

Southcentral Regional Office CLEAN WATER PROGRAM

Application Type
Renewal
NonFacility Type
Major / Minor
Minor

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

Application No. **PA0033065**APS ID **636204**

Authorization ID 1233260

Applicant Name	Vand	erhomes LLC	Facility Name	Palm City MHP
Applicant Address	2379	Brandt Road	Facility Address	2379 Brandt Road
	Annvi	lle, PA 17003-8849		Annville, PA 17003-8849
Applicant Contact	John '	Vanderhoef	Facility Contact	John Vanderhoef
Applicant Phone	(717)	838-6375	Facility Phone	(717) 838-6375
Client ID	26146	66	Site ID	245307
Ch 94 Load Status	Not O	verloaded	Municipality	South Annville Township
Connection Status			County	Lebanon
Date Application Rece	ived	June 14, 2018	EPA Waived?	Yes
Date Application Acce	pted	July 5, 2018	If No, Reason	

Summary of Review

1.0 General Discussion

This factsheet supports the renewal of an existing NPDES permit for discharge of treated domestic sewage from Vanderhomes wastewater treatment plant that serves Palm City Mobile Home Park. The facility is own and operated by Vanderhomes LLC. The facility has a design capacity of 0.036 mgd and discharges effluent to Killinger Creek which classified for trout stocking. The existing NPDES permit was issued on September 24, 2013 with an effective date of October 1, 2013 and expiration date of September 30, 2018. The applicant submitted a timely renewal application to the Department and is currently operating under the terms and conditions in the existing permit pending Department action on the renewal application. A topographic map showing the discharge location attachment

1.1 Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Approve	Deny	Signatures	Date
Х		J. Pascal Kwedza, P.E. / Environmental Engineer	October 17, 2019
		Daniel W. Martin, P.E. / Environmental Engineer Manager	
		Maria D. Bebenek, P.E., Program Manager	

Summary of Review

1.2 Changes to the existing Permit

• Semi-annual monitoring of Total Nitrogen, TKN and nitrate-Nitrite have been added

1.3 Existing Permit Limits and Monitoring Requirements

DISCHARGE LIMITATIONS								ORING EMENTS
	Mass Un	its (lbs/day)		Concent				
Discharge Parameter	Average Monthly						Monitoring Frequency	Sample Type
Flow (mgd)	Monitor & Report	Monitor & Report	XXX	XXX	XXX	XXX	continuous	Measured
pH (S.U.)	XXX	XXX	6.0	XXX	XXX	9.0	1/day	Grab
D.O.	XXX	XXX	5.0	XXX	XXX	XXX	1/day	Grab
Total Residual Chlorine	XXX	XXX	XXX	0.5	XXX	1.6	1/day	Grab
Total Suspended Solids	XXX	XXX	XXX	30	XXX	60	2/month	8-hour comp
CBOD₅	XXX	XXX	XXX	25	XXX	50	2/month	8-hour comp
NH3-N (5/1 to 10/31)	XXX	XXX	XXX	3.0	XXX	6.0	2/month	8-hour comp
NH3-N (11/1 to 4/30)	xxx	XXX	xxx	9.0	XXX	18	2/month	8-hour comp
Fecal Coliform (5/1 to 9/30)	xxx	XXX	xxx	200	XXX	1,000	2/month	Grab
Fecal Coliform (10/1 to 4/30)	xxx	XXX	xxx	2,000	XXX	10,000	2/month	Grab
Total Phosphorus	Report	154.5 Total Annual	xxx	Report	xxx	xxx	1/month	8-hour comp

Outfall No. 001			Design Flow (MGI	D) .036
Latitude 40° 17'	29.54	1 "	Longitude	-76º 33' 35.08"
Quad Name Palm	yra		Quad Code	1633
Wastewater Descripti		Sewage Effluent		
Receiving Waters	Killinc	ger Creek (TSF)	Stream Code	09705
_	56400	, ,	RMI	3.8
Drainage Area	2.2sq	mi.	Yield (cfs/mi²)	0.14
Q ₇₋₁₀ Flow (cfs)(0.31		Q ₇₋₁₀ Basis	USGS Gage Station
Elevation (ft)			Slope (ft/ft)	
Watershed No.	7-D		Chapter 93 Class.	TSF
Existing Use			Existing Use Qualifie	r
Exceptions to Use _			Exceptions to Criteria	a
Assessment Status		Impaired		
Cause(s) of Impairme	ent	Pathogens, Nutrients		
Source(s) of Impairme	ent	Source Unknown, Agricu		
TMDL Status		Final	Name Quittapal	hilla Creek Watershed
Background/Ambient pH (SU)	Data		Data Source	
Temperature (°F)				
Hardness (mg/L)				
Other:				_
Nearest Downstream	Publi	ic Water Supply Intake	PA American Water	
PWS Waters Sw	vatara	Creek	Flow at Intake (cfs)	
PWS RMI			Distance from Outfall (n	ni) 15.75

Changes Since Last Permit Issuance:

Other Comments:

1.4.1 Water Supply Intake

The nearest downstream water supply intake is approximately 15.75 miles downstream for PA American Water on Swatara Creek in South Hanover Township, Dauphin County. No impact is expected from this discharge on the intake.

2.0Treatment Facility	Summary			
Treatment Facility Na	me: Vanderhomes LLC - N	1HP		
WQM Permit No.	Issuance Date			
	Degree of			Avg Annual
Waste Type	Treatment	Process Type	Disinfection	Flow (MGD)
Sewage	Secondary	Extended Aeration	Hypochlorite	0.036
Hydraulic Capacity	Organic Capacity			Biosolids
(MGD)	(lbs/day)	Load Status	Biosolids Treatment	Use/Disposal
0.036		Not Overloaded	Aerobic Digestion	Combination of methods

Changes Since Last Permit Issuance: None

2.1 Treatment Facility

The treatment plant consists wet well with bar screen and 3 pumps, EQ tank, aeration tank, 2 clarifiers, clear well/dosing tank, 2 sand filters, chlorine contact tank and a digester.

2.2 Chemicals

- Sodium Hypochlorite for disinfection
- Aluminum Sulfate for phosphorus removal

3.0 Compliance History

3.1 DMR Data for Outfall 001 (from September 1, 2018 to August 31, 2019)

Parameter	AUG-19*	JUL-19	JUN-19	MAY-19	APR-19	MAR-19	FEB-19	JAN-19	DEC-18	NOV-18	OCT-18	SEP-18
Flow (MGD)												
Average Monthly		0.028	0.038	0.03	0.029	0.029	0.025	0.026	0.026	0.029	0.026	0.03
Flow (MGD)												
Daily Maximum		0.036	0.032	0.036	0.036	0.037	0.033	0.032	0.032	0.032	0.034	0.035
pH (S.U.)												
Minimum		6.7	6.97	7.04	7.0	7.07	7.22	7.13	6.99	6.99	6.95	6.96
pH (S.U.)												
Maximum		7.39	7.47	7.58	7.57	7.54	7.76	7.66	7.48	7.55	7.61	7.38
DO (mg/L)												
Minimum		6.0	7.0	7.0	8.0	8.0	8.0	8.0	7.0	7.0	7.0	6.0
TRC (mg/L)												
Average Monthly		0.09	0.09	0.04	0.13	0.17	0.24	0.25	0.24	0.2	0.12	0.18
TRC (mg/L)												
Instant. Maximum		0.36	0.3	0.54	0.44	0.44	0.57	0.49	0.62	0.39	0.34	0.45
CBOD5 (mg/L)												
Average Monthly		< 2	< 2	< 2	< 8.6	< 2	< 2.0	< 2.2	< 2	< 3.8	< 2.1	2.4
TSS (mg/L)												
Average Monthly		< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 7	< 5.0	< 5.0	< 6
Fecal Coliform												
(CFU/100 ml)		_	_						_			
Geometric Mean	<u> </u>	< 2	< 1	< 1	3.5	6	< 2.8	< 4.89	< 1	334	< 1	121
Fecal Coliform												
(CFU/100 ml)			_							400		- 40
Inst. Maximum		4	< 1	< 1	4	31	8	24	< 1	430	< 1	540
Ammonia (mg/L)		0.40=0	0.404					0.400				
Average Monthly	 	0.1252	0.161	< 0.1	1.14	0.5	7.27	0.196	3.379	5.7	0.266	6.79
Total Phosphorus									0.00			
(lbs/day) Annual Ave.	+			1					0.32			
Total Phosphorus			0.0		4.0	4.0	4.0	4.00	0.77		4.0	4.0
(mg/L) Ave. Monthly		2	2.3	2.6	1.9	1.9	1.6	1.33	0.77	1.4	1.6	1.8

[•] August DMR is not on eDMR yet

NPDES Permit No. PA0033065

3.2 Compliance History	
Summary of DMRs:	Discharge Monitoring Reports (DMRs) review for the facility for the last 12 months of operation presented on the table above indicate permit limits have been met consistently. No permit violation was noted on DMRs during the period reviewed.
Summary of Inspections:	The facility was inspected 6 times during the past permit cycle. Inspection reports review for the facility during the period indicate permit limits have been met consistently. The reports made some recommendations to improve operation and maintenance of the facility. The facility was reminded to follow the Department's records keeping protocol and to submit DMR in a timely manner. The report also recommended installation of flow meter for accurate flow measurements.

4.0 Development of Effluent Limitations						
Outfall No.	001	Design Flow (MGD)	.036			
Latitude	40° 17' 29.54"	Longitude	-76° 33' 35.09"			
Wastewater D	Description: Sewage Effluent	_				

4.1 Basis for Effluent Limitations

In general, the Clean Water Act (AWA) requires that the effluent limits for a particular pollutant be the more stringent of either technology-based limits or water quality-based limits. Technology-based limits are set according to the level of treatment that is achievable using available technology. A water quality-based effluent limit is designed to ensure that the water quality standards applicable to a waterbody are being met and may be more stringent than technology-based effluent limits.

4.1.1 Technology-Based Limitations

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Pollutant	Limit (mg/l)	SBC	Federal Regulation	State Regulation
CBOD ₅	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
CBOD5	40	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)
Total Suspended	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
Solids	45	Average Weekly	133.102(b)(2)	92a.47(a)(2)
pН	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform				
(5/1 – 9/30)	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
Fecal Coliform				
(5/1 – 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform				
(10/1 – 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
Fecal Coliform				
(10/1 – 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)
Total Residual Chlorine	0.5	Average Monthly	-	92a.48(b)(2)

Comments: Weekly averages are not applicable to this discharge

4.2 Water Quality-Based Limitations

4.1.1 Receiving Stream

The receiving stream is the Killinger Creek. According to 25 PA § 93.90, this stream is protected for Trout Stocking Fishery (TSF). It is located in Drainage List o and State Watershed 7-D. It has been assigned stream code 09705. According to the Department's Integrated Water Quality Monitoring and Assessment Report, Killinger Creek is impaired for pathogens and nutrients. Source is unknown and agriculture, respectively. TMDL is completed and approved by EPA in 2001. See 303d listed streams section of the report for further discussion.

The Technical Support Document for Water Quality-Based Toxics Control (TSD) (EPA, 1991) and the Pennsylvania Water Quality Standards PA WQS) recommend the flow conditions for use in calculating water quality-based effluent limits (WQBELs) using steady-state modeling. The TSD and the PA WQS state that WQBELs intended to protect aquatic life uses should be based on the lowest seven-day average flow rate expected to occur once every ten years (Q₇₋₁₀) for chronic criteria and the lowest one-day average flow rate expected to occur once every ten years (Q₁₋₁₀) for acute criteria. However, because the chronic criterion for ammonia is a 30-day average concentration not to be exceeded more than once every three years, EPA has used the Q₃₀₋₁₀ for the chronic ammonia criterion instead of the Q₇₋₁₀. The Q₃₀₋₁₀ is a biologically-based design flow intended to ensure an excursion frequency of once every three years for a 30-day average flow rate. These flows were determined by correlating with the yield of USGS gage No. 01573560 on Swatara Creek near Hershey. The Q₇-

10 and drainage area at the gage is 67.7ft3/s and 483mi² respectively. The resulting yields are as follows:

- $Q_{7-10} = (67.7ft^3/s)/483 \text{ mi}^2 = 0.14ft^3/s/\text{ mi}^2$
- \bullet Q₃₀₋₁₀ / Q₇₋₁₀ = 0.89
- $Q_{1-10} / Q_{7-10} = 1.23$

The drainage area at the point of discharge calculated using StreamStats = 2.20 mi².

The summer Q_{7-10} at discharge = 2.20 mi² x 0.14 ft³/s/mi² = 0.31 ft³/s.

4.3.2 NH₃N Calculations

 NH_3N calculations will be based on the Department's Implementation Guidance of Section 93.7 Ammonia Criteria, dated 11/4/97 (ID No. 391-2000-013). The following data is necessary to determine the instream NH_3N criteria used in the attached computer model of the stream:

Discharge pH = 7.0 (Default)
 Discharge Temperature = 25 ° C (Default)

Stream pH = 7.8 (WQN Station on Quittapahilla Creek)
 Stream Temperature = 19 °C (WQN Station on Quittapahilla Creek)

Background NH₃-N = 0.0 (default)
 Discharge flow = 0.036MGD

4.3.3 CBOD₅

Due to their proximities, Campbelltown East STP and Vanderhomes STP discharges were modeled together as two reaches. The attached WQM 7.0 stream model results presented in attachment B indicates a limit of 25 mg/l for CBOD $_5$ for Vanderhomes STP discharge is adequate to protect the water quality of the stream. This limit is consistent with the existing permit and the STP has been consistently achieving below this limitation. Therefore, a limit of 25 mg/l AML, and 50 mg/l IMAX are recommended for this permit cycle.

4.3.4 NH₃-N

The attached WQM 7.0 stream model results (attachment B) also indicates that, for the Vanderhomes STP discharge, a summer limit of 8.5 mg/l NH₃ as a monthly average is adequate to protect the aquatic life from toxicity effects. This is less stringent than the existing limit of 3.0 mg/l which will remain in the permit due to anti-backsliding. The limit for winter months is 3 times the summer limit (9.0 mg/l NH₃-N).

4.3.5 Dissolved Oxygen

The existing permit contains a limit of 5 mg/l for Dissolved Oxygen (DO). DEP's Technical Guidance for the Development and Specification of Effluent Limitations (362-0400-001, 10/97) suggests that either the adopted minimum stream D.O. criteria for the receiving stream or the effluent level determined through water quality modeling be used for the limit. Since the WQM 7.0 model was run using a minimum D.O. of 5.0 mg/l, this limit will be continued in the renewed permit with a daily monitoring requirement per DEP guidance.

4.3.6 Toxics

No parameter of concern is associated with this discharge.

4.3.7 Chesapeake Bay Strategy:

The Department formulated a strategy in April 2007, to comply with the EPA and Chesapeake Bay Foundation requirements to reduce point source loadings of Total Nitrogen (TN) and Total Phosphorus (TP) to the Bay. In the Strategy, sewage dischargers have been prioritized by Central Office based on their delivered TN loadings to the Bay. The highest priority (Phases 1, 2, and 3) dischargers will receive annual loading caps based on their design flow on August 29, 2005 and concentrations of 6 mg/l TN and 0.8 mg/l TP. Phase 4 (0.2 -0.4mgd) and Phase 5 (below 0.2mdg) will be required to monitor

and report TN and TP during permit renewal at a monitoring frequency following Table 6-3 of DEP's Technical Guidance for Development and Specification of effluent Limitations (No. 362-0400-001). Any facility in Phases 4 and 5 that undergoes expansion is subjected to cap load right away.

EPA published the Chesapeake Bay Total Maximum Daily Load (TMDL) in December of 2010. Despite extensive restoration efforts during the past 25 years, the TMDL was prompted by insufficient progress and continued poor water quality in the Chesapeake Bay and its tidal tributaries.

In order to address the TMDL, Pennsylvania developed in addition to the Bay Strategy, a Chesapeake Watershed Implementation Plan (WIP) Phase 1 in January 2011 and Phase 2 in March 2012. In accordance with the Phase 2 WIP and its supplement, re-issuing permits for significant dischargers follow the same phased approach formulated in the original Bay strategy, whilst Phase 4 and Phase 5 will be required to monitor and report TN and TP during permit renewal. This facility is, classified as a phase 5, and had monitored Nitrate-Nitrite as N, Total Kjeldahl Nitrogen and Total Nitrogen in the past but will be required to resume monitoring them semi-annually during this permit cycle.

4.3.8 Phosphorus

Phosphorus load limitation based based on the TMDL approved for Quittapahilla Creek watershed in 2001. The WLA for phosphorus in the Killinger creek watershed was set at 1128.5lbs/year based on South Londonderry's plant. The document explained that average monthly discharge of 2mg/l at waste flow at 0.21mgd will account for less than1% total phosphorus loading to Killinger Creek and limits South Londonderry discharge to the existing NPDES permit limit of 2mg/l at 0.21mgd. However, since the approved TMDL did not include Vanderhomes STP, a TP load of 974lbs/year was allocated from a total load to Campbeltown East Plant and the rest of the load 154.5lbs/year is allocated to Vanderhomes STP. The facility has been monitoring Total phosphorus 2/month and has been complying with the Total Phosphorus load limitation.

4.3.9 Total Residual Chlorine

The attached TRC results presented in attachment C utilizes the equations and calculations presented in the Department's 2003 Implementation Guidance for Residual Chlorine (TRC) (ID # 391-2000-015) for developing chlorine limitations. The result indicates that a technology limit of 0.5 mg/l monthly average and 1.6 mg/l IMAX for the discharge would be needed to prevent toxicity concerns. This is consistent with the existing limit, and DMR and inspection data show facility is complying with this limitation.

5.0 Other Requirements

5.1 Anti-backsliding

Not applicable to this permit

5.2 Stormwater:

No storm water outfall is associated with this facility

5.3 Special Permit Conditions

The permit will contain the following special conditions:

Stormwater Prohibition, Approval Contingencies, Proper Waste/solids Management, and Chlorine minimization.

5.4 Biosolids Management

Digested sludge is hauled out periodically by a license hauler.

5.5 Anti-Degradation (93.4)

The effluent limits for this discharge have been developed to ensure that existing instream water uses and the level of water quality necessary to protect the existing uses are maintained and protected. No High-Quality Waters are impacted by this discharge. No Exceptional Value Waters are impacted by this discharge.

5.6 Class A Wild Trout Fisheries

No Class A Wild Trout Fisheries are impacted by this discharge.

5.7 303d Listed Streams:

The discharge is located on a 303d listed stream segment as impaired for phosphorus and TMDL was approved in 2001. Deatils on load allocation is presented under phosphorus section of the report (section 4.3.8).

5.8 Basis for Effluent and Surface Water Monitoring

Section 308 of the CWA and federal regulation 40 CFR 122.44(i) require monitoring in permits to determine compliance with effluent limitations. Monitoring may also be required to gather effluent and surface water data to determine if additional effluent limitations are required and/or to monitor effluent impacts on receiving water quality. The permittee is responsible for conducting the monitoring and for reporting results on Discharge Monitoring Reports (DMRs).

5.9 Effluent Monitoring

Monitoring frequencies are based on the nature and effect of the pollutant, as well as a determination of the minimum sampling necessary to adequately monitor the facility's performance. Permittees have the option of taking more frequent samples than are required under the permit. These samples can be used for averaging if they are conducted using EPA-approved test methods (generally found in 40 CFR 136) and if the Method Detection Limits are less than the effluent limits. The sampling location must be after the last treatment unit and prior to discharge to the receiving water. If no discharge occurs during the reporting period, "no discharge" shall be reported on the DMR.

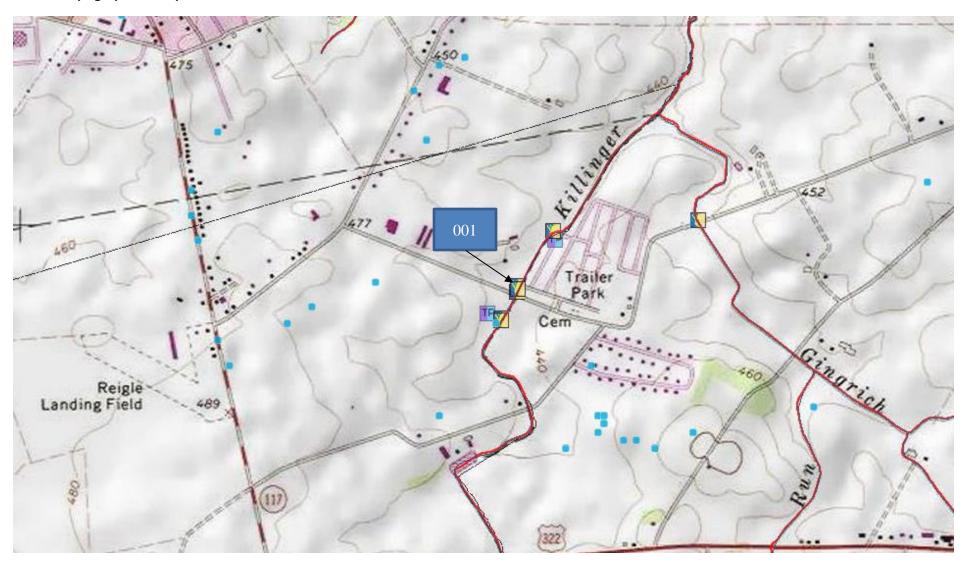
6.0 Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

			Effluent L	imitations			Monitoring Re	quirements
Parameter	Mass Units	(lbs/day) (1)		Concentrat	ions (mg/L)		Minimum (2)	Required
Parameter	Average Monthly	Average Weekly	Minimum	Average Monthly	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report Daily Max	XXX	XXX	XXX	XXX	Continuous	Measured
pH (S.U.)	XXX	XXX	6.0 Inst Min	XXX	XXX	9.0	1/day	Grab
DO	XXX	XXX	5.0 Daily Min	XXX	XXX	XXX	1/day	Grab
TRC	XXX	XXX	XXX	0.5	XXX	1.6	1/day	Grab
CBOD5	XXX	XXX	XXX	25	xxx	50	2/month	8-Hr Composite
TSS	XXX	XXX	XXX	30	XXX	60	2/month	8-Hr Composite
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	XXX	XXX	XXX	2,000 Geo Mean	XXX	10,000	2/month	Grab
Fecal Coliform (No./100 ml) May 1 - Sep 30	XXX	XXX	XXX	200 Geo Mean	XXX	1,000	2/month	Grab
Nitrate-Nitrite	XXX	XXX	XXX	XXX	Report Daily Max	XXX	1/6 months	8-Hr Composite
Total Nitrogen	XXX	XXX	XXX	XXX	Report Daily Max	XXX	1/6 months	Calculation
Ammonia Nov 1 - Apr 30	XXX	XXX	XXX	9.0	XXX	18	2/month	8-Hr Composite
Ammonia May 1 - Oct 31	XXX	XXX	XXX	3.0	XXX	6	2/month	8-Hr Composite
TKN	XXX	XXX	XXX	XXX	Report Daily Max	XXX	1/6 months	8-Hr Composite
Total Phosphorus	XXX	XXX	XXX	Report	XXX	XXX	2/month	8-Hr Composite

Outfall 001, Continued (from Permit Effective Date through Permit Expiration Date)


		Effluent Limitations						quirements
Parameter	Mass Units	(lbs/day) ⁽¹⁾		Concentrat	Minimum ⁽²⁾	Required		
Faranietei	Average Monthly	Average Weekly	Minimum	Average Monthly	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
	154.5							
Total Phosphorus	Annl Avg	XXX	XXX	XXX	XXX	XXX	1/year	Calculation

Compliance Sampling Location: At outfall 001

7.0 Tools	and References Used to Develop Permit
	WQM for Windows Model (see Attachment B)
	PENTOXSD for Windows Model (see Attachment)
	TRC Model Spreadsheet (see Attachment C)
	Temperature Model Spreadsheet (see Attachment)
	Water Quality Toxics Management Strategy, 361-0100-003, 4/06.
\boxtimes	Technical Guidance for the Development and Specification of Effluent Limitations, 362-0400-001, 10/97.
	Policy for Permitting Surface Water Diversions, 362-2000-003, 3/98.
	Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 362-2000-008, 11/96.
	Technology-Based Control Requirements for Water Treatment Plant Wastes, 362-2183-003, 10/97.
	Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 362-2183-004, 12/97.
	Pennsylvania CSO Policy, 385-2000-011, 9/08.
	Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03.
	Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 391-2000-002, 4/97.
	Determining Water Quality-Based Effluent Limits, 391-2000-003, 12/97.
	Implementation Guidance Design Conditions, 391-2000-006, 9/97.
	Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen, Version 1.0, 391-2000-007, 6/2004.
	Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 391-2000-008, 10/1997.
	Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments, 391-2000-010, 3/99.
	Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 391-2000-011, 5/2004.
\boxtimes	Implementation Guidance for Section 93.7 Ammonia Criteria, 391-2000-013, 11/97.
	Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 391-2000-014, 4/2008.
	Implementation Guidance Total Residual Chlorine (TRC) Regulation, 391-2000-015, 11/1994.
	Implementation Guidance for Temperature Criteria, 391-2000-017, 4/09.
	Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 391-2000-018, 10/97.
	Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 391-2000-019, 10/97.
	Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 391-2000-021, 3/99.
	Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 391-2000-022, 3/1999.
	Design Stream Flows, 391-2000-023, 9/98.
	Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 391-2000-024, 10/98.
	Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 391-3200-013, 6/97.
\boxtimes	Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07.
	Other: Quittapahilla Creek TMDL
	Other:

8. Attachments

A. Topographical Map

B. WQM Model Results

WQM 7.0 Effluent Limits

		n Code 705		Stream Name KILLINGER CRE	_		
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
4.050	Camp. East Plt	PA0087700	0.210	CBOD5	25		
				NH3-N	2.88	5.76	
				Dissolved Oxygen			5
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
3.800	Vanderhomes MHP	PA0033065	0.036	CBOD5	25		
				NH3-N	8.51	17.02	
				Dissolved Oxygen			5

Permit No. PA0033065

Input Data WQM 7.0

	SWF Basi			Stre	eam Name		RMI		ation t)	Drainag Area (sq mi)		ope PW Withd t/ft) (mg	rawal	Apply FC
	07D	97	705 KILLIN	IGER CR	EEK		4.05	50 ·	423.00	2	.01 0.0	00000	0.00	~
					St	ream Dat	a							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	<u>Tributary</u> p	<u>(</u> pH	<u>Strean</u> Temp	1 pH	
Cona.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C))		(°C)		
Q7-10 Q1-10	0.140	0.00 0.00	0.00	0.000	0.000 0.000	0.0	0.00	0.00	19	9.00	7.80	0.00	0.00	.,
Q30-10		0.00	0.00	0.000	0.000									
				400 a 100 a 10	Di	scharge l								
		,	Name	Per	mit Number	Disc	Permitte Disc Flow (mgd)	Disc Flow	Rese	erve ctor	Disc Temp (°C)	Disc pH		
		Camp	o. East Plt	PA	0087700	0.210	0.210	0 0.21	00 0	0.000	25.00	0 6.60		
					Pa	rameter l	Data							
			,	Paramete	- Nama				tream Conc	Fate Coef				
			,	-aramete	rivarrie	(m	g/L) (n	ng/L) (mg/L)	(1/days)			
			CBOD5				25.00	2.00	0.00	1.5	0			
			Dissolved	Oxygen			5.00	8.24	0.00	0.0	0			
			NH3-N			:	25.00	0.00	0.00	0.7	0			

Friday, March 29, 2019

Version 1.0b

Page 1 of 3

Input Data WQM 7.0

	SWP Basin	Strea Cod		Stre	eam Name		RMI		ration ft)	Drainage Area (sq mi)	Slop (ft/ft	Withd	rawal	Apply FC
	07D	97	705 KILLIN	GER CR	EEK		3.80	00	420.00	2.2	0.000	000	0.00	V
					St	ream Da	ta							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	Tributary np pl	-l	<u>Strean</u> Temp	1 pH	
Colla.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C)		
Q7-10 Q1-10 Q30-10	0.140	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000 0.000 0.000	0.0	0.00	0.00) 1	9.00	7.80	0.00	0.00	
					Di	scharge	Data							
			Name	Per	mit Number	Disc	Permitte Disc Flow (mgd)	Disc Flov	Res V Fa	erve To)isc emp °C)	Disc pH		
		Vand	erhomes N	MHP PA	0033065	0.036	0 0.036	0 0.03	360	0.000	25.00	7.00		
					Pa	ırameter	Data							
			ı	Paramete	r Name			Trib S Conc	Stream Conc	Fate Coef				
			'	alamete	i rallic	(m	ng/L) (n	ng/L)	(mg/L)	(1/days)				
	_		CBOD5				25.00	2.00	0.00	1.50		 .		
			Dissolved	Oxygen			5.00	8.24	0.00	0.00				
			NH3-N				25.00	0.00	0.00	0.70				

Permit No. PA0033065

Input Data WQM 7.0

	SWP Basir			Stre	eam Name		RMI		ation ft)	Drainag Area (sq mi		ope Vt/ft)	PWS Vithdrawal (mgd)	Apply FC
	07D	97	705 KILLIN	IGER CR	EEK		3.42	20	415.00	2	.21 0.0	00000	0.00	\checkmark
					St	ream Dat	а							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	<u>Tributar</u> p	⊻ pH	<u>Si</u> Temp	<u>ream</u> pH	
Cona.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C)		
Q7-10 Q1-10 Q30-10	0.140	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000 0.000 0.000	0.0	0.00	0.00) 19	9.00	7.80	0.0	0.00	l
					Di	scharge	Data							
			Name	Per	mit Number	Disc	Permitte Disc Flow (mgd)	Disc Flow	Res	erve ctor	Disc Temp (°C)	Disc pH		
						0.000	0.000	0.00	000 (0.000	0.00	7.	00	
					Pa	rameter	Data							
	;		ı	Paramete	r Name				tream Conc	Fate Coef				
						(m	ıg/L) (n	ng/L)	(mg/L)	(1/days)	· 		
			CBOD5			-	25.00	2.00	0.00	1.5	0			
			Dissolved	Oxygen			5.00	8.24	0.00	0.0	0			
			NH3-N				25.00	0.00	0.00	0.7	0			

WQM 7.0 Hydrodynamic Outputs

	<u>sw</u>	P Basin	Strea	ım Code				Stream	<u>Name</u>					
		07Đ	g	9705		KILLINGER CREEK								
RMI	Stream Flow	PWS With	Net Stream Flow	Disc Analysis Flow	Reach Slope	Depth	Width	W/D Ratio	Velocity	Reach Trav Time	Analysis Temp	Analysis pH		
	(cfs)	(cfs)	(cfs)	(cfs)	(ft/ft)	(ft)	(ft)		(fps)	(days)	(°C)			
Q7-10	Flow				,									
4.050	0.28	0.00	0.28	.3249	0.00227	.476	9.98	20.95	0.13	0.120	22,22	6.85		
3.800	0.31	0.00	0.31	.3806	0.00249	.484	10.52	21.73	0.14	0.172	22.32	6.87		
Q1-10	Flow													
4.050	0.25	0.00	0.25	.3249	0.00227	NA	NA	NA	0.12	0.123	22.39	6.83		
3.800	0.27	0.00	0.27	.3806	0.00249	NA	NA	NA	0.13	0.177	22.49	6.85		
Q30-1	10 Flow													
4.050	0.35	0.00	0.35	.3249	0.00227	NA	NA	NA	0.13	0.113	21.90	6.89		
3.800	0.38	0.00	0.38	.3806	0.00249	NA	NA	NA	0.14	0.163	22.01	6.91		

Permit No. PA0033065

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	✓
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.89	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.23	Temperature Adjust Kr	~
D.O. Saturation	90.00%	Use Balanced Technology	~
D.O. Goal	6		

WQM 7.0 Wasteload Allocations

	SWP Basin 07D		<u>m Code</u> 705		KI	Stream LLINGE	<u>Name</u> R CREE	(
NH3-N	Acute Alloc	ations	5							
RMI	Discharge I	Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterio (mg/L)	n V	ultiple VLA ng/L)	Critical Reach	Percent Reductio	n
4.05	60 Camp. East F		8.99	15.93	8.9	99	14.06	2	12	_
	00 Vanderhome		5.68	33.62	8.8	81	29.67	2	12	
NH3-N RMI	Chronic Allo	E	ans Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Mult Wi (mg	ĹΑ	Critical Reach	Percent Reduction	
4.05	50 Camp. East F	>It	1.79	3.69	1.		2.88	2	22	_
	00 Vanderhomes		1.4	10.9			8.51	2	22	
)issolv	ed Oxygen A	Alloca	tions	_						_
			<u>C</u>	BOD5	NH3	<u>-N</u>	<u>Dissolv</u>	ed Oxygen	Critical	Percent
RMI	Discharg	e Name	e Baselii (mg/L			Multiple (mg/L)	Baseline (mg/L)		Reach	Reductio
4.0	5 Camp. East F	Pit	2	5 25	2.88	2.88	5	5	0	0
2.0	0 Vanderhomes		_	5 25	8.51	8.51	5	5	0	0

Friday, March 29, 2019

WQM 7.0 D.O.Simulation

SWP Basin St	ream Code 9705		к	Stream Name ILLINGER CREEK	
RMI 4.050 Reach Width (ft) 9.981 Reach CBOD5 (mg/L) 14.32 Reach DO (mg/L) 6.505	Total Discharge 0.21 Reach De 0.47 Reach Kc (1.39 Reach Kr (22.69	0 pth (ft) 6 1/days) 3 1/days)		lysis Temperature (°C) 22.215 Reach WDRatio 20.953 each NH3-N (mg/L) 1.54 Kr Equation Owens	Analysis pH 6.848 Reach Velocity (fps) 0.128 Reach Kn (1/days) 0.830 Reach DO Goal (mg/L) 6
Reach Travel Time (days) 0.120	TravTime (days)	Subreach CBOD5 (mg/L)	Results NH3-N (mg/L)	D.O. (mg/L)	
	0.012 0.024 0.036 0.048 0.060 0.072 0.084 0.096 0.108 0.120	14.06 13.80 13.55 13.30 13.06 12.82 12.59 12.36 12.13 11.91	1.53 1.51 1.50 1.48 1.47 1.45 1.44 1.42 1.41	6.64 6.76 6.85 6.93 6.99 7.05 7.10 7.14 7.18	
RMI 3.800 Reach Width (ft) 10.518 Reach CBOD5 (mg/L) 12.58 Reach DO (mg/L) 7.080	Total Discharge 0.24 Reach De 0.48 Reach Kc (1.37 Reach Kr (22.98	6 <u>pth (ft)</u> 4 <u>1/days)</u> 8 1/days)		lysis Temperature (°C) 22.316 Reach WDRatio 21.735 each NH3-N (mg/L) 1.92 Kr Equation Owens	Analysis pH 6.874 Reach Velocity (fps) 0.135 Reach Kn (1/days) 0.837 Reach DO Goal (mg/L)
Reach Travel Time (days) 0.172	TravTime (days)	Subreach CBOD5 (mg/L)	Results NH3-N (mg/L)	D.O. (mg/L.)	
	0.017 0.034 0.051 0.069 0.086	12.26 11.94 11.63 11.33 11.03	1.89 1.86 1.84 1.81 1.78	7.13 7.17 7.21 7.25 7.29	
	0.103 0.120 0.137 0.154 0.172	10.75 10.47 10.20 9.93 9.67	1.76 1.73 1.71 1.69 1.66	7.32 7.36 7.39 7.42 7.45	

Version 1.0b

Permit No. PA0033065

C. TRC Calculations

1A	В	С	D	Е	F	G
2	TRC EVAL	UATION		Enter	Facility Nar	ne in E3
3	Input appropri	iate values i	n B4:B8 and E4:E7			
4	0.29	= Q stream	ı (cfs)	0.5	= CV Daily	
5	0.036	= Q discha	rge (MGD)	0.5	= CV Hourly	
6	30	= no. samp	oles	1	= AFC_Partia	ıl Mix Factor
7	0.3	= Chlorine	Demand of Stream	1	= CFC_Partia	ıl Mix Factor
8	0	= Chlorine	Demand of Disch	15	= AFC_Criter	ria Compliance Time (min)
9	0.5	= BAT/BPJ	Value	720	= CFC_Criter	ria Compliance Time (min)
		= % Facto	r of Safety (FOS)		=Decay Coef	ficient (K)
10		Reference	AFC Calculations		Reference	CFC Calculations
11		1.3.2.iii	WLA afc =		1.3.2.iii	WLA cfc = 1.630
	PENTOXSD TR		LTAMULT afc =		5.1c	LTAMULT cfc = 0.581
	PENTOXSD TR	5.1b	LTA_afc=	0.626	5.1d	LTA_cfc = 0.948
14						
15		15		Limit Cal		
	PENTOXSD TR			_ MULT =		DAT/DD I
17	PENTOXSD TR	5.1g	AVG MON LIMIT	` • ,		BAT/BPJ
10			INST WAX LIMIT	i (ilig/i) –	1.035	
	WLA afc	(.019/e(-k*	AFC_tc)) + [(AFC_	Yc*Qs*.	019/Qd*e(-k*	AFC_tc))
			AFC_Yc*Qs*Xs/Qd			- "
	LTAMULT afc	EXP((0.5*LN	(cvh^2+1))-2.326*LN	(cvh^2+1)^0.5)	
	LTA_afc	wla_afc*LTA	MULT_afc			
	WLA_cfc		CFC_tc) + [(CFC_\			CFC_tc))
		· · · · · · · · · · · · · · · · · · ·	CFC_Yc*Qs*Xs/Qd	·- ·	and the second s	
	LTAMULT_cfc	**	(cvd^2/no_samples+	-1))-2.326	*LN(cvd^2/no_s	samples+1)^0.5)
	LTA_cfc	wla_cfc*LTA	AMULI_CTC			
	AML MULT	EXD(2 326*I	.N((cvd^2/no_sample	s+1)^0 5)-0 5*I N(cvd^2	/no samples+1)\
			PJ,MIN(LTA_afc,LTA		•	mo_samples · 1/)
			on_limit/AML_MUI	· · · · · · · · · · · · · · · · · · ·	The state of the s	
		((6.1		_ , ,		