

Application Type Renewal
 Facility Type Municipal
 Major / Minor Minor

**NPDES PERMIT FACT SHEET
INDIVIDUAL SEWAGE**

Application No. PA0029840
 APS ID 1085080
 Authorization ID 1433718

Applicant and Facility Information

Applicant Name	Rayburn Township Joint Municipal Authority	Facility Name	Armsdale STP
Applicant Address	P.O. Box 776 Kittanning, PA 16201	Facility Address	11876 State Route 85 Kittanning, PA 16201
Applicant Contact	Doug Rupert	Facility Contact	Mike McCluskey
Applicant Phone	(724) 548-5713	Facility Phone	(724) 801-8169
Client ID	161127	Site ID	251021
Ch 94 Load Status	Not Overloaded	Municipality	Rayburn Township
Connection Status	No Limitations	County	Armstrong
Date Application Received	March 13, 2023	EPA Waived?	Yes
Date Application Accepted	March 13, 2023	If No, Reason	-
Purpose of Application	Renewal of NPDES permit.		

Summary of Review

The applicant is requesting renewal of their NPDES permit to discharge up to 0.145 MGD of treated sewage from the Armsdale STP into Cowanshannock Creek, a trout stocking (TSF) receiving stream in state water plan basin 17-E (Cowanshannock – Cooked Creeks). As per the Department's current existing use list, the receiving stream does not have an existing use classification that is more protective than the designated use.

Technology-based effluent limitations for pH, Total Suspended Solids, Total Residual Chlorine, and Fecal Coliform are carried over from the previous permit. The wintertime limitations for $CBOD_5$ are technology-based and the summertime limitations were established from water quality modeling performed in 2011. Water quality-based effluent limitations for Dissolved Oxygen (DO) and Ammonia-N are carried over from the previous permit.

Neither WQM 7.0 nor the TRC Calculation Spreadsheet recommended more stringent limitations (see below). For modeling inputs, RMI values were obtained using the "PA Historic Streams" feature of eMapPA as well as the "measure" tool. Drainage areas were delineated using USGS's StreamStats interactive map and elevations were obtained using the elevation profile feature of StreamStats (see below). The Q_{7-10} of 2.43 cfs and low flow yield (LFY) of 0.04 cfs/mi² was generated using StreamStats since there's no nearby stream gages to obtain current data from. Note: An additional modeling point was added to WQM 7.0 modeling since the DO was still recovering after the second modeling point.

DEP's Toxics Management Spreadsheet (TMS) was used to model sampling results submitted with the permit renewal application. No limitations or monitoring requirements were recommended. To model the public water supply-sensitive pollutants, the nearest downstream public water supply intake location was chosen as the second modeling point. DEP's internal eMapPA identifies the 1.5 MGD intake for Kittanning Suburban Joint Water Authority as the nearest downstream location. eFACTS confirms that the Allegheny River surface water withdrawal for the Authority is still active.

Approve	Deny	Signatures	Date
X		 Brian Burden, E.I.T. / Project Manager	December 17, 2024
X		Adam Olesnanik Adam Olesnanik, P.E. / Program Manager	December 17, 2024

Summary of Review

During the draft public comment period of the previous permit renewal, written comments from the permittee/operator requested that the sampling frequency for TRC, DO and pH be reduced from 1/day to 5/week because the plant doesn't have anyone there 7 days per week. It was agreed to reduce the sampling frequency for the previous permit term and the permittee was notified that the next permit term would include the daily monitoring requirements recommended for a STP of this size. All monitoring frequencies for parameters with limitations are now consistent with the recommended frequencies found in Table 6-3 of DEP's Technical Guidance for the Development and Specification of Effluent Limitations and Other Permit Conditions in NPDES Permits (doc. No. 362-0400-001).

Monitoring/reporting requirements for influent for BOD₅ and TSS are carried over from the previous permit as well as annual nutrient (Total Nitrogen & Total Phosphorus) monitoring/reporting. Quarterly monitoring/reporting for E. Coli as added to the permit as per current guidance.

Sludge use and disposal description and location(s): The renewal application indicates 3.67 dry tons of sludge was hauled to the Carbon Limestone landfill site via GForce Engineering Services during the previous year.

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Discharge, Receiving Waters and Water Supply Information

Outfall No.	001	Design Flow (MGD)	0.145
Latitude	40° 49' 3.3"	Longitude	-79° 29' 3.6"
Quad Name	Mosgrove	Quad Code	1210
Wastewater Description:	Sewage Effluent		
Receiving Waters	Cowanshannock Creek	Stream Code	46965
NHD Com ID	123862218	RMI	4.1
Drainage Area	58.5 mi ²	Yield (cfs/mi ²)	0.04
Q ₇₋₁₀ Flow (cfs)	2.43	Q ₇₋₁₀ Basis	USGS StreamStats
Elevation (ft)	919	Slope (ft/ft)	0.0026
Watershed No.	17-E	Chapter 93 Class.	TSF
Existing Use	-	Existing Use Qualifier	-
Exceptions to Use	-	Exceptions to Criteria	-
Assessment Status	Attaining Use(s)		
Cause(s) of Impairment	-		
Source(s) of Impairment	-		
TMDL Status	-	Name	-
Background/Ambient Data	Data Source		
pH (SU)	-	-	
Temperature (°F)	-	-	
Hardness (mg/L)	-	-	
Other:	-	-	
Nearest Downstream Public Water Supply Intake	Kittanning Suburban Joint Water Authority		
PWS Waters	Allegheny River	Flow at Intake (cfs)	358 (using 0.04 LFY)
PWS RMI	48.3	Distance from Outfall (mi)	~4.6

Treatment Facility Summary				
Treatment Facility Name: Armsdale STP				
WQM Permit No.		Issuance Date		
0303403		2/8/2012		
Waste Type	Degree of Treatment	Process Type	Disinfection	Avg Annual Flow (MGD)
Sewage	Secondary With Ammonia Reduction	Extended Aeration	Chlorine With Dechlorination	0.069 (2021)
Hydraulic Capacity (MGD)	Organic Capacity (lbs/day)	Load Status	Biosolids Treatment	Biosolids Use/Disposal
0.145	260	Not Overloaded	Belt Filter Press	Hauled

Development of Effluent Limitations

Outfall No. 001
Latitude 40° 49' 3.3"
Wastewater Description: Sewage Effluent

Design Flow (MGD) 0.145
Longitude -79° 29' 3.6"

Technology-Based Limitations

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Pollutant	Limit (mg/l)	SBC	Federal Regulation	State Regulation
CBOD ₅ (11/1 – 4/30)	25.0 (30.3 lbs/day)	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
	37.5 (45.4 lbs/day)	Average Weekly	-	-
	50.0	IMAX	-	-
Total Suspended Solids	30.0 (36.3 lbs/day)	Average Monthly	133.102(b)(1)	92a.47(a)(1)
	45.0 (54.5 lbs/day)	Average Weekly	133.102(b)(2)	92a.47(a)(2)
	60.0	IMAX	-	-
pH	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform (5/1 – 9/30)	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform (10/1 – 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
	10,000 / 100 ml	IMAX	-	92a.47(a)(5)
Total Residual Chlorine	0.5	Average Monthly	-	92a.48(b)(2)
	1.6	IMAX	-	-

Water Quality-Based Limitations

The following limitations were determined through water quality modeling:

Parameter	Limit (mg/l)	SBC	Model
Dissolved Oxygen	5.0	Instant. Minimum	Previous Modeling
Ammonia-N (5/1 – 10/31)	6.0	Average Monthly	
	12.0	IMAX	
Ammonia-N (11/1 – 4/30)	18.0	Average Monthly	
	36.0	IMAX	
CBOD ₅ (5/1 – 10/31)	18.0	Average Monthly	
	27.0	Average Weekly	
	36.0	IMAX	

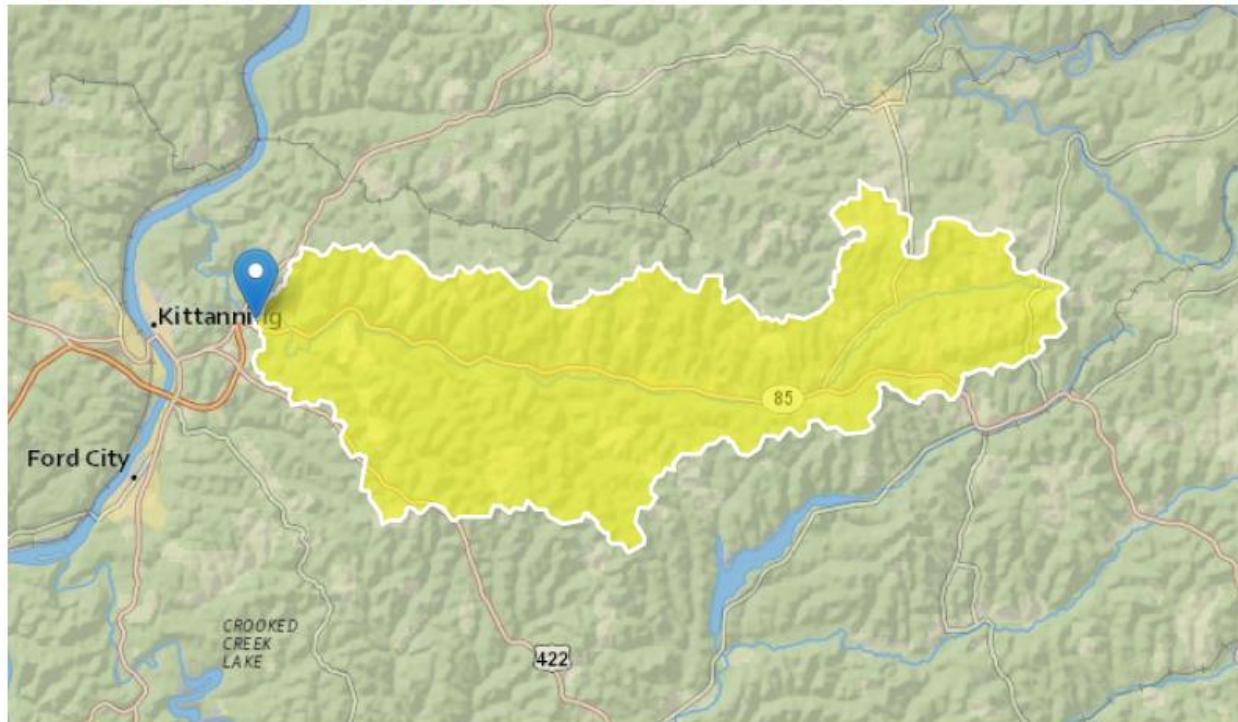
Monitoring Requirements

Parameter	SBC
Flow	Avg. Monthly / Daily Max
Total Nitrogen	Daily Max
Total Phosphorus	Daily Max
Influent BOD ₅	Avg. Monthly / Avg. Weekly
Influent TSS	Avg. Monthly / Avg. Weekly
E. Coli	IMAX

Anti-Backsliding

Approve	Deny	Signatures	Date
X		 Brian Burden, E.I.T. / Project Manager	December 17, 2024
X		Adam Olesnanik Adam Olesnanik, P.E. / Program Manager	December 17, 2024

No Limitations were removed from the permit or made less stringent.

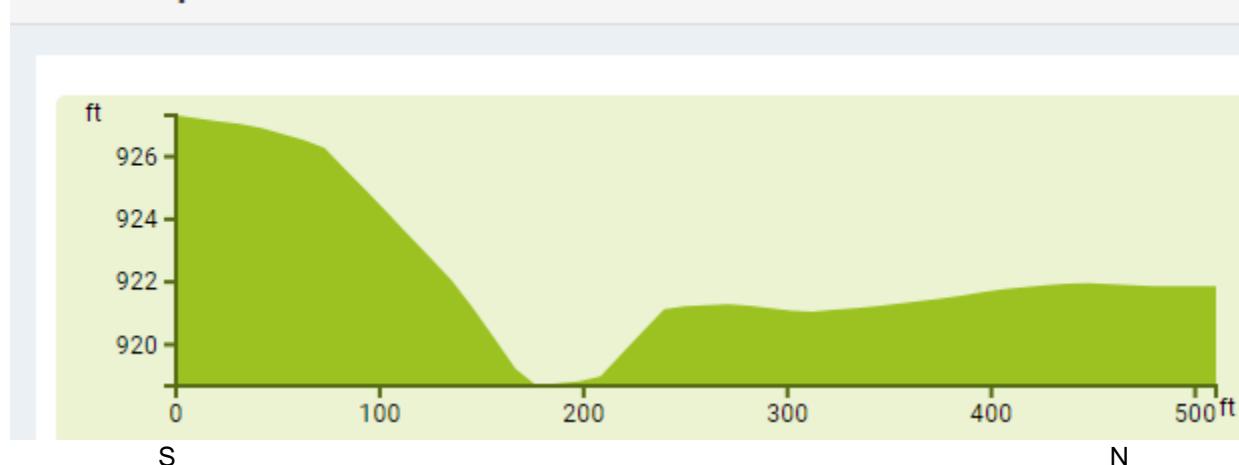

Watershed Information

@ Outfall 001 on Cowanshannock Creek (stream code 46965)

RMI = 4.10

Clicked Point (Latitude, Longitude): 40.81753, -79.48357

Time: 2024-12-15 14:46:38 -0500

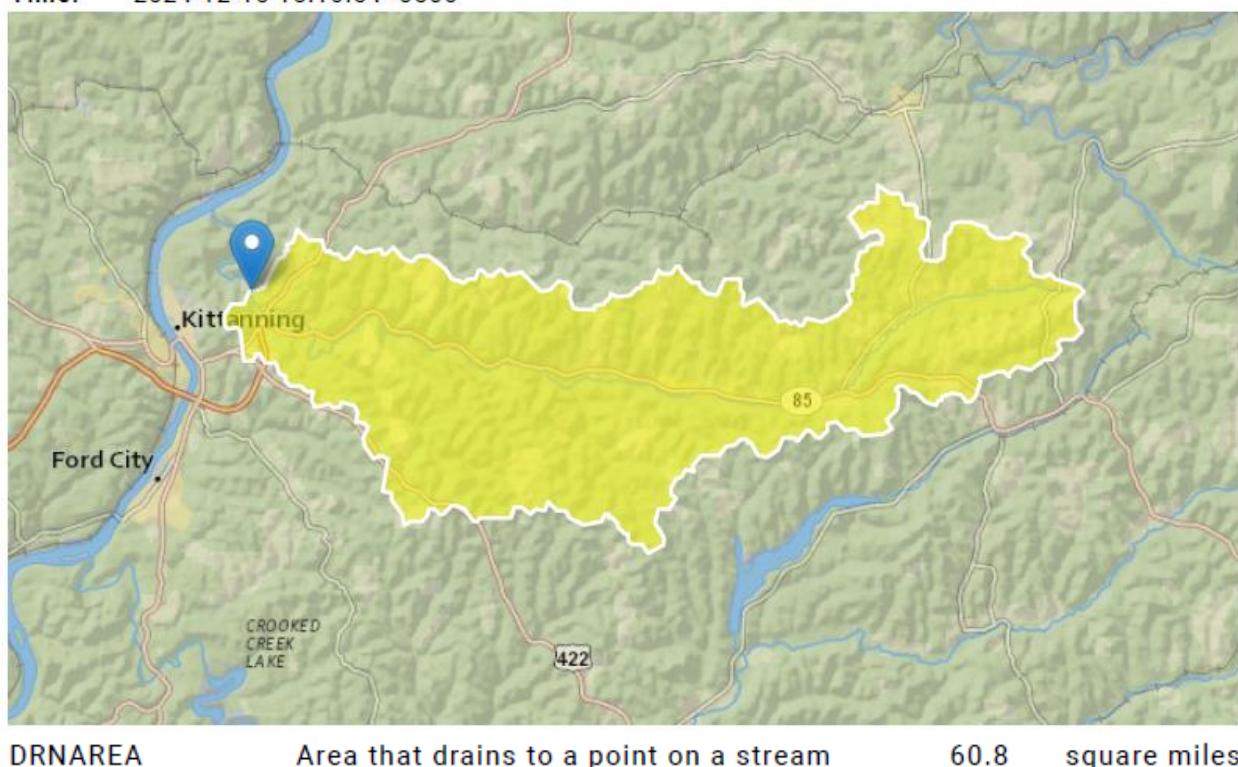

DRNAREA Drainage Area 58.5 square miles

7 Day 10 Year Low Flow 2.43 ft³/s

Low Flow Yield = 2.43 cfs / 58.5 mi² = 0.04 cfs/mi²

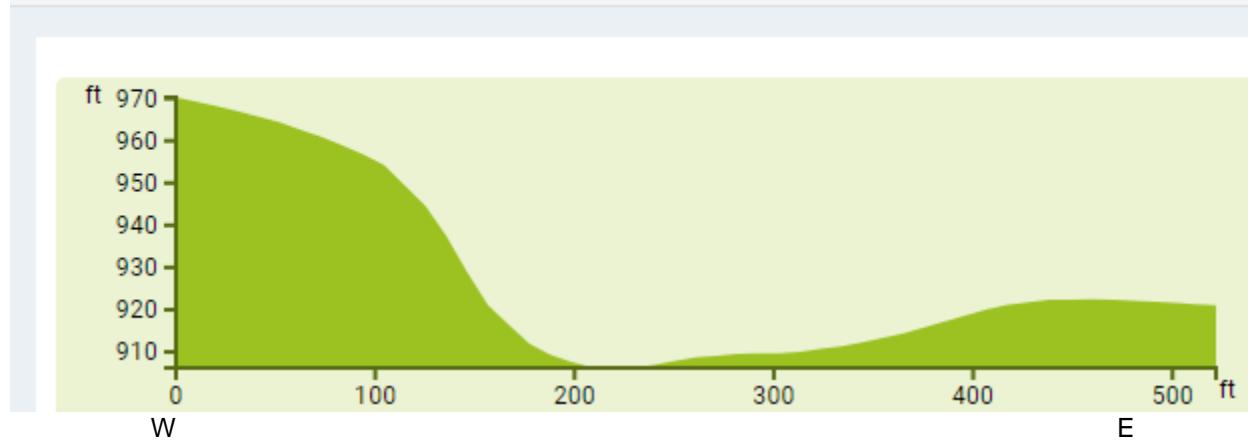
Elevation: 919 ft

Elevation profile



@ confluence with Tributary 46968 to Cowanshannock Creek

RMI = 3.16


Clicked Point (Latitude, Longitude): 40.82683, -79.49359

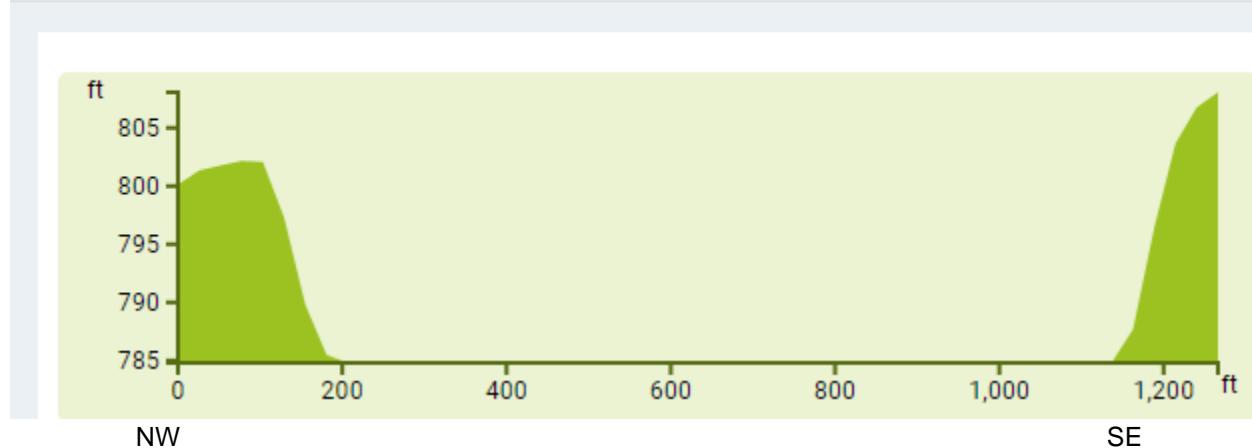
Time: 2024-12-15 15:10:54 -0500

Elevation: 906 ft

Elevation profile

@ confluence with Allegheny River

RMI = 0


Clicked Point (Latitude, Longitude): 40.85196, -79.51048

Time: 2024-12-15 17:51:35 -0500

Elevation: 785 ft

Elevation profile

Nearest Downstream PWS Intake: Kittanning Suburban Joint Water Authority (Allegheny River)

Safe Yield: 1.5 MGD

RMI = 48.3 on Allegheny River (~0.5 miles downstream of Cowanshannock Creek confluence)

TMS Modeling RMIs: Outfall 001 – 4.6 PWS Intake – 0

Drainage Area: 8970 mi²

Elevation: 785 ft

Sites	
Site Id	254522
Name	KITTANNING SUBURBAN JT WATER AUTH
EPA	
Site Id	
Status	ACTIV
Active	
Status Date	

Primary Facility Details	
Facility Id	265797
Name	KITTANNING SUB JT WATER AUTH
PF Type	WR
Water Resource	
Other Id	101107-001
Other Id Type	ESTNO
WUDS Establishment/	
Client Id	36328
101107-001	KITTANNING SUBURBAN JT WATER A
Status	ACTIV
Active	
Status Date	
12/12/2000	
Well Pad	

Sub Facility Details	
Subfac Id	261708
Name	ALLEGHENY RIVER
SF Type	SWW
Surface Water Withdrawal	
Status	ACTIV
Active	
Other Id	101107-012
Other Id Type	ESTNO
WUDS Establishment/	
Other Id	WUDS
System	

WQM 7.0 Modeling

Input Data WQM 7.0

SWP Basin	Stream Code	Stream Name	RMI	Elevation (ft)	Drainage Area (sq mi)	Slope (ft/ft)	PWS Withdrawal (mgd)	Apply FC
17E	46965	COWANSHANNOCK CREEK	4.100	919.00	58.50	0.00000	0.00	<input checked="" type="checkbox"/>

Stream Data

Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time (days)	Rch Velocity (fps)	WD Ratio	Rch Width (ft)	Rch Depth (ft)	Tributary Temp (°C)	pH	Stream Temp (°C)	pH
	(cfsm)	(cfs)	(cfs)									
Q7-10	0.040	0.00	0.00	0.000	0.000	0.0	0.00	0.00	20.00	7.00	0.00	0.00
Q1-10		0.00	0.00	0.000	0.000							
Q30-10		0.00	0.00	0.000	0.000							

Discharge Data								
Name		Permit Number	Existing Disc Flow (mgd)	Permitted Disc Flow (mgd)	Design Disc Flow (mgd)	Reserve Factor	Disc Temp (°C)	Disc pH
Armsdale WWTP		PA0029840	0.1450	0.1450	0.1450	0.000	25.00	7.00
Parameter Data								
Parameter Name		Disc Conc (mg/L)	Trib Conc (mg/L)	Stream Conc (mg/L)	Fate Coef (1/days)			
CBOD5		25.00	2.00	0.00	1.50			
Dissolved Oxygen		3.00	8.24	0.00	0.00			
NH3-N		25.00	0.00	0.00	0.70			

Input Data WQM 7.0

SWP Basin	Stream Code	Stream Name	RMI	Elevation (ft)	Drainage Area (sq mi)	Slope (ft/ft)	PWS Withdrawal (mgd)	Apply FC
17E	46965	COWANSHANNOCK CREEK	3.160	906.00	60.80	0.00000	0.00	<input checked="" type="checkbox"/>

Stream Data

Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time (days)	Rch Velocity (fps)	WD Ratio	Rch Width (ft)	Rch Depth (ft)	Tributary Temp (°C)	Stream Temp (°C)	PWS Withdrawal (mgd)	Stream pH
	(cfsm)	(cfs)	(cfs)									
Q7-10	0.040	0.00	0.00	0.000	0.000	0.0	0.00	0.00	20.00	7.00	0.00	0.00
Q1-10		0.00	0.00	0.000	0.000							
Q30-10		0.00	0.00	0.000	0.000							

Discharge Data							
Name	Permit Number	Existing Disc Flow (mgd)	Permitted Disc Flow (mgd)	Design Disc Flow (mgd)	Reserve Factor	Disc Temp (°C)	Disc pH
		0.0000	0.0000	0.0000	0.000	25.00	7.00
Parameter Data							
Parameter Name		Disc Conc (mg/L)	Trib Conc (mg/L)	Stream Conc (mg/L)	Fate Coef (1/days)		
CBOD5		25.00	2.00	0.00	1.50		
Dissolved Oxygen		3.00	8.24	0.00	0.00		
NH3-N		25.00	0.00	0.00	0.70		

Input Data WQM 7.0

	SWP Basin	Stream Code	Stream Name			RMI	Elevation (ft)	Drainage Area (sq mi)	Slope (ft/ft)	PWS Withdrawal (mgd)	Apply FC		
	17E	46965	COWANSHANNOCK CREEK			0.010	785.00	8970.00	0.00000	0.00	<input checked="" type="checkbox"/>		
Stream Data													
Design Cond.	LFY (cfsm)	Trib Flow (cfs)	Stream Flow (cfs)	Rch Trav Time (days)	Rch Velocity (fps)	WD Ratio (ft)	Rch Width (ft)	Rch Depth (ft)	Tributary Temp (°C)	Stream Temp (°C)	Stream pH		
Q7-10	0.040	0.00	0.00	0.000	0.000	0.0	0.00	0.00	20.00	7.00	0.00		
Q1-10		0.00	0.00	0.000	0.000								
Q30-10		0.00	0.00	0.000	0.000								
Discharge Data													
				Name	Permit Number	Existing Disc Flow (mgd)	Permitted Disc Flow (mgd)	Design Disc Flow (mgd)	Reserve Factor	Disc Temp (°C)	Disc pH		
						0.0000	0.0000	0.0000	0.000	25.00	7.00		
Parameter Data													
				Parameter Name		Disc Conc (mg/L)	Trib Conc (mg/L)	Stream Conc (mg/L)	Fate Coef (1/days)				
				CBOD5		25.00	2.00	0.00	1.50				
				Dissolved Oxygen		3.00	8.24	0.00	0.00				
				NH3-N		25.00	0.00	0.00	0.70				

WQM 7.0 Hydrodynamic Outputs

SWP Basin	Stream Code	Stream Name										
		17E		46965		COWANSHANNOCK CREEK						
RMI	Stream Flow (cfs)	PWS With (cfs)	Net Stream Flow (cfs)	Disc Analysis Flow (cfs)	Reach Slope (ft/ft)	Depth (ft)	Width (ft)	W/D Ratio	Velocity (fps)	Reach Trav Time (days)	Analysis Temp (°C)	Analysis pH
Q7-10 Flow												
4.100	2.34	0.00	2.34	.2243 0.00262		.643	28.95	45.04	0.14	0.417	20.44	7.00
3.160	2.43	0.00	2.43	.2243 0.00728		.642	27.29	42.54	0.15	1.269	20.42	7.00
Q1-10 Flow												
4.100	1.50	0.00	1.50	.2243 0.00262		NA	NA	NA	0.11	0.521	20.65	7.00
3.160	1.56	0.00	1.56	.2243 0.00728		NA	NA	NA	0.12	1.587	20.63	7.00
Q30-10 Flow												
4.100	3.18	0.00	3.18	.2243 0.00262		NA	NA	NA	0.16	0.355	20.33	7.00
3.160	3.31	0.00	3.31	.2243 0.00728		NA	NA	NA	0.18	1.082	20.32	7.00

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	<input checked="" type="checkbox"/>
WLA Method	EMPR	Use Inputted W/D Ratio	<input type="checkbox"/>
Q1-10/Q7-10 Ratio	0.64	Use Inputted Reach Travel Times	<input type="checkbox"/>
Q30-10/Q7-10 Ratio	1.36	Temperature Adjust Kr	<input checked="" type="checkbox"/>
D.O. Saturation	90.00%	Use Balanced Technology	<input checked="" type="checkbox"/>
D.O. Goal	5		

WQM 7.0 Wasteload Allocations

<u>SWP Basin</u>	<u>Stream Code</u>	<u>Stream Name</u>
17E	46965	COWANSHANNOCK CREEK

NH3-N Acute Allocations

RMI	Discharge Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
4.100	Armsdale WWTP	9.23	50	9.23	50	0	0
3.160		NA	NA	9.24	NA	NA	NA

NH3-N Chronic Allocations

RMI	Discharge Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
4.100	Armsdale WWTP	1.87	25	1.87	25	0	0
3.160		NA	NA	1.87	NA	NA	NA

Dissolved Oxygen Allocations

RMI	Discharge Name	CBOD5		NH3-N		Dissolved Oxygen		Critical Reach	Percent Reduction
		Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple (mg/L)		
4.10	Armsdale WWTP	25	25	25	25	3	3	0	0
3.16		NA	NA	NA	NA	NA	NA	NA	NA

WQM 7.0 D.O.Simulation

<u>SWP Basin</u>	<u>Stream Code</u>	<u>Stream Name</u>		
17E	46965	COWANSHANNOCK CREEK		
<u>RMI</u> 4.100	<u>Total Discharge Flow (mgd)</u> 0.145	<u>Analysis Temperature (°C)</u> 20.437	<u>Analysis pH</u> 7.000	
<u>Reach Width (ft)</u> 28.947	<u>Reach Depth (ft)</u> 0.643	<u>Reach WDRatio</u> 45.041	<u>Reach Velocity (fps)</u> 0.138	
<u>Reach CBOD5 (mg/L)</u> 4.01	<u>Reach Kc (1/days)</u> 0.699	<u>Reach NH3-N (mg/L)</u> 2.19	<u>Reach Kn (1/days)</u> 0.724	
<u>Reach DO (mg/L)</u> 7.784	<u>Reach Kr (1/days)</u> 3.466	<u>Kr Equation</u> Tsivoglou	<u>Reach DO Goal (mg/L)</u> 5	
<u>Reach Travel Time (days)</u> 0.417	Subreach Results			
	TravTime (days)	CBOD5 (mg/L)	NH3-N (mg/L)	D.O. (mg/L)
	0.042	3.89	2.12	7.52
	0.083	3.78	2.06	7.30
	0.125	3.67	2.00	7.13
	0.167	3.56	1.94	6.99
	0.208	3.46	1.88	6.88
	0.250	3.36	1.82	6.80
	0.292	3.26	1.77	6.74
	0.333	3.16	1.72	6.70
	0.375	3.07	1.67	6.67
	0.417	2.98	1.62	6.66

<u>RMI</u> 3.160	<u>Total Discharge Flow (mgd)</u> 0.145	<u>Analysis Temperature (°C)</u> 20.422	<u>Analysis pH</u> 7.000
<u>Reach Width (ft)</u> 27.289	<u>Reach Depth (ft)</u> 0.642	<u>Reach WDRatio</u> 42.537	<u>Reach Velocity (fps)</u> 0.152
<u>Reach CBOD5 (mg/L)</u> 2.95	<u>Reach Kc (1/days)</u> 0.300	<u>Reach NH3-N (mg/L)</u> 1.56	<u>Reach Kn (1/days)</u> 0.723
<u>Reach DO (mg/L)</u> 6.714	<u>Reach Kr (1/days)</u> 10.594	<u>Kr Equation</u> Tsivoglou	<u>Reach DO Goal (mg/L)</u> 5
<u>Reach Travel Time (days)</u> 1.269	<u>Subreach Results</u>		
	TravTime (days)	CBOD5 (mg/L)	NH3-N (mg/L)
			D.O. (mg/L)
	0.127	2.83	1.42
	0.254	2.73	1.30
	0.381	2.62	1.19
	0.507	2.52	1.08
	0.634	2.43	0.99
	0.761	2.34	0.90
	0.888	2.25	0.82
	1.015	2.16	0.75
	1.142	2.08	0.68
	1.269	2.00	0.62

WQM 7.0 Effluent Limits

<u>SWP Basin</u> 17E	<u>Stream Code</u> 46965	<u>Stream Name</u> COWANSHANNOCK CREEK						
		RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)
4.100	Armsdale WWTP	PA0029840	0.145	CBOD5		25		
				NH3-N		25	50	
				Dissolved Oxygen				3

TRC EVALUATION					
Input appropriate values in A3:A9 and D3:D9					
Source	Reference	AFC Calculations		Reference	CFC Calculations
TRC	1.3.2.iii	WLA_afc = 3.475		1.3.2.iii	WLA_cfc = 3.380
PENTOXSD TRG	5.1a	LTAMULT_afc = 0.373		5.1c	LTAMULT_cfc = 0.581
PENTOXSD TRG	5.1b	LTA_afc = 1.295		5.1d	LTA_cfc = 1.965
Effluent Limit Calculations					
PENTOXSD TRG	5.1f	AML MULT = 1.231			
PENTOXSD TRG	5.1g	AVG MON LIMIT (mg/l) = 0.500		BAT/BPJ	
		INST MAX LIMIT (mg/l) = 1.635			
WLA_afc		$(.019/e(-k^4AFC_tc)) + [(AFC_Yc^4Qs^4.019/Qd^4e(-k^4AFC_tc))...\\ ...+ Xd + (AFC_Yc^4Qs^4Xs/Qd)]^4(1-FOS/100)$			
LTAMULT_afc		$\text{EXP}((0.5^4\text{LN}(cvh^2+1))-2.326^4\text{LN}(cvh^2+1)^40.5)$			
LTA_afc		$wla_afc^4LTAMULT_afc$			
WLA_cfc		$(.011/e(-k^4CFC_tc)) + [(CFC_Yc^4Qs^4.011/Qd^4e(-k^4CFC_tc))...\\ ...+ Xd + (CFC_Yc^4Qs^4Xs/Qd)]^4(1-FOS/100)$			
LTAMULT_cfc		$\text{EXP}((0.5^4\text{LN}(cvd^2/no_samples+1))-2.326^4\text{LN}(cvd^2/no_samples+1)^40.5)$			
LTA_cfc		$wla_cfc^4LTAMULT_cfc$			
AML MULT		$\text{EXP}(2.326^4\text{LN}(cvd^2/no_samples+1)^40.5)-0.5^4\text{LN}(cvd^2/no_samples+1))$			
AVG MON LIMIT		$\text{MIN}(\text{BAT_BPJ}, \text{MIN}(\text{LTA_afc}, \text{LTA_cfc})^4\text{AML_MULT})$			
INST MAX LIMIT		$1.5^4((\text{av_mon_limit}/\text{AML_MULT})/\text{LTAMULT_afc})$			

Discharge Information

Instructions			Discharge		Stream					
Facility:	Armsdale WWTP		NPDES Permit No.: PA0029840			Outfall No.: 001				
Evaluation Type:	Major Sewage / Industrial Waste		Wastewater Description: Treated sewage							
Discharge Characteristics										
Design Flow (MGD)*	Hardness (mg/l)*	pH (SU)*	Partial Mix Factors (PMFs)			Complete Mix Times (min)				
			AFC	OFC	THH		CRL	Q_{1-10}	Q_h	
0.145	100	7								
Group 1	Discharge Pollutant	Units	Max Discharge Concentration	0 if left blank		0.5 if left blank	0 if left blank		1 if left blank	
				Tributary Concentration	Stream Concentration		Daily CV	Hourly CV	Stream CV	Fate Coeff
Total Dissolved Solids (PWS)	mg/L									
Chloride (PWS)	mg/L									
Bromide	mg/L									
Sulfate (PWS)	mg/L									
Fluoride (PWS)	mg/L									
Total Aluminum	µg/L									
Total Antimony	µg/L									
Total Arsenic	µg/L									
Total Barium	µg/L									
Total Beryllium	µg/L									
Total Boron	µg/L									
Total Cadmium	µg/L									
Total Chromium (III)	µg/L									
Hexavalent Chromium	µg/L									
Total Cobalt	µg/L									
Total Copper	mg/L	0.00464								
Free Cyanide	µg/L									
Total Cyanide	µg/L									
Dissolved Iron	µg/L									
Total Iron	µg/L									
Total Lead	mg/L	0.000172								
Total Manganese	µg/L									
Total Mercury	µg/L									
Total Nickel	µg/L									
Total Phenols (Phenolics) (PWS)	µg/L									
Total Selenium	µg/L									
Total Silver	µg/L									
Total Thallium	µg/L									
Total Zinc	mg/L	0.023								
Total Molybdenum	µg/L									
Acrolein	µg/L	<								
Acrylamide	µg/L	<								
Acrylonitrile	µg/L	<								
Benzene	µg/L	<								
Bromoform	µg/L	<								

Group 3	Carbon Tetrachloride	ug/L	<									
	Chlorobenzene	ug/L	<									
	Chlorodibromomethane	ug/L	<									
	Chloroethane	ug/L	<									
	2-Chloroethyl Vinyl Ether	ug/L	<									
	Chloroform	ug/L	<									
	Dichlorobromomethane	ug/L	<									
	1,1-Dichloroethane	ug/L	<									
	1,2-Dichloroethane	ug/L	<									
	1,1-Dichloroethylene	ug/L	<									
	1,2-Dichloropropane	ug/L	<									
	1,3-Dichloropropylene	ug/L	<									
	1,4-Dioxane	ug/L	<									
	Ethylbenzene	ug/L	<									
	Methyl Bromide	ug/L	<									
	Methyl Chloride	ug/L	<									
	Methylene Chloride	ug/L	<									
	1,1,2,2-Tetrachloroethane	ug/L	<									
	Tetrachloroethylene	ug/L	<									
	Toluene	ug/L	<									
	1,2-trans-Dichloroethylene	ug/L	<									
	1,1,1-Trichloroethane	ug/L	<									
	1,1,2-Trichloroethane	ug/L	<									
	Trichloroethylene	ug/L	<									
	Vinyl Chloride	ug/L	<									
Group 4	2-Chlorophenol	ug/L	<									
	2,4-Dichlorophenol	ug/L	<									
	2,4-Dimethylphenol	ug/L	<									
	4,6-Dinitro-o-Cresol	ug/L	<									
	2,4-Dinitrophenol	ug/L	<									
	2-Nitrophenol	ug/L	<									
	4-Nitrophenol	ug/L	<									
	p-Chloro-m-Cresol	ug/L	<									
	Pentachlorophenol	ug/L	<									
	Phenol	ug/L	<									
Group 5	2,4,6-Trichlorophenol	ug/L	<									
	Acenaphthene	ug/L	<									
	Acenaphthylene	ug/L	<									
	Anthracene	ug/L	<									
	Benzidine	ug/L	<									
	Benzo(a)Anthracene	ug/L	<									
	Benzo(a)Pyrrene	ug/L	<									
	3,4-Benzoxyanthene	ug/L	<									
	Benzo(ghi)Perylene	ug/L	<									
	Benzo(k)Fluoranthene	ug/L	<									
	Bis(2-Chloroethoxy)Methane	ug/L	<									
	Bis(2-Chloroethyl)Ether	ug/L	<									
	Bis(2-Chloroisopropyl)Ether	ug/L	<									
	Bis(2-Ethylhexyl)Phthalate	ug/L	<									
	4-Bromophenyl Phenyl Ether	ug/L	<									
	Butyl Benzyl Phthalate	ug/L	<									
	2-Chloronaphthalene	ug/L	<									
	4-Chlorophenyl Phenyl Ether	ug/L	<									
	Chrysene	ug/L	<									
	Dibenz(a,h)Anthracene	ug/L	<									
	1,2-Dichlorobenzene	ug/L	<									
	1,3-Dichlorobenzene	ug/L	<									
	1,4-Dichlorobenzene	ug/L	<									
	3,3-Dichlorobenzidine	ug/L	<									
	Diethyl Phthalate	ug/L	<									
	Dimethyl Phthalate	ug/L	<									
	Di-n-Butyl Phthalate	ug/L	<									
	2,4-Dinitrotoluene	ug/L	<									

Group 6	2,6-Dinitrotoluene	µg/L	<					
	Di-n-Octyl Phthalate	µg/L	<					
	1,2-Diphenylhydrazine	µg/L	<					
	Fluoranthene	µg/L	<					
	Fluorene	µg/L	<					
	Hexachlorobenzene	µg/L	<					
	Hexachlorobutadiene	µg/L	<					
	Hexachlorocyclopentadiene	µg/L	<					
	Hexachloroethane	µg/L	<					
	Indeno[1,2,3-cd]Pyrene	µg/L	<					
	Isophorone	µg/L	<					
	Naphthalene	µg/L	<					
	Nitrobenzene	µg/L	<					
	n-Nitrosodimethylamine	µg/L	<					
	n-Nitrosodi-n-Propylamine	µg/L	<					
	n-Nitrosodiphenylamine	µg/L	<					
	Phenanthrene	µg/L	<					
	Pyrene	µg/L	<					
	1,2,4-Trichlorobenzene	µg/L	<					
	Aldrin	µg/L	<					
	alpha-BHC	µg/L	<					
	beta-BHC	µg/L	<					
	gamma-BHC	µg/L	<					
	delta BHC	µg/L	<					
	Chlordane	µg/L	<					
	4,4-DDD	µg/L	<					
	4,4-DDE	µg/L	<					
	4,4-DDD	µg/L	<					
	Dieldrin	µg/L	<					
	alpha-Endosulfan	µg/L	<					
	beta-Endosulfan	µg/L	<					
	Endosulfan Sulfate	µg/L	<					
	Endrin	µg/L	<					
	Endrin Aldehyde	µg/L	<					
	Heptachlor	µg/L	<					
	Heptachlor Epoxide	µg/L	<					
	PCB-1016	µg/L	<					
	PCB-1221	µg/L	<					
	PCB-1232	µg/L	<					
	PCB-1242	µg/L	<					
	PCB-1248	µg/L	<					
	PCB-1254	µg/L	<					
	PCB-1260	µg/L	<					
	PCBs, Total	µg/L	<					
	Toxaphene	µg/L	<					
	2,3,7,8-TCDD	ng/L	<					
Group 7	Gross Alpha	pCi/L						
	Total Beta	pCi/L	<					
	Radium 226/228	pCi/L	<					
	Total Strontium	µg/L	<					
	Total Uranium	µg/L	<					
	Osmotic Pressure	mOsm/kg						

Stream / Surface Water Information

Armsdale WWTP, NPDES Permit No. PA0029840, Outfall 001

Instructions **Discharge** Stream

Receiving Surface Water Name: Cowanshannock Creek

No. Reaches to Model: 1

Statewide Criteria
 Great Lakes Criteria
 ORSANCO Criteria

Location	Stream Code*	RMI*	Elevation (ft)*	DA (mi ²)*	Slope (ft/ft)	PWS Withdrawal (MGD)	Apply Fish Criteria*
Point of Discharge	046965	4.1	919	58.5			Yes
End of Reach 1	046965	3.16	908	60.8			Yes

Q_{T-10}

Location	RMI	LFY (cfs/mi ²)*	Flow (cfs)		W/D Ratio	Width (ft)	Depth (ft)	Velocity (fps)	Travel Time (days)	Tributary		Stream		Analysis	
			Stream	Tributary						Hardness	pH	Hardness*	pH*	Hardness	pH
Point of Discharge	4.1	0.04										100	7		
End of Reach 1	3.16	0.04													

Q_H

Location	RMI	LFY (cfs/mi ²)*	Flow (cfs)		W/D Ratio	Width (ft)	Depth (ft)	Velocity (fps)	Travel Time (days)	Tributary		Stream		Analysis	
			Stream	Tributary						Hardness	pH	Hardness*	pH*	Hardness	pH
Point of Discharge	4.1														
End of Reach 1	3.16														

Model Results

Armsdale WWTP, NPDES Permit No. PA0029840, Outfall 001

All Inputs Results Limits

Hydrodynamics

Wasteload Allocations

AFC CCT (min): PMF: Analysis Hardness (mg/l): Analysis pH:

Pollutants	Stream Conc (µg/L)	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Copper	0	0		0	13.439	14.0	108	Chem Translator of 0.96 applied
Total Lead	0	0		0	64.581	81.6	629	Chem Translator of 0.791 applied
Total Zinc	0	0		0	117.180	120	924	Chem Translator of 0.978 applied

CFC CCT (min): PMF: Analysis Hardness (mg/l): Analysis pH:

Pollutants	Stream Conc (µg/L)	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Copper	0	0		0	8.956	9.33	107	Chem Translator of 0.96 applied
Total Lead	0	0		0	2.517	3.18	36.4	Chem Translator of 0.791 applied
Total Zinc	0	0		0	118.139	120	1,370	Chem Translator of 0.986 applied

THH CCT (min): PMF: Analysis Hardness (mg/l): Analysis pH:

Pollutants	Stream Conc (µg/L)	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Copper	0	0		0	N/A	N/A	N/A	
Total Lead	0	0		0	N/A	N/A	N/A	
Total Zinc	0	0		0	N/A	N/A	N/A	

CRL CCT (min): PMF: Analysis Hardness (mg/l): Analysis pH:

Pollutants	Stream Conc (µg/L)	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Copper	0	0		0	N/A	N/A	N/A	

Model Results

12/15/2024

Page 5

Total Lead	0	0	0	N/A	N/A	N/A
Total Zinc	0	0	0	N/A	N/A	N/A

Recommended WQBELs & Monitoring Requirements

No. Samples/Month: 4

Pollutants	Mass Limits		Concentration Limits				Governing WQBEL	WQBEL Basis	Comments
	AML (lbs/day)	MDL (lbs/day)	AML	MDL	IMAX	Units			

Other Pollutants without Limits or Monitoring

The following pollutants do not require effluent limits or monitoring based on water quality because reasonable potential to exceed water quality criteria was not determined and the discharge concentration was less than thresholds for monitoring, or the pollutant was not detected and a sufficiently sensitive analytical method was used (e.g., <= Target QL).

Pollutants	Governing WQBEL	Units	Comments
Total Copper	0.069	mg/L	Discharge Conc ≤ 10% WQBEL
Total Lead	0.036	mg/L	Discharge Conc ≤ 10% WQBEL
Total Zinc	0.59	mg/L	Discharge Conc ≤ 10% WQBEL

Discharge Information

[Instructions](#) [Discharge](#) [Stream](#)

 Facility: Armsdale WWTP NPDES Permit No.: PA0029840 Outfall No.: 001

 Evaluation Type: Major Sewage / Industrial Waste Wastewater Description: Treated sewage

Design Flow (MGD)*	Hardness (mg/L)*	pH (8U)*	Discharge Characteristics					
			AFC	CFC	THH	CRL	Q_{T-10}	Q_h
0.145	100	7						

	Discharge Pollutant	Units	Max Discharge Concentration	0 if left blank		0.5 if left blank		0 if left blank		1 if left blank	
				Tributary Concentration	Stream Concentration	Daily CV	Hourly CV	Stream CV	Fate Coeff	FO8	Critical Mod
1	Total Dissolved Solids (PWS)	mg/L	344								
2	Chloride (PWS)	mg/L	84.4								
3	Bromide	mg/L	< 0.036								
4	Sulfate (PWS)	mg/L	55.9								
5	Fluoride (PWS)	mg/L									
6	Total Aluminum	ug/L									
7	Total Antimony	ug/L									
8	Total Arsenic	ug/L									
9	Total Barium	ug/L									
10	Total Beryllium	ug/L									
11	Total Boron	ug/L									
12	Total Cadmium	ug/L									
13	Total Chromium (III)	ug/L									
14	Hexavalent Chromium	ug/L									
15	Total Cobalt	ug/L									
16	Total Copper	mg/L	0.00464								
17	Free Cyanide	ug/L									
18	Total Cyanide	ug/L									
19	Dissolved Iron	ug/L									
20	Total Iron	ug/L									
21	Total Lead	mg/L	0.000172								
22	Total Manganese	ug/L									
23	Total Mercury	ug/L									
24	Total Nickel	ug/L									
25	Total Phenols (Phenolics) (PWS)	ug/L									
26	Total Selenium	ug/L									
27	Total Silver	ug/L									
28	Total Thallium	ug/L									
29	Total Zinc	mg/L	0.023								
30	Total Molybdenum	ug/L									
31	Acrolein	ug/L	<								
32	Acrylamide	ug/L	<								
33	Acrylonitrile	ug/L	<								
34	Benzene	ug/L	<								
35	Bromoform	ug/L	<								

Stream / Surface Water Information

Armsdale WWTP, NPDES Permit No. PA0029840, Outfall 001

Instructions Discharge Stream

Receiving Surface Water Name: Cowanshannock Creek

No. Reaches to Model: 1

Statewide Criteria
 Great Lakes Criteria
 ORSANCO Criteria

Location	Stream Code*	RMI*	Elevation (ft)*	DA (mi ²)*	Slope (ft/ft)	PWS Withdrawal (MGD)	Apply Fish Criteria*
Point of Discharge	046965	4.6	919	58.5			Yes
End of Reach 1	046965	0	785	8970		1.5	Yes

Q₇₋₁₀

Location	RMI	LFY (cfs/mi ²)*	Flow (cfs)		W/D Ratio	Width (ft)	Depth (ft)	Velocity (fps)	Travel Time (days)	Tributary		Stream		Analysis	
			Stream	Tributary						Hardness	pH	Hardness*	pH*	Hardness	pH
Point of Discharge	4.6	0.04										100	7		
End of Reach 1	0	0.04													

Q_H

Location	RMI	LFY (cfs/mi ²)*	Flow (cfs)		W/D Ratio	Width (ft)	Depth (ft)	Velocity (fps)	Travel Time (days)	Tributary		Stream		Analysis	
			Stream	Tributary						Hardness	pH	Hardness*	pH*	Hardness	pH
Point of Discharge	4.6														
End of Reach 1	0														

Model Results

Armsdale WWTP, NPDES Permit No. PA0029840, Outfall 001

Instructions		Results		RETURN TO INPUTS		SAVE AS PDF		PRINT		<input checked="" type="radio"/> All	<input type="radio"/> Inputs	<input type="radio"/> Results	<input type="radio"/> Limits																																																													
<input type="checkbox"/> Hydrodynamics <input checked="" type="checkbox"/> Wasteload Allocations																																																																										
<input checked="" type="checkbox"/> AFC		CCT (min): <input type="text" value="15"/>		PMF: <input type="text" value="0.810"/>		Analysis Hardness (mg/l): <input type="text" value="100"/>		Analysis pH: <input type="text" value="7.00"/>																																																																		
<table border="1"> <thead> <tr> <th>Pollutants</th> <th>Stream Conc (µg/L)</th> <th>Stream CV</th> <th>Trib Conc (µg/L)</th> <th>Fate Coef</th> <th>WQC (µg/L)</th> <th>WQ Obj (µg/L)</th> <th>WLA (µg/L)</th> <th>Comments</th> </tr> </thead> <tbody> <tr> <td>Total Dissolved Solids (PWS)</td> <td>0</td> <td>0</td> <td></td> <td>0</td> <td>N/A</td> <td>N/A</td> <td>N/A</td> <td></td> </tr> <tr> <td>Chloride (PWS)</td> <td>0</td> <td>0</td> <td></td> <td>0</td> <td>N/A</td> <td>N/A</td> <td>N/A</td> <td></td> </tr> <tr> <td>Sulfate (PWS)</td> <td>0</td> <td>0</td> <td></td> <td>0</td> <td>N/A</td> <td>N/A</td> <td>N/A</td> <td></td> </tr> <tr> <td>Total Copper</td> <td>0</td> <td>0</td> <td></td> <td>0</td> <td>13,439</td> <td>14.0</td> <td>132</td> <td>Chem Translator of 0.96 applied</td> </tr> <tr> <td>Total Lead</td> <td>0</td> <td>0</td> <td></td> <td>0</td> <td>64,581</td> <td>81.6</td> <td>771</td> <td>Chem Translator of 0.791 applied</td> </tr> <tr> <td>Total Zinc</td> <td>0</td> <td>0</td> <td></td> <td>0</td> <td>117,180</td> <td>120</td> <td>1,132</td> <td>Chem Translator of 0.978 applied</td> </tr> </tbody> </table>		Pollutants	Stream Conc (µg/L)	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments	Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A		Chloride (PWS)	0	0		0	N/A	N/A	N/A		Sulfate (PWS)	0	0		0	N/A	N/A	N/A		Total Copper	0	0		0	13,439	14.0	132	Chem Translator of 0.96 applied	Total Lead	0	0		0	64,581	81.6	771	Chem Translator of 0.791 applied	Total Zinc	0	0		0	117,180	120	1,132	Chem Translator of 0.978 applied										
Pollutants	Stream Conc (µg/L)	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments																																																																		
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A																																																																			
Chloride (PWS)	0	0		0	N/A	N/A	N/A																																																																			
Sulfate (PWS)	0	0		0	N/A	N/A	N/A																																																																			
Total Copper	0	0		0	13,439	14.0	132	Chem Translator of 0.96 applied																																																																		
Total Lead	0	0		0	64,581	81.6	771	Chem Translator of 0.791 applied																																																																		
Total Zinc	0	0		0	117,180	120	1,132	Chem Translator of 0.978 applied																																																																		
<input checked="" type="checkbox"/> CFC		CCT (min): <input type="text" value="22.871"/>		PMF: <input type="text" value="1"/>		Analysis Hardness (mg/l): <input type="text" value="100"/>		Analysis pH: <input type="text" value="7.00"/>																																																																		
<table border="1"> <thead> <tr> <th>Pollutants</th> <th>Stream Conc (µg/L)</th> <th>Stream CV</th> <th>Trib Conc (µg/L)</th> <th>Fate Coef</th> <th>WQC (µg/L)</th> <th>WQ Obj (µg/L)</th> <th>WLA (µg/L)</th> <th>Comments</th> </tr> </thead> <tbody> <tr> <td>Total Dissolved Solids (PWS)</td> <td>0</td> <td>0</td> <td></td> <td>0</td> <td>N/A</td> <td>N/A</td> <td>N/A</td> <td></td> </tr> <tr> <td>Chloride (PWS)</td> <td>0</td> <td>0</td> <td></td> <td>0</td> <td>N/A</td> <td>N/A</td> <td>N/A</td> <td></td> </tr> <tr> <td>Sulfate (PWS)</td> <td>0</td> <td>0</td> <td></td> <td>0</td> <td>N/A</td> <td>N/A</td> <td>N/A</td> <td></td> </tr> <tr> <td>Total Copper</td> <td>0</td> <td>0</td> <td></td> <td>0</td> <td>8,956</td> <td>9.33</td> <td>107</td> <td>Chem Translator of 0.96 applied</td> </tr> <tr> <td>Total Lead</td> <td>0</td> <td>0</td> <td></td> <td>0</td> <td>2,517</td> <td>3.18</td> <td>36.4</td> <td>Chem Translator of 0.791 applied</td> </tr> <tr> <td>Total Zinc</td> <td>0</td> <td>0</td> <td></td> <td>0</td> <td>118,139</td> <td>120</td> <td>1,370</td> <td>Chem Translator of 0.986 applied</td> </tr> </tbody> </table>		Pollutants	Stream Conc (µg/L)	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments	Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A		Chloride (PWS)	0	0		0	N/A	N/A	N/A		Sulfate (PWS)	0	0		0	N/A	N/A	N/A		Total Copper	0	0		0	8,956	9.33	107	Chem Translator of 0.96 applied	Total Lead	0	0		0	2,517	3.18	36.4	Chem Translator of 0.791 applied	Total Zinc	0	0		0	118,139	120	1,370	Chem Translator of 0.986 applied										
Pollutants	Stream Conc (µg/L)	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments																																																																		
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A																																																																			
Chloride (PWS)	0	0		0	N/A	N/A	N/A																																																																			
Sulfate (PWS)	0	0		0	N/A	N/A	N/A																																																																			
Total Copper	0	0		0	8,956	9.33	107	Chem Translator of 0.96 applied																																																																		
Total Lead	0	0		0	2,517	3.18	36.4	Chem Translator of 0.791 applied																																																																		
Total Zinc	0	0		0	118,139	120	1,370	Chem Translator of 0.986 applied																																																																		
<input checked="" type="checkbox"/> THH		CCT (min): <input type="text" value="22.871"/>		THH PMF: <input type="text" value="1"/>		Analysis Hardness (mg/l): <input type="text" value="N/A"/>		Analysis pH: <input type="text" value="N/A"/>		PWS PMF: <input type="text" value="1"/>																																																																
<table border="1"> <thead> <tr> <th>Pollutants</th> <th>Stream Conc (µg/L)</th> <th>Stream CV</th> <th>Trib Conc (µg/L)</th> <th>Fate Coef</th> <th>WQC (µg/L)</th> <th>WQ Obj (µg/L)</th> <th>WLA (µg/L)</th> <th>Comments</th> </tr> </thead> <tbody> <tr> <td>Total Dissolved Solids (PWS)</td> <td>0</td> <td>0</td> <td></td> <td>0</td> <td>500,000</td> <td>500,000</td> <td>#####</td> <td>WQC applied at RMI 0 with a design stream flow of 358.8 cfs</td> </tr> <tr> <td>Chloride (PWS)</td> <td>0</td> <td>0</td> <td></td> <td>0</td> <td>250,000</td> <td>250,000</td> <td>#####</td> <td>WQC applied at RMI 0 with a design stream flow of 358.8 cfs</td> </tr> <tr> <td>Sulfate (PWS)</td> <td>0</td> <td>0</td> <td></td> <td>0</td> <td>250,000</td> <td>250,000</td> <td>#####</td> <td>WQC applied at RMI 0 with a design stream flow of 358.8 cfs</td> </tr> </tbody> </table>		Pollutants	Stream Conc (µg/L)	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments	Total Dissolved Solids (PWS)	0	0		0	500,000	500,000	#####	WQC applied at RMI 0 with a design stream flow of 358.8 cfs	Chloride (PWS)	0	0		0	250,000	250,000	#####	WQC applied at RMI 0 with a design stream flow of 358.8 cfs	Sulfate (PWS)	0	0		0	250,000	250,000	#####	WQC applied at RMI 0 with a design stream flow of 358.8 cfs																																					
Pollutants	Stream Conc (µg/L)	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments																																																																		
Total Dissolved Solids (PWS)	0	0		0	500,000	500,000	#####	WQC applied at RMI 0 with a design stream flow of 358.8 cfs																																																																		
Chloride (PWS)	0	0		0	250,000	250,000	#####	WQC applied at RMI 0 with a design stream flow of 358.8 cfs																																																																		
Sulfate (PWS)	0	0		0	250,000	250,000	#####	WQC applied at RMI 0 with a design stream flow of 358.8 cfs																																																																		

Model Results

12/15/2024

Page 5

Total Copper	0	0		0	N/A	N/A	N/A	
Total Lead	0	0		0	N/A	N/A	N/A	
Total Zinc	0	0		0	N/A	N/A	N/A	

CRL

CCT (min): 8.025

PMF: 1

Analysis Hardness (mg/l): N/A

Analysis pH: N/A

Pollutants	Stream Conc (mg/L)	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A	
Chloride (PWS)	0	0		0	N/A	N/A	N/A	
Sulfate (PWS)	0	0		0	N/A	N/A	N/A	
Total Copper	0	0		0	N/A	N/A	N/A	
Total Lead	0	0		0	N/A	N/A	N/A	
Total Zinc	0	0		0	N/A	N/A	N/A	

Recommended WQBELs & Monitoring Requirements

No. Samples/Month: 4

Pollutants	Mass Limits		Concentration Limits				Governing WQBEL	WQBEL Basis	Comments
	AML (lbs/day)	MDL (lbs/day)	AML	MDL	IMAX	Units			

Other Pollutants without Limits or Monitoring

The following pollutants do not require effluent limits or monitoring based on water quality because reasonable potential to exceed water quality criteria was not determined and the discharge concentration was less than thresholds for monitoring, or the pollutant was not detected and a sufficiently sensitive analytical method was used (e.g., <= Target QL).

Pollutants	Governing WQBEL	Units	Comments
Total Dissolved Solids (PWS)	800,268	mg/L	Discharge Conc ≤ 10% WQBEL
Chloride (PWS)	400,134	mg/L	Discharge Conc ≤ 10% WQBEL
Bromide	N/A	N/A	No WQS
Sulfate (PWS)	400,134	mg/L	Discharge Conc ≤ 10% WQBEL
Total Copper	0.085	mg/L	Discharge Conc ≤ 10% WQBEL
Total Lead	0.036	mg/L	Discharge Conc ≤ 10% WQBEL
Total Zinc	0.73	mg/L	Discharge Conc ≤ 10% WQBEL