

Application Type	Renewal
	Non-
Facility Type	Municipal
Major / Minor	Minor

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

Application No.	PA0034185
APS ID	692814
Authorization ID	1297917

Applicant and Facility Information

Applicant Name	High N	leadows MHP	Facility Name	High Meadows MHP STP
Applicant Address	4751 K	endor Drive	Facility Address	219 Leewood Drive
	Lower	Burrell, PA 15068		Lower Burrell, PA 15068
Applicant Contact	Dean H	lurlbut	Facility Contact	Same as Applicant
Applicant Phone	(724) 2	26-2159	Facility Phone	Same as Applicant
Client ID	45175		Site ID	244136
Ch 94 Load Status	Not Overloaded		Municipality	Allegheny Township
Connection Status			County	Westmoreland
Date Application Recei	ved	December 4, 2019	EPA Waived?	Yes
Date Application Accept	oted	December 5, 2019	If No, Reason	
Purpose of Application		Application for a renewal of a	n existing NPDES permit for	the discharge of treated Sewage.

Summary of Review

The applicant has applied for a renewal of NPDES Permit No. PA0034185, which was previously issued by the Department on June 25, 2015. That permit expires on June 30, 2020. The applicant has complied with Act 14 Notifications, and no comments were received.

WQM Permit No. 6569433 A-2 was issued on 05/24/2004. The treatment plant is rated at an annual average design flow of 0.026 MGD and designed to serve 106 housing units. The treatment process consists of flow equalization, primary settling, rotating biological contactors, final clarification, and ultraviolet disinfection. A tablet chlorinator is available as a backup to the UV disinfection system.

The previous permit stated the Point of First Use was the Allegheny River, according to the site survey conducted on January 17, 1989. And the secondary limitations were imposed on the discharge be evaluated at the Allegheny River. However, the eMapPA shows that the STP discharge flows into a Tributary 42546 to the Allegheny River.

On February 3, 2020, a Point of First Surface Water Use (POFU) survey in the vicinity of the STP outfall was conducted by Jamie Detweiler and Richard Spear, the Aquatic Biologists of Clean Water Program. The study identified that Tributary 42546 to Allegheny River is capable of supporting an Aquatic Life Use as defined in 25 Pennsylvania Code §93.9q, where water quality standards must be met.

Findings from the POFU study suggest that effluent limitations in the renewal NPDES permit should be based on discharging to Tributary 42546 to Allegheny River rather than the Allegheny River. A copy of the POFU memo is attached.

Approve	Deny	Signatures	Date
х		Curtis Holes	
		Curtis Holes, P.E. / Environmental Engineering Specialist	October 14, 2020
х		Donald Leone	
		Donald J. Leone, P.E. / Environmental Engineer Manager	October 15, 2020

Summary of Review

The receiving stream, the Tributary 42546 to Allegheny River, is classified as a Warm Water Fishery (WWF) located in the Lower Allegheny River State Watershed No.18-A.

To establish the renewal effluent limitations, the Water Quality Based Effluent Limitations (WQBEL) are compared to the minimum technology-based and BPJ standards for individual sewage permits. The most stringent of those limitations are imposed on the renewal permit as per the SOP-Establishing Effluent Limitations for Individual Sewage Permits.

WQM 7.0 and TRC spreadsheet modeling results are enclosed.

It is recommended that a draft permit be published for public comment in response to this application.

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Discharge, Receiving	Discharge, Receiving Waters and Water Supply Information							
Outfall No. 001		Design Flow (MGD)	0.026					
Latitude 40° 3	7' 24"	Longitude	-79º 41' 41"					
Quad Name Ne	w Kensington East	Quad Code						
Wastewater Descrip	otion: Sewage Effluent							
Receiving Waters	Tributary 42546 to Allegheny River	Stream Code	42546					
NHD Com ID	123972443	RMI	0.91					
Drainage Area	0.0671	_ Yield (cfs/mi ²)	0.0042					
Q ₇₋₁₀ Flow (cfs)	0.000279	Q7-10 Basis	USGS StreamStats					
Elevation (ft)	1023	Slope (ft/ft)	0.064					
Watershed No.	18-A	Chapter 93 Class.	WWF					
Existing Use		Existing Use Qualifier						
Exceptions to Use		Exceptions to Criteria						
Nearest Downstrea	m Public Water Supply Intake	Harrison Township Water Auth	nority (4.0 MGD)					
PWS Waters	Allegheny River	Flow at Intake (cfs)	6.20					
PWS RMI	Approximately 25.5	Distance from Outfall (mi)	Approximately 1.5 (opposite side of Allegheny River)					

Changes Since Last Permit Issuance:

According to the result of the Point of First Use survey, receiving waters have been identified as Tributary 42546 to Allegheny River, rather than Allegheny River stated in the previous permit.

Treatment Facility Summary						
Treatment Facility Na	me: High Meadows MHP :	STP				
WQM Permit No.	Issuance Date					
6569433 A-2	05/24/2004					
6569433	12/09/1969					
	Degree of			Avg Annual		
Waste Type	Treatment	Process Type	Disinfection	Flow (MGD)		
Sewage	Secondary	RBC	UV and Chlorine	0.026		
Hydraulic Capacity	Organic Capacity			Biosolids		
(MGD)	(lbs/day)	Load Status	Biosolids Treatment	Use/Disposal		
0.026		Not Overloaded	Holding Tank	Landfill		

Changes Since Last Permit Issuance: None

Compliance History

Operations Compliance Check Summary Report

Facility: High Meadows STP

NPDES Permit No.: PA0034185

Compliance Review Period: 2/2015 – 2/2020

Inspection Summary:

Facility inspected on 2/11/2020. Effluent exceedances noted and will be tracked for any future exceedances.

Violation Summary:

Violation noted and resolved on 2/2020

Open Violations by Client ID:

No open violations for Client ID 66321

Enforcement Summary:

No enforcements in the last 5 years

DMR Violation Summary:

DMR exceedances from 1/1/2019 to present

January CBOD (avg&inst) TSS (avg)

March CBOD (avg)

April CBOD (avg), TSS (avg), Fecal

May CBOD (avg&inst) and fecal.

August CBOD (avg)

Facility started reporting via eDMR in June 2019.

Compliance Status:

Facility is in compliance.

Completed by: John Murphy

Completed date: 2/21/2020

Development of Effluent Limitations

Outfall No.	001		Design Flow (MGD)	0.026
Latitude	40º 37' 24"		Longitude	-79º 41' 41"
Wastewater D	Description:	Treated Sewage Effluent		

Technology-Based Limitations

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Pollutant	Limit (mg/L)	SBC	Federal Regulation	State Regulation
	25.0	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
CBOD5	40.0	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)
	30.0	Average Monthly	133.102(b)(1)	92a.47(a)(1)
Total Suspended Solids	45.0	Average Weekly	133.102(b)(2)	92a.47(a)(2)
рН	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
(5/1 – 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
(10/1 – 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)
Total Residual Chlorine	0.5	Average Monthly	-	92a.48(b)(2)

Water Quality-Based Limitations

The following limitations were determined through water quality modeling (output files attached):

Parameter	Limit (mg/L)	SBC	Model
Ammonia Nitrogen	2.0	Average Monthly	WQM 7.0 Version 1.0
(May 1 to Oct 31)	4.0	IMAX	WQM 7.0 Version 1.0
Ammonia Nitrogen	3.0	Average Monthly	WQM 7.0 Version 1.0
(Nov 1 - Apr 30)	6.0	IMAX	WQM 7.0 Version 1.0
Dissolved Oxygen	5.0	Minimum	WQM 7.0 Version 1.0
Total Residual Chlorine	0.01	Average Monthly	TRC_CALC
Total Residual Chlorine	0.03	IMAX	TRC_CALC

Comments:

The proposed discharge was evaluated using WQM 7.0 to evaluate the CBOD₅, Ammonia Nitrogen, and Dissolved Oxygen parameters. The modeling results show technology-based effluent limitations for CBOD₅ are appropriate. The modeling results also confirm that Ammonia-Nitrogen and Dissolved Oxygen limitations are necessary to meet in-stream water quality criterion.

In-stream and discharge chlorine demand of 0.3 mg/l and 0 mg/l respectively are to be used as default values in the TRC spreadsheet model to calculate water quality-based TRC limits unless site-specific data supporting different values have been collected in accordance with the Implementation Guidance Total Residual Chlorine Regulation. A TRC limit of 0.01 mg/l will be imposed as an average monthly limit.

The applicant will be given 36 months to comply with the new limits.

Best Professional Judgment (BPJ) Limitations

Comments: N/A

Anti-Backsliding

N/A

Additional Comments:

Monitoring frequencies for the proposed effluent limits are based upon Table 6-3 Self-Monitoring Requirements for Sewage Dischargers of the DEP's Technical Guidance for the Development and Specification of Effluent Limitations.

For STPs with Ultraviolet (UV) disinfection, routine monitoring of UV transmittance, UV dosage, or UV intensity at the same monitoring frequency used for TRC should be contained in the permit as per the SOP-Establishing Effluent Limitations for Individual Sewage Permits.

Nutrient monitoring is required to establish the nutrient load from the wastewater treatment facility and the impacts that load may have on the quality of the receiving stream(s). Sewage discharges with design flow greater than 2,000 gpd require monitoring, at a minimum, for Total Nitrogen and Total Phosphorus in new and reissued permits. A 1/year monitoring and report requirement for Total Nitrogen and Total Phosphorus has been added to the permit as per Chapter 92.a.61.

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through <u>36th Month</u>.

	Effluent Limitations						Monitoring Requirements	
Parameter	Mass Units	(lbs/day) ⁽¹⁾	Concentrations (mg/L)				Minimum ⁽²⁾	Required
Faiametei	Average Monthly	Average Weekly	Minimum	Average Monthly	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
			4.0					
DO	XXX	XXX	Inst Min	XXX	XXX	XXX	1/day	Grab
TRC	ХХХ	XXX	XXX	Report	XXX	Report	1/day	Grab
Ammonia	ХХХ	XXX	XXX	Report	XXX	Report	2/month	Grab

Compliance Sampling Location: Outfall 001

Other Comments: None

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: 37th Month through Permit Expiration Date.

	Effluent Limitations						Monitoring Requirements	
Paramotor	Mass Units	(lbs/day) ⁽¹⁾		Concentrations (mg/L)				Required
Falameter	Average Monthly	Average Weekly	Minimum	Average Monthly	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
DO	xxx	xxx	5.0 Inst Min	XXX	xxx	xxx	1/day	Grab
TRC	xxx	XXX	XXX	0.01	XXX	0.03	1/day	Grab
UV Transmittance (%)	XXX	XXX	Report	XXX	XXX	XXX	1/day	Recorded
Ammonia Nov 1 - Apr 30	XXX	XXX	XXX	3.0	XXX	6.0	2/month	Grab
Ammonia May 1 - Oct 31	XXX	XXX	XXX	2.0	XXX	4.0	2/month	Grab

Compliance Sampling Location: Outfall 001

Other Comments: None

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

	Effluent Limitations						Monitoring Requirements	
Baramotor	Mass Units	(lbs/day) ⁽¹⁾	Concentrations (mg/L)				Minimum ⁽²⁾	Required
	Average Monthly	Average Weekly	Minimum	Average Monthly	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	0.026	XXX	xxx	xxx	XXX	XXX	1/week	Measured
pH (S.U.)	xxx	XXX	6.0 Inst Min	XXX	XXX	9.0	1/day	Grab
CBOD5	XXX	XXX	XXX	25	XXX	50	2/month	Grab
TSS	xxx	XXX	XXX	30	XXX	60	2/month	Grab
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	xxx	XXX	XXX	2000 Geo Mean	XXX	10000	2/month	Grab
Fecal Coliform (No./100 ml) May 1 - Sep 30	XXX	XXX	xxx	200 Geo Mean	XXX	1000	2/month	Grab
Total Nitrogen	xxx	XXX	xxx	XXX	Report Daily Max	XXX	1/year	Grab
Total Phosphorus	xxx	XXX	xxx	xxx	Report Daily Max	XXX	1/year	Grab

Compliance Sampling Location: Outfall 001

Other Comments: None

Warmer Period

	SWP Basin	Strea Cod	am le	Stre	am Name		RMI	Elev (vation (ft)	Drainage Area (sq mi)	Slope (ft/ft)	e PW Withd (mg	/S rawal gd)	Appl FC
	18A	425	546 Trib 42	2546 to Al	legheny Riv	er	0.91	13 1	023.00	0.07	0.064	00	0.00	\checkmark
					St	ream Dat	a							
Design	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	<u>Tributary</u> pppH	т	<u>Strean</u> emp	n pH	
cond.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)	((°C)		
Q7-10 Q1-10 Q30-10	0.004	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000 0.000 0.000	10.0	0.00	0.0	02	5.00 7.	00	0.00	0.00	
					Di	ischarge l	Data						1	
			Name	Per	mit Number	Existing Disc r Flow (mgd)	Permitte Disc Flow (mgd)	ed Desig Disc Flow) (mg	gn c Res w Fa d)	Dis erve Ten ictor (°C	sc np C)	Disc pH		
		High	Meadows	PAG	034185	0.000	0 0.000	0.0	260	0.000 2	20.00	7.00		
					Pa	arameter l	Data							
			1	Parameter	r Name	Di C	isc 1 onc C	Trib : Conc	Stream Conc	Fate Coef				
	_					(m	ig/L) (n	ng/L)	(mg/L)	(1/days)				
			CBOD5			:	25.00	2.00	0.00	1.50				
			Dissolved	Oxygen			3.00	8.24	0.00	0.00				
			NH3-N			:	25.00	0.00	0.00	0.70				

Input Data WQM 7.0

	SWF Basi	o Strea n Cod	im le	Stre	am Name		RMI	Ele	vation (ft)	Drainage Area (sq mi)	Slope (ft/ft)	PW Withdr (mg	S rawal (d)	Apply FC
	18A	425	546 Trib 42	2546 to Al	legheny Riv	er	0.0	01	747.00	0.42	0.06400)	0.00	\checkmark
					St	ream Dat	a							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	<u>Tributary</u> Ip pH	Ter	<u>Stream</u> mp	pH	
	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)	(°(C)		
Q7-10 Q1-10 Q30-10	0.006	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000 0.000 0.000	10.0	0.00	0.0	0 2	5.00 7.0	00	0.00	0.00	
					Di	scharge l	Data							
			Name	Per	mit Number	Existing Disc Flow (mgd)	Permitt Disc Flow (mgd	ed Desi Dis Flo) (mg	ign ic Res iw Fa jd)	Dis erve Ten ctor (°C	ю D пр ;))isc pH		
						0.000	0.00	0.0 0.0	0000	0.000 2	5.00	7.00		
					Pa	rameter	Data							
			,	Paramete	r Name	Di C	sc ·	Trib Conc	Stream Conc	Fate Coef				
						(m	g/L) (r	ng/L)	(mg/L)	(1/days)		_		
			CBOD5				25.00	2.00	0.00	1.50				
			Dissolved	Oxygen			3.00	8.24	0.00	0.00				
			NH3-N			:	25.00	0.00	0.00	0.70				

Input Data WQM 7.0

Wednesday, June 10, 2020

Version 1.0b

Page 2 of 2

								-				
	SW	P Basin	Strea	am Code				Stream	Name			
		18A	4	2546			Trib 425	i46 to Al	legheny F	River		
RMI	Stream Flow	PWS With	Net Stream	Disc Analysis Flow	Reach Slope	Depth	Width	W/D Ratio	Velocity	Reach Trav Time	Analysis Temp	Analysis pH
	(cfs)	(cfs)	(cfs)	(cfs)	(ft/ft)	(ft)	(ft)		(fps)	(days)	(°C)	
Q7-1	0 Flow											
0.913	0.00	0.00	0.00	.0402	0.06400	.347	1.5	4.32	0.08	0.714	20.03	7.00
Q1-1	0 Flow											
0.913	0.00	0.00	0.00	.0402	0.06400	NA	NA	NA	0.08	0.715	20.02	7.00
Q30-	10 Flow	/										
0.913	0.00	0.00	0.00	.0402	0.06400	NA	NA	NA	0.08	0.713	20.05	7.00

WQM 7.0 Hydrodynamic Outputs

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	\checkmark
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.64	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.36	Temperature Adjust Kr	\checkmark
D.O. Saturation	90.00%	Use Balanced Technology	~
D.O. Goal	5		

WQM 7.0 Wasteload Allocations

3	SWP Basin Stree 18A 4	am Code 2546		<u>St</u> Trib 42546	<u>ream Name</u> to Allegheny	River	
NH3-N A	Acute Allocation	s					
RMI	Discharge Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
0.91	3 High Meadows	9.66	9.7	9.66	9.7	0	Percent Reduction 0 Percent Reduction 0
NH3-N (Chronic Allocati	ons					
NH3-N (RMI	Chronic Allocati Discharge Name	ONS Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction

		CBC	DD5	D5 NH3-N		Dissolve	d Oxygen	Critical	Persent
RMI	Discharge Name	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple (mg/L)	Reach	Reduction
0.91 H	ligh Meadows	25	25	1.93	1.93	5	5	0	0

SWP Basin	Stream Code			Stream Name	
18A	42546		Trib 42	546 to Allegheny River	
RMI	Total Discharge	Flow (mgd) <u>Anal</u>	ysis Temperature (°C)	Analysis pH
0.913	0.02	6		20.035	7.000
Reach Width (ft)	Reach De	pth (ft)		Reach WDRatio	Reach Velocity (fps)
1.496	0.34	7		4.315	0.078
Reach CBOD5 (mg/L)	Reach Ko	(1/days)	R	each NH3-N (mg/L)	Reach Kn (1/days)
24.84	1.49	8		1.92	0.702
Reach DO (mg/L)	Reach Kr (1/days)		Kr Equation	Reach DO Goal (mg/L)
5.023	27.92	28		Owens	5
Reach Travel Time (day	s)	Subreach	Results		
0.714	TravTime	CBOD5	NH3-N	D.O.	
	(days)	(mg/L)	(mg/L)	(mg/L)	
	0.071	22.32	1.82	6.79	
	0.143	20.05	1.73	7.21	
	0.214	18.01	1.65	7.42	
	0.285	16.18	1.57	7.59	
	0.357	14.54	1.49	7.74	
	0.428	13.06	1.42	7.87	
	0.500	11.74	1.35	7.99	
	0.571	10.54	1.28	8.10	
	0.642	9.47	1.22	8.20	
	0.714	8.51	1.16	8.24	

WQM 7.0 D.O.Simulation

WQM 7.0 Effluent Limits

	SWP Basin	Stream Code					
	18A	42546		Trib 42546 to Alleghe	eny River		
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
0.913	High Meadow	vs PA0034185	0.000	CBOD5	25		
				NH3-N	1.93	3.86	
				Dissolved Oxygen			5

Colder Period

	SWP Basir	Strea n Coo	am Je	Stre	eam Name		RMI	Elev: (f	ation t)	Drainag Area (sq mi	ge S i) (Slope (ft/ft)	PV Witho (m	VS irawal gd)	Apply FC
	18A	42	546 Trib 42	2546 to Al	legheny Riv	ver	0.9	13 10	023.00	c	0.07 0	.06400		0.00	\checkmark
					St	ream Dat	ta								
Design	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Ten	<u>Tributar</u> 1p	<u>¥</u> pH	Tem	<u>Strear</u> p	n pH	
Cond.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C)		
27-10 21-10 230-10	0.008	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000 0.000 0.000	10.0	0.00	0.00		5.00	7.00	(0.00	0.00	
					D	ischarge	Data							1	
			Name	Per	rmit Numbe	Existing Disc r Flow (mgd)	Permitt Disc Flow (mgd	ed Desig Disc Flow) (mgd	n Res / Fa)	erve	Disc Temp (°C)	Di	isc H		
		High	Meadows	PA	0034185	0.000	0 0.00	00 0.02	60	0.000	15.0	00	7.00		
					Pa	arameter	Data								
						D	isc (Trib S Conc	tream Conc	Fate Coef					
			1	Faramete	rivame	(n	ng/L) (r	mg/L) (mg/L)	(1/days	5)				
			CBOD5				25.00	2.00	0.00	1.5	50				
			Dissolved	Oxygen			3.00	8.24	0.00	0.0	00				
			NH3-N				25.00	0.00	0.00	0.7	70				

Input Data WQM 7.0

Version 1.0b

	SWF Basi	o Strea n Cod	im le	Stre	am Name		RMI	Eleva (ft	ition)	Drainage Area (sq mi)	Slope (ft/ft)	PW Withd (mg	/S rawal gd)	Apply FC
	18A	425	546 Trib 42	2546 to Al	legheny Riv	er	0.00	01 7	47.00	0.42	0.0640	0	0.00	\checkmark
					St	ream Dat	a							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	<u>Tributary</u> p pH	Te	<u>Strean</u> mp	<u>р</u> н	
	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C))	(*	°C)		
Q7-10 Q1-10 Q30-10	0.013	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000 0.000 0.000	10.0	0.00	0.00	5	5.00 7.0	10	0.00	0.00	
					Di	scharge	Data						1	
			Name	Per	mit Number	Existing Disc Flow (mgd)	Permitt Disc Flow (mgd)	ed Design Disc Flow) (mgd)	Rese Fac	Dis erve Terr ctor (°C	c I IP)	Disc pH		
						0.000	0.000	0.000	00 0	0.000 2	5.00	7.00		
					Pa	arameter	Data							
				Paramete	Name	D	isc 1 onc C	Trib St Conc (ream Conc	Fate Coef				
						(m	ig/L) (n	ng/L) (r	ng/L)	(1/days)				
			CBOD5				25.00	2.00	0.00	1.50		_		
			Dissolved	Oxygen			3.00	8.24	0.00	0.00				
			NH3-N				25.00	0.00	0.00	0.70				

Input Data WQM 7.0

Wednesday, June 10, 2020

Version 1.0b

Page 2 of 2

	<u>sw</u>	<u>SWP Basin</u> 18A		Stream Code 42546			River					
RMI	Stream Flow (cfs)	PWS With (cfs)	Net Stream Flow (cfs)	Disc Analysis Flow (cfs)	Reach Slope (ft/ft)	Depth (ft)	Width (ft)	W/D Ratio	Velocity (fps)	Reach Trav Time (days)	Analysis Temp (°C)	Analysis pH
Q7-1	0 Flow											
0.913	0.00	0.00	0.00	.0402	0.06400	.347	1.5	4.32	0.08	0.711	14.86	7.00
Q1-1	0 Flow											
0.913	0.00	0.00	0.00	.0402	0.06400	NA	NA	NA	0.08	0.713	14.91	7.00
Q30-	10 Flow	1										
0.913	0.00	0.00	0.00	.0402	0.06400	NA	NA	NA	0.08	0.709	14.81	7.00

WQM 7.0 Hydrodynamic Outputs

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	V
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.64	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.36	Temperature Adjust Kr	~
D.O. Saturation	90.00%	Use Balanced Technology	~
D.O. Goal	5		

WQM 7.0 Wasteload Allocations

	SWP Basin Str	eam Code		St	ream Name		
	18A	42546		Trib 42546	to Allegheny	River	
H3-N	Acute Allocatio	ns					
RMI	Discharge Nam	Baseline e Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
0.91	3 High Meadows	14.11	14.24	14.11	14.24	0	0
0.91 NH3-N (13 High Meadows Chronic Alloca	14.11 tions	14.24	14.11	14.24	0	0
0.91 NH3-N (RMI	3 High Meadows Chronic Alloca Discharge Name	14.11 tions Baseline Criterion (mg/L)	14.24 Baseline WLA (mg/L)	14.11 Multiple Criterion (mg/L)	14.24 Multiple WLA (mg/L)	0 Critical Reach	0 Percent Reduction

		CBC	DD5	NH	3-N	Dissolved	i Oxygen	Critical	Percent
RMI	Discharge Name	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple (mg/L)	Reach	Reduction
0.91	High Meadows	25	25	2.87	2.87	5	5	0	0

SWP Basin S	stream Code			Stream Name	
18A	42546		Trib 42	546 to Allegheny River	
RMI	Total Discharge	Flow (mgd) <u>Anal</u>	ysis Temperature (°C)	Analysis pH
0.913	0.02	6		14.862	7.000
Reach Width (ft)	Reach De	pth (ft)		Reach WDRatio	Reach Velocity (fps)
1.499	0.34	7		4.317	0.078
Reach CBOD5 (mg/L)	Reach Kc	(1/days)	R	each NH3-N (mg/L)	Reach Kn (1/days)
24.68	1.49	7		2.83	0.471
Reach DO (mg/L)	Reach Kr (1/days)		Kr Equation	Reach DO Goal (mg/L)
5.045	24.70	17		Owens	5
Reach Travel Time (days)	1	Subreach	Results		
0.711	TravTime	CBOD5	NH3-N	D.O.	
	(days)	(mg/L)	(mg/L)	(mg/L)	
	0.071	22.69	2.74	7.66	
	0.142	20.86	2.65	8.23	
	0.213	19.18	2.56	8.24	
	0.284	17.63	2.48	8.24	
	0.355	16.21	2.39	8.24	
	0.427	14.90	2.32	8.24	
	0.498	13.70	2.24	8.24	
	0.569	12.60	2.17	8.24	
	0.640	11.58	2.09	8.24	
	0.711	10.65	2.03	8.24	

WQM 7.0 D.O.Simulation

WQM 7.0 Effluent Limits

	SWP Basin 18A	Stream Code 42546		<u>Stream Nam</u> Trib 42546 to Alleghe	<u>e</u> eny River		
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
0.913	High Meadow	vs PA0034185	0.000	CBOD5	25		
				NH3-N	2.87	5.74	
				Dissolved Oxygen			5

TRC_CALC_High Meadows

TRC EVALUATION

0.000279	= Q stream (cfs)		0.5	= CV Daily		
0.026	= Q discharge (MGD)		0.5	= CV Hourly		
30	= no. sample	s	0.995	= AFC_Partial Mix Factor		
0.3	= Chlorine De	emand of Stream	1	= CFC_Partial N	lix Factor	
0	= Chlorine De	emand of Discharge	15	= AFC_Criteria	Compliance Time (min)	
0.5	= BAT/BPJ V	alue	720	= CFC_Criteria	Compliance Time (min)	
	= % Factor o	of Safety (FOS)		=Decay Coeffic	ient (K)	
Source	Reference	AFC Calculations		Reference	CFC Calculations	
TRC	1.3.2.iii	WLA afc =	0.021	1.3.2.iii	WLA cfc = 0.013	
PENTOXSD TRG	5.1a	LTAMULT afc =	0.373	5.1c	LTAMULT cfc = 0.581	
PENTOXSD TRG	5.1b	LTA_afc=	0.008	5.1d	LTA_cfc = 0.008	
Source		Efflue	nt Limit Calcul	ations		
PENTOXSD TRG	5.1f		AML MULT =	1.231		
PENTOXSD TRG	5.1g	AVG MON L	.IMIT (mg/l) =	0.009	CFC	
		INST MAX L	_IMIT (mg/l) =	0.031		
WIA afo	(019/o/_k*AE			AEC tol)		
WER ald	+ Xd + (AF(C_(c)) + [(AFC_104)]*(1-F(.013/Qu e(-K DS/100)	Arc_log		
I TAMULT afe	EXP((0.5*1 N(evh^2+1))-2 328*I N(evt	h^2+1)^0 5)			
LTA afc	wla afc*LTAN	AULT afc	. 2.1, 0.0,			
WLA cfc	(.011/e(-k*CF	C tc) + [(CFC Yc*Qs*.	.011/Qd*e(-k*	CFC tc))		
-	+ Xd + (CFC	C_Yc*Qs*Xs/Qd)]*(1-F0	OS/100)			
LTAMULT_cfc EXP((0.5*LN(cvd^2/no_samples+1))-2.32		2.326*LN(cvd	^2/no_samples+1	1)^0.5)		
LTA_cfc	wla_cfc*LTAN	IULT_cfc				
AML MULT	EXP(2.326*LN	N((cvd^2/no_samples+1)^0.5)-0.5*LN	(cvd^2/no_sampl	es+1))	
AVG MON LIMIT	MIN(BAT_BP.	J,MIN(LTA_afc,LTA_cfc)*AML_MULT)		
INST MAX LIMIT	1.5*((av_mon	_limit/AML_MULT)/LT	AMULT_afc)			

Page 1

StreamStats Report - High Meadows MHP STP

Point of First Use

Basin Characteristics			
Parameter Code	Parameter Description	Value	Unit
DRNAREA	Area that drains to a point on a stream	0.0671	square miles
ELEV	Mean Basin Elevation	1098.3	feet

Low-Flow Statistics	Parameters[Low Flow Region 4]				
Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	0.0671	square miles	2.26	1400
ELEV	Mean Basin Elevation	1098.3	feet	1050	2580
Low-Flow Statistics	Disclaimers[Low Flow Region 4]				
One or more of th with unknown err	he parameters is outside th rors	he suggest	ted range. Estim	ates were	extrapolated
Low-Flow Statistics	Flow Report[Low Flow Region 4]				
Statistic			Value		Unit
7 Day 2 Year Lov	w Flow		0.0012		ft^3/s
30 Day 2 Year Lo	ow Flow		0.00261		ft^3/s

0.00201	
0.000279	ft^3/s
0.000727	ft^3/s
0.00166	ft^3/s
	0.000279 0.000727 0.00166

Low-Flow Statistics Citations

Stuckey, M.H.,2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006-5130, 84 p. (http://pubs.usgs.gov/sir/2006/5130/)

E	Elevation profile								
	ft 1,000 - 950 - 900 - 850 - 800 - 750 - 0.0	0,1	0.2	0.3	0.4	0.5	0.6	0.7	0.8 ^{mi}
	Latitude	Longitude	Elevatio	on (ft)	Distance (mi)			
	40.62236	-79.69478	1023	.38	0.00		Point o	of First	Use
	40.62224	-79.69497	1024	.66	0.01				
	40.62213	-79.69517	1023	.65	0.03				
	40.62197	-79.69536	1022	71	0.04				
	40.62180	-79.69555	1015	62	0.06				
	40.62164	-79.69575	1015	.35	0.07				
	40.62150	-79.69595	1012	.41	0.09				
	40.62136	-79.69615	1010	.11	0.10				
	40.62122	-79.69635	1006	.54	0.11				
	40.62107	-79.69657	1004	.78	0.13				
	40.62093	-79.69679	1001	.21	0.14				
	40.62079	-79.69701	1000	.95	0.16				
	40.62065	-79.69723	999.	.24	0.17				
	40.62050	-79.69742	997.	.95	0.19				
	40.62035	-79.69761	992.	.80	0.20				
	40.62021	-79.69780	991.	.42	0.22				

Tributary 42546 to Allegheny River

Latitude	Longitude	Elevation (ft)	Distance (mi)
40.62006	-79.69799	990.83	0.23
40.61991	-79.69818	989.82	0.25
40.61977	-79.69836	989.54	0.26
40.61961	-79.69858	988.23	0.28
40.61946	-79.69879	980.90	0.29
40.61930	-79.69901	977.72	0.31
40.61915	-79.69922	975.19	0.32
40.61892	-79.69937	973.97	0.34
40.61869	-79.69951	972.16	0.36
40.61846	-79.69965	975.73	0.37
40.61833	-79.69983	970.17	0.39
40.61819	-79.70001	965.34	0.40
40.61805	-79.70018	962.49	0.41
40.61791	-79.70036	949.61	0.43
40.61776	-79.70057	957.74	0.44
40.61761	-79.70079	954.74	0.46
40.61745	-79.70100	952.12	0.47
40.61745	-79.70129	935.60	0.49
40.61744	-79.70157	931.16	0.50
40.61743	-79.70185	927.34	0.52
40.61742	-79.70213	922.40	0.53
40.61741	-79.70242	914.00	0.55
40.61741	-79.70270	918.60	0.56
40.61753	-79.70293	902.19	0.58

Latitude	Longitude	Elevation (ft)	Distance (mi)	
40.61766	-79.70315	862.65	0.59	
40.61778	-79.70338	860.60	0.61	
40.61791	-79.70361	844.73	0.62	
40.61803	-79.70383	845.20	0.64	
40.61816	-79.70406	842.15	0.65	
40.61829	-79.70429	854.20	0.67	
40.61848	-79.70449	853.24	0.68	
40.61867	-79.70469	842.36	0.70	
40.61886	-79.70489	816.02	0.72	
40.61905	-79.70509	786.26	0.73	
40.61924	-79.70529	774.79	0.75	
40.61943	-79.70549	766.35	0.77	
40.61962	-79.70569	754.08	0.78	
40.61981	-79.70589	748.29	0.80	
40.62000	-79.70609	746.54	0.82	End of Rea

Elevation data provided by: ESRI Elevation Analysis services (https://developers.arcgis.com/rest/elevation/api-reference/profile.htm)

MEMO

ТО	Yingmin Xue Environmental Engineering Specialist Clean Water Program
FROM	Jamie Detweiler Aquatic Biologist 2 Clean Water Program
THROUGH	Richard Spear Aquatic Biologist 3 Clean Water Program
DATE	April xx, 2020
RE	Point of First Use Survey Tributary 42546 to the Allegheny River State Water Plan: 18A Hydrologic Unit Code: 05010009 Stream Code: 42546 Aquatic Use Designation:WWF High Meadows Mobile Home Park Sewage Treatment Plant Allegheny Township, Westmoreland County

INTRODUCTION

On February 3, 2020, at the request of Yingmin Xue of the Clean Water Program, a Point of First Surface Water Use (POFU) survey was conducted on Tributary 42546 to the Allegheny River, located in Allegheny Township, Westmoreland County. The objective of the survey was to determine if the tributary was capable of supporting an Aquatic Life Use as defined in 25 Pennsylvania Code §93.9q in the vicinity of the High Meadows Mobile Home Park (MHP) Sewage Treatment Plant (STP) outfall located at approximately Latitude: 40.623272, Longitude: -79.694745.

The High Meadows MHP is located on top of a hill, adjacent to the Allegheny River (Figure 1). A pond is located onsite but does not appear to directly receive the discharge from the MHP. The POFU of Tributary 42546 to the Allegheny River is located downslope of the STP discharge, the aforementioned pond, and a relatively large wetland (Figure 2). Water from these sources flows into a culvert. Downslope of this culvert, the stream exhibits characteristics that would typically support an aquatic life use, such as a defined bed and bank and definite substrate. The previous permit stated that the STP discharges directly to the Allegheny River and the limits were based on the discharge being to the river. However, maps indicated that this was not the case.

The High Meadows MHP STP is a Minor Sewage Facility (MISF1), which is a designation for STPs that discharge less than 0.05 Million Gallons Per Day (MGD). This STP's annual average design flow is 0.026 MGD, and it was designed to serve 106 housing units. The treatment consists of flow equalization, primary settling, biological treatment using Geo-Form rotating reactors, final clarification, and ultraviolet disinfection. A tablet chlorinator is available as a backup to the UV disinfection system. Sludge from the primary and

secondary clarifiers is pumped to an aerated sludge holding tank. The digested sludge is removed for appropriate disposal at a landfill.

Ms. Xue is currently reviewing a permit renewal of the STP's National Pollution Discharge Elimination System (NPDES) Permit (PA0034185). The plant also has a Water Quality Management Permit (659433 A2). During the past permitting cycle, the STP had 3 DMR exceedances during 2018 and 8 DMR exceedances (COBD, TSS and fecal) from 1/1/2019 through 4/23/2020. During a facility inspection on 2/11/2020, a violation was noted and resolved. There are no open violations and there have been no enforcements actions taken for this client in the last 5 years. The facility is currently in compliance.

According to USGS StreamStats, at the location of sampling, the drainage area is 0.13 square miles. The drainage area is 46% developed; 14.7 % is impervious. Tributary 42546 to the Allegheny River is in the Lower Allegheny River State Water Plan (18A), and the Lower Allegheny River Hydrologic Unit (Hydrologic Unit Code 05010009). Tributary 42546 to the Allegheny River (Stream Code 42546) is listed as attaining its designated Aquatic Life Use for Warm Water Fishery (WWF). However, it appears that it was never surveyed.

SAMPLING METHODOLOGY

The point of first aquatic life use is the location at which a body of water is capable of supporting aquatic life as defined in 25 Pennsylvania Code §93. Guidance for determining the point of first aquatic life use is in the Department's guidance document #391-2000-014, Policy and Procedures for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers (revised April 12, 2008). Specifically, Appendix B of the guidance document provides additional guidance when making a point of first use determination.

On February 3, 2020, basic water quality (Table 1) and macroinvertebrates (Table 2) were examined in the stream that receives the discharge from the outfall. The station was established at the point downslope from the permitted discharge where distinct bed and banks were found (Figures 3,4). Basic water quality parameters were examined using a field meter and additional water chemistry and macroinvertebrates were collected and subsampled according to the Department's <u>Water Quality Monitoring Protocols for Streams and Rivers 2018</u> (Monitoring Book), which can be found by following this link:

http://files.dep.state.pa.us/Water/Drinking%20Water%20and%20Facility%20Regulation/WaterQualityPortalFiles/Technical%20Documentation/MONITORING_BOOK.pdf

RESULTS

Upslope from the survey location, a relatively flat wetland area was located adjacent to Wildcat Hollow Road. A small channel was found within the wetland, but it did not appear to have characteristics that would support aquatic life. Water draining out of the wetland entered a culvert. The survey location was just downstream of the culvert. At the survey location, the stream was incised, with heavily eroded banks that were approximately 3 feet high. The stream was about 5 feet wide, with a 4 ft wetted width. The riparian area at the sampling location and downstream was forested, with a dirt road located adjacent to the stream.

A relatively large number of macroinvertebrates were collected during the study. In subsampling the composited sample, I used option 1 from the Monitoring Book, which is the appropriate protocol for suspected high abundance samples. In using option 1, the material and organisms from four grids were taken from the first sample pan and placed into a second gridded pan. Organisms from four grids of the second gridded pan resulted in reaching the target number of 200 +/- 10%.

Six macroinvertebrate taxa were found in the subsample. The Index of Biotic Integrity (IBI), calculated for the stream size and time of year (Table 3), indicates that the aquatic life use in this segment of stream channel is not being attained (IBI score = 14.4, less than 50 is not attaining). The water quality results did not show any exceedances of the Chapter 93 water quality criteria. However, the total habitat score was 129, which is below the threshold (140) for aquatic life use impairment for riffle/run dominated streams. In addition, the combined scores of embeddedness and sediment deposition (21) and condition of banks and bank vegetative protection (8) are below the impairment threshold (24) for each combination.

DISCUSSION AND CONCLUSIONS

The objective of this study was to examine aquatic life, water quality, and physical characteristics of the Tributary 42546 to the Allegheny River to determine if and where the stream is capable of supporting an aquatic life use as defined in 25 Pennsylvania Code §93.9q, where water quality standards must be met.

Findings from this study suggest that the Tributary 42546 to the Allegheny River at the point of sampling is capable of supporting aquatic life. Two long-lived taxa were identified in the macroinvertebrate sample and the stream exhibited defined bed and bank. Therefore, when issuing the NPDES permit renewal, limits should be based on the STP discharging to Tributary 42546 to the Allegheny River, rather than the Allegheny River, as in the previous permit.

Results from this study suggest that the stream has an aquatic life use at the point where the study was performed (Latitude: 40.62133380, Longitude: -79.69631730), and this use should be protected.

Also, the stream will be listed as not attaining its protected use under Section 303d of the Clean Water Act. The cause of the impairment is habitat alteration and siltation and the sources of the impairments are Highway/Road/Bridge Runoff and Urban Runoff/Storm sewers, respectively.

cc: Stream File – Tributary 42546 to the Allegheny River Donald Leone – SWRO, Environmental Group Manager Christopher Kriley – SWRO, Environmental Program Manager Michael (Josh) Lookenbill – CO, Environmental Group Manager

Figure 1. USGS Topographical map of High Meadows MHP and Tributary 42546 to the Allegheny River.

Imagely: Source² 997, Digita 800 Be, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA, USGS, AeroGRID, IGN, and the GIS User Community; ESRI Streets: Sources: Esri, HERE, Garmin, USGS, Intermap, INCREMENT P, NRCan, Esri Japan, METI, Esri China (Hong Kong), Esri Korea, Esri (Thailand), NGCC, (c) OpenStreetMap contributors, and the GIS User

Figure 2. Aerial map showing the High Meadows MHP STP and survey location.

Table 1.	Water qu	uality	parameters	from	the	Tributary	42546	to the	Allegheny	River.
----------	----------	--------	------------	------	-----	-----------	-------	--------	-----------	--------

PARAMETER	DESCRIPTION	RESULTS
рН	FIELD	6.34 pH units
TEMPERATURE	FIELD	4.8 C
DISSOLVED OXYGEN	FIELD	11.61 mg/L
SPECIFIC CONDUCTANCE	FIELD	463.0 umhos/cm
ALKALINITY	AS CaCO3 @ pH 4.5	95.6 mg/L
ALUMINUM	DISSOLVED (WATER & WASTE) BY ICPMS	16.500 ug/L
ALUMINUM	TOTAL (WATER & WASTE) ICPMS	72.500 ug/L
AMMONIA	DISSOLVED AS NITROGEN	1.5480 mg/L
AMMONIA	TOTAL AS NITROGEN	1.51 mg/
BARIUM	TOTAL (WATER & WASTE) BY ICP	29.00 ug/L
BORON	TOTAL (WATER & WASTE) BY ICP	<200. ug/L
CADMIUM	DISSOLVED (WATER & WASTE) BY ICPMS	<0.200 ug/L
CALCIUM	TOTAL (WATER & WASTE) BY ICP	43.600 mg/L
COPPER	DISSOLVED (WATER & WASTE) BY ICPMS	<4.00 ug/L
COPPER	TOTAL (WATER & WASTE) BY ICPMS	<4.00 ug/L
Dissolve Nitrate & Nitrite Nitrogen		1.50 mg/L
Dissolve Ortho Phosphorus		0.203 mg/L
Dissolved Nitrogen as N		3.351 mg/L
Dissolved Phosphorus as P		0.261 mg/L
HARDNESS	TOTAL (CALCULATED)	146 mg/L
IRON	DISSOLVED (WATER & WASTE) BY ICP	104.00 ug/L
IRON	TOTAL (WATER & WASTE) BY ICP	228.00 ug/L
LEAD	DISSOLVED (WATER & WASTE) BY ICPMS	<1.00 ug/L
LEAD	TOTAL (WATER & WASTE) BY ICPMS	<1.00 ug/L
LITHIUM	DISSOLVED (WATER &WASTE) BY ICP	<25.0 ug/L
LITHIUM	TOTAL (WATER & WASTE) BY ICP	<25.0 ug/L
Low Bromide	by IC	27.27 ug/L
MAGNESIUM	TOTAL (WATER & WASTE) BY ICP	8.94 mg/L
MANGANESE	DISSOLVED (WATER & WASTE) BY ICP	233.00 ug/L
MANGANESE	TOTAL (WATER & WASTE) BY ICP	238.00 ug/L
NICKEL	DISSOLVED (WATER & WASTE) BY ICP	<50.0 ug/L
NICKEL	TOTAL (WATER & WASTE) BY ICP	<50.0 ug/L
OSMOTIC PRESSURE		6 mos/kg
POTASSIUM	TOTAL (WATER & WASTE) BY ICP	2.50 mg/L
SELENIUM	TOTAL (WATER & WASTE) BY ICPMS	<7.00 ug/L
SODIUM	TOTAL (WATER & WASTE) BY ICP	30.20 mg/L
STRONTIUM	TOTAL (WATER & WASTE) BY ICP	138.00 ug/L
Temperature	at which pH is measured	18.67 C
Total Chloride-Ion	Chromatograph	61.59 mg/L
TOTAL DISSOLVED SOLIDS	@ 180C BY USGS-I-1750	276 mg/L
Total Nitrate & Nitrite Nitrogen		1.47 mg/L
Total Nitrogen as N		3.30 mg/L

Total Organic Carbon		3.14 mg/L
Total Ortho Phosphorus as P		0.207 mg/L
Total Phosphorus as P		0.261 mg/L
Sulfate-Ion	Chromatograph	29.73 mg/L
TOTAL SUSPENDED SOLIDS		<5 mg/L
ZINC	DISSOLVED (WATER & WASTE) BY ICP	<30.0 ug/L
ZINC	TOTAL (WATER & WASTE) BY ICP	<30.0 ug/L

< indicates result is below reporting limit

Table 2. Macorinvertebrates observed in Tributary 42546 to Allegheny River.

ТАХА	Family	Number in subsample	Long lived taxa
	Hydropsychidae (Net-spinning		Yes
Diplectrona	Caddisfly)	1	
	Hydropsychidae (Net-spinning		Yes
Hydropsyche	Caddisfly)	1	
Tipula	Tipulidae (Crane Fly)	1	Yes
Simulium	Simulidae (Black Fly)	31	No
Chironomidae	Chirononimdae (Non-biting Midge)	48	No
Oligochaeta	N/A (Segmented Worm)	129	No

120

Table 3. Bureau of Clean Water Macroinvertebrate Sample Summary.

DECTRONIENT OF LIVE	/IRONMENTAL	3/4/2020 3:15:24 PM							
PROTECTION									
	and the second se								
Export Data to Exce	I made								
		SAMPLE SUMMARY			S. Maria	and a second			
STATION ID: 20200203-1000-jadetweile	SECONDARY STATION ID: UNT 42546 to Allegheny River, Downstream of Highmeadows MHP STP.	LATITUDE: 40.62133380	LONG -79.696	TUDE: 331730			n Richmean		
STREAM NAME:		HUC8 05010009 Lower Allegh	neny. Penn	sylvania.			anota magon		
SURVEY ID: 71877	1 E CI	METHOD: 6-Dframe Composite, 200	subsampl	e			areann 318		
SUBSAMPLED BY: Jamie Detweiler	IDENTIFIED BY: Jamie Detweiler	QUALITY ASSURED: N	QUAL	QUALITY ASSURED BY:			PASSED QUALITY ASSURANCE:		
STATION LOCATION COMM Station is located along Wildca	ENT: at Hollow Road on UNT 42546 to A	llegheny River. Location is a	downstrea	m of an ope	n area/ yar	rd/wetland and	d receives the		
BIOLOGY / HABITAT COMMI A dirt road follows the stream of	ENT: down to the Allegheny River. other	than the road, the area is fo	prested. Ho	owever the	stream mus	st receive flas	hy storms,		
since the banks are eroded. De	ownstream of this site, algae was g	rowing on the substrate							
LAND USE COMMENT:						-			
LAND USE COMMENT:		10		•		Î.	iyon ballansi		
LAND USE COMMENT:		10 41			107		iyster) byllians sivitieri transfis		
LAND USE COMMENT:		ТАХА		•	107		kysbol Byttlanie Stylton Ingryfia Gente IG yn yfe		
LAND USE COMMENT:	grids from first pan ¹ = 4	TAXA # grids from sec	cond pan :	= 4* ~ 4	Subsam	ple Size =	211		
LAND USE COMMENT:	grids from first pan ¹ = 4 TAXA NAME	TAXA # grids from sec INDIVIDUALS	cond pan * PTV	= 4 FFG	Subsam BC	ple Size = G COLD	211 BCG WARN		
LAND USE COMMENT: IMPAIRMENT COMMENT: # Diplectrona	grids from first pan [®] = 4 TAXA NAME	TAXA # grids from sec INDIVIDUALS 1	cond pan = PTV 0	= 4 FFG FC	Subsam BC	ple Size = G COLD 2	211 BCG WARN 2		
LAND USE COMMENT: IMPAIRMENT COMMENT: Market Comment # Diplectrona Hydropsyche	grids from first pan [®] = 4 TAXA NAME	TAXA # grids from sec INDIVIDUALS 1 1	cond pan = PTV 0 5	= 4 FFG FC FC	Subsam BC	ple Size = G COLD 2 5	211 BCG WARN 2 5		
LAND USE COMMENT: IMPAIRMENT COMMENT: Jiplectrona Hydropsyche Tipula	grids from first pan ¹ = 4 TAXA NAME	TAXA # grids from sec INDIVIDUALS 1 1 1	cond pan a PTV 0 5 4	= 4 FFG FC FC SH	Subsam BC	ple Size = G COLD 2 5 5	211 BCG WARM 2 5 5		
LAND USE COMMENT: IMPAIRMENT COMMENT: Jiplectrona Hydropsyche Tipula Simulium	grids from first pan [°] = 4 TAXA NAME	TAXA # grids from sec INDIVIDUALS 1 1 1 31	cond pan s PTV 0 5 4 6	FFG FC FC SH FC	Subsam BC	ple Size = G COLD 2 5 5 5 5	211 BCG WARN 2 5 5 5 5		
LAND USE COMMENT: IMPAIRMENT COMMENT: IMPAIRMENT COMMENT: Impairment Impairme	grids from first pan ¹ = 4 TAXA NAME	TAXA # grids from sec INDIVIDUALS 1 1 1 1 1 31 48	cond pan PTV 0 5 4 6 6	FFG FC FC SH FC CG	Subsam BC	ple Size = G COLD 2 5 5 5 5 5 5 5	211 BCG WARM 2 5 5 5 5 5 5 5		
LAND USE COMMENT: IMPAIRMENT COMMENT: IMPAIRMENT COMMENT: Implectrona Hydropsyche Tipula Simulium Chironomidae Digochaeta	grids from first pan [®] = 4 TAXA NAME	TAXA # grids from sec INDIVIDUALS 1 1 1 1 31 48 48 129	PTV 0 5 4 6 6 10	FFG FC FC SH FC CG CG	Subsam BC	ple Size = G COLD 2 5 5 5 5 5 5 5 5 5 5	211 BCG WARN 2 5 5 5 5 5 5 5 5 5		
LAND USE COMMENT: IMPAIRMENT COMMENT: IMPAIRMENT COMMENT: Impairment Jiplectrona Hydropsyche Tipula Simulium Chironomidae Dilgochaeta	grids from first pan [®] = 4 TAXA NAME	TAXA # grids from sec INDIVIDUALS 1 1 1 1 1 1 31 48 129	PTV 0 5 4 6 6 10	FFG FC FC SH FC CG CG	Subsam BC	ple Size = G COLD 2 5 5 5 5 5 5 5 5	211 BCG WARM 2 5 5 5 5 5 5 5 5 5 5		
LAND USE COMMENT: IMPAIRMENT COMMENT: IMPAIRMENT COMMENT: Impairment Diplectrona -tydropsyche Tipula Simulium Chironomidae Diigochaeta	grids from first pan [®] = 4 TAXA NAME	TAXA # grids from sec INDIVIDUALS 1 1 1 1 31 48 129	cond pan a PTV 0 5 4 6 6 10	FFG FC FC SH FC CG CG	Subsam BC	ple Size = G COLD 2 5 5 5 5 5 5 5 5	211 BCG WARN 2 5 5 5 5 5 5 5 5 5		
LAND USE COMMENT: IMPAIRMENT COMMENT: IMPAIRMENT COMMENT: Impairment Diplectrona Hydropsyche Tipula Simulium Chironomidae Oligochaeta	grids from first pan [®] = 4 TAXA NAME	TAXA # grids from sec INDIVIDUALS 1 1 1 1 31 48 129	cond pan a PTV 0 5 4 6 6 10	FFG FC FC SH FC CG CG	Subsam BC	ple Size = G COLD 2 5 5 5 5 5 5 5 5	211 BCG WARN 2 5 5 5 5 5 5 5 5		
LAND USE COMMENT: IMPAIRMENT COMMENT: IMPAIRMENT COMMENT: Impairment Impairme	grids from first pan ¹ = 4 TAXA NAME	TAXA # grids from sec INDIVIDUALS 1 1 1 1 31 48 129	cond pan a PTV 0 5 4 6 6 6 10	FFG FC FC SH FC CG CG	Subsam BC	ple Size = G COLD 2 5 5 5 5 5 5 5 5	211 BCG WARM 2 5 5 5 5 5 5 5 5		
LAND USE COMMENT: IMPAIRMENT COMMENT: IMPAIRMENT COMMENT: Impairment Diplectrona Hydropsyche Tipula Simulium Chironomidae Oligochaeta	grids from first pan ¹ = 4 TAXA NAME	TAXA # grids from sec INDIVIDUALS 1 1 1 1 31 48 129	cond pan a PTV 0 5 4 6 6 10	FFG FC FC SH FC CG CG CG	Subsam	ple Size = G COLD 2 5 5 5 5 5 5 5 5	211 BCG WARM 2 5 5 5 5 5 5 5 5 5		
LAND USE COMMENT: IMPAIRMENT COMMENT: IMPAIRMENT COMMENT: Impla Diplectrona Hydropsyche Tipula Simulium Chironomidae Oligochaeta	grids from first pan ² = 4 TAXA NAME	TAXA # grids from sec INDIVIDUALS 1 1 1 1 31 48 129	cond pan 9 PTV 0 5 4 6 6 10	FFG FC FC SH FC CG CG	Subsam	ple Size = G COLD 2 5 5 5 5 5 5 5 5	211 BCG WARM 2 5 5 5 5 5 5 5		
LAND USE COMMENT: IMPAIRMENT COMMENT: IMPAIRMENT COMMENT: Impla Diplectrona Hydropsyche Tipula Simulium Chironomidae Oligochaeta	grids from first pan ² = 4 TAXA NAME	TAXA # grids from sec INDIVIDUALS 1 1 1 1 31 48 129	cond pan s PTV 0 5 4 6 6 10	FFG FC FC SH FC CG CG CG	Subsam	ple Size = G COLD 2 5 5 5 5 5 5 5	211 BCG WARM 2 5 5 5 5 5 5 5		

Page 1 of 2

STATION ID: 20200203-1000-jadetweile

					MET	RICS				- Aller		and and
					F	reestone Riffle- 6D200	Run					
METRIC	NAME		RAW VALUE	2013 S	MAL	2013 L LARGE	2D100	M	POOL GL	TAT	LIMESTONE 2	2009
Total Richness		6	18.2		19.4	lo Vegneny Rive		19.4	19.4 33			
Ephemeroptera Richness		0	1					0.0				
Trichoptera Richness		2	Course Attestor		0001000			18.2		1 DEAN	NA.	
EPT Richness		2			BETPOD:	13.1		11.8		25.0		
Trichoptera Richness	(PTV 0-4)	ministra 1 AUG	CHADAA		al seture	27.8	- de d			NE BRIE	-
EPT Richness (PTV 0-	-4)		1	5.3		6.3		-	Period Participation			-
Becks Index (version	3)		3	7.	.9	13.6			(TASS)		e work tool i	1011
Becks Index (version	4)		3				15.1		13.6		25.0	Q1:
FC + PR + SH Richnes	s	um ma	4			II when the Provide	34.5		the sector of the			
Hilsenhoff Biotic Inde	x		8.40	19.7		23.0	23.7	201 000	Tento To The Chargenwork		26.0	
% Sensitive Individuals (PTV 0-3)		0.50	0.6		0.7			-			-	
% Tolerant Individuals (PTV 7-10)		61.10			•	- ;				39.5		
Shannon Diversity			1	35.0		35.0			41.2		46.9	
		•	IBI SCORE	14	1.4	16.3	22.8	**	17.3		32.6	
% Ephemeroptera	0.0	% Eph	emeroptera (PTV 0-4)		0.0	% Dominant Ta	ixon	61.1	BCG Ric	hness Ra	atio	0.20
% Plecoptera	0.0	Ephen	neroptera Richness (P	TV 0-	0	% Chironomidae 2		22.7	BCG Individuals Ratio		Ratio	0
% Trichoptera	0.9	4) Plecor	otera Richness		0	% Simulidae		14.7				
				IM	PAI	RMENT						
Not Impaired	Y	Insuffi	cient Data		Y							
			00						STORE STORE			
Instrea	am Cover	14	Substrate	/ Cover	HAL	Free	quency of F	Riffles	17	Ba	nk Vegetation	6
Epifaunal	Substrate	15	Velocity/Depth R	egimes	10	Cha	nnel Flow S	Status	12	Disrup	otive Pressure	15
Embed	idedness	11	Pool Va	riability		Cł	Channel Altera		8	Riparian Zone		9
Pools	Substrate		Sediment Dep	position 10		Co	Condition of Ba		2			
Pool-Glide Assessment? N		Instream	Score =	= 50	Riparian Sc		Score	= 17		Total Score	= 12	
					IEA	SUREMENTS						-
Temperature (°C)	4	.80	Dissolved Oxygen	(mg/L)		1	1.61	Flow (low (CFS)			
рН	6	.34	Total Alkalinity (mg	/L as Ca	COS	3)		Condu	ctivity (uS	i/cm)	463	
				WATE		HEMISTRY						
Collector ID			0725			Sequence Nun	nber				087	

SSRS_SLIMS_043 Ver 1.1

Page 2 of 2

Figure 3. Sampling location, facing upstream.

Figure 4. Sampling location, facing downstream.

