

 Application Type
 Renewal

 Facility Type
 Municipal

 Major / Minor
 Minor

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

Application No.	PA0029726
APS ID	1021119
Authorization ID	1322789

Applicant and Facility Information

Applicant Name	Jamestown Borough Municipal Authority	Facility Name	Jamestown Municipal STP
Applicant Address	406 Jackson Street	Facility Address	Main Street Extension
	Jamestown, PA 16134-0188		Jamestown, PA 16134
Applicant Contact	Charles Swartz	Facility Contact	Michael Davidson
Applicant Phone	(724) 932-3644	Facility Phone	(724) 372-3339
Client ID	207	Site ID	261230
Ch 94 Load Status	Not Overloaded	Municipality	Jamestown Borough
Connection Status	No Limitations	County	Mercer
Date Application Rece	ived July 31, 2020	EPA Waived?	Yes
Date Application Accept	oted August 13, 2020	If No, Reason	

Purpose of Application

Renewal of an NPDES Permit for an existing discharge of treated sewage from a POTW.

Summary of Review

This is a municipally owned sewage treatment plant serving the Borough of Jamestown, Mercer County. There are no commercial or industrial users and the facility is currently not accepting hauled in waste.

There are no proposed changes to the discharge quantity or quality as part of this permit renewal.

The plant discharges to a segment of the Shenango River, which is known to contain threatened and endangered mussel species. A summary of threatened and endangered mussel species concerns and considerations is included on Page 9 of this Fact Sheet. Additionally, the draft permit will be forwarded to the US Fish & Wildlife Service and PA Fish and Boat Commission.

There are currently no open violations listed in EFACTS for this permittee (10/21/2021).

Sludge use and disposal description and location(s): Sludge is hauled offsite and disposed of at Mahoning Landfill in Springfield, Ohio.

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Approve	Deny	Signatures	Date
х		Adam J. Pesek Adam J. Pesek, E.I.T. / Environmental Engineer	October 21, 2021
x		Justin C. Dickey Justin C. Dickey, P.E. / Environmental Engineer Manager	October 22, 2021

Discharge, Receiving V	Waters and Water Supply Inform	mation	
Outfall No. 001		Design Flow (MGD)	0.26
Latitude 41° 28'	59"	Longitude	-80° 26' 30"
Quad Name Gree	nville West	Quad Code	0702
Wastewater Descripti	on: Domestic Sewage		
Receiving Waters	Shenango River	Stream Code	35482
NHD Com ID	130027726	RMI	66.34
Drainage Area	170.8	Yield (cfs/mi ²)	0.023
			USGS # 03101500,
· · · —	11.21 (Summer), 8.145 (winter)	Q7-10 Basis	accrued flow #03100000
· · · · · · · · · · · · · · · · · · ·	968	Slope (ft/ft)	0.00083
—	20-A		WWF
Existing Use			
Exceptions to Use		Exceptions to Criteria	
Assessment Status	Attaining Use(s)		
Cause(s) of Impairme			
Source(s) of Impairme	ent		
TMDL Status	-	Name	
Background/Ambient	Data	Data Source	
pH (SU)	7.71	WQN 911 field samples (2005	-2020)(June-September)
Temperature (°C)	20.24 (Sum), 4.71 (Win)	WQN 911 (2005-2020)	
Hardness (mg/L)	70	WQN 911 (2005-2020)(90 th %)
NH3-N	0.11	WQN 911 field samples (2002	/
CBOD	2.2	2005 sampling for NIDR – She	,
Nearest Downstream	Public Water Supply Intake	Greenville Municipal Authority	
PWS Waters Sh	enango River	Flow at Intake (cfs)	35.7
PWS RMI 57		Distance from Outfall (mi)	9.34

Changes Since Last Permit Issuance:

Other Comments:

	Tre	atment Facility Summa	ry	
Treatment Facility Na	me: Jamestown Municipal S	STP		
WQM Permit No.	Issuance Date			
4399407 A-1	10/03/2013			
4300404 A-2	3/25/2019			
	Degree of			Avg Annual
Waste Type	Treatment	Process Type	Disinfection	Flow (MGD)
Sewage	Secondary	Extended Aeration	UV Light	0.26
Hydraulic Capacity	Organic Capacity			Biosolids
(MGD)	(lbs/day)	Load Status	Biosolids Treatment	Use/Disposal
0.26	266	Not Overloaded	Drying	Landfill

Changes Since Last Permit Issuance: WQM Permit 4300404 A-2 was issued which permitted the replacement of the Liberty street pump station, replacement of the influent interceptor sewer, a new mechanical bar screen and channel, a new influent pump station, improvements to the aeration tanks, addition of four new clarifiers, making repairs to the existing clarifiers, replacement of the disinfection system with UV disinfection equipment, removing of existing sludge holding tank, construction of two new sludge holding tanks

Other Comments: N/A

	Compliance History
Summary of DMRs:	One effluent violation (total phosphorus) reported in the last 5 years.
Summary of Inspections:	Last site inspection was conducted on 7/31/2020. The inspection report indicated the planned plant improvements have not started as of that date because bids were higher than expected. Issues noted were the comminutor was not operational and updated Lab Accreditation Form with current contract lab information and lab registration information for on-site analysis was necessary. A CACP was executed on 12/22/2020 for late submission of the NPDES Permit renewal application.

Other Comments:

Compliance History

DMR Data for Outfall 001 (from September 1, 2020 to August 31, 2021)

Parameter	AUG-21	JUL-21	JUN-21	MAY-21	APR-21	MAR-21	FEB-21	JAN-21	DEC-20	NOV-20	OCT-20	SEP-20
Flow (MGD)												
Average Monthly	0.054	0.102	0.054	0.087	0.059	0.078	0.063	0.120	0.146	0.080	0.056	0.042
Flow (MGD)												
Daily Maximum	0.136	0.607	0.093	0.194	0.138	0.176	0.148	0.398	0.317	0.144	0.180	0.085
pH (S.U.)												
Minimum	7.0	7.0	7.0	6.8	6.9	6.8	6.9	6.5	6.6	6.7	6.7	6.7
pH (S.U.)												
Maximum	7.3	7.4	7.5	7.1	7.4	7.3	7.4	6.8	6.8	7.0	7.0	7.0
DO (mg/L)												
Minimum	5.7	4.4	6.9	7.4	7.1	4.9	4.5	4.4	5.5	6.5	4.5	5.1
TRC (mg/L)												
Average Monthly	0.2	0.2	0.3	0.2	0.3	0.3	0.3	0.3	0.3	0.2	0.3	0.2
TRC (mg/L)												
Instantaneous												
Maximum	0.4	0.5	0.7	0.5	0.5	0.6	0.4	0.4	0.7	0.4	0.5	0.3
CBOD5 (lbs/day)												
Average Monthly	2.5	4.4	< 1.8	< 2.6	< 1.1	2.8	1.6	< 2.8	< 3.5	< 2.1	< 1.5	< 1.3
CBOD5 (lbs/day)	_	_		_		_		_	_			
Weekly Average	5	7	2	< 5	2	5	2	< 5	< 5	3	< 2.1	< 2
CBOD5 (mg/L)	_		_									
Average Monthly	5	6	< 5	< 3	< 2	4	3	< 3	< 3	< 3	< 3	< 3
CBOD5 (mg/L)	7	0	10	0			-					-
Weekly Average	/	9	10	< 6	4	4	5	< 3	< 3	4	4	< 5
BOD5 (lbs/day)												
Raw Sewage Influent												
 br/> Average Monthly	68	122	55	67	88	65	78	139	128	64	82	53
BOD5 (lbs/day)	00	122	55	07	00	60	70	139	120	04	02	
Raw Sewage Influent												
<pre> Daily Maximum</br></pre>	159	239	91	107	106	80	145	349	199	81	150	73
BOD5 (mg/L)	103	209	31	107	100	00	143	343	133		130	13
Raw Sewage Influent												
 Average												
Monthly	132	143	123	85	200	95	152	125	105	108	175	135
TSS (lbs/day)	102	110	120		200		102	120	100	100		.00
Average Monthly	< 2.3	< 4.3	< 2.0	< 4.8	< 2.3	< 3.6	< 2.5	< 4.7	< 7.3	< 3.2	< 2.4	< 2.0

NPDES Permit Fact Sheet Jamestown Municipal STP

NPDES Permit No. PA0029726

TSS (lbs/day)												
Raw Sewage Influent												
 Average												
Monthly	55	93	36	51	64	58	55	50	93	55	59	35
TSS (lbs/day)												
Raw Sewage Influent												
 br/> Daily Maximum	119	253	50	82	94	78	71	55	202	72	82	61
TSS (lbs/day)												
Weekly Average	< 4	< 8	< 3	10	< 3	< 6	< 3	9	11	< 4	3	< 3
TSS (mg/L)												
Average Monthly	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 6	< 5	< 5	< 5
TSS (mg/L)												
Raw Sewage Influent												
 Average												
Monthly	111	112	79	81	144	90	110	69	73	94	135	90
TSS (mg/L)												
Weekly Average	< 5	< 5	5	6	< 5	< 5	< 5	< 5	7	< 5	6	< 5
Fecal Coliform												
(CFU/100 ml)												
Geometric Mean	31	38	59	9	3	17	108	22	13	27	34	24
Fecal Coliform												
(CFU/100 ml)												
Instantaneous												
Maximum	208	99	411	59	10	210	866	121	23	33	76	228
Total Nitrogen												
(lbs/day)	_	4.0			_	_	_	_	_	_		_
Average Monthly	5	10	6	8	5	5	5	5	7	7	6	5
Total Nitrogen (mg/L)						/						
Average Monthly	10.1	9.6	13.13	8.8	10.6	7.61	9.5	5.69	5.8	11.4	13.6	12.2
Ammonia (lbs/day)												
Average Monthly	< 1	< 2	< 1	< 1	< 1	< 1	< 2	< 1	< 1	< 1	< 1	<1
Ammonia (mg/L)												
Average Monthly	< 3	< 3	< 3	< 1	< 1	< 1	< 3	< 2	< 1	< 1	< 1	< 1
Total Phosphorus												
(lbs/day)		<u> </u>	<u> </u>									
Average Monthly	0.2	0.4	0.5	0.2	0.1	0.1	0.1	0.2	0.4	0.2	0.2	0.2
Total Phosphorus												
(mg/L)												
Average Monthly	0.5	0.4	1.0	0.3	0.3	0.1	0.3	0.2	0.3	0.4	0.4	0.5

Development of Effluent Limitations

Outfall No.	001		Design Flow (MGD)	0.26
Latitude	41º 28' 59"		Longitude	-80° 26' 30"
Wastewater De	escription:	Domestic Sewage		

Technology-Based Limitations

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Pollutant	Limit (mg/l)	SBC	Federal Regulation	State Regulation
CROD-	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
CBOD₅	40	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)
Total Suspended	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
Solids	45	Average Weekly	133.102(b)(2)	92a.47(a)(2)
рН	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform				
(5/1 – 9/30)	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
Fecal Coliform				
(5/1 – 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform				
(10/1 – 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
Fecal Coliform				
(10/1 – 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)
Total Residual Chlorine	0.5	Average Monthly	-	92a.48(b)(2)
E. Coli	Report (No./100 ml)	IMAX		92a.61

Comments: Monitoring for E. coli is placed in the permit in accordance with the Department's SOP entitled "Establishing Effluent Limitations for Individual Sewage Permits."

The technology-based limits for TRC are no longer applicable because the facility recently switched to UV disinfection.

Water Quality-Based Limitations

The following limitations were determined through water quality modeling (output files attached):

Parameter	Limit (mg/l)	SBC	Model
Ammonia Nitrogen			
(5/01 – 10/31)	16.0	Average Monthly	WQM 7.0 Ver 1.1
Ammonia Nitrogen			
(11/01 – 4/30)	17.5	Average Monthly	WQM 7.0 Ver 1.1

Comments: Wintertime modeling was conducted for this discharge, although not current standard modeling procedure, due to the unique seasonal streamflow characteristics for this discharge and North and South Shenango Joint STP's discharge due to release rates of the Pymatuning Dam, operated by USACOE. The calculated limits are slightly more stringent than the current limits due primarily to new Chapter 93 water quality criteria for ammonia nitrogen which took effect early in 2021.

A phosphorus average monthly limit of 1.0 mg/l will be retained in the permit, based on the Shenango River Trophic State Index (TSI) Study.

Toxic modeling was not done because this in a minor sewage discharge and there are no industrial or commercial users.

Best Professional Judgment (BPJ) Limitations

A dissolved oxygen limit of 4.0 mg/l as a daily minimum is placed in the permit in accordance with the Department's SOP entitled "Establishing Effluent Limitations for Individual Sewage Permits."

Other Considerations

Comments: Monitoring for influent BOD₅ and influent TSS is placed in the permit in accordance with the Department's SOP entitled "New and Reissuance Individual Sewage NPDES Permit Applications."

Monitoring for total nitrogen and UV intensity is placed in the permit in accordance with the Department's SOP entitled "Establishing Effluent Limitations for Individual Sewage Permits."

Anti-Backsliding

N/A

Threatened and Endangered Mussel Species Concerns and Considerations

The main segment of the Shenango River from the Pymatuning Dam in Jamestown, Pennsylvania, downstream to the point of inundation by Shenango River Lake near Big Bend, Mercer County, Pennsylvania, is documented to contain federally and state listed threatened and endangered mussel species. Due to the discharge being directly to the Shenango River, potential impacts to endangered mussel species were evaluated.

The USFWS has indicated in comment letters on other NPDES permits that in order to protect threatened and endangered mussel species, wastewater discharges containing ammonia-nitrogen (NH₃-N), chloride (Cl⁻) and nickel, where mussels or their habitat exist, can be no more than 1.9 mg/l, 78 mg/l and 7.3 ug/l, respectively. The calculated site-specific criteria based on WQN Station 911 stream background pH and temperature data (pH of 7.71 and temperature of 20.24) results in NH3-N criteria of 1.113 mg/l.

Ammonia-Nitrogen (NH₃-N) Evaluation:

The following is a summary of the Ammonia-Nitrogen eDMR average monthly reporting data:

en (INH3-N) ite samples	Year	January	February	March	April	May	June	yluL	August	September	October	November	December
Ammonia-Initrogen 24-hour composite (mg/L)	2018	<0.8	<0.8	<0.8	<0.8	<5.5	<0.8	<0.8	<1.2	<0.8	<0.8	<0.8	<0.8
a-INI com	2019	<0.8	<0.8	0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<1.0	<1.0	<1.0	<1.0
our (L)	2020	<1.0	<1.0	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
24-hou (mg/L)	2021	<2.0	<3.0	<1.0	<1.0	<1.0	<3.0	<3.0	<3.0				

The proposed permit limits for Ammonia-Nitrogen in the new permit cycle were as follows:

	Effluent Lim	itations					Monitoring Requirements		
Parameter	Mass Units	(lbs/day) ⁽¹⁾	Concentration	ons (mg/L)			Minimum ⁽²⁾	Required	
Farameter	Average Monthly	Weekly Average	Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type	
Ammonia-Nitrogen								24-Hr	
May 1 - Oct 31	34.6	XXX	XXX	16.0	XXX	32	1/week	Composite	
Ammonia-Nitrogen								24-Hr	
Nov 1 - Apr 30	37.9	XXX	XXX	17.5	XXX	35	1/week	Composite	

NPDES Permit Fact Sheet Jamestown Municipal STP

NPDES Permit No. PA0029726

The limits in the existing permit were calculated utilizing the Department DO model (WQM 7.0) which assumes a complete mix of the effluent with the receiving stream. The WQM 7.0 model was reevaluated as part of the subject permit renewal using the newly adopted ammonia-nitrogen water quality criteria (same as 2013 EPA CMG).

As can be seen from the eDMR data for the past three and a half years, the highest ammonia nitrogen concentration in the effluent was 1.0 mg/l, with most results being non-detect at MDLs ranging from 0.8 to 3.0 mg/l. This indicates that the facility is consistently denitrifying the municipal sewage to a high degree and easily meeting the calculated WQBELs in the permit. There is no perceived impact due to ammonia nitrogen with the max detectable concentration because it is less than the most stringent WQ criteria. The Endangered Mussel Species Impact Area Calculations Spreadsheet (attached) was completed using the maximum non-detect concentration of 3 mg/l to determine the potential impact area in this scenario which resulted in a maximum area of impact of 1.54 m² or 16.59 ft².

Due to this facility being a minor sewage facility (design flow less than 1.0 MGD), the application only required one effluent sample for chloride and no sampling for total nickel. The lone reported effluent chloride concentration was 61 mg/l, which is less than the concentration stated by the USFWS of being protective of mussels. Nickel is not expected to be present in the effluent at levels of concern due to this being a municipal sewage treatment plant with no commercial or industrial users and they do not accept hauled in waste.

Based on this sampling data, relatively small calculated areas of impact for this this existing major sewage discharge and comparisons to characteristics of other similar minor sewage discharges, the existing discharge from the Jamestown Municipal STP facility is not believed to be having any measurable adverse effects on threatened or endangered mussel species in the Shenango River. However, the Department will establish quarterly effluent sampling for chloride and total nickel to develop a dataset as a means of further evaluating potential impacts in the upcoming permit term.

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

			Effluent L	imitations.			Monitoring Re	quirements
Deremeter	Mass Units	; (lbs/day) ⁽¹⁾		Concentrat	ions (mg/L)		Minimum ⁽²⁾	Required
Parameter	Average Monthly	Weekly Average	Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type
		Report						
Flow (MGD)	Report	Daily Max	XXX	XXX	XXX	XXX	Continuous	Measured
рН (S.U.)	XXX	XXX	6.0 Daily Min	XXX	9.0 Daily Max	ххх	1/day	Grab
DO	xxx	xxx	4.0 Daily Min	xxx	xxx	xxx	1/day	Grab
UV Intensity (mW/cm ²⁾	ххх	xxx	Report Daily Min	Report	XXX	xxx	1/day	Measured
CBOD5	33.3	50	xxx	25	40	50	1/week	24-Hr Composite
BOD5		Report	7000					24-Hr
Raw Sewage Influent	Report	Daily Max	XXX	Report	XXX	XXX	1/week	Composite
								24-Hr
TSS	25.5	56	XXX	30	45	60	1/week	Composite
TSS		Report						24-Hr
Raw Sewage Influent	Report	Daily Max	XXX	Report	XXX	XXX	1/week	Composite
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	XXX	xxx	xxx	2000 Geo Mean	XXX	10000	1/week	Grab
Fecal Coliform (No./100 ml) May 1 - Sep 30	ххх	xxx	xxx	200 Geo Mean	XXX	1000	1/week	Grab
	7000	7007	7000		7000	1000	17 WOOK	Club
E. Coli (No./100 ml)	XXX	XXX	XXX	XXX	XXX	Report	1/quarter	Grab
		Report			Report			24-Hr
Total Nitrogen	XXX	Daily Max	XXX	XXX	Daily Max	XXX	1/quarter	Composite
Ammonia-Nitrogen	34.6	xxx	xxx	16.0	xxx	32	1/week	24-Hr
May 1 - Oct 31	34.0	~~~	~~~	0.01	~~~	32	i/week	Composite

			Effluent L	imitations			Monitoring Requiremen	
Parameter	Mass Units	(lbs/day) ⁽¹⁾		Concentrati	ions (mg/L)		Minimum ⁽²⁾	Required
	Average Monthly	Weekly Average	Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type
Ammonia-Nitrogen								24-Hr
Nov 1 - Apr 30	37.9	XXX	XXX	17.5	XXX	35	1/week	Composite
								24-Hr
Total Phosphorus	2.2	XXX	XXX	1.0	XXX	2	1/week	Composite
·				Report				24-Hr
Chloride	XXX	XXX	XXX	Avg Qrtly	XXX	XXX	1/quarter	Composite
				Report			·	24-Hr
Total Nickel	XXX	XXX	XXX	Avg Qrtly	XXX	XXX	1/quarter	Composite

Outfall 001, Continued (from Permit Effective Date through Permit Expiration Date)

Compliance Sampling Location: Outfall 001 (after disinfection)

Other Comments: Sampling frequency for total nitrogen was relaxed from 1/week to 1/quarter because there is not currently a local stream impairment for nutrients.

On September 20, 2004, the Department approved Jamestown's re-rating from 0.15 MGD to 0.26 MGD. This was a hydraulic re-rate and not an organic re-rating. To calculate the allowable $CBOD_5 \& TSS$ mass loadings, the federal definition of secondary treatment was applied (85% removal) to the influent loadings from the original design specifications. Since they were only granted a hydraulic re-rating, the base load from the Borough's customers should remain the same. Mass Loadings for NH₃-N and phosphorus were calculated using the higher, re-rated flow.

CBOD₅: BOD₅ influent = 266 lb/day x 0.15 x 25 (CBOD₅/30 (BOD₅) = **33.3 lb/day**

TSS: TSS influent = 170 lb/day x 0.15 = **25.5 lb/day**

	SWP Basin	Strea Coc		Stre	am Name	9	RMI	Eleva (f		Drainage Area (sq mi)	Slope (ft/ft)	Witho	VS drawal igd)	Apply FC
	20A	354	182 SHEN	ANGO RI	VER		68.20	00 9	978.00	167.00	0.0000	0	0.00	✓
					:	Stream Dat	a							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Tra∨ Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	<u>Tributary</u> p pH	Te	<u>Strea</u> mp	m pH	
Cona.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C))	(°	C)		
Q7-10 Q1-10 Q30-10	0.023	11.21 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000 0.000 0.000		0.00	0.00	20).24 7.1	71	0.00	0.00	
						Discharge	Data						1	
			Name	Per	mit Numb	Disc	Permitto Disc Flow (mgd)	ed Desigr Disc Flow) (mgd	Res Fa	Dis erve Ten ctor (ºC	np	Disc pH		
		NSS	IMA STP	PA	0100277	1.700	0 0.000	0.00	00 0	0.000 2	20.00	7.00		
)	Parameter	Data							
			1	Paramete	r Name				tream Conc	Fate Coef				
				urumete	Hame	(m	ıg/L) (n	ng/L) (mg/L)	(1/days)				
			CBOD5				25.00	2.20	0.00	1.50				
			Dissolved	Oxygen			4.00	8.24	0.00	0.00				
			NH3-N				25.00	0.11	0.00	0.70				

	SWP Basin	Strea Coc		Stre	eam Nam	e	RMI	Elev (1	ation t)	Drainage Area (sq mi)	Slop (ft/fl	Withc	Irawal	Apply FC
	20A	354	182 SHEN	ANGO RI	VER		66.34	40	968.00	170.8	0.00	000	0.00	✓
					i	Stream Dat	а							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Tra∨ Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	<u>Tributary</u> ıp pH	I	<u>Strear</u> Temp	n pH	
Conu.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C)		
Q7-10 Q1-10 Q30-10	0.023	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000 0.000 0.000		0.00	0.00	2	0.24 7	.71	0.00	0.00	
						Discharge	Data						1	
			Name	Per	mit Numt	Disc	Permitte Disc Flow (mgd)	Disc Flow	Res / Fa	erve Te ctor	isc mp °C)	Disc pH		
		Jame	stown STP	PA	029726	0.260	0 0.000	00.00	00	0.000	20.00	7.10		
						Parameter	Data							
			F	Paramete	r Name				tream Conc	Fate Coef				
				didifiero	Haine	(m	ıg/L) (n	ng/L) (mg/L)	(1/days)				
			CBOD5				25.00	2.20	0.00	1.50				
			Dissolved	Oxygen			4.00	8.24	0.00	0.00				
			NH3-N				25.00	0.11	0.00	0.70				

Version 1.1

Page 2 of 3

	SWP Basin	Strea Coc		Stre	am Nam	e	RMI		vation ft)	Drainage Area (sq mi)	Sloj (ft/i	Witho	VS Irawal gd)	Apply FC
	20A	354	482 SHEN	ANGO RI	VER		62.00	00	949.00	183.6	0 0.00	000	0.00	✓
					;	Stream Dat	ta							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	<u>Tributary</u> ıp p⊦	ł	<u>Strear</u> Temp	n pH	
Conu.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C)		
Q7-10 Q1-10 Q30-10	0.023	0.00 0.00 0.00	0.00	0.000 0.000 0.000	0.000 0.000 0.000		0.00	0.00	0 2	0.24 7	7.71	0.00	0.00	
						Discharge	Data						1	
			Name	Per	mit Numb	Disc	Permitt Disc Flow (mgd)	Disc Flow	Res Res	erve Te ctor	0isc emp ⁰C)	Disc pH		
		3				0.000	0 0.000	00.00	000	0.000	25.00	7.00		
						Parameter	Data							
			1	Paramete	r Name				Stream Conc	Fate Coef				
				urumete	Haine	(m	ng/L) (r	ng/L)	(mg/L)	(1/days)				
			CBOD5				25.00	2.00	0.00	1.50		_		
			Dissolved	Oxygen			3.00	8.24	0.00	0.00				
			NH3-N				25.00	0.00	0.00	0.70				

Version 1.1

Page 3 of 3

	SW	P Basin	<u>Strea</u>	m Code				Stream	Name			
		20A	3	5482			SH	ENANG	O RIVER			
RMI	Stream Flow	PWS With	Net Stream Flow	Disc Analysis Flow	Reach Slope	Depth	Width	W/D Ratio	Velocity	Reach Tra∨ Time	Analysis Temp	Analysis pH
	(cfs)	(cfs)	(cfs)	(cfs)	(ft/ft)	(ft)	(ft)		(fps)	(days)	(°C)	
Q7-10) Flow											
68.200	11.21	0.00	11.21	2.6299	0.00102	.845	62.99	74.56	0.26	0.437	20.19	7.46
66.340	11.30	0.00	11.30	3.0321	0.00083	.855	64.64	75.64	0.26	1.022	20.19	7.44
Q1-10) Flow											
68.200	7.17	0.00	7.17	2.6299	0.00102	NA	NA	NA	0.21	0.530	20.18	7.39
66.340	7.23	0.00	7.23	3.0321	0.00083	NA	NA	NA	0.22	1.233	20.17	7.37
Q30-1	10 Flow											
68.200	15.25	0.00	15.25	2.6299	0.00102	NA	NA	NA	0.30	0.379	20.20	7.50
66.340	15.36	0.00	15.36	3.0321	0.00083	NA	NA	NA	0.30	0.889	20.20	7.49

WQM 7.0 Hydrodynamic Outputs

Version 1.1

Page 1 of 1

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	✓
WLA Method	EMPR	Use Inputted W/D Ratio	✓
Q1-10/Q7-10 Ratio	0.64	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.36	Temperature Adjust Kr	✓
D.O. Saturation	90.00%	Use Balanced Technology	
D.O. Goal	5		

Tuesday, August 31, 2021

Version 1.1

Page 1 of 1

	SV	VP Basin Stre	am Code		St	ream Name		
		20A 3	5482		SHE	NANGO RIVE	R	
VH3-	N Ac	ute Allocation	IS					
RM	VI	Discharge Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
68	.2001	NSSJMA STP	10.71	39.64	10.71	39.64	0	0
66	.340	Jamestown STP	7.22	50	10.93	50	0	0
VH3-	N Ch	nronic Allocati	ons					
RM	11 1	Discharge Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
68	.2001	NSSJMA STP	1.37	8.68	1.37	7.52	2	13
	240	Jamestown STP	1.15	25	1.39	21.67	2	13

WQM 7.0 Wasteload Allocations

Dissolved Oxygen Allocations

		CBC	<u>DD5</u>	<u>NH</u>	<u>3-N</u>	Dissolved	d Oxygen	Critical	Deveent
RMI	Discharge Name	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple (mg/L)	Reach	Percent Reduction
68.201	NSSJMA STP	22.6	18.34	7.52	6.15	4	4	2	19
66.34	Jamestown STP	25	25	21.67	16.12	4	4	2	19

Version 1.1

20A	ream Code 35482		s	<u>Stream Name</u> HENANGO RIVER	
<u>RMI</u> 68.200 <u>Reach Width (ft)</u> 62.992 <u>Reach CBOD5 (mg/L)</u> 5.27 <u>Reach DO (mg/L)</u> 7.437	<u>Total Discharge</u> 1.70 <u>Reach De</u> 0.84 <u>Reach Kc</u> 0.66 <u>Reach Kr</u> 1.81	0 s <u>pth (ft)</u> 5 (<u>1/days)</u> 6 <u>1/days)</u>		ysis Temperature (°C) 20.194 Reach WDRatio 74.563 each NH3-N (mg/L) 1.26 Kr Equation Tsivoglou	<u>Analysis pH</u> 7.458 <u>Reach Velocity (fps)</u> 0.260 <u>Reach Kn (1/days)</u> 0.711 <u>Reach DO Goal (mg/L)</u> 5
<u>Reach Travel Time (days)</u> 0.437	TravTime (days)	Subreach CBOD5 (mg/L)	Results NH3-N (mg/L)	D.O. (mg/L)	
	0.044		1.22 1.18	7.18 6.95	
	0.131	4.82	1.15	6.75	
	0.175	4.68	1.11	6.58	
	0.219	4.55	1.08	6.43	
	0.262	4.42	1.04	6.30	
	0.306	4.29	1.01	6.19	
	0.350	4.16	0.98	6.10	
	0.393	4.04	0.95	6.02	
	0.437	3.93	0.92	5.96	
<u>RMI</u> 66.340	<u>Total Discharge</u> 1.96		<u>) Ana</u>	<u>ysis Temperature (°C)</u> 20.189	<u>Analysis pH</u> 7,444
00.340		0			
Reach Width (ft)		onth (ft)		Reach WUDRatio	Reach Velocity (fns)
<u>Reach Width (ft)</u> 64.641	Reach De			Reach WDRatio 75.644	<u>Reach Velocity (fps)</u> 0.259
<u>Reach Width (ft)</u> 64.641 <u>Reach CBOD5 (mg/L)</u>		5	R	Reach WDRatio 75.644 each NH3-N (mg/L)	<u>Reach Velocity (fps)</u> 0.259 <u>Reach Kn (1/days)</u>
64.641	<u>Reach De</u> 0.85	5 (1/days)	R	75.644	0.259
64.641 <u>Reach CBOD5 (mg/L)</u>	<u>Reach De</u> 0.85 <u>Reach Kc</u> 0.55 <u>Reach Kr (</u>	5 (<u>1/days)</u> 2 <u>1/days)</u>	<u>R</u>	75.644 <u>each NH3-N (mg/L)</u> 1.34 <u>Kr Equation</u>	0.259 <u>Reach Kn (1/days)</u> 0.710 <u>Reach DO Goal (mg/L)</u>
64.641 <u>Reach CBOD5 (mg/L)</u> 4.51	<u>Reach De</u> 0.85 <u>Reach Kc</u> 0.55	5 (<u>1/days)</u> 2 <u>1/days)</u>	<u>R</u>	75.644 each NH3-N (mg/L) 1.34	0.259 <u>Reach Kn (1/days)</u> 0.710
64.641 <u>Reach CBOD5 (mg/L)</u> 4.51 <u>Reach DO (mg/L)</u>	<u>Reach De</u> 0.85 <u>Reach Kc</u> 0.55 <u>Reach Kr (</u> 1.47 TravTime	5 (<u>1/days)</u> 2 <u>1/days)</u> 4 Subreach CBOD5	Results NH3-N	75.644 <u>each NH3-N (mg/L)</u> 1.34 <u>Kr Equation</u> Tsivoglou D.O.	0.259 <u>Reach Kn (1/days)</u> 0.710 <u>Reach DO Goal (mg/L)</u>
64.641 <u>Reach CBOD5 (mg/L)</u> 4.51 <u>Reach DO (mg/L)</u> 5.922 <u>Reach Travel Time (days)</u>	<u>Reach De</u> 0.85 <u>Reach Kc</u> 0.55 <u>Reach Kr (</u> 1.47	5 (<u>1/days)</u> 2 <u>1/days)</u> 4 Subreach	Results	75.644 <u>each NH3-N (mg/L)</u> 1.34 <u>Kr Equation</u> Tsivoglou	0.259 <u>Reach Kn (1/days)</u> 0.710 <u>Reach DO Goal (mg/L)</u>
64.641 <u>Reach CBOD5 (mg/L)</u> 4.51 <u>Reach DO (mg/L)</u> 5.922 <u>Reach Travel Time (days)</u>	<u>Reach De</u> 0.85 <u>Reach Kc</u> 0.55 <u>Reach Kr (</u> 1.47 TravTime	5 (<u>1/days)</u> 2 1/days) 4 Subreach CBOD5 (mg/L)	Results NH3-N	75.644 <u>each NH3-N (mg/L)</u> 1.34 <u>Kr Equation</u> Tsivoglou D.O.	0.259 <u>Reach Kn (1/days)</u> 0.710 <u>Reach DO Goal (mg/L)</u>
64.641 <u>Reach CBOD5 (mg/L)</u> 4.51 <u>Reach DO (mg/L)</u> 5.922 <u>Reach Travel Time (days)</u>	<u>Reach De</u> 0.85 <u>Reach Kc</u> 0.55 <u>Reach Kr (</u> 1.47 TravTime (days)	5 (<u>1/days)</u> 2 <u>1/days)</u> 4 Subreach CBOD5 (mg/L) 4.26	Results NH3-N (mg/L)	75.644 <u>each NH3-N (mg/L)</u> 1.34 <u>Kr Equation</u> Tsivoglou D.O. (mg/L)	0.259 <u>Reach Kn (1/days)</u> 0.710 <u>Reach DO Goal (mg/L)</u>
64.641 <u>Reach CBOD5 (mg/L)</u> 4.51 <u>Reach DO (mg/L)</u> 5.922 <u>Reach Travel Time (days)</u>	<u>Reach De</u> 0.85 <u>Reach Kc</u> 0.55 <u>Reach Kr (</u> 1.47 TravTime (days) 0.102	5 (<u>1/days</u>) 2 <u>1/days</u>) 4 Subreach CBOD5 (mg/L) 4.26 4.02	Results NH3-N (mg/L) 1.25	75.644 <u>each NH3-N (mg/L)</u> 1.34 <u>Kr Equation</u> Tsivoglou D.O. (mg/L) 5.62	0.259 <u>Reach Kn (1/days)</u> 0.710 <u>Reach DO Goal (mg/L)</u>
64.641 <u>Reach CBOD5 (mg/L)</u> 4.51 <u>Reach DO (mg/L)</u> 5.922 <u>Reach Travel Time (days)</u>	Reach De 0.85 Reach Kc 0.55 Reach Kr (1.47 TravTime (days) 0.102 0.204	5 (<u>1/days</u>) 2 <u>1/days</u>) 4 Subreach CBOD5 (mg/L) 4.26 4.02 3.80	Results NH3-N (mg/L) 1.25 1.16	75.644 each NH3-N (mg/L) 1.34 <u>Kr Equation</u> Tsivoglou D.O. (mg/L) 5.62 5.42	0.259 <u>Reach Kn (1/days)</u> 0.710 <u>Reach DO Goal (mg/L)</u>
64.641 <u>Reach CBOD5 (mg/L)</u> 4.51 <u>Reach DO (mg/L)</u> 5.922 <u>Reach Travel Time (days)</u>	Reach De 0.85 Reach Kc 0.55 Reach Kr (1.47 TravTime (days) 0.102 0.204 0.307	5 (<u>1/days</u>) 2 <u>1/days</u>) 4 Subreach CBOD5 (mg/L) 4.26 4.02 3.80 3.59	Results NH3-N (mg/L) 1.25 1.16 1.08	75.644 each NH3-N (mg/L) 1.34 <u>Kr Equation</u> Tsivoglou D.O. (mg/L) 5.62 5.42 5.28	0.259 <u>Reach Kn (1/days)</u> 0.710 <u>Reach DO Goal (mg/L)</u>
64.641 <u>Reach CBOD5 (mg/L)</u> 4.51 <u>Reach DO (mg/L)</u> 5.922 <u>Reach Travel Time (days)</u>	Reach De 0.85 Reach Kc 0.55 Reach Kr (1.47 TravTime (days) 0.102 0.204 0.307 0.409 0.511 0.613	5 (1/days) 2 1/days) 4 Subreach CBOD5 (mg/L) 4.26 4.02 3.80 3.59 3.39 3.20	Results NH3-N (mg/L) 1.25 1.16 1.08 1.00 0.93 0.87	75.644 each NH3-N (mg/L) 1.34 <u>Kr Equation</u> Tsivoglou D.O. (mg/L) 5.62 5.42 5.28 5.20 5.18 5.19	0.259 <u>Reach Kn (1/days)</u> 0.710 <u>Reach DO Goal (mg/L)</u>
64.641 <u>Reach CBOD5 (mg/L)</u> 4.51 <u>Reach DO (mg/L)</u> 5.922 <u>Reach Travel Time (days)</u>	Reach De 0.85 Reach Kr 0.55 Reach Kr 1.47 TravTime (days) 0.102 0.204 0.307 0.409 0.511 0.613 0.716	5 (1/days) 2 1/days) 4 Subreach CBOD5 (mg/L) 4.26 4.02 3.80 3.59 3.39 3.20 3.03	Results NH3-N (mg/L) 1.25 1.16 1.08 1.00 0.93 0.87 0.81	75.644 each NH3-N (mg/L) 1.34 <u>Kr Equation</u> Tsivoglou D.O. (mg/L) 5.62 5.42 5.28 5.20 5.18 5.19 5.24	0.259 <u>Reach Kn (1/days)</u> 0.710 <u>Reach DO Goal (mg/L)</u>
64.641 <u>Reach CBOD5 (mg/L)</u> 4.51 <u>Reach DO (mg/L)</u> 5.922 <u>Reach Travel Time (days)</u>	Reach De 0.85 Reach Kr 0.55 Reach Kr 1.47 TravTime (days) 0.102 0.204 0.307 0.409 0.511 0.613 0.716 0.818	5 (1/days) 2 1/days) 4 Subreach CBOD5 (mg/L) 4.26 4.02 3.80 3.59 3.39 3.20 3.03 2.86	Results NH3-N (mg/L) 1.25 1.16 1.08 1.00 0.93 0.87 0.81 0.75	75.644 each NH3-N (mg/L) 1.34 <u>Kr Equation</u> Tsivoglou D.O. (mg/L) 5.62 5.42 5.28 5.20 5.18 5.20 5.18 5.19 5.24 5.24 5.31	0.259 <u>Reach Kn (1/days)</u> 0.710 <u>Reach DO Goal (mg/L)</u>
64.641 <u>Reach CBOD5 (mg/L)</u> 4.51 <u>Reach DO (mg/L)</u> 5.922 <u>Reach Travel Time (days)</u>	Reach De 0.85 Reach Kr 0.55 Reach Kr 1.47 TravTime (days) 0.102 0.204 0.307 0.409 0.511 0.613 0.716 0.818 0.920	5 (1/days) 2 1/days) 4 Subreach CBOD5 (mg/L) 4.26 4.02 3.80 3.59 3.39 3.20 3.03 2.86 2.70	Results NH3-N (mg/L) 1.25 1.16 1.08 1.00 0.93 0.87 0.81 0.75 0.70	75.644 each NH3-N (mg/L) 1.34 <u>Kr Equation</u> Tsivoglou D.O. (mg/L) 5.62 5.42 5.28 5.20 5.18 5.20 5.18 5.19 5.24 5.31 5.40	0.259 <u>Reach Kn (1/days)</u> 0.710 <u>Reach DO Goal (mg/L)</u>
64.641 <u>Reach CBOD5 (mg/L)</u> 4.51 <u>Reach DO (mg/L)</u> 5.922 <u>Reach Travel Time (days)</u>	Reach De 0.85 Reach Kr 0.55 Reach Kr 1.47 TravTime (days) 0.102 0.204 0.307 0.409 0.511 0.613 0.716 0.818	5 (1/days) 2 1/days) 4 Subreach CBOD5 (mg/L) 4.26 4.02 3.80 3.59 3.39 3.20 3.03 2.86 2.70	Results NH3-N (mg/L) 1.25 1.16 1.08 1.00 0.93 0.87 0.81 0.75	75.644 each NH3-N (mg/L) 1.34 <u>Kr Equation</u> Tsivoglou D.O. (mg/L) 5.62 5.42 5.28 5.20 5.18 5.20 5.18 5.19 5.24 5.24 5.31	0.259 <u>Reach Kn (1/days)</u> 0.710 <u>Reach DO Goal (mg/L)</u>
64.641 <u>Reach CBOD5 (mg/L)</u> 4.51 <u>Reach DO (mg/L)</u> 5.922 <u>Reach Travel Time (days)</u>	Reach De 0.85 Reach Kr 0.55 Reach Kr 1.47 TravTime (days) 0.102 0.204 0.307 0.409 0.511 0.613 0.716 0.818 0.920	5 (1/days) 2 1/days) 4 Subreach CBOD5 (mg/L) 4.26 4.02 3.80 3.59 3.39 3.20 3.03 2.86 2.70	Results NH3-N (mg/L) 1.25 1.16 1.08 1.00 0.93 0.87 0.81 0.75 0.70	75.644 each NH3-N (mg/L) 1.34 <u>Kr Equation</u> Tsivoglou D.O. (mg/L) 5.62 5.42 5.28 5.20 5.18 5.20 5.18 5.19 5.24 5.31 5.40	0.259 <u>Reach Kn (1/days)</u> 0.710 <u>Reach DO Goal (mg/L)</u>

WQM 7.0 D.O.Simulation

19

		<u>n Code</u> 482		<u>Stream Name</u> SHENANGO RIV			
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
68.200	NSSJMA STP	PA0100277	1.700	CBOD5	18.34		
				NH3-N	6.15	12.3	
				Dissolved Oxygen			4
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
66.340	Jamestown STP	PA0029726	0.260	CBOD5	25		
				NH3-N	16.12	32.24	
				Dissolved Oxygen			4

WQM 7.0 Effluent Limits

Version 1.1

	SWP Basin			Stre	eam Name	2	RMI		ation ft)	Drainage Area (sq mi)		ope /ft)	PWS Vithdrawal (mgd)	Apply FC
	20A	354	482 SHEN	ANGO RI	VER		68.20	00	978.00	167.0	0.0 0.0	0000	0.00	✓
					5	Stream Dat	a							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Tra∨ Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	<u>Tributary</u> p pł	H	<u>St</u> Temp	<u>ream</u> pH	
Conu.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C)		
Q7-10 Q1-10 Q30-10	0.023	8.15 0.00 0.00		0.000 0.000 0.000	0.000 0.000 0.000		0.00	0.00)	4.71	7.71	0.0	0.00	te de
	<u> </u>)	Discharge	Data							
			Name	Per	mit Numb	Disc	Permitt Disc Flow (mgd)	Disc Flow	Res / Fa	erve To ctor	Disc emp °C)	Disc pH		
		NSS	JMA STP	PA	0100277	1.700	0 0.000	00.00	000	0.000	15.00) 7.	00	
					1	Parameter	Data							
			1	Paramete	r Name				Stream Conc	Fate Coef				
			1		0.254.04.05	(m	ıg/L) (r	ng/L)	(mg/L)	(1/days)				
			CBOD5				25.00	2.20	0.00	1.50				
			Dissolved	Oxygen			4.00	8.24	0.00	0.00				
			NH3-N				25.00	0.11	0.00	0.70				

Version 1.1

Page 1 of 3

	SWP Basin			Stre	am Nam	e	RMI	Elev (1	ation t)	Drainage Area (sq mi)	Slop (ft/f	Witho	VS Irawal gd)	Apply FC
	20A	354	182 SHEN	ANGO RI	VER		66.34	40	968.00	170.8	0 0.00	000	0.00	✓
						Stream Dat	a							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Tra∨ Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	<u>Tributary</u> ıp pH	ł	<u>Strear</u> Temp	n pH	
Conu.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C)		
Q7-10 Q1-10 Q30-10	0.023	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000 0.000 0.000		0.00	0.00		4.71 7	7.71	0.00	0.00	
						Discharge	Data						1	
			Name	Per	mit Numt	Disc	Permitt Disc Flow (mgd)	Disc Flow	Res / Fa	erve Te ctor	isc emp °C)	Disc pH		
		Jame	stown STP	PA	029726	0.260	0 0.000	00.00	00 0	0.000	15.00	7.10		
						Parameter	Data							
			r	Paramete	r Name				stream Conc	Fate Coef				
				urumoto	Humo	(m	ng/L) (r	ng/L) (mg/L)	(1/days)				
	-		CBOD5				25.00	2.20	0.00	1.50				
			Dissolved	Oxygen			4.00	8.24	0.00	0.00				
			NH3-N				25.00	0.11	0.00	0.70				

Version 1.1

Page 2 of 3

	SWP Basin	Strea Coo		Stre	eam Name	2	RMI	Elev (1	ation t)	Drainage Area (sq mi)	Slope (ft/ft)	Witho	VS drawal igd)	Apply FC
	20A	354	482 SHEN	ANGO RI	VER		62.0	00	949.00	183.60	0.000	000	0.00	✓
					5	Stream Dat	ta							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Tra∨ Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	<u>Tributary</u> ip pH	1	<u>Strea</u> remp	m pH	
Cona.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C)		
Q7-10 Q1-10 Q30-10	0.023	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000 0.000 0.000	0.0	0.00	0.00		4.71 7	.71	0.00	0.00	
)	Discharge	Data						7	
			Name	Per	mit Numb	Disc	Permitt Disc Flow (mgd	Disc Flow	Res / Fa	erve Te ctor	sc mp C)	Disc pH		
		1				0.000	0 0.000	00.00	00	0.000	25.00	7.00		
					J	Parameter								
			1	⊃aramete	r Name				tream Conc	Fate Coef				
				urumete	Hume	(m	ng/L) (r	ng/L) (mg/L)	(1/days)				
			CBOD5				25.00	2.00	0.00	1.50		_		
			Dissolved	Oxygen			3.00	8.24	0.00	0.00				
			NH3-N				25.00	0.00	0.00	0.70				

Version 1.1

Page 3 of 3

		<u>P Basin</u> 20A		am Code 5482				<u>Stream</u> ENANG	<u>Name</u> O RIVER			
RMI	Stream Flow	PWS With	Net Stream Flow	Disc Analysis Flow	Reach Slope	Depth	Width	W/D Ratio	Velocity	Reach Tra∨ Time	Analysis Temp	Analysis pH
	(cfs)	(cfs)	(cfs)	(cfs)	(ft/ft)	(ft)	(ft)		(fps)	(days)	(°C)	
Q7-10) Flow											
68.200	8.15	0.00	8.15	2.6299	0.00102	.826	57.75	69.95	0.23	0.503	7.22	7.41
66.340	8.24	0.00	8.24	3.0321	0.00083	.836	59.44	71.1	0.23	1.170	7.48	7.39
Q1-10) Flow											
68.200	5.22	0.00	5.22	2.6299	0.00102	NA	NA	NA	0.19	0.601	8.16	7.33
66.340	5.27	0.00	5.27	3.0321	0.00083	NA	NA	NA	0.19	1.388	8.47	7.32
Q30-1	10 Flow	l l										
68.200	11.08	0.00	11.08	2.6299	0.00102	NA	NA	NA	0.26	0.439	6.68	7.46
66.340	11.20	0.00	11.20	3.0321	0.00083	NA	NA	NA	0.26	1.026	6.90	7.44

WQM 7.0 Hydrodynamic Outputs

Version 1.1

Page 1 of 1

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	✓
WLA Method	EMPR	Use Inputted W/D Ratio	✓
Q1-10/Q7-10 Ratio	0.64	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.36	Temperature Adjust Kr	✓
D.O. Saturation	90.00%	Use Balanced Technology	
D.O. Goal	5		

Tuesday, August 31, 2021

Version 1.1

Page 1 of 1

	SWP Basin Str	eam Code		St	ream Name		
	20A	35482		SHE	NANGO RIVE	R	
NH3-N	Acute Allocatio	ns					
RMI	Discharge Nam	Baseline e Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
68.20	0 NSSJMA STP	16.79	49.87	16.79	49.87	0	0
66.34	10 Jamestown STP	10.94	50	17.07	50	0	0
NH3-N	Chronic Allocat	ions					
RMI	Discharge Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
68.20	0 NSSJMA STP	3.34	16.96	3.34	15.9	2	6
1212 21	10 Jamestown STP	2.74	25	3.38	23.44	2	6

WQM 7.0 Wasteload Allocations

Dissolved Oxygen Allocations

		CBC	<u>DD5</u>	<u>NH</u>	<u>3-N</u>	Dissolved	d Oxygen	Critical	Percent
RMI	Discharge Name	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple (mg/L)	Reach	Reduction
68.20 N	NSSJMA STP	25	25	14.7	10.45	4	4	2	19
66.34 J	Jamestown STP	25	25	23.44	17.57	4	4	2	19

Version 1.1

20A	ream Code 35482		s	<u>Stream Name</u> HENANGO RIVER	
<u>RMI</u> 68.200 <u>Reach Width (ft)</u> 57.748	<u>Total Discharge</u> 1.70 <u>Reach De</u> 0.82	0 <u>pth (ft)</u>	<u>) Ana</u>	<u>ysis Temperature (°C)</u> 7.220 <u>Reach WDRatio</u> 69.949	<u>Analysis pH</u> 7.407 <u>Reach Velocity (fps)</u> 0.226
<u>Reach CBOD5 (mg/L)</u> 7.76 <u>Reach DO (mg/L)</u> 7.208	<u>Reach Kc (</u> 1.12 <u>Reach Kr (</u> 1.16	1 <u>1/days)</u>	<u>R</u>	<u>each NH3-N (mg/L)</u> 2.63 <u>Kr Equation</u> Tsivoglou	<u>Reach Kn (1/days)</u> 0.262 <u>Reach DO Goal (mg/L)</u> 5
<u>Reach Travel Time (days)</u> 0.503	TravTime (days)	Subreach CBOD5 (mg/L)	Results NH3-N (mg/L)	D.O. (mg/L)	
	0.050	7.52	2.60	6.98	
	0.101	7.29	2.56	6.78	
	0.151	7.07	2.53	6.60	
	0.201	6.85	2.50	6.44	
	0.251	6.64	2.46	6.31	
	0.302	6.43	2.43	6.19	
	0.352	6.23	2.40	6.09	
	0.402	6.04	2.37	6.01	
	0.452	5.85	2.34	5.94	
	0.503	5.67	2.31	5.89	
RMI	Total Discharge	Flow (mgd	<u>) Ana</u>	lysis Temperature (°C)	<u>Analysis pH</u>
	1.00			7.479	7.393
66.340	1.96				
Reach Width (ft)	Reach De	<u>pth (ft)</u>		Reach WDRatio	Reach Velocity (fps)
<u>Reach Width (ft)</u> 59.445	<u>Reach De</u> 0.83	<u>pth (ft)</u> 6	D	<u>Reach WDRatio</u> 71.104	<u>Reach Velocity (fps)</u> 0.227
<u>Reach Width (ft)</u> 59.445 <u>Reach CBOD5 (mg/L)</u>	<u>Reach De</u> 0.83 <u>Reach Kc</u>	<u>pth (ft)</u> 6 (1/days)	R	<u>Reach WDRatio</u> 71.104 each NH3-N (mg/L)	<u>Reach Velocity (fps)</u> 0.227 <u>Reach Kn (1/days)</u>
<u>Reach Width (ft)</u> 59.445 <u>Reach CBOD5 (mg/L)</u> 6.34	<u>Reach De</u> 0.83 <u>Reach Kc (</u> 0.95	<u>pth (ft)</u> 6 <u>1/days)</u> 9	<u>R</u>	<u>Reach WDRatio</u> 71.104 <u>each NH3-N (mg/L)</u> 2.84	<u>Reach Velocity (fps)</u> 0.227 <u>Reach Kn (1/days)</u> 0.267
<u>Reach Width (ft)</u> 59.445 <u>Reach CBOD5 (mg/L)</u>	<u>Reach De</u> 0.83 <u>Reach Kc</u>	<u>pth (ft)</u> 6 (<u>1/days)</u> 9 1/days)	<u>R</u>	<u>Reach WDRatio</u> 71.104 each NH3-N (mg/L)	<u>Reach Velocity (fps)</u> 0.227 <u>Reach Kn (1/days)</u>
<u>Reach Width (ft)</u> 59.445 <u>Reach CBOD5 (mg/L)</u> 6.34 <u>Reach DO (mg/L)</u> 5.837	<u>Reach De</u> 0.83 <u>Reach Kc 1</u> 0.95 <u>Reach Kr (</u> 0.95 TravTime	<u>pth (ft)</u> 6 <u>1/days)</u> 9 <u>1/days)</u> 3 Subreach CBOD5	Results NH3-N	<u>Reach WDRatio</u> 71.104 <u>each NH3-N (mg/L)</u> 2.84 <u>Kr Equation</u> Tsivoglou D.O.	<u>Reach Velocity (fps)</u> 0.227 <u>Reach Kn (1/days)</u> 0.267 <u>Reach DO Goal (mg/L)</u>
Reach Width (ft) 59.445 Reach CBOD5 (mg/L) 6.34 Reach DO (mg/L) 5.837 Reach Travel Time (days)	<u>Reach De</u> 0.83 <u>Reach Kc (</u> 0.95 <u>Reach Kr (</u> 0.95 TravTime (days)	<u>pth (ft)</u> 6 1/days) 9 1/days) 3 Subreach CBOD5 (mg/L)	Results NH3-N (mg/L)	Reach WDRatio 71.104 each NH3-N (mg/L) 2.84 <u>Kr Equation</u> Tsivoglou D.O. (mg/L)	<u>Reach Velocity (fps)</u> 0.227 <u>Reach Kn (1/days)</u> 0.267 <u>Reach DO Goal (mg/L)</u>
Reach Width (ft) 59.445 Reach CBOD5 (mg/L) 6.34 Reach DO (mg/L) 5.837 Reach Travel Time (days)	<u>Reach De</u> 0.83 <u>Reach Kc (</u> 0.95 <u>Reach Kr (</u> 0.95 TravTime (days) 0.117	<u>pth (ft)</u> 6 <u>1/days)</u> 9 <u>1/days)</u> 3 Subreach CBOD5 (mg/L) 5.95	Results NH3-N (mg/L) 2.75	Reach WDRatio 71.104 each NH3-N (mg/L) 2.84 <u>Kr Equation</u> Tsivoglou D.O. (mg/L) 5.56	<u>Reach Velocity (fps)</u> 0.227 <u>Reach Kn (1/days)</u> 0.267 <u>Reach DO Goal (mg/L)</u>
Reach Width (ft) 59.445 Reach CBOD5 (mg/L) 6.34 Reach DO (mg/L) 5.837 Reach Travel Time (days)	<u>Reach De</u> 0.83 <u>Reach Kc (</u> 0.95 <u>Reach Kr (</u> 0.95 TravTime (days) 0.117 0.234	<u>pth (ft)</u> 6 <u>1/days)</u> 9 <u>1/days)</u> 3 Subreach CBOD5 (mg/L) 5.95 5.58	Results NH3-N (mg/L) 2.75 2.66	<u>Reach WDRatio</u> 71.104 <u>each NH3-N (mg/L)</u> 2.84 <u>Kr Equation</u> Tsivoglou D.O. (mg/L) 5.56 5.35	<u>Reach Velocity (fps)</u> 0.227 <u>Reach Kn (1/days)</u> 0.267 <u>Reach DO Goal (mg/L)</u>
Reach Width (ft) 59.445 Reach CBOD5 (mg/L) 6.34 Reach DO (mg/L) 5.837 Reach Travel Time (days)	Reach De 0.83 Reach Kc (0.95 Reach Kr (0.95 TravTime (days) 0.117 0.234 0.351	pth (ft) 6 1/days) 9 1/days) 3 Subreach CBOD5 (mg/L) 5.95 5.58 5.24	Results NH3-N (mg/L) 2.75 2.66 2.58	<u>Reach WDRatio</u> 71.104 <u>each NH3-N (mg/L)</u> 2.84 <u>Kr Equation</u> Tsivoglou D.O. (mg/L) 5.56 5.35 5.21	<u>Reach Velocity (fps)</u> 0.227 <u>Reach Kn (1/days)</u> 0.267 <u>Reach DO Goal (mg/L)</u>
Reach Width (ft) 59.445 Reach CBOD5 (mg/L) 6.34 Reach DO (mg/L) 5.837 Reach Travel Time (days)	Reach De 0.83 Reach Kc (0.95 Reach Kr (0.95 TravTime (days) 0.117 0.234 0.351 0.468	pth (ft) 6 1/days) 9 1/days) 3 Subreach CBOD5 (mg/L) 5.95 5.58 5.24 4.92	Results NH3-N (mg/L) 2.75 2.66 2.58 2.50	<u>Reach WDRatio</u> 71.104 <u>each NH3-N (mg/L)</u> 2.84 <u>Kr Equation</u> Tsivoglou D.O. (mg/L) 5.56 5.35 5.21 5.12	<u>Reach Velocity (fps)</u> 0.227 <u>Reach Kn (1/days)</u> 0.267 <u>Reach DO Goal (mg/L)</u>
Reach Width (ft) 59.445 Reach CBOD5 (mg/L) 6.34 Reach DO (mg/L) 5.837 Reach Travel Time (days)	Reach De 0.83 Reach Kc (0.95 Reach Kr (0.95 TravTime (days) 0.117 0.234 0.351 0.468 0.585	pth (ft) 6 1/days) 9 1/days) 3 Subreach CBOD5 (mg/L) 5.95 5.58 5.24 4.92 4.62	Results NH3-N (mg/L) 2.75 2.66 2.58 2.50 2.43	Reach WDRatio 71.104 each NH3-N (mg/L) 2.84 <u>Kr Equation</u> Tsivoglou D.O. (mg/L) 5.56 5.35 5.21 5.12 5.08	<u>Reach Velocity (fps)</u> 0.227 <u>Reach Kn (1/days)</u> 0.267 <u>Reach DO Goal (mg/L)</u>
Reach Width (ft) 59.445 Reach CBOD5 (mg/L) 6.34 Reach DO (mg/L) 5.837 Reach Travel Time (days)	Reach De 0.83 Reach Kc (0.95 Reach Kr (0.95 TravTime (days) 0.117 0.234 0.351 0.468 0.585 0.702	pth (ft) 6 1/days) 9 1/days) 3 Subreach CBOD5 (mg/L) 5.95 5.58 5.24 4.92 4.62 4.34	2.75 2.66 2.58 2.50 2.43 2.35	Reach WDRatio 71.104 each NH3-N (mg/L) 2.84 Kr Equation Tsivoglou D.O. (mg/L) 5.56 5.35 5.21 5.12 5.12 5.08 5.09	<u>Reach Velocity (fps)</u> 0.227 <u>Reach Kn (1/days)</u> 0.267 <u>Reach DO Goal (mg/L)</u>
Reach Width (ft) 59.445 Reach CBOD5 (mg/L) 6.34 Reach DO (mg/L) 5.837 Reach Travel Time (days)	Reach De 0.83 Reach Kc (0.95 Reach Kr (0.95 TravTime (days) 0.117 0.234 0.351 0.468 0.585 0.702 0.819	pth (ft) 6 1/days) 9 1/days) 3 Subreach CBOD5 (mg/L) 5.95 5.58 5.24 4.92 4.62 4.34 4.07	2.75 2.66 2.58 2.50 2.43 2.35 2.28	Reach WDRatio 71.104 each NH3-N (mg/L) 2.84 Kr Equation Tsivoglou D.O. (mg/L) 5.56 5.35 5.21 5.12 5.08 5.09 5.12	<u>Reach Velocity (fps)</u> 0.227 <u>Reach Kn (1/days)</u> 0.267 <u>Reach DO Goal (mg/L)</u>
Reach Width (ft) 59.445 Reach CBOD5 (mg/L) 6.34 Reach DO (mg/L) 5.837 Reach Travel Time (days)	Reach De 0.83 Reach Kc (0.95 Reach Kr (0.95 TravTime (days) 0.117 0.234 0.351 0.468 0.585 0.702 0.819 0.936	pth (ft) 6 1/days) 9 1/days) 3 Subreach CBOD5 (mg/L) 5.95 5.58 5.24 4.92 4.62 4.34 4.07 3.82	2.75 2.66 2.58 2.50 2.43 2.35 2.28 2.21	Reach WDRatio 71.104 each NH3-N (mg/L) 2.84 Kr Equation Tsivoglou D.O. (mg/L) 5.56 5.35 5.21 5.12 5.08 5.09 5.12 5.12 5.19	<u>Reach Velocity (fps)</u> 0.227 <u>Reach Kn (1/days)</u> 0.267 <u>Reach DO Goal (mg/L)</u>
Reach Width (ft) 59.445 <u>Reach CBOD5 (mg/L)</u> 6.34 <u>Reach DO (mg/L)</u> 5.837 <u>Reach Travel Time (days)</u>	Reach De 0.83 Reach Kc (0.95 Reach Kr (0.95 TravTime (days) 0.117 0.234 0.351 0.468 0.585 0.702 0.819	pth (ft) 6 1/days) 9 1/days) 3 Subreach CBOD5 (mg/L) 5.95 5.58 5.24 4.92 4.62 4.34 4.07 3.82 3.59	2.75 2.66 2.58 2.50 2.43 2.35 2.28	Reach WDRatio 71.104 each NH3-N (mg/L) 2.84 Kr Equation Tsivoglou D.O. (mg/L) 5.56 5.35 5.21 5.12 5.08 5.09 5.12	<u>Reach Velocity (fps)</u> 0.227 <u>Reach Kn (1/days)</u> 0.267 <u>Reach DO Goal (mg/L)</u>
Reach Width (ft) 59.445 Reach CBOD5 (mg/L) 6.34 Reach DO (mg/L) 5.837 Reach Travel Time (days)	Reach De 0.83 Reach Kc (0.95 Reach Kr (0.95 TravTime (days) 0.117 0.234 0.351 0.468 0.585 0.702 0.819 0.936 1.053	pth (ft) 6 1/days) 9 1/days) 3 Subreach CBOD5 (mg/L) 5.95 5.58 5.24 4.92 4.62 4.34 4.07 3.82 3.59	Results NH3-N (mg/L) 2.75 2.66 2.58 2.50 2.43 2.35 2.28 2.21 2.14	Reach WDRatio 71.104 each NH3-N (mg/L) 2.84 Kr Equation Tsivoglou D.O. (mg/L) 5.56 5.35 5.21 5.12 5.08 5.09 5.12 5.19 5.28	<u>Reach Velocity (fps)</u> 0.227 <u>Reach Kn (1/days)</u> 0.267 <u>Reach DO Goal (mg/L)</u>

WQM 7.0 D.O.Simulation

27

		<u>um Code</u> 5482		<u>Stream Name</u> SHENANGO RIV	-		
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
68.200	NSSJMA STP	PA0100277	1.700	CBOD5	25		
				NH3-N	10.45	20.9	
				Dissolved Oxygen			4
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
66.340	Jamestown STP	PA0029726	0.260	CBOD5	25		
				NH3-N	17.57	35.14	
				Dissolved Oxygen			4

WQM 7.0 Effluent Limits

Version 1.1

10/21/2021

Facility:			Jamestov	vn Municipal STP					
ermit N	lumber:		PA00297	26		Effective: Exist	ing Discharge	Expiration:	
utfall N	lo:		001						
ocation	1			vn Borough, Merce	r County				
ischarg			Shenango	o River					
ite Spec	ific Mus	ssel Survey Completed:	No						
lischarg	e and Si	tream Characteristics					Commer	nts	
2 _s	Stream	ו Flow	7.246	5 MGD / 11.2	21 cfs	USGS # 03101500, acc	rued flow #03100000		
lo Lo	Discha	rge Flow	0.26	6 MGD / 0.402	23 cfs				
s(cl=)	Instrea	am chloride Concentration	chloride Concentration			WQN 911 field sample	s (2010-2020)(June-S	ept)	
E(CI-)	Discha	rge chloride (existing)		61 mg/L		Maximum concentrati	on from renewal appl	ication	
P(CIT)	Discha	rge chloride (proposed)		61 mg/L		Maximum concentrati	on from renewal appl	ication	
S(NH3-N)	Instrea	am NH ³ -N		0.11 mg/L		WQN 911 field sample	s (2002-2011)		
E(NH3-N)	Dischar	rge NH ³ -N (existing)		3 mg/L		Highest concentration	reported on DMRs in	last 5 years	
P(NH3-N)	Discha	rge NH ³ -N (proposed)	3 mg/L			Highest concentration reported on DMRs in last 5 years			
Hs	Instrea	ım pH	7.71 S.U.			WQN #911			
s	Instrea	am Temp.	20.24 °C			WQN #911 Summertin	ne Mean		
C(NH3-N)	Ammo	nia criteria	1.113 mg/L			From ammonia criteria c	comparison spreadshee	t -using instream pH and Temp	
c(cl-)	Chlorid	le criteria		78 mg/L		USFWS criteria			
Vs	Stream	n width		26 meters		Google Earth - Approxim	nate		
mmoni	a Criteri	ia Calculations:							
	рН _s	7.71	S.U.	(Default value is 7	7.0)				
	Ts	20.24	°C	(Default value is 2	20 °)				
	Acute (Criteria							
		METHOD and UNITS		CRITERIA			Comments		
		Current CMC (mg TAN/L) =		4.231					
		EPA 2013 CMC (mg TAN/L) =	6.463	Oncorh	ynchus present		nula on pg. 41 (plateaus at 15.7 C	
				6.463	Oncorh	ynchus absent	* forr	nula on pg. 42 (plateaus at 10.2 C	
	Chroni	c Criteria							
		METHOD and UNITS		CRITERIA			COMMENTS		
	C _{C(NH3-N}	A) Current CMC (mg TAN/L) =		1.231					
			1.113			* forr	nula on pg. 46 (plateaus at 7 C)		

V/A - No Site Specific Mussel Survey Completed for this Discharger

Approximate Area of Impact Determined from Survey = N/A m² (Enter N/A if no site specific survey has been completed)

Existing Mussel Density Within Area of Impact =	
Rabbitsfoot (Quadrula cylindrical)	per m ²
Northern Riffleshell (Epioblasma torulosa rangiana)	per m ²
Rayed Bean (Villosa fabalis)	per m ²
Clubshell (Pleurobema clava)	per m ²
Sheepnose (Plethobasus cyphyus)	per m ²
Snuffbox (Epioblasma triquetra)	per m ²
TOTAL	0 per m ²

Method 1 - Utilizing Site Specific Mussel Survey Information

V/A - No Site Specific Mussel Survey Completed for this Discharger

This method utilizes a simple comparison of the size of the existing area of impact as determined from a site specific mussel survey and the chlorides in the existing discharge compared to the chlorides in the proposed discharge after the facility upgrades treatment technologies. This method is only applicable to where the stream impairment is caused by TDS and/or chlorides as the plume has been delineated through conductivity measurements.

A. Area of Impact Determined from Survey:	N/A m ²
B. Chlorides in Existing Discharge:	61 mg/L
C. Chlorides in Proposed Discharge after Treatment Facility Upgrades	s: 61 mg/L
D. Approximate Area of Impact after Treatment Facility Upgrades:	N/A m ²

A/B = D/C Therefore, D = (A*C)/B

1 of 2

10/21/2021

Facility:	Jamestown Municipal STP			
Permit Number:	PA0029726	Effective: Existing Discharge	Expiration: N/A	
Outfall No:	001	50 - 990a.		
Location:	Jamestown Borough, Mercer County			
Discharge to:	Shenango River			
Site Specific Mussel Survey Completed:	No			

Endangered Mussel Species Impact Area Calculations: (continued...)

Method 2 - Mass Balance Relationship of Loading and Assimilative Capacity of Stream

($L_{S(CI^{+})}$ = Available Chloride Loading in Stream = $C_{C(CI^{+})} - C_{S(CI^{+})} \times Q_{S}(MGD) \times 8.34 =$	4,141 lbs/Day		
	L _{D-MAX(Cl⁺)} = Current Maximium Discharge Chloride Loading exceeding criteria = (C _{E(CL⁺)} , C _{E(CL⁺)}) X Q _D (MGD) X 8.34 =	-37 lbs/Day		
(cr)	% _{E(Cl⁻)} = Percent of Stream Capacity for Current Loading = L _{D-MAX(Cl⁻)} / L _{S(Cl⁻)} =	0% of Stream Capacity		
Chloride	L _{D(C1)} = Proposed Discharge CI ⁻ Loading exceeding criteria after Treatment Facility Upgrades = (C _{P(C1)} - C _{P(C1)}) X Q _D (MGD) X 8.34 =	-36.8628 lbs/Day		
	$\Re_{P(Cl^{-})}$ = Percent of Stream Capacity for Proposed Loading = $L_{D(Cl^{-})} / L_{S(Cl^{-})}$ =	-0.89% of Stream Capacity		
	Proposed Area of Impact due to Chloride * = $(\mathscr{W}_{P[CI^+)} \times W_S)^2 \times 0.5 =$	0.03 m ²		
	* assuming equal flow across transect and 90° spread at discharge	0.29 ft ²		
-	$L_{S(NH3\cdot N)}$ = Available NH3-N Loading in Stream = $C_{C(NH3\cdot N)}$ - $C_{S(NH3\cdot N)}$ X Q _S (MGD) X 8.34 =	61 lbs/Day		
-	L _{D-MAX(NH3-N)} = Current Maximium Discharge NH3-N Loading = C _{E(NH3-N)} X Q _D (MGD) X 8.34 =	7 lbs/Day		
	% _{E(NH3-N)} = Percent of Stream Capacity for Current Loading = L _{D-MAX(NH3-N)} / L _{S(NH3-N)} =	11% of Stream Capacity		
	L _{D(NH3-N)} = Proposed Discharge NH3-N Loading after Treatment Facility Upgrades = C _{P(NH3-N)} - C _{C(NH3-N)} X Q _D (MGD) X 8.34 =	4 lbs/Day		
	% _{P(NH3-N)} = Percent of Stream Capacity for Proposed Loading = L _{D(NH3-N)} / L _{S(NH3-N)} =	6.56% of Stream Capacity		
	Proposed Area of Impact due to NH3-N * = $(\frac{9}{P(NH3-N)} \times W_s)^2 \times 0.5 =$	1.45 m ²		
	* assuming equal flow across transect and 90° spread at discharge	15.64 ft ²		

Method 3 - Mass Balance Relationship of Stream Flow, Proposed Effluent Quality, and Mussel Protection Criteria

	$\mathbf{Q}_{\mathbf{A}(C^{ T }}C_{S(C^{ T })} + \mathbf{Q}_{D}C_{P(C^{ T })} = \mathbf{Q}_{T}C_{C(C^{ T })}$	
	Q _{A(Cl⁻)} = Assimilative Stream Flow Required to Achieve Criteria (cfs)	
	$Q_T = Q_S + Q_D (cfs)$	
~	$Q_{A(CI^{-})}C_{S(CI^{-})} + Q_{D}C_{P(CI^{-})} = (Q_{D}+Q_{S})C_{C(CI^{-})}$	
Chloride (CI)	SOLVING FOR $\mathbf{Q}_{A(d^{-})} = [(\mathbf{Q}_{D}C_{P(d^{-})} / C_{C(d^{-})}) - \mathbf{Q}_{D})] / (1 - C_{S(d^{-})} / C_{Q(d^{-})}) =$	-0.099797 cfs
	% _{P(CI)} = Percent of Stream Width Required to Assimilate Chlorides to Criteria	
	Concentration = $Q_{A(CI^{*})} / Q_{s}(cfs) =$	-0.8903%
	W _{I(CI⁻)} = Proposed Width of Stream required to Assimilate Chlorides to Criteria	
	Concentration = W _S X % _{P(Cl⁻)}	-0.231465 meters
	Proposed Area of Impact due to Chloride $* = (W_{I(CI)})^2 \times 0.5 =$	0.03 m ²
	* assuming equal flow across transect and 90° spread at discharge	0.29 ft ²
	$\mathbf{Q}_{A(NH\mathfrak{B}N)}C_{S(NH\mathfrak{B}N)} + \mathbf{Q}_{D}C_{P(NH\mathfrak{B}N)} = \mathbf{Q}_{T}C_{C(NH\mathfrak{B}N)}$	
9	Q _{A(NH3-N)} = Assimilative Stream Flow Required to Achieve Criteria (cfs)	
Ammonia-Nitrogen (NH3-N)	$Q_T = Q_S + Q_D (cfs)$	
	$Q_{A(NH3\cdot N)}C_{S(NH3\cdot N)} + Q_{D}C_{P(NH3\cdot N)} = (Q_{D}+Q_{S})C_{C(NH3\cdot N)}$	
	SOLVING FOR $\mathbf{Q}_{A(NH3-N)} = [(\mathbf{Q}_{D}C_{P(NH3-N)} / C_{C(NH3-N)}) - \mathbf{Q}_{D})] / (1 - C_{S(NH3-N)} / C_{C(NH3-N)}) =$	0.7569 cfs
	% _{P(NH3-N)} = Percent of Stream Width Required to Assimilate NH3-N to Criteria	
	Concentration = $Q_{A(NH3:N)} / Q_{s}$ (cfs) =	6.7517%
	W _{I(NH3-N)} = Proposed Width of Stream required to Assimilate NH3-N to Criteria	
	Concentration = W _s X % _{P(NH3-N)}	1.755451 meters
	Proposed Area of Impact due to NH3-N * = (W _{I(NH3-N)}) ² X 0.5 =	1.54 m ²
	* assuming equal flow across transect and 90° spread at discharge	16.59 ft ²

2 of 2

Jamestown Municipal STP Jamestown Borough, Mercer County NPDES# PA0029726

				Ave (10 [^] pH min		
Date	<u>pH min</u>	pH max	<u>10^ -pH min</u>	<u>10^ -pH max</u>	& pH max)	-Log (Ave pH)
Jul-18	7.0	7.4	1E-07	3.98E-08	6.99E-08	7.2
Aug-18	7.1	7.3	7.94E-08	5.01E-08	6.48E-08	7.2
Sep-18	7.1	7.6	7.94E-08	2.51E-08	5.23E-08	7.3
Jul-19	6.7	7.3	2E-07	5.01E-08	1.25E-07	6.9
Aug-19	6.8	7.5	1.58E-07	3.16E-08	9.51E-08	7.0
Sep-19	7.2	7.6	6.31E-08	2.51E-08	4.41E-08	7.4
Jul-20	6.6	7.0	2.51E-07	1E-07	1.76E-07	6.8
Aug-20	6.7	7.0	2E-07	1E-07	1.5E-07	6.8
Sep-20	6.7	7.0	2E-07	1E-07	1.5E-07	6.8
Jul-21	7.0	7.4	1E-07	3.98E-08	6.99E-08	7.2
					Median:	7.1