

Southcentral Regional Office CLEAN WATER PROGRAM

Application Type
Renewal
NonFacility Type
Municipal
Major / Minor
Minor

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

Application No. **PA0029335**APS ID **81**

Authorization ID 1214797

Applicant Name	PA Li	ons Beacon Lodge Camp	Facility Name	Beacon Lodge Camp
Applicant Address	114 S	R103 South	Facility Address	114 SR 103 South
	Moun	t Union, PA 17066-9601		Mount Union, PA 17066-9601
Applicant Contact	Jonat	han Carver	Facility Contact	Jonathan Carver
Applicant Phone	(814)	542-2511	Facility Phone	(814) 542-2511
Client ID	57000)	Site ID	260265
Ch 94 Load Status	Not C	verloaded	Municipality	Wayne Township
Connection Status			County	Mifflin
Date Application Rece	ived	December 11, 2017	EPA Waived?	Yes
Date Application Acce	pted	February 1, 2018	If No, Reason	

Summary of Review

1.0 General Discussion

This fact sheet supports the re-issuance of an existing NPDES permit for discharge of treated domestic wastewater from PA Lions Beacon Lodge Camp's wastewater treatment plant located in Wayne Township, Mifflin County. The camp is a seasonal recreational camp for blind children and adults. The treatment plant has a hydraulic design capacity of 0.02MGD. PA Lions Beacon Lodge Camp owns and operates the wastewater treatment plant. The discharge goes to Sugar Valley Run (stream code 12745) which is designated in the Pa Code Chapter 93.9 drainage List N as Cold Water Fishes (CWF) and Migratory Fishes (MF). The use designation for Sugar Valley Run basin was inadvertently omitted from Chapter 93.9n and Sugar Valley Run was classified as UNT to Juniata River with a use designation of High Quality-Cold Water Fishes (HQ-CWF) in error. The CWF designation became effective on September 5, 1998. The existing permit limits were developed to protect the HQ-CWF designation of the Sugar Valley Run which is no longer valid. The current water quality analysis for the permit renewal will treat Sugar Valley Run as CWF, MF. The existing NPDES permit was issued on June 14, 2013 with an effective date of July 1, 2013 and expiration date of June 30, 2018. The applicant submitted permit renewal application to the Department on December 11, 2017. The permittee is currently operating under the terms and conditions in the existing permit under administrative extension provisions pending Department action on the renewal application.

A topographic map showing the discharge location is presented in attachment A

Approve	Deny	Signatures	Date
Х		J. Pascal Kwedza, P.E. / Environmental Engineer	August 5, 2019
		Daniel W. Martin, P.E. / Environmental Engineer Manager	
		Maria D. Bebenek, P.E., Program Manager	

Summary of Review

1.1 Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

1.2 Changes to the existing Permit

TRC is slightly more stringent in the current permit.

1.3 Existing Permit Limits and Monitoring Requirements

	DISCHARGE LIMITATIONS							
	Mass Uni	ts (lbs/day)		Concentra				
Discharge Parameter	Average	Maximum Dailv	Inst. Minimum	Average	Maximum	Inst. Maximum	Monitoring	Sample
Farameter	Monthly Monitor	Monitor	WIIIIIIIIIII	Monthly	Daily	Maximum	Frequency	Туре
Flow (mgd)	& Report	& Report	XXX	XXX	XXX	XXX	continuous	Measured
pH (S.U.)	xxx	XXX	6.0	XXX	XXX	9.0	1/day	Grab
D.O.	XXX	XXX	5.0	XXX	XXX	XXX	1/day	Grab
Total Residual Chlorine	XXX	XXX	XXX	0.4	XXX	1.0	1/day	Grab
Total Suspended Solids	XXX	XXX	XXX	30	XXX	60	2/month	8-hour comp
CBOD ₅	xxx	XXX	XXX	25	XXX	50	2/month	8-hour comp
Fecal Coliform	XXX	XXX	XXX	200	XXX	1,000	2/month	Grab
Ammonia Nov 1 - Apr 30	XXX	XXX	XXX	9.0	XXX	18	2/month	8-Hr Composite
Ammonia May 1 - Oct 31	XXX	XXX	XXX	3.0	XXX	6	2/month	8-Hr Composite
Total Nitrogen	xxx	XXX	XXX	Report Annl Avg	XXX	XXX	2/month	Calculation
Total Phosphorus	XXX	XXX	XXX	Report Annl Avg	XXX	XXX	2/month	8-Hr Composite

Discharge, Receiving Waters and Water Supply Infor	rmation
Outfall No. 001 Latitude 40° 22' 25.48" Quad Name	Design Flow (MGD) .02 Longitude -77° 48' 44.35" Quad Code
Wastewater Description: Sewage Effluent	
Receiving Waters NHD Com ID 66209949 Drainage Area 2.7 Q ₇₋₁₀ Flow (cfs) Elevation (ft) 580 Watershed No. 12-A Existing Use Exceptions to Use Assessment Status Cause(s) of Impairment	Q ₇₋₁₀ Basis USGS Gage Station Slope (ft/ft) Chapter 93 Class. Existing Use Qualifier Exceptions to Criteria
Source(s) of Impairment TMDL Status	Nama
Background/Ambient Data pH (SU) Temperature (°F) Hardness (mg/L) Other:	Data Source
Nearest Downstream Public Water Supply Intake PWS Waters Juniata River PWS RMI	Mifflintown Borough Municipal Authority Flow at Intake (cfs) Distance from Outfall (mi) 39

Changes Since Last Permit Issuance: None

1.4.1 Water Supply Intake

The nearest downstream water supply intake is approximately 39 miles downstream for Mifflintown Borough Municipal Authority on Juniata River in Juniata County. No impact is expected from this discharge on the intake

	Tre	eatment Facility Summa	ry	
Treatment Facility Na	me: Beacon Lodge Camp			
WQM Permit No.	Issuance Date			
	Degree of			Avg Annual
Waste Type	Treatment	Process Type	Disinfection	Flow (MGD)
Sewage	Secondary	Extended Aeration	Hypochlorite	0.02
Hydraulic Capacity	Organic Capacity			Biosolids
(MGD)	(lbs/day)	Load Status	Biosolids Treatment	Use/Disposal
0.02		Not Overloaded	Dewatering	Other WWTP

Changes Since Last Permit Issuance:

Other Comments:

2.1 Treatment Facility

The treatment plant is a 0.020 MGD facility with a comminutor, Flow Equalization, Aeration Tank and Clarification Tank, Chlorine Contact Tank, sludge Holding tank and sludge drying beds. Effluent is disinfected with chlorine tabs and dechlorinated before being discharged continuously to Sugar Valley Run.

Compliance History

DMR Data for Outfall 001 (from December 1, 2017 to June 30, 2019)

Parameter	JUN-19	MAY-19	APR-19	MAR-19	OCT-18	SEP-18	AUG-18	JUL-18	JUN-18	MAY-18	APR-18	MAR-18
Flow (MGD)												
Average Monthly	0.001	0.001	0.000	0.000	0.001	0.001	0.002	0.002	0.001	0.000	0.000	0.000
Flow (MGD)												
Daily Maximum	0.004	0.005	0.003	0.004	0.005	0.005	0.007	0.007	0.005	0.003	0.004	0.001
pH (S.U.)												
Minimum	7.49	7.63	7.73	7.60	7.24	7.32	6.98	6.84	7.18	7.58	7.59	7.71
pH (S.U.)												
Maximum	8.19	8.06	8.36	8.20	7.57	7.96	7.63	7.32	7.85	7.75	7.86	8.00
DO (mg/L)												
Minimum	7.79	6.37	9.57	9.37	7.15	8.53	7.96	8.06	8.34	8.64	10.84	11.83
TRC (mg/L)												
Average Monthly	< 0.01	< 0.01	< 0.01	< 0.01	0.02	0.01	0.01	0.01	0.00	0.01	0.07	0.02
TRC (mg/L)												
Instantaneous												
Maximum	0.03	0.02	0.02	< 0.01	0.20	0.05	0.07	0.03	0.01	0.02	0.32	0.05
CBOD5 (mg/L)												
Average Monthly	< 3.00	< 3.33	< 3.0	< 3.00	< 3.23	< 3.00	< 3.00	< 3.00	< 3.73	< 3.15	< 5.67	5.45
TSS (mg/L)												
Average Monthly	3.8	< 3.5	9.8	16.4	4.40	4.4	4.00	10.00	4.7	5.60	10.2	12.00
Fecal Coliform												
(CFU/100 ml)												
Geometric Mean	2.74	3.22	< 1.0	< 1.0	19.1	2.0	< 3.46	32.9	1.42	< 0.1	< 1.76	1.41
Fecal Coliform												
(CFU/100 ml)												
Instantaneous	7.5	5.0	4.0	4.0	005.4	0.0	40.0	470.5	0.0	0.4	0.4	0.0
Maximum	7.5	5.2	< 1.0	< 1.0	365.4	2.0	12.0	172.5	2.0	< 0.1	3.1	2.0
Total Nitrogen (mg/L)						4 000						
Annual Average						< 1.000						
Total Nitrogen (lbs)						0.044						
Total Annual						< 3.044						
Ammonia (mg/L)	0.4000	0.4000	4 000	0.044	0.4000	0.4000	0.4000	0.4000	0.4000	0.054	0.000	0.404
Average Monthly	< 0.1000	< 0.1000	< 1.000	0.241	< 0.1000	< 0.1000	< 0.1000	< 0.1000	< 0.1000	0.354	0.609	0.131
Total Phosphorus												
(mg/L)						4 70						
Annual Average						1.78						
Total Phosphorus (lbs)						5.40						
Total Annual						5.42						

3.2 Compliance History	
Summary of DMRs:	Discharge Monitoring Reports (DMRs) review for the facility for the last 15 months of operation presented on the table above indicate permit limits have been met consistently. No permit violation noted on DMRs during the period reviewed.
Summary of Inspections:	The facility was inspected 6 times during the past permit cycle. Inspection reports review for the facility during the period indicate permit limits have been met satisfactorily. Ammonia Nitrogen permit violation occurred during facility inspection on 6/28/16. A response to an NOV sent for the violation indicated the violation was due to a malfunctioning blower bearing. The equipment has been repaired and no violations noted after the repairs. The reports indicate good operation and maintenance of the facility.

4.0 C	evelopment	of Effluent Limitations	3	
Outfall No.	001		Design Flow (MGD)	.02
Latitude	40° 22' 25.00)"	Longitude	-77° 48' 44.00"
Wastewater D	escription:	Sewage Effluent		

4.1 Basis for Effluent Limitations

In general, the Clean Water Act(AWA) requires that the effluent limits for a particular pollutant be the more stringent of either technology-based limits or water quality-based limits. Technology-based limits are set according to the level of treatment that is achievable using available technology. A water quality-based effluent limit is designed to ensure that the water quality standards applicable to a waterbody are being met and may be more stringent than technology-based effluent limits.

4.1.1 Technology-Based Limitations

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Pollutant	Limit (mg/l)	SBC	Federal Regulation	State Regulation
CBOD ₅	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
CBOD5	40	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)
Total Suspended	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
Solids	45	Average Weekly	133.102(b)(2)	92a.47(a)(2)
pН	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform				
(5/1 - 9/30)	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
Fecal Coliform				
(5/1 – 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform				
(10/1 - 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
Fecal Coliform				
(10/1 - 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)
Total Residual Chlorine	0.5	Average Monthly	-	92a.48(b)(2)

Comments: Weekly averages are not applicable to this discharge. The facility operates mainly during summer months; therefore, a winter Fecal Coliform limit is unnecessary. Summer Fecal Coliform limit will apply year-round.

4.2 Water Quality-Based Limitations

4.2.1 Receiving Stream

The receiving stream is the Sugar Valley Run. According to 25 PA § 93.9n, this stream is protected for Cold Water Fishes (CWF) and Migratory Fishes (MF). It is located in Drainage List N and State Watershed 12-A. It has been assigned stream code 12745. According to the Department's *Integrated Water Quality Monitoring and Assessment Report*, this stream is attaining its designated uses

4.2.2 Streamflows

Nearest USGS Stream gage is 01564500 on Aughwick Creek near Three Springs, PA. Recent stream flow retrievals resulted in a Q_{7-10} , Q_{1-10} , and Q_{30-10} of 4.2 cfs, 3.6 cfs, and 6.2 cfs respectively at this gage for record period of 1939-2005. These values were obtained from the latest USGS streamflow report from StreamStats version 3.0. The drainage area is reported to be 205 mi² at the gage station. The resulted run off rate and ratio calculations are shown below:

- Q_{7-10} runoff rate = 4.2/205 = 0.020 cfs/mi²
- $Q_{30-10} / Q_{7-10} = 1.48$
- $Q_{1-10} / Q_{7-10} = 0.86$

NPDES Permit Fact Sheet Beacon Lodge Camp

The drainage area at discharge point calculated from StreamStat version $3.0 = 2.84 \text{ mi}^2$ The Q₇₋₁₀ at discharge = $2.84 \text{ mi}^2 \times 0.02 \text{ ft}^3/\text{s/mi}^2 = 0.057 \text{ ft}^3/\text{s}$.

4.2.3 NH₃N Calculations

 NH_3N calculations will be based on the Department's Implementation Guidance of Section 93.7 Ammonia Criteria, dated 11/4/97 (ID No. 391-2000-013). The following data is necessary to determine the instream NH_3N criteria used in the attached computer model of the stream:

Discharge pH = 7.0 (DMR median from Jul. to Sept.)

Discharge Temperature = 25 ° C (Default)
 Stream pH = 7.0(Default))
 Stream Temperature = 20°C (Default))
 Background NH₃-N = 0.0 (default)
 Discharge flow = 0.02MGD

4.2.4 CBOD₅:

The attached result of WQM 7.0 stream model (attachment B) indicates that, for PA Beacon Lodge's discharge of 0.020MGD, a limitation of 25 mg/l CBOD_5 as a monthly average limit (AML) and 50 mg/l as instantaneous maximum (IMAX) is adequate to protect the water quality of the stream. This limit is consistent with the existing permit and the STP has been complying with this limitation. Therefore, a limit of 25 mg/l AML, and 50 mg/l IMAX is again recommended for this permit cycle.

4.2.5 NH₃-N:

The attached result of WQM 7.0 stream model (attachment B) also indicates that a summer limitation of 6.46mg/l NH₃-N as a monthly average is necessary to protect the aquatic life from toxicity effects. However, the existing monthly average summer limit of 3.0 mg/l which was based on measurable change analysis conducted during the past permit renewals due to the HG-CWF designation will remain in the permit since the facilities has been meeting the limitation. Limit for winter months is 3 times the limit for summer months. (9.0 mg/l)

4.2.6 Dissolved Oxygen

The existing permit contains a limit of 5 mg/l for Dissolved Oxygen (DO). DEP's Technical Guidance for the Development and Specification of Effluent Limitations (362-0400-001, 10/97) suggests that either the adopted minimum stream D.O. criteria for the receiving stream or the effluent level determined through water quality modeling be used for the limit. Since the WQM 7.0 model was run using a minimum D.O. of 5.0 mg/l, this limit will be continued in the renewed permit with a daily monitoring requirement per DEP guidance.

4.2.7 Total Suspended Solids(TSS):

There is no water quality criterion for TSS. A limit of 30 mg/l AML will be required based on the minimum level of effluent quality attainable by secondary treatment as defined in 40 CFR 133.102b(1) and 25 PA § 92a.47(a)(1)

4.2.8 Total Residual Chlorine:

The attached computer printout presented in attachment C utilizes the equations and calculations as presented in the Department's 2003 Implementation Guidance for Residual Chlorine (TRC) (ID # 391-2000-015) for developing chlorine limitations. The results presented in attachment C indicates that a water quality limit of 0.28 mg/l monthly average and IMAX of 0.91 mg/l would be needed to prevent toxicity concerns. The recommended limitation slightly more stringent than the existing limit; however, DMR and inspection reports indicate the facility can meet the recommended limits.

4.2.9 Toxics

A reasonable potential (RP) analysis was done for pollutants in the discharge. The discharge consists entirely of domestic wastewater with no pollutants of concern that need further analysis.

4.2.10 Chesapeake Bay Strategy:

The Department formulated a strategy in April 2007, to comply with the EPA and Chesapeake Bay Foundation requirements to reduce point source loadings of Total Nitrogen (TN) and Total Phosphorus (TP) to the Bay. In the Strategy, sewage dischargers have been prioritized by Central Office based on their delivered TN loadings to the Bay. The highest priority (Phases 1, 2, and 3) dischargers will receive annual loading caps based on their design flow on August 29, 2005 and concentrations of 6 mg/l TN and 0.8 mg/l TP. Phase 4 (0.2 -0.4mgd) and Phase 5(below 0.2mdg) will be required to monitor and report TN and TP during permit renewal at a monitoring frequency following Table 6-3 of DEP's Technical Guidance for Development and Specification of effluent Limitations (No. 362-0400-001). Any facility in Phases 4 and 5 that undergoes expansion is subjected to cap load right away.

EPA published the Chesapeake Bay Total Maximum Daily Load (TMDL) in December of 2010. Despite extensive restoration efforts during the past 25 years, the TMDL was prompted by insufficient progress and continued poor water quality in the Chesapeake Bay and its tidal tributaries.

In order to address the TMDL, Pennsylvania developed in addition to the Bay Strategy, a Chesapeake Watershed Implementation Plan (WIP) Phase 1 in January 2011 and Phase 2 in March 2012. In accordance with the Phase 2 WIP and its supplement, re-issuing permits for significant dischargers follow the same phased approach formulated in the original Bay strategy, whilst Phase 4 and Phase 5 will be required to monitor and report TN and TP during permit renewal. This facility is, classified as a phase 5, and has been monitoring Total Phosphorus, Nitrate-Nitrite as N, Total Kjeldahl Nitrogen and Total Nitrogen annually and will continue to monitor them during the next permit cycle.

5.0 Other Requirements

5.1 Anti-backsliding

Not applicable to this permit

5.2 Stormwater:

No storm water outfall is associated with this facility

5.3 Biosolids Management

Sludge is hold up in a sludge holding tank and hauled out by a licensed hauler periodically to Shade Gap wastewater treatment plant.

5.4 Anti-Degradation (93.4)

The effluent limits for this discharge have been developed to ensure that existing instream water uses and the level of water quality necessary to protect the existing uses are maintained and protected. No High-Quality Waters are impacted by this discharge. No Exceptional Value Waters are impacted by this discharge.

5.5 Class A Wild Trout Fisheries

No Class A Wild Trout Fisheries are impacted by this discharge.

5.6 303d Listed Streams:

The discharge is not located on a 303d listed stream segment.

5.7 Basis for Effluent and Surface Water Monitoring

Section 308 of the CWA and federal regulation 40 CFR 122.44(i) require monitoring in permits to determine compliance with effluent limitations. Monitoring may also be required to gather effluent and surface water data to determine if additional

NPDES Permit Fact Sheet Beacon Lodge Camp

effluent limitations are required and/or to monitor effluent impacts on receiving water quality. The permittee is responsible for conducting the monitoring and for reporting results on Discharge Monitoring Reports (DMRs).

5.8 Effluent Monitoring

Monitoring frequencies are based on the nature and effect of the pollutant, as well as a determination of the minimum sampling necessary to adequately monitor the facility's performance. Permittees have the option of taking more frequent samples than are required under the permit. These samples can be used for averaging if they are conducted using EPA-approved test methods (generally found in 40 CFR 136) and if the Method Detection Limits are less than the effluent limits. The sampling location must be after the last treatment unit and prior to discharge to the receiving water. If no discharge occurs during the reporting period, "no discharge" shall be reported on the DMR.

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Phase 1 through Permit Expiration Date.

		Monitoring Re	quirements					
Doromotor	Mass Units	(lbs/day) (1)		Concentrat	tions (mg/L)		Minimum (2)	Required Sample Type
Parameter	Average Monthly	Average Weekly	Minimum	Average Monthly	Maximum	Instant. Maximum	Measurement Frequency	
Flow (MGD)	Report	Report Daily Max	XXX	XXX	XXX	XXX	1/week	Measured
pH (S.U.)	XXX	XXX	6.0	XXX	9.0	XXX	1/day	Grab
DO	XXX	XXX	5.0	XXX	XXX	XXX	1/day	Grab
TRC	XXX	XXX	XXX	0.28	XXX	0.91	1/day	Grab
CBOD5	XXX	XXX	XXX	25	XXX	50	2/month	8-Hr Composite
TSS	XXX	XXX	XXX	30	XXX	60	2/month	8-Hr Composite
Fecal Coliform (CFU/100 ml)	XXX	XXX	XXX	200 Geo Mean	XXX	1000	2/month	Grab
Ammonia Nov 1 - Apr 30	XXX	XXX	XXX	9.0	XXX	18	2/month	8-Hr Composite
Ammonia May 1 - Oct 31	XXX	XXX	XXX	3.0	XXX	6	2/month	8-Hr Composite
Nitrate-Nitrite	xxx	XXX	xxx	XXX	Report Daily Max	XXX	1/year	8-Hr Composite
Total Nitrogen	XXX	XXX	XXX	XXX	Report Daily Max	XXX	1/year	Calculation
TKN	XXX	XXX	XXX	XXX	Report Daily Max	XXX	1/year	8-Hr Composite
Total Phosphorus	XXX	XXX	XXX	XXX	Report Daily Max	XXX	1/year	8-Hr Composite

Compliance Sampling Location: Outfall 001

7.0 To	ols and References Used to Develop Permit
	WQM for Windows Model (see Attachment B)
	PENTOXSD for Windows Model (see Attachment)
	TRC Model Spreadsheet (see Attachment C)
	Temperature Model Spreadsheet (see Attachment)
	Toxics Screening Analysis Spreadsheet (see Attachment)
	Water Quality Toxics Management Strategy, 361-0100-003, 4/06.
	Technical Guidance for the Development and Specification of Effluent Limitations, 362-0400-001, 10/97.
	Policy for Permitting Surface Water Diversions, 362-2000-003, 3/98.
\boxtimes	Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 362-2000-008, 11/96.
	Technology-Based Control Requirements for Water Treatment Plant Wastes, 362-2183-003, 10/97.
	Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 362-2183-004, 12/97.
	Pennsylvania CSO Policy, 385-2000-011, 9/08.
\boxtimes	Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03.
	Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 391-2000-002, 4/97.
\boxtimes	Determining Water Quality-Based Effluent Limits, 391-2000-003, 12/97.
	Implementation Guidance Design Conditions, 391-2000-006, 9/97.
	Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen, Version 1.0, 391-2000-007, 6/2004.
	Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 391-2000-008, 10/1997.
	Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments, 391-2000-010, 3/99.
	Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 391-2000-011, 5/2004.
\boxtimes	Implementation Guidance for Section 93.7 Ammonia Criteria, 391-2000-013, 11/97.
	Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 391-2000-014, 4/2008.
\boxtimes	Implementation Guidance Total Residual Chlorine (TRC) Regulation, 391-2000-015, 11/1994.
	Implementation Guidance for Temperature Criteria, 391-2000-017, 4/09.
	Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 391-2000-018, 10/97.
	Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 391-2000-019, 10/97.
	Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 391-2000-021, 3/99.
	Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 391-2000-022, 3/1999.
\boxtimes	Design Stream Flows, 391-2000-023, 9/98.
	Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 391-2000-024, 10/98.
	Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 391-3200-013, 6/97.
	Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07.
$\overline{\boxtimes}$	SOP: Establishing Effluent limitation for individual sewage permit
	Other: WIP 2 and supplement

Attachments

A. Topographical MAP

B. WQM Model Results

WQM 7.0 Effluent Limits

	12A 12	745		SUGAR VALLEY			
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
0.100	PA Beacon Lodge	PA0029335	0.020	CBOD5	25		
				NH3-N	6.46	12.92	
				Dissolved Oxygen			5

Input Data WQM 7.0

	SWP Basin	Strea Cod		Stre	eam Name		RMI	Elevar		rainage Area (sq mi)	Slope (ft/ft)	PWS Withdrawal (mgd)	Apply FC
	12A	127	745 SUGA	R VALLE	Y RUN		0.10	0 5	30.00	2.84	0.00000	0.00	V
					St	ream Dat	a						
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	<u>Tr</u> Temp	<u>ibutary</u> pH	Temp	Stream pH	
	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C)		
27-10 21-10 230-10	0.020	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000 0.000 0.000	0.0	0.00	0.00	20.0	7.0	0 0	.00 0.00)
					Di	scharge l	Data	****	•				
			Name	Per	mit Number	Disc	Permitte Disc Flow (mgd)	ed Design Disc Flow (mgd)	Resen Facto		p pH		
		PA B	eacon Lod	ge PA0	0029335	0.020	0.020	0.020	0 0.0	000 25	5.00	7.00	
					Pa	rameter !	Data						
										Fate Coef			
			1	Paramete:	r Name	(m	g/L) (n	ng/L) (m	ng/L) (1	1/days)			
			CBOD5				25.00	2.00	0.00	1.50			

5.00

25.00

8.24

0.00

0.00

0.00

Dissolved Oxygen

NH3-N

Page 1 of 2

0.00

0.70

Input Data WQM 7.0

	SWP Basin	Strea Cod		Stre	eam Name		RMI		vation (ft)	Drainag Area (sq mi)		Slope (ft/ft)	PW: Withdr (mg	awal	Apply FC
	12A	12	745 SUGA	R VALLE	Y RUN		0.01	10	575.00	2	.92 0	.00000		0.00	~
					St	ream Dat	a								
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	<u>Tributary</u> p	ℓ pH	Tem	<u>Stream</u> p	рН	
Goria.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C)) .		
Q7-10 Q1-10 Q30-10	0.020	0.00 0.00 0.00		0.000 0.000 0.000	0.000 0.000 0.000	0.0	0.00	0.0	0 2	0.00	7.00	(0.00	0.00	
					Di	scharge l	Data								
			Name	Per	mit Number	Disc	Permitte Disc Flow (mgd)	Disa Flor	c Res w Fa		Disc Temp (°C)	Di: p	sc H		
						0.000	0.000	0.0	000	0.000	25.0	00	7.00		
					Pa	ırameter l	Data								
			,	Paramete	r Name			rib onc	Stream Conc	Fate Coef					
			•	aramete	Hanic	(m	g/L) (n	ng/L)	(mg/L)	(1/days)				
			CBOD5			,	25.00	2.00	0.00	1.5	0				
			Dissolved	Oxygen			5.00	8.24	0.00	0.0	0				
			NH3-N			:	25.00	0.00	0.00	0.7	0				

WQM 7.0 Hydrodynamic Outputs

		P Basin 12A		<u>m Code</u> 2745				Stream SAR VAL	<u>Name</u> .LEY RUI	1		
RMI	Stream Flow (cfs)	PWS With (cfs)	Net Stream Flow (cfs)	Disc Analysis Flow (cfs)	Reach Slope (ft/ft)	Depth (ft)	Width (ft)	W/D Ratio	Velocity (fps)	Reach Trav Time (days)	Analysis Temp (°C)	Analysis pH
Q7-1	0 Flow									-		
0.100	0.06	0,00	0.06	.0309	0.01052	.345	5.6	16.23	0.05	0.121	21.76	7.00
Q1-1	0 Flow											
0.100	0.05	0.00	0.05	.0309	0.01052	NA	NA	NA	0.04	0.128	21.94	7.00
Q30-	10 Flow	,										
0.100	0.08	0.00	0.08	.0309	0.01052	NA	· NA	NA	0.05	0.104	21.35	7.00

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	V
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.86	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.48	Temperature Adjust Kr	V
D.O. Saturation	90.00%	Use Balanced Technology	✓.
D.O. Goal	5		

WQM 7.0 Wasteload Allocations

SWP Basin	Stream Code	Stream Name
12A	12745	SUGAR VALLEY RUN

	12A	12745		SUG	AR VALLE	Y RUN		
NH3-N	Acute Allocation	ıs						
RMI	Discharge Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multipl WLA (mg/L	. Reach		1 .
0.10	00 PA Beacon Lodg	8.41	21.68	8.41	l 21	.68 0	0	_
NH3-N	Chronic Allocati	ons						
RMI	Discharge Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction	
0.10	0 PA Beacon Lodg	1.74	6.46	1.74	1 6	5.46 0	0	
issolve	ed Oxygen Alloc	ations						
		<u>c</u>	BOD5	<u>NH3-1</u>	<u> 1</u>	ssolved Oxyge	en Critical	Percent
RMI	Discharge Nar	ne Baselii (mg/L				sseline Multip ng/L) (mg/L	le Reach	Reduction
0.1	0 PA Beacon Lodge	2	25 25	6.46	6.46	5 5	ó	0

WQM 7.0 D.O.Simulation

SWP Basin St	tream Code 12745		su	Stream Name GAR VALLEY RUN	
<u>RMI</u>	Total Discharge	Flow (mgd) Ana	ysis Temperature (º	C) Analysis pH
0.100	0.020)		21.763	7.000
Reach Width (ft)	Reach De	oth (ft)		Reach WDRatio	Reach Velocity (fps)
5.596	0.345			16.225	0.045
Reach CBOD5 (mg/L)	Reach Kc (1/days)	<u>R</u>	each NH3-N (mg/L)	Reach Kn (1/days)
10.11	1.29			2.28	0.802
Reach DO (mg/L)	Reach Kr (Kr Equation	Reach DO Goal (mg/L)
7.099	20.44	6		Owens	5
Reach Travel Time (days) 0.121	TravTime (days) 0.012 0.024 0.036 0.048 0.060 0.073 0.085 0.097	9.94 9.77 9.61 9.29 9.13 8.98 8.83 8.68	Results NH3-N (mg/L) 2.26 2.24 2.21 2.19 2.17 2.15 2.13 2.11 2.09	D.O. (mg/L) 7.17 7.23 7.29 7.33 7.37 7.41 7.44 7.47	
	0.121	8.54	2.07	7.52	

C. TRC Calculations

Copy of TRC_CALC1

IIIO LINEO	ATION								
Input appropria	ate values in	A3:A9 and D3:D9							
0.05	7 = Q stream (cfs)	0.5	= CV Daily					
0.03	= Q discharg	ge (MGD)	0.5	= CV Hourly					
30	= no. sample	es	1	= AFC_Partial M	ix Factor				
0.3	= Chlorine D	emand of Stream	1	1 = CFC_Partial Mix Factor					
(= Chlorine D	emand of Discharge	15	= AFC_Criteria Compliance Time (min)					
0.8	= BAT/BPJ V	/alue	720	720 = CFC_Criteria Compliance Time (
(= % Factor	of Safety (FOS)	0	=Decay Coeffici	ent (K)				
Source	Reference	AFC Calculations		Reference	CFC Calculations				
TRC	1.3.2.iii	WLA afc =	0.607	1.3.2.iii	WLA cfc = 0.584				
PENTOXSD TRG	TOXSD TRG 5.1a LTAMULT afc =		0.373	5.1c	LTAMULT cfc = 0.581				
PENTOXSD TRG	DXSD TRG 5.1b LTA_afc=			5.1d	LTA_cfc = 0.339				
Source		Efflue	nt Limit Calcu	lations					
PENTOXSD TRG	5.1f		AML MULT =	1.231					
PENTOXSD TRG	5.1g	AVG MON	LIMIT (mg/l) =	0.278	AFC				
			LIMIT (mg/l) =						
WLA afc		FC_tc)) + [(AFC_Yc*Qs*.019		C_tc))					
1 TABLE T -5-	•	C_Yc*Qs*Xs/Qd)]*(1-FOS/10 (cvh^2+1))-2.326*LN(cvh^2-	•						
LTAMULT afc LTA_afc	wla_afc*LTA	, ,,	-1)~0.5)						
LIA_aic	WIA_AIC LIA	NOL1_alc							
WLA_cfc	***	- , - , - ,		_tc))					
_	+ Xd + (CF	FC_tc) + [(CFC_Yc*Qs*.011/ C_Yc*Qs*Xs/Qd)]*(1-FOS/10 (cvd^2/no_samples+1))-2.32	10)	_ ,,	.5)				
WLA_cfc LTAMULT_cfc LTA_cfc	+ Xd + (CF	C_Yc*Qs*Xs/Qd)]*(1-FOS/1{ (cvd^2/no_samples+1))-2.32	10)	_ ,,	.5)				
 LTAMULT_cfc	+ Xd + (CF EXP((0.5*LN wla_cfc*LTA	C_Yc*Qs*Xs/Qd)]*(1-FOS/1{ (cvd^2/no_samples+1))-2.32	10) 6*LN(cvd^2/n	o_samples+1)^0					
LTAMULT_cfc LTA_cfc	+ Xd + (CF EXP((0.5*LN wla_cfc*LTA EXP(2.326*L	C_Yc*Qs*Xs/Qd)]*(1-FOS/10 (cvd^2/no_samples+1))-2.32 MULT_cfc	00) 6*LN(cvd^2/n 5)-0.5*LN(cvd	o_samples+1)^0					