

Southcentral Regional Office CLEAN WATER PROGRAM

Application Type

Renewal

Non
Facility Type

Major / Minor

Minor

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

Application No. PA0033391

APS ID 618063

1221251

Authorization ID

Applicant Name	Pine Manor LLC	Facility Name	Pine Manor MHP
Applicant Address	PO Box 677	Facility Address	3857 E Harrisburg Pike
	Morgantown, PA 19543-0677		Middletown, PA 17057-4622
Applicant Contact	James Perano	Facility Contact	James Perano
Applicant Phone	(610) 286-0490	Facility Phone	(610) 286-0490
Client ID	257233	Site ID	245775
Ch 94 Load Status	Not Overloaded	Municipality	Londonderry Township
Connection Status		County	Dauphin
Date Application Rece	ived February 15, 2018	EPA Waived?	Yes
Date Application Acce	pted April 4, 2018	If No, Reason	

Summary of Review

1.0 General Discussion

This fact sheet supports the reissuance of an existing NPDES permit for a discharge of treated domestic sewage from an existing mobile home known as Pine Manor Mobile Home Park. Pine Manor LLC. owns the wastewater treatment plant that provides sanitary services for the mobile home park. The plant has a design capacity of 0.02 mgd, and discharges to an unnamed tributary of Lynch Run which is classified for Trout Stocking (TSF) and Migratory Fishes (MF). The existing NPDES permit was issued on September 24, 2013 with an effective date of October 1, 2013 and expiration date of September 30, 2018. The applicant submitted a timely permit renewal application to the Department and is currently operating under the terms and conditions in the existing permit under administrative extension provisions pending Department action on the renewal application. A topographic map showing the discharge location is presented in attachment A

1.1 Enforcement Actions

This facility and other facilities owned by the applicant and related parties are subject to a Consent Decree No. 12 5553, entered on January 30, 2013 in the matter of United States of America and Commonwealth of Pennsylvania v. GSP Management Co. The Consent Decree requires the permittee and related parties to conduct comprehensive environmental audits, identify areas of noncompliance and take corrective necessary to ensure permit compliance. The Consent Decree requires the permittee to self-report permit violations and noncompliance with the Consent Decree and pay stipulated penalty for permit violations and noncompliance with the Consent Decree. The permittee is in compliance with the Consent Decree and continue paying stipulated penalties for any permit violations and noncompliance that occur at the site.

Approve	Deny	Signatures	Date
X		J. Pascal Kwedza, P.E. / Environmental Engineer	October 24, 2019
		Daniel W. Martin, P.E. / Environmental Engineer Manager	
		Maria D. Bebenek, P.E. / Program Manager	

Summary of Review

1.2 Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

1.1 Changes to the existing Permit

- Semi-annual monitoring of Total Nitrogen, TKN and nitrate-Nitrite have been added
- TRC limit is more stringent

1.3 Existing Permit Limits and Monitoring Requirements

	MONITORING REQUIREMENTS							
	Mass Uni	ts (lbs/day)		Concentra				
Discharge	Average	Maximum	Inst.	Average	Maximum	Inst.	Monitoring	Sample
Parameter	Monthly	Daily	Minimum	Monthly	Daily	Maximum	Frequency	Type
	Monitor	Monitor						
Flow (mgd)	& Report	& Report	XXX	XXX	XXX	XXX	continuous	Measured
pH (S.U.)	XXX	XXX	6.0	XXX	XXX	9.0	1/day	Grab
D.O.	XXX	XXX	5.0	XXX	XXX	XXX	1/day	Grab
Total							•	
Residual Chlorine	XXX	XXX	XXX	0.47	XXX	1.55	1/day	Grab
Total								8-hour
Suspended Solids	XXX	XXX	XXX	25	XXX	50	2/month	comp
CBOD₅	XXX	XXX	XXX	30	XXX	60	2/month	8-hour comp
Fecal Coliform				30	7000	00	2/111011111	Comp
(5/1 to 9/30)	XXX	XXX	XXX	200	XXX	1,000	2/month	Grab
Fecal Coliform						,		
(10/1 to 4/30)	XXX	XXX	XXX	2,000	XXX	10,000	2/month	Grab
Ammonia								8-hour
Nov 1 - Apr 30	XXX	XXX	XXX	3.0	XXX	6.0	2/month	comp
Ammonia								8-hour
May 1 - Oct 31	XXX	XXX	XXX	9.0	XXX	18	2/month	comp
Total Phosphorus (lbs)	Report Total Mo	XXX	XXX	XXX	XXX	XXX	1/month	Calculation
				Report			1/yr	Calculation
Total Nitrogen	XXX	XXX	XXX	Anni Avg	XXX	XXX		
Nitrate-Nitrite as N	XXX	XXX	XXX	Report Annl Avg	XXX	xxx	1/yr	8-hour comp
Total Kjeldahl Nitrogen	XXX	XXX	XXX	Report Annl Avg	XXX	xxx	1/yr	8-hour comp
Total Phosphorus (lbs)	xxx	122 Total Annual	xxx	xxx	XXX	XXX	1/yr	Calculation

1.40Discharge, Receiving Waters and Water Sup	oply Information
Outfall No. 001	Design Flow (MGD)02
Latitude 40° 10' 52.32"	Longitude -76° 39' 52.37"
Quad Name <u>Middletown</u>	Quad Code 1732
Wastewater Description: Sewage Effluent	
Unnamed Tributary to Lync	h Dun
Receiving Waters (TSF, MF)	Stream Code 09235
NHD Com ID 56404777	RMI 0.44
Drainage Area 1.5	Yield (cfs/mi²) 0.0307
	USGS Gage Station
Q ₇₋₁₀ Flow (cfs) 0.0461	Q ₇₋₁₀ Basis <u>01573700</u>
Elevation (ft)	Slope (ft/ft)
Watershed No. 7-G	Chapter 93 Class. TSF, MF
Existing Use	Existing Use Qualifier
Exceptions to Use	Exceptions to Criteria
Assessment Status Impaired	
Cause(s) of Impairment Cause Unknown, Si	Itation, Turbidity
Source(s) of Impairment Agriculture, Other	
TMDL Status Final	Name Conewago Creek Watershed
Background/Ambient Data	Data Source
pH (SU)	
Temperature (°F)	
Hardness (mg/L)	
Other:	
Nearest Downstream Public Water Supply Intake	e Colombia Borough Water Company
PWS Waters Susquehanna River	Flow at Intake (cfs)
PWS RMI	Distance from Outfall (mi) 22.5
	Distance from Garan (iii) 22.3

Changes Since Last Permit Issuance:

Other Comments:

1.4.1 Water Supply Intake

The nearest downstream water supply intake is approximately 22.5 miles downstream by Columbia Borough Water Company on Susquehanna River in Columbia Borough, Lancaster County. No impact is expected from this discharge on the intake.

2.0 Treatment Facility	2.0 Treatment Facility Summary									
Treatment Facility Na	me: Pine Manor MHP									
WQM Permit No.	Issuance Date									
	Degree of			Avg Annual						
Waste Type	Treatment	Process Type	Disinfection	Flow (MGD)						
	Secondary with ammonia and			,						
Sewage	Phosphorus	Extended Aeration	Hypochlorite	0.02						
Hydraulic Capacity	Organic Capacity			Biosolids						
(MGD)	(lbs/day)	Load Status	Biosolids Treatment	Use/Disposal						
0.02		Not Overloaded		·						

Changes Since Last Permit Issuance:

Other Comments:

2.1 Treatment facility

The treatment plant consists of a comminutor, influent pump station, EQ tank, an aeration tank, a clarifier, plate settler, 2 sand filter units with mud well, chlorine contact tank, De-chlorination, 2 polishing tanks (2nd chlorine tank and de-chlorination tank), flow meter pit and a sludge holding tank.

2.2 Chemicals

Sodium Hypochlorite for disinfection Sodium Bisulfite for de-chlorination Poly Aluminum Chloride for Phosphorus removal Caustic Soda for pH adjustment

3.0 Compliance History

3.1 DMR Data for Outfall 001 (from August 1, 2018 to July 31, 2019)

Parameter	JUL-19	JUN-19	MAY-19	APR-19	MAR-19	FEB-19	JAN-19	DEC-18	NOV-18	OCT-18	SEP-18	AUG-18
Flow (MGD)												
Average Monthly	0.0183	0.0214	0.0229	0.0196	0.0232	0.0352	0.0349	0.0322	0.039	0.0207	0.0307	0.0231
Flow (MGD)												
Daily Maximum	0.0353	0.0318	0.0443	0.0346	0.0594	0.0694	0.0684	0.073	0.0642	0.0435	0.0768	0.0622
pH (S.U.)												
Minimum	7.2	7.33	7.02	7.6	7.04	7.3	7.31	7.0	7.3	7.3	7.4	7.2
pH (S.U.)												
Instant. Maximum	8.1	8.0	8.2	8.2	7.9	8.1	8.1	8.0	8.1	7.9	7.9	7.8
DO (mg/L)												
Minimum	6.05	5.37	5.29	6.49	6.37	8.05	7.44	7.47	7.55	5.45	5.14	5.32
TRC (mg/L)												
Average Monthly	< 0.03	< 0.03	< 0.03	< 0.02	< 0.05	< 0.04	< 0.03	< 0.04	< 0.05	< 0.04	< 0.04	< 0.02
TRC (mg/L)												
Inst. Maximum	0.11	0.11	0.13	0.10	0.14	0.12	0.15	0.15	0.14	0.12	0.13	0.09
CBOD5 (mg/L)	_											
Average Monthly	< 5	< 2.2	< 9.5	12.9	< 15.7	< 63.8	25.7	35.2	< 17.2	< 7.8	< 31.6	< 8
TSS (mg/L)	7.4	0.0	00.0	50.0	00.4	470.0	50.7	50	·	00.0	45.4	0.5
Average Monthly	< 7.4	< 6.6	39.9	58.2	< 23.1	172.8	< 52.7	53	< 57.4	< 29.8	< 45.1	< 25
Fecal Coliform												
(CFU/100 ml)	. 10	0	. 161	. 7		66	05	200	. 1107	. 200	2402	20
Geometric Mean	< 10	9	> 161	< 7	< 2	66	95	322	> 1107	> 286	3482	38
Fecal Coliform (CFU/100 ml)												
Inst. Maximum	8300	76	> 20000	5900	106	> 20000	204	> 20000	> 20000	> 20000	> 20000	> 20000
Nitrate-Nitrite (lbs/day)	6300	70	> 20000	5900	100	> 20000	204	> 20000	> 20000	> 20000	> 20000	> 20000
Annual Average								< 0.3				
Nitrate-Nitrite (mg/L)								< 0.5				
Annual Average								< 1				
Total Nitrogen								_ ` '				
(lbs/day)												
Annual Average								< 5				
Total Nitrogen (mg/L)												
Annual Average								< 15.4				
Total Nitrogen (lbs)												
Other Annual Final												
Effluent Total												
Annual								159				

NPDES Permit No. PA0033391

Ammonia (mg/L) Average Monthly	< 0.7	< 0.1	< 1.23	< 12.96	11.89	8.93	8.07	6.45	< 2.5	< 2.3	10.24	< 2.47
TKN (lbs/day) Annual Average								5				
TKN (mg/L) Annual Average								14.4				
Total Phosphorus (lbs/day) Ave. Monthly	0.09	< 0.06	0.2	0.2	0.08	0.7	0.2	< 0.2	0.3	0.1	0.3	0.2
Total Phosphorus (mg/L) Ave. Monthly	0.57	< 0.31	0.68	0.81	0.37	2.12	0.55	< 0.76	0.8	0.56	1.02	0.86
Total Phosphorus (lbs) Total Monthly	3	< 2	5	5	3	20	6	< 7	9	4	8	6
Total Phosphorus (lbs) Other Annual Final Effluent Annual								73				

3.2 Effluent Violations for Outfall 001, from: September 1, 2018 To: July 31, 2019

Parameter	Date	SBC	DMR Value	Units	Limit Value	Units
CBOD5	01/31/19	Avg Mo	25.7	mg/L	25	mg/L
CBOD5	01/31/19	Avg Mo	25.7	mg/L	25	mg/L
CBOD5	02/28/19	Avg Mo	< 63.8	mg/L	25	mg/L
CBOD5	09/30/18	Avg Mo	< 31.6	mg/L	25	mg/L
CBOD5	12/31/18	Avg Mo	35.2	mg/L	25	mg/L
TSS	11/30/18	Avg Mo	< 57.4	mg/L	30	mg/L
TSS	04/30/19	Avg Mo	58.2	mg/L	30	mg/L
TSS	05/31/19	Avg Mo	39.9	mg/L	30	mg/L
TSS	01/31/19	Avg Mo	< 52.7	mg/L	30	mg/L
TSS	12/31/18	Avg Mo	53	mg/L	30	mg/L

NPDES Permit No. PA0033391

TSS	02/28/19	Avg Mo	172.8	mg/L	30	mg/L
TSS	11/30/18	Avg Mo	< 57.4	mg/L	30	mg/L
TSS	09/30/18	Avg Mo	< 45.1	mg/L	30	mg/L
TSS	01/31/19	Avg Mo	< 52.7	mg/L	30	mg/L
Fecal Coliform	09/30/18	Geo Mean	3482	CFU/100 ml	200	CFU/100 ml
Fecal Coliform	11/30/18	IMAX	> 20000	CFU/100 ml	10000	CFU/100 ml
Fecal Coliform	05/31/19	IMAX	> 20000	CFU/100 ml	1000	CFU/100 ml
Fecal Coliform	12/31/18	IMAX	> 20000	CFU/100 ml	10000	CFU/100 ml
Fecal Coliform	02/28/19	IMAX	> 20000	CFU/100 ml	10000	CFU/100 ml
Fecal Coliform	11/30/18	IMAX	> 20000	CFU/100 ml	10000	CFU/100 ml
Fecal Coliform	10/31/18	IMAX	> 20000	CFU/100 ml	10000	CFU/100 ml
Fecal Coliform	07/31/19	IMAX	8300	CFU/100 ml	1000	CFU/100 ml
Fecal Coliform	09/30/18	IMAX	> 20000	CFU/100 ml	1000	CFU/100 ml
Ammonia	09/30/18	Avg Mo	10.24	mg/L	3.0	mg/L
Ammonia	03/31/19	Avg Mo	11.89	mg/L	9.0	mg/L
Ammonia	04/30/19	Avg Mo	< 12.96	mg/L	9.0	mg/L
Total Phosphorus	02/28/19	Avg Mo	2.12	mg/L	2.0	mg/L

Discharge Monitoring Reports (DMRs) review for the facility for the last 12 months of operation presented on table 3.1 above indicates numerous permit limits exceedances. CBOD5, TSS, Ammonia, Total Phosphorus and Fecal Coliform limit violations noted on DMRs during for the period reviewed are presented on table 3.2. Stipulated penalty for these violations has been paid in accordance to the Consent Decree. The violations are being addressed in accordance with the requirements of the Consent Decree. The following paragraph will be added to the cover letter of the draft permit asking the permittee to address violations.

[&]quot;According to DEP's records, there are unresolved violation(s) at one or more facilities you own or operate. In accordance with DEP's Clean Water Program standard operating procedures, an applicant's compliance history is considered prior to making a final decision on any permit application. Please take the opportunity to address these violations during this draft comment period. DEP may not be able to issue a final permit until the violation(s) are resolved"

NPDES Permit Fact Sheet Pine Manor MHP

NPDES Permit No. PA0033391

The violations appear to be operation related, if structural adjustment to the treatment unit is required to address the violations, the facility will be required to submit a corrective action plan to the Department for approval.

3.3 Summary of Inspections:

The facility was inspected 10 times during the past permit cycle. Other than operations and maintenance issues documented during inspections, no effluent violations were noted during inspections. The reports identified a series of operation and maintenance needed and made recommendations to the permittee to address them. The permittee has been conducting routine maintenance to address maintenance concerns of the Department.

4.0 Developm	4.0 Development of Effluent Limitations							
Outfall No.	001	Design Flow (MGD)	.02					
Latitude	40° 10' 52.00"	Longitude	-76° 39' 53.00"					
Wastewater D	escription: Sewage Effluent	_						

4.1 Basis for Effluent Limitations

In general, the Clean Water Act(AWA) requires that the effluent limits for a particular pollutant be the more stringent of either technology-based limits or water quality-based limits. Technology-based limits are set according to the level of treatment that is achievable using available technology. A water quality-based effluent limit is designed to ensure that the water quality standards applicable to a waterbody are being met and may be more stringent than technology-based effluent limits.

4.1.1 Technology-Based Limitations

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Pollutant	Limit (mg/l)	SBC	Federal Regulation	State Regulation
CBOD ₅	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
	40	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)
Total Suspended	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
Solids	45	Average Weekly	133.102(b)(2)	92a.47(a)(2)
pН	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform				
(5/1 – 9/30)	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
Fecal Coliform				
(5/1 – 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform				
(10/1 - 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
Fecal Coliform				
(10/1 – 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)
Total Residual Chlorine	0.5	Average Monthly	-	92a.48(b)(2)

Comments: Weekly averages for TSS and CBOD₅ are not applicable to this permit

4.2 Water Quality-Based Limitations

4.2.1 Streamflows

Streamflows for the water quality analysis were determined by correlating with the yield of USGS gauging station No 01573700 on Conewago Creek at Bellair. The Q_{7-10} and drainage area at the gage is 0.6376ft3/s and 20.8 mi² respectively Q_{30-10} , will be calculated by 1.36 x Q_{7-10} . and Q_{1-10} will be calculated using 0.64 x Q_{7-10} , which were derived the Department in the NH₃ Implementation Guidance. The resulting yields are as follows:

- $Q_{7-10} = (0.6376ft^3/s)/20 \text{ mi}^2 = 0.0307ft^3/s/ \text{ mi}^2$
- $Q_{30-10} / Q_{7-10} = 1.36$
- \bullet Q₁₋₁₀ / Q₇₋₁₀ = 0.64

The drainage area at the discharge point calculated by Streamstats = 1.5 mi^2 . The design streamflow (Q₇₋₁₀) at the discharge = $0.0307 \times 1.5 = 0.046 \text{cfs}$

4.2.3 NH₃N Calculations

<u>P</u>ine Manor MHP is located in the same basin as Cedar Manor MHP and discharges to an adjacent tributary to Conewago Creek. The same stream characteristics will be used for modeling.

 NH_3N calculations will be based on the Department's Implementation Guidance of Section 93.7 Ammonia Criteria, dated 11/4/97 (ID No. 391-2000-013). The following data is necessary to determine the instream NH_3N criteria used in the attached computer model of the stream:

• STP pH = 7.2 (DMR Median July -Sept)

• STP Temperature = 20 ° C (default)

Stream pH = 7.8 (from WQN station from surrounding streams)

Stream Temperature = 20 ° C (from WQN station form surrounding streams & TSF classification F)

Background NH₃-N = 0.0 (default)
 Design flow = 0.02MGD

4.2.4 CBOD₅:

The attached result of WQM 7.0 stream model (attachment B) indicates that, for a discharge of 0.020MGD, from Pine Manor STP, a limitation of 25 mg/l CBOD $_5$ as a monthly average limit (AML) and 50 mg/l as instantaneous maximum (IMAX) is adequate to protect the water quality of the stream. This limit is consistent with the existing permit and the STP has been complying with this limitation. Therefore, a limit of 25mg/l AML, and 50 mg/l IMAX is again recommended for this permit cycle.

4.2.5 NH₃-N:

The attached result of WQM 7.0 stream model (attachment B) also indicates that a summer limitation of 4.37mg/l NH₃-N as a monthly average is necessary to protect the aquatic life from toxicity effects. However, the existing monthly average summer limit of 3.0 mg/l lis more stringent than the recommended limits and will remain in the permit due to anti-backsliding restrictions. Limit for winter months is 3 times the limit for summer months. (9.0 mg/l) The permittee has been complying with the limitation.

4.2.6 Dissolved Oxygen

The existing permit contains a limit of 5 mg/l for Dissolved Oxygen (DO). DEP's Technical Guidance for the Development and Specification of Effluent Limitations (362-0400-001, 10/97) suggests that either the adopted minimum stream D.O. criteria for the receiving stream or the effluent level determined through water quality modeling be used for the limit. Since the WQM 7.0 model was run using a minimum D.O. of 5.0 mg/l, this limit will be continued in the renewed permit with a daily monitoring requirement per DEP guidance.

4.2.7 Total Suspended Solids(TSS):

There is no water quality criterion for TSS. A limit of 30 mg/l AML will be required based on the minimum level of effluent quality attainable by secondary treatment as defined in 40 CFR 133.102b(1) and 25 PA § 92a.47(a)(1)

4.2.8 Total Residual Chlorine

The attached TRC calculation results utilizes the equations and calculations as presented in the Department's May 1, 2003 Implementation Guidance for Total Residual Chlorine (TRC) (ID No. 391-2000-015) for developing chlorine limitations. The results presented in attachment C indicates that a water quality limit of 0.22 mg/l monthly average and IMAX of 0.74 mg/l would be needed to prevent toxicity concerns. The recommended limitation is more stringent than the existing permit limit but DMR and inspection reports indicate the facility can meet the recommended limitation.

4.2.9 Phosphorus & TMDL

The existing permit limit of 2mg/l based on the Department's Implementation Guidance for Phosphorus Discharges to Free-Flowing Streams (ID #391-2000-018) will remain in the permit due anti-backsliding restrictions. A TMDL was developed for

Conewago Creek Basin dated March 2, 2001 and revised on June 27, 2006. The TMDL set phosphorus limitations for Pine Manor based on 2.0 mg/l and design flow of 0.02MGD resulting in a total load of 122 lbs/yr. Pine Manor has been complying with the annual load limit. See details on the TMDL in 303d listed stream section 5.6 of the report.

4.2.10 Chesapeake Bay Strategy:

The Department formulated a strategy in April 2007, to comply with the EPA and Chesapeake Bay Foundation requirements to reduce point source loadings of Total Nitrogen (TN) and Total Phosphorus (TP) to the Bay. In the Strategy, sewage dischargers have been prioritized by Central Office based on their delivered TN loadings to the Bay. The highest priority (Phases 1, 2, and 3) dischargers will receive annual loading caps based on their design flow on August 29, 2005 and concentrations of 6 mg/l TN and 0.8 mg/l TP. Phase 4 (0.2 -0.4mgd) and Phase 5(below 0.2mdg) will be required to monitor and report TN and TP during permit renewal at a monitoring frequency following Table 6-3 of DEP's Technical Guidance for Development and Specification of effluent Limitations (No. 362-0400-001). Any facility in Phases 4 and 5 that undergoes expansion is subjected to cap load right away.

EPA published the Chesapeake Bay Total Maximum Daily Load (TMDL) in December of 2010. Despite extensive restoration efforts during the past 25 years, the TMDL was prompted by insufficient progress and continued poor water quality in the Chesapeake Bay and its tidal tributaries.

In order to address the TMDL, Pennsylvania developed in addition to the Bay Strategy, a Chesapeake Watershed Implementation Plan (WIP) Phase 1 in January 2011 and Phase 2 in March 2012. In accordance with the Phase 2 WIP and its supplement, re-issuing permits for significant dischargers follow the same phased approach formulated in the original Bay strategy, whilst Phase 4 and Phase 5 will be required to monitor and report TN and TP during permit renewal. This facility is, classified as a phase 5, has been monitoring Nitrate-Nitrite as N, Total Kjeldahl Nitrogen and Total Nitrogen and will be required to monitor Nitrate-Nitrite as N, Total Kjeldahl Nitrogen and Total Nitrogen semi-annually throughout the next permit cycle collect adequate data. Total Phosphorus monitoring is not required due to limitation on Total Phosphorus.

5.0 Other Requirements

5.1 Anti-backsliding

Not applicable to this permit

5.2 Stormwater:

No storm water outfall is associated with this facility

5.3 Biosolids Management

Sludge is hold up in a sludge holding tank and hauled out by a licensed hauler periodically.

5.4 Anti-Degradation (93.4)

The effluent limits for this discharge have been developed to ensure that existing instream water uses and the level of water quality necessary to protect the existing uses are maintained and protected. No High Quality Waters are impacted by this discharge. No Exceptional Value Waters are impacted by this discharge.

5.5 Class A Wild Trout Fisheries

No Class A Wild Trout Fisheries are impacted by this discharge.

5.6 303d Listed Streams:

The discharge is located on a 303d listed stream segment as impaired for aquatic life due to Turbidity and Siltation from agricultural activities. Portions of the watershed is impaired due to TSS, organic enrichment and low D.O from Municipal sources and the downstream stream Conewago Creek is listed for nutrients and siltation from agricultural sources. A TMDL was completed for the Conewago Watershed (Watershed B) on March 2, 2001 and revised in 2006. The TMDL allocates a Total Phosphorus load of 122 lbs/year based on an effluent concentration of 2.0 mg/l and design flow of

0.02 MGD. The 2006 TMDL revision also incorporated other point dischargers that had been totally omitted in 2001. The stream's total loading did not increase. The revision allocated additional loading to the point sources by partially transferring loads from the Margin of Safety and other nonpoint sources. The facility is currently in compliance with the loading requirement.

5.7 Basis for Effluent and Surface Water Monitoring

Section 308 of the CWA and federal regulation 40 CFR 122.44(i) require monitoring in permits to determine compliance with effluent limitations. Monitoring may also be required to gather effluent and surface water data to determine if additional effluent limitations are required and/or to monitor effluent impacts on receiving water quality. The permittee is responsible for conducting the monitoring and for reporting results on Discharge Monitoring Reports (DMRs).

5.8 Effluent Monitoring

Monitoring frequencies are based on the nature and effect of the pollutant, as well as a determination of the minimum sampling necessary to adequately monitor the facility's performance. Permittees have the option of taking more frequent samples than are required under the permit. These samples can be used for averaging if they are conducted using EPA-approved test methods (generally found in 40 CFR 136) and if the Method Detection Limits are less than the effluent limits. The sampling location must be after the last treatment unit and prior to discharge to the receiving water. If no discharge occurs during the reporting period, "no discharge" shall be reported on the DMR.

7.0 Proposed Effluent Limitations and Monitoring Requirements

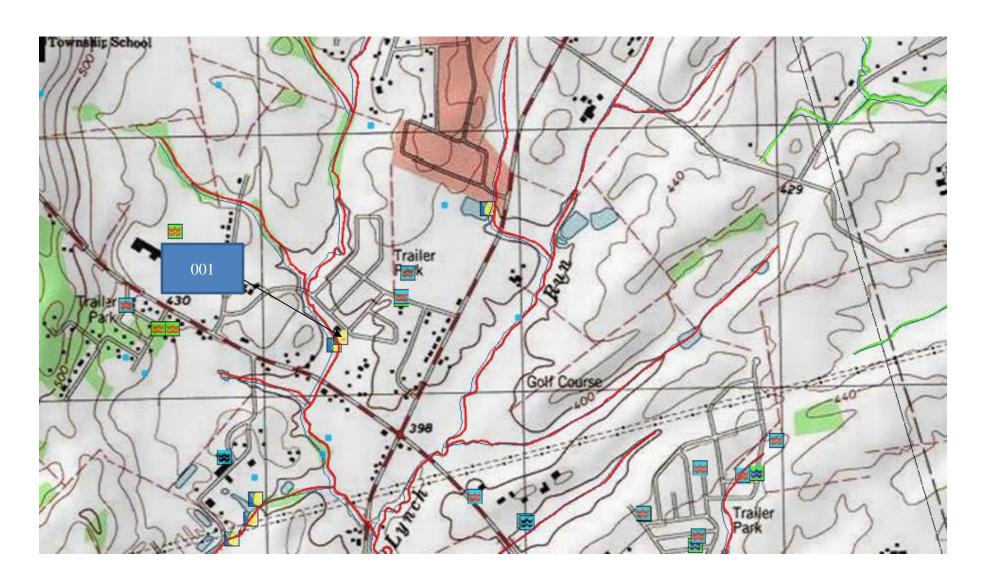
The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

			Effluent L	imitations			Monitoring Re	quirements
Parameter	Mass Unit	s (lbs/day) ⁽¹⁾		Concentrat	ions (mg/L)		Minimum (2)	Required
Parameter	Average Monthly	Average Weekly	Minimum	Average Monthly	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report Daily Max	XXX	XXX	XXX	XXX	Continuous	Measured
pH (S.U.)	XXX	XXX	6.0 Daily Min	XXX	9.0 Daily Max	XXX	1/day	Grab
DO	XXX	XXX	5.0 Daily Min	XXX	XXX	XXX	1/day	Grab
TRC	XXX	XXX	XXX	0.22	XXX	0.74	1/day	Grab
CBOD5	XXX	XXX	XXX	25	XXX	50	2/month	8-Hr Composite
TSS	XXX	XXX	XXX	30	XXX	60	2/month	8-Hr Composite
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	XXX	XXX	XXX	2,000 Geo Mean	XXX	10,000	2/month	Grab
Fecal Coliform (No./100 ml) May 1 - Sep 30	XXX	XXX	XXX	200 Geo Mean	XXX	1,000	2/month	Grab
Nitrate-Nitrite	XXX	XXX	XXX	XXX	Report Daily Max	XXX	1/6 months	8-Hr Composite
Total Nitrogen	XXX	XXX	XXX	XXX	Report Daily Max	XXX	1/6 months	Calculation
Total Nitrogen (lbs)	XXX	Report Total Annual	XXX	XXX	XXX	XXX	1/year	Calculation
Ammonia Nov 1 - Apr 30	XXX	XXX	XXX	9.0	XXX	18	2/month	8-Hr Composite
Ammonia May 1 - Oct 31	XXX	XXX	XXX	3.0	XXX	6	2/month	8-Hr Composite

Outfall 001, Continued (from Permit Effective Date through Permit Expiration Date)

			Effluent L	imitations			Monitoring Red	quirements
Parameter	Mass Units	s (lbs/day) ⁽¹⁾		Concentra	Minimum (2)	Required		
Farameter	Average	Average	Minimum	Average	Massimo	Instant.	Measurement	Sample
	Monthly	Weekly	winimum	Monthly	Maximum	Maximum	Frequency	Туре
					Report			8-Hr
TKN	XXX	XXX	XXX	XXX	Daily Max	XXX	1/6 months	Composite
								8-Hr
Total Phosphorus	Report	XXX	XXX	2.0	XXX	4	2/month	Composite
	Report							
Total Phosphorus (lbs)	Total Mo	XXX	XXX	XXX	XXX	XXX	1/month	Calculation
		122						
Total Phosphorus (lbs)	XXX	Total Annual	XXX	XXX	XXX	XXX	1/year	Calculation


Compliance Sampling Location: At Outfall 001

,

8.0 Tools	and References Used to Develop Permit
	WQM for Windows Model (see Attachment B)
<u> <u> </u></u>	PENTOXSD for Windows Model (see Attachment)
	TRC Model Spreadsheet (see Attachment C)
	Temperature Model Spreadsheet (see Attachment)
	Water Quality Toxics Management Strategy, 361-0100-003, 4/06.
\boxtimes	Technical Guidance for the Development and Specification of Effluent Limitations, 362-0400-001, 10/97.
	Policy for Permitting Surface Water Diversions, 362-2000-003, 3/98.
	Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 362-2000-008, 11/96.
	Technology-Based Control Requirements for Water Treatment Plant Wastes, 362-2183-003, 10/97.
	Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 362-2183-004, 12/97.
	Pennsylvania CSO Policy, 385-2000-011, 9/08.
	Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03.
	Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 391-2000-002, 4/97.
	Determining Water Quality-Based Effluent Limits, 391-2000-003, 12/97.
	Implementation Guidance Design Conditions, 391-2000-006, 9/97.
\boxtimes	Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen, Version 1.0, 391-2000-007, 6/2004.
	Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 391-2000-008, 10/1997.
	Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments, 391-2000-010, 3/99.
	Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 391-2000-011, 5/2004.
	Implementation Guidance for Section 93.7 Ammonia Criteria, 391-2000-013, 11/97.
	Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 391-2000-014, 4/2008.
	Implementation Guidance Total Residual Chlorine (TRC) Regulation, 391-2000-015, 11/1994.
	Implementation Guidance for Temperature Criteria, 391-2000-017, 4/09.
	Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 391-2000-018, 10/97.
	Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 391-2000-019, 10/97.
	Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 391-2000-021, 3/99.
	Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 391-2000-022, 3/1999.
	Design Stream Flows, 391-2000-023, 9/98.
	Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 391-2000-024, 10/98.
	Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 391-3200-013, 6/97.
	Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07.
	Other: SOP Establishing Effluent Limitations for Individual Sewage Permits
$\overline{\boxtimes}$	Other: SOP New and Reissuance Sewage Individual NPDES Permit Application

9. Attachments

A. Topographical Map

B. WQM Model Results

WQM 7.0 Effluent Limits

07G 9	235		Trib 09235 to Lync	h Run		
Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	
Pine Minor MHP	PA0033391	0.020	CBOD5	25		
			NH3-N	4.37	8.74	
			Dissolved Oxygen			5
	Name	Name Permit Number	Disc Name Permit Flow Number (mgd)	Name Permit Flow Parameter (mgd) Pine Minor MHP PA0033391 0.020 CBOD5 NH3-N	Name Permit Number Disc Flow (mgd) Parameter Effl. Limit 30-day Ave. (mg/L) Pine Minor MHP PA0033391 0.020 CBOD5 25 NH3-N 4.37	Name Permit Number Disc Flow (mgd) Parameter Effl. Limit 30-day Ave. (mg/L) Effl. Limit Maximum (mg/L) Pine Minor MHP PA0033391 0.020 CBOD5 25 NH3-N 4.37 8.74

Input Data WQM 7.0

					ınp	ui Date	A AACKIA	11 7.0						
	SWP Basir			Stro	eam Name		RMI		/ation ft)	Drainage Area (sq mi)	Slop (ft/fi	With	NS drawal igd)	Apply FC
	07G	92	235 Trib 09	9235 to Ly	nch Run		0.44	\$ 0	389.00	1.51	0.00	000	0.00	V
					St	ream Dat	a			The state of the s				
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	<u>Tributary</u> ip pH		<u>Strea</u> Temp	m Hq	
Cond.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)	•	(°C)		
27-10 21-10 230-10	0.031	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000 0.000 0.000	0.0	0.00	0.00) 2	0.00 7.	80	0.00	0.00	
				•	Di	scharge I	Data						1	
		<i>:</i>	Name	Per	mit Number	Disc	Permitte Disc Flow (mgd)	Disc Flow	Res v Fa	Disperve Ter	np	Disc pH		
		Pine I	Minor MHP	PAG	0033391	0.0200	0.020	0 0.02	200 (0.000	20.00	7.20		
•					Pa	ırameter I	Data		•					
	-		F	Paramete	r Name	Di Ce			Stream Conc	Fate Coef				
						` (m	g/L) (m	ng/L) ((mg/L)	(1/days)				
			CBOD5			:	25.00	2.00	0.00	1.50		_		
			Dissolved	Oxygen			5.00	8.24	0.00	0.00				
			NH3-N			2	25.00	0.00	0.00	0.70				

Permit No. PA0033391

Input Data WQM 7.0

	SWF Basi			Stre	eam Name		RMI	Ele	evation (ft)	Draina Area (sq n	a	Slope (ft/ft)	PW Withd (mg	rawal	Apply FC
	07G	9:	235 Trib 09	9235 to Ly	rnch Run		0.1	10	388.00		2.02 0	.00000		0.00	V
					St	ream Dat	a								
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	n Tem	Tributa 1p	ary pH	Tem	Strean p	<u>n</u> pH	
Conu.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C	;)		(°C)		
Q7-10 Q1-10 Q30-10	0.031	0.00 0.00 0 _. 00	0.00	0.000 0.000 0.000	0.000 0.000 0.000	0.0	0.00	0.	00 2	0.00	7.80	-	0.00	0.00	
		•			Di	scharge	Data								
			Name	Per	mit Numbei	Disc	Permitt Disc Flow (mgd	Di Fl	sc Res	serve actor	Disc Temp (°C)		sc h		
		Lond	onderry 13	PA	00000	0.029	0 0.02	90 0.	0290	0.000	20.0	00	7.00		
			-		Pa	rameter	Data								
			j	Paramete	r Name			Trib Conc	Stream Conc	Fate Coe					
						(m	ng/L) (i	mg/L)	(mg/L)	(1/day	ys)	-			
			CBOD5				25.00	2.00	0.00) 1	.50				
			Dissolved	Oxygen			5.00	8.24	0.00	0	.00				
			NH3-N				25.00	0.00	0.00) 0	.70				

WQM 7.0 Hydrodynamic Outputs

	<u>sw</u>	P Basin	Strea	ım Code				Stream	<u>Name</u>			
		07G	9	9235			Trib (9235 to	Lynch R	un		
RMI	Stream Flow (cfs)	PWS With (cfs)	Net Stream Flow (cfs)	Disc Analysis Flow (cfs)	Reach Slope (ft/ft)	Depth (ft)	Width (ft)	W/D Ratio	Velocity (fps)	Reach Trav Time (days)	Analysis Temp (°C)	Analysis pH
Q7-1	0 Flow											
0.440	0.05	0.00	0.05	.0309	0.00057	.365	5.55	15.2	0.04	0.526	20.00	7.46
Q1-1	0 Flow											
0.440	0.03	0.00	0.03	.0309	0.00057	NA	NA	NA	0.03	0.603	20.00	7.40
Q30-	10 Flow	,										
0.440	0.06	0.00	0.06	.0309	0.00057	NA	NA	NA	0.04	0.471	20.00	7.50

Permit No. PA0033391

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	V
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.64	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.36	Temperature Adjust Kr	✓
D.O. Saturation	90.00%	Use Balanced Technology	V
D.O. Goal	5		

WQM 7.0 Wasteload Allocations

3	STREET	am Code		<u>5tr</u>	eam Name		
	07G	9235		Trib 092	35 to Lynch F	Run	
NH3-N A	cute Allocation	ıs					
RMI	Discharge Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
0.440	Pine Minor MHP	6.65	13.09	6.65	13.09	0	0

NH3-N Chronic Allocations

RMI	Discharge Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
0.440	Pine Minor MHP	1.43	4.37	1.43	4.37	0	0

Dissolved Oxygen Allocations

		<u>CBC</u>	DD <u>5</u>	<u>NH</u>	<u>3-N</u>	Dissolved	l Oxygen	Critical	Percent
RMI	Discharge Name	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple (mg/L)	Reach	Reduction
0.44 F	Pine Minor MHP	25	25	4.37	4.37	5	5	0	0

WQM 7.0 D.O.Simulation

SWP Basin Str	eam Code				
07G	9235		Trib	09235 to Lynch Rui	n
<u>RMI</u>	Total Discharge	Flow (mgd) Ana	lysis Temperature (º(C) Analysis pH
0.440	0.020)		7.460	
Reach Width (ft)	Reach Dep	oth (ft)		Reach Velocity (fps)	
5.551	0.365	5		0.038	
Reach CBOD5 (mg/L)	Reach Kc (1/days)	E	Reach Kn (1/days)	
11.15	1.268			0.700	
Reach DO (mg/L)	Reach Kr (I/days)		Kr Equation	Reach DO Goal (mg/L)
6.952	15.73	7		Owens	5
Reach Travel Time (days)		Subreach	Results		
0.526	TravTime	CBOD5	NH3-N	D.O.	
	(days)	(mg/L)	(mg/L)	(mg/L)	
	0.053	10.43	1.68	7.27	
	0.105	9.76	1.62	7.46	
	0.158	9.13	1.56	7.60	
	0.210	8.54	1.50	7.70	
	0.263	7.99	1.45	7.79	
	0.315	7.48	1.40	7.88	
	0.368	6.99	1.34	7.95	
	0.421	6.54	1.30	8.02	
	0.473	6.12	1.25	8.09	
	0.526	5.73	1.20	8.15	

Permit No. PA0033391

C. TRC Calculations

Copy of TRC_CALC1

TRC EVALU	ATION							
Input appropri	ate values in .	A3:A9 and D3:D9		**				
0.040	6 = Q stream (cfs)	0.5	= CV Daily				
0.0	2 = Q discharg	je (MGD)	0.5	= CV Hourly				
30	0 = no. sample	es	1	1 = AFC_Partial Mix Factor				
0.3	3 = Chlorine D	emand of Stream	1	= CFC_Partial f	lix Factor			
	= Chiorine D	emand of Discharge	15	= AFC_Criteria	Compliance Time (min)			
0.9	= BAT/BPJ V	/alue	720	= CFC_Criteria	Compliance Time (min)			
	= % Factor	of Safety (FOS)	0	=Decay Coeffic	eient (K)			
Source	Reference	AFC Calculations		Reference	CFC Calculations			
TRC	1.3.2.iii	WLA afc =	0.493	1.3.2.iii	WLA cfc = 0.473			
PENTOXSD TRG	5.1a	LTAMULT afc =	0.373	5.1c	LTAMULT cfc = 0.581			
PENTOXSD TRG	5.1b	LTA_afc=	0.184	5.1d	LTA_cfc = 0.275			
Source		Efflue	nt Limit Calcu	lations				
PENTOXSD TRG	5.1f		AML MULT =	1.231				
PENTOXSD TRG	5.1g		LIMIT (mg/l) =		AFC			
		INST MAX	LIMIT (mg/l) =	0.740				
WLA afc		FC_tc)) + [(AFC_Yc*Qs*.019 C_Yc*Qs*Xs/Qd)]*(1-FOS/10		C_tc))				
LTAMULT afc	EXP((0.5*LN	(cvh^2+1))-2.326*LN(cvh^2	r1)^0.5)					
LTA_afc	wla_afc*LTA	MULT_afc						
WLA_cfc	• •	FC_tc) + [(CFC_Yc*Qs*.011/ C_Yc*Qs*Xs/Qd)]*(1-FOS/10	•	_tc))				
LTAMULT_cfc	EXP((0.5*LN	(cvd^2/no_samples+1))-2.32	6*LN(cvd^2/n	io_samples+1)^(0.5)			
LTA_cfc	wla_cfc*LTA	MULT_cfc						
			E) 0 E*I N/ava	1401	(4))			
AML MULT	EXP(2.326*L	N((cvd^2/no_samples+1)^0.	5)-0.5"LN(CV0	r~z/no_samples	-1 <i>))</i>			
AML MULT AVG MON LIMIT	•	N((cvd^2/no_samples+1)^0. J,MIN(LTA_afc,LTA_cfc)*A <mark>l</mark>	,	r^z/no_samples	r1))			