Pa. 39.879 -76.853 75.5 Y 01575000 South Branch Codorus Creek near York, Pa. 39.921 -76.749 117 Y 01575000 Codorus Creek near York, Pa. 39.946 -76.755 222 Y 01576000 Susquehanna River at Marietta, Pa. 40.055 -76.531 25,990 Y 01576005 Little Conestoga Creek near Churchtown, Pa. 40.145 -75.989 5.82 N 01576500 Conestoga River at Lancaster, Pa. 40.050 -76.277 324 N 0157654 Conestoga River at Conestoga, Pa. 39.946 -76.368 470	01573000	Swatara Creek at Harper Tavern, Pa.	40.403	-76.577	337	N
01573500 Manada Creek at Manada Gap, Pa. 40.397 -76.709 13.5 N 01573560 Swatara Creek near Hershey, Pa. 40.298 -76.668 483 N 01573500 West Conewago Creek near Manchester, Pa. 40.082 -76.720 510 N 01574000 West Conewago Creek near Manchester, Pa. 40.082 -76.720 510 N 01574500 Codorus Creek at Spring Grove, Pa. 39.879 -76.853 75.5 Y 01575000 South Branch Codorus Creek near York, Pa. 39.921 -76.749 117 Y 01576000 Susquehanna River at Marietta, Pa. 39.946 -76.55 222 Y 01576000 Susquehanna River at Marietta, Pa. 40.055 -76.531 25,990 Y 01576000 Susquehanna River at Lancaster, Pa. 40.050 -76.277 324 N 01576500 Conestoga River at Conestoga, Pa. 39.946 -76.368 470 N						
01573560 Swatara Creek near Hershey, Pa. 40.298 -76.668 483 N 01574500 West Conewago Creek near Manchester, Pa. 40.082 -76.720 510 N 01574500 Codorus Creek at Spring Grove, Pa. 39.879 -76.853 75.5 Y 01575000 South Branch Codorus Creek near York, Pa. 39.921 -76.749 117 Y 01575000 Codorus Creek near York, Pa. 39.946 -76.755 222 Y 01576000 Susquehanna River at Marietta, Pa. 40.055 -76.531 25,990 Y 01576005 Little Conestoga Creek near Churchtown, Pa. 40.145 -75.989 5.82 N 01576500 Conestoga River at Lancaster, Pa. 40.050 -76.277 324 N 0157654 Conestoga River at Conestoga, Pa. 39.946 -76.368 470 N						
01574000 West Conewago Creek near Manchester, Pa. 40.082 -76.720 510 N 01574500 Codorus Creek at Spring Grove, Pa. 39.879 -76.853 75.5 Y 01575000 South Branch Codorus Creek near York, Pa. 39.921 -76.749 117 Y 01575000 Codorus Creek near York, Pa. 39.946 -76.755 222 Y 01576000 Susquehanna River at Marietta, Pa. 40.055 -76.531 25,990 Y 01576005 Little Conestoga Creek near Churchtown, Pa. 40.145 -75.989 5.82 N 01576500 Conestoga River at Lancaster, Pa. 40.050 -76.277 324 N 01576754 Conestoga River at Conestoga, Pa. 39.946 -76.368 470 N		-				
01574500 Codorus Creek at Spring Grove, Pa. 39.879 -76.853 75.5 Y 01575000 South Branch Codorus Creek near York, Pa. 39.921 -76.749 117 Y 01575000 Codorus Creek near York, Pa. 39.921 -76.749 117 Y 01575000 Susquehanna River at Marietta, Pa. 39.946 -76.755 222 Y 01576000 Susquehanna River at Marietta, Pa. 40.055 -76.531 25,990 Y 01576005 Little Conestoga Creek near Churchtown, Pa. 40.145 -75.989 5.82 N 01576500 Conestoga River at Lancaster, Pa. 40.050 -76.277 324 N 01576754 Conestoga River at Conestoga, Pa. 39.946 -76.368 470 N						
01575000 South Branch Codorus Creek near York, Pa. 39.921 -76.749 117 Y 01575500 Codorus Creek near York, Pa. 39.946 -76.755 222 Y 01576000 Susquehanna River at Marietta, Pa. 40.055 -76.531 25,990 Y 01576005 Little Conestoga Creek near Churchtown, Pa. 40.145 -75.989 5.82 N 01576500 Conestoga River at Lancaster, Pa. 40.050 -76.277 324 N 01576754 Conestoga River at Conestoga, Pa. 39.946 -76.368 470 N	01574000			-76.720		
01575500 Codorus Creek near York, Pa. 39.946 -76.755 222 Y 01576000 Susquehanna River at Marietta, Pa. 40.055 -76.531 25,990 Y 01576005 Little Conestoga Creek near Churchtown, Pa. 40.145 -75.989 5.82 N 01576500 Conestoga River at Lancaster, Pa. 40.050 -76.277 324 N 01576754 Conestoga River at Conestoga, Pa. 39.946 -76.368 470 N			39.879			
01576000 Susquehanna River at Marietta, Pa. 40.055 -76.531 25,990 Y 01576085 Little Conestoga Creek near Churchtown, Pa. 40.145 -75.989 5.82 N 01576500 Conestoga River at Lancaster, Pa. 40.050 -76.277 324 N 01576754 Conestoga River at Conestoga, Pa. 39.946 -76.368 470 N	01575000	South Branch Codorus Creek near York, Pa.	39.921	-76.749		
01576085 Little Conestoga Creek near Churchtown, Pa. 40.145 -75.989 5.82 N 01576500 Conestoga River at Lancaster, Pa. 40.050 -76.277 324 N 01576754 Conestoga River at Conestoga, Pa. 39.946 -76.368 470 N						
01576500 Conestoga River at Lancaster, Pa. 40.050 -76.277 324 N 01576754 Conestoga River at Conestoga, Pa. 39.946 -76.368 470 N		•				
01576754 Conestoga River at Conestoga, Pa. 39.946 -76.368 470 N						
01578310 Susquehanna River at Conomingo Md 30.658 -76.174 27.100 V	01576754	Conestoga River at Conestoga, Pa.		-76.368	470	
	01578310	Susquehanna River at Conowingo, Md.	39.658	-76.174	27,100	Y
01578400 Bowery Run near Quarryville, Pa. 39.895 -76.114 5.98 N						
01580000 Deer Creek at Rocks, Md. 39.630 -76.403 94.4 N						
01581500 Bymum Run at Bel Air, Md. 39.541 -76.330 8.52 N						
01581700 Winters Run near Benson, Md. 39.520 -76.373 34.8 N						
01582000 Little Falls at Blue Mount, Md. 39.604 -76.620 52.9 N						
01582500 Gunpowder Falls at Glencoe, Md. 39.550 -76.636 160 Y	01582500		39.550	-76.636		
01583000 Slade Run near Glyndon, Md. 39.495 -76.795 2.09 N	01583000		39.495			
01583100 Piney Run at Dover, Md. 39.521 -76.767 12.3 N	01583100	Piney Run at Dover, Md.	39.521	-76.767	12.3	N

26 Selected Streamflow Statistics for Streamgage Locations in and near Pennsylvania

Table 2. Selected low-flow statistics for streamgage locations in and near Pennsylvania.-Continued

[ft³/s; cubic feet per second; ---, statistic not computed; <, less than]

Streamgage number	Period of record used in analysis'	Number of years used in analysis	1-day, 10-year (ft²/s)	7-day, 10-year (ft∛s)	7-day, 2-year (ft∛s)	30-day, 10-year (ft∛s)	30-day, 2-year (ft³/s)	90-day, 10-year (ft²/s)
01546000	1912-1934	17	1.8	2.2	6.8	3.7	12.1	11.2
01546400	1986-2008	23	13.5	14.0	19.6	15.4	22.3	18.7
01546500	1942-2008	67	26.8	29.0	41.3	31.2	44.2	33.7
01547100	1969-2008	40	102	105	128	111	133	117
01547200	1957-2008	52	99.4	101	132	106	142	115
01547500	21971-2008	38	28.2	109	151	131	172	153
01547500	³ 1956-1969	14	90.0	94.9	123	98.1	131	105
01547700	1957-2008	52	.5	.6	2.7	1.1	3.9	2.2
01547800	1971-1981	11	1.6	1.8	2.4	2.1	2.9	3.5
01547950	1970-2008	39	12.1	13.6	28.2	17.3	36.4	23.8
01548005	21971-2000	25	142	151	206	178	241	223
01548005	×1912-1969	58	105	114	147	125	165	140
01548500	1920-2008	89	21.2	24.2	50.1	33.6	68.6	49.3
01549000	1910-1920	11	26.0	32.9	78.0	46.4	106	89.8
01549500	1942-2008	67	.6	.8	2.5	1.4	3.9	2.6
01549700	1959-2008	50	33.3	37.2	83.8	51.2	117	78.4
01550000	1915-2008	94	6.6	7.6	16.8	11.2	24.6	18.6
01551500	21963-2008	46	520	578	1.020	678	1.330	919
01551500	*1901-1961	61	400	439	742	523	943	752
01552000	1927-2008	80	20.5	22.2	49.5	29.2	69.8	49.6
01552500	1942-2008	67	.9	1.2	3.1	1.7	4.4	3.3
01553130	1969-1981	13	1.0	1.1	1.5	1.3	1.8	1.7
01553500	21968-2008	41	760	838	1,440	1.000	1.850	1,470
01553500	³ 1941-1966	26	562	619	880	690	1.090	881
01553700	1981-2008	28	9.1	10.9	15.0	12.6	17.1	15.2
01554000	°1981-2008	28	1.830	1.990	3,270	2.320	4,210	3.160
01554000	*1939-1979	41	1,560	1,630	2,870	1,880	3,620	2,570
01554500	1941-1993	53	16.2	22.0	31.2	25.9	35.7	31.4
01555000	1931-2008	78	33.5	37.6	58.8	43.4	69.6	54.6
01555500	1931-2008	78	4.9	6.5	18.0	9.4	24.3	16.6
01556000	1918-2008	91	43.3	47.8	66.0	55.1	75.0	63.7
01557500	1946-2008	63	2.8	3.2	63	4.2	8.1	5.8
01558000	1940-2008	69	56.3	59.0	79.8	65.7	86.2	73.7
01559000	1943-2008	66	104	177	249	198	279	227
01559500	1931-1958	28	9.3	10.5	15.0	12.4	17.8	15.8
01559700	1963-1978	16	.1	.1	.2	.1	.3	.2
01560000	1941-2008	68	8.5	9.4	15.6	12.0	20.2	16.2
01561000	1932-1958	27	.4	5	1.6	.8	2.5	1.7
01562000	1913-2008	96	64.1	67.1	106	77.4	122	94.5
01562500	1931-1957	27	1.1	1.6	3.8	2.3	5.4	3.7
01563200	°1974-2008	35	-	-	_	112	266	129
01563200	*1948-1972	25	10.3	28.2	86.1	64.5	113	95.5
01563500	1974-2008	35	384	415	519	441	580	493
	*1939-1972	34	153	242	343	278	399	333
01563500								

Attachment B

WQM 7.0 Modeling Output Values

_		<u>m Code</u> 5186		Stream Name SHAWNEE BRAN	-		
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	
3.800	Living Waters	PA0029041	0.008	CBOD5	25		
				NH3-N	25	50	
				Dissolved Oxygen			5

WQM 7.0 Effluent Limits

	SWP Basin 11C		am Code 5186			ream Name /NEE BRANC	н	
NH3-N	Acute Alloc	ation	IS					
RMI	Discharge	Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
3.8	00 Living Water	s	5.91	50	5.91	50	0	0
NH3-N	Chronic All	ocati	ons					
RMI	Discharge N	ame	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
	00 Living Water	-	.97	25	.97	25	0	0

		CBC	005	NH	3-IN	Dissolved	i Oxygen	Critical	Percent
RMI	Discharge Name	Baseline (mg/L)		Baseline (mg/L)	muluple	Daseline	Multiple (mg/L)	Reach	Reduction
3.80 Li	iving Waters	25	25	25	25	5	5	0	0

Monday, January 31, 2022

11C 15186 SHAWNEE BRANCH 3,800 1191.00 17.70 0.00000 0.00 Image: constraint cons		SWF Basi			Stre	am Name		RMI	Eleva (ft)		Drainage Area (sq mi)	Slope (ft/ft)	PWS Withdrawal (mgd)	Apply FC
Design Cond. LFY Cond. Trib Flow Stream Flow Rch Flow Rch Trav (cfs) Rch Velocity (fps) Rch Ratio Rch Width Rch Depth Tributary Temp Stream Temp PH Q7-10 0.019 0.00 0.000 0.000 0.0		11C	151	186 SHAW	NEE BRA	ANCH		3.80	0 119	91.00	17.70	0.00000	0.00	✓
Design Cond. Flow Flow Trav Time Velocity Ratio Width Depth Temp pH Temp pH (cfsm) (cfs) (cfs) (cfs) (fps) (ft) (ft) (ft) (°C) (°C) Q7-10 0.019 0.00 0.000 0.000 0.00 0						S	tream Dat	a						
(cfsm) (cfs) (cfs) (days) (fps) (ft) (ft) (°C) (°C) Q7-10 0.019 0.00 0.000 0.000 0.00 0.00 23.30 8.00 0.00	-	LFY			Trav					Tem		Tem		
Q1-10 0.00 0.00 0.000 0.000 Q30-10 0.00 0.00 0.000 0.000	Cond.	(cfsm)	(cfs)	(cfs)		(fps)		(ft)	(ft)	(°C)	(°C)	
Q30-10 0.00 0.00 0.000 0.000	Q7-10	0.019	0.00	0.00	0.000	0.000	0.0	0.00	0.00	2	3.30 8.0	00	0.00 0.00)
·	Q1-10		0.00	0.00	0.000	0.000								
Discharge Data	230-10		0.00	0.00	0.000	0.000								
						D	ischarge [Data						

Input Data WQM 7.0

	Dis	scharge D	ata					
Name	Permit Number	Existing Disc Flow (mgd)	Permitte d Disc Flow (mgd)	Design Disc Flow (mgd)	Resen Facto	ve Te or	isc emp PC)	Disc pH
Living Waters	PA0029041	0.0078	0.0078	0.0078	B 0.0	00	25.00	6.39
	Pa	rameter D	ata					
	arameter Name	Dis Co	-		eam onc	Fate Coef		
F	arameter Name	(mg	/L) (mg	/L) (m	ng/L) (1	1/days)		
CBOD5		2	5.00	2.00	0.00	1.50		
Dissolved (Dxygen	:	5.00 8	8.24	0.00	0.00		
NH3-N		2	5.00 (0.00	0.00	0.70		

	SWP Basin			Stre	am Name		RMI		vation (ft)	Drainage Area (sq mi)	Slope (ft/ft)	PWS Withdrawal (mgd)	Apply FC
	11C	151	186 SHAW	NEE BRA	ANCH		2.84	40	1169.00	18.30	0.00000	0.00	~
					S	tream Da	ta						
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Ten	<u>Tributary</u> 1p pH	Tem	<u>Stream</u> np pH	
cond.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C	;)	(°C)	
Q7-10	0.019	0.00	0.00	0.000	0.000	0.0	0.00	0.0	0 2	3.30 8.	00 (0.00 0.00	
Q1-10		0.00	0.00	0.000	0.000								
Q30-10		0.00	0.00	0.000	0.000								

Input Data WQM 7.0

Γ	[Discharge Dat	ta				
	Name Permit Numbe	Disc	Permitte d Disc Flow (mgd)	Design Disc Flow (mgd)	Reserve Factor	Disc Temp (ºC)	Disc pH
		0.0000	0.0000	0.000	0.000	25.00	7.00
	F	Parameter Dat	ta				
	Parameter Name	Disc			eam Fat onc Co	-	
		(mg/L	.) (mg	/L) (m	ig/L) (1/da	iys)	
	CBOD5	25.	00 2	2.00	0.00 1	1.50	_
	Dissolved Oxygen	3.	3 00	3.24	0.00 0	0.00	
	NH3-N	25.	00 0	0.00	0.00	0.70	

SWP Basin 11C	Stream Code 15186		SH	Stream Name IAWNEE BRANCH	
<u>RMI</u> 3.800	Total Discharge 0.00	Total Discharge Flow (mgd)		vsis Temperature (°C) 23.360	Analysis pH 7.618
Reach Width (ft)	Reach De	-		Reach WDRatio	Reach Velocity (fps)
12.315	0.45			26.918	0.060
Reach CBOD5 (mg/L)	Reach Kc	-	R	each NH3-N (mg/L)	Reach Kn (1/days)
2.82	0.26			0.89	0.907
Reach DO (mg/L)	Reach Kr (-		Kr Equation	Reach DO Goal (mg/L)
8.128	15.20	05		Owens	5
Reach Travel Time (days	<u>5)</u>	Subreach	Results		
0.974	TravTime		NH3-N	D.O.	
	(days)	(mg/L)	(mg/L)	(mg/L)	
	0.097	2.73	0.81	7.76	
	0.195	2.65	0.74	7.76	
	0.292	2.58	0.68	7.76	
	0.389	2.50	0.62	7.76	
	0.487	2.43	0.57	7.76	
	0.584	2.36	0.52	7.76	
	0.681	2.29	0.48	7.76	
	0.779	2.22	0.44	7.76	
	0.876	2.15	0.40	7.76	
	0.974	2.09	0.37	7.76	

WQM 7.0 D.O.Simulation

	<u>SW</u>	<u>P Basin</u> 11C		<u>m Code</u> 5186				Stream AWNEE	<u>Name</u> BRANCH	l		
RMI	Stream Flow (cfs)	PWS With (cfs)	Net Stream Flow (cfs)	Disc Analysis Flow (cfs)	Reach Slope (ft/ft)	Depth (ft)	Width (ft)	W/D Ratio	Velocity (fps)	Reach Trav Time (days)	Analysis Temp (ºC)	Analysis pH
Q7-1 3.800	0 Flow 0.33	0.00	0.33	.0121	0.00434	.457	12.31	26.92	0.06	0.974	23.36	7.62
Q1-1 3.800	0 Flow 0.31	0.00	0.31	.0121	0.00434	NA	NA	NA	0.06	0.995	23.36	7.61
Q30- 3.800	10 Flow 0.38	0.00	0.38	.0121	0.00434	NA	NA	NA	0.06	0.903	23.35	7.65

WQM 7.0 Hydrodynamic Outputs

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.96	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.15	Temperature Adjust Kr	✓
D.O. Saturation	90.00%	Use Balanced Technology	✓
D.O. Goal	5		

Attachment C

TRC Evaluation

Livir Cent	ng Waters Camp ter	and Conferen	ce PAOC	29041		January 2022
1A	В	С	D	Е	F	G
2	TRC EVALU	ATION				
3	Input appropri	iate values in	B4: B8 and E4:E7			
- 4	0.3	3 = Qstream (cfs)	0.5	= CV Daily	
- 5	0.0078	=Qdischarg	je (MGD)	0.5	= CV Hourly	
6) = no. sample			= AFC_Partial N	
7		-	emand of Stream		=CFC_Partial I	
8			emand of Discharge		_	Compliance Time (min)
9		5 = BAT/BPJ V				Compliance Time (min)
10	•		of Safety (FOS)	0	=Decay Coeffic	
10 11		Reference	AFC Calculations	0.600	Reference	CFC Calculations
	TRC PENTOXSD TRO	1.3.2.iii 5 5.1a	WLA afc = LTAMULT afc =		1.3.2 iii 5.1c	WLA cfc = 8.465 LTAMULT cfc = 0.581
13			LTA afc=		5.1d	LTA cfc = 4.921
14			2111_010	0.200		
15	Source		Effluent	Limit Calo	ulations	i
- 16	PENTOXSD TRO	6 5.1f	AM	L MULT =	1.231	
17		6 5.1g	AVG MON LIMI	T (mg/l) =	0.500	BAT/BPJ
18						
	INST MAX LIMIT (mg/l) = 1.635 WLA afc (.019/e(-k*AFC_tc))+ [(AFC_Yc*Qs*.019/Qt*e(-k*AFC_tc)) + Xd + (AFC_Yc*Qs*Xs/Qd)]*(1-FOS/100) LTAMULTafc EXP((0.5*LN(cvh^2+1))-2.326*LN(cvh^2+1)^0.5) LTA_afc wla_afc*LTAMULT_afc WLA_cfc (.011/e(-k*CFC_tc) + [(CFC_Yc*Qs*.011/Qt*e(-k*CFC_tc)) + Xd + (CFC_Yc*Qs*Xs/Qd))*(1-FOS/100) + Xd + (CFC_Yc*Qs*Xs/Qd))*(1-FOS/100) LTAMULT_cfc EXP((0.5*LN(cvd^2/no_samples+1))-2.326*LN(cvd^2/no_samples+1)^0.5) LTA_cfc wla_cfc*LTAMULT_cfc AML MULT EXP(2.326*LN((cvd^2/no_samples+1)^0.5)-0.5*LN(cvd^2/no_samples+1)) AVG MON LIMIT MIN(BAT_BPJ,MIN(LTA_afc,LTA_cfc)*AML_MULT) INST MAX LIMIT 1.5*((av_mcon_limit/AML_MLL_MLLT)/LTAMULT_afc)					1ples+1)^0.5)

CORRESPONDENCE

Hong, Nicholas

From:	Joel Yoder <jyoder106@gmail.com></jyoder106@gmail.com>
Sent:	Sunday, February 6, 2022 8:53 PM
To:	Hong, Nicholas
Subject:	[External] Re: Living Waters / PA0029041 /comments
Attachments:	County Letter.pdf; Township Letter.pdf; Sludge Disposal July 2021.pdf

ATTENTION: This email message is from an external sender. Do not open links or attachments from unknown sources. To report suspicious email, forward the message as an attachment to CWOPA_SPAM@pa.gov.

Hello Nicolas, attached is the information you requested for the Camp Living Waters permit renewal. There are no proposed upgrades for the facility in the next 5 years. Attached are the two act 14 letters. Attached is the biosolids form. This facility is made up of septic tanks which get pumped out annually. The gray water from the tanks is treated with chlorine and sand filters and then discharged. Lang septic service cleans the tanks and land discharges the sludge. It was sent to Lang farms and there PA permit number is PAG-09-3509. The DMR is not showing data for the months listed, because there was no discharge from the system those months. We still collect sam ples and have data from the lab we use for those months I can provide. This facility is seasonal it is operational from April to October and non operational the rest of the year. If you need anything else please let me know. Thanks

On Feb 1, 2022, at 9:23 AM, Hong, Nicholas <nhong@pa.gov> wrote:

Joel Yoder.

This message acknowledges that DEP has received the NPDES renewal application for Living Waters Camp and Conference Center.

DEP has the following preliminary comments on the application.

- Confirm if the facility anticipates propose upgrades to the treatment facility in the next 5 years.
- Enclose the Act 14 letter. We have copies of the tracking number to confirm the letter was
 mailed.
- Provide a summary of biosolids/sewage sludge disposal for 2021. We are interested in the quantity disposed and where the biosolids was disposed. Copies of the supplemental form for Biosolids/Sewage sludge would be preferred.
- Clarify why DMR data is not available for April 2021, June 2021, October 2021, and November 2021.
- If facility is seasonal, state what the operational and non-operational months

<im age 001.png>

Please have responses by February 7, 2022

Nick Hong, PE | Environmental Engineer PA Department of Environmental Protection Clean Water Programs Southcentral Regional Office 909 Elmerton Avenue | Harrisburg, PA 17110