

 Application Type
 Renewal

 Facility Type
 Industrial

 Major / Minor
 Minor

NPDES PERMIT FACT SHEET INDIVIDUAL INDUSTRIAL WASTE (IW) AND IW STORMWATER

 Application No.
 PA0035157

 APS ID
 28828

 Authorization ID
 1159781

Applicant and Facility Information

Applicant Name	Farmers Pride Inc.	Facility Name	Farmers Pride Poultry
Applicant Address	PO Box 39 154 W Main Street	Facility Address	154 W Main Street
	Fredericksburg, PA 17026-0039		Fredericksburg, PA 17026-9510
Applicant Contact	Terry Zellers	Facility Contact	Terry Zellers
Applicant Phone	(717) 865-1154	Facility Phone	(717) 865-1154
Client ID	63325	Site ID	444114
SIC Code	2015	Municipality	Bethel Township
SIC Description	Manufacturing - Poultry Slaughtering And Processing	County	Lebanon
Date Application Receiv	vedAugust 4, 2016	EPA Waived?	No
Date Application Accep	ted August 18, 2016	If No, Reason	Significant CB Discharge
Purpose of Application	Permit renewal for discharge of trea	ted industrial waste	

Summary of Review

1.0 General Discussion

This factsheet supports the renewal of an existing NPDES permit for a discharge of treated industrial waste from an existing poultry slaughtering and processing plant. Process wastewater generated at the plant consists of raw product (live chicken) killing, scalding, defeathering, eviscerating, ammonia compressor cooling water, final bird wash, bulk ice packaging of chicken and plant sanitation clean-up. The wastewater treatment plant also receives the 30 minutes first flush of storm water from a storm water pumping station. Recovered feather, blood and offal are taken to on offsite rendering facility. Process water is obtained from the municipal water supply along with wells. Wastewater is discharge to Deep Run which is classified for warm water fishes(WWF). The treatment plant was upgraded during the past permit cycle to meet Chesapeake Bay nutrient load requirement and to improve on treatment quality. Wastewater from the various sources will flow to an aerated flow equalization basin and pre-treated in a dissolved air flotation(DAF) treatment cell with chemical coagulation and flocculation prior to a 4-stage activated sludge process followed by final clarification and the final effluent chlorinated/de-chlorinated prior to discharge. The facility falls under SIC 2015 and 2077 and is covered under ELG. The existing NPDES permit was issued on January 23, 2012 with an effective date of February 1, 2012 and expiration date of January 31, 2017. The applicant submitted a timely NPDES renewal application to the Department and is currently operating under the terms and conditions in the existing permit under administrative extension provisions pending Department action on the renewal application.

A topographical map showing discharge location is presented in attachment A.

Approve	Deny	Signatures	Date
Х		J. Pascal Kwedza, P.E. / Environmental Engineer	November 13, 2019
		Daniel W. Martin, P.E. / Environmental Engineer Manager	
		Maria D. Bebenek, P.E., Program Manager	

Summary of Review

1.1 Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

1.2 Changes to Existing Permit

- The monitoring frequency for Total Nitrogen species have increased to 2/week per the requirements of the Chesapeake Bay Program. The "Phase 2 Watershed Implementation Plan Wastewater Supplement" states that "the minimum monitoring frequency for TN species and TP in new or renewed NPDES permits for significant dischargers will be 2/week.
- Weekly monitoring of Total Copper has been added to the permit.

1.3 Existing Permit Limitations

				MONITORING REQUIREMENTS				
	Mass (lbs/	Units /day)		Concentra	Minimum	Required		
Discharge Parameter	Avg Monthly	Max Daily	Minimum	Average Monthly	Maximum Daily	Inst. Maximum	Measurement Frequency	Sample Type
Flow (mgd)	Monitor & Report	Monitor & Report	ххх	ХХХ	ххх	xxx	Continuous	Measured
рН (S.U.)	xxx	xxx		From 6.0 to	1/day	Grab		
D.O.	xxx	XXX	Mi	nimum of 5.0) mg/l at all tim	es	1/day	Grab
TRC	xxx	XXX	xxx	XXX 0.02 XXX 0.05		1/day	Grab	
TSS	75	150	XXX	10	20	25	1/week	24-hr comp
CBOD ₅	75	150	xxx	10	20	25	1/week	24-hr comp
NH ₃ -N (5/1 to 10/31)	7.5	15	xxx	1.0	2.0	2.5	1/week	24-hr comp
NH ₃ -N (11/1 to 4/30)	22.5	45	xxx	3.0	6.0	7.5	1/week	24-hr comp
Total Phosphorus	3.8	7.5	xxx	0.5	1.0	1.25	1/week	24-hr comp
Fecal Coliform (5/1 to 9/30)	XXX	XXX	xxx	200	400	XXX	1/week	Grab
Fecal Coliform (10/1 to 4/30)	xxx	XXX	xxx	400	400	xxx	1/week	Grab
Oil &Grease	M&R	M&R	XXX	8.0	14	30	1/week	24-hr comp
Total Nitrogen	M&R	M&R	XXX	103	147	257	1/week	Calculate

Summary of Review

1.3.1 Chesapeake Bay Limits

		Effluent	Monitoring Requirements				
Discharge Parameter	Mass I	_oad(lbs)	Conce	entrations (mg	Minimum Measuremen	Required Sample	
	Monthly	Annual	Minimum	Monthly Average	Maximu m	t Frequency	Туре
AmmoniaN	Report	Report	xxx	Report	xxx	1/week	24-hr Comp
KjeldahlN	Report	xxx	xxx	Report	xxx	1/Week	24-hr Comp
Nitrate-Nitrite as N	Report	xxx	xxx	Report	xxx	1/Week	24-hr Comp
Total Nitrogen	Report	Report	xxx	Report	xxx	1/Month	Calculate
Total Phosphorus	Report	Report	xxx	Report	xxx	1/week	24-hr Comp
Net Total Nitrogen	Report	16,438	xxx	xxx	xxx	1/Month	Calculate
Net Total Phos.	Report	1,370	xxx	xxx	xxx	1/Month	Calculate

2.0 Discharge, Receiving Waters and Water Supply Inf	ormation
Outfall No. 001	Design Flow (MGD)9
Latitude40° 26' 22.19"	Longitude76º 26' 12.72"
Quad Name Fredericksburg	Quad Code 1534
Wastewater Description: IW Process Effluent with E	LG
Receiving Waters Deep Run	Stream Code 09896
NHD Com ID56395999	RMI 0.76
Drainage Area 1.43	Yield (cfs/mi ²) USGS Gage Station
Q ₇₋₁₀ Flow (cfs) 0.09	Q7-10 Basis
Elevation (ft)	Slope (ft/ft)
Watershed No. 7-D	Chapter 93 Class. WWF
Existing Use	Existing Use Qualifier
Exceptions to Use	Exceptions to Criteria
Assessment Status Impaired	
Cause(s) of Impairment Cause Unknown, Nutrients	, Pathogens, Siltation
Source(s) of Impairment Agriculture, Source Unknow	wn, Urban Runoff/Storm Sewers
	Deep Run, Beach Run, and Elizabeth Run
IMDL Status Final	Name Nutrient IMDL
Background/Ambient Data	Data Source
рн (SU)	
I emperature (°F)	
Hardness (mg/L)	
Other:	
Nearest Downstream Public Water Supply Intake	Pennsylvania American Water Company
PWS Waters Swatara Creek	Flow at Intake (cfs)
	Distance from Outfall (mi) 28

Changes Since Last Permit Issuance:

Other Comments:

2.1 Water Supply Intake:

The closest water supply intake located downstream from the discharge is Pennsylvania American Water Company in South Hanover Twp., Dauphin County. The distance downstream from the discharge to the intake is approximately 28 miles. No impact is expected on the intake as a result of this discharge

NPDES Permit Fact Sheet Farmers Pride Poultry

2 Discharge, Receiving Waters and Water Supply I	nformation
Outfall No. 002	
Latitude <u>40° 26' 42.12</u>	
Quad Name	
Receiving Waters Deep Run	Stream Code
NHD Com ID 56395999	
Drainage Area	Yield (cfs/mi ²)
Q ₇₋₁₀ Flow (cfs)	Q ₇₋₁₀ Basis
Elevation (ft)	Slope (ft/ft)
Watershed No. 7-D	Chapter 93 Class. WWF
Existing Use	Existing Use Qualifier
Exceptions to Use	Exceptions to Criteria
Assessment Status Impaired	
Cause(s) of Impairment Cause Unknown, Nutrier	nts, Pathogens, Siltation
Source(s) of ImpairmentAgriculture, Source Unkn	nown, Urban Runoff/Storm Sewers
TMDL Status Final	Deep Run, Beach Run, and Elizabeth Run Name <u>Nutrient TMDL</u>
Background/Ambient Data	Data Source
pH (SU)	
Temperature (°F)	
Hardness (mg/L)	
Other:	
Nearest Downstream Public Water Supply Intake	
PWS Waters	Flow at Intake (cfs)
PW/S RMI	Distance from Outfall (mi)

Changes Since Last Permit Issuance:

Other Comments:

2.2.1 Stormwater

See stormwater section of the report for details on Outfall 002

NPDES Permit Fact Sheet Farmers Pride Poultry

3 Discharge, Receiving Waters and Water Supply Ir	nformation
	Decign Flow (MGD)
Latitude 40° 26' 45"	$\frac{1}{2} = \frac{1}{2} = \frac{1}$
Wastewater Description: Stormwater	
Receiving Waters _ Deep Run	Stream Code
NHD Com ID 56395999	RMI
Drainage Area 3.19 ac	Yield (cfs/mi ²)
Q ₇₋₁₀ Flow (cfs)	Q7-10 Basis
Elevation (ft)	Slope (ft/ft)
Watershed No. 7-D	Chapter 93 Class. WWF
Existing Use	Existing Use Qualifier
Exceptions to Use	Exceptions to Criteria
Assessment Status Impaired	
Cause(s) of Impairment Cause Unknown, Nutrient	ts, Pathogens, Siltation
Source(s) of Impairment Agriculture, Source Unknow	own, Urban Runoff/Storm Sewers,
TMDL Status Final	Deep Run, Beach Run, and Elizabeth Ru Name <u>Nutrient TMDL</u>
Background/Ambient Data	Data Source
pH (SU)	
Temperature (°F)	
Hardness (mg/L)	
Other:	. <u>.</u>
Nearest Downstream Public Water Supply Intake	
PWS Waters	Flow at Intake (cfs)
PWS RMI	Distance from Outfall (mi)

Changes Since Last Permit Issuance:

Other Comments:

2.3.1 Stormwater

See stormwater section of the report for details on Outfall 003

2.4 Discharge, Receiving Waters and Water Supply Info	ormation
Outfall No. 004	Design Flow (MGD) 0
Latitude <u>40° 26' 41"</u>	Longitude76° 26' 06"
Quad Name	Quad Code
Wastewater Description: Stormwater	
Receiving Waters Deep Run	Stream Code
NHD Com ID 56395999	RMI
Drainage Area 2.0 ac	Yield (cfs/mi²)
Q ₇₋₁₀ Flow (cfs)	Q7-10 Basis
Elevation (ft)	Slope (ft/ft)
Watershed No. 7-D	Chapter 93 Class. WWF
Existing Use	Existing Use Qualifier
Exceptions to Use	Exceptions to Criteria
Assessment Status Impaired	
Cause(s) of Impairment Cause Unknown, Nutrients,	Pathogens, Siltation
Source(s) of Impairment Agriculture, Source Unknow	/n, Urban Runoff/Storm Sewers,
	Deep Run, Beach Run, and Elizabeth Run
TMDL Status Final	Name Nutrient TMDL
Background/Ambient Data	Data Source
pH (SU)	
Temperature (°F)	
Hardness (mg/L)	
Other:	
Nearest Downstream Public Water Supply Intake	
PWS Waters	Flow at Intake (cfs)
PWS RMI	Distance from Outfall (mi)

Changes Since Last Permit Issuance:

Other Comments:

2.4.1 Stormwater

See stormwater section of the report for details on Outfall 004

3.0 Treatment Fa	cility Summary			
Treatment Facility Na	me: Farmers Pride			
WQM Permit No.	Issuance Date			
38899401 A-1	11/25/2013			
	Degree of			Avg Annual
Waste Type	Treatment	Process Type	Disinfection	Flow (MGD)
Industrial	Secondary with Ammonia And Phosphorus	4-stage Badenpho. Activated Sludge	Gas Chlorine	0.90
Hydraulic Capacity	Organic Capacity			Biosolids
(MGD)	(lbs/day)	Load Status	Biosolids Treatment	Use/Disposal
1.20	23,518	Not Overloaded	Aerobic Digestion	Combination of methods

Changes Since Last Permit Issuance: Plant upgrade completed during the past permit cycle for BNR removal

3.1 Treatment Facility

Wastewater treatment process consist of a first stage pretreatment with an aerated flow equalization basin and dissolved air floatation (DAF) cell operated with polymer coagulation/flocculation. DAF sludge is stored in holding tanks prior to hauling offsite. The biological treatment process is the modified 4-stage Bardenpho BNR which consists of 4 tanks arranged to provide anoxic/oxic/anoxic/oxic treatment with nitrate recycle between tank 1 and tank 2. Tanks 1 and 2 are concrete tanks and tanks 3,4 are partitioned in a CMAS tank. Tanks 1 and 3 are anoxic tanks and tanks 2 and 4 are aerobic tanks. Glycerin is used as carbon source to enhance de-nitrification. The biological process is followed by clarification and chlorination using sodium hypochlorite and de-chlorination using sodium bisulfite prior to discharge. Waste activated sludge is sent to an aerobic digester and hauled out periodically for land application by a certified hauler.

4.0 Compliance History

4.1 DMR Data for Outfall 001 (from September 1, 2018 to August 31, 2019)

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Parameter	AUG-19	JUL-19	JUN-19	MAY-19	APR-19	MAR-19	FEB-19	JAN-19	DEC-18	NOV-18	OCT-18	SEP-18
Average Monthly 0.624 0.628 0.668 0.584 0.559 0.58 0.675 0.702 0.576 0.621 0.631 0.681 Flow (MGD) 0.800 0.827 0.835 0.714 0.711 0.741 0.906 0.858 0.766 0.781 0.776 0.835 pH (S.U.) Minimum 6.7 6.5 6.6 6.9 6.6 6.6 6.5 6.7 6.7 6.7 6.7 Maximum 7.5 7.5 7.4 7.4 7.2 7.6 7.4 7.1 7.5 7.4 7.4 7.5 7.4 7.4 7.6 7.4 7.1 7.5 7.4 7.4 7.6 7.4 7.1 7.5 7.4 7.4 7.5 7.4 7.4 7.6 7.4 7.1 7.5 7.4 7.2 6.6 Minimum 7.1 7.0 7.3 7.5 8.1 8.1 8.1 8.2 8.3 8.0 7.2 6.6 </td <td>Flow (MGD)</td> <td></td>	Flow (MGD)												
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Average Monthly	0.624	0.628	0.668	0.584	0.559	0.58	0.675	0.702	0.576	0.621	0.631	0.68
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Flow (MGD)												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Daily Maximum	0.800	0.827	0.835	0.714	0.711	0.741	0.906	0.858	0.76	0.781	0.776	0.85
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	pH (S.U.)												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Minimum	6.7	6.5	6.6	6.9	6.6	6.6	6.5	6.5	6.7	6.7	6.7	6.7
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	pH (S.U.)												
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Maximum	7.5	7.5	7.4	7.4	7.2	7.6	7.4	7.1	7.5	7.4	7.4	7.5
Minimum 7.1 7.0 7.3 7.5 8.1 8.1 8.1 8.2 8.3 8.0 7.2 6.6 TRC (mg/L) 0.02 0.03<	DO (mg/L)												
TRC (mg/L) 0.02 0.03 0.05 0.01 0.05	Minimum	7.1	7.0	7.3	7.5	8.1	8.1	8.1	8.2	8.3	8.0	7.2	6.6
Average Monthly 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.02 0.02 TRC (mg/L) Instant Maximum 0.06 0.06 0.06 0.06 0.05 0.04 0.04 0.03 0.03 0.03 0.03 CBOD5 (lbs/day) Average Monthly < 11	TRC (mg/L)												
TRC (mg/L) Instant Maximum 0.06 0.06 0.02 0.06 0.06 0.05 0.04 0.04 0.03 0.03 0.03 0.03 CBOD5 (lbs/day) 0.03	Average Monthly	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	TRC (mg/L)												
CBOD5 (lbs/day) <th<< td=""><td>Instant Maximum</td><td>0.06</td><td>0.06</td><td>0.02</td><td>0.06</td><td>0.06</td><td>0.05</td><td>0.04</td><td>0.04</td><td>0.03</td><td>0.03</td><td>0.03</td><td>0.03</td></th<<>	Instant Maximum	0.06	0.06	0.02	0.06	0.06	0.05	0.04	0.04	0.03	0.03	0.03	0.03
Average Monthly < 11 < 10 < 12 < 8 < 9 < 39 < 31 < 15 < 17 < 10 < 11 < 13 CBOD5 (lbs/day)	CBOD5 (lbs/day)												
CBOD5 (lbs/day) <th<< td=""><td>Average Monthly</td><td>< 11</td><td>< 10</td><td>< 12</td><td>< 8</td><td>< 9</td><td>< 39</td><td>< 31</td><td>< 15</td><td>< 17</td><td>< 10</td><td>< 11</td><td>< 13</td></th<<>	Average Monthly	< 11	< 10	< 12	< 8	< 9	< 39	< 31	< 15	< 17	< 10	< 11	< 13
Daily Maximum < 13 < 13 19 < 11 < 87 71 26 36 < 12 < 12 < 14 CBOD5 (mg/L) Average Monthly < 2 < 2.5 < 2 < 2.0 7.3 5.3 < 2.8 < 3.3 < 2 < 2 < 2 CBOD5 (mg/L)	CBOD5 (lbs/day)												
CBOD5 (mg/L)	Daily Maximum	< 13	< 13	19	< 11	< 11	87	71	26	36	< 12	< 12	< 14
Average Monthly < 2 < 2.1 < 2.5 < 2 < 2.0 7.3 5.3 < 2.8 < 3.3 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 <td>CBOD5 (mg/L)</td> <td>-</td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td>	CBOD5 (mg/L)	-			_						_		
CBOD5 (mg/L)	Average Monthly	< 2	< 2.1	< 2.5	< 2	< 2.0	7.3	5.3	< 2.8	< 3.3	< 2	< 2	< 2
Daily Maximum < 2 2.3 3.8 < 2 < 2.0 14.4 11.9 6 7.1 < 2 < 2 < 2 < 2	CBOD5 (mg/L)	-			_						_		
	Daily Maximum	< 2	2.3	3.8	< 2	< 2.0	14.4	11.9	6	7.1	< 2	< 2	< 2
	TSS (lbs/day)				. –	10							
Average Monthly < 21 < 22 < 17 < 18 < 44 < 29 < 23 < 21 < 22 < 25	Average Monthly	< 21	< 21	< 22	< 17	< 18	< 44	< 29	< 23	< 21	< 21	< 22	< 25
	TSS (lbs/day)			07			05	40					07
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		< 26	< 26	27	< 22	< 23	65	40	< 26	< 24	< 24	< 23	< 27
	ISS (mg/L)				4	1.0	0.5	4 7	4	4			
Average Monthly < 4 < 4.1 < 4.4 < 4 < 4.0 < 8.5 < 4.7 < 4 < 4 < 4 TOD (mm/l)		< 4	< 4.1	< 4.4	< 4	< 4.0	< 8.5	< 4.7	< 4	< 4	< 4	< 4	< 4
	TSS (mg/L)	. 1	4.4	5.0	. 4	. 1.0	11.0	<u> </u>	. 4	. 4	. 4	. 4	. 4
Daily Maximum <4 4.4 5.6 <4 <4.0 11.6 6.8 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <td></td> <td>< 4</td> <td>4.4</td> <td>0.0</td> <td>< 4</td> <td>< 4.0</td> <td>11.0</td> <td>0.8</td> <td>< 4</td> <td>< 4</td> <td>< 4</td> <td>< 4</td> <td>< 4</td>		< 4	4.4	0.0	< 4	< 4.0	11.0	0.8	< 4	< 4	< 4	< 4	< 4
Oll and Grease	Oil and Grease	. 00	. 05	. 07	. 04	. 07	. 07	. 24	. 20	. 00	. 07	. 07	. 20
(IDS/0dy) Ave. Monthly <26 <25 <27 <24 <27 <31 <29 <28 <27 <30	(IDS/day) Ave. Monthly	< 20	< 25	< 21	< 24	< 21	< 21	< 31	< 29	< 28	< 21	< 21	< 30
Oil allu Olease	(lbs/day) Daily May	- 32	- 33	- 32	< 20	12	- 31	< 36	- 32	< 30	< 30	< 20	24
(113/143/) Daily Ivian < 32 < 33 < 32 < 29 42 < 31 < 30 < 32 < 30 < 29 34	(ius/udy) Daily WdX	< 32	< 33	< 32	< 29	42	< 31	< 30	< ۲۲	< 30	< 30	< 29	34
Oli allu Glease (Illy/L)	Average Monthly	~ 5 0	~ 5 0	~ 5 0	~ 5 0	~ F 0	~ 5 0	~ 5 0	~ 5.0	~ 5 0	~ 5 0	~ 5 0	< F 2
Average initiality < 3.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0	Oil and Grosso (mg/L)	< 5.0	< 0.0	< 5.0	< 0.0	< 0.0	< 0.2	< 0.0	< 0.0	< 5.0	< 0.0	< 0.0	< 0.2
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Daily Maximum	~ 5 0	~ 5 2	~ 5 0	~ 5 0	8.2	~ 5 9	~ 5 0	- 5 1	~ 5 1	~ 5 0	~ 5.0	56

NPDES Permit No. PA0035157

NPDES Permit Fact Sheet Farmers Pride Poultry

Fecal Coliform												
Geometric Mean	194	< 30	9	20	< 4	50	571	15	22	22	< 3	17
Fecal Coliform												
(CFU/100 ml)												
Daily Maximum	3600	1400	254	104	71	168	577	140	40	136	< 94	36
Nitrate-Nitrite (mg/L)												
Average Monthly	4.38	2.4	5.69	2.99	3.65	3.54	3.2	4.79	2.33	2	< 1.95	1.29
Nitrate-Nitrite (lbs)												
Total Monthly	713	378	834	410	451	554	526	843	381	301	< 321	242
Total Nitrogen												
(lbs/day) Ave. Monthly	29.425	19.8	37.55	18.45	< 20.06	31.65	31.9	62.2	19.0	17.08	< 19	15.15
I otal Nitrogen	05.0	00 F	47 7			40.4		400		05.0		40.0
(Ibs/day) Daily Max.	35.3	29.5	47.7	36.2	26.6	42.4	41.1	186	32.0	25.8	22.3	18.6
Total Nitrogen (mg/L)	F F 0	2.01	7.00	4.04	. 4 75	6.00	E 4	10.45	2.0	2.22	. 2 55	0.4
Total Nitrogon (mg/L)	5.58	3.91	7.62	4.31	< 4.75	0.22	5.4	10.45	3.0	3.33	< 3.55	2.4
Daily Maximum	5 97	5 38	9.53	6 68	8 20	7 87	8 08	28.02	6.24	1 51	1 21	2.76
Total Nitrogen (lbs)	5.97	5.50	9.00	0.00	0.29	1.01	0.00	20.92	0.24	4.54	4.21	2.70
Effluent Net 												
Total Monthly	911.5	615.9	1126.2	571.9	< 601 6	981.3	894 8	1941 4	589 4	512.6	< 590.2	453 7
Total Nitrogen (lbs)	01110	01010	1120.2	01110	100110	00110	00110	10111	00011	01210	000012	10011
Total Monthly	911.5	615.9	1126.2	571.9	< 601.6	981.3	894.8	1941.1	589.4	512.6	< 590.2	453.7
Ammonia (lbs/day)												
Average Monthly	< 0.5	< 0.5	< 0.5	< 0.4	< 0.5	< 0.5	< 0.6	< 0.06	< 1.5	< 0.5	< 0.8	< 0.6
Ammonia (lbs/day)												
Daily Maximum	< 0.7	< 0.6	< 0.6	< 0.5	< 0.6	< 0.6	< 0.8	< 0.06	4.2	< 0.6	< 1.9	< 0.7
Ammonia (mg/L)												
Average Monthly	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.10	< 0.3	< 0.1	< 0.15	< 0.10
Ammonia (mg/L)												
Daily Maximum	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.10	0.88	< 0.1	0.34	< 0.10
Ammonia (lbs)	10.1	45.0	447	10.0	10.7	45.5	474	475			05.0	40.0
	< 16.4	< 15.6	< 14.7	< 12.8	< 13.7	< 15.5	< 17.1	< 17.5	< 45.5	< 15.5	< 25.2	< 18.9
TKN (mg/L)	1 10	1 5 1	1.04	1 2 2	- 1 11	2 69	2.2	5 66	1 07	1 22	16	1 1 1
	1.19	1.51	1.94	1.52	< 1.11	2.00	2.2	5.00	1.27	1.33	1.0	1.11
Total Monthly	198	238	292	162	~ 151	427	369	1098	208	211	269	212
Total Phosphorus	150	200	252	102	< 101	721	303	1030	200	211	205	212
(lbs/dav) Ave Monthly	1.0	3.64	3.01	< 1 15	0.9	2.17	1,97	0.8	< 0.8	2.12	1,69	1.38
Total Phosphorus		0.01	0.01		0.0			0.0	1 010			
(lbs/day) Daily Max	1.6	7.1	4.6	2.8	1.5	3.2	3.4	0.9	1.1	5.4	2.5	1.7
Total Phosphorus	-		-	-	-			-			-	
(mg/L) Ave. Monthly	0.18	0.74	0.63	< 0.42	0.21	0.43	0.34	0.13	< 0.15	0.41	0.32	0.22
Total Phosphorus												
(mg/L) Daily Max	0.24	1.36	0.98	1.31	0.34	0.53	0.57	0.15	0.22	0.9	0.48	0.3

NPDES Permit Fact Sheet Farmers Pride Poultry

Total Phosphorus (lbs) Effluent Net 												
Total Monthly	30.9	112.9	9.040	< 35.7	27.52	67.2	55.2	23.3	< 24.5	66.2	52.4	41.5
Total Phosphorus (lbs)												
Total Monthly	30.90	112.85	90.40	< 35.73	27.52	67.21	55.19	23.32	< 24.46	66.25	52.36	41.53

4.1.1 DMR Data for Outfall 003 (from September 1, 2018 to August 31, 2019)

Parameter	AUG-19	JUL-19	JUN-19	MAY-19	APR-19	MAR-19	FEB-19	JAN-19	DEC-18	NOV-18	OCT-18	SEP-18
pH (S.U.)												
Minimum			6.97						7.08			
pH (S.U.)												
Instantaneous												
Maximum			6.97						7.08			
CBOD5 (mg/L)												
Instantaneous												
Maximum			63.6						51.3			
COD (mg/L)												
Instantaneous												
Maximum			121						91.2			
TSS (mg/L)												
Instantaneous												
Maximum			58.7						66.0			
Oil and Grease (mg/L)												
Instantaneous												
Maximum			< 5.0						< 5.0			
Fecal Coliform												
(CFU/100 ml)												
Instantaneous												
Maximum			665						> 20000			
TKN (mg/L)												
Instantaneous												
Maximum			13.5						12.5			
Total Phosphorus												
(mg/L)												
Instantaneous												
Maximum			1.73						1.49			
Dissolved Iron (mg/L)												
Instantaneous												
Maximum			0.076						0.118			

4.2 Effluent Violations for Outfall 001, from: October 1, 2018 To: August 31, 2019

Parameter	Date	SBC	DMR Value	Units	Limit Value	Units
Fecal Coliform	02/28/19	Geo Mean	571	CFU/100 ml	400	CFU/100 ml
Fecal Coliform	03/31/19	Geo Mean	571	CFU/100 ml	400	CFU/100 ml
Fecal Coliform	07/31/19	Daily Max	1400	CFU/100 ml	400	CFU/100 ml
Fecal Coliform	08/31/19	Daily Max	3600	CFU/100 ml	400	CFU/100 ml
Fecal Coliform	02/28/19	Daily Max	577	CFU/100 ml	400	CFU/100 mI
Fecal Coliform	03/31/19	Daily Max	577	CFU/100 ml	400	CFU/100 mI
Total Phosphorus	07/31/19	Avg Mo	0.74	mg/L	0.50	mg/L
Total Phosphorus	06/30/19	Avg Mo	0.63	mg/L	0.50	mg/L
Total Phosphorus	07/31/19	Daily Max	1.36	mg/L	1.0	mg/L
Total Phosphorus	05/31/19	Daily Max	1.31	mg/L	1.0	mg/L

4.2.1 Effluent Violations

The facility had numerous effluent violations for Fecal Coliform and Total Phosphorus as shown on the table above. The violation appears to be operation related. The violations need to be addressed satisfactorily prior to final permit issuance. The following paragraph will be added to the cover letter of the draft permit asking the permittee to address violations.

"According to DEP's records, there are unresolved violation(s) at one or more facilities you own or operate. In accordance with DEP's Clean Water Program standard operating procedures, an applicant's compliance history is considered prior to making a final decision on any permit application. Please take the opportunity to address these violations during this draft comment period. DEP may not be able to issue a final permit until the violation(s) are resolved"

The violations appear to be operation related, if structural adjustment to the treatment unit is required to address the violations, the facility will be required to submit a corrective action plan to the Department for approval.

4.3 Inspection Report Summary

The facility was inspected 11I times during the past permit cycle. Inspection reports indicates the upgraded facility is operated and maintained well. TRC, Fecal Coliform and Total Nitrogen violations were noted during plant inspections. In addition, two instances of unpermitted discharges were documented. Good housekeeping was recommended.

5.0 Development of Effluent Limitations

Outfall No.	001	Design Flow (MGD)	.9
Latitude	40º 26' 41.82"	Longitude	-76º 26' 6.14"
Wastewater D	Description: IW Process Effluent with ELG		

5.1 Basis for Effluent Limitations

In general, the CWA requires that the effluent limits for a particular pollutant be the more stringent of either technologybased limits or water quality-based limits. Technology-based limits are set according to the level of treatment that is achievable using available technology. A water quality-based effluent limit is designed to ensure that the water quality standards applicable to a waterbody are being met and may be more stringent than technology-based effluent limits.

5.2 Technology-Based Limitations

Discharges from poultry processors are regulated under 40 CFR 432 (effective date October 8, 2004) that presents production-based effluent limits in mg/l for existing and new sources. Based on production rate information in the renewal application, 23,204,472 lb LWK/month or 242,369,900 lb LWK/yr) the discharge is considered to be an existing point source that slaughters more than 100,000,000 lb LWK/yr, and thus Section 432.112 (BPT) and 432.113 (BAT) are applicable. The following table presents the BPT/BAT limits that are applicable to outfall 001. The limits from 40 CFR 432 must be included in the permit unless water quality based effluent limits (WQBELs) are more stringent.

	SUMMARY OF BAT LIMITS	
Pollutant	Effluent Co (m	ncentrations ng/l)
	Average Monthly	Maximum Daily
BOD ₅	16	26
TSS	20	30
Oil & Grease	8	14
NH ₃ -N	4	8
Total N	103	147
Fecal Coliform	Maximum	of 400/100ml

5.3 Water Quality-Based Limitations

5.3.1 Receiving Stream

The receiving stream is the Deep Run. According to 25 PA § 93.90, this stream is protected for Warm Water Fishes (WWF) and Migratory Fishes (MF). It is located in Drainage List o and State Watershed 7-D. It has been assigned stream code 09896. Deep Run is impaired for DO and nutrients with a TMDL finalized. The TMDL is discussed in the TMDL section of the report below.

5.3.2 TMDLs for Deep Run, Beach Run, and Elizabeth Run

Two TMDLs were finalized on 8/9/2004 for Nutrient and Sediment. The nutrient TMDL allocated a DO of 5.0 mg/l, BOD of 10.0 mg/l and 2,735lbs/year Total Phosphorus and the sediment TMDL allocated 68,600 lbs/year (34.3 tons/yr) of sediments to Farmer's Pride. The most stringent limit between the TMDL, TBELs and WQBELs will apply to the permit.

5.3.3 Streamflows

Streamflows for the water quality analysis were determined by correlating with the yield of USGS gauging station No 01573000 on Swatara Creek at Harper Tavern. The Q_{7-10} and drainage area at the gage is 22.1ft3/s and 337 mi² respectively. The resulting yields are as follows:

- Q₇₋₁₀ = (22.1ft³/s)/337 mi² = 0.0656ft³/s/ mi²
- $Q_{30-10} / Q_{7-10} = 1.40$
- $Q_{1-10} / Q_{7-10} = 0.80$

The drainage area at discharge is calculated by USGS streamStats = 1.43 mi²

The Q_{7-10} at discharge = 1.43 mi² x 0.0656ft³/s/mi² = 0.09 ft³/s.

5.3.4 NH₃N calculations

 $NH_{3}N$ calculations will be based on the Department's Implementation Guidance of Section 93.7 Ammonia Criteria, dated 11/4/97 (ID No. 391-2000-013). The following data is necessary to determine the instream $NH_{3}N$ criteria used in the attached computer model of the stream:

- * Discharge pH = 7.0 (Default)
- * Discharge Temperature = 25° C (Default)
- * Stream pH = 7.0(Default)
- * Stream Temperature = 20° C (Default)
- * Background NH_3 -N = 0.0 (default

5.3.5 CBOD₅

WQM7.0 was used to calculate WQBELs for CBOD5 and NH3-N for Farmer's Pride on Deep Run. The discharge from Hain Pure Protein (formerly BC Natural) was modelled together with Farmers Pride's discharge due to their proximity to each other. The attached model results of the WQM 7.0 stream model (attachment C) indicates a water quality limit of 18.26 mg/l monthly average for CBOD₅ is adequate to protect the water quality of the stream, but TMDL limit of 10 mg/l BOD is more stringent than the water quality limit and the ELG and will be used in the renewed permit. This limit is consistent with the existing permit. Permit Writers Manual specifies that mass loadings are appropriate for industrial discharges with water quality-based limits (Table 5-2, 10/1/97 Edition).

The mass-based limits are expressed in pounds per day and are calculated as follows:

Mass based limit (lb/day) = concentration limit (mg/L) × design flow (mgd) × 8.34

Mass based average monthly limit for CBOD₅ (lb/day) = $10mg/L \times 0.9 mgd \times 8.34 = 75.1$

Mass based daily maximum for CBOD₅ (lb/day) = 20mg/L × 0.9 mgd × 8.34 = 150

<u>5.3.6</u> <u>NH₃-N</u>

The attached model results of the WQM 7.0 stream model (attachment C) also indicates that a summer limit of 1.5 mg/l NH_3 as a monthly average is necessary to protect the aquatic life from toxicity effects. This limit is more stringent that the ELG but less stringent that the existing permit limit of 1 mg/l. Therefore, the existing limit will remain in the permit due to antibacksliding restrictions. Maximum daily limits are two times the average monthly limits and winter months limits are three times the summer months limits. Mass based limits are expressed in pounds per day and are calculated as follows:

Mass based average monthly (lb/day) for the summer months for $NH_3-N = 1 (mg/L) \times 0.9(mgd) \times 8.34 = 7.5$

Mass based daily maximum (lb/day) for the summer months for $NH_3-N = 2 (mg/L) \times 0.9 (mgd) \times 8.34 = 15$

Mass based average monthly (lb/day) for winter months for NH₃-N = 3 (mg/L) × 0.9(mgd) × 8.34 = 22.5

Mass based daily maximum (lb/day) for winter months for $NH_3-N = 6 (mg/L) \times 0.9 (mgd) \times 8.34 = 45$

5.3.7 Dissolved Oxygen

The existing permit has a limit of 5 mg/l for Dissolved Oxygen (DO) based on TMDL and minimum DO criteria for the stream. There is no change in TMDL, and minimum DO criteria for the receiving stream, so the existing limit will be continued in the current permit renewal. with a daily monitoring requirement per DEP guidance.

5.3.8 Total Suspended Solids:

Because this is an industrial wastewater and not sewage conventional secondary treatment standards of 30 mg/l are not applicable. The ELG provides maximum day concentration limit of 20 mg/l, however, DEP and Farmer's Pride have agreed that a TSS average monthly water quality limit of 10 mg/l will be used as a final average monthly permit limit to better assure

restoration of the Deep Run basin. Permit Writers Manual specifies that mass loadings are appropriate for industrial discharges with water quality-based limits (Table 5-2, 10/1/97 Edition). The TMDL approve for Deep Run does provide a total annual load limit of 68,600 lbs/year (which is equivalent to 25 mg/l per month) is far more than the 27396.9 lbs/yr that will result from the proposed average monthly limit of 10 mg/l, no need to write the annual TMDL load for TSS in the permit.

5.3.9 Fecal Coliform:

25 PA code § 92a.47(a)(4) requires a summer technology limit of 200/100 ml as a geometric mean and § 92a.47(a)(5) requires a winter limit of 2,000/100ml as a geometric mean for Fecal Coliform. However, 40 CFR 432 requires a maximum daily limit of 400/100 ml, which will be required in the permit as a winter geometric mean since it's more stringent than 2,000/100ml. Therefore, a summer limit of 200/100 ml and a winter limit of 400/100 ml as a geometric mean, and a maximum daily limit of 400/100 ml for both seasons will be required in the permit.

5.3.10 Chesapeake Bay Strategy:

In 2003, EPA established state-wide cap loads for Total Nitrogen and Total Phosphorus for Pennsylvania that are needed to ensure compliance with new water quality standards enacted to restore the water quality of the Chesapeake Bay. DEP released Pennsylvania's Chesapeake Bay Tributary Strategy (CBTS) in January of 2005 to guide Pennsylvania's efforts to meet those cap loads and made revisions to the Strategy in 2006-2007 following a stakeholder process. Industrial discharges have been prioritized by Central Office based on their delivered TN loadings to the Bay. Significant industrial wastewater dischargers are facilities that discharge more than 75 lbs/day of TN or 25 lbs/day of TP on an average annual basis and the rest are classified as non-significant dischargers. The determination of cap loads for significant industrial dischargers is divided into five categories. First would be those facilities that had reductions before the 2002 loads were calculated; second would be those facilities that submitted a Nutrient Reduction Evaluation (NRE) and reduced their nutrient loads between 2002 and 2009; third would be those facilities that submitted an NRE and are planning to reduce nutrient loads through upgrades to operation or construction of their treatment plants; fourth would be those facilities that are already at low levels of nutrient loads; and fifth would be those facilities that did not submit an NRE or submitted an NRE but did not plan to reduce nutrient loads. New and expanding industrial dischargers will submit report on how they will address any associated nutrient loadings. Non-significant IW dischargers will be required to monitor and report the nitrogen series (TKN and NO₂+NO₃-N) and Total Phosphorus using a monitoring frequency that is dependent on quantity and type of discharge. This facility is classified as significant, submitted NRE and proposed and completed upgrade the treatment facility and has been discharging well below the allotted cap load loads of 16,438lbs/yr TN and 1,370lb/yr TP respectively.

The permittee is allowed to transfer excess credit from this facility as offset to comply with the cap load of a second facility with permit number PA0266345 owned by the permittee and related parties. This was discussed with central office staff and they concurred and advised that a language should be in the permit that acknowledges the transfer. There is a language in Part C.I.D.5 of the permit that acknowledges transfer of offsets between the two facilities.

5.3.11 Total Phosphorus:

The TMDL specifies an annual load of 2,735.7 lbs of phosphorus. The Bay limit of 1,370lbs/yr for TP is more stringent, will be included in the renewed permit. Neither the proposed Bay strategy nor the TMDL specifies a concentration limit however DEP and Farmers Pride have agreed that a TP average monthly concentration of 0.5 mg/l with corresponding mass limit will be used as final permit limits to better assure restoration of the Deep Run basin.

5.3.12 Total Nitrogen (TN):

There is no water quality criterion for TN, the technology limits of 103mg/l monthly average and 147mg/l daily maximum TN applicable to poultry processing facilities required in 40 CFR 432 will apply with a weekly monitoring frequency.

5.3.13 Total Residual Chlorine:

The TRC model utilizes the equations and calculations as presented in the Department's 2003 Implementation Guidance for Residual Chlorine (TRC) (ID # 391-2000-015) for developing chlorine limitations. The attached TRC results indicates that an average monthly water quality limit of 0.02 mg/l and 0.05mg/l IMAX would be needed to prevent toxicity concerns. This is consistent with the existing permit and the permit is complying with the limit. The current detection limit for TRC is 0.02mg/l. Therefore, the condition regarding reporting of MDL no longer applies to the permit.

5.3.14 Oil and Grease

The existing limit of 8 mg/l monthly average and 16 mg/l maximum daily based on ELG with monitor and report for mass limits will remain in the permit. The Permit Writers Manual specifies that mass loadings are to be monitored and reported for industrial discharges with tech-based concentration limits (Table 5-2, 10/1/97 Edition). In addition to this technology-based numerical effluent limits, narrative water quality-based limits for oil and grease, such as prohibiting visible sheening, are included in the permit.

<u>5.3.15 pH</u>

Following PA code 25 § 95.2, a pH of not less than 6 and not greater than 9, will be required in the permit for this industrial waste discharge with daily monitoring requirement.

5.3.16 Toxics Limits

A reasonable potential (RP) analysis was done for pollutant Groups submitted with the application. All pollutants detected in the application sampling were entered into the Toxics Screening Analysis spreadsheet (attachment E) to determine if any pollutants were candidates for PENTOXSD modeling. Total Cadmium and Total Copper were determined to be pollutant of concern however, Total Cadmium was reported as non-detect using a less sensitive method. The permittee was offered an opportunity to re-sample Total Cadmium using DEP's target QL. The permittee resubmitted 3 samples of Total Cadmium and 7 samples of Total Copper analyzed using DEP's target QL. When the resubmitted data for Total Cadmium and average of the 7 data submitted for Total Copper were added to the screening spreadsheet, Total Cadmium was no longer a pollutant of concern. Total Copper was entered into PENTOXSD model for analysis. Default hardness of 100 mg/l was used as input for background hardness and discharge hardness of 183 mg/l was taken from permit application. The most stringent WQBELs recommended by the PENTOXSD model presented in attachment D was then entered into the same Toxics Screening Analysis spreadsheet in order to determine if limitation or monitoring was necessary. A monthly average limit of 0.016 mg/l was recommended for Total Copper. See the Toxic screenings spreadsheet presented in attachment E for details. A pre-draft permit survey response from the permittee indicates, the permittee would not be able to meet recommended limit. Since the model was run with default values, the draft permit is written to require weekly monitoring in the interim, and offered the permittee an opportunity to collect data to refine the PENTOXSD model and /or conduct Toxic Reduction Evaluation study/conduct a site-specific study for copper in to comply comply with the limit by the end of the permit term. See part C of the permit for details.

The recommended limit follows the logic presented in DEPs SOP, to establish limits in the permit where the maximum reported concentration exceeds 50% of the WQBEL, or for non-conservative pollutants to establish monitoring requirements where the maximum reported concentration is between 25% - 50% of the WQBEL, or to establish monitoring requirements for conservative pollutants where the maximum reported concentration is between 10% - 50% of the WQBEL

5.3.17 Chemical Additives

Boiler blowdown and cleaning chemicals are discharged with process wastewater into the treatment plant, and the current permit lists chemicals and usage rates approved for the facility. The pending application listed chemicals that appear different from the list in the permit. The permittee is currently updating the chemical additives lists. The permittee was informed that any new chemical additive or proposed increase in any approved chemical additive will need to be approved by DEP prior to usage. The permittee will continue using the chemical additives in the existing permit and get news one approved in accordance with DEP chemical additive approval process. The new chemical additive condition that lays out the chemical approval process is added to Part C of the permit.

5.0 Other Requirements

5.1 Anti-backsliding

Not applicable to this permit

5.2 Stormwater:

Two stormwater outfalls 003 and 004 are identified in the current permit but only one outfall 003 is listed in the renewal application. Outfall 002 which used to receive overflow from storm water pumping station No. 2 has been abandoned when a new building was constructed in the area that drains to pumping station No. 2 and removed from the permit during the last permit renewal. Another outfall pipe was discovered by the facility inspector, and upon investigation by the permittee, the outfall receives stormwater from the parking lot area and from a drainage ditch from the local neighborhood around the live sheds. The new outfall will be named Outfall 002 with coordinates 40° 26' 42.12"/76° 26' 6.01". Outfall 003 (40° 26' 45"/76° 26' 05") receives overflow from storm water pumping station No.1. This station receives drainage from the live receiving area (manure and feathers) and ice melt (blood) from the dress truck shipping area. The first flush of contaminated runoff is conveyed to the wastewater treatment plant, while the remaining flow is discharged through the overflow through outfall 003. Outfall 004 (40° 26' 41"/76° 26' 06") receives flow from the paved and unpaved areas of the treatment plant.

Poultry processing facilities fall under SIC code 2015. The requirements in Appendix I of the current PAG 03 applies. The permittee shall monitor and report analytical results for the parameters listed below on Discharge Monitoring Reports (DMRs) for outfalls 002 and 003. The benchmark values listed on the table are not effluent limitations, and exceedances do not constitute permit violations. However, if the permittee's sampling demonstrates exceedances of benchmark values for two consecutive monitoring periods, the permittee shall submit a corrective action plan within 90 days of the end of the monitoring period triggering the plan. Outfall 004 will be managed per stormwater monitoring requirements in Part C of the permit.

Parameter	Minimum Measuring Frequency	Sample Type (mg/l)	Benchmark Values
pH (S.U.)	1 / 6months	Grab	XXX
BOD ₅	1 / 6months	Grab	XXX
TSS	1 / 6months	Grab	100
COD	1 / 6months	Grab	120
NO ₃ +NO ₂ -N	1 / 6months	Grab	XXX
Oil & Grease	1 / 6months	Grab	30
TKN*	1 / 6months	Grab	XXX
Total Phosphorus*	1 / 6months	Grab	XXX

*In addition, the Chesapeake Bay Strategy requires storm water to be monitored for the nitrogen series and TP. Semiannual monitoring of TKN and Total Phosphorus have been added to Appendix I parameters.

5.3 Best Management Practices (BMPs)

In addition to general BMPs, the permittee shall implement the following BMPs that may be applicable to SIC codes 2077 and 2015.

- Store all dry raw materials, additives and products in enclosed/covered areas; install dust collection and control system for silos, holding bins, etc.
- Store liquids in tanks with secondary containment and lead detection, where appropriate.
- Minimize raw water usage for washing products and raw materials; recycle wash water to the maximum extent practicable.
- Practice good housekeeping to limit spillage/leakage of residue and provide for prompt clean-up; dispose of rotting
 products promptly.
- Manage inventories to ensure only short-term supplies of raw materials and products are stored on-site.
- Limit use of pesticides, insecticides and rodenticides to the maximum extent possible; apply during dry conditions; investigate non (or least) hazardous alternatives.

- Wherever possible, enclose/cover animal holding areas; install run-on controls and collect and treat run-off, as appropriate.
- Practice good housekeeping by containing and promptly removing and managing animal manure

5.4 Anti-Degradation (93.4)

The effluent limits for this discharge have been developed to ensure that existing instream water uses and the level of water quality necessary to protect the existing uses are maintained and protected. No High-Quality Waters are impacted by this discharge. No Exceptional Value Waters are impacted by this discharge.

5.5 Class A wild Trout Fisheries

No Class A Wild Trout Fisheries are impacted by this discharge.

5.6 303d Listed Streams:

The discharge is located on a stream segment that is impaired. The impairment is due to several factors: industrial point source (suspended solids); municipal point source (nutrients) and agriculture (nutrients and suspended solids). The Elizabeth-Deep-Beach Run watershed receives significant loads of pollutants from a municipal sewage plant, three poultry processing plants, a rendering plant, and various non-point sources. A TMDL was approved for this watershed. The TMDL sets the following effluent parameters for Farmers Pride: Phosphorus 2,735.7lbs/yr, D.O 5mg/l, BOD 10mg/l and TSS 34.3 tons/yr (68,600 lbs/yr)

5.7 Basis for Effluent and Surface Water Monitoring

Section 308 of the CWA and federal regulation 40 CFR 122.44(i) require monitoring in permits to determine compliance with effluent limitations. Monitoring may also be required to gather effluent and surface water data to determine if additional effluent limitations are required and/or to monitor effluent impacts on receiving water quality. The permittee is responsible for conducting the monitoring and for reporting results on Discharge Monitoring Reports (DMRs).

5.8 Effluent Monitoring

Monitoring frequencies are based on the nature and effect of the pollutant, as well as a determination of the minimum sampling necessary to adequately monitor the facility's performance. Permittees have the option of taking more frequent samples than are required under the permit. These samples can be used for averaging if they are conducted using EPA-approved test methods (generally found in 40 CFR 136) and if the Method Detection Limits are less than the effluent limits. The sampling location must be after the last treatment unit and prior to discharge to the receiving water. If no discharge occurs during the reporting period, "no discharge" shall be reported on the DMR.

6.0 Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

			Effluent L	imitations			Monitoring Re	quirements
Deremeter	Mass Units	s (Ibs/day) ⁽¹⁾		Concentrat	ions (mg/L)		Minimum ⁽²⁾	Required
Farameter	Average Monthly	Daily Maximum	Minimum	Average Monthly	Daily Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report	xxx	xxx	XXX	ххх	Continuous	Measured
pH (S.U.)	XXX	XXX	6.0 Daily Min	xxx	9.0	xxx	1/day	Grab
DO	ХХХ	XXX	6.0 Daily Min	XXX	XXX	XXX	1/day	Grab
TRC	ХХХ	XXX	XXX	0.02	XXX	0.06	1/day	Grab
CBOD5	75	150	xxx	10	20	25	1/week	24-Hr Composite
TSS	75	150	xxx	10	20	25	1/week	24-Hr Composite
Oil and Grease	Report	Report	XXX	8.0	14	30	1/week	24-Hr Composite
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	xxx	XXX	XXX	400 Geo Mean	400	ххх	1/week	Grab
Fecal Coliform (No./100 ml) May 1 - Sep 30	ххх	XXX	XXX	200 Geo Mean	400	xxx	1/week	Grab
Total Nitrogen	Report	Report	XXX	103	147	257	1/month	Calculation
Ammonia Nov 1 - Apr 30	22.5	45	xxx	3.0	6.0	7.5	1/week	24-Hr Composite
Ammonia May 1 - Oct 31	7.5	15	XXX	1.0	2.0	2.5	1/week	24-Hr Composite
Total Phosphorus	3.8	7.5	xxx	0.50	1.0	1.25	1/week	24-Hr Composite
Total Copper	Report	Report	XXX	Report	Report	XXX	1/week	24-Hr Composite

Compliance Sampling Location: Outfall 001

6.1 Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, to comply with Pennsylvania's Chesapeake Bay Tributary Strategy.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date

			Effluent L	imitations			Monitoring Re	quirements
Paramotor	Mass Units	(lbs/day) ⁽¹⁾		Concentrat	tions (mg/L)		Minimum ⁽²⁾	Required
Falameter	Monthly	Annual	Monthly	Monthly Average	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
								24-Hr
AmmoniaN	Report	Report	XXX	Report	XXX	XXX	2/week	Composite
								24-Hr
KjeldahlN	Report	XXX	XXX	Report	XXX	XXX	2/week	Composite
								24-Hr
Nitrate-Nitrite as N	Report	XXX	XXX	Report	XXX	XXX	2/week	Composite
Total Nitrogen	Report	Report	XXX	Report	XXX	XXX	1/month	Calculation
								24-Hr
Total Phosphorus	Report	Report	XXX	Report	XXX	XXX	2/week	Composite
Net Total Nitrogen	Report	16,438	XXX	XXX	XXX	XXX	1/month	Calculation
Net Total Phosphorus	Report	1370	xxx	xxx	xxx	xxx	1/month	Calculation

Compliance Sampling Location: at Outfall 001

6.2 Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfalls 002 & 003, Effective Period: Permit Effective Date through Permit Expiration Date.

			Effluent L	imitations			Monitoring Red	quirements
Paramotor	Mass Units	(lbs/day) ⁽¹⁾		Concentrat	ions (mg/L)		Minimum ⁽²⁾	Required
pH (S.U.) CBOD5 COD TSS	Average Monthly	Average Weekly	Minimum	Average Monthly	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
			Report					<u> </u>
pH (S.U.)	XXX	XXX	Inst Min	XXX	XXX	Report	1/6 months	Grab
CBOD5	xxx	XXX	XXX	xxx	XXX	Report	1/6 months	Grab
COD	XXX	XXX	xxx	XXX	xxx	Report	1/6 months	Grab
TSS	xxx	XXX	XXX	XXX	XXX	Report	1/6 months	Grab
Oil and Grease	xxx	XXX	XXX	XXX	XXX	Report	1/6 months	Grab
Fecal Coliform (No./100 ml)	xxx	XXX	XXX	XXX	XXX	Report	1/6 months	Grab
ТКМ	xxx	XXX	xxx	xxx	xxx	Report	1/6 months	Grab
Total Phosphorus	XXX	XXX	xxx	XXX	xxx	Report	1/6 months	Grab
Dissolved Iron	XXX	XXX	XXX	XXX	XXX	Report	1/6 months	Grab

Compliance Sampling Location: At Outfalls 002 & 003

7.0 Tools	and References Used to Develop Permit
	WQM for Windows Model (see Attachment B)
	PENTOXSD for Windows Model (see Attachment)
	TRC Model Spreadsheet (see Attachment D)
	Temperature Model Spreadsheet (see Attachment)
\square	Toxics Screening Analysis Spreadsheet (see Attachment C)
\square	Water Quality Toxics Management Strategy, 361-0100-003, 4/06.
\square	Technical Guidance for the Development and Specification of Effluent Limitations, 362-0400-001, 10/97.
	Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 362-2000-008, 11/96.
	Technology-Based Control Requirements for Water Treatment Plant Wastes, 362-2183-003, 10/97.
	Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 362-2183-004, 12/97.
	Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03.
\boxtimes	Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 391-2000-002, 4/97.
\boxtimes	Determining Water Quality-Based Effluent Limits, 391-2000-003, 12/97.
\boxtimes	Implementation Guidance Design Conditions, 391-2000-006, 9/97.
\boxtimes	Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen, Version 1.0, 391-2000-007, 6/2004.
	Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 391-2000-011, 5/2004.
	Implementation Guidance for Section 93.7 Ammonia Criteria, 391-2000-013, 11/97.
	Implementation Guidance Total Residual Chlorine (TRC) Regulation, 391-2000-015, 11/1994.
	Implementation Guidance for Temperature Criteria, 391-2000-017, 4/09.
\boxtimes	Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 391-2000-018, 10/97.
	Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 391-2000-019, 10/97.
	Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 391-2000-021, 3/99.
	Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 391-2000-022, 3/1999.
\boxtimes	Design Stream Flows, 391-2000-023, 9/98.
	Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 391-3200-013, 6/97.
\boxtimes	Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07.
\square	SOP: Establishing Effluent limitations for industrial wastewater
	Other:

8. Attachment

A. Topographical Map

B. WQM Model Results

		11.54		nuent Linnes	•			
	SWP Basin	Stream Code		Stream Name				
	07D	9896		DEEP RUN				
RMI	Name	Permi Numbo	Disc t Flow er (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)	
0.760	Farmers Price	le PA0035	157 0,900	CBOD5	18.26			
				NH3-N	1.57	3.14		
				Dissolved Oxygen			5	
RMI	Name	Permi Numbe	Disc t Flow er (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)	
0.190	Hain Pure Pro	ot. PA0080	705 0.750	CBOD5	13.96			
•				NH3-N	1.59	3.18		
				Dissolved Oxygen			5	

WQM 7.0 Effluent Limits

Thursday, October 31, 2019

Version 1.0b

Input Data WQM 7.0

	SWF Basi	' Strea n Coo	am le	Stre	am Name		RMI	Ele [,]	vation (ft)	Drainage Area (sq mi)	Slope (ft/ft)	PWS Withdrawal (mgd)	Apply FC
	07D	- 98	896 DEEP	RUN			0.76	50	460.00	1.43	0.00000	0.00	\checkmark
,					Si	tream Da	ta						-
Design	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	<u>Tributary</u> p pH	Tem	<u>Stream</u> p pH	
oona.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(⁰C))	(°C))	
Q7-10	0.056	0.00	0.00	0.000	0.000	0.0	0.00	0.0	0 20	0.00 7.0	0 20	0.00 0.00	
Q1-10		0.00	0.00	0.000	0.000								
Q30-10		0.00	0.00	0.000	0.000								

		Dis	charge D	ata				
	Name	Permit Number	Existing Disc Flow (mgd)	Permitted Disc Flow (mgd)	Design Disc Flow (mgd)	Reserve Factor	Disc Temp (ºC)	Disc pH
F	Farmers Pride	PA0035157	0.9000	0.9000	0.9000	0.000	25.00	6.90
		Par	ameter D	ata				
	Da	rameter Name	Dis Co	c Trib no Con	o Stre no Co	am Fai onc Co	te ef	
	r a:	Idilietel Indille	. (mg	/L) (mg/	/L) (mg	g/L) (1/da	ays)	
	CBOD5		2!	5.00 2	2.00	0.00	1.50	
	Dissolved Ox	kygen	4	5.00 8	3.24	0.00	0.00	
	NH3-N		2	5.00 0).00	0.00	0.70	

Thursday, October 31, 2019

Version 1.0b

Input Data WQM 7.0

	SWF Basi	o Strea n Coo	im le	Stre	am Name		RMI	Elev: (f	ation D	rainage Area (sq mi)	Slope (ft/ft)	PWS Withdrawal (mgd)	Apply FC
	07D	98	396 DEEP	RUN			0.19	90 4	145.00	2.05	0.00000	0.00	
					S	tream Da	ta						
Design	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	<u>Tr</u> Temp	<u>ributary</u> pH	Tem	<u>Stream</u> p pH	
Colla.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C))	
Q7-10	0.056	0.00	0.00	0.000	0.000	0.0	0.00	0.00	20.0	00 7.0	0 20	0.00 0.0	0
Q1-10		0.00	0.00	0.000	0.000								
Q30-10		0.00	0.00	0.000	0.000								

Name	Permit Number	Existing Disc Flow (mgd)	Permitted Disc Flow (mgd)	Design Disc Flow (mgd)	Reserve Factor	Disc Temp (⁰C)	Disc pH
Hain Pure Prot.	PA0080705	0.7500	0.7500	0.7500	0.00	0 25.00	7.00
	Pa	rameter D	ata				
		Dis Co	c Tril nc Cor	o Stre no Co	am F onc C	ate oef	
Pa	rameter Name	(mg	/L) (mg	′L) (m	g/L) (1/a	days)	
CBOD5		2	5.00 2	2.00	0.00	1.50	
Dissolved O	xygen		5.00 8	3.24	0.00	0.00	
NH3-N		2	5.00 (0.00	0.00	0.70	

Version 1.0b

Input	Data	WQM	7.0
-------	------	-----	-----

	SWF Basi	n Coo	im ie	Stre	eam Name		RMI	Elev (vation (ft)	Drainage Area (sq mi)	Slope (ft/ft)	PWS Withdrawal (mgđ)	Apply FC
	07D	98	396 DEEP	RUN			0.01	10	442.00	3.00	0.00000	0.00	✓
			· · ·		S	tream Da	ta	,					
Design	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	<u>Tributary</u> p pH	Tem	<u>Stream</u> p pH	
oona.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C))	(°C))	
Q7-10	0.056	0.00	0.00	0.000	0.000	0.0	0.00	0.00	0 20	0.00 7.0	00 0	0.00 0.00	
Q1-10		0.00	0.00	0.000	0.000								
Q30-10		0.00	0.00	0.000	0.000								

Dis	charge Data					
Name Permit Number	Existing Per Disc Disc Disc Disc Disc Disc Disc Disc	mitted De Disc D Flow F ngd) (n	sign isc Res low Fa ngd)	D erve Te ctor (⁰	isc emp °C)	Disc pH
	0.0000 0	.0000 0	.0000	0.000	25.00	7.00
Pa	ameter Data					
: Davas das Masas	Disc Conc	Trib Conc	Stream Conc	Fate Coef		
	(mg/L)	(mg/L)	(mg/L)	(1/days)		
CBOD5	25.00	2.00	0.00	1.50		
Dissolved Oxygen	5.00	8.24	0.00	0.00		
NH3-N	25.00	0.00	0.00	0.70	. ,	

Thursday, October 31, 2019

Version 1.0b

Page 3 of 3

	<u>sw</u>	P Basin	<u>Strea</u>	<u>um Code</u>				<u>Stream</u>	<u>Name</u>			
		07D	ę	9896			DEEP RUN					
RMI	Stream Flow	PWS With	Net Stream Flow	Disc Analysis Flow	Reach Slope	Depth	Width	W/D Ratio	Velocity	Reach Trav Time	Analysis Temp	Analysis pH
	(cfs)	(cfs)	(cfs)	(cfs)	(ft/ft)	(ft)	(ft)		(fps)	(days)	(°C)	
Q7-1	0 Flow						-					
0.760	0.08	0.00	0.08	1.3923	0.00498	.538	11.35	21.1	0.24	0.144	24.73	6.90
0.190	0.11	0.00	0.11	2.5525	0.00316	.59	15.11	25.6	0.30	0.037	24.78	6.94
Q1-1(0 Flow											
0.760	0.06	0.00	0.06	1.3923	0.00498	NA	NA	NA	0.24	0.145	24.78	6.90
0.190	0.09	0.00	0.09	2.5525	0.00316	NA	NA	NA	0.30	0.037	24.83	6.94
Q30-'	10 Flow											
0.760	0.11	0.00	0.11	1.3923	0.00498	NA	NA	NA	0.24	0.143	24.63	6.91
0.190	0.16	0.00	0.16	2.5525	0.00316	NA	NA	NA	0.30	0.036	24.70	6.95

WQM 7.0 Hydrodynamic Outputs

Thursday, October 31, 2019

Version 1.0b

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	✓
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.8	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.4	Temperature Adjust Kr	✓
D.O. Saturation	90.00%	Use Balanced Technology	✓
D.O. Goal	5		

Thursday, October 31, 2019

Version 1.0b

<u>SWP Basin</u> 07D	<u>Stream Code</u> 9896		<u>St</u>	ream Name DEEP RUN			
NH3-N Acute Alloca	ations						
RMI Discharge I	Baseline Name Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction	
0.760 Farmers Prid	e 7.29	7.63	7.29	7.63	0	0	
0.190 Hain Pure Pr	ot. 6.94	7.49	7.1	7.49	0	0	
NH3-N Chronic Allo	cations						
RMI Discharge Na	Baseline ame Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction	
0.760 Farmers Prid	e 1.45	1.57	1.45	1.57	0	0	
0.190 Hain Pure Pro	ot. 1.4	1.59	1.41	1.59	0	0	

WQM 7.0 Wasteload Allocations

Dissolved Oxygen Allocations

		CBC	<u>DD5</u>	<u>NH3-N</u>		Dissolved Oxygen		Critical	Dorcont
RMI	Discharge Name	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple (mg/L)	Reach	Reduction
0.76 F	Farmers Pride	18.26	18.26	1.57	1.57	5	5	0	0
0.191	lain Pure Prot.	13.96	13.96	1.59	1.59	5	5	0	0

Thursday, October 31, 2019

Version 1.0b

<u>SWP Basin</u> S	tream Code			Stream Name				
07D	9896			DEEP RUN				
<u>RMI</u>	Total Discharge	Flow (mgd) <u>Ana</u>	lysis Temperature (°C)	Analysis pH			
0.760	0.90	0		24.728	6.905			
Reach Width (ft)	Reach De	pth (ft)		Reach WDRatio	Reach Velocity (fps)			
11.350	0.53	8		21.096	0.241			
Reach CBOD5 (mg/L)	Reach Kc	(1/days)	F	teach NH3-N (mg/L)	Reach Kn (1/days)			
17.38	1.08	8		1.49	1.007			
Reach DO (mg/L)	Reach Kr (<u>1/days)</u> 72		Kr Equation	Reach DO Goal (mg/L)			
5.176	12.77	3		Isivogiou	5			
Reach Travel Time (days) 0.144	TravTime (days)	Subreach CBOD5 (mg/L)	Results NH3-N (mg/L)	D.O. (mg/L)				
	0.014	17.04	1.46	5.17				
	0.029	16.71	1.44	5.18				
	0.043	16,39	1.42	5.19				
	0.058	16.07	1.40	5.22				
	0.072	15.76	1.38	5.25				
	0.087	15.46	1.36	5.28				
	0.101	15.16	1.34	5.32				
	0.116	14.86	1.32	5.36				
	0.130	14.58	1.30	5.40				
	0.144	14.29	1.28	5.44				
RMI	Total Discharge	Flow (mgd) <u>Ana</u>	lysis Temperature (°C)	Analysis pH			
0.190	1.65	0		24.785	6.945			
Reach Width (ft)	<u>Reach De</u>	pth (ft)		Reach WDRatio	Reach Velocity (fps)			
15.110	0.59	0		25.603	0.299			
Reach CBOD5 (mg/L)	Reach Kc (<u>1/daγs)</u>	<u>R</u>	each NH3-N (mg/L)	Reach Kn (1/days)			
13.99	0.97 Reach Kr./	6 1/dave)		1.40 Kr Equation	1.012 Reach DO Cool (mg/L)			
Reach DO (mg/L)	10.05	() ()		Tsivodou	5			
5.286	10.00			1 Sivegiou	5			
Reach Travel Lime (days) 0.037	TravTime	Subreach CBOD5	Results NH3-N	D.O.				
	(days)	(mg/L)	(mg/L)	(mg/L)				
	0.004	13.93	1.40	5.28				
	0.007	13.86	1.39	5.28				
	0.011	13.80	1.39	5.28				
	0.015	13.74	1.38	5.28				
	0.018	13.68	1.38	5.28				
	0.022	13.62	1.37	5.28				
	0.026	13.56	1.37	5.28				
	0.029	13.50	1.36	5.28				
	0.033	13.44	1.36	5.29				
	0.037	13.38	1.35	5.29				
Thursday, October 31, 2019)	١	Version 1.0)b	Page 1 of			

WQM 7.0 D.O.Simulation

31

C. TRC Calculations

В	С	D	E	F	G	
TRC EVAL	UATION		Enter	Facility Na	ime in E3	
Input appropri	iate values i	n B4:B8 and E4:E7				
0.09	= Q stream	n (cfs)	0.5	= CV Daily		
0.9	= Q discha	arge (MGD)	0.5	= CV Hourly		
30	= no. samp	oles	1	= AFC_Part	ial Mix Factor	
0.3	= Chlorine	Demand of Stream	1	= CFC_Part	ial Mix Factor	
0	= Chlorine	Demand of Disch	15	= AFC_Crite	eria Compliance Time ((min)
0.5	= BAT/BPJ	Value	720	= CFC_Crite	eria Compliance Time ((min)
	= % Facto	r of Safety (FOS)		=Decay Coe	efficient (K)	
Source	Reference	AFC Calculations		Reference	CFC Calculations	
TRC	1.3.2.iii	WLA afc =	0.040	1.3.2.iii	WLA cfc = 0.03	31
PENTOXSD TR	5.1a	LTAMULT afc =	0.373	5.1c	LTAMULT cfc = 0.58	31
PENTOXSDIR	5.1b	LTA_atc=	0.015	5.1d	$LTA_ctc = 0.01$	18
Source		Effluent	Limit Cal	culations		
PENTOXSD TR	5.1f	AMI	MULT =	1 231		
PENTOXSD TR	5.1g	AVG MON LIMI	Γ (mg/l) =	0.018	AFC	
		INST MAX LIMIT	Γ (mg/l) =	0.059		
WLA afc	(.019/e(-k*	AFC_tc)) + [(AFC_	Yc*Qs*.	.019/Qd*e(-k	*AFC_tc))	
	+ Xd + (A	AFC_Yc*Qs*Xs/Qd)]*(1-FO	S/100)		
LTAMULI atc		(cvh^2+1))-2.326°LN	(cvh^2+1)^0.5)		
LIA_arc						
	(.011/e(-k*		Yc*Qs*.(011/Qd*e(-k*	*GEG_tc))	
WEA_010	+ Xd + ((CFC Yc*Qs*Xs/Qd)]*(1-FO	S/100)		
LTAMULT_cfc	EXP((0.5*LN	l(cvd^2/no_samples+	-1))-2.326	5*LN(cvd^2/no	samples+1)^0.5)	
LTA_cfc	wla_cfc*LTA	AMULT_cfc				
AML MULT	EXP(2.326*L	N((cvd^2/no_sample	es+1)^0.5)-0.5*LN(cvd^	2/no_samples+1))	
AVG MON LIMIT	MIN(BAT_B	PJ,MIN(LTA_afc,LTA	∖_cfc)*AN	IL_MULT)		
INST MAX LIMIT	1.5*((av_m	ion_limit/AML_MU	LT)/LTA	MULT_afc)		

D. PENNTOXSD Model Results

PENTOXSD Analysis Results

Recommended Effluent Limitations

SWP Basin	Stream Code:			<u>Stream</u>	Name:		
07D	9896			DEEP	RUN		
RMI	Name	Pei Nur	mit nber	Disc Flow (mgd)			
0.76	Farmers Pride	PA00	35157	0.9000	_		
		Effluent			Max. Daily	Most S	tringent
I	Parameter	(µg/L)	Gover Crite	ning rion	Limit (µg/L)	WQBEL (µg/L)	WQBEL Criterion
COPPER		16.185	CF	0	25.251	16.185	CFC

RMI Name Permit Disc Flow Number (mgd)

0.19	Hain Pure Prot.	PA0080705	0.7500

		Effluent		Max. Daily	Most S	tringent	
	Parameter	(µg/L)	Governing Criterion	Limit (µg/L)	WQBEL (µg/L)	WQBEL Criterion	
COPPER		NA	NA	NA	NA	NA	

Monday, November 4, 2019

Version 2.0d

PENTOXSD

nage Slope ea mi) 1.43 0.0000 WD Rch Ratio Width (ft) 0 0 0 0 ing Permitted c Disc	PWS With (mgd) 0.00 Stream Data Rch Rch Rch Depth Velocity Trav Time (ft) (fps) (days) (0 0 0 0 0	Apply FC Image: FC Image:	<u>Stream</u> Hard pi (mg/l.)	<u>Analys</u> H Hard	
1.43 0.0000 WD Rch Ratio Width (ft) 0 0 0 0 0 0 ing Permitted c Disc	0.00Stream DataRchRchRchDepthVelocityTravTime(ft)(fps)(days)(ft)0000000	Tributary Hard pH (mg/L) 100 7	<u>Stream</u> Hard pi	<u>Analys</u> H Hard	
WD Rch Ratio Width (ft) 0 0 0 0 ing Permitted c Disc	Stream DataRchRchRchDepthVelocityTravTimeTime(ft)(fps)(days)000000	<u>Tributary</u> Hard pH (mg/L) 100 7	<u>Stream</u> Hard p (mo/L)	<u>Analys</u> H Hard	is
WD Rch Ratio Width (ft) 0 0 0 0 0 0 ing Permitted c Disc	Rch Rch Rch Depth Velocity Trav Time (ft) (fps) (days) (0 0 0 0 0	T <u>ributary</u> Hard pH (mg/L) 100 7	<u>Stream</u> Hard pl (mo/L)	<u>Analys</u> H Hard	is
(ft) 0 0 0 0 ing Permitted c Disc	(ft) (fps) (days) (0 0 0 0 0 0	(mg/L) 100 7	(ma/L)		pH
0 0 0 0 ing Permitted c Disc	0 0 0 0 0 0	100 7	·····9/ ·/	(mg/L)	
0 0 ing Permitted c Disc	0 0 0		. 0	0 0	0
ing Permitted c Disc		100 7	0	0 0	0
ing Permitted c Disc	Discharge Data	- ·			
w Flow	Design Reserve AFC Disc Factor PMF Flow	CFC THH PMF PMF	CRL PMF	Disc Disc Hard pH	
d) (mgd)	(mgd)	9 ⁶ m ba 19 ⁶ a 1999	(mg/L)	_
0.9	0.9 0 0	0 0	0	183 6.9	
	Parameter Data				
Disc Trib Conc Con	Disc Disc Steam Daily Hourly Conc CV CV	Stream Fate CV Coe	FOS f	Crit Max Mod Disc Conc	
μg/L) (μg/ 25 0	μg/L) 0.5 0.5 0)		(µg/L)	
age Slope	PWS With				
age otope ea mi)	(mgd)	Apply FC			
2.05 0.0000	0.00				
	Stream Data				
WD Rch Ratio Width	Rch Rch Rch epth Velocity Trav Time	<u>Tributary</u> Hard pH	<u>Stream</u> Hard pł	<u>Analysi</u> Hard	<u>is</u> pH
(ft)	(ft) (fps) (days) (i	mg/L)	(mg/L)	(mg/L)	
0 0	0 0 0	100 7	0	0 0	0
0 0	0 0 0	100 7	0	0 0	0
	Discharge Data				
ng Permitted 2 Dísc w Flow	esign Reserve AFC Disc Factor PMF Flow	CFC THH PMF PMF	CRL [PMF	Disc Disc Hard pH	
d) (mad)	mgd)		(r	ng/L)	
ay (mgu)	0.75 0 0	0 0	0	100 7	-
5 0.75	Parameter Data				
5 0.75	Disc Disc Steam Daily Hourly Conc CV CV	Stream Fate CV Coef	FOS	Crit Max Mod Disc Conc	
5 0.75 Disc Trib Conc Conc)		(µg/L)	
5 0.75 Disc Trib Conc Conc Jg/L) (µg/l	(µg/L)	-	~	1 0	
	Disc Trib Conc Conc	Disc Trib Disc Disc Steam Conc Conc Daily Hourly Conc CV CV ua/L) (uo/L) (uo/L)	Disc Trib Disc Disc Steam Stream Fate Conc Conc Daily Hourly Conc CV Coef CV CV (µg/L) (µg/L)	Disc Trib Disc Disc Steam Stream Fate FOS Conc Conc Daily Hourly Conc CV Coef CV CV µg/L) (µg/L) 0 0 0.5 0.5 0 0 0 0	Disc Conc Trib Conc Disc Daily CV Disc Hourly CV Steam Conc Stream CV Fate Coef FOS Mod Crit Disc Conc Max Disc Conc µg/L) (µg/L) (µg/L) (µg/L) (µg/L) (µg/L) 0 0 1 0

Strea Cod	m RMI e	Elevati (ft)	on Draiı Aı (sq	nage rea mi)	Slope	PWS (m	With gd)		Aj	opiy FC				
98	96 0.01	44	2.00	3.00	0.0000)	0.00			\checkmark				
							Stream D	ata						
	LFY	Trib Flow	Stream Flow	WD Ratio	Rch Width	Rch Depth	Rch Velocity	Rch Trav Time	<u>Tributa</u> Hard	У рН	<u>Strear</u> Hard	n pH	<u>Analys</u> Hard	<u>sis</u> pH
	(cfsm)	(cfs)	(cfs)		(ft)	(ft)	(fps)	(days)	(mg/L)		(mg/L)		(mg/L)	
Q7-10	0.056	0	0	0	0	0	0	0	100	7	0	0	0	0
Qh		0	0	0	0	0	0	0	100	7	0	0	0	0
						Ľ)ischarge l	Data						
	Name	Perm Num	nit Exis ber Dis Flo	ting Pe sc ow	ermitted Disc Flow	Design Disc Flow	Reserve Factor	e AFC PMF	CFC PMF	thh PMF	CRL PMF	Disc Hard	Disc pH	
			(mg	gd) ((mgd)	(mgd)						(mg/L)		
_			()	0	0	0	0	0	0	0	100	7	
						P	arameter [Data						
	Parameter I	lame		Disc Conc (µg/L)	Trib Cond (µg/l	Dis Dail C`	ic Disc y Hour V CV	c Stea ly Cor (µg/	m Stream ac CV /L)	Fate Coe	FOS f	Crit Moo	Max Disc Conc (µg/L)	i
COPPE	ER			0	0	0	.5 0.5	5 0	0	0	0	1	0	

Monday, November 4, 2019

Version 2.0d

Page 2 of 2

~

SWP Basin Stream Code: 07D 9896 Stream PWS RMI Flow Vith Stream Analysis Flow (cfs) (cfs) (cfs) 070 0 070 9896			<u>Strea</u>	n Name			
07D 9896 RMI Flow With Stream Analysis Flow (cfs) (cfs) (cfs) (cfs) 1392				in ritarno	<u>.</u>		
Stream PWS Net Disc RMI Flow With Stream Analysis Flow (cfs) (cfs) (cfs) (cfs) 0.760 0.0801 0.00801 1.392			DEE	P RUN			
0.7600.0801	s Reach Slope	Depth (ft)	Width (ft)	WD Ratio	Velocity (fps)	Reach Trav Time (days)	CMT (min)
0.760 0.0801 0.0.0801 1.392	Q7-10 Hydrodynamics						
	3 0.005	0.5380	11.350	21.096	0.2411	0.1445	.018
0.190 0.1148 0 0.1148 1.1602	4 0.0032	0.5279	12.207	23.122	0.1979	0.0556	.076
0.010 0.168 0 0.168 NA	۹ 0	0	0	0	0	0	NA
	Q	h Hydro	odynan	nics			
0.760 0.8178 0 0.8178 1.392	3 0.005	0.6433	11.350	17.644	0.3027	0.1151	.663
0.190 1.1204 0 1.1204 1.16024	4 0.0032	0.6819	12.207	17.902	0.2740	0.0401	1.558
0.010 1.5628 0 1.5628 NA	<u>م</u>		~				

PENTOXSD Analysis Results

Monday, November 4, 2019

Version 2.0d

PENTOXSD Analysis Results

Wasteload Allocations

RMI	Name	Permit Nur	nber						
0.76	Farmers Pride	PA00351	57						
				,	AFC				
Q7-	10: CCT (min	0.018	PMF	1	Analysis p	H 6.904	Analysis	Hardness 1	78.485
	Parameter		Stream Conc (µg/L)	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)
	COPPER	D	0 issolved	0 WQC. CI	0 nemical tran	0 slator of 0.1	23.197 96 applied.	24.164	25.553
				c	FC				
Q7-10:	CCT (min)	0.018	PMF	1	Analysis p	H 6.904	Analysi	s Hardness	178.485
	Parameter	S	tream Conc.	Stream CV	Trib Conc.	Fate Coef	WQC	WQ Obj	WLA
			(µg/L)		(µg/L)		(µg/L)	(µg/L)	(µg/L)
	COPPER		0	0	0	0	14.693	15.305	16.185
		D	ssolved	wqc, ci	iemicai tran	slator of U.	eo applied.		
				Т	нн				
Q7-10:	CCT (min)	0.018	PMF	NA	Analysis	pH NA	Analysi	s Hardness	NA
	Parameter	S	tream Conc	Stream CV	Trib Conc	Fate Coef	WQC	WQ Obj	WLA
			(µg/L)		(µg/L)		(µg/L)	(µg/L)	(µg/L)
	COPPER		0	0	0	0	NA	NA	NA
				c	CRL				
Qh:	CCT (min)	0.663	PMF	1					
	Parameter	:	Stream Conc	Stream CV	Trib Conc	Fate Coef	WQC	WQ Obj	WLA
			(µg/L)		(µg/L)		(µg/L)	(µg/L)	(µg/L)
	COPPER		0	0	0	0	NA	NA	NA

Monday, November 4, 2019

Version 2.0d

PENTOXSD Analysis Results .

Wasteload Allocations

RMI	Name	Permit Number						
0.19	Hain Pure Prot.	PA0080705	_					
				AFC				
Q7-	10: CCT (min) 0.076 PN	IF 1	Analysis	pH 6.993	Analysis	Hardness	104.929
	Parameter	Strea Con (µg/l	m Stream c CV _)	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)
	COPPER	0	0	0	0	14.062	14.648	NA
		Dissolv	ed WQC, C	hemical trai	nslator of 0.9	96 applied.		
				CFC				
Q7-10:	CCT (min)	0.076 P	MF 1	Analysis	р Н 6.99	Analysi	s Hardness	106.778
	Parameter	Strear Conc	n Stream . CV	Trib Conc.	Fate Coef	WQC	WQ Obj	WLA
		(µg/L)	(µg/L)		(µg/L)	(µg/L)	(µg/L)
	COPPER	0	0	0	0	9.472	9,867	NA
		Dissolv	ed WQC. C	hemical tra	nslator of 0.9	96 applied.		
			•	ГНН				
Q7-10:	CCT (min)	0.076 PN	IF NA	Analysis	pH NA	Analysi	s Hardness	NA
	Parameter	Strear Conc	n Stream CV	Trib Conc	Fate Coef	WQC	WQ Obj	WLA
		(µg/L	}	(µg/L)		(µg/L)	(µg/L)	(µg/L)
	COPPER	0	0	0	0	NA	NA	NA
				CRL				
Qh:	CCT (min)	1.558 P	MF 1					
	Parameter	Strea Con	m Stream c CV	Trib Conc	Fate Coef	WQC	WQ Obj	WLA
		(µg/l	L.)	(µg/L)		(µg/L)	(µg/L)	(µg/L)
	COPPER	0	0	0	0	NA	NA	NA

Monday, November 4, 2019

Version 2.0d

Page 2 of 2

E. Toxic Screening Analysis Spreadsheet

TOXICS SCREENING ANALYSIS WATER QUALITY POLLUTANTS OF CONCERN VERSION 2.6

CLEAR FORM

Facility:	Farmers Pride			NPDES Permit No.:	PA003	5157	Outfall:	001
Analysis Hard	lness (mg/L):	183		Discharge Flow (MGD):	0.9		Analysis pH (SU):	7
Stream Flow,	Q ₇₋₁₀ (cfs):	0.09				_		

Parameter		aximum Concentration in pplication or DMRs (µg/L)	Most Stringent Criterion (µg/L)	Candidate for PENTOXSD Modeling?	Most Stringent WQBEL (µg/L)	Screening Recommendation	
Total Dissolved Solids		737000	500000	Yes			
Chloride		341000	250000	Yes			
Bromide		73	N/A	No			
Sulfate		80000	250000	No			
Fluoride		450	2000	No			
Total Aluminum		0.000026	750	No			
Total Antimony		1	5.6	No			
Total Arsenic		1.4	10	No			
Total Barium		18	2400	No			
Total Beryllium		0.5	N/A	No			
Total Boron		45	1600	No			
Total Cadmium	<	0.2	0.423	No (Value < QL)			
Total Chromium		1	N/A	No			
Hexavalent Chromium		0.25	10.4	No			
Total Cobalt		6.7	19	No			
Total Copper		21	15.6	Yes	16	Establish Limits	
Total Cyanide		5	N/A	No			
Total Iron		170	1500	No			
Dissolved Iron		44	300	No			
Total Lead	<	1	6.9	No (Value < QL)			
Total Manganese		20	1000	No			
Total Mercury		0.008	0.05	No			
Total Molybdenum		13	N/A	No			
Total Nickel		4	87	No			
Total Phenols (Phenolics)		0.00001	5	No			
Total Selenium	<	2	5.0	No (Value < QL)			
Total Silver		1	10.7	No			
Total Thallium	<	0.5	0.24	No (Value < QL)			
Total Zinc		27	199.9	No			