

Application Type	Renewal
	Non-
Facility Type	Municipal
Major / Minor	Minor

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

PA0030970
1032016
1342661

Applicant and Facility Information

Applicant Name	PA State System Of Higher Ed Cheyney University	Facility Name	Cheyney University Of PA
Applicant Address	PO Box 200 1837 University Circle	Facility Address	1837 University Circle Creek Road & Cheyney Road
	Cheyney, PA 19319-0200		Cheyney, PA 19319
Applicant Contact	James Lewis	Facility Contact	James Lewis
Applicant Phone	(610) 399-2092	Facility Phone	(610) 399-2092
Client ID	209276	Site ID	452780
Ch 94 Load Status	Not Overloaded	Municipality	Thornbury Township
Connection Status	No Limitations	County	Delaware
Date Application Receiv	ved February 10, 2021	EPA Waived?	Yes
Date Application Accep	ted Not Applicable	If No, Reason	
Purpose of Application	Permit Renewal.		

Summary of Review

The permittee submitted a renewal NPDES permit application for their treated effluent sewage discharge to Chester Creek through Outfall 001. The facility is a sewage treatment plant serving Cheyney University campus and a portion of a residential neighborhood. The previous Fact Sheet noted that 95 % of flow was from the University and 5% from Thornbury Township.

The facility consists of Influent Screening followed by the Influent Flow Equalization, which is then pumped to, and treated by, two parallel Sequencing Batch Reactors (SBR), Equalization, Effluent Filtration, Ultraviolet Disinfection, and finally discharge through the outfall. The SBR solids are wasted to an aerobic digester and two sludge holding tanks.

The limitations from the current permit are retained in this permit, as are the monitoring frequencies and sample type. Monitoring of E. coli was added to this renewal based on an updated SOP and code. E. coli will be monitored quarterly and will be grab sample which is already instituted at the facility. The influent sampling was continued in this permit as the facility serves part of a municipality. UV monitoring is continued in the permit as the facility is using UV disinfection (it was noted in the last Fact Sheet the facility switched from chlorine to UV prior to May 6, 2016).

Sludge use and disposal description and location(s): Hauled off-site

Act 14 Notifications: Delaware County Received February 18, 2021 Thornbury Township Received February 6, 2021

Proposed Part C Conditions:

No Stormwater

Approve	Deny	Signatures	Date
Х		Harmonie Hawley, PhD, PE / Environmental Engineering Specialist /s/	May 3, 2021
Х		Pravin C. Patel, P.E. / Environmental Engineer Manager /s/	05/04/2021

Summary of Review

- Acquire Necessary Property Rights
- Proper Sludge Disposal
- Abandon STP When Municipal Sewers Available
- Notification of Designation of the Responsible Operator
- Remedial Measures if Unsatisfactory Effluent
- I-Max Requirements
- Solids Management

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Discharge, Receiving Waters and Water Supply Inform	mation	
	Decign Flow (MCD) 27	
	Lensitude 750.241.20	50"
	$\frac{-75^{\circ}3130}{1044}$.52
Quad Name Vest Chester	Quad Code 1941	
wastewater Description: Sewage Effluent		
Receiving Waters Chester Creek (TSF, MF)	Stream Code 00604	
NHD Com ID 25621342	RMI 14.7	
Drainage Area 21	Yield (cfs/mi ²) 0.23	
Q ₇₋₁₀ Flow (cfs) 4.74	Q7-10 Basis PA Stream	Stats
Elevation (ft) 248	Slope (ft/ft) 0.00296	
Watershed No. 3-G	Chapter 93 Class. TSF, MF	
Existing Use Recreational/ Aquatic Life	Existing Use Qualifier N/A	
Exceptions to Use None	Exceptions to Criteria N/A	
Assessment Status Impaired		
Cause(s) of Impairment Cause Unknown, Flow Re	egime Modification, Siltation	
Source(s) of Impairment Urban Runoff/Storm Sewe	ers	
TMDL Status None	Name None	
pH (SU) _/	TRG WQM (391-2000-007 default data)	
$1 \text{ emperature (°F)} = \frac{68 (20 °C)}{100}$	TRG WQM (391-2000-007 default data)	
Hardness (mg/L) <u>100</u>	I oxics Analysis Spreadsheet default	
Other: N/A	None	
Nearest Downstream Public Water Supply Intake	Aqua PA Main Stem Crum Creek	
PWS Waters Chester Creek	Flow at Intake (cfs) 30.9	
PWS RMI 7.1	Distance from Outfall (mi) 7.7	

Changes Since Last Permit Issuance: None

Other Comments: None

	Treatment Excility Summary					
Treatment Facility Na	me: Cheyney University S	TP	<u>y</u>			
2312403	June 28, 2012					
	,					
Waste Type	Degree of Treatment	Process Type	Disinfection	Avg Annual Flow (MGD)		
Sewage	Tertiary	Sequencing Batch Reactor W/Sol Removal	Ultraviolet	0.27		
		-				
Hydraulic Capacity	Organic Capacity			Biosolids		
(MGD)	(lbs/day)	Load Status	Biosolids Treatment	Use/Disposal		
0.27	540	Not Overloaded	Aerobic Digestion	Landfill		

Changes Since Last Permit Issuance: None

Other Comments: None

Compliance History

DMR Data for Outfall 001 (from March 1, 2020 to February 28, 2021)

Parameter	FEB-21	JAN-21	DEC-20	NOV-20	OCT-20	SEP-20	AUG-20	JUL-20	JUN-20	MAY-20	APR-20	MAR-20
Flow (MGD)												
Average Monthly	0.065	0.047	0.043	0.049	0.046	0.045	0.047	0.028	0.032	0.0423	0.0443	0.0432
pH (S.U.)												
Instantaneous												
Minimum	6.9	7.5	7.2	7.3	7.1	7.2	7.2	7.2	7.1	6.6	6.43	6.19
pH (S.U.)												
Instantaneous												
Maximum	7.8	7.8	7.9	7.7	7.7	7.9	8.0	7.9	8.4	7.7	7.01	7.24
DO (mg/L)												
Instantaneous												
Minimum	8.6	9.4	7.2	7.1	6.9	5.9	4.4	6.4	7.0	7.4	7.27	8.18
CBOD5 (lbs/day)												
Average Monthly	< 1.2	< 0.8	< 1.5	< 0.9	< 1.0	< 1.2	< 3.5	< 0.5	< 0.6	< 0.9	1.1	1.0
CBOD5 (mg/L)												
Average Monthly	< 2	< 2	< 4	< 2	< 2	< 3	< 8	< 2	< 2.0	< 2	3.1	2.2
CBOD5 (mg/L)												
Influent Average												
Monthly	65.4	50.8	34	46.1	50.3	53.9	273.4	10.7	13.1	10	19.2	38.6
CBOD5 (mg/L)												
Influent 												
Instantaneous												
Maximum	119	140	66.7	87.1	69.3	78.2	771.0	12.9	27.2	15	44.4	98.2
TSS (lbs/day)												
Average Monthly	< 0.9	< 0.5	< 0.6	0.4	< 1.1	0.8	< 0.5	< 2.0	< 1.0	2.4	2.4	4.7
TSS (mg/L)												
Average Monthly	< 1.5	< 1.3	< 1.6	1.0	< 2.8	2.2	< 1.0	< 1.0	< 4.6	6	6.7	10.9
TSS (mg/L)												
Influent Average												
Monthly	86.8	39.5	45.4	115	109.3	106.2	46.0	16.8	16.2	26	87.3	105
TSS (mg/L)												
Influent Instantaneous												
Maximum	99.0	60	64	187	116	123.0	100.0	37	25.0	41	130	230
Fecal Coliform												
(No./100 ml)												
Geometric Mean	< 3	< 2	< 2	< 2	< 2	< 2	< 10	< 2	< 2.0	< 2	1	< 1

Fecal Coliform												
(No./100 ml)												
Instantaneous												
Maximum	18	< 2	< 2	< 2	< 2	< 2	700	< 2	< 2.0	< 2	1	< 1
UV Intensity (mW/cm ²)												
Average Monthly	474.6	532.5	584.5	352.7	239.4	354.0	299	401.5	447.5	352.4	385.6	224.24
Total Nitrogen (mg/L)												
Average Monthly	< 12.15	< 5.0	< 5.58	< 14.32	17.45	< 17.78	< 9.59	< 9.04	< 8.30	< 10.0	12.5	15.36
Total Nitrogen (mg/L)												
Instantaneous												
Maximum	13.54	< 6.12	< 7.06	16.00	19.04	20.14	< 16.70	< 10.50	< 8.62	12.9	12.7	18.83
Ammonia (lbs/day)												
Average Monthly	< 0.56	< 0.04	< 0.06	< 0.04	< 0.21	< 0.04	< 0.05	< 0.02	< 0.04	< 0.04	0.2	0.2
Ammonia (mg/L)												
Average Monthly	< 1.0	< 0.10	< 0.2	< 0.1	< 0.3	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.5	< 0.5
Total Phosphorus												
(lbs/day)												
Average Monthly	0.19	< 0.04	0.08	0.43	0.35	0.06	0.04	< 0.01	< 0.02	0.06	0.03	0.06
Total Phosphorus												
(mg/L)												
Average Monthly	0.3	< 0.10	0.2	1.0	0.7	0.2	0.1	< 0.1	< 0.10	0.12	0.1	0.13
Total Copper (mg/L)												
Average Monthly	0.0165	< 0.0323	< 0.0100	< 0.0110	< 0.0100	< 0.0102	< 0.01	< 0.0100	< 0.0106	0.011	0.01	0.01
Total Copper (mg/L)												
Instantaneous												
Maximum	0.0190	0.0800	< 0.0100	0.0130	< 0.0100	0.0110	< 0.0100	< 0.0100	0.0130	0.011	0.01	0.02

Compliance History

Effluent Violations for Outfall 001, from: April 1, 2020 To: February 28, 2021

Parameter	Date	SBC	DMR Value	Units	Limit Value	Units
DO	08/31/20	Inst Min	4.4	mg/L	5.0	ma/L

Summary of Inspections: The most recent Inspection was on 11/05/2020 with Violations noted (failure to use NIST thermometer; failure to maintain proper sample temperature).

Other Comments: No Open Violations were found for the site on April 27, 2021; an Open Violation for the client was found for failure to submit PAG130025 renewal application.

Development of Effluent Limitations

Outfall No.	001		Design Flow (MGD)	.27
Latitude	39º 55' 45.78	3"	Longitude	-75º 31' 30.52"
Wastewater De	escription:	Sewage Effluent	_	

Technology-Based Limitations

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Pollutant	Limit (mg/l)	SBC	Federal Regulation	State Regulation
	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
CBOD5	40	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)
Total Suspended	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
Solids	45	Average Weekly	133.102(b)(2)	92a.47(a)(2)
рН	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform				
(5/1 – 9/30)	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
Fecal Coliform				
(5/1 – 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform				
(10/1 – 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
Fecal Coliform				
(10/1 – 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)
Total Residual Chlorine	0.5	Average Monthly	-	92a.48(b)(2)

Comments: TSS, pH, and fecal coliform are retained from the current permit and are consistent with the above references. Chlorine is not used for disinfection so there are no limitations for TRC; however, monitoring of the UV system is retained in this renewal. In addition to the above listed parameters, monitoring for Total Nitrogen is standard practice and is retained in this permit (SOP No. BCW-PMT-033 based on Chapter 92a.61). The facility has no industrial users.

E. coli was added to the permit with a sampling frequency of once per quarter per SOP No. BCW-PMT-033 based on Chapter 92a.61.

Water Quality-Based Limitations

A "Reasonable Potential Analysis" (Attachment A) determined the following parameters were candidates for limitations: Total Copper

The following limitations were determined through water quality modeling (output files attached):

Parameter	Limit (mg/l)	SBC	Model
Total Copper	Report	1/week	TMS

Comments: The WQM model was run and the results are shown in Attachment B. The limitations for CBOD5, NH3-N, and DO were the same as the current permit and will be retained in this permit. Seasonal limits for ammonia-nitrogen are continued in the renewal. The Total Dissolved Solids are under 1,000 mg/l so monitoring is not added to this permit. The limits for Total Phosphorus are retained in this permit. There is a DRBC docket, number D-78-43CP, however it does not provide any effluent limitations.

Best Professional Judgment (BPJ) Limitations

Comments: Total Phosphorous limits are retained in the permit.

Anti-Backsliding

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

			Effluent L	imitations.			Monitoring Re	quirements
Deremeter	Mass Units	(lbs/day) (1)		Concentrat	ions (mg/L)		Minimum ⁽²⁾	Required
Farameter	Average Monthly	Average Weekly	Minimum	Average Monthly	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	XXX	xxx	xxx	XXX	xxx	Continuous	Recorded
рН (S.U.)	xxx	xxx	6.0 Inst Min	xxx	xxx	9.0	1/day	Grab
DO	XXX	XXX	5.0 Inst Min	XXX	XXX	XXX	1/day	Grab
CBOD5 Influent	XXX	XXX	XXX	Report	XXX	Report	1/week	24-Hr Composite
CBOD5	56.3	XXX	xxx	25	xxx	50	1/week	24-Hr Composite
TSS Influent	XXX	XXX	XXX	Report	XXX	Report	1/week	24-Hr Composite
TSS	67.6	xxx	XXX	30	xxx	60	1/week	24-Hr Composite
Fecal Coliform (No./100 ml)	XXX	XXX	XXX	200 Geo Mean	XXX	1000	1/week	Grab
E. Coli (No./100 ml)	xxx	XXX	xxx	Report Avg Qrtly	XXX	xxx	1/quarter	Grab
UV Intensity (mW/cm ²)	xxx	XXX	XXX	Report	xxx	xxx	1/day	Metered
Total Nitrogen	XXX	XXX	xxx	Report	xxx	Report	1/week	24-Hr Composite
Ammonia Nov 1 - Apr 30	16.8	XXX	XXX	7.5	XXX	15	1/week	24-Hr Composite
Ammonia May 1 - Oct 31	5.6	XXX	XXX	2.5	XXX	5	1/week	24-Hr Composite

Outfall 001, Continued (from Permit Effective Date through Permit Expiration Date)

			Effluent L	imitations			Monitoring Re	quirements
Baramotor	Mass Units	(lbs/day) ⁽¹⁾		Concentrat	ions (mg/L)		Minimum ⁽²⁾	Required
Faiailletei	Average	Average	Minimatura	Average	Maximum	Instant.	Measurement	Sample
	wontiny	Weekly	wiiniinuin	Monuny	Waximum	Maximum	Frequency	Туре
Total Phosphorus								24-Hr
Nov 1 - Mar 31	4.5	XXX	XXX	2.0	XXX	4	1/week	Composite
Total Phosphorus								24-Hr
Apr 1 - Oct 31	2.3	XXX	XXX	1.0	XXX	2	1/week	Composite
								24-Hr
Total Copper	XXX	XXX	XXX	Report	XXX	Report	1/week	Composite

Compliance Sampling Location: Outfall 001

Other Comments: None

Attachment A: TMS

Toxics Management Spreadsheet Version 1.3, March 2021

Discharge Information

Instructions	Discharge	e Stream			
Facility:	Cheyney U	niversity		NPDES Permit No.: PA0030970	Outfall No.: 001
Evaluation T	ype: Ma	jor Sewage / Ind	ustrial Waste	Wastewater Description: Municipal	

			Discharge	Characteris	tics				
Design Flow	Hardness (moll)*	pH (\$10*	P	artial Mix Fa	actors (PMF:	8)	Complete Mi	x Times (min)	
(MGD)*	naruness (mgn)	pri (30)*	AFC	CFC	THH	CRL	Q7-10	Qh	
0.27	100	7							

					0 if lef	t blank	0.5 if h	et blenk	6	if left blen	k	1 if inf	blenk
	Discharge Pollutant	Units	Ma	x Disoharge Cono	Trib Cono	Stream Cono	Dally CV	Hourly CV	Strea m CV	Fate Coeff	FOS	Criteri a Mod	Chem Transi
	Total Dissolved Solids (PWS)	mg/L		337									
5	Chloride (PWS)	mg/L		97.4									
8	Bromide	mg/L	<	0.12									
6	Sulfate (PWS)	mg/L		42.7									
	Fluoride (PWS)	mg/L											
	Total Aluminum	µg/L											
	Total Antimony	µg/L											
	Total Arsenic	µg/L											
	Total Barlum	µg/L											
	Total Beryllum	µg/L											
	Total Boron	µg/L											
	Total Cadmium	µg/L											
	Total Chromium (III)	µg/L											
	Hexavalent Chromium	µg/L											
1	Total Cobalt	µg/L											
	Total Copper	µg/L		20									
2	Free Cyanide	µg/L											
1	Total Cyanide	µg/L											
5	Dissolved Iron	µg/L											
-	Total Iron	µg/L											
1	Total Lead	µg/L	<	1									
	Total Manganese	µg/L											
1	Total Mercury	µg/L											
1	Total Nickel	µg/L											
	Total Phenois (Phenolics) (PWS)	µg/L											
	Total Selenium	µg/L											
	Total Silver	µg/L											
	Total Thailum	µg/L											
	Total Zinc	µg/L		15									
	Total Molybdenum	µg/L											
	Acrolein	µg/L	<										
	Acrylamide	µg/L	<										
	Acryionitrile	µg/L	<										
	Benzene	µg/L	<										
	Bromoform	µg/L	<										

Discharge Information

4/29/2021

1	Carbon Tetrachioride	uo/L	<					
1	Chiomhenzene	unit						
1	Chieradharanathara	P ST	-					
1	Chlorodibromomethane	µgr.	<					
1	Chloroethane	μgL	<					
1	2-Chloroethyl Vinyl Ether	µg/L	<					
1	Chloraform	µg/L	۷					
1	Dichlorobromomethane	uo/L	<					
1	1.1.Dichlomathana	und	-					
1	1, Policiloroeularie	POL	~					
-	1,2-Dichloroethane	μgι	<					
15	1,1-Dichloroethylene	μgίL	<					
2	1,2-Dichloropropane	µg/L	<					
0	1,3-Dichloropropylene	µg/L	٨					
1	1.4-Dioxane	uol	<					
1	Ethubanzana	und	-					
1	Lathed Records	PDF -	-					
1	Methyl Bromide	µgr.	<					
1	Methyl Chioride	µg/L	<					
1	Methylene Chloride	µg/L	<					
1	1,1,2,2-Tetrachioroethane	µg/L	<					
1	Tetrachioroethylene	ugit	<					
1	Toluene	uol	<					
1	1 Distance Distributions		-					
1	1,2-vans-Dichloroethylene	hôr.	<		 			
1	1,1,1-Trichioroethane	µg/L	<					
1	1,1,2-Trichloroethane	µg/L	<					
1	Trichloroethylene	µg/L	۲					
	Vinyi Chioride	µgL.	<					
\vdash	2-Chiomobenol	und						
1	2 4 Dichlemohanol		-					
1	2,4-Dichlorophenol	POL	-					
1	2,4-Dimethylphenol	μg/L	<					
	4,6-Dinitro-o-Cresol	µg/L	<					
1	2,4-Dinitrophenol	µg/L	<					
1 H	2-Nitrophenol	µg/L	<					
1 Se	4-Nitrophenol	uol	<					
<u>۲</u>	n-Chiom-m-Cranol	und	-					
1	providentinoresor	Ppr.	-					
1	Pentachiorophenol	μg/L	<					
1	Phenoi	µg/L	<					
	2,4,6 Trichlorophenol	µg/L	<					
	Acenaphthene	µg/L	٨					
	Acenaphthylene	µg/L	<					
1	Anthracana	und	-					
1	Paralitac	PPT-	-					
1	Benzane	hôr.	<					
1	Benzo(a)Anthracene	μg/L	<					
1	Benzo(a)Pyrene	µg/L	<					
1	3,4-Benzofluoranthene	µg/L	<					
1	Benzo(ghl)Perylene	µg/L	<					
1	Benzo(k)Fluoranthene	uol	<					
1	Bis(2-Chiomethoro/Methane	unit						
1	and chier central processing and the	Part						
1	Bis(2-Chloroethyl)Ether	µg1	<					
1	Bis(2-Chioroisopropyl)Ether	µg/L	<					
1	Bis(2-Ethylhexyl)Phthalate	µg/L	<					
1	4-Bromophenyl Phenyl Ether	µg/L	<					
1	Butyl Benzyl Phthalate	µg/L	<					
1	2-Chiomnaphthaiene	uell	•					
1	A-Chlomohand Dhand Citian	100	-					
1	e-chlorophenyi Phenyi etter	POIL .	•					
1	unysene	hör	<		 			
1	Dibenzo(a,h)Anthrancene	µ01	<					
1	1,2-Dichlorobenzene	µg/L	<					
1	1,3-Dichlorobenzene	µg/L	<					
	1.4-Dichlorobenzene	ug/L	<					
a	3.3-Dichlorobenzicine	uol	<					
10	Disting Districts	1000	-					
ā	Creary Primate	POIL 1	~					
1	Dimethyl Phthalate	µg1	<					
1	Di-n-Butyl Phthalate	µg/L	<					
1	2,4-Dinitrotoluene	µg/L	<					
-								

Discharge Information

4/29/2021

- 1								
	2,6-Dinitrotoiuene	μgL	<					
	DI-n-Octyl Phthalate	µg/L	۷					
	1.2-Diphenvihydrazine	uol	<					
	Character and the second		-					
	Fluorantnene	μgι	<					
	Fluorene	μgL	<					
	Hexachlorobenzene	µg/L	<					
	Hexachiorobutadiene	uol	<					
	Linear block and a start start start		-					
	Hexachiorocyclopentaciene	μgι	<					
	Hexachioroethane	μgL	<					
	Indeno(1,2,3-cd)Pyrene	µg/L	<					
	Isophorone	uol	<					
	Naphthalene	Logi	~		 			
	regrineeric	PS-	-		 			
	Nitrobenzene	μgι	<					
	n-Nitrosodimethylamine	µg/L	<					
	n-Nitrosodi-n-Propylamine	ugit	۷.					
	n-Nitrosodiphenviamine	uol	<					
	Dhanasibasa							
	Phenanthrene	μgι	<					
	Pyrene	μgL	<					
	1,2,4-Trichlorobenzene	µg/L	<					
	Aldrin	µg/L	<					
	alpha-BHC	uel	~					
	heta-DUC	100						
	ucia-BHG	POL	<					
	gamma-BHC	HQL.	<					
	delta BHC	µg/L	<					
	Chlordane	µg/L	<					
	4.4-DDT	uol	<					
	4.4-005	und	-		 			
	4,47002	POL.	~					
	4,4-000	μgι	<					
	Dieldrin	μg/L	۰					
	alpha-Endosulfan	µg/L	۷					
	beta-Endosulfan	ugit	<					
ø	Endosulfan Gulfata	und	-		 			
₽.	Endosanan ganate	POL	~		 	 	 	
ø	Enarin	μgι	<		 			
ð	Endrin Aldehyde	μg/L	<					
	Heptachior	μg/L	۷					
	Heptachior Epoxide	uol	<					
	PCP-1016	und	-					
	POPIDIO	PPT	-		 		 	
	PC8-1221	μgι	<					
	PCB-1232	µg/L	<					
	PCB-1242	µgL.	<					
	PCB-1248	ugit	<					
	POP-4254	und .	-		 	 	 	
	r ver 1254	POL.	~					
	PCB-1260	μg/L	<					
	PCBs, Total	µg/L	<					
	Toxaphene	µg/L	<					
	2.3.7.8-TCDD	ng/L	<					
	Gener Alpha	2011						
	Gross April	point						
	i otal Béta	pCI/L	<					
8	Radium 226/228	pCI/L	<					
2	Total Strontium	μg/L	۷					
C	Total Uranium	µg/L	<					
	Osmotic Pressure	mOelke						
	Sample Presses	morang						

Discharge Information

4/29/2021

Toxics Management Spreadsheet Version 1.3, March 2021

Stream / Surface Water Information

Cheyney University, NPDES Permit No. PA0030970, Outfall 001

Instructions Discharge Stream

Receiving Surface Water Name: Chester Creek

No. Reaches to Model: 1

Statewide Criteria

Great Lakes Criteria
ORSANCO Criteria

	Location	Stream Code"	RMI*	Elevation (ft)*	DA (ml ²)*	Slope (ft/ft)	PWS Withdrawal (MGD)	Apply Fish Criteria*
Γ	Point of Discharge	000604	14.7	248	21			Yes
Γ	End of Reach 1	000604	13.1	223	24.3			Yes
_								

Q7-10

Location	PMI	LFY	Flow	(Cf5)	W/D	Width	Depth	Velocit	Time	Tributa	ary	Strea	m	Analys	sis
Location	T MIL	(cfs/ml ²)*	Stream	Tributary	Ratio	(ff)	(ff)	y (fps)	(days)	Hardness	рН	Hardness*	pH.	Hardness	рН
Point of Discharge	14.7	0.1	4.74									100	7		
End of Reach 1	13.1	0.1	5.71												

Q,

Location	PMI	LFY	Flow	r (CIS)	W/D	Width	Depth	Velocit	Time	Tributa	ary	Strea	m	Analys	sis
Location	TAMI	(cts/ml ²)	Stream	Tributary	Ratio	(ff)	(11)	y (fps)	(days)	Hardness	рН	Hardness	рН	Hardness	рН
Point of Discharge	14.7														
End of Reach 1	13.1														

DEPARTMENT OF ENVIRONMENTA PROTECTION	L							Toxics Management Spreadcheet Version 1.8, March 2021
Model Results							Cheyney L	University, NPDES Permit No. PA0030970, Outfall 001
Instructions Results	RETURN	TOINPU	TS)	SAVE AS	PDF	PRINT	•	NI O Inputs O Results O Limits
Hydrodynamica								
Westeload Allocations								
AFC CC	T (min): 1	15	PMF:	0.641	Ana	lysis Hardne	ss (mg/i):	100 Analysis pH: 7.00
Pollutants	Conc	Stream CV	Trib Conc (µn/L)	Fate Coef	WQC (UQL)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0		0	N/A	NA	N/A.	
Chloride (FWS)	0	•		0	NA	N	NA	
Sulfate (PWS)	0	0		0	NA	NA	NA	
Total Copper	0	0		0	13,439	14.0	116	Chem Translator of 0.96 applied
Total Lead	0	0		0	64.581	81.6	676	Chem Translator of 0.791 applied
Total Zinc	U			U	117.100	120	992	Chem Translator of 0.978 applied
	T (min): 36	490	PMF:	1	- Ana	alysis Hardne	ss (mg/l):	100 Analysis pH: 7.00
Pollutants	Conc (unit)	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (UQL)	WQ Obj (µg/L)	WLA (µp/L)	Comments
Total Dissolved Solids (PWS)	0	0		0	NA	N/A	N/A	
Chloride (PWS)	0	0		0	N/A	NA	N/A	
Sulfate (PWS)	0	0		0	N/A	N/A	N/A	
Total Copper	0	0		0	8.956	9.33	115	Chem Translator of 0.96 applied
Total Lead	0	0		0	2.517	3.18	39.3	Chem Translator of 0.791 applied
Total Zinc	0	0		0	118.139	120	1,480	Chem Translator of 0.986 applied
☑ THH cc	T (min): 36	490	PMF:	1	Ana	alysis Hardine	ss (mg/l):	N/A Analysis pH: N/A
Pollutants	Conc (unl.)	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (UQL)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0		0	500,000	500,000	N/A	
Chloride (PWS)	0	0		0	250,000	250,000	N/A.	
Sulfate (PWS)	0	0		0	250,000	250,000	N/A	

4/29/2021

Total Copper	0	0		0	N/A	N/A	NA	
Total Lead	0	0		0	NIA	N/A	NA	
Total Zinc	0	0		0	N/A	N/A	NIA	
	T (min): 13	321	PMF:	1	[Ana	alysis Hardne	ss (mol):	N/A Analysis pH: N/A
Pollutants	Conc	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µgL)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0		0	N/A	NIA	N/A.	
Chloride (PWS)	0	0		0	NIA	N/A	NIA	
Sulfate (PWS)	0	0		0	N/A	N/A	NA	
Total Copper	0	0		0	N/A	N/A	N/A.	
Total Lead	0	0		0	N/A	N/A	NIA	
Total Zinc	0	0		0	N/A	N/A	NIA	

Recommended WQBELs & Monitoring Requirements

No. Samples/Month: 4

	k ass	Limits		Concentra	tion Limits				
Pollutants	AML (Ibs/day)	MDL (Ibs/day)	AML	MDL	IMAX	Units	Governing WQBEL	WQBEL Basis	Comments
Total Copper	Report	Report	Report	Report	Report	µg/L	74.3	AFC	Discharge Conc > 10% WQBEL (no RP)

Other Pollutants without Limits or Monitoring

The following pollutants do not require effluent limits or monitoring based on water quality because reasonable potential to exceed water quality criteria was not determined and the discharge concentration was less than thresholds for monitoring, or the pollutant was not detected and a sufficiently sensitive analytical method was used (e.g., <= Target QL).

Pollutants	Governing WQBEL	Units	Comments
Total Dissolved Solids (PWS)	NA	N/A	PWS Not Applicable
Chloride (PWS)	NA	N/A	PWS Not Applicable
Bromide	NA	N/A	No WQS
Sulfate (PWS)	N/A	N/A	PWS Not Applicable
Total Lead	NA	N/A	Discharge Conc < TQL
Total Zinc	636	µg/L	Discharge Conc ≤ 10% WQBEL

4/29/2021

Attachment B: WQM

WQM 7.0 Effluent Limits

	SWP Basin	Stream Code						
	03G	604	EA					
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)	
14.700	Cheyney Univ	ers PA0030970	0.270	CBOD5	25			
				NH3-N	2.5	5		
				Dissolved Oxygen			5	

Input Data WQM 7.0

	SWP Basir	Strea 1 Coo	am Je	Stre	am Name		RMI	Ele	vation (ft)	Drainage Area (sq mi)	Slope (ft/ft)	PWS Withdrawal (mgd)	Apply FC
	03G		604 EAST	BRANCH	CHESTER	R CREEK	14.70	00	248.00	21.00	0.00000	0.00	\checkmark
					S	tream Dat	ta						
Design	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	<u>Tributary</u> Ip pH	Tem	<u>Stream</u> p pH	
Cond.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)	(°C))	
Q7-10	0.100	4.74	0.00	0.000	0.000	0.0	0.00	0.0	0 2	0.00 7.0	00 (0.00 0.00	
Q1-10		0.00	0.00	0.000	0.000								
Q30-10		0.00	0.00	0.000	0.000								

Name	Permit Number	Existing Disc Flow (mgd)	Permitted Disc Flow (mgd)	Design Disc Flow (mgd)	Rese Fac	rve T tor (Disc emp (°C)	Disc pH
Cheyney Univers	PA0030970	0.2700	0.2700	0.270	0 0	.000	25.00	7.00
	Par	rameter D	ata					
Par	and the Manua	Dis Co	c Trit nc Cor	b Str nc C	eam onc	Fate Coef		
Fair	ameter Name	(mg	ı/L) (mg	/L) (m	g/L)	(1/days)		
CBOD5		2	5.00 2	2.00	0.00	1.50		
Dissolved Ox	/gen		5.00 8	8.24	0.00	0.00		
NH3-N			2.50 (0.00	0.00	0.70		

	SWF Basi	o Strea n Coo	am de	Stre	am Name		RMI	Ele	evation (ft)	Drainage Area (sq mi)	Slope (ft/ft)	PWS Withdrawal (mgd)	Apply FC
	03G		604 EAST	BRANCH	CHESTER	R CREEK	13.10	00	223.00	24.30	0.00000	0.00	\checkmark
					S	tream Da	ta						
Design	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	<u>Tributary</u> np pH	Tem	<u>Stream</u> p pH	
Cond.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)	(°C))	
Q7-10	0.100	5.71	0.00	0.000	0.000	0.0	0.00	0.0	00 2	0.00 7.	00 (0.00 0.00	
Q1-10		0.00	0.00	0.000	0.000								
Q30-10		0.00	0.00	0.000	0.000								
						icobargo	Data						

Input Data WQM 7.0

Discharge Data												
Name	Permit Number	Existing Disc Flow (mgd)	Permitted Disc Flow (mgd)	Desigr Disc Flow (mgd)	Reser Fact	D ove Te or (°	isc emp °C)	Disc pH				
		0.0000	0.0000	0.00	00 0.	000	25.00	7.00				
	Par	rameter Da	ata									
		Disc	c Tri no Co	b S nc (tream Conc	Fate Coef						
Pa	rameter Name	(mg	/L) (mg	/L) (mg/L) ((1/days)						
CBOD5		25	5.00	2.00	0.00	1.50						
Dissolved Ox	kygen	3	3.00	8.24	0.00	0.00						
NH3-N		25	5.00	0.00	0.00	0.70						

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	\checkmark
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.64	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.36	Temperature Adjust Kr	\checkmark
D.O. Saturation	90.00%	Use Balanced Technology	~
D.O. Goal	6		

	SW	P Basin	Strea	m Code				Stream	Name					
		03G		604		E	AST BRA	NCH CH	IESTER (CREEK				
RMI	Stream Flow	PWS With	Net Stream Flow	Disc Analysis Flow	Reach Slope	Depth	Width	W/D Ratio	Velocity	Reach Trav Time	Analysis Temp	Analysis pH		
	(cfs)	(cfs)	(cfs)	(cfs)	(ft/ft)	(ft)	(ft)		(fps)	(days)	(°C)			
Q7-10 Flow														
14.700	4.74	0.00	4.74	.4177	0.00296	.66	30.31	45.95	0.26	0.379	20.40	7.00		
Q1-1	0 Flow													
14.700	3.03	0.00	3.03	.4177	0.00296	NA	NA	NA	0.21	0.475	20.61	7.00		
Q30-	10 Flow													
14.700	6.45	0.00	6.45	.4177	0.00296	NA	NA	NA	0.30	0.323	20.30	7.00		

WQM 7.0 Hydrodynamic Outputs

WQM 7.0 D.O.Simulation

604 Total Discharge 0.27 Reach De	Flow (mgd	EAST BR	ANCH CHE	STER CREEP	(
Total Discharge 0.27 Reach De	Flow (mgd) <u>Anal</u>	lusis Tompor		
0.27 Reach De	0		iyala remper	Analysis pH	
Reach De			20.405	7.000	
	pth (ft)		Reach WDF	Ratio	Reach Velocity (fps)
0.66	0		45.949		0.258
Reach Kc	R	each NH3-N	(mg/L)	Reach Kn (1/days)	
0.67		0.20		0.722	
Reach Kr (1/days)		Kr Equati	on	Reach DO Goal (mg/L)
7.32	4		Tsivoglo	u	6
	Subraach	Reculte			
TravTime	CBOD5	NH3-N	D.O.		
(days)	(mg/L)	(mg/L)	(mg/L)		
0.038	3.76	0.20	8.10		
0.076	3.67	0.19	8.18		
0.114	3.57	0.19	8.18		
0.152	3.48	0.18	8.18		
0.190	3.39	0.18	8.18		
0.227	3.30	0.17	8.18		
0.265	3.22	0.17	8.18		
0.303	3.13	0.16	8.18		
0.341	3.05	0.16	8.18		
0.379	2.97	0.15	8.18		
	Reach De 0.66 <u>Reach Kc (</u> 0.67 <u>Reach Kr (</u> 7.32 TravTime (days) 0.038 0.076 0.114 0.152 0.190 0.227 0.265 0.303 0.341 0.379	0.270 <u>Reach Depth (ft)</u> 0.660 <u>Reach Kc (1/days)</u> 0.678 <u>Reach Kr (1/days)</u> 7.324 TravTime (days) 0.038 3.76 0.076 3.67 0.114 3.57 0.152 3.48 0.190 3.39 0.227 3.30 0.265 3.22 0.303 3.13 0.341 3.05 0.379 2.97	0.270 <u>Reach Depth (ft)</u> 0.660 <u>Reach Kc (1/days)</u> R 0.678 <u>Reach Kr (1/days)</u> 7.324 TravTime CBOD5 NH3-N (days) (mg/L) (mg/L) 0.038 3.76 0.20 0.076 3.67 0.19 0.114 3.57 0.19 0.152 3.48 0.18 0.190 3.39 0.18 0.227 3.30 0.17 0.265 3.22 0.17 0.303 3.13 0.16 0.341 3.05 0.16 0.379 2.97 0.15	0.270 20.405 Reach Depth (ft) Reach WDF 0.660 45.949 Reach Kc (1/days) Reach NH3-N 0.678 0.20 Reach Kr (1/days) Kr Equati 7.324 Tsivoglo TravTime (days) Subreach Results CBOD5 NH3-N D.O. (days) (mg/L) (mg/L) (mg/L) 0.038 3.76 0.20 8.10 0.076 3.67 0.19 8.18 0.114 3.57 0.19 8.18 0.152 3.48 0.18 8.18 0.227 3.30 0.17 8.18 0.227 3.30 0.17 8.18 0.227 3.30 0.17 8.18 0.303 3.13 0.16 8.18 0.303 3.13 0.16 8.18 0.341 3.05 0.16 8.18	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

	SWP Basin Str	eam Code		<u>St</u>	ream Name		
	03G	604		EAST BRAN	CH CHESTER	CREEK	
NH3-N	Acute Allocatio	ns					
RMI	Discharge Nam	Baseline e Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
14.7	00 Cheyney Univers	9.26	5	9.26	5	0	0
NH3-N	Chronic Allocat	ions					
RMI	Discharge Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
14.7	00 Cheyney Univers	1.88	2.5	1.88	2.5	0	0

			CBOD5		NH	3-N	Dissolved	i Oxygen	Critical	Percent
	RMI	Discharge Name	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple (mg/L)	Reach	Reduction
-	14.70	Cheyney Univers	25	25	2.5	2.5	5	5	0	0