

Application Type	Renewal
	Non-
Facility Type	Municipal
Major / Minor	Minor

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

Application No.	PA0031992
APS ID	369894
Authorization ID	1293490

Applicant and Facility Information

Applicant Name	PA DCI	NR State Parks Bureau	Facility Name	Greenwood Furnace State Park
Applicant Address	15795 (Greenwood Road	Facility Address	Standing Stone Creek
	Hunting	don, PA 16652-5831		Huntingdon, PA 16652
Applicant Contact	James	Dinsmore	Facility Contact	Michael Dinsmore
Applicant Phone	(814) 6	67-1800	Facility Phone	(814) 667-1800
Client ID	64584		Site ID	453106
Ch 94 Load Status	Not Overloaded		Municipality	Jackson Township
Connection Status	No Limi	tations	County	Huntingdon
Date Application Receiv	ved	October 24, 2019	EPA Waived?	Yes
Date Application Accepted		October 30, 2019	If No, Reason	
Purpose of Application		NPDES permit renewal.		

Summary of Review

The Greenwood Furnace State Park's WWTP is located in Jackson Borough, Huntingdon County. The WWTP is owned and operated by the Pennsylvania Department of Conservation & Natural Resources (PA DCNR) – State Parks Bureau. The park and the treatment plant operate from May through September and is closed during the remainder of the year. During operation there is little or no discharge from the polishing pond due to evaporation, trans-evaporation, the possibility of some seepage and due to low flow through the plant, about 3,000 gpd.

The WWTP has a design capacity of 0.059 MGD but is permitted for 0.015 MGD to prevent anti-degradation of the stream, and discharges to the East Branch Standing Stone Creek (HQ-CWF). The discharge to a HQ stream is justified, since the outfall pre-dates the HQ classification of the stream.

PA DCNR – State Parks Bureau has applied to the Pennsylvania Department of Environmental Protection (DEP) for reissuance of its NPDES permit. The permit was last reissued on February 9, 2015 and became effective on March 1, 2015. The permit expired on February 29, 2020.

WQM No. 3169401 original was issued on June 23, 1969.

Changes from the previous permit: Unit of Fecal Coliform changed from CFU/100 ml to No./100 ml.

Based on the review outline in this fact sheet, it is recommended that the permit be drafted and published in the Pennsylvania Bulletin for public comments for 30 days.

Approve	Deny	Signatures	Date
Х			
		Hilary H. Le / Environmental Engineering Specialist	March 4, 2020
		Daniel W. Martin, P.E. / Environmental Engineer Manager	
		Maria D. Bebenek, P.E. / Clean Water Program Manager	

Discharge, Receiving	g Waters and Water Supply Information	on	
Outfall No. 001		Design Flow (MGD)	0.015
Latitude 40° 3	8' 55.79"	Longitude	-77º 45' 32.32"
Quad Name Mc	Alevys Fort	Quad Code	
Wastewater Descrip	otion: Sewage Effluent		
	East Branch Standing Stone Creek		
Receiving Waters	(HQ-CWF)	Stream Code	15411
NHD Com ID	65603674	RMI	8.6 miles
Drainage Area	<u>6.95 mi.²</u>	Yield (cfs/mi ²)	0.07
Q ₇₋₁₀ Flow (cfs)	0.51	Q ₇₋₁₀ Basis	USGS StreamStats
Elevation (ft)	900.0	Slope (ft/ft)	
Watershed No.	_11-B	Chapter 93 Class.	HQ-CWF
Existing Use		Existing Use Qualifier	
Exceptions to Use		Exceptions to Criteria	
Assessment Status	Attaining Use(s)		
Cause(s) of Impairr	nent		
Source(s) of Impair	ment		
TMDL Status		Name	
Nearest Downstrea	m Public Water Supply Intake Co	Intingdon Borough Water De	epartment, Huntingdon
PWS Waters	Standing Stone Creek	Flow at Intake (cfs)	
PWS RMI () 3 mile	Distance from Outfall (mi)	Approximate 24 miles
<u>(</u>			

Changes Since Last Permit Issuance: none

Drainage Area

The discharge is to East Branch Standing Stone Creek at RMI 8.6 miles. A drainage area upstream of the discharge is estimated to be 6.95 mi.², according to USGS PA StreamStats available at <u>https://streamstats.usgs.gov/ss/</u>.

Streamflow

According to StreamStats, the discharge point on East Branch Standing Stone Creek has a Q_{7-10} of 0.51 cfs and a drainage area of 6.95 mi.², which results in a Q_{7-10} low flow yield of 0.07 cfs/mi.². This information is used to obtain a chronic or 30-day (Q_{30-10}), and an acute or 1-day (Q_{1-10}) exposure stream flow for the discharge point as follows (Guidance No. 391-2000-023):

 $\begin{array}{l} Q_{7\text{-}10} = 0.51 \mbox{ cfs} \\ \mbox{Low Flow Yield} = 0.51 \mbox{ cfs} / 6.95 \mbox{ mi.}^2 \approx 0.07 \mbox{ cfs/mi.}^2 \\ Q_{30\text{-}10} = 1.36 \ ^* \mbox{ 0.51 \ cfs} \approx 0.69 \mbox{ cfs} \\ Q_{1\text{-}10} = 0.64 \ ^* \mbox{ 0.51 \ cfs} \approx 0.33 \mbox{ cfs} \end{array}$

Standing Stone Creek

25 Pa Code § 93.9n classifies Standing Stone Creek as High Quality-Cold Water Fishes (HQ-CWF) surface water. Based on the 2018 Integrated Report, Standing Stone Creek, assessment unit ID 21691, is not impaired. A TMDL currently does not exist for this stream segment, therefore, no TMDL has been taken into consideration during this review.

Public Water Supply:

The nearest downstream public water supply intake is the Huntingdon Borough Water Department on the Standing Stone Creek in Huntingdon Borough, approximately 24 miles downstream of this discharge. Considering distance and dilution, the discharge is not expected to impact the water supply.

	Treatment Facility Summary					
Treatment Facility Na	me: Greenwood Furnace S	St Pk				
WQM Permit No.	Issuance Date					
3169401	6/23/1969					
	Degree of			Avg Annual		
Waste Type	Treatment	Process Type	Disinfection	Flow (MGD)		
		Activated Sludge With				
Sewage	Tertiary	Solids Removal	Hypochlorite	0.015		
Hydraulic Capacity	Organic Capacity			Biosolids		
(MGD)	(lbs/day)	Load Status	Biosolids Treatment	Use/Disposal		
				Combination of		
0.015		Not Overloaded	Aerobic Digestion	methods		

Changes Since Last Permit Issuance: none

The WWTP train is as follows:

Comminutor (1) \Rightarrow Aeration Tanks (2) \Rightarrow Clarifiers (4) \Rightarrow Polishing Ponds (2) \Rightarrow Chlorine Contact Tank (1) \Rightarrow Sludge Holding Tanks (2) \Rightarrow Discharge (Outfall 001)

Calcium Hypochlorite is used for disinfection. Soda Ash is used for neutralizing pH.

Compliance History				
Summary of DMRs:	The DMRs reported from February 1, 2019 to January 31, 2020 is summarized in the Table below (Page # 5).			
Summary of Inspections:	9/14/2019: Mr. Clark, DEP WQS, conducted compliance evaluation inspection. The recommendations were to attach missing effluent supplemental forms for September 2018 through July 2019 eDMRs, and submit NPDES renewal application. Treatment plant is operating approximately from May through September. Treatment plant was operating properly. There were no violations noted during inspection.			
	8/24/2018: Mr. Clark, DEP WQS, conducted compliance evaluation inspection. There was a recommendation such as replace D.O. meter sensor cap. There were no violations noted during inspection. Treatment plant appeared to be operating properly. Discharge occurred about 4 times per year. Sludge hauled by Lake septic and disposed of at the Shade Gap STP. Solids were removed, clarifier and aeration tank maintained periodically during the camping season.			
	8/14/2017: Mr. Clark, DEP WQS, conducted compliance evaluation inspection. The treatment plant was in operation from May through September. There were no violations noted during inspection.			
Other Comments:	There are currently no open violations associated with the permittee or the facility.			

Other Comments:

Compliance History

DMR Data for Outfall 001 (from February 1, 2019 to January 31, 2020)

Parameter	JAN-20	DEC-19	NOV-19	OCT-19	SEP-19	AUG-19	JUL-19	JUN-19	MAY-19	APR-19	MAR-19	FEB-19
Flow (MGD)												
Average Monthly			0.0313				0.028			0.037		
Flow (MGD)												
Daily Maximum			0.0432				0.0432			0.0432		
pH (S.U.)												
Instantaneous Minimum			6.68									
pH (S.U.)												
Minimum							6.86			6.89		
pH (mg/L)												
Minimum							6.86			6.89		
pH (S.U.)												
Instantaneous Maximum			6.89									
pH (S.U.)												
Maximum							7.28			7.29		
pH (mg/L)												
Maximum							7.28			7.29		
DO (mg/L)												
Minimum			7.83				6.07			8.57		
TRC (mg/L)												
Average Monthly			0.37				0.44			0.49		
TRC (mg/L)												
Instantaneous Maximum			0.65				0.78			0.78		
CBOD5 (mg/L)												
Average Monthly			< 0.20				2.33			10.88		
TSS (mg/L)												
Average Monthly			< 5.5				7			6.5		
Fecal Coliform (CFU/100 ml)												
Geometric Mean			< 10				< 10			< 15.8		
Fecal Coliform (CFU/100 ml)												
Instantaneous Maximum			< 10				< 10			< 25		
Nitrate-Nitrite (mg/L)												
Average Quarterly		0.81			1.43			< 0.05				
Total Nitrogen (mg/L)												
Average Quarterly		2.92			4.82			1.64				
Ammonia (mg/L)												
Average Quarterly		0.65			1.49			0.04				
TKN (mg/L)												
Average Quarterly		2.58			4.10			1.92				
Total Phosphorus (mg/L)												
Average Quarterly		2.100			1.548			1.574				

Development of Effluent Limitations

Outfall No.	001		Design Flow (MGD)	0.015
Latitude	40° 38' 39.92	"	Longitude	-77º 46' 5.59"
Wastewater De	escription:	Sewage Effluent	-	

Technology-Based Limitations

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Pollutant	Limit (mg/l)	SBC	Federal Regulation	State Regulation
	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
CBOD5	40	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)
Total Suspended	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
Solids	45	Average Weekly	133.102(b)(2)	92a.47(a)(2)
рН	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform				
(5/1 – 9/30)	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
Fecal Coliform				
(5/1 – 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform				
(10/1 – 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
Fecal Coliform				
(10/1 – 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)
Total Residual Chlorine	0.5	Average Monthly	-	92a.48(b)(2)

Water Quality-Based Limitations

Carbonaceous Biochemical Oxygen Demand (CBOD₅)

Only the minimum treatment requirements of secondary treatment will be necessary to protect water quality. The existing limits of 25 mg/L average monthly, and 50 mg/L instantaneous maximum will remain in the proposed permit. The facility has consistently achieved CBOD₅ levels well below these limits.

Ammonia (NH₃-N)

NH₃-N calculations are based on the Department's Implementation Guidance of Section 93.7 Ammonia Criteria, dated 11/4/97 (ID No. 391-2000-013). The attached printout of the WQM 7.0 data indicates that at a discharge of 0.015 MGD, limits (rounded according to the NPDES Technical Guidance 362-0400-001) of 25 mg/L NH₃-N as a monthly average and 50 mg/L NH₃-N instantaneous maximum are necessary to protect the aquatic life from toxicity effects.

The following data is necessary to determine the in-stream NH₃₋N criteria used in the attached WQM 7.0 computer model of the stream:

•	Discharge pH	=	7.0	(Default)
•	Discharge Temperature	=	20°C	(Default)
•	Stream pH	=	7.0	(Default)
•	Stream Temperature	=	20°C	(Default)
•	Background NH ₃ -N	=	0	(Default)

There are no NH3-N effluent limits in this permit. However, the "Monitor & Report" once per quarter for average quarter will remain in the proposed permit.

Total Suspended Solids (TSS)

The existing limits of 30 mg/L average monthly, and 60 mg/L instantaneous maximum will remain in the proposed permit based on the minimum level of effluent quality attainable by secondary treatment based on 25 Pa. Code § 92a.47. Past DMRs and inspection reports show that the facility has been consistently achieving these limits.

Dissolved Oxygen (D.O.)

A minimum D.O. of 5.0 mg/L is required per 25 Pa. Code § 93.7. The agreement between DEP and DCNR requires that D.O. be sampled 1/day (May - Sep) and 3/week (Oct – Apr). These monitoring requirements will remain in the proposed permit.

NPDES Permit Fact Sheet Greenwood Furnace State Park

pН

The effluent discharge pH should remain above 6 and below 9 standard units according to 25 Pa Code § 95.2(2). Additionally, the DEP has an agreement with DCNR that necessitates seasonal monitoring requirements for certain parameters, including pH. For Greenwood Furnace State Park, pH must be sampled 1/day (May - Sep) and 3/week (Oct – Apr). These monitoring requirements will remain in the proposed permit.

Fecal Coliform

The recent coliform guidance in 25 Pa Code § 92a.47.(a)(4) requires a summer technology limit of 200/100 ml as a geometric mean and an instantaneous maximum not greater than 1,000/100 ml and 25 Pa Code § 92a.47.(a)(5) requires a winter limit of 2,000/100 ml as a geometric mean and an instantaneous maximum not greater than 10,000/100 ml.

Toxics

No toxic parameters of concern associated with this discharge.

Total Residual Chlorine

The attached computer printout (Page # 8) utilizes the equations and calculations as presented in the Department's 2003 Implementation Guidance for Residual Chlorine (TRC) (ID # 391-2000-015) for developing chlorine limitations. The attached printout indicates that an average monthly water quality limit of 0.5 mg/L and 1.6 mg/L max daily would be needed to prevent toxicity concerns. This is consistent with the existing permit. The treatment facility is meeting this limit. The agreement between DEP and DCNR requires that TRC be sampled 1/day (May - Sep) and 3/week (Oct – Apr). These monitoring requirements will remain in the proposed permit.

Biosolids Management

Sludge is periodically dredged from the lagoon and the polishing pond, and then disposed of by a certified hauler.

Chesapeake Bay Strategy

According to DEP's Chesapeake Bay Phase II Watershed Implementation Plan (WIP) Wastewater Supplement, this facility is considered a phase 5 non-significant sewage discharger with design flow less than 0.2 MGD but greater than 0.002 MGD. In general, DEP will issue permits for all phase 5 facilities with monitoring and reporting for Total Nitrogen (TN) and Total Phosphorus (TP) throughout the permit term at a frequency no less than annually. Furthermore, DEP's SOP No. BPNPSM-PMT-033 states that in general, at a minimum, monitoring for TN and TP should be included in new and reissued permits for sewage discharges with design flows > 2,000 gpd. At this time, the Department is not requiring a total maximum annual nitrogen or phosphorus loading cap. Ammonia-Nitrogen, Nitrate-Nitrite as N, Total Kjeldahl Nitrogen, TN, and TP monitoring is already included in the existing permit and will remain in the proposed permit.

The Chesapeake Bay parameters monitoring frequency for this facility will match that of the conventional pollutants monitoring frequency of one sample per quarter.

Stormwater

There is no known stormwater outfall associated with this facility.

Anti-Degradation (93.4)

The effluent limits for this discharge have been developed to ensure that the existing in-stream water used and the level of water quality necessary to protect the existing uses are maintained and protected. No new or additional discharge is proposed. The discharge pre-dates the Chapter 93 designation of HQ-CWF, and is not expected to impact the stream.

Class A Wild Trout Fisheries

No Class A Wild Trout Fisheries are impacted by this discharge.

The discharge is located on the following Class A Wild Trout Stream:

- East Branch Standing Stone Creek
 - Sub-Basin: 11B, Trout Biomass: A, Section Number: 02, Fishery: Brown
 - Upper Limits Description: Dam at Greenwood Furnace State Park, Lower Limit Description: Mouth
 - o Upper Limit River: 9.22 miles

303d Listed Streams:

The discharge is not located on a 303d listed stream segment.

WQM 7.0 input:

Node 1: Outfall 001 on East Bra	nch Standing Stone Creek (15411)
Elevation:	900.00 ft (USGS National Map Viewer)
Drainage Area:	6.95 mi. ² (USGS PA StreamStats)
River Mile Index:	8.6 (PA DEP eMapPA)
Low Flow Yield:	0.07 cfs/mi. ² (0.51 cfs/6.95 mi.2)
Discharge Flow:	0.015 MGD (NPDES Application)
Node 2: Just before conjunction Elevation: Drainage Area: River Mile Index: Low Flow Yield: Discharge Flow:	East Branch Standing Stone Creek & Trib. 15426 805.00 ft (USGS National Map Viewer) 9.06 mi. ² (USGS PA StreamStats) 6.4 (PA DEP eMapPA) 0.07 cfs/mi. ² 0.000 MGD

WQM 7.0 data is attached.

Greenwood WQM 7.0 data.pdf TRC results

TRC EVAL	UATION							
Input appropriate values in A3:A9 and D3:D9								
0.51	= Q stream	n (cfs)	0.5	= CV Daily				
0.015	= Q discha	arge (MGD)	0.5	= CV Hourly				
30	= no. sam	oles	1	= AFC_Partial Mix Factor				
0.3	= Chlorine	Demand of Stream	1	= CFC_Parti	al Mix Factor			
0	= Chlorine	Demand of Discharge	15	= AFC_Crite	ria Compliance Time (min)			
0.5	= BAT/BP.	l Value	720	= CFC_Crite	ria Compliance Time (min)			
0	= % Facto	r of Safety (FOS)		=Decay Coe	fficient (K)			
Source	AFC Calculations		Reference	CFC Calculations				
TRC	1.3.2.iii	WLA afc =	7.030	1.3.2.iii	WLA cfc = 6.846			
PENTOXSD TRG	5.1a	LTAMULT afc =	0.373	5.1c	LTAMULT cfc = 0.581			
PENTOXSD TRG	5.1b	LTA_afc=	2.620	5.1d	LTA_cfc = 3.980			
Source		Effluer	nt Limit Calcu	lations				
PENTOXSD TRG	5.1f		AML MULT =	1.231				
PENTOXSD TRG	SD TRG 5.1g AVG MON LIMIT (mg/l) = 0.500				BAT/BPJ			
		INST MAX L	.IMIT (mg/l) =	1.635				
WLA afc	(.019/e(-k*AFC_tc)) + [(AFC_Yc*Qs*.019/Qd*e(-k*AFC_tc))							
	+ Xd + (/	AFC_Yc*Qs*Xs/Qd)]*(1-	FOS/100)					
LTAMULT afc	EXP((0.5*LN	(cvh^2+1))-2.326*LN(cvh^2	2+1)^0.5)					
LTA_afc	wla_afc*LTAMULT_afc							
WI A -6-	(0441-(14	OFC 1-1 - 10050 V-10-	* 044/04*-					
WLA_CIC	A_ctc (.U11/e(-k*CFC_tc) + [(CFC_Yc*Qs*.U11/Qd*e(-k*CFC_tc))							
	+ Xa + (UFU_YC*US*XS/Ud))*(1+FUS/100)							
	EXP((U.5°LN(CVG°2/Ino_samples+1))-2.320°LN(CVG°2/Ino_samples+1)°U.5)							
LIA_CIC	wia_cic ET#							
	MULT EXP(2.326*LN((cvd^2/no_samples+1)^0.5)-0.5*LN(cvd^2/no_samples+1))							
AVG MON LIMIT	$\Delta VG MON LIMIT MIN(BAT RP. MIN(TA afc TA cfc)*AML MULT)$							
INST MAX LIMIT 1.5*((av mon limit/AML MULT)/LTAMULT afc)								
			and a second second					
WLA afc(.019/e(-k*AFC_tc)) + [(AFC_Yc*Qs*.019/Qd*e(-k*AFC_tc)) + Xd + (AFC_Yc*Qs*Xs/Qd)]*(1-FOS/100)LTAMULT afcEXP((0.5*LN(cvh^2+1))-2.326*LN(cvh^2+1)^0.5) wla_afc*LTAMULT_afcWLA_cfc(.011/e(-k*CFC_tc) + [(CFC_Yc*Qs*.011/Qd*e(-k*CFC_tc)) + Xd + (CFC_Yc*Qs*Xs/Qd)]*(1-FOS/100)LTAMULT_cfcEXP((0.5*LN(cvd^2/no_samples+1))-2.326*LN(cvd^2/no_samples+1)^0.5) wla_cfc*LTAMULT_cfcAML MULTEXP(2.326*LN((cvd^2/no_samples+1)^0.5)-0.5*LN(cvd^2/no_samples+1)) MIN(BAT_BPJ,MIN(LTA_afc,LTA_cfc)*AML_MULT) INST MAX LIMITINST MAX LIMIT1.5*((av_mon_limit/AML_MULT)/LTAMULT_afc)								

Existing Effluent Limitations and Monitoring Requirements

		Monitoring Requirements						
Deremeter	Mass Units (Ibs/day) ⁽¹⁾		Concentrations (mg/L)				Minimum ⁽²⁾	Required
Parameter	Average	Daily		Average		Instant.	Measurement	Sample
	Monthly	Maximum	Minimum	Monthly	Maximum	Maximum	Frequency	Type
Flow (MGD)	Report	Report	XXX	XXX	XXX	XXX	1/week	Measured
pH (S.U.)								
May 1 - Sep 30	XXX	XXX	6.0	XXX	XXX	9.0	1/day	Grab
pH (S.U.)								
Oct 1 - Apr 30	XXX	XXX	6.0	XXX	XXX	9.0	3/week	Grab
DO								
May 1 - Sep 30	XXX	XXX	5.0	XXX	XXX	XXX	1/day	Grab
DO								
Oct 1 - Apr 30	XXX	XXX	5.0	XXX	XXX	XXX	3/week	Grab
TRC								
May 1 - Sep 30	XXX	XXX	XXX	0.5	XXX	1.6	1/day	Grab
TRC								
Oct 1 - Apr 30	XXX	XXX	XXX	0.5	XXX	1.6	3/week	Grab
								8-Hr
CBOD ₅	XXX	XXX	XXX	25	XXX	50	2/month	Composite
								8-Hr
TSS	XXX	XXX	XXX	30	XXX	60	2/month	Composite
Fecal Coliform (No./100 ml)				200				
May 1 - Sep 30	XXX	XXX	XXX	Geo Mean	XXX	1,000	2/month	Grab
Fecal Coliform (No./100 ml)				2,000				
Oct 1 - Apr 30	XXX	XXX	XXX	Geo Mean	XXX	10,000	2/month	Grab
				Report				8-Hr
Ammonia	XXX	XXX	XXX	Avg Qrtly	XXX	XXX	1/quarter	Composite
				Report				8-Hr
Nitrate-Nitrite	XXX	XXX	XXX	Avg Qrtly	XXX	XXX	1/quarter	Composite
				Report				8-Hr
Total Nitrogen	XXX	XXX	XXX	Avg Qrtly	XXX	XXX	1/quarter	Composite
				Report				8-Hr
TKN	XXX	XXX	XXX	Avg Qrtly	XXX	XXX	1/quarter	Composite
				Report				8-Hr
Total Phosphorus	XXX	XXX	XXX	Avg Qrtly	XXX	XXX	1/quarter	Composite

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

	Effluent Limitations							Monitoring Requirements	
Baramatar	Mass Units (Ibs/day) ⁽¹⁾			Concentrat	Minimum ⁽²⁾	Required			
Parameter	Average	Daily		Average		Instant.	Measurement	Sample	
	Monthly	Maximum	Minimum	Monthly	Maximum	Maximum	Frequency	Туре	
	Denert	Denert	VVV	VVV	VVV	VVV	1/2000	Magazirad	
	Report	Report	~~~	~~~	~~~	~~~	1/week	Measured	
рн (S.U.) May 1 - Sep 30	xxx	xxx	6.0	xxx	xxx	9.0	1/day	Grab	
pH(SU)	7000	,	0.0	7001	7000	0.0	.,	0.00	
Oct 1 - Apr 30	XXX	XXX	6.0	XXX	XXX	9.0	3/week	Grab	
DO									
May 1 - Sep 30	XXX	XXX	5.0	XXX	XXX	XXX	1/day	Grab	
DO									
Oct 1 - Apr 30	XXX	XXX	5.0	XXX	XXX	XXX	3/week	Grab	
TRC									
May 1 - Sep 30	XXX	XXX	XXX	0.5	XXX	1.6	1/day	Grab	
TRC									
Oct 1 - Apr 30	XXX	XXX	XXX	0.5	XXX	1.6	3/week	Grab	
								8-Hr	
CBOD ₅	XXX	XXX	XXX	25.0	XXX	50.0	2/month	Composite	
T 00		~~~~	~~~~	00.0		00.0	0/22.21	8-Hr	
	XXX	XXX	XXX	30.0	XXX	60.0	2/month	Composite	
Fecal Coliform (No./100 ml)	VVV	VVV	VVV	200	VVV	1 000	Q/ma a mth	Crah	
May 1 - Sep 30	~~~	~~~	~~~	Geo Mean	~~~	1,000	Z/month	Grab	
Oct 1 Apr 20	VVV	VVV	vvv	2,000 Goo Moon	VVV	10,000	2/month	Grah	
Ост 1 - Арт 50	~~~			Peport		10,000	2/1101101		
Ammonia	XXX	XXX	XXX	Ava Orthy	XXX	XXX	1/quarter	Composite	
				Report			i/quartor	8-Hr	
Nitrate-Nitrite	XXX	XXX	XXX	Ava Ortly	XXX	XXX	1/quarter	Composite	
	7000	7000	,,,,,	Report	7000	,,,,,	i, qualtoi	8-Hr	
Total Nitrogen	XXX	XXX	XXX	Ava Qrtlv	XXX	XXX	1/quarter	Composite	
	1			Report				8-Hr	
TKN	XXX	XXX	XXX	Avg Qrtly	XXX	XXX	1/quarter	Composite	
	1			Report			· ·	8-Hr	
Total Phosphorus	XXX	XXX	XXX	Avg Qrtly	XXX	XXX	1/quarter	Composite	

Tools and References Used to Develop Permit					
	WQM for Windows Model (see Attachment)				
	PENTOXSD for Windows Model (see Attachment)				
	TRC Model Spreadsheet (see Attachment)				
	Temperature Model Spreadsheet (see Attachment)				
	Toxics Screening Analysis Spreadsheet (see Attachment)				
	Water Quality Toxics Management Strategy, 361-0100-003, 4/06.				
	Technical Guidance for the Development and Specification of Effluent Limitations, 362-0400-001, 10/97.				
	Policy for Permitting Surface Water Diversions, 362-2000-003, 3/98.				
	Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 362-2000-008, 11/96.				
	Technology-Based Control Requirements for Water Treatment Plant Wastes, 362-2183-003, 10/97.				
	Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 362-2183-004, 12/97.				
	Pennsylvania CSO Policy, 385-2000-011, 9/08.				
	Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03.				
	Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 391- 2000-002, 4/97.				
\square	Determining Water Quality-Based Effluent Limits, 391-2000-003, 12/97.				
	Implementation Guidance Design Conditions, 391-2000-006, 9/97.				
\boxtimes	Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen				
	Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges.				
	391-2000-008, 10/1997.				
\boxtimes	Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments, 391-2000-010, 3/99.				
	Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 391-2000-011, 5/2004.				
\boxtimes	Implementation Guidance for Section 93.7 Ammonia Criteria, 391-2000-013, 11/97.				
	Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 391-2000-014, 4/2008.				
\boxtimes	Implementation Guidance Total Residual Chlorine (TRC) Regulation, 391-2000-015, 11/1994.				
	Implementation Guidance for Temperature Criteria, 391-2000-017, 4/09.				
	Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 391-2000-018, 10/97.				
	Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 391-2000-019, 10/97.				
	Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 391-2000-021, 3/99.				
	Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 391-2000-022, 3/1999.				
	Design Stream Flows, 391-2000-023, 9/98.				
	Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 391-2000-024, 10/98.				
	Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 391-3200-013, 6/97.				
\boxtimes	Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07.				
	SOP:				
	Other:				