

 Application Type
 Renewal

 Facility Type
 Municipal

 Major / Minor
 Minor

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

 Application No.
 PA0029106

 APS ID
 276476

 Authorization ID
 1352982

Applicant and Facility Information

Applicant Name	Greenfield Township Municipal Authority Blair County	Facility Name	Greenfield Township STP	
Applicant Address	PO Box 372	Facility Address	1342 Bedford Street	
	Claysburg, PA 16625-0372		Claysburg, PA 16625-0372	
Applicant Contact	Timothy Oakes	Facility Contact	Timothy Oakes	
Applicant Phone	(814) 239-5778	Facility Phone	(814) 239-5778	
Client ID	51251	Site ID	451960	
Ch 94 Load Status	Not Overloaded	Municipality	Greenfield Township	
Connection Status	No Limitations	County	Blair	
Date Application Rece	ivedMay 3, 2021	EPA Waived?	No	
Date Application Acce	pted May 12, 2021	If No, Reason	Significant CB Discharge	

Approve	Deny	Signatures	Date
		Nicholas Hong, P.E. / Environmental Engineer	
Х		Nick Hong (via electronic signature)	July 22, 2021
		Daniel W. Martin, P.E. / Environmental Engineer Manager	
x		Maria D. Bebenek for Daniel W. Martin	July 23, 2021
		Maria D. Bebenek, P.E. / Environmental Program Manager	
Х		Maria D. Bebenek	July 23, 2021

Summary of Review

The application submitted by the applicant requests a NPDES renewal permit for the Greenfield Township STP located at 1342 Bedford Street, Claysburg, PA 16625 in Blair County, municipality of Greenfield Township. The existing permit became effective on November 1, 2016 and expired on October 31, 2021. The application for renewal was received by DEP Southcentral Regional Office (SCRO) on May 5, 2021.

The purpose of this Fact Sheet is to present the basis of information used for establishing the proposed NPDES permit effluent limitations. The Fact Sheet includes a description of the facility, a description of the facility's receiving waters, a description of the facility's receiving waters attainment/non-attainment assessment status, and a description of any changes to the proposed monitoring/sampling frequency. Section 6 provides the justification for the proposed NPDES effluent limits derived from technology based effluent limits (TBEL), water quality based effluent limits (WQBEL), total maximum daily loading (TMDL), antidegradation, anti-backsliding, and/or whole effluent toxicity (WET). A brief summary of the outlined descriptions has been included in the Summary of Review section.

The subject facility is a 0.8 MGD average annual flow treatment facility. The hydraulic design capacity is 1.5 MGD. The applicant does not anticipate any proposed upgrades to the treatment facility in the next five years. The NPDES application has been processed as a Minor Sewage Facility (Level 2) due to the type of sewage and the design flow rate for the facility. The applicant disclosed the Act 14 requirement to Bedford County Commissioners, Blair County Commissioners, Greenfield Township Supervisors, and Pavia Township Supervisors and the notice was received by the parties in April 2021. A planning approval letter was not necessary as the facility is neither new or expanding.

Utilizing the DEP's web-based Emap-PA information system, the receiving waters has been determined to be the Frankstown Branch Juniata River. The sequence of receiving streams that the Frankstown Branch Juniata River discharges into are the Juniata River and the Susquehanna River which eventually drains into the Chesapeake Bay. The subject site is subject to the Chesapeake Bay implementation requirements. The receiving water has protected water usage for trout stocking fish (TSF) and migratory fishes (MF). No Class A Wild Trout fisheries are impacted by this discharge. The absence of high quality and/or exceptional value surface waters removes the need for an additional evaluation of anti-degradation requirements.

The Frankstown Branch Juniata River is a Category 2 stream listed in the 2020 Integrated List of All Waters (formerly 303d Listed Streams). This stream is an attaining stream that supports aquatic life. The receiving waters is not subject to a total maximum daily load (TMDL) plan to improve water quality in the subject facility's watershed.

The existing permit and proposed permit differ as follows:

• Due to the triennial review, E. Coli shall be monitored on a 1x/quarter basis.

Sludge use and disposal description and location(s): Sewage sludge disposed at Mostoller Landfill in Somerset County

The proposed permit will expire five (5) years from the effective date.

Based on the review in this report, it is recommended that the permit be drafted. DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Any additional information or public review of documents associated with the discharge or facility may be available at PA DEP Southcentral Regional Office (SCRO), 909 Elmerton Avenue, Harrisburg, PA 17110. To make an appointment for file review, contact the SCRO File Review Coordinator at 717.705.4700.

1.0 Applicant

1.1 General Information

This fact sheet summarizes PA Department of Environmental Protection's review for the NPDES renewal for the following subject facility.

Facility Name:	Greenfield Township MA
NPDES Permit #	PA0029106
Physical Address:	1342 Bedford Street Claysburg, PA 16625
Mailing Address:	PO Box 372 Claysburg, PA 16625
Contact:	Timothy Oakes Wastewater Department Manager gtma@atlanticbb.net
Consultant:	Tobias Nagle Stiffler-McGraw and Associates tnagle@stiffler-mcgraw.com 814-696-6280

1.2 Permit History

Description of Facility

The treatment facility was originally constructed in 1973 and was renovated in 1998. The current SBR plant began receiving flow in November 1998.

Permit submittal included the following information.

- NPDES Application
- Process Flow Description
- Commercial and Industrial User List

2.0 Treatment Facility Summary

2.1.1 Site location

The physical address for the facility is 1342 Bedford Street, Claysburg, PA 16625. A topographical and an aerial photograph of the facility are depicted as Figure 1 and Figure 2.

Figure 1: Topographical map of the subject facility

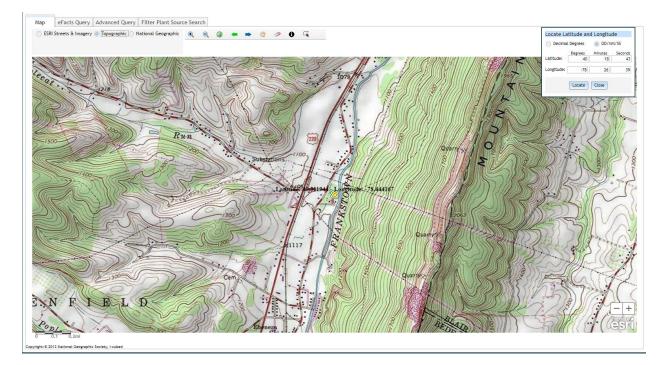
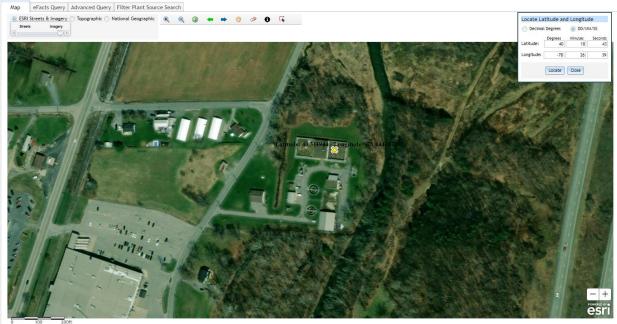



Figure 2: Aerial Photograph of the subject facility

0 100 2001t rg/source. Enr/, Marcel Geographica, CHE/Airbus DS, USDA, USDA, USDA, Morch DJ, and the OS User Community; EMI Sources: Enri, HERE, Garmin, USDA, Intermana, INCREMENT P, INICan, Enri Japan, METI, Enri China (Hong Kong), Exri Korea, Exri (Thailand), INCCC, (c) OpenStrateGarage community; EMI Sources: Enri, HERE, Garmin, USDA, Intermana, INCREMENT P, INICan, Enri Japan, METI, Enri China (Hong Kong), Exri Korea, Exri (Thailand), INCCC, (c) OpenStrateGarage community; EMI Sources: Enri, HERE, Garmin, USDA, Intermana, INCREMENT P, INICan, Enri Japan, METI, Enri China (Hong Kong), Exri Korea, Exri (Thailand), INCCC, (c) OpenStrateGarage community; EMI Sources: Exri, HERE, Garmin, USDA, Intermana, INCREMENT P, INICan, Erri Japan, METI, Erri China (Hong Kong), Exri Korea, Exri (Thailand), INCCC, (c) OpenStrateGarage community; EMI Sources: Exri, HERE, Garmin, USDA, Intermana, INCREMENT P, INICan, Erri Japan, METI, Erri China (Hong Kong), Exri Korea, Exri (Thailand), INCCC, (c) OpenStrateGarage community; EMI Sources: Exri, HERE, Garmin, USDA, Intermana, INCREMENT P, INICan, Erri Japan, METI, Erri China (Hong Kong), Exri Korea, Exri (Thailand), INCCC, (c) OpenStrateGarage community; EMI Sources: Exri, HeRE, Garmin, USDA, Intermana, INCREMENT P, INICan, Erri Japan, METI, Erri China (Hong Kong), Exri Korea, Exri (Thailand), INCCC, (c) OpenStrateGarage community; EMI Sources: Exri, HeRE, Garmin, USDA, Intermana, INCREMENT P, INTERMENT P, INTERMENT

2.1.2 Sources of Wastewater/Stormwater

The facility receives wastewater contributions from the following municipalities:

Greenfield Township – 99% Pavia Township (Blue Knob Ski Chalets) – 1%

The facility receives industrial/commercial wastewater contributions. See the attached table.

The applicant does not have pretreatment requirements.

JANUARY 2020- DECEMBER 2020

GTMA C	OMMERC	IAL USAGE January 2020- Decembe	er 2020	
Account Name	Account #	Service Street Name	Usage	Avg. Usage
PAUL C & ELIZABETH A MCCABE	009200-0	BEDFORD STREET	20,700	1.7
MCCABE GROUP INC.	009500-0	BEDFORD STREET	23,000	1,9
VICCABE GROUP INC.	009600-0	BEDFORD STREET	36,400	3,0
ARRY E MILLER	009700-0	BEDFORD STREET	18,300	1,5
LAYSBURG POST OFFICE	009800-0	BEDFORD STREET	7,600	6
SHEETZ CONVENIENCE STORE	017400A-0	BEDFORD STREET	580,400	48,3
SHEETZ CONVENIENCE STORE	017400B-0	BEDFORD STREET (CAR WASH)	963.000	80.2
SHEETZ CONVENIENCE STORE	017400C-0	BEDFORD STREET (IRRIGATION)	639,200	53,2
HEETZ CORPORATE OFFICE	017403C-0	SHEETZ WAY	784,600	65.3
HEETZ SWELLNESS CENTER	017407-0	SHEETZ WAY	99,000	8.2
HEETZ, INC.	017408-0	TWP ROAD 308	100.300	8.3
NPC, INC.	018801-0	BEDFORD STREET	809,700	67,4
CORNERSTONE PCH	020400-1	BEDFORD STREET	359.500	29.9
DAVID COX	021601-0	BEDFORD STREET	0	
HENANIGAN'S BAR	022501-1	BEDFORD STREET	40.100	3.3
CENTURYLINK	023600-0	BEDFORD STREET	5,400	4
OYCE DURBIN	023702-0	BEDFORD STREET	1,500	1
FRANK T BLAZEVICH	027800-0	BEDFORD STREET	99,400	8.2
TODD GOOD	028800-1	BEDFORD STREET	9.400	7
TINA MOORE	030015-1	MANSION DRIVE	20,500	1.7
TINA MOORE	030016-1	MANSION DRIVE	100	
VERETT RAILROAD	031200-0	CHURCH STREET	12,000	1.0
ACKIE N WYLAND	032501-0	LOCUST STREET	17,000	1.4
ERVICE STATION WHETSTONE'S	032900-0	DUNNINGS HIGHWAY	54,400	4.5
C&S FAMILY MARKETS	032901-0	DUNNINGS HIGHWAY	186.000	15.5
IOMETOWN BANK	0329014-0	DUNNINGS HWY	100,000	10,0
DICKS PHARMACY	032904-0	DUNNINGS HIGHWAY	1.500	1
REZ PROPERTIES LLC	032904-0	DUNNINGS HIGHWAY	1,400	-
CLAYSBURG FIRE HALL	0329044-0	DUNNINGS HIGHWAY	20,700	1.7
ZEIGLER CHEVROLET-OLDS.	033000-0	DUNNINGS HIGHWAY	181,500	15.1
AURA MOWRY	035200-0	CLIPPER DRIVE	29,100	2,4
CLAYSBURG MINIT MART	044001-0	ROUTE 220	842,300	70.1
& C AUTO & TRUCK SALES. INC	052500A-0	DUNNINGS HIGHWAY	4,900	/0,1
220 AUTO PARTS	052600-0	DUNNINGS HIGHWAY	14,700	1.2
PEGGYS DINER	052000-0	DUNNINGS HIGHWAY	248.400	20.7
NELSON'S RENTALS, LLC BRADY'S	052800-0 052900-0	SYCAMORE LANE-B&C AUTO	3,400	2
		DUNNINGS HIGHWAY	10,200	8
FIRST COMMONWEALTH BANK	053001-0	SKI GAP ROAD	0	
	053100-0	SKI GAP ROAD	18,700	1,5
HIRLEY'S COOKIES COMPANY (ASON PHYSICIANS GROUP/CLAYSBURG)	053101B-0	WARD DRIVE WARD DRIVE	72,000	6,0
			3,900	
VILCO	053202-0	WARD DRIVE	42,000	3,5
	053202A-0	WARD DRIVE	6,400	5
DIXON ELECTRIC INC.	053300-0	WARD DRIVE	115,000	9,5
IPC	053400-0	ROUTE 220	191,300	15,9
VPC	053401-0	ROUTE 220	792,000	66,0
& M TRANSIT COMPANY	053500-0	PARK ROAD	10,400	8
HAMPION HOME BUILDERS IN	053700-0	CHAMPION DRIVE	3,161,000	263,4
OSEPH RUSSO JR	054000-0	CHAMPION DRIVE	186,300	15,5
VILE LEVEL PHYSICAL THERAPY	054701-0	RANCH HOUSE PLAZA	25,800	2,1
ANCH HOUSE	054701A-0	RANCH HOUSE PLAZA	4,300	3
DENNIS LEONARD	054701B-0	RANCH HOUSE PLAZA	64,000	5,3
RANCH HOUSE PLAZA	054701C-0	RANCH HOUSE PLAZA	8,900	7
BARNES PETROLEUM	054704-0	DUNNINGS HWY	6,100	5
DOLLAR GENERAL	054704A-0	DUNNINGS HIGHWAY	28,100	2,3

DENNIS BURKET - CARPET DEPOT	054706-0	DUNNINGS HWY SUITE 3	10,700	892
DENNIS BURKET-DANCE STUDIO	054706A-0	DUNNINGS HWY SUITE 2	2,500	208
DENNIS BURKET-RESTAURANT	054706B-0	DUNNINGS HWY SUITE 1	100	25
DENNIS BURKET-RESTAURANT	054706B-0	DUNNINGS HWY SUITE 1	61,100	7,638
ROBERT ALBRIGHT	054900-0	BUSINESS RTE. 220	309,200	25,767
LORI S CLAAR	055000-0	DUNNINGS HWY	9,200	767
CLAARS GARAGE INC.	055001-0	DUNNINGS HWY	0	0
JODY, KAREN & CAROLYN CLAAR	055002-1	ROUTE 220	98,200	8,183
CLAAR, JODY	055003-1	ROUTE 220 - OLD DOLLAR GENERAL STOR	12,700	1,058
CLAARS GARAGE INC.	055003A-0	DUNNINGS HIGHWAY	130,600	10,883
SAMUER LLC	056500-0	DUNNINGS HIGHWAY	327,700	27,308
CHRISTINE CLAAR	057300-0	EVERGREEN ROAD	8,700	725
STEVE BURKET CAR SALES	075400-0	LOWER POLECAT ROAD	15,000	1,250
FLOWER CONNECTION	075401-0	LOWER POLECAT ROAD	3,400	283
J.H. RUSSELL INC.	081401-0	RUSSELL DRIVE	43,400	3,617
			12,014,307	
INDUSTRIAL				
SHEETZ, INC.	017404-0	SHEETZ WAY	2,064,300	206,430
SHEETZ, INC.	017404-0	SHEETZ WAY	436,400	218,200
SHEETZ DISTRIBUTION SERV.	017405-0	TWP ROAD 308	1,907,700	158,975
SHEETZ BROTHERS KITCHEN	017406-0	SHEETZ WAY	11,892,000	991,000
SHEETZ INC	017409-0	TWP ROAD 308	163,200	13,600
SHIRLEY'S COOKIE COMPANY	053101-0	WARD DRIVE	1,777,400	148,117
SHIRLEY'S COOKIE COMPANY	053101A-0	WARD DRIVE	56,400	4,700
NATIONAL IMPRINT	053200-0	WARD DRIVE	199,200	16,600
			18,496,600	

2.2 Description of Wastewater Treatment Process

The subject facility is a 0.8 MGD design flow facility. The subject facility treats wastewater using a SBR(s) and UV disinfection prior to discharge through the outfall. The facility is being evaluated for flow, pH, DO, CBOD5, TSS, fecal coliform, ultraviolet, ammonia-nitrogen, and copper. The existing permits limits for the facility is summarized in Section 2.4.

The treatment process is summarized in the table.

	Treatment Facility Summary										
Freatment Facility Nar	ne: Greenfield Township M	unicipal Authority STP									
Waste Type	Degree of Treatment	Process Type	Disinfection	Avg Annual Flow (MGD)							
		Sequencing Batch									
Sewage	Secondary	Reactor	Ultraviolet	0.8							
Hydraulic Capacity	Organic Capacity			Biosolids							
(MGD)	(lbs/day)	Load Status	Biosolids Treatment	Use/Disposal							
				Combination of							
1.5	1735	Not Overloaded	Aerobic Digestion	methods							

2.3 Facility Outfall Information

The facility has the following outfall information for wastewater.

Outfall No.	001		Design Flow (MGD)	.8
Latitude	40° 18' 41.00)"	Longitude	-78º 26' 36.89"
Wastewater De	escription:	Effluent		

2.3.1 Operational Considerations- Chemical Additives

Chemical additives are chemical products introduced into a waste stream that is used for cleaning, disinfecting, or maintenance and which may be detected in effluent discharged to waters of the Commonwealth. Chemicals excluded are those used for neutralization of waste streams, the production of goods, and treatment of wastewater.

The subject facility utilizes the following chemicals as part of their treatment process.

• Polymer Superfloc 281 for sludge dewatering aid.

2.4 Existing NPDES Permits Limits

The existing NPDES permit limits are summarized in the table.

PAR	T A - EFFLUENT LIMITA	ATIONS, MONITORING, RECORDKEEPING AND REPORTING REQUIREMENTS
I. A.	For Outfall 001	_, Latitude _40° 18' 41.00" _, Longitude _78° 28' 38.89" _, River Mile Index _43.7 _, Stream Code _18081
	Receiving Waters:	Frankstown Branch Juniata River
	Type of Effluent:	Trested Effluent

1. The permittee is authorized to discharge during the period from November 1, 2016 through October 31, 2021.

 Based on the anticipated wastewater characteristics and flows described in the permit application and its supporting documents and/or amendments, the following effluent limitations and monitoring requirements apply (see also Additional Requirements and Footnotes).

		Monitoring Re	quirements					
Descentes	Mass Units	(lbs/day) ⁽¹⁾		Concentrati		Minimum (2)	Required	
Parameter	Average Monthly	Weekly Average	Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report Daily Max	xxx	xxx	xxx	XXX	Continuous	Measured
pH (S.U.)	xxx	xxx	6.0	xxx	9.0 Max	XXX	1/day	Grab
Dissolved Oxygen	xxx	xxx	5.0	xxx	xxx	XXX	1/day	Grab
Carbonaceous Biochemical Oxygen Demand (CBOD5) Nov 1 - Apr 30	167	267	xxx	25.0	40.0	50	1/week	24-Hr Composite
Carbonaceous Biochemical Oxygen Demand (CBOD5) May 1 - Oct 31	133	200	xxx	20.0	30.0	40	1/week	24-Hr Composite
Biochemical Oxygen Demand (BOD5) Raw Sewage Influent	Report	Report Daily Max	xxx	Report	xxx	xxx	1/week	24-Hr Composite
Total Suspended Solids Raw Sewage Influent	Report	Report Daily Max	XXX	Report	XXX	XXX	1/week	24-Hr Composite
Total Suspended Solids	200	300	xxx	30.0	45.0	60	1/week	24-Hr Composite
Fecal Coliform (CFU/100 ml) Oct 1 - Apr 30	XXX	XXX	XXX	2000 Geo Mean	XXX	10000	1/week	Grab

NPDES Permit Fact Sheet Greenfield Township STP

Outfall 001, Continued (from November 1, 2016 through October 31, 2021)

		Effluent Limitations							
Parameter	Mass Units	(lbs/day) ⁽¹⁾		Concentrat	ions (mg/L)		Minimum (2)	Required	
Parameter	Average Monthly	Weekly Average	Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type	
Fecal Coliform (CFU/100 ml)				200					
May 1 - Sep 30	XXX	XXX	XXX	Geo Mean	XXX	1000	1/week	Grab	
Ultraviolet light transmittance									
(%)	XXX	XXX	Report	XXX	XXX	XXX	1/day	Recorded	
Ammonia-Nitrogen								24-Hr	
Nov 1 - Apr 30	110	XXX	XXX	16.5	XXX	33	2/week	Composite	
Ammonia-Nitrogen								24-Hr	
May 1 - Oct 31	37	XXX	XXX	5.5	XXX	11	2/week	Composite	
Copper, <u>Total⁽³⁾</u>								24-Hr	
Nov 1, 2016 to Oct 31, 2019	Report	XXX	XXX	Report	XXX	Report	1/week	Composite	
Copper, Total ⁽³⁾								24-Hr	
Nov 1, 2019 to Oct 31, 2021	0.28	XXX	XXX	0.042	XXX	0.084	1/week	Composite	

Samples taken in compliance with the monitoring requirements specified above shall be taken at the following location(s):

at Outfall 001

PART A - EFFLUENT LIMITATIONS, MONITORING, RECORDKEEPING AND REPORTING REQUIREMENTS

I. B. For Outfall ______, Latitude __40° 18' 41.00"____, Longitude __78° 28' 38.89"____, River Mile Index __43.7____, Stream Code ______16061____

Receiving Waters: Frankstown Branch Juniata River Treated Effluent

Type of Effluent:

1. The permittee is authorized to discharge during the period from November 1, 2016 through October 31, 2021.

2. Based on the anticipated wastewater characteristics and flows described in the permit application and its supporting documents and/or amendments, the following effluent limitations and monitoring requirements apply (see also Additional Requirements and Footnotes).

		Monitoring Requiremen						
Parameter	Mass Units	(lbs/day) ⁽¹⁾		Concentrat	ions (mg/L)		Minimum (2)	Required
Farameter	Monthly	Annual	Monthly	Monthly Monthly Average Maximum			Measurement Frequency	Sample Type
								24-Hr
AmmoniaN	Report	Report	XXX	Report	XXX	XXX	2/week	Composite
								24-Hr
KjeldahlN	Report	XXX	XXX	Report	XXX	XXX	2/week	Composite
								24-Hr
Nitrate-Nitrite as N	Report	XXX	XXX	Report	XXX	XXX	2/week	Composite
Total Nitrogen	Report	Report	XXX	Report	XXX	XXX	1/month	Calculation
								24-Hr
Total Phosphorus	Report	Report	XXX	Report	XXX	XXX	2/week	Composite
Net Total Nitrogen	Report	14,612	xxx	xxx	xxx	xxx	1/month	Calculation
Net Total Phosphorus	Report	1.948	xxx	xxx	xxx	xxx	1/month	Calculation

Samples taken in compliance with the monitoring requirements specified above shall be taken at the following location(s):

at Outfall 001

Footnotes:

 See Part C for Chesapeake Bay Requirements.
 This is the minimum number of sampling events required. Permittees are encouraged, and it may be advantageous in demonstrating compliance, to perform more than the minimum number of sampling events required.

3.0 Facility NPDES Compliance History

3.1 Summary of Inspections

A summary of the most recent inspections during the existing permit review cycle is as follows.

The DEP inspector noted the following during the inspection.

05/22/2017:

- The sludge drying beds were no longer in use and will be removed.
- The influent sampler thermometer was above 20 C.
- SCADA system was upgraded to allow for remote viewing and control.

07/19/2018:

- A large amount of fine solids and floating sludge was noticed in the old chlorine contact tank during the SBR decant. The tank walls also showed a buildup of solids. The facility was advised the tank should be cleaned out more often to prevent solids from discharging to the stream.
- The influent sampler refrigerator was out of service. The new unit was scheduled for delivery tomorrow. This was the 2nd time the refrigerator had been replaced in the last year. The facility suspects that there was corroding gas in the building where the unit was stored. After the refrigerator is replaced, it will be moved outdoors.

08/28/2019:

- The influent sampler refrigerator had a temperature reading of 11 C. The temperature should be lowered to around 4 C.
- The facility was preparing to decommission the old sand bed filter. The beds will be demolished and covered with soil or converted into a garage.

12/29/2020: DEP conducted an administrative review of the facility's Chesapeake Bay reporting. The facility generated credits for both phosphorus and nitrogen but did not sell any credits. Based on the data submitted, the facility has achieved compliance with the nitrogen and phosphorus loading limits for the 2019-2020 monitoring year.

01/04/2021: DEP received a complaint from a resident in Claysburg, PA on a discharge of raw sewage from a manhole on December 29, 2020. The resident reported seeing raw sewage overflowing from a manhole on Locust street. The overflow occurred during a recent rain storm and ceased after the rain.

On December 30, 2020, DEP contacted the facility and notified them about the complaint. The facility stated that the area has caused problems in the past since there is not much of a grade and grease tends to build up on the pipe walls. The facility stated they would use a jetter truck to clear the line if necessary.

On the afternoon of December 30, 2020, a resident complained that the manhole was overflowing again. The facility was contacted again to jet the line again. The facility thinks that fryer from a local market is causing a build up in the collection system. The wastewater operator was unsure if the township has a local ordinance. The facility was instructed that if the grease is not abated the township will need to perform a more routine jetting to prevent future overflows.

3.2 Summary of DMR Data

A review of approximately 1-year of DMR data shows that the monthly average flow data for the facility below the design capacity of the treatment system. The maximum average flow data for the DMR reviewed was 0.73 MGD in January 2021. The design capacity of the treatment system is 1.50 MGD.

The off-site laboratory used for the analysis of the parameters was Fairway Laboratories, 2019 9th Avenue, Altoona, PA 16602.

Parameter	MAY-21	APR-21	MAR-21	FEB-21	JAN-21	DEC-20	NOV-20	OCT-20	SEP-20	AUG-20	JUL-20	JUN-20
Flow (MGD)												
Average Monthly	0.684	0.539	0.626	0.681	0.73	0.72	0.682	0.507	0.378	0.329	0.258	0.201
Flow (MGD)												
Daily Maximum	0.98	0.78	0.97	1.12	0.98	1.12	1.16	1.261	0.50	0.5	0.42	0.27
pH (S.U.)												
Minimum	7.0	6.8	7.0	6.9	6.9	7.0	7.1	7.0	7.0	7.0	7.0	7.0
pH (S.U.)												
Maximum	7.2	7.1	7.2	7.2	7.1	7.2	7.3	7.2	7.2	7.2	7.2	7.2
DO (mg/L)												
Minimum	6.1	6.1	6.0	6.0	6.4	6.0	6.2	6.0	6.1	6.1	6.0	6.1
CBOD5 (lbs/day)												
Average Monthly	17.2	14.4	16.0	17.0	18.5	17.7	17.2	16.0	9.4	9.2	7.1	7.9
CBOD5 (lbs/day)												
Weekly Average	24.3	19.5	21.8	19.5	23.0	20.0	20.8	33.5	12.3	12.0	10.0	19.8
CBOD5 (mg/L)												
Average Monthly	3.0	3.0	3.0	3.0	3.0	3.0	3.0	4.6	3.0	3.6	3.8	4.8
CBOD5 (mg/L)												
Weekly Average	3.0	3.0	3.0	3.0	3.0	3.0	3.0	9.6	3.0	4.7	6.3	11.9
BOD5 (lbs/day)												
Raw Sewage Influent												
 Average												
Monthly	199	463	237	350	583	985	598	343	252	131	124	99
BOD5 (lbs/day)												
Raw Sewage Influent												
 br/> Daily Maximum	243	1242	359	555	1516	3283	1440	517	374	209	182	123
BOD5 (mg/L)												
Raw Sewage Influent												
 Average												
Monthly	35	83	45	63	99	159	95	102	76	50	65	62
TSS (lbs/day)												
Average Monthly	7.6	15.6	10.8	10.0	8.7	11.6	12.7	13.9	7.5	12.3	5.7	3.1
TSS (lbs/day)												
Raw Sewage Influent												
 Average	1.50	100			070	100	070		0.50			
Monthly	156	409	255	236	279	192	279	248	252	61	233	131

DMR Data for Outfall 001 (from June 1, 2020 to May 31, 2021)

NPDES Permit Fact Sheet Greenfield Township STP

NPDES Permit No. PA0029106

TSS (lbs/day) Raw Sewage Influent												
<pre> br/>> Daily Maximum</pre>	278	664	425	397	385	285	807	312	400	97	410	266
TSS (lbs/day)												
Weekly Average	12.9	26.0	17.6	12.8	15.3	21.9	15.2	24.1	9.8	17.9	7.9	6.4
TSS (mg/L)												
Average Monthly	1.4	3.2	2.0	1.8	1.4	2.1	2.2	4.2	2.5	4.8	3.2	1.9
TSS (mg/L)												
Raw Sewage Influent												
 Average												
Monthly	31	88	52	41	47	33	47	72	76	23	116	81
TSS (mg/L)												
Weekly Average	1.6	4.0	2.6	2.2	1.6	3.6	4.6	7.6	3.6	7.4	5.0	7.0
Fecal Coliform												
(CFU/100 ml)												
Geometric Mean	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Fecal Coliform												
(CFU/100 ml)												
Instantaneous	1.0	1.0	1.0	1.0	1.0	1.0	1.0	4.0	1.0	1.0	1.0	1.0
Maximum	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
UV Transmittance (%) Minimum	94	95	97	94	95	97	98	95	95	97	97	98
	94	95	97	94	95	97	98	95	95	97	97	98
Nitrate-Nitrite (mg/L) Average Monthly	1.7	2.1	1.8	2.1	1.5	2.3	2.3	0.1	3.5	2.1	2.0	2.0
Nitrate-Nitrite (lbs)	1.7	2.1	1.0	2.1	1.5	2.3	2.3	0.1	3.5	2.1	2.0	2.0
Total Monthly	304	285	275	336	283	416	383	367	321	179	121	99
Total Nitrogen (mg/L)	304	205	215	550	203	410	303	307	521	179	121	
Average Monthly	2.2	2.6	2.3	2.6	2.1	4.24	3.3	3.8	4.0	2.8	2.5	2.9
Total Nitrogen (lbs)	2.2	2.0	2.0	2.0	2.1	7.27	0.0	0.0	4.0	2.0	2.0	2.5
Effluent Net 												
Total Monthly	394	353	355	405	413	771	564	422	371	234	152	145
Total Nitrogen (lbs)									0			
Total Monthly	394	353	355	405	413	771	564	422	371	234	152	145
Total Nitrogen (lbs)												
Effluent Net 												
Total Annual									3703			
Total Nitrogen (lbs)												
Total Annual									3703			
Ammonia (lbs/day)												
Average Monthly	0.6	0.5	0.5	0.6	0.6	0.6	0.6	0.4	0.3	0.3	0.2	0.2

NPDES Permit Fact Sheet Greenfield Township STP

Λ and α is $(\alpha, \alpha, \alpha')$												
Ammonia (mg/L) Average Monthly	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Ammonia (lbs)	10		10	10	10	4.0	47					_
Total Monthly	18	14	16	16	19	18	17	11	9	9.0	6	5
Ammonia (lbs)												
Total Annual									147			
TKN (mg/L)												
Average Monthly	0.5	0.5	0.5	0.5	0.6	1.96	1.0	0.5	0.5	0.7	0.5	0.9
TKN (lbs)												
Total Monthly	90	69	80	80	130	356	181	56	50	55	30	45
Total Phosphorus												
(mg/L)												
Average Monthly	0.17	0.15	0.1	0.17	0.13	0.36	0.19	0.49	0.48	0.94	0.51	0.45
Total Phosphorus (lbs)												
Effluent Net 												
Total Monthly	30	20	13	27	25	64	30	53	43	76	29	22
Total Phosphorus (lbs)												
Total Monthly	30	20	13	27	25	64	30	53	43	76	29	22
Total Phosphorus (lbs)												
Effluent Net 												
Total Annual									389			
Total Phosphorus (lbs)												
Total Annual									389			
Total Copper (lbs/day)												
Average Monthly	0.05	0.07	0.05	0.06	0.06	0.54	0.06	0.03	0.03	0.03	0.02	0.02
Total Copper (mg/L)												
Average Monthly	0.042	0.042	0.042	0.042	0.042	0.042	0.042	0.042	0.042	0.042	0.042	0.012

3.2.1 Chesapeake Bay Cap Load Compliance

The table below summarizes the facility's compliance with the Chesapeake Bay truing.

Chesapeake Bay Annual Nutrient Summary									
	Greenfield Twp MA								
PA0029106									
	Net Efflu	ent Limits	Compliant with Permit Limits (Yes/N						
Year for Truing Period (Oct 1 - Nov 28)	Nitrogen (lbs)	Phosphorus (lbs)	Nitrogon	Dhoonhorus					
	14,612	<i>1,9</i> 48	Nitrogen	Phosphorus					
2018	5,984	694	Yes	Yes					
2019	5,039	382	Yes	Yes					
2020	3,703	389	Yes	Yes					

3.3 Non-Compliance

3.3.1 Non-Compliance- NPDES Effluent

A summary of the non-compliance to the permit limits for the existing permit cycle is as follows.

From the DMR data beginning on November 1, 2016 to July 12, 2021, the following were observed effluent non-compliances.

Summary of NPDES Non-Compliance with NPDES Permit Limits Beginning November 1, 2016 and Ending July 12, 2021

DATE	PARAMETER	SAMPLEVALUE	CONDITION	PERMIT VALUE	MEASURE	CODE
01/28/2021	Copper, Total	0.54	>	0.28	lbs/day	Average Monthly

3.3.2 Non-Compliance- Enforcement Actions

A summary of the non-compliance enforcement actions for the current permit cycle is as follows:

Beginning on November 1, 2016 to July 12, 2021, there were no observed enforcement actions.

3.4 Summary of Biosolids Disposal

A summary of the biosolids disposed of from the facility is as follows.

	2021							
Dewatered Sewage Sludge / Biosolids Production Information								
C	Dewatered Sewage S	udge/Biosolid	S					
Date (YEAR)	Tons Dewatered	% Solids	Dry Tons					
January								
February								
March	46.54	13.4	6.24					
April								
May	30.56	13.4	4.1					
Notes:								
	disposed at Mostell	or Londfill in C						

Sewage sludge disposed at Mostoller Landfill in Somerset Count

3.5 Open Violations

No open violations existed as of July 2021.

4.0 Receiving Waters and Water Supply Information Detail Summary

4.1 Receiving Waters

The receiving waters has been determined to be the Frankstown Branch Juniata River. The sequence of receiving streams that the Frankstown Branch Juniata River discharges into are the Juniata River and the Susquehanna River which eventually drains into the Chesapeake Bay.

4.2 Public Water Supply (PWS) Intake

The closest PWS to the subject facility is Mifflintown MA (PWS ID #4340008) located approximately 109 miles downstream of the subject facility on the Juniata River. Based upon the distance and the flow rate of the facility, the PWS should not be impacted.

4.3 Class A Wild Trout Streams

Class A Wild Trout Streams are waters that support a population of naturally produced trout of sufficient size and abundance to support long-term and rewarding sport fishery. DEP classifies these waters as high-quality coldwater fisheries.

The information obtained from EMAP suggests that no Class A Wild Trout Fishery will be impacted by this discharge.

4.4 2020 Integrated List of All Waters (303d Listed Streams)

Section 303(d) of the Clean Water Act requires States to list all impaired surface waters not supporting uses even after appropriate and required water pollution control technologies have been applied. The 303(d) list includes the reason for impairment which may be one or more point sources (i.e. industrial or sewage discharges) or non-point sources (i.e. abandoned mine lands or agricultural runoff and the pollutant causing the impairment such as metals, pH, mercury or siltation).

States or the U.S. Environmental Protection Agency (EPA) must determine the conditions that would return the water to a condition that meets water quality standards. As a follow-up to listing, the state or EPA must develop a Total Maximum Daily

NPDES Permit Fact Sheet Greenfield Township STP

Load (TMDL) for each waterbody on the list. A TMDL identifies allowable pollutant loads to a waterbody from both point and non-point sources that will prevent a violation of water quality standards. A TMDL also includes a margin of safety to ensure protection of the water.

The water quality status of Pennsylvania's waters uses a five-part categorization (lists) of waters per their attainment use status. The categories represent varying levels of attainment, ranging from Category 1, where all designated water uses are met to Category 5 where impairment by pollutants requires a TMDL for water quality protection.

The receiving waters is listed in the 2020 Pennsylvania Integrated Water Quality Monitoring and Assessment Report as a Category 2 waterbody. The surface waters is an attaining stream that supports aquatic life. The designated use has been classified as protected waters for trout stocking fishes (WWF) and migratory fishes (MF).

4.5 Low Flow Stream Conditions

Water quality modeling estimates are based upon conservative data inputs. The data are typically estimated using either a stream gauge or through USGS web based StreamStats program. The NPDES effluent limits are based upon the combined flows from both the stream and the facility discharge.

A conservative approach to estimate the impact of the facility discharge using values which minimize the total combined volume of the stream and the facility discharge. The volumetric flow rate for the stream is based upon the seven-day, 10-year low flow (Q710) which is the lowest estimated flow rate of the stream during a 7 consecutive day period that occurs once in 10 -year time period. The facility discharge is based upon a known design capacity of the subject facility.

The closest WQN station to the subject facility is the Frankstown Branch Juniata River station (WQN224). This WQN station is located approximately 27 miles downstream of the subject facility.

The closest gauge station to the subject facility is the Frankstown Branch Juniata River (USGS station number 1556000). This gauge station is located approximately 25 miles downstream of the subject facility.

For WQM modeling, pH and stream water temperature data from the water quality network station was used. pH was estimated to be 7.84 and the stream water temperature was estimated to be 22.0 C.

The hardness of the stream was estimated from the water quality network to be 135 mg/l CaCO₃.

The low flow yield and the Q710 for the subject facility was estimated as shown below.

	Gauge Station Data		
USGS Station Number			
Station Name	Frankstown Branch Jui	iniata River	
Q710	47.8	ft³/sec	
Drainage Area (DA)	291	mi ²	
Calculations			
The low flow yield of th	ne gauge station is:		
Low Flow Yield (LFY) = (Q710 / DA		
LFY =	(47.8 ft ³ /sec / 291 mi ²)		
LFY =	0.1643	ft ³ /sec/mi ²	
The low flow at the sub	ject site is based upon the DA of	37.1	mi ²
Q710 = (LFY@gauge sta	tion)(DA@Subject Site)		
Q710 = (0.1643 ft ³ /sec/r	mi ²)(37.1 mi ²)		
Q710 =	6.094	ft ³ /sec	

Outfall No. 001 Design Flow (MGD) .8 Latitude 40° 18' 42.08° Longitude -78° 26' 37.04° Quad Name Quad Code Quad Code Wastewater Description: Effluent Quad Code Frankstown Branch Juniata River Stream Code 16061 NHD Com ID 65610466 RMI 45 Drainage Area 37.1 Yield (cfs/mi²) 0.1643 Qr-10 Flow (cfs) 6.094 Qr-10 Basis StreamStats/Streamgauge Elevation (ft) 1097 Slope (ft/ft) Slope (ft/ft) Watershed No. 11-A Chapter 93 Class. TSF / MF Existing Use Same as Chapter 93 class. Existing Use Qualifier Assessment Status Assessment Status Attaining Use(s) supports aquatic life Assessment Status Not appl Source(s) of Impairment Not appl Name Maree Background/Ambient Data Data Source PH (SU) 7.84 WQN224; median July to Sept Hardness (mg/L) 135 WQN224; Historical median Other: Maree Nearest Downstream Public Water Supply Intake Mifflint	4.6 Summary of Discha	rge, Receiving Waters and W	later Supply Information			
Latitude 40° 18' 42.08" Longitude -78° 26' 37.04" Quad Name Quad Code Quad Code Wastewater Description: Effluent Frankstown Branch Juniata River Stream Code 16061 NHD Com ID 65610466 RMI 45 Drainage Area 37.1 Yield (cfs/mi²) 0.1643 Qr-10 Flow (cfs) 6.094 Qr-10 Basis StreamStats/Streamgauge Elevation (ft) 1097 Slope (ft/ft) StreamStats/Streamgauge Wastershed No. 11-A Chapter 93 Class. TSF / MF Existing Use Same as Chapter 93 class. Existing Use Qualifier Cause(s) of Impairment Source(s) of Impairment Not appl Not appl Name Source(s) of Impairment Not appl Name Name Background/Ambient Data Data Source WQN224; median July to Sept WQN224; median July to Sept Hardness (mg/L) 135 WQN224; median July to Sept WQN224; Historical median Other:						
Quad Name Quad Code Wastewater Description: Effluent Receiving Waters (TSF) NHD Com ID 65610466 Drainage Area 37.1 Qr-10 Flow (cfs) 6.094 Qr-10 Flow (cfs) Chapter 93 Class. Existing Use Same as Chapter 93 class. Exceptions to Use Exceptions to Criteria Assessment Status Attaining Use(s) supports aquatic life Cause(s) of Impairment Not appl Not appl Name Background/Ambient Data Data Source pH (SU) 7.84 WQN224; median July to Sept Hardness (mg/L) </td <td></td> <td></td> <td>- • • • •</td> <td></td>			- • • • •			
Wastewater Description: Effluent Frankstown Branch Juniata River Frankstown Branch Juniata River NHD Com ID 65610466 Rate 37.1 Qr-10 Flow (cfs) 6.094 Watershed No. 11-A Chapter 93 Class. TSF / MF Existing Use Same as Chapter 93 class. Existing Use Qualifier Exceptions to Use Attaining Use(s) supports aquatic life Attaining Use(s) supports aquatic life Cause(s) of Impairment Not appl Not appl Not appl Not appl Not appl Name MQN224; median July to Sept Hardness (mg/L) 135 WQN224; median July to Sept Hardness (mg/L)		12.08"		-78º 26' 37.04"		
Frankstown Branch Juniata River (TSF) Stream Code 16061 NHD Com ID 65610466 RMI 45 Drainage Area 37.1 Yield (cfs/mi²) 0.1643 Qr-to Flow (cfs) 6.094 Qr-to Basis StreamStats/Streamgauge Elevation (ft) 1097 Slope (ft/ft) W Watershed No. 11-A Chapter 93 Class. TSF / MF Existing Use Same as Chapter 93 class. Existing Use Qualifier StreamStats/Streamgauge Exceptions to Use	· · · · · · · · · · · · · · · · · · ·		Quad Code			
Receiving Waters (TSF) Stream Code 16061 NHD Com ID 65610466 RMI 45 Drainage Area 37.1 Yield (cfs/mi²) 0.1643 Q7-10 Flow (cfs) 6.094 Q7-10 Basis StreamStats/Streamgauge Elevation (ft) 1097 Slope (ft/ft)	Wastewater Descriptio	n: Effluent				
NHD Com ID 65610466 RMI 45 Drainage Area 37.1 Yield (cfs/mi²) 0.1643 Qr-10 Flow (cfs) 6.094 Qr-10 Basis StreamStats/Streamgauge Elevation (ft) 1097 Slope (ft/ft)	F	rankstown Branch Juniata Riv	er			
Drainage Area 37.1 Yield (cfs/mi²) 0.1643 Q7-10 Flow (cfs) 6.094 Qr-10 Basis StreamStats/Streamgauge Elevation (ft) 1097 Slope (ft/ft)	Receiving Waters	TSF)	Stream Code	16061		
Qr-10 Flow (cfs) 6.094 Qr-10 Basis StreamStats/Streamgauge Elevation (ft) 1097 Slope (ft/ft) TSF / MF Watershed No. 11-A Chapter 93 Class. TSF / MF Existing Use Same as Chapter 93 class. Existing Use Qualifier Exceptions to Use	NHD Com ID 6	5610466	RMI	45		
Elevation (ft) 1097 Slope (ft/ft) Watershed No. 11-A Chapter 93 Class. TSF / MF Existing Use Same as Chapter 93 class. Existing Use Qualifier	Drainage Area 3	7.1	Yield (cfs/mi ²)	0.1643		
Watershed No. 11-A Chapter 93 Class. TSF / MF Existing Use Same as Chapter 93 class. Existing Use Qualifier Exceptions to Use Exceptions to Criteria Assessment Status Attaining Use(s) supports aquatic life Cause(s) of Impairment Not appl Source(s) of Impairment Not appl TMDL Status Not appl Background/Ambient Data Data Source pH (SU) 7.84 Temperature (°C) 22.0 Hardness (mg/L) 135 Other: WQN224; median July to Sept Nearest Downstream Public Water Supply Intake Mifflintown MA PWS Waters Juniata River Flow at Intake (cfs)	Q7-10 Flow (cfs) 6	.094	Q7-10 Basis	StreamStats/Streamgauge		
Existing Use Same as Chapter 93 class. Existing Use Qualifier Exceptions to Use Exceptions to Criteria Assessment Status Attaining Use(s) supports aquatic life Cause(s) of Impairment Not appl Source(s) of Impairment Not appl TMDL Status Not appl Background/Ambient Data Data Source pH (SU) 7.84 Temperature (°C) 22.0 WQN224; median July to Sept Hardness (mg/L) 135 Other: Nearest Downstream Public Water Supply Intake Mifflintown MA PWS Waters Juniata River	Elevation (ft) 1	097	Slope (ft/ft)			
Exceptions to Use Exceptions to Criteria Assessment Status Attaining Use(s) supports aquatic life Cause(s) of Impairment Not appl Source(s) of Impairment Not appl TMDL Status Not appl Background/Ambient Data Data Source pH (SU) 7.84 WQN224; median July to Sept Temperature (°C) 22.0 WQN224; median July to Sept Hardness (mg/L) 135 WQN224; Historical median Other: Nearest Downstream Public Water Supply Intake Mifflintown MA PWS Waters Juniata River Flow at Intake (cfs)	Watershed No. 1	1-A	Chapter 93 Class.	TSF / MF		
Assessment Status Attaining Use(s) supports aquatic life Cause(s) of Impairment Not appl Source(s) of Impairment Not appl TMDL Status Not appl Background/Ambient Data Data Source pH (SU) 7.84 WQN224; median July to Sept Temperature (°C) 22.0 WQN224; median July to Sept Hardness (mg/L) 135 WQN224; Historical median Other: Nearest Downstream Public Water Supply Intake Mifflintown MA PWS Waters Juniata River Flow at Intake (cfs)	Existing Use S	ame as Chapter 93 class.	Existing Use Qualifier			
Cause(s) of Impairment Not appl Source(s) of Impairment Not appl TMDL Status Not appl Background/Ambient Data Data Source pH (SU) 7.84 WQN224; median July to Sept Temperature (°C) 22.0 WQN224; median July to Sept Hardness (mg/L) 135 WQN224; Historical median Other:	Exceptions to Use		Exceptions to Criteria			
Source(s) of Impairment Not appl TMDL Status Not appl Background/Ambient Data Data Source pH (SU) 7.84 WQN224; median July to Sept Temperature (°C) 22.0 WQN224; median July to Sept Hardness (mg/L) 135 WQN224; Historical median Other:	Assessment Status	Attaining Use(s) support	ts aquatic life			
TMDL Status Not appl Name Background/Ambient Data Data Source pH (SU) 7.84 WQN224; median July to Sept Temperature (°C) 22.0 WQN224; median July to Sept Hardness (mg/L) 135 WQN224; Historical median Other:	Cause(s) of Impairmer	nt <u>Not appl</u>				
Background/Ambient Data Data Source pH (SU) 7.84 WQN224; median July to Sept Temperature (°C) 22.0 WQN224; median July to Sept Hardness (mg/L) 135 WQN224; Historical median Other:	Source(s) of Impairme	nt Not appl				
pH (SU) 7.84 WQN224; median July to Sept Temperature (°C) 22.0 WQN224; median July to Sept Hardness (mg/L) 135 WQN224; Historical median Other:	TMDL Status	Not appl	Name			
pH (SU) 7.84 WQN224; median July to Sept Temperature (°C) 22.0 WQN224; median July to Sept Hardness (mg/L) 135 WQN224; Historical median Other:						
Temperature (°C) 22.0 WQN224; median July to Sept Hardness (mg/L) 135 WQN224; Historical median Other:	Background/Ambient	Data	Data Source			
Hardness (mg/L) 135 WQN224; Historical median Other:	• • •	7.84	WQN224; median July to Sept			
Other:	Temperature (°C)	22.0	WQN224; median July to Sept			
Nearest Downstream Public Water Supply Intake Mifflintown MA PWS Waters Juniata River Flow at Intake (cfs)	Hardness (mg/L) <u>135</u>		WQN224; Historical median			
PWS Waters Juniata River Flow at Intake (cfs)	Other:					
PWS Waters Juniata River Flow at Intake (cfs)	Nearest Downstream	Public Water Supply Intake	Mifflintown MA			
		,				
				109		
	<u> </u>					

5.0: Overview of Presiding Water Quality Standards

5.1 General

There are at least six (6) different policies which determines the effluent performance limits for the NPDES permit. The policies are technology based effluent limits (TBEL), water quality based effluent limits (WQBEL), antidegradation, total maximum daily loading (TMDL), anti-backsliding, and whole effluent toxicity (WET) The effluent performance limitations enforced are the selected permit limits that is most protective to the designated use of the receiving waters. An overview of each of the policies that are applicable to the subject facility has been presented in Section 6.

5.2.1 Technology-Based Limitations

TBEL treatment requirements under section 301(b) of the Act represent the minimum level of control that must be imposed in a permit issued under section 402 of the Act (40 CFR 125.3). Available TBEL requirements for the state of Pennsylvania are itemized in PA Code 25, Chapter 92a.47.

The presiding sources for the basis for the effluent limitations are governed by either federal or state regulation. The reference sources for each of the parameters is itemized in the tables. The following technology-based limitations apply, subject to water quality analysis and best professional judgement (BPJ) where applicable:

Parameter	Limit (mg/l)	SBC	Federal Regulation	State Regulation
CBOD ₅	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
CBOD5	40	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)
Total Suspended	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
Solids	45	Average Weekly	133.102(b)(2)	92a.47(a)(2)
pH	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform				
(5/1 – 9/30)	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
Fecal Coliform				
(5/1 – 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform				
(10/1 – 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
Fecal Coliform				
(10/1 – 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)
Total Residual Chlorine	0.5	Average Monthly	-	92a.48(b)(2)

5.2.2 Mass Based Limits

For publicly owned treatment works (POTW), mass loadings are calculated based upon design flow rate of the facility and the permit limit concentration. The generalized calculation for mass loadings is shown below:

Quantity
$$\left(\frac{lb}{day}\right) = (MGD)(Concentration)(8.34)$$

5.3 Water Quality-Based Limitations

WQBEL are based on the need to attain or maintain the water quality criteria and to assure protection of designated and existing uses (PA Code 25, Chapter 92a.2). The subject facility that is typically enforced is the more stringent limit of either the TBEL or the WQBEL.

Determination of WQBEL is calculated by spreadsheet analysis or by a computer modeling program developed by DEP. DEP permit engineers utilize the following computing programs for WQBEL permit limitations: (1) MS Excel worksheet for Total Residual Chorine (TRC); (2) WQM 7.0 for Windows Wasteload Allocation Program for Dissolved Oxygen and

Ammonia Nitrogen Version 1.1 (WQM Model) and (3) Toxics using DEP Toxics Management Spreadsheet for Toxics pollutants.

5.3.1 Water Quality Modeling 7.0

The WQM Model is a computer model that is used to determine NPDES discharge effluent limitations for Carbonaceous BOD (CBOD5), Ammonia Nitrogen (NH3-N), and Dissolved Oxygen (DO) for single and multiple point source discharges scenarios. WQM Model is a complete-mix model which means that the discharge flow and the stream flow are assumed to instantly and completely mixed at the discharge node.

WQM recommends effluent limits for DO, CBOD5, and NH₃-N in mg/l for the discharge(s) in the simulation.

Four types of limits may be recommended. The limits are

- (a) a minimum concentration for DO in the discharge as 30-day average;
- (b) a 30-day average concentration for CBOD5 in the discharge;
- (c) a 30-day average concentration for the NH_3 -N in the discharge;
- (d) 24-hour average concentration for NH_3 -N in the discharge.

The WQM Model requires several input values for calculating output values. The source of data originates from either EMAP, the National Map, or Stream Stats. Data for stream gauge information, if any, was abstracted from USGS Low-Flow, Base-Flow, and Mean-Flow Regression Equations for Pennsylvania Streams authored by Marla H. Stuckey (Scientific Investigations Report 2006-5130).

The input values utilized for the modeling are summarized in the table which can be found in Attachment B.

The applicable WQM Effluent Limit Type are discussed in Section 6 under the corresponding parameter which is either DO, CBOD, or ammonia-nitrogen.

5.3.2 Toxics Modeling

The Toxics Management Spreadsheet model is a computer model that is used to determine effluent limitations for toxics (and other substances) for single discharge wasteload allocations. This computer model uses a mass-balance water quality analysis that includes consideration for mixing, first-order decay, and other factors used to determine recommended water quality-based effluent limits. Toxics Management Spreadsheet does not assume that all discharges completely mix with the stream. The point of compliance with water quality criteria are established using criteria compliance times (CCTs). The available CCTs are either acute fish criterion (AFC), chronic fish criterion (CFC), or human health criteria (THH & CRL).

Acute Fish Criterion (AFC) measures the criteria compliance time as either the maximum criteria compliance time (i.e.15 minutes travel time downstream of the current discharge) or the complete mix time whichever comes first. AFC is evaluated at Q710 conditions.

Chronic Fish Criterion (CFC) measures the criteria compliance time as either the maximum criteria compliance time (i.e. 12 hours travel time downstream of the current discharge) or the complete mix time whichever comes first. CFC is evaluated at Q710 conditions.

Threshold Human Health (THH) measures the criteria compliance time as either the maximum criteria compliance time (i.e. 12 hours travel time downstream of the current discharge) or the estimated travel time downstream to the nearest potable water supply intake whichever comes first. THH is evaluated at Q710 conditions.

Cancer Risk Level (CRL) measures the criteria compliance time as either the maximum criteria compliance time (i.e. 12 hours travel time downstream of the current discharge) or the complete mix time whichever comes first. CRL is evaluated at Qh (harmonic mean or normal flow) conditions.

The Toxics Model requires several input values for calculating output values. The source of data originates from either EMAP, the National Map, or Stream Stats. Data for stream gauge information, if any, was abstracted from USGS Low-Flow, Base-Flow, and Mean-Flow Regression Equations for Pennsylvania Streams authored by Marla H. Stuckey (Scientific Investigations Report 2006-5130).

The input values utilized for the modeling are summarized in the table which can be found in Attachment B.

Applicable monitoring or permit limits for toxics are summarized in Section 6.

The Toxics Management Spreadsheet output has been included in Attachment B.

5.3.2.1 Determining if NPDES Permit Will Require Monitoring/Limits in the Proposed Permit for Toxic Pollutants

To determine if Toxics modeling is necessary, DEP has developed a Toxics Management Spreadsheet to identify toxics of concern. Toxic pollutants whose maximum concentrations as reported in the permit application or on DMRs are greater than the most stringent applicable water quality criterion are pollutants of concern. A Reasonable Potential Analysis was utilized to determine (a) if the toxic parameters modeled would require monitoring or (b) if permit limitations would be required for the parameters. The toxics reviewed for reasonable potential were the following pollutants: TDS, chloride, bromide, sulfate, total copper, total manganese, and total zinc.

Based upon the SOP- Establishing Water Quality-Based Effluent Limitations (WQBELs) and Permit Conditions for Toxic Pollutants (Revised January 10, 2019), monitoring and/or limits will be established as follows.

- (a) When reasonable potential is demonstrated, establish limits where the maximum reported concentration equals or exceeds 50% of the WQBEL.
- (b) For non-conservative pollutants, establish monitoring requirements where the maximum reported concentration is between 25% 50% of the WQBEL.
- (c) For conservative pollutants, establish monitoring requirements where the maximum reported concentration is between 10% 50% of the WQBEL.

5.4 Total Maximum Daily Loading (TMDL)

5.4.1 TMDL

The goal of the Clean Water Act (CWA), which governs water pollution, is to ensure that all of the Nation's waters are clean and healthy enough to support aquatic life and recreation. To achieve this goal, the CWA created programs designed to regulate and reduce the amount of pollution entering United States waters. Section 303(d) of the CWA requires states to assess their waterbodies to identify those not meeting water quality standards. If a waterbody is not meeting standards, it is listed as impaired and reported to the U.S. Environmental Protection Agency. The state then develops a plan to clean up the impaired waterbody. This plan includes the development of a Total Maximum Daily Load (TMDL) for the pollutant(s) that were found to be the cause of the water quality violations. A Total Maximum Daily Load (TMDL) calculates the maximum amount of a specific pollutant that a waterbody can receive and still meet water quality standards.

Pennsylvania has committed to restoring all impaired waters by developing TMDLs and TMDL alternatives for all impaired waterbodies. The TMDL serves as the starting point or planning tool for restoring water quality.

5.4.1.1 Local TMDL

The subject facility does not discharge into a local TMDL.

5.4.1.2 Chesapeake Bay TMDL Requirement

The Chesapeake Bay Watershed is a large ecosystem that encompasses approximately 64,000 square miles in Maryland, Delaware, Virginia, West Virginia, Pennsylvania, New York and the District of Columbia. An ecosystem is composed of interrelated parts that interact with each other to form a whole. All of the plants and animals in an ecosystem depend on each other in some way. Every living thing needs a healthy ecosystem to survive. Human activities affect the Chesapeake Bay ecosystem by adding pollution, using resources and changing the character of the land.

Most of the Chesapeake Bay and many of its tidal tributaries have been listed as impaired under Section 303(d) of the federal Water Pollution Control Act ("Clean Water Act"), 33 U.S.C. § 1313(d). While the Chesapeake Bay is outside the boundaries of Pennsylvania, more than half of the State lies within the watershed. Two major rivers in Pennsylvania are

NPDES Permit Fact Sheet Greenfield Township STP

part of the Chesapeake Bay Watershed. They are (a) the Susquehanna River and (b) the Potomac River. These two rivers total 40 percent of the entire Chesapeake Bay watershed.

The overall management approach needed for reducing nitrogen, phosphorus and sediment are provided in the Bay TMDL document and the Phase I, II, and III WIPs which is described in the Bay TMDL document and Executive Order 13508.

The Bay TMDL is a comprehensive pollution reduction effort in the Chesapeake Bay watershed identifying the necessary pollution reductions of nitrogen, phosphorus and sediment across the seven Bay watershed jurisdictions of Delaware, Maryland, New York, Pennsylvania, Virginia, West Virginia and the District of Columbia to meet applicable water quality standards in the Bay and its tidal waters.

The Watershed Implementation Plans (WIPs) provides objectives for how the jurisdictions in partnership with federal and local governments will achieve the Bay TMDL's nutrient and sediment allocations.

Phase 3 WIP provides an update on Chesapeake Bay TMDL implementation activities for point sources and DEP's current implementation strategy for wastewater. The latest revision of the supplement was December 17, 2019.

The Chesapeake Bay TMDL (Appendix Q) categorizes point sources into four sectors:

- Sector A- significant sewage dischargers;
- Sector B- significant industrial waste (IW) dischargers;
- Sector C- non-significant dischargers (both sewage and IW facilities); and
- Sector D- combined sewer overflows (CSOs).

All sectors contain a listing of individual facilities with NPDES permits that were believed to be discharging at the time the TMDL was published (2010). All sectors with the exception of the non-significant dischargers have individual wasteload allocations (WLAs) for TN and TP assigned to specific facilities. Non-significant dischargers have a bulk or aggregate allocation for TN and TP based on the facilities in that sector that were believed to be discharging at that time and their estimated nutrient loads.

Based upon the supplement the subject facility has been categorized as a Sector A discharger. The supplement defines Sector A as a sewage facility that is considered significant if it has a design flow of at least 0.4 MGD. For rollout of its permitting strategy, DEP classified these facilities into three phases. Thirty IW facilities have individual WLAs in the TMDL.

Table 5 presents all NPDES permits for Significant Sewage dischargers with Cap Loads. The NPDES Permit No., phase, facility name, latest permit issuance date, expiration date, Cap Load compliance start date, TN and TP Cap Loads, and TN and TP Delivery Ratios are presented. In addition, if TN Offsets were incorporated into the TN Cap Loads when the permit was issued, the amount is shown; these Offsets will be removed from Cap Loads upon issuance of renewed permits to implement Section IV of the WIP document (i.e., a facility may use Offsets for compliance but may not register them as credits).

The total nitrogen (TN) and total phosphorus (TP) cap loads itemized by Table 5 for the subject facility are as follows:

TN Cap Load (lbs/yr)	14,612
TN Delivery Ratio	0.88
TP Cap Load (lbs/yr)	1,948
TP Delivery Ratio	0.436

Expansions by any Significant Sewage discharger will not result in any increase in Cap Loads. Where non-significant facilities expand to a design flow of 0.4 MGD or greater, the lesser of baseline Cap Loads of 7,306 lbs/yr TN and 974 lbs/yr TP or existing performance will be used for permits, and the load will be moved from the Non-Significant sector load to the Significant Sewage sector load. If considered necessary for environmental protection, DEP may decide to move load from the Point Source Reserve to the Significant Sewage sector in the future.

The minimum monitoring frequency for TN species and TP in new or renewed NPDES permits for Significant Sewage dischargers is 2/week.

This facility is subject to Sector A monitoring requirements. Monitoring shall be required at least 2x/wk.

Reporting

Cap Loads will be established in permits as Net Annual TN and TP loads (lbs/yr) that apply during the period of October 1 – September 30.

Facilities with NPDES permits must use DEP's eDMR system for reporting, except small flow treatment facilities. An Annual DMR must be submitted by the end of the Truing Period, November 28. As attachments to the Annual DMR a facility must submit a completed Annual Chesapeake Bay Spreadsheet, available through DEP's Supplemental Reports website, which contains an Annual Nutrient Monitoring worksheet and an Annual Nutrient Budget worksheet. This Spreadsheet will be submitted once per Compliance Year only, and reflect all nutrient sample results (for the period October 1 – September 30), Credit transactions (including the Truing Period) and Offsets applied during the Compliance Year.

5.5 Anti-Degradation Requirement

Chapter 93.4a of the PA regulations requires that surface water of the Commonwealth of Pennsylvania may not be degraded below levels that protect the existing uses. The regulations specifically state that *Existing instream water uses and the level of water quality necessary to protect the existing uses shall be maintained and protected*. Antidegradation requirements are implemented through DEP's guidance manual entitled Water Quality Antidegradation Implementation Guidance (Document #391-0300-02).

The policy requires DEP to protect the existing uses of all surface waters and the existing quality of High Quality (HQ) and Exceptional Value (EV) Waters. Existing uses are protected when DEP makes a final decision on any permit or approval for an activity that may affect a protected use. Existing uses are protected based upon DEP's evaluation of the best available information (which satisfies DEP protocols and Quality Assurance/Quality Control (QA/QC) procedures) that indicates the protected use of the waterbody.

For a new, additional, or increased point source discharge to an HQ or EV water, the person proposing the discharge is required to utilize a nondischarge alternative that is cost-effective and environmentally sound when compared with the cost of the proposed discharge. If a nondischarge alternative is not cost-effective and environmentally sound, the person must use the best available combination of treatment, pollution prevention, and wastewater reuse technologies and assure that any discharge is nondegrading. In the case of HQ waters, DEP may find that after satisfaction of intergovernmental coordination and public participation requirements lower water quality is necessary to accommodate important economic or social development in the area in which the waters are located. In addition, DEP will assure that cost-effective and reasonable best management practices for nonpoint source control in HQ and EV waters are achieved.

The subject facility's discharge will be to a non-special protection waters and the permit conditions are imposed to protect existing instream water quality and uses. Neither HQ waters or EV waters is impacted by this discharge.

5.6 Anti-Backsliding

Anti-backsliding is a federal regulation which prohibits a permit from being renewed, reissued, or modified containing effluent limitations which are less stringent than the comparable effluent limitations in the previous permit (40 CFR 122.I.1 and 40 CFR 122.I.2). A review of the existing permit limitations with the proposed permit limitations confirm that the facility is consistent with anti-backsliding requirements. The facility has proposed effluent limitations that are as stringent as the existing permit.

6.0 NPDES Parameter Details

The basis for the proposed sampling and their monitoring frequency that will appear in the permit for each individual parameter are itemized in this Section. The final limits are the more stringent of technology based effluent treatment (TBEL) requirements, water quality based (WQBEL) limits, TMDL, antidegradation, anti-degradation, or WET.

The reader will find in this section:

a) a justification of recommended permit monitoring requirements and limitations for each parameter in the proposed NPDES permit;

- b) a summary of changes from the existing NPDES permit to the proposed permit; and
- c) a summary of the proposed NPDES effluent limits.

6.1 Recommended Monitoring Requirements and Effluent Limitations

A summary of the recommended monitoring requirements and effluent limitations are itemized in the tables. The tables are categorized by (a) Conventional Pollutants and Disinfection, (b) Nitrogen Species and Phosphorus, and (c) Toxics.

6.1.1 Conventional Pollutants and Disinfection

		l	Greenfield Township MA, PA0029106
Parameter	Permit Limitation Required by ¹ :		Recommendation
		Monitoring:	The monitoring frequency shall be daily as a grab sample (Table 6-3).
pH (S.U.)	TBEL	Effluent Limit:	Effluent limits may range from pH = 6.0 to 9.0
pri (0.0.)	IDEE	Rationale:	The monitoring frequency has been assigned in accordance with Table 6-3 and the effluent limits assigned by Chapter 95.2(1).
		Monitoring:	The monitoring frequency shall be daily as a grab sample (Table 6-3).
Dissolved	BPJ	Effluent Limit:	Effluent limits shall be greater than 5.0 mg/l.
Oxygen	Dio	Rationale:	The monitoring frequency has been assigned in accordance with Table 6-3 and the effluent limits assigned by best professional judgement.
		Monitoring:	The monitoring frequency shall be 1x/wk as a 24-hr composite sample (Table 6-3).
		Effluent Limit:	During the months of November 1 to April 30, the effluent limits shall not exceed 167 lbs/day and 25 mg/l as an average monthly. During the months of May 1 to October 31, the effluent limits shall not exceed 133 lbs/day and 20 mg/l as an average monthly.
CBOD	Antibacksliding	Rationale:	The monitoring frequency has been assigned in accordance with Table 6-3. The Fact Sheet from July 2016 modelled Greenfield MA, Roaring Spring, Freedom Twp MA, Appvion, Balir Chalet, and Hollidaysburg as outfalls for water quality modeling. Among those Greensfield MA was the most upstream outfall. Due to antibacksliding, the current limits shall continue to the proposed permit.
		Monitoring:	The monitoring frequency shall be 1/week as a 24-hr composite sample (Table 6-3).
		Effluent Limit:	Effluent limits shall not exceed 200 lbs/day and 30 mg/l as an average monthly.
TSS	TBEL	Rationale:	The monitoring frequency has been assigned in accordance with Table 6-3 and the effluent limits assigned by Chapter 92a.47(a)(1). While there is no WQM modeling for this parameter, the permit limit for TSS is generally assigned similar effluent limits as CBOD or BOD. Since the TBEL is more stringent than TBEL, TBEL will apply.
		Monitoring:	The monitoring frequency is 1/day. The facility will be required to recording the UV transmittance
UV	200	Effluent Limit:	No effluent requirements.
disinfection	SOP	Rationale:	Consistent with the SOP- Establishing Effluent Limitations for Individual Sewage Permits (Revised January 10, 2019), the facility will be required to have routine monitoring for UV transmittance, UV dosage, or UV intensity.
		Monitoring:	The monitoring frequency shall be 1x/wk as a grab sample (Table 6-3).
Fecal	TBEL	Effluent Limit:	Summer effluent limits shall not exceed 200 No./100 mL as a geometric mean. Winter effluen limits shall not exceed 2000 No./100 mL as a geometric mean.
Coliform		Rationale:	The monitoring frequency has been assigned in accordance with Table 6-3 and the effluent limits assigned by Chapter 92a.47(a)(4) and 92a.47(a)(5).
E. Coli SOP; Cha 92a.6		Monitoring:	The monitoring frequency shall be 1x/quarter as a grab sample (SOP).
	SOD, Chantar	Effluent Limit:	No effluent requirements.
	92a.61	Rationale:	Consistent with the SOP- Establishing Effluent Limitations for Individual Sewage Permits (Revised March 22, 2019) and under the authority of Chapter 92a.61, the facility will be require to monitor for E.Coli.
Notes:			

1 The NPDES permit was limited by (a) anti-Backsliding, (b) Anti-Degradation, (c) SOP, (d) TBEL, (e) TMDL, (f) WQBEL, (g) WET, or (h) Other

2 Monitoring frequency based on flow rate of 0.8 MGD.

3 Table 6-3 (Self Monitoring Requirements for Sewage Discharges) in Technical Guidance for the Development and Specification of Effluent Limitations and Other Permit Conditions in NPDES Permits) (Document # 362-0400-001) Revised 10/97

4 Water Quality Antidegradation Implementaton Guidance (Document # 391-0300-002)

5 Phase 2 Watershed Implementation Plan Wastewater Supplement, Revised September 6, 2017

6.1.2 Nitrogen Species and Phosphorus

	Summai	y of Propose	d NPDES Parameter Details for Nitrogen Species and Phosphorus					
Greenfield Township MA, PA0029106								
Parameter	Permit Limitation Required by ¹ :		Recommendation					
		Monitoring:	The monitoring frequency shall be 2x/wk as a 24-hr composite sample					
Ammonia- Nitrogen	Chesapeake Bay TMDL	Effluent Limit:	During the months of May 1 to October 31, the effluent requirement shall be 37 lbs/day and 5.5 mg/l. During the months of November 1 to April 30, the effluent requirement shall be 110 lbs/day and 16.5 mg/l.					
		Rationale:	Due to the Chesapeake Bay Implementation Plan, the facility is required to be monitored on a frequency at least 2x/yr.					
		Monitoring:	The monitoring frequency shall be 2x/wk as a 24-hr composite sample					
Nitrate-	Chesapeake Bay	Effluent Limit:	No effluent requirements.					
Nitrite as N TMDL	TMDL	Rationale:	Due to the Chesapeake Bay Implementation Plan, the facility is required to be monitored on a frequency at least 2x/wk.					
		Monitoring:	The monitoring frequency shall be 1x/mo as a calculation					
Total Nitrogen	Chesapeake Bay	Effluent Limit:	No effluent requirements.					
	TMDL	Rationale:	Due to the Chesapeake Bay Implementation Plan, the facility is required to be monitored on a frequency at least 1x/mo.					
		Monitoring:	The monitoring frequency shall be 2x/wk as a 24-hr composite sample					
TKN	Chesapeake Bay	Effluent Limit:	No effluent requirements.					
	TMDL	Rationale:	Due to the Chesapeake Bay Implementation Plan, the facility is required to be monitored on a frequency at least 2x/wk.					
		Monitoring:	The monitoring frequency shall be 2x/wk as a 24-hr composite sample					
Total	Chesapeake Bay	Effluent Limit:	No effluent requirements.					
Phosphorus	TMDL	Rationale:	Due to the Chesapeake Bay Implementation Plan, the facility is required to be monitored on a frequency at least 2x/wk.					
		Monitoring:	The monitoring frequency shall be 1x/yr as a calculation					
Net Total	et Total Chesapeake Bay	Effluent Limit:	Effluent limits shall not exceed 14,612 lbs/day.					
Nitrogen T	TMDL	Rationale:	Due to the Chesapeake Bay Implementation Plan, the facility is required to be monitored on a frequency at least 1x/yr.					
		Monitoring:	The monitoring frequency shall be 1x/yr as a calculation					
Net Total Chesapeake Ba Phosphorus TMDL	Chesapeake Bay	Effluent Limit:	Effluent limits shall not exceed 1,948 lbs/day.					
	TMDL	Rationale:	Due to the Chesapeake Bay Implementation Plan, the facility is required to be monitored on a frequency at least 1x/yr.					
Notes:								

Notes:

1 The NPDES permit was limited by (a) anti-Backsliding, (b) Anti-Degradation, (c) SOP, (d) TBEL, (e) TMDL, (f) WQBEL, (g) WET, or (h) Other 2 Monitoring frequency based on flow rate of 0.8 MGD.

3 Table 6-3 (Self Monitoring Requirements for Sewage Discharges) in Technical Guidance for the Development and Specification of Effluent Limitations and Other Permit Conditions in NPDES Permits) (Document # 362-0400-001) Revised 10/97

4 Water Quality Antidegradation Implementaton Guidance (Document # 391-0300-002)

5 Phase 2 Watershed Implementation Plan Wastewater Supplement, Revised September 6, 2017

<u>6.1.3 Toxics</u>

		Summa	ry of Proposed NPDES Parameter Details for Toxics					
	Greenfield Township MA, PA0029106							
Parameter	Permit Limitation Required by ¹ :		Recommendation					
		Monitoring:	The monitoring frequency shall be 1x/wk as a 24-hr composite sample					
Total		Effluent Limit:	Effluent limits shall not exceed 0.28 lbs/day and 0.042 mg/l as an average monthly.					
	WQBEL / Anti- backsliding	Rationale:	Toxics Management Spreadsheet recommends limits. Modeling shows that the limits are less stringent than the current permit. However, due to antibacksliding regulations, the current permit limits shall continue to the proposed permit.					
Notes:								
	permit was limited l requency based on f		ksliding, (b) Anti-Degradation, (c) SOP, (d) TBEL, (e) TMDL, (f) WQBEL, (g) WET, or (h) Other MGD.					
	0 1		ewage Discharges) in Technical Guidance for the Development and Specification of Effluent ES Permits) (Document # 362-0400-001) Revised 10/97					
4 Water Quali	ity Antidegradation Ir	nplementaton	Guidance (Document # 391-0300-002)					
5 Phase 2 Wa	atershed Implementa	tion Plan Was	tewater Supplement, Revised September 6, 2017					

6.2 Summary of Changes From Existing Permit to Proposed Permit

A summary of how the proposed NPDES permit differs from the existing NPDES permit is summarized as follows.

• Due to the EPA triennial review, E. Coli shall be monitored on a 1x/quarter basis.

6.3.1 Summary of Proposed NPDES Effluent Limits

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

The proposed NPDES effluent limitations are summarized in the table below.

PART	A - EFFLUENT	I LIMITAT	IONS, MONIT	FORING, RECORD	EEPING AND	REPORTING REQU	REMENTS			
I. A.	For Outfall	001	, Latitude	40° 18' 41.00"	Longitude	_78° 26' 36.89"	River Mile Index	_45	Stream Code	16061
	Receiving Wat	ters:	Frankstown E	Branch Juniata River	(TSF)					
	Type of Effluent:		Effluent							

1. The permittee is authorized to discharge during the period from Permit Effective Date through Permit Expiration Date.

 Based on the anticipated wastewater characteristics and flows described in the permit application and its supporting documents and/or amendments, the following effluent limitations and monitoring requirements apply (see also Additional Requirements and Footnotes).

			Effluent Li	mitations			Monitoring Re	quirements
Parameter	Mass Units	; (lþs/day) 🖽		Concentratio	ons (mg/L)		Minimum (2)	Required
i arameter	Average Monthly	Weekly Average	Instantaneous Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report Daily Max	XXX	XXX	xxx	XXX	Continuous	Measured
pH (S.U.)	XXX	XXX	6.0	XXX	XXX	9.0	1/day	Grab
Dissolved Oxygen	XXX	XXX	5.0	XXX	XXX	XXX	1/day	Grab
Carbonaceous Biochemical Oxygen Demand (CBOD5) Nov 1 - Apr 30	167	267	xxx	25.0	40.0	50	1/week	24-Hr Composite
Carbonaceous Biochemical Oxygen Demand (CBOD5) May 1 - Oct 31	133	200	xxx	20.0	30.0	40	1/week	24-Hr Composite
Biochemical Oxygen Demand (BOD5) Raw Sewage Influent	Report	Report Daily Max	xxx	Report	xxx	xxx	1/week	24-Hr Composite
Total Suspended Solids	200	300	XXX	30.0	45.0	60	1/week	24-Hr Composite
Total Suspended Solids Raw Sewage Influent	Report	Report Daily Max	xxx	Report	XXX	XXX	1/week	24-Hr Composite
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	XXX	XXX	XXX	2000 Geo Mean	XXX	10000	1/week	Grab

Outfall001, Continued (from Permit Effective Date through Permit Expiration Date)

		Monitoring Requirements						
Parameter	Mass Units	(lbs/day) (1)		Concentrati	ons (mg/L)		Minimum (2)	Required
Falainetei	Average Monthly	Weekly Average	Instantaneous Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type
Fecal Coliform (No./100 ml) May 1 - Sep 30	XXX	XXX	XXX	200 Geo Mean	XXX	1000	1/week	Grab
E. Coli (No./100 ml)	XXX	XXX	XXX	XXX	Report Daily Max	XXX	1/quarter	Grab
Ultraviolet light transmittance (%)	XXX	XXX	Report	XXX	XXX	XXX	1/day	Recorded
Ammonia-Nitrogen Nov 1 - Apr 30	110	XXX	XXX	16.5	XXX	33	2/week	24-Hr Composite
Ammonia-Nitrogen May 1 - Oct 31	37	XXX	XXX	5.5	XXX	11	2/week	24-Hr Composite
Total Phosphorus	XXX	XXX	XXX	Report	XXX	XXX	2/week	24-Hr Composite
Copper, Total	0.28	XXX	XXX	0.042	XXX	0.084	1/week	24-Hr Composite

Samples taken in compliance with the monitoring requirements specified above shall be taken at the following location(s):

at Outfall 001

PART A - EFFLUENT LIMITATIONS, MONITORING, RECORDKEEPING AND REPORTING REQUIREMENTS

I. B. For Outfall 001_, Latitude 40° 18' 41.00", Longitude 78° 26' 36.89", River Mile Index 45_, Stream Code 16061_____

Receiving Waters: Frankstown Branch Juniata River (TSF)

Effluent

Type of Effluent:

1. The permittee is authorized to discharge during the period from Permit Effective Date through Permit Expiration Date.

 Based on the anticipated wastewater characteristics and flows described in the permit application and its supporting documents and/or amendments, the following effluent limitations and monitoring requirements apply (see also Additional Requirements and Footnotes).

		Effluent Limitations						
Parameter	Mass Units	Mass Units (lbs(day) (1)		Concentrat	Minimum (2)	Required		
i aranieter	Monthly	Annual	Monthly	Monthly Average	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
AmmoniaN	Report	Report	XXX	Report	XXX	XXX	2/week	24-Hr Composite
KjeldahlN	Report	xxx	xxx	Report	xxx	XXX	2/week	24-Hr Composite
Nitrate-Nitrite as N	Report	xxx	xxx	Report	xxx	XXX	2/week	24-Hr Composite
Total Nitrogen	Report	Report	XXX	Report	XXX	XXX	1/month	Calculation
Total Phosphorus	Report	Report	xxx	Report	xxx	XXX	2/week	24-Hr Composite
Net Total Nitrogen	xxx	14612	XXX	XXX	xxx	xxx	1/year	Calculation
Net Total Phosphorus	xxx	1948	XXX	XXX	xxx	xxx	1/year	Calculation

Samples taken in compliance with the monitoring requirements specified above shall be taken at the following location(s):

at Outfall 001

Footnotes:

6.3.2 Summary of Proposed Permit Part C Conditions

The subject facility has the following Part C conditions.

⁽¹⁾ See Part C for Chesapeake Bay Requirements.

⁽²⁾ This is the minimum number of sampling events required. Permittees are encouraged, and it may be advantageous in demonstrating compliance, to perform more than the minimum number of sampling events required.

- SBR Batch Discharge Condition
- Hauled-in Waste Restrictions
- Chesapeake Bay Nutrient Definitions
- Solids Management for Non-Lagoon Treatment Systems
- Special Part C Condition for compliance with Part A, Additional Requirements, Paragraph 1.d

Tools and References Used to Develop Permit
WOM for Windows Model (ass Attachment
WQM for Windows Model (see Attachment) Toxics Management Spreadsheet (see Attachment)
TRC Model Spreadsheet (see Attachment)
Temperature Model Spreadsheet (see Attachment)
Water Quality Toxics Management Strategy, 361-0100-003, 4/06.
Technical Guidance for the Development and Specification of Effluent Limitations, 362-0400-001, 10/97.
Policy for Permitting Surface Water Diversions, 362-2000-003, 3/98.
Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 362-2000-008, 11/96.
Technology-Based Control Requirements for Water Treatment Plant Wastes, 362-2183-003, 10/97. Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 362-2183-004, 12/97.
Pennsylvania CSO Policy, 385-2000-011, 9/08.
Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03.
Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 391- 2000-002, 4/97.
Determining Water Quality-Based Effluent Limits, 391-2000-003, 12/97.
Implementation Guidance Design Conditions, 391-2000-006, 9/97.
Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen, Version 1.0, 391-2000-007, 6/2004.
Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 391-2000-008, 10/1997.
Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments, 391-2000-010, 3/99.
Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 391-2000-011, 5/2004.
Implementation Guidance for Section 93.7 Ammonia Criteria, 391-2000-013, 11/97.
Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 391-2000-014, 4/2008.
Implementation Guidance Total Residual Chlorine (TRC) Regulation, 391-2000-015, 11/1994.
Implementation Guidance for Temperature Criteria, 391-2000-017, 4/09.
Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 391-2000-018, 10/97.
Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 391-2000-019, 10/97.
Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 391-2000-021, 3/99.
Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 391-2000-022, 3/1999.
Design Stream Flows, 391-2000-023, 9/98.
Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 391-2000-024, 10/98.
Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 391-3200-013, 6/97.
Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07.
SOP: New and Reissuance Sewage Individual NPDES Permit Applications, rev 10/11/2012
Other:

Attachment A

Stream Stats/Gauge Data

Table 1. List of U.S. Geological Survey streamgage locations in and near Pennsylvania with updated streamflow statistics.-Continued

[Latitude and Longitude in decimal degrees; mi², square miles]

Streamgage number	Streamgage name	Latitude	Longitude	Drainage area (mi²)	Regulated ¹
01541303	West Branch Susquehanna River at Hyde, Pa.	41.005	-78.457	474	Y
01541308	Bradley Run near Ashville, Pa.	40.509	-78.584	6.77	N
01541500	Clearfield Creek at Dimeling, Pa.	40.972	-78.406	371	Y
01542000	Moshannon Creek at Osceola Mills, Pa.	40.850	-78.268	68.8	N
01542500	WB Susquehanna River at Karthaus, Pa.	41.118	-78.109	1,462	Y
01542810	Waldy Run near Emporium, Pa.	41.579	-78.293	5.24	N
01543000	Driftwood Branch Sinnemahoning Creek at Sterling Run, Pa.	41.413	-78.197	272	N
01543500	Sinnemahoning Creek at Sinnemahoning, Pa.	41.317	-78.103	685	N
01544000	First Fork Sinnemahoning Creek near Sinnemahoning, Pa.	41.402	-78.024	245	Y
01544500	Kettle Creek at Cross Fork, Pa.	41.476	-77.826	136	N
01545000	Kettle Creek near Westport, Pa.	41.320	-77.874	233	Y
01545500	West Branch Susquehanna River at Renovo, Pa.	41.325	-77.751	2,975	Y
01545600	Young Womans Creek near Renovo, Pa.	41.390	-77.691	46.2	N
01546000	North Bald Eagle Creek at Milesburg, Pa.	40.942	-77.794	119	N
01546400	Spring Creek at Houserville, Pa.	40.834	-77.828	58.5	N
01546500	Spring Creek near Axemann, Pa.	40.890	-77.794	87.2	N
01547100	Spring Creek at Milesburg, Pa.	40.932	-77,786	142	N
01547200	Bald Eagle Creek below Spring Creek at Milesburg, Pa.	40,943	-77,786	265	N
01547500	Bald Eagle Creek at Blanchard, Pa.	41.052	-77.604	339	Y
01547700	Marsh Creek at Blanchard, Pa.	41.060	-77.606	44.1	N
01547800	South Fork Beech Creek near Snow Shoe, Pa.	41.024	-77.904	12.2	N
01547950	Beech Creek at Monument, Pa.	41.112	-77,702	152	N
01548005	Bald Eagle Creek near Beech Creek Station, Pa.	41.081	-77.549	562	Y
01548500	Pine Creek at Cedar Run, Pa.	41.522	-77.447	604	N
01549000	Pine Creek near Waterville, Pa.	41.313	-77.379	750	N
01549500	Blockhouse Creek near English Center, Pa.	41.474	-77.231	37.7	N
01549700	Pine Creek below Little Pine Creek near Waterville, Pa.	41.274	-77.324	944	Y
01550000	Lycoming Creek near Trout Run, Pa.	41.418	-77.033	173	N
01551500	WB Susquehanna River at Williamsport, Pa.	41.236	-76,997	5,682	Y
01552000	Loyalsock Creek at Loyalsockville, Pa.	41.325	-76.912	435	N
01552500	Muncy Creek near Sonestown, Pa.	41.357	-76.535	23.8	N
01553130	Sand Spring Run near White Deer, Pa.	41.059	-77.077	4.93	N
01553500	West Branch Susquehanna River at Lewisburg, Pa.	40.968	-76.876	6,847	Y
01553700	Chillisquaque Creek at Washingtonville, Pa.	41.062	-76.680	51.3	N
01554000	Susquehanna River at Sunbury, Pa.	40.835	-76.827	18,300	Y
01554500	Shamokin Creek near Shamokin, Pa.	40.810	-76.584	54.2	N
01555000	Penns Creek at Penns Creek, Pa.	40.867	-77.048	301	N
01555500	East Mahantango Creek near Dalmatia, Pa.	40.611	-76.912	162	N
01556000	Frankstown Branch Juniata River at Williamsburg, Pa.	40.463	-78.200	291	N
01557500	Bald Eagle Creek at Tyrone, Pa.	40.684	-78.234	44.1	N
01558000	Little Juniata River at Spruce Creek, Pa.	40.613	-78.141	220	N
01559000	Juniata River at Huntingdon, Pa.	40.485	-78.019	816	LF
01559500	Standing Stone Creek near Huntingdon, Pa.	40.524	-77.971	128	N
01559700	Sulphur Springs Creek near Manns Choice, Pa.	39.978	-78.619	5.28	N
01560000	Dunning Creek at Belden, Pa.	40.072	-78.493	172	N

Table 2. Selected low-flow statistics for streamgage locations in and near Pennsylvania.—Continued

[ft³/s; cubic feet per second; ---, statistic not computed; <, less than]

Streamgage number	Period of record used in analysis ¹	Number of years used in analysis	1-day, 10-year (ft³/s)	7-day, 10-year (ft³/s)	7-day, 2-year (ft³/s)	30-day, 10-year (ft³/s)	30-day, 2-year (ft³/s)	90-day, 10-year (ft³/s)
01546000	1912-1934	17	1.8	2.2	6.8	3.7	12.1	11.2
01546400	1986-2008	23	13.5	14.0	19.6	15.4	22.3	18.7
01546500	1942-2008	67	26.8	29.0	41.3	31.2	44.2	33.1
01547100	1969-2008	40	102	105	128	111	133	117
01547200	1957-2008	52	99.4	101	132	106	142	115
01547500	21971-2008	38	28.2	109	151	131	172	153
01547500	31956-1969	14	90.0	94.9	123	98.1	131	105
01547700	1957-2008	52	.5	.6	2.7	1.1	3.9	2.3
01547800	1971-1981	11	1.6	1.8	2.4	2.1	2.9	3.5
01547950	1970-2008	39	12.1	13.6	28.2	17.3	36.4	23.8
01548005	² 1971-2000	25	142	151	206	178	241	223
01548005	31912-1969	58	105	114	147	125	165	140
01548500	1920-2008	89	21.2	24.2	50.1	33.6	68.6	49.3
01549000	1910-1920	11	26.0	32.9	78.0	46.4	106	89.1
01549500	1942-2008	67	.6	.8	2.5	1.4	3.9	2.0
01549700	1959-2008	50	33.3	37.2	83.8	51.2	117	78.4
01550000	1915-2008	94	6.6	7.6	16.8	11.2	24.6	18.0
01551500	² 1963-2008	46	520	578	1,020	678	1,330	919
01551500	³ 1901-1961	61	400	439	742	523	943	752
01552000	1927-2008	80	20.5	22.2	49.5	29.2	69.8	49.0
01552500	1942-2008	67	.9	1.2	3.1	1.7	4.4	3.3
01553130	1969-1981	13	1.0	1.1	1.5	1.3	1.8	1.3
01553500	21968-2008	41	760	838	1,440	1,000	1,850	1,470
01553500	31941-1966	26	562	619	880	690	1,090	881
01553700	1981-2008	28	9.1	10.9	15.0	12.6	17.1	15.3
01554000	² 1981-2008	28	1,830	1,990	3,270	2,320	4,210	3,160
01554000	³ 1939–1979	41	1,560	1,630	2,870	1,880	3,620	2,570
01554500	1941-1993	53	16.2	22.0	31.2	25.9	35.7	31.4
01555000	1931-2008	78	33.5	37.6	58.8	43.4	69.6	54.0
01555500	1931-2008	78	4.9	6.5	18.0	9.4	24.3	16.0
01556000	1918-2008	91	43.3	47.8	66.0	55.1	75.0	63.1
01557500	1946-2008	63	2.8	3.2	6.3	4.2	8.1	5.8
01558000	1940-2008	69	56.3	59.0	79.8	65.7	86.2	73.3
01559000	1943-2008	66	104	177	249	198	279	227
01559500	1931-1958	28	9.3	10.5	15.0	12.4	17.8	15.4
01559700	1963-1978	16	.1	.1	.2	.1	.3	
01560000	1941-2008	68	8.5	9.4	15.6	12.0	20.2	16.1
01561000	1932-1958	27	.4	.5	1.6	.8	2.5	1.1
01562000	1913-2008	96	64.1	67.1	106	77.4	122	94.5
01562500	1931-1957	27	1.1	1.6	3.8	2.3	5.4	3.1
01563200	21974-2008	35	_	-	_	112	266	129
01563200	31948-1972	25	10.3	28.2	86.1	64.5	113	95.5
01563500	21974-2008	35	384	415	519	441	580	493
01563500	³ 1939–1972	34	153	242	343	278	399	333
	1939-1972	24	100	242	545	2/0	399	222

StreamStats Report

 Region ID:
 PA

 Workspace ID:
 PA20210714131203592000

 Clicked Point (Latitude, Longitude):
 40.31147, -78.44367

 Time:
 2021-07-14 09:12:19 -0400

Greenfield Township STP PA0029106 Modeling Point #1 July 2021

Basin Characte	ristics		
Parameter Code	Parameter Description	Value	Unit
DRNAREA	Area that drains to a point on a stream	37.1	square miles
PRECIP	Mean Annual Precipitation	39	inches
STRDEN	Stream Density total length of streams divided by drainage area	2.28	miles per square mile
ROCKDEP	Depth to rock	4.3	feet
CARBON	Percentage of area of carbonate rock	12.85	percent

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit							
DRNAREA	Drainage Area	37.1	square miles	4.93	1280							
PRECIP	Mean Annual Precipitation	39	inches	35	50.4							
STRDEN	Stream Density	2.28	miles per square mile	0.51	3.1							
ROCKDEP	Depth to Rock	4.3	feet	3.32	5.65							
CARBON	Percent Carbonate	12.85	percent	0	99							

Low-Flow Statistics Flow Report [Low Flow Region 2]

PII: Prediction Interval-Lower, PIu: Prediction Interval-Upper, SEp: Standard Error of Prediction, SE: Standard Error (other -- see report)

Statistic	Value	Unit	SE	ASEp
7 Day 2 Year Low Flow	3.12	ft^3/s	38	38
30 Day 2 Year Low Flow	4.23	ft^3/s	33	33
7 Day 10 Year Low Flow	1.47	ft^3/s	51	51
30 Day 10 Year Low Flow	2.01	ft^3/s	46	46
90 Day 10 Year Low Flow	3.1	ft^3/s	36	36

Low-Flow Statistics Citations

Stuckey, M.H.,2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006-5130, 84 p. (http://pubs.usgs.gov/sir/2006/5130/)

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the

NPDES Permit Fact Sheet Greenfield Township STP

functionality of the software and related material nor shall the fact of release constitute any such warranty. Furthermore, the software is released on condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized use.

USGS Product Names Disclaimer: Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Application Version: 4.6.0 StreamStats Services Version: 1.2.22 NSS Services Version: 2.1.2

StreamStats Report

 Region ID:
 PA

 Workspace ID:
 PA20210714131600163000

 Clicked Point (Latitude, Longitude):
 40.33863, -78.43416

 Time:
 2021-07-14 09:16:16 -0400

Greenfield Township STP PA0029106 Modeling Point #2 July 2021

Basin Characte	insucs		
Parameter Code	Parameter Description	Value	Unit
DRNAREA	Area that drains to a point on a stream	44.6	square miles
PRECIP	Mean Annual Precipitation	39	inches
STRDEN	Stream Density total length of streams divided by drainage area	2.38	miles per square mile
ROCKDEP	Depth to rock	4.3	feet
CARBON	Percentage of area of carbonate rock	11.19	percent

Low-Flow Statistics Parameters [Low Flow Region 2]												
Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit							
DRNAREA	Drainage Area	44.6	square miles	4.93	1280							
PRECIP	Mean Annual Precipitation	39	inches	35	50.4							
STRDEN	Stream Density	2.38	miles per square mile	0.51	3.1							
ROCKDEP	Depth to Rock	4.3	feet	3.32	5.65							
CARBON	Percent Carbonate	11.19	percent	0	99							

Low-Flow Statistics Flow Report [Low Flow Region 2]

PII: Prediction Interval-Lower, PIu: Prediction Interval-Upper, SEp: Standard Error of Prediction, SE: Standard Error (other -- see report)

Statistic	Value	Unit	SE	ASEp
7 Day 2 Year Low Flow	3.6	ft^3/s	38	38
30 Day 2 Year Low Flow	4.89	ft^3/s	33	33
7 Day 10 Year Low Flow	1.69	ft^3/s	51	51
30 Day 10 Year Low Flow	2.32	ft^3/s	46	46
90 Day 10 Year Low Flow	3.59	ft^3/s	36	36

Low-Flow Statistics Citations

Stuckey, M.H.,2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006-5130, 84 p. (http://pubs.usgs.gov/sir/2006/5130/)

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the

NPDES Permit Fact Sheet Greenfield Township STP

functionality of the software and related material nor shall the fact of release constitute any such warranty. Furthermore, the software is released on condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized use.

USGS Product Names Disclaimer: Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Application Version: 4.6.0 StreamStats Services Version: 1.2.22 NSS Services Version: 2.1.2

Attachment B

WQM 7.0 Modeling Output Values Toxics Management Spreadsheet

SWP Basin	Stream Code	e <u>Stream Name</u>						
11A	16061	FRANK	STOWN BRANCH J	UNIATA RIVER				
Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)		Effl. Limit Minimum (mg/L)		
Greenfield	PA0029106	0.800	CBOD5	25				
			NH3-N	5.5	11			
			Dissolved Oxygen			5		
	11A Name	SWP Basin Stream Code 11A 16061 Name Permit Number	SWP Basin Stream Code 11A 16061 FRANK Name Permit Number Disc Flow (mgd)	SWP Basin Stream Code Stream Name 11A 16061 FRANKSTOWN BRANCH JU Name Permit Number Disc Flow (mgd) Parameter Greenfield PA0029106 0.800 CBOD5 NH3-N	SWP Basin Stream Code Stream Name 11A 16061 FRANKSTOWN BRANCH JUNIATA RIVER Name Permit Number Disc Flow (mgd) Parameter Stream Name Greenfield PA0029106 0.800 CBOD5 25 NH3-N 5.5	SWP Basin Stream Code Stream Name 11A 16061 FRANKSTOWN BRANCH JUNIATA RIVER Name Permit Number Disc Flow (mgd) Parameter Stffl. Limit 30-day Ave. (mg/L) Effl. Limit Maximum (mg/L) Greenfield PA0029106 0.800 CBOD5 25 NH3-N 5.5 11		

WQM 7.0 Effluent Limits

Version 1.1

<u>SWP Basin</u> 11A	Stream Code 16061	<u>Stream Name</u> FRANKSTOWN BRANCH JUNIATA RIVER								
<u>RMI</u> 45.000 <u>Reach Width (ft)</u> 35.939 <u>Reach CBOD5 (mg/L)</u> 5.88 <u>Reach DO (mg/L)</u> 7.696	Total Discharge 0.80 <u>Reach De</u> 0.70 <u>Reach Kc</u> 0.95 <u>Reach Kr (</u> 15.38	0 sp <u>th (ft)</u> 11 (<u>1/days)</u> 8 (<u>1/days)</u>		ysis Temperature (°C) 21.662 <u>Reach WDRatio</u> 51.262 teach NH3-N (mg/L) 0.93 <u>Kr Equation</u> Tsivoglou	<u>Analysis pH</u> 7.584 <u>Reach Velocity (fps)</u> 0.291 <u>Reach Kn (1/days)</u> 0.796 <u>Reach DO Goal (mg/L)</u> 5					
Reach Travel Time (day 0.439	s) TravTime (days)	Subreach CBOD5 (mg/L)	NH3-N (mg/L)	D.O. (mg/L)						
	0.044	5.37	0.90 0.87	7.89 7.99						
	0.132 0.175 0.219	4.91	0.84 0.81 0.78	7.99 7.99 7.99						
	0.263 0.307 0.351	4.28	0.75 0.73 0.70	7.99 7.99 7.99						
	0.395 0.439		0.68 0.65	7.99 7.99						

WQM 7.0 D.O. Simulation

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.91	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.15	Temperature Adjust Kr	M
D.O. Saturation	90.00%	Use Balanced Technology	Z
D.O. Goal	5		

Monday, July 19, 2021

Version 1.1

Page 1 of 1

		SWP Basin Stream Code				Stream Name FRANKSTOWN BRANCH JUNIATA RIVER									
RMI	Stream Flow	PWS With	Net Stream Flow		Reach Slope	Depth	Width	W/D Ratio	Velocity		Analysis Temp	Analysis pH			
	(cfs)	(cfs)	(cfs)	(cfs)	(ft/ft)	(ft)	(ft)		(fps)	(days)	(°C)				
Q7-10	0 Flow														
45.000	6.10	0.00	6.10	1.2376	0.00535	.701	35.94	51.28	0.29	0.439	21.66	7.58			
Q1-1	0 Flow														
45.000	5.55	0.00	5.55	1.2376	0.00535	NA	NA	NA	0.28	0.458	21.64	7.57			
Q30-1	10 Flow	,													
45.000	7.01	0.00	7.01	1.2376	0.00535	NA	NA	NA	0.31	0.411	21.70	7.61			

WQM 7.0 Hydrodynamic Outputs

Version 1.1

Page 1 of 1

Input Data WQM 7.0

	SWF Basir			Stre	am Name		RMI		ation ft)	Drainage Area (sq mi)	Slope (ft/ft)	PWS Withdrawal (mgd)	Apply FC
	11A	16	061 FRAN	KSTOWN	BRANCH	JUNIATAI	R 45.00	00 1	097.00	37.10	0.00000	0.00	
Stream Data													
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Terr	<u>Tributary</u> 1p pH	Tem	<u>Stream</u> p pH	
Cond.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C	9	(°C)	
Q7-10	0.164	0.00	0.00	0.000	0.000	0.0	0.00	0.00) 2	2.00 7.0	84	0.00 0.00)
Q1-10 Q30-10		0.00 0.00		0.000	0.000 0.000								

	Dis	icharge D	ata				
Name	Permit Number	Disc	Permitted Disc Flow (mgd)	Design Disc Flow (mgd)	Reserve Factor	Disc Temp (°C)	Disc pH
Greenfield	PA0029106	0.8000	0.8000	0.8000	0.000	20.00	7.08
	Par	rameter D	ata				
P	arameter Name	Dis Co				ite oef	
		(mg	/L) (mg	/L) (m	g/L) (1/d	ays)	
CBOD5		2	5.00	2.00	0.00	1.50	
Dissolved (Dxygen		5.00 (8.24	0.00	0.00	
NH3-N			5.50 (0.00	0.00	0.70	

Input Data WQM 7.0

	SWF Basi			Stre	am Name		RMI	Eleva (fi)rainage Area (sq mi)	Slope (ft/ft)	PWS Withdrawal (mgd)	Apply FC
	11A	16	061 FRAN	KSTOWN	BRANCH	JUNIATA	R 42.91	10 10	38.00	44.60	0.00000	0.00	
					S	tream Dat	ta						
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	<u>Ti</u> Temp	<u>ributary</u> pH	Temp	<u>Stream</u> p pH	
oona.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C)		
Q7-10	0.164	0.00	0.00	0.000	0.000	0.0	0.00	0.00	22.0	00 7.8	4 0	.00 0.00)
Q1-10		0.00	0.00	0.000	0.000								
Q30-10		0.00	0.00	0.000	0.000								

		Dis	charge D	ata					
	Name	Permit Number	Existing Disc Flow (mgd)	Permitted Disc Flow (mgd)	Desig Disc Flow (mgd	Rese Fac	erve T tor	Disc emp °C)	Disc pH
_			0.0000	0.0000	0.00	00 0	.000	25.00	7.00
		Par	ameter D	ata					
	Pa	rameter Name	Dis Co	_		tream Conc	Fate Coef		
			(mg	/L) (mg	y/L) (mg/L)	(1/days)		
	CBOD5		2	5.00	2.00	0.00	1.50		
	Dissolved O	xygen	;	3.00	8.24	0.00	0.00		
	NH3-N		2	5.00	0.00	0.00	0.70		

	<u>\$WP Basin</u> 11A	<u>Stream</u> 160		FR/	ANKSTOWN	<u>ream Name</u> BRANCH JUN	IIATA RIVE	R
NH 3-N	Acute Alloca	tions						
RMI	Discharge N		Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterian (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
45.0	00 Greenfield		7.26	11	7.26	11	0	0
NH 3-N	Chronic Allo	catio	15					
RMI	Discharge Na	me C	aseline aterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
45.0	00 Greenfield		1.13	5.5	1.13	5.5	0	0

 RMI	Discharge Name	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple (mg/L)	Reach	Reduct

45.00 Greenfield	25	25	5.5	5.5	5	5	0	0

0.8

Toxics Management Spreadsheet Version 1.3, March 2021

Discharge Information

100

7.08

Instructions D)ischarge Stream							
Facility: Gre	enfield Township S	TP		NPDES Per	mit No.: PA0	029106	Outfall	No.: 001
Evaluation Type:	Major Sewage /	Industrial Wast	e	Wastewater	Description:	Sewage eff	luent	
			Discharge	Characteris	tics			
Design Flow		-H (810)	F	Partial Mix Fa	actors (PMFs	i)	Complete Mi	x Times (min)
(MGD)*	Hardness (mg/l)*	pH (SU)*	AFC	CFC	THH	CRL	Q7.10	Q

					0 If lef	t blank	0.5 lf le	ft blank	6) if left blan	k	1 If lef	t blank
	Discharge Pollutant	Units	Ма	x Discharge Conc	Trib Conc	Stream Conc	Daily CV	Hourly CV	Strea m CV	Fate Coeff	FOS	Criteri a Mod	Chem Transl
	Total Dissolved Solids (PWS)	mg/L		254									
5	Chloride (PWS)	mg/L		54.7									
Group	Bromide	mg/L	<	0.12									
5	Sulfate (PWS)	mg/L		49.4									
	Fluoride (PWS)	mg/L											
	Total Aluminum	µg/L											
	Total Antimony	µg/L											
	Total Arsenic	µg/L											
	Total Barium	µg/L											
	Total Beryllium	µg/L											
	Total Boron	µg/L											
	Total Cadmium	µg/L											
	Total Chromium (III)	µg/L											
	Hexavalent Chromium	µg/L											
	Total Cobalt	µg/L											
	Total Copper	mg/L		0.1									
5	Free Cyanide	µg/L											
Group	Total Cyanide	µg/L											
5	Dissolved Iron	µg/L											
-	Total Iron	µg/L											
	Total Lead	µg/L											
	Total Manganese	mg/L	<	0.00056									
	Total Mercury	µg/L											
	Total Nickel	µg/L											
	Total Phenols (Phenolics) (PWS)	µg/L											
	Total Selenium	µg/L											
	Total Silver	µg/L											
	Total Thallium	µg/L											
	Total Zinc	mg/L		0.0197									
	Total Molybdenum	µg/L											
	Acrolein	µg/L	<										
	Acrylamide	µg/L	<										
	Acrylonitrile	µg/L	<										
	Benzene	µg/L	<										
	Bromoform	µg/L	<										

Toxics Management Spreadsheet Version 1.3, March 2021

Stream / Surface Water Information

Greenfield Township STP, NPDES Permit No. PA0029106, Outfall 001

Instructions Discharge Stream

Receiving Surface Water Name: Frankstown Branch Juniata River

Location	Stream Code*	RMI*	Elevation (ft)*	DA (mi ²)*	Slope (ft/ft)	PWS Withdrawal (MGD)	Apply Fish Criteria*
Point of Discharge	016061	45	1097	37.1			Yes
End of Reach 1	016061	42.91	1038	44.6			Yes

Statewide Criteria
 Great Lakes Criteria

ORSANCO Criteria

Q 7-10

Location	RMI	LFY	Flow	(cfs)	W/D	Width	Depth	Velocit	Time	Tributa	iry	Stream	m	Analys	sis
Location	TSIMI1	(cfs/mi ²)*	Stream	Tributary	Ratio	(ft)	(ft)	y (fps)	(days)	Hardness	pН	Hardness*	pH*	Hardness	pН
Point of Discharge	45	0.1643										135	7.84		
End of Reach 1	42.91	0.1643										135	7.84		

No. Reaches to Model: 1

Qh

Location	RMI	LFY	Flow	(cfs)	W/D	Width	Depth	Velocit	Time	Tributa	ary	Stream	n	Analys	sis
Eocation	TSIMI	(cfs/mi ²)	Stream	Tributary	Ratio	(ft)	(ft)	y (fps)	(dows)	Hardness	pН	Hardness	pН	Hardness	pН
Point of Discharge	45														
End of Reach 1	42.91														

Stream / Surface Water Information

7/14/2021

Page 4

NPDES Permit No. PA0029106

DEPARTMENT OF ENVIRONMENTAL PROTECTION

Toxics Management Spreadsheet

Model Results

Greenfield Township STP, NPDES Permit No. PA0029106, Outfall 001

Instructions Results	RETURN TO INF	UTS	SAVE AS	PDF	PRINT	r) 🖲 A	All 🔿 Inputs	Results	🔿 Limits
Hydrodynamics									
Wasteload Allocations									
AFC CCT	(min): 15	PMF:	0.725	Ana	lysis Hardnes	ss (mg/l):	127.35	Analysis pH:	7.53
Pollutants	Conc CV	n Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)		Co	omments
Total Dissolved Solids (PWS)	0 0		0	N/A	N/A	N/A			
Chloride (PWS)	0 0		0	N/A	N/A	N/A			
Sulfate (PWS)	0 0		0	N/A	N/A	N/A			
Total Copper	0 0		0	16.877	17.6	80.4		Chem Transla	ator of 0.96 applied
Total Manganese	0 0		0	N/A	N/A	N/A			
Total Zinc	0 0		0	143.816	147	672		Chem Transla	tor of 0.978 applied
CFC cct	(min): 28.514	PMF:	1	Ana	lysis Hardne	ss (mg/l):	129.09	Analysis pH:	7.58
Pollutants	Conc CV	m Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)		Co	omments
Total Dissolved Solids (PWS)	0 0		0	N/A	N/A	N/A			
Chloride (PWS)	0 0		0	N/A	N/A	N/A			
Sulfate (PWS)	0 0		0	N/A	N/A	N/A			
Total Copper	0 0		0	11.140	11.6	68.8		Chem Transla	ator of 0.96 applied
Total Manganese	0 0		0	N/A	N/A	N/A			
Total Zinc	0 0		0	146.677	149	881		Chem Transla	tor of 0.986 applied
	(min): 28.514	PMF:	1	Ana	ılysis Hardne	ss (mg/l):	N/A	Analysis pH:	N/A
Pollutants	Conc CV	n Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)		Co	omments
Total Dissolved Solids (PWS)	0 0		0	500,000	500,000	N/A			
Chlorida (DMC)	0 0		0	260,000	260,000	NI/A			

 Chloride (PWS)
 0
 0

 Sulfate (PWS)
 0
 0

Model Results

7/14/2021

250,000

250,000

N/A

N/A

250,000

250,000

0

0

NPDES Permit Fact Sheet Greenfield Township STP

Total Copper	0	0		0	N/A	N/A	N/A	
Total Manganese	0	0		0	1,000	1,000	5,925	
Total Zinc	0	0		0	N/A	N/A	N/A	
	T (min): 13.	184	PMF:	1	Ana	ılysis Hardne	ss (mg/l):	N/A Analysis pH: N/A
Pollutants	Conc (uo/L)	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A	
Chloride (PWS)	0	0		0	N/A	N/A	N/A	
Sulfate (PWS)	0	0		0	N/A	N/A	N/A	
Total Copper	0	0		0	N/A	N/A	N/A	
Total Manganese	0	0		0	N/A	N/A	N/A	
Total Zinc	0	0		0	N/A	N/A	N/A	

Recommended WQBELs & Monitoring Requirements

No. Samples/Month: 4

	Mass	Limits		Concentra	tion Limits				
Pollutants	AML (lbs/day)	MDL (lbs/day)	AML	MDL	IMAX	Units	Governing WQBEL	WQBEL Basis	Comments
Total Copper	0.34	0.54	0.052	0.08	0.13	mg/L	0.052	AFC	Discharge Conc ≥ 50% WQBEL (RP)

Other Pollutants without Limits or Monitoring

7/14/2021

Page 6