

 Application Type
 Renewal

 Facility Type
 Industrial

 Major / Minor
 Minor

NPDES PERMIT FACT SHEET INDIVIDUAL INDUSTRIAL WASTE (IW) AND IW STORMWATER

 Application No.
 PA0035777

 APS ID
 1026262

 Authorization ID
 1332242

Applicant and Facility Information

Applicant Name	Hoegai	naes Corporation	Facility Name	Hoeganaes Corporation
Applicant Address	4330 P	aradise Road	Facility Address	4330 Paradise Road
	Watson	town, PA 17777-8802		Watsontown, PA 17777-8802
Applicant Contact	Tyler O	wlett	Facility Contact	Tyler Owlett
Applicant Phone	(570) 5	38-6146	Facility Phone	(570) 538-6146
Client ID	64029		Site ID	3769
SIC Code	3399		Municipality	Delaware Township
SIC Description	Manufa Nec	cturing - Primary Metal Products,	County	Northumberland
Date Application Receiv	ved	October 22, 2020	EPA Waived?	Yes
Date Application Accep	oted	November 4, 2020	If No, Reason	
Purpose of Application		Application for the renewal of the e	xisting individual NPDE	S permit.

Summary of Review

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Approve	Deny	Signatures	Date
x		Jonathan P. Peterman	
~		Jonathan P. Peterman / Project Manager	September 10, 2021
X		Nicholas W. Hartranft	
~		Nicholas W. Hartranft, P.E. / Environmental Engineer Manager	September 15, 2021

Discharge, Receivin	g Water	s and Water Supply Informa	ation	
Outfall No. 001			Design Flow (MGD)	0.011
Latitude 41° 3	3' 36.78"		Longitude	-76º 49' 58.07"
Quad Name Mi	lton		Quad Code	1031
Wastewater Descri	ption:	Sewage Effluent		
		med Tributary to Muddy Run		
Receiving Waters	(WWF	-)	Stream Code	19126
NHD Com ID	66918	969	RMI	1.73
Drainage Area	1.08		Yield (cfs/mi ²)	0.2231
Q ₇₋₁₀ Flow (cfs)	0.24		Q7-10 Basis	Gage No. 01553130
Elevation (ft)	495		Slope (ft/ft)	0.03
Watershed No.	10-D		Chapter 93 Class.	WWF
Existing Use	WWF		Existing Use Qualifier	N/A
Exceptions to Use	None.		Exceptions to Criteria	None.
Assessment Status	6	Impaired		
Cause(s) of Impair	ment	SILTATION		
Source(s) of Impair	rment	AGRICULTURE		
TMDL Status		Final, 06/19/2012	Name Muddy Run	Watershed TMDL
Nearest Downstrea	am Publi	c Water Supply Intake	PA American White Deer	
PWS Waters	West Br	anch Susquehanna River	Flow at Intake (cfs)	682
	10.5	·	Distance from Outfall (mi)	4.5
—				

Changes Since Last Permit Issuance: A comparative stream analysis was conducted using a comparative stream gage (01553130) based on basin characteristics. The updated Q₇₋₁₀ data was obtained from the updated stream gage information obtained from *Stuckey, M.H., and Roland, M.A., 2011, Selected Streamflow Statistics for Streamgage Locations In and Near Pennsylvania.* The Q₇₋₁₀ calculations, which are attached in Appendix A, indicate that the Q₇₋₁₀ is 0.24 cfs.

Discharge, Receivin	g Water	s and Water Supply Informati	ion	
Outfall No. 002			Design Flow (MGD)	0.0085
Latitude 41° 3	3' 36.78"		Longitude	-76° 49' 58.07"
Quad Name Mi	lton		Quad Code	1031
Wastewater Descri	ption:	Noncontact Cooling Water (N	CCW)	
		med Tributary to Muddy Run		
Receiving Waters	(WWF	-)	Stream Code	19126
NHD Com ID	66918	969	RMI	1.73
Drainage Area	1.08		Yield (cfs/mi ²)	0.2231
Q ₇₋₁₀ Flow (cfs)	0.24		Q7-10 Basis	Gage No. 01553130
Elevation (ft)	495		Slope (ft/ft)	0.03
Watershed No.	10-D		Chapter 93 Class.	WWF
Existing Use	WWF		Existing Use Qualifier	N/A
Exceptions to Use	None.		Exceptions to Criteria	None.
Assessment Status	5	Impaired		
Cause(s) of Impair	ment	SILTATION		
Source(s) of Impair	rment	AGRICULTURE		
TMDL Status		Final, 06/19/2012	Name Muddy Run	Watershed TMDL
Nearest Downstrea	am Publi	c Water Supply Intake P	A American White Deer	
PWS Waters	West Br	anch Susquehanna River	Flow at Intake (cfs)	682
PWS RMI	10.5		Distance from Outfall (mi)	4.5

Changes Since Last Permit Issuance: None. Other Comments: Outfall 002 is a combined outfall that has a discharge of both NCCW and Stormwater that cannot be sampled separately.

Discharge, Receiving	Waters	and Water Supply Informati	on	
Outfall No. 003			Design Flow (MGD)	0.009
Latitude 41° 3'	19.34"		Longitude	-76º 50' 13.03"
Quad Name Milt	on		Quad Code	1031
Wastewater Descrip	otion:	Noncontact Cooling Water (Ne	CCW)	
	_			
	Unnam	ned Tributary of Muddy Run		
Receiving Waters	(WWF)	Stream Code	19126
NHD Com ID	66918	971	RMI	<u>N/A</u>
Drainage Area	N/A		Yield (cfs/mi ²)	N/A
Q ₇₋₁₀ Flow (cfs)	N/A		Q7-10 Basis	N/A
Elevation (ft)	N/A		Slope (ft/ft)	N/A
Watershed No.	10-D		Chapter 93 Class.	WWF
Existing Use	N/A		Existing Use Qualifier	N/A
Exceptions to Use	WWF		Exceptions to Criteria	None.
Assessment Status	-	Impaired		
Cause(s) of Impairm	nent	SILTATION		
Source(s) of Impairr	ment	AGRICULTURE		
TMDL Status	-	Final, 06/19/2012	Name Muddy Run	Watershed TMDL
	-			
Nearest Downstrear	m Public	Water Supply Intake	A American White Deer	
PWS Waters V	Vest Bra	nch Susquehanna River	Flow at Intake (cfs)	682
	0.5	·	Distance from Outfall (mi)	4.5

Changes Since Last Permit Issuance: None Other Comments: None

NPDES Permit Fact Sheet Hoeganaes Corporation

Discharge, Receiving Waters and Water Supply Information	
Outfall No. 004	Design Flow (MGD) 0
Latitude 41° 3' 37.39"	Longitude -76º 50' 0.69"
Quad Name Milton	Quad Code 1031
Wastewater Description: Stormwater	
Unnamed Tributary to Muddy Run	
	tream Code
NHD Com ID 66918969 R	MI 1.7000
Drainage Area Y	eld (cfs/mi ²)
Q ₇₋₁₀ Flow (cfs) Q	7-10 Basis
Elevation (ft) S	lope (ft/ft)
Watershed No. <u>10-D</u> C	hapter 93 Class. WWF, MF
Existing Use E	xisting Use Qualifier
Exceptions to Use E	xceptions to Criteria
Assessment Status Impaired	
Cause(s) of Impairment SILTATION	
Source(s) of Impairment AGRICULTURE	
TMDL Status Final, 06/19/2012	Name Muddy Run Watershed TMDL
Nearest Downstream Public Water Supply Intake PA Am	erican White Deer
PWS Waters West Branch Susquehanna River Flow	at Intake (cfs)682
PWS RMI 10.5 Dista	ance from Outfall (mi)

Changes Since Last Permit Issuance: None. Other Comments: None.

Treatment Facility Summary									
Treatment Facility Na	me: Hoeganaes Corp								
WQM Permit No.	Issuance Date								
	Degree of			Avg Annual					
Waste Type	Treatment	Process Type	Disinfection	Flow (MGD)					
	Secondary With			x <i>i</i>					
Industrial	Ammonia Reduction	Extended Aeration	Hypochlorite	0.011					
Hydraulic Capacity	Organic Capacity			Biosolids					
(MGD)	(lbs/day)	Load Status	Biosolids Treatment	Use/Disposal					
a0.011	N/A	Not Overloaded	Aerobic Digestion	Other WWTP					

Treatment System Components for Outfall 001:

- One (1) Influent wet well.
- One (1) Comminuter with manual bar screen.
- One (1) Aeration tank
- One (1) Clarifier.
- One (1) Erosion chlorinator.
- One (1) Chlorine contact tank.
- One (1) Outfall 001.
- One (1) Sludge Holding.
- One (1) Outfall 002. (NCCW and Stormwater) -Oil/Water Separator.
- One (1) Outfall 003. (Emergency NCCW and Stormwater)
 One (1) Outfall 004. (Stormwater only)

Changes Since Last Permit Issuance: None. Other Comments: None.

Anti-Backsliding

In accordance with 40 CFR 122.44(I)(1) and (2), this permit does not contain effluent limitations, standards, or conditions that are less stringent than the previous permit.

TMDL Impairment

The Departments Geographical Information System indicates that there is an associated TMDL for this segment of UNT to Muddy Run. The Muddy Run Watershed TMDL indicates that UNT to Muddy Run is impaired for siltation due to agricultural activities. Given that the source of the impairment is identified and it is anticipated that the effluent will not contribute to the impairment or create an in-stream excursion above water quality standards, no TMDL related limits will be applied.

Chesapeake Bay Requirements

Outfall 001

Since this facility's annual average design flow is 0.011 MGD, the permittee will be required to monitor and report TN and TP throughout the permit term at a frequency no less than annually in accordance with the Phase II WIP Chesapeake Bay Strategy for Phase V facilities (0.002 MGD to 0.2 MGD) unless 1) the facility has already conducted at least two years of nutrient monitoring and 2) a summary of the monitoring results are included in the next permit's fact sheet. The previous permit contained the results from the Chesapeake Bay Monitoring requirements and removed the monitoring requirements. The summarized results for this monitoring are contained below and the full data set is contained in Appendix D. Since the permittee conducted this monitoring in the previous permit term and the data is summarized in the fact sheet below, the conditions have been met and Chesapeake Bay monitoring will not be required.

Outfalls 002 and 003

These industrial outfalls are classified as a "non-significant" IW given that the gross effluent discharges do not exceed 75 lbs/day of TN or 25 lbs/day of TP. The permittee will be not be required to monitor and report TN and TP at outfalls 002 and 003 throughout the permit term in accordance with the Phase II WIP Chesapeake Bay Strategy for non-significant industrial waste facilities. Non-significant IW dischargers should receive monitoring requirements in permits if there is any possibility of a net increase in nutrients as a result of outfalls 002 and 003, and monitoring frequencies should be established using the general guidance in the Phase II WIP Supplement. It was determined that there is no potential that the associated facility processes could create a net increase in TP.

Outfall 004

This stormwater outfall will also not be considered a contributor of TN and TP.

Existing Effluent Limitations and Monitoring Requirements

			Monitoring Reguirements					
Parameter	Mass Units (Ibs/day) ⁽¹⁾		Concentrations (mg/L)			Minimum ⁽²⁾	Required	
	Annual Average	Total Annual	Minimum	Average Monthly		Instant. Maximum	Measurement Frequency	Sample Type
	Report	Report Daily						
Flow (MGD)	Avg Mo	Max	XXX	XXX	XXX	XXX	1/day	Measured
рН (S.U.)	xxx	XXX	6.0	xxx	XXX	9.0	1/day	Grab
Dissolved Oxygen	xxx	XXX	Report	xxx	XXX	XXX	5/week	Grab

Outfall 001 - Existing Limits

			Monitoring Requirements					
Parameter	Mass (Ibs/da		C	Concentrati	Minimum ⁽²⁾	Required		
	Annual Average	Total Annual	Minimum	Average Monthly		Instant. Maximum	Measurement Frequency	Sample Type
Total Residual Chlorine	xxx	XXX	xxx	0.5	xxx	1.6	1/day	Grab
CBOD5	XXX	XXX	XXX	25	XXX	50	2/month	Grab
Total Suspended		5.5077 Daily						
Solids	XXX	Max	XXX	30	XXX	60	2/month	Grab
Oil and Grease	XXX	XXX	ххх	15	XXX	30	1/month	Grab
Fecal Coliform (No./100 ml)				200 Geo				
May 1 - Sep 30	XXX	XXX	XXX	Mean	XXX	1,000	2/month	Grab
Fecal Coliform (No./100 ml)				2,000 Geo				
Oct 1 - Apr 30	XXX	XXX	XXX	Mean	XXX	10,000	2/month	Grab

The existing effluent limits for Outfall 001 were based on a design flow of 0.011 MGD.

Outfall 002 - Existing Limits

			Monitoring Requirements					
Parameter	Mass U (Ibs/da			Concentra	tions (mg/L))	Minimum ⁽²⁾	Required
	Average Monthly		Minimum	Average Monthly	Daily Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Total Suspended Solids	xxx	xxx	XXX	xxx	Report	XXX	1/6 months	Grab
Total Arsenic	xxx	XXX	xxx	ххх	Report	XXX	1/6 months	Grab
Total Cadmium	xxx	XXX	xxx	ХХХ	Report	XXX	1/6 months	Grab
Total Chromium	xxx	XXX	XXX	xxx	Report	XXX	1/6 months	Grab
Total Copper	xxx	XXX	xxx	xxx	Report	XXX	1/6 months	Grab
Total Iron	xxx	XXX	xxx	xxx	Report	XXX	1/6 months	Grab
Total Lead	xxx	ххх	xxx	xxx	Report	XXX	1/6 months	Grab

The existing effluent limits for Outfall 002 were based on a design flow of 0.0085 MGD.

			Monitoring Requirements					
Parameter	Mass U (Ibs/da			Concentra	tions (mg/L)		Minimum ⁽²⁾	Required
	Average Monthly		Minimum	Average Monthly	Daily Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Total Suspended Solids	XXX	XXX	XXX	XXX	Report	XXX	1/6 months	Grab
Total Arsenic	xxx	XXX	xxx	ХХХ	Report	xxx	1/6 months	Grab
Total Cadmium	xxx	XXX	xxx	XXX	Report	xxx	1/6 months	Grab
Total Chromium	xxx	XXX	XXX	xxx	Report	ххх	1/6 months	Grab
Total Copper	xxx	XXX	xxx	xxx	Report	xxx	1/6 months	Grab
Total Iron	xxx	XXX	xxx	xxx	Report	xxx	1/6 months	Grab
Total Lead	xxx	ххх	xxx	xxx	Report	xxx	1/6 months	Grab

Outfall 003 - Existing Limits

The existing effluent limits for Outfall 003 were based on a design flow of 0.009 MGD.

Outfall 004 - Existing Limits

			Monitoring Requirements					
Parameter	Mass U (Ibs/da			Concentra	tions (mg/L))	Minimum ⁽²⁾	Required
	Average Monthly		Minimum	Average Monthly	Daily Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Total Suspended Solids	xxx	xxx	xxx	XXX	Report	xxx	1/6 months	Grab
Total Arsenic	xxx	XXX	xxx	XXX	Report	xxx	1/6 months	Grab
Total Cadmium	xxx	XXX	xxx	xxx	Report	XXX	1/6 months	Grab
Total Chromium	xxx	XXX	xxx	xxx	Report	XXX	1/6 months	Grab
Total Copper	xxx	XXX	xxx	ХХХ	Report	XXX	1/6 months	Grab
Total Iron	xxx	XXX	xxx	xxx	Report	XXX	1/6 months	Grab
Total Lead	xxx	XXX	xxx	xxx	Report	XXX	1/6 months	Grab

Development of Effluent Limitations

Outfall No. Latitude Wastewater D	001 41° 3' 35.70" escription: Sewage	Design Flow (MGD) Longitude	0.011 76° 49' 58.20"
Outfall No.	002	Design Flow (MGD)	0.0085
Latitude	41° 3' 35.70"	Longitude	76° 49' 58.20"

Wastewater Description: NCCW and Stormwater

IMP No. Latitude Wastewater Do	201 41° 3' 35.70" escription: NCCW	Design Flow (MGD) Longitude	0.0085 76° 49' 58.20"
Outfall No. Latitude Wastewater Do	003 41° 3' 25.30" escription: Stormwater and Emergency NCCW	Design Flow (MGD) Longitude	0.009 76° 50' 10.50"
IMP No. Latitude Wastewater D	301 41° 3' 25.30" escription: Emergency NCCW	Design Flow (MGD) Longitude	0.009 76° 50' 10.50"
Outfall No. Latitude Wastewater D	004 41° 3' 29" escription: Stormwater	Design Flow (MGD) Longitude	N/A 76° 50' 5"

Technology-Based Limitations

The following effluent standards for industrial waste will apply, subject to water quality analysis and BPJ where applicable:

Pollutant	Limit (mg/l)	SBC	Federal Regulation	State Regulation
CROD	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
CBOD₅	40	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)
Total Suspended	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
Solids	45	Average Weekly	133.102(b)(2)	92a.47(a)(2)
pH	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform				
(5/1 - 9/30)	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
Fecal Coliform				
(5/1 – 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform				
(10/1 - 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
Fecal Coliform				
(10/1 - 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)
Total Residual Chlorine	0.5	Average Monthly	-	92a.48(b)(2)

Industrial Waste:

0

Parameter	Limit (mg/l) (Average Monthly)	Limit (mg/l) (Daily Maximum)	Limit (mg/l) (Inst. Maximum)	Federal Regulation	State Regulation
Oil & Grease	15	-	30	-	§95.2(2)(ii)
pН	6-9 at all times	-		§133.102(c)	§95.2

There are no applicable technology-based effluent limitations for non-contact cooling water. However, 25 Pa. Code § 95.2 does set forth effluent standards for pH, dissolved iron, and oil and grease for discharges of industrial wastewater. The characteristics of the blowdown do not show a potential to negatively impact the receiving surface water.

Water Quality-Based Limitations

To establish whether or not water-quality based effluent limitations (WQBELs) are required, the Department models instream conditions. In order to determine limitations for CBOD5, ammonia-N and dissolved oxygen, the Department utilizes the WQM 7.0 v1.0b model and in order to determine limitations for toxics, the Department utilizes the Toxics Management Spreadsheet. The Toxics Management Spreadsheet was not utilized in this review. WQM 7.0 for Windows, Version 1.0b, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen The previous model was run using the latest information on Q7-10 stream flow, background water quality, average annual design flow, and other discharge characteristics. There have been no changes to the watershed or discharge characteristics, therefore the previous modeling is still valid. The existing technology based effluent limit for CBOD₅ (25 mg/l) was used as inputs for the modeling as well as the existing water-quality based effluent limit for NH3-N (20 mg/l). The DO minimum daily average criterion from $\S93.7$ (5.0 mg/L for WWF) was used for the in-stream objective for the model. The summary of the output is as follows:

Deremeter	Effluent Limit						
Parameter	30 Day Average	Maximum	Minimum				
CBOD5	25	N/A	N/A				
Ammonia-N	20	40	N/A				
Dissolved Oxygen	N/A	N/A	3				

The previous model did not recommend more stringent water-quality based effluent limitations with regards to CBOD5, ammonia-nitrogen, and dissolved oxygen. Refer to Appendix B for the WQM 7.0 inputs and results. The existing limits will remain.

Toxics Management Spreadsheet

This model is a single discharge wasteload allocation program for toxics that uses a mass-balance water quality analysis to determine recommended water quality-based effluent limits. The model incorporates consideration for mixing, first-order decay and other factors to computes a Wasteload Allocation (WLA) for each applicable criterion. Finally, the model determines a maximum water quality-based effluent limitation (WQBEL) for each parameter and outputs the more stringent of the WQBEL or the input concentration. The output of which is the recommends average monthly and maximum daily effluent limitations.

Sampling for pollutant Groups was submitted with the application. This sampling information and the receiving stream information was entered into the Toxics Management Spreadsheet. The modeling results indicated that no limits or monitoring requirements are needed for these parameters. Refer to Appendix B for the Toxics Management Spreadsheet.

Comments: None.

Best Professional Judgement (BPJ) Limitations Comments: All parameters have been implemented using BPJ. Additional Considerations None.

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst the abovementioned technology, water quality, and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001) and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date

Outfall 001 - Proposed Limits

			Monitoring Requirements					
Parameter	Mass (Ibs/d	ay) ⁽¹⁾	(Concentrati	Minimum ⁽²⁾	Required		
	Annual Average	Total Annual	Minimum	Average Monthly		Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report Avg Mo	Report Daily Max	xxx	xxx	XXX	xxx	1/day	Measured
рН (S.U.)	xxx	XXX	6.0	xxx	XXX	9.0	1/day	Grab
Dissolved Oxygen	xxx	XXX	Report	xxx	XXX	XXX	1/day	Grab
Total Residual Chlorine	XXX	xxx	XXX	0.5	XXX	1.6	1/day	Grab
CBOD5	xxx	XXX	XXX	25	XXX	50	2/month	Grab
Total Suspended Solids	xxx	5.5077 Daily Max	xxx	30	XXX	60	2/month	Grab
Oil and Grease	XXX	XXX	XXX	15	XXX	30	1/month	Grab
Fecal Coliform (No./100 ml) May 1 - Sep 30	xxx	xxx	xxx	200 Geo Mean	XXX	1,000	2/month	Grab
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	xxx	xxx	xxx	2,000 Geo Mean	xxx	10,000	2/month	Grab
Ammonia-Nitrogen May 1 - Oct 31	xxx	xxx	xxx	20	XXX	40	2/month	Grab
Ammonia-Nitrogen Nov 1 - Apr 30	xxx	XXX	XXX	Report	XXX	Report	1/month	Grab
E. Coli	XXX	XXX	xxx	xxx	XXX	Report	1/quarter	Grab

The proposed effluent limits for Outfall 001 were based on a design flow of 0.011 MGD.

			Monitoring Requirements					
Parameter	Mass U (Ibs/da			Concentra	Minimum ⁽²⁾	Required		
	Average Monthly		Minimum	Average Monthly	Daily Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Total Suspended Solids	xxx	XXX	XXX	XXX	Report	xxx	1/6 months	Grab
Total Zinc	xxx	XXX	xxx	ХХХ	Report	xxx	1/6 months	Grab
Total Aluminum	xxx	XXX	xxx	ХХХ	Report	XXX	1/6 months	Grab
Total Copper	xxx	XXX	xxx	xxx	Report	XXX	1/6 months	Grab
Total Iron	xxx	XXX	xxx	xxx	Report	XXX	1/6 months	Grab
Total Lead	xxx	XXX	xxx	xxx	Report	XXX	1/6 months	Grab

Outfall 002 - Proposed Limits

The proposed effluent limits for Outfall 002 were based on a design flow of 0.0085 MGD for NCCW and no design flow for stormwater.

IMP 201 - Proposed Limits

			Monitoring Requirements					
Parameter		s Units day) ⁽¹⁾		Concentra	tions (mg/L))	Minimum ⁽²⁾	Required
	Average Monthly	Daily Maximum	Minimum	Average Monthly	Daily Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report	xxx	XXX	xxx	xxx	Weekly when Discharging ⁽³⁾	Measured
pH (S.U.)	XXX	xxx	6.0	XXX	XXX	9.0	Weekly when Discharging ⁽³⁾	Grab
Temperature (ºF)	XXX	xxx	xxx	XXX	110	xxx	Weekly when Discharging ⁽³⁾	I-S
Oil and Grease	XXX	xxx	XXX	15	xxx	30	Weekly when Discharging ⁽³⁾	Grab

The proposed effluent limits for Outfall 002 were based on a design flow of 0.0085 MGD for NCCW.

			Monitoring Requirements					
Parameter		Mass Units (Ibs/day) ⁽¹⁾		Concentra	Minimum ⁽²⁾	Required		
	Average Monthly		Minimum	Average Monthly	Daily Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Total Suspended Solids	XXX	XXX	XXX	XXX	Report	XXX	1/6 months	Grab
Total Zinc	xxx	XXX	xxx	ХХХ	Report	xxx	1/6 months	Grab
Total Aluminum	xxx	XXX	xxx	ХХХ	Report	xxx	1/6 months	Grab
Total Copper	xxx	XXX	XXX	xxx	Report	xxx	1/6 months	Grab
Total Iron	xxx	XXX	xxx	xxx	Report	xxx	1/6 months	Grab
Total Lead	XXX	XXX	xxx	xxx	Report	xxx	1/6 months	Grab

Outfall 003 - Proposed Limits

The proposed effluent limits for Outfall 003 were based on a design flow of 0.009 MGD for emergency NCCW and no design flow for stormwater.

IMP 301 - Proposed Limits

			Monitoring Requirements						
Parameter		s Units day) ⁽¹⁾		Concentra	tions (mg/L))	Minimum ⁽²⁾	Required	
	Average Monthly	Daily Maximum	Minimum	Average Monthly	Daily Maximum	Instant. Maximum	Measurement Sample Frequency Type		
Flow (MGD)	Report	Report	xxx	XXX	xxx	XXX	Weekly when Discharging ⁽³⁾	Measured	
pH (S.U.)	XXX	XXX	6.0	XXX	xxx	9.0	Weekly when Discharging ⁽³⁾	Grab	
Temperature (ºF)	XXX	xxx	XXX	XXX	110	xxx	Weekly when Discharging ⁽³⁾	I-S	
Oil and Grease	XXX	XXX	XXX	15	XXX	30	Weekly when Discharging ⁽³⁾	Grab	

The proposed effluent limits for Outfall 003 were based on a design flow of 0.009 MGD for emergency NCCW.

			Monitoring Requirements					
Parameter	Mass U (Ibs/da			Concentra	Minimum ⁽²⁾	Required		
	Average Monthly		Minimum	Average Monthly	Daily Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Total Suspended Solids	xxx	XXX	XXX	XXX	Report	XXX	1/6 months	Grab
Total Zinc	xxx	XXX	xxx	ххх	Report	xxx	1/6 months	Grab
Total Aluminum	XXX	XXX	xxx	xxx	Report	XXX	1/6 months	Grab
Total Copper	xxx	XXX	xxx	XXX	Report	XXX	1/6 months	Grab
Total Iron	XXX	XXX	xxx	xxx	Report	XXX	1/6 months	Grab
Total Lead	xxx	XXX	xxx	XXX	Report	xxx	1/6 months	Grab

Outfall 004 - Proposed Limits

The proposed effluent limits for Outfall 004 were not based on a design flow.

Outfall 001

General Information

All effluent limits were then rounded down in accordance with the rounding rules established in the *Technical Guidance for the Development and Specification of Effluent Limitations (362-0400-001)*, Chapter 5 - Specifying Effluent Limitations in NPDES Permits. The existing monitoring frequencies and sample types for these parameters generally correspond with the *Technical Guidance for the Development and Specification of Effluent Limitations (362-0400-001)*, Chapter 5 - Specifying Effluent Limitations in NPDES Permits. The existing monitoring frequencies and sample types for these parameters generally correspond with the *Technical Guidance for the Development and Specification of Effluent Limitations* (362-0400-001) Table 6-3 and will remain.

Flow

The existing monitoring frequency (1/Day) and sample type (Pump or Weir) for Flow correspond with the *Technical Guidance for the Development and Specification of Effluent Limitations* (362-0400-001) Table 6-3.

Carbonaceous Biochemical Oxygen Demand (CBOD₅)

The results of the WQM 7.0 model show that the previously applied secondary treatment standards (25 PA Code 92a.47 (a) (1&2)) for CBOD₅ are protective of water quality and will remain.

Total Suspended Solids (TSS)

The previously applied technology based secondary treatment standards (25 PA Code §92a.47 (a) (1&2)) for TSS will remain as well.

<u>рН</u>

CFR Title 40 §133.102(c) and 25 PA Code §95.2(1) provide the basis of effluent limitations for pH and will remain.

Fecal Coliforms

The existing fecal coliform limits with I-max limits were updated from the previous Chapter 92 code to correspond with what is specified in the updated 25 PA Code § 92a.47 (a)(4)&(5).

<u>E. Coli</u>

25 PA Code § 92a.61 provide the basis of monitoring requirements for E. Coli. Quarterly monitoring will be required going forward.

Ammonia-Nitrogen (NH3-N)

The results of the WQM 7.0 model show that the existing water quality based effluent limits for ammonia-nitrogen are appropriate. In order to obtain the winter limits, a seasonal multiplier of three times the summer limit will be applied in

NPDES Permit Fact Sheet Hoeganaes Corporation

accordance with the *Implementation Guidance for Chapter 93.7 Ammonia Criteria* (391-2000-013). However, since these values would be significantly greater that what is considered to be the conventional influent ammonia-nitrogen concentrations, only monitoring shall be required for the winter months.

Total Residual Chlorine (TRC)

A TRC model evaluation was conducted by using the technology-based effluent limitations recommended as input. (See the Appendix for the spreadsheet results.) In accordance with 25 Pa. Code § 92a.48(b)(2), a value of 0.5 mg/l was used used in the model as BAT. The TRC evaluation reveals that effluent limits of 0.5 mg/L (Average Monthly) and 1.6 mg/L (Instantaneous Maximum) are still adequate.

Dissolved Oxygen (DO)

Given results of the WQM 7.0 model, a discharge of effluent from this facility with a DO concentration of 3 mg/l would not result in an exceedance of water quality requirements for this stream. It is anticipated, based on similar technology, that the DO concentration in the effluent would be greater than 3.0 mg/l. Therefore, based on BPJ, only monitoring will be required for this facility.

Outfalls 002 and 003

General Information

The existing monitoring frequencies and sample types for these parameters correspond with the *Technical Guidance* for the Development and Specification of Effluent Limitations (362-0400-001) Table 6-4 and will remain.

Temperature

In accordance with the Department's *Implementation Guidance for Temperature Criteria* (391-2000-017), the daily maximum temperature limit will remain. Additionally, the Part C conditions will include special condition C15 – Temperature 2 Degree Hourly Change.

IMPs 201 and 301

Flow

Reporting of maximum daily flow and monthly average is appropriate for this type of facility and consistent with similar facility types.

<u>рН</u>

The existing permit limits for pH were implemented in accordance with 25 PA Code §95.2(1), which provide the basis of effluent limitations for pH, and shall remain.

Oil and Grease

The existing permit limits for oil and grease were implemented in accordance with 25 PA Code §95.2(2)(ii), which provide the basis of effluent limitations for oil and grease.

Outfalls 002, 003, and 004 Stormwater Requirements

Stormwater monitoring requirements shall be implemented as shown below.

Stormwater Requirements

The industrial activities associated with Hoeganaes Corporation's facility are identified in 40 CFR 122.26(b)(14)(ix) and thus the facility required to obtain an NPDES permit to discharge stormwater into waters of the Commonwealth of Pennsylvania. The facility is classified under SIC Codes 3399- Establishments primarily engaged in manufacturing metal products, not elsewhere classified, such as nonferrous nails, brads, and spikes, and metal powder, flakes, and paste. The facility manufactures powered steel products. Appendix B Monitoring Requirements and Best Management Practices (BMPs) are applicable to this facility. These requirements have changed since the previous permit issuance. The following stormwater requirements will be incorporated into this permit:

DISCHARGE PARAMETER	UNITS	SAMPLE TYPE	MEASUREMENT FREQUENCY
Total Suspended Solids	mg/L	1 Grab	1/6 months
Lead (Total)	mg/L	1 Grab	1/6 months
Zinc (Total)	mg/L	1 Grab	1/6 months
Copper (Total)	mg/L	1 Grab	1/6 months
Aluminum (Total)	mg/L	1 Grab	1/6 months
Iron (Total)	mg/L	1 Grab	1/6 months
Effluent Guideline Pollutants ⁽⁴⁾	mg/L	1 Grab	1/6 months

Note: There are no associated ELGs for this facility. The other discharge parameters will be applied in part A of the permit for each outfall.

Chemical Additives

Hoeganaes Corp. had previously listed GE Bets, Inc. products in their chemical additive usage sheets. However, the chemical additive sheets were not included in the permit application. The permittee will be required to provide clarification regarding the usage of the chemical additives during the comment period. Part "C" condition C 118 will be placed in the draft permit to address chemical additives.

Compliance History

<u>Summary of Inspections</u> -The last facility inspection was conducted by the Department on 3/31/2020 which reveals that there were no issues and the facility was operating normally.

<u>WMS Query Summary</u> - A WMS Query was run at *Reports - Violations & Enforcements – Open Violations for Client Report* to determine whether there are any unresolved violations associated with the client that will affect issuance of the permit (per CSL Section 609). This query revealed one (1) open violation in the Air Quality Program. This program will be contacted regarding the following open violation:

CLIENT ID ‡	CLIENT ‡	FACILITY ‡	INSP PROGRAM ‡	INSP ID	VIOLATION ID ‡	VIOLATION DATE	VIOLATION CODE	VIOLATION
64029	HOEGANAES CORP	HOEGANAES CORP/WATSONTOWN PLT	Air Quality	3230974	925649	08/06/2021	127.444	Construction, Modification, Reactivation and Operation of Sources, Operating Permit Requirements,

⁽⁴⁾ Any pollutant limited in an effluent guideline, to which the facility is subject.

NPDES Permit Fact Sheet Hoeganaes Corporation

			Compliance requirements.
--	--	--	--------------------------

eDMR Summary- Upon conducting a review of the eDMR data below, no effluent exceedances were noted.

Compliance History

DMR Data for Outfall 001 (from July 1, 2020 to June 30, 2021)

Parameter	JUN-21	MAY-21	APR-21	MAR-21	FEB-21	JAN-21	DEC-20	NOV-20	OCT-20	SEP-20	AUG-20	JUL-20
Flow (MGD)	0.00501	0.00483	0.00495	0.00512	0.00515	0.00493	0.00496	0.00486	0.00477	0.00499	0.00499	0.00465
Average Monthly	6	6	5	0	8	8	6	4	4	4	5	0
Flow (MGD)	0.00571	0.00571	0.00571	0.00571	0.00571	0.00571	0.00571	0.00615	0.00571	0.00571	0.00615	0.00571
Daily Maximum	3	3	3	6	3	3	3	5	3	3	5	3
pH (S.U.)												
Minimum	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0
pH (S.U.)												
Maximum	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4
DO (mg/L)												
Minimum	6.1	6.3	6.6	6.6	6.4	6.4	6.5	6.1	6.5	6.4	6.3	6.2
TRC (mg/L)												
Average Monthly	0.39	0.43	0.41	0.37	0.39	0.43	0.44	0.37	0.4	0.43	0.4	0.4
TRC (mg/L)												
Instantaneous												
Maximum	0.5	0.8	0.7	0.5	0.7	0.9	0.9	0.50	0.7	0.8	0.7	0.5
CBOD5 (mg/L)												
Average Monthly	2.7	< 2.2	< 2.6	< 2.2	< 2.2	< 2.2	< 2.1	< 2.2	< 2.2	< 2.1	< 2.2	< 2.2
TSS (lbs/day)												
Daily Maximum	< 0.1389	< 0.1765	< 0.1768	< 0.1957	< 0.1010	< 0.1698	< 0.1698	< 0.1765	< 0.1010	< 0.1836	< 0.1765	< 0.1630
TSS (mg/L)												
Average Monthly	< 6.0	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0
Oil and Grease (mg/L)												
Average Monthly	< 4.8	< 4.8	< 4.8	< 4.8	< 4.8	< 4.8	< 4.8	< 4.8	< 4.8	< 4.8	< 4.8	< 4.8
Oil and Grease (mg/L)												
Instantaneous	1.0	1.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Maximum	< 4.8	< 4.8	< 4.8	< 4.8	< 4.8	< 4.8	< 4.8	< 4.8	< 4.8	< 4.8	< 4.8	< 4.8
Fecal Coliform												
(No./100 ml)	.10	. 1 0	.10	.10	. 1 0	. 1 0	.10	. 1.0	. 1 0	.10	.10	.1.0
Geometric Mean	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Fecal Coliform												
(No./100 ml)												
Instantaneous	-10	-10	-10	-10	< 1.0	-10	-10	-10	- 1 0	< 1.0	-10	110
Maximum Total Nitragan	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Total Nitrogen (Ibs/day)												
Annual Average							0.07					
Annual Average							0.07					

Total Nitrogen												
(lbs/day)												
Total Annual							0.07					
Total Nitrogen (mg/L)												
Annual Average							1.7					
Ammonia (mg/L)												
Average Monthly	0.27	0.42	0.74	0.22	0.64	0.63	0.20	0.23	0.42	0.29	0.21	0.35
Total Phosphorus												
(lbs/day)												
Annual Average							0.006					
Total Phosphorus												
(lbs/day)												
Total Annual							0.006					
Total Phosphorus												
(mg/L)												
Annual Average							0.15					

DMR Data for Outfall 002 (from July 1, 2020 to June 30, 2021)

Parameter	JUN-21	MAY-21	APR-21	MAR-21	FEB-21	JAN-21	DEC-20	NOV-20	OCT-20	SEP-20	AUG-20	JUL-20
TSS (mg/L)												
Daily Maximum	5.0						4.0					
Total Arsenic (mg/L)												
Daily Maximum	< 0.020						< 0.005					
Total Cadmium (mg/L)												
Daily Maximum	< 0.0010						< 0.003					
Total Chromium												
(mg/L)												
Daily Maximum	< 0.0050						< 0.005					
Total Copper (mg/L)												
Daily Maximum	0.039						< 0.005					
Total Iron (mg/L)												
Daily Maximum	0.11						0.172					
Total Lead (mg/L)												
Daily Maximum	< 0.010						< 0.005					

DMR Data for Outfall 003 (from July 1, 2020 to June 30, 2021)

Parameter	JUN-21	MAY-21	APR-21	MAR-21	FEB-21	JAN-21	DEC-20	NOV-20	OCT-20	SEP-20	AUG-20	JUL-20
TSS (mg/L)												
Daily Maximum	9.0						8.0					
Total Arsenic (mg/L)												
Daily Maximum	< 0.020						< 0.005					

NPDES Permit Fact Sheet Hoeganaes Corporation

Total Cadmium (mg/L)							
Daily Maximum	< 0.0010			< 0.003			
Total Chromium							
(mg/L)							
Daily Maximum	< 0.0050			< 0.005			
Total Copper (mg/L)							
Daily Maximum	0.023			< 0.005			
Total Iron (mg/L)							
Daily Maximum	0.056			0.29			
Total Lead (mg/L)							
Daily Maximum	< 0.010			< 0.005			

DMR Data for Outfall 004 (from July 1, 2020 to June 30, 2021)

Parameter	JUN-21	MAY-21	APR-21	MAR-21	FEB-21	JAN-21	DEC-20	NOV-20	OCT-20	SEP-20	AUG-20	JUL-20
TSS (mg/L)												
Daily Maximum	5.0						7.0					
Total Arsenic (mg/L)												
Daily Maximum	< 0.020						< 0.005					
Total Cadmium (mg/L)												
Daily Maximum	< 0.0010						< 0.003					
Total Chromium												
(mg/L)												
Daily Maximum	< 0.0050						< 0.005					
Total Copper (mg/L)												
Daily Maximum	0.039						< 0.005					
Total Iron (mg/L)												
Daily Maximum	0.11						0.113					
Total Lead (mg/L)												
Daily Maximum	< 0.010						< 0.005					

	Tools and References Used to Develop Permit
	WQM for Windows Model (see Attachment B)
	Toxics Management Spreadsheet (see Attachment C)
	TRC Model Spreadsheet (see Attachment D)
	Temperature Model Spreadsheet (see Attachment)
	Water Quality Toxics Management Strategy, 361-0100-003, 4/06.
	Technical Guidance for the Development and Specification of Effluent Limitations, 362-0400-001, 10/97.
	Policy for Permitting Surface Water Diversions, 362-2000-003, 3/98.
	Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 362-2000-008, 11/96.
	Technology-Based Control Requirements for Water Treatment Plant Wastes, 362-2183-003, 10/97.
	Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 362-2183-004, 12/97.
	Pennsylvania CSO Policy, 385-2000-011, 9/08.
	Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03.
	Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 391-2000-002, 4/97.
	Determining Water Quality-Based Effluent Limits, 391-2000-003, 12/97.
	Implementation Guidance Design Conditions, 391-2000-006, 9/97.
	Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen, Version 1.0, 391-2000-007, 6/2004.
	Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 391-2000-008, 10/1997.
	Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments, 391-2000-010, 3/99.
\square	Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 391-2000-011, 5/2004.
	Implementation Guidance for Section 93.7 Ammonia Criteria, 391-2000-013, 11/97.
	Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 391-2000-014, 4/2008.
	Implementation Guidance Total Residual Chlorine (TRC) Regulation, 391-2000-015, 11/1994.
	Implementation Guidance for Temperature Criteria, 391-2000-017, 4/09.
	Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 391-2000-018, 10/97.
	Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 391-2000-019, 10/97.
	Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 391-2000-021, 3/99.
	Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 391-2000-022, 3/1999.
	Design Stream Flows, 391-2000-023, 9/98.
	Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 391-2000-024, 10/98.
	Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 391-3200-013, 6/97.
	Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07.
	SOP:
	Other:

NPDES Permit No. PA0035777

APPENDIX A STREAM DATA AND Q⁷⁻¹⁰ ANALYSIS

Prepared in cooperation with the Pennsylvania Department of Environmental Protection

Selected Streamflow Statistics for Streamgage Locations in and near Pennsylvania

Open-File Report 2011–1070

U.S. Department of the Interior U.S. Geological Survey

Table 1 13

Table 1. List of U.S. Geological Survey streamgage locations in and near Pennsylvania with updated streamflow statistics.-Continued

[Latitude and Longitude in decimal degrees; mi2, square miles]

Streamgage number	Streamgage name	Latitude	Longitude	Drainage area (mi²)	Regulated
01541303	West Branch Susquehanna River at Hyde, Pa.	41.005	-78.457	474	Y
01541308	Bradley Run near Ashville, Pa.	40.509	-78.584	6.77	N
01541500	Clearfield Creek at Dimeling, Pa.	40.972	-78,406	371	Y
01542000	Moshannon Creek at Osceola Mills, Pa.	40.850	-78,268	68.8	N
01542500	WB Susquehanna River at Karthaus, Pa.	41,118	-78,109	1,462	Y
01542810	Waldy Run near Emporium, Pa.	41.579	-78.293	5.24	N
01543000	Driftwood Branch Sinnemahoning Creek at Sterling Run, Pa	41.413	-78.197	272	- N
01543500	Sinnemahoning Creek at Sinnemahoning, Pa.	41,317	-78.103	685	N
01544000	First Fork Sinnemahoning Creek near Sinnemahoning, Pa.	41,402	-78.024	245	Ŷ
01544500	Kettle Creek at Cross Fork, Pa	41.476	-77.826	136	N
01545000	Kettle Creek near Westport, Pa.	41.320	-77.874	233	Y
01545500	West Branch Susquehanna River at Renovo, Pa.	41.325	-77,751	2,975	Y
01545600	Young Womans Creek near Renovo, Pa.	41.390	-77.691	46.2	N
01546000	North Bald Eagle Creek at Milesburg, Pa.	40.942	-77.794	119	N
01546400	Spring Creek at Houserville, Pa.	40.834	-77.828	58.5	N
01546500	Spring Creek near Axemann, Pa.	40.890	-77.794	87.2	Ň
01547100	Spring Creek at Milesburg, Pa.	40.932	-77.786	. 142	Ň
01547200	Bald Eagle Creek below Spring Creek at Milesburg, Pa.	40,943	-77.786	265	N
01547500	Bald Eagle Creek at Blanchard, Pa	41,052	-77.604	339	Y
01547700	Marsh Creek at Blanchard, Pa.	41.060	-77.606	44.1	N
01547800	South Fork Beech Creek near Snow Shoe, Pa.	41.024	-77.904	12.2	N
01547950	Beech Creek at Monument, Pa.	41.112	-77.702	152	N
01548005	Bald Eagle Creek near Beech Creek Station, Pa.	41.081	-77.549	562	Y
01548500	Pine Creek at Cedar Run, Pa.	41.522	-77.447	604	N
01549000	Pine Creek near Waterville, Pa.	41,313	-77.379	750	N
01549500	Blockhouse Creek near English Center, Pa.	41,474	-77.231	37.7	N
01549700	Pine Creek below Little Pine Creek near Waterville, Pa.	41.274	-77.324	944	Y
01550000	Lycoming Creek near Trout Run, Pa.	41.418	-77.033	173	N .
01551500	WB Susquehanna River at Williamsport, Pa.	41.236	-76.997	5,682	Ŷ
01552000	Loyalsock Creek at Loyalsockville, Pa.	41,325	-76.912	435	N
01552500	Muncy Creek near Sonestown, Pa.	41.357	-76.535	23,8	N
01553130	Sand Spring Run near White Deer, Pa.	41.059	-77.077	4.93	<u>N</u>
01553500	West Branch Susquehanna River at Lewisburg, Pa.	40.968	-76.876	6,847	Y
01553700	Chillisquaque Creek at Washingtonville, Pa.	41.062	-76.680	51.3	N
01554000	Susquehanna River at Sunbury, Pa.	40.835	-76.827	18,300	Y
01554500	- Shamokin Creek ucar Shamokin, Pa	40.810	-76.584	54.2	N
01555000	Penns Creek at Penns Creek, Pa.	40.867	-77,048	301	N
01555500	East Mahantango Creek near Dalmatia, Pa.	40.611	-76.912	162	N
01556000	Frankstown Branch Juniata River at Williamsburg, Pa.	40,463	-78.200	291	N
01557500	Bald Eagle Creek at Tyrone, Pa.	40.684	-78.234	44.1	N
01558000	Little Juniata River at Spruce Creek, Pa.	40.613	-78.141	220	N
01559000	Juniata River at Huntingdon, Pa.	40.485	-78.019	816	LF
01559500	Standing Stone Creek near Huntingdon, Pa.	40.524	-77.971	128	N
01559700	Sulphur Springs Creek near Manns Choice, Pa.	39.978	-78.619	5.28	N
01560000	Dunning Creek at Belden, Pa.	40.072	-78.493	172	N

.

6 Selected Streamflow Statistics for Streamgage Locations in and near Pennsylvania

able 2. Selected low-flow statistics for streamgage locations in and near Pennsylvania.---Continued

ft3/s; cubic feet per second; ---, statistic not computed; <, less than]

Streamgage number	Period of record used in analysis ⁱ	Number of years used in analysis	1-day, 10-year (ft³/s)	7-day, 10-year (ft³/s)	7-day, 2-year (ft³/s)	30-day, 10-year (ft³/s)	30-day, 2-year (ft³/s)	90-đay, 10-year (ft³/s)
01546000	1912-1934	17	1.8	2.2	6.8	3.7	12.1	. 11.2
01546400	1986-2008	23	13.5	14,0	19.6	15,4	22.3	18.7
01546500	1942-2008	67	26,8	29.0	41.3	31.2	44.2	33.7
01547100	1969-2008	40	102	105	128		133	117
01547200	1957-2008	52	99.4	101	132	106	142	115
01547500	21971-2008	38	28.2	109	151	131	172	153
01547500	31956-1969	14	90.0	94.9	123	98.1	131	105
01547700	1957-2008	52	.5	.6	2.7	1.1	3.9	2.2
01547800	1971-1981	11	1.6	1.8	2.4	2,1	2.9	3.5
01547950	1970-2008	39	12.1	13.6	28.2	17.3	36.4	23.8
01548005	² 1971-2000	25	i42	151	206	178	241	223
01548005	31912-1969	58	105	114	- 147	125	165	140
01548500	1920-2008	89	21.2	24.2	50.i	33.6	68.6	49.3
01549000	1910-1920	ii	26.0	32.9	78.0	46.4	106	89.8
01549500	1942-2008	67	.6		2.5	1.4	3.9	2.0
01549700	1959-2008	50	33.3	37.2	83.8	51.2	117	78.4
01550000	1915-2008	94	6.6	7.6	16.8	11.2	24.6	18.0
01551500	219632008	46	520	578	1,020	678	1,330	919
01551500	31901-1961	61	400	439	742	523	943	752
01552000	1927-2008	80	20.5	22,2	49.5	29,2	69.8	49.0
01552500	1942-2008	67		1.2	3.1	1.1	4.4	3.3
01552500	1969-1981	- 13	1.0	1.1	1.5	1.3	1.8	1.7
01553500	21968-2008		760	838	1,440	1,000	1,850	1,470
01553500	³ 1941–1966	26	562	619	880	690	1,090	881
01553500	1981-2008	28	9.1	10.9	15.0	12.6	1,070	15.2
01554000	21981-2008	28	1,830	1,990	3,270	2,320	4,210	3,160
01554000	319391979	41	1,560	1,630	2,870	1,880	3,620	2,570
01554500	1941-1993	53	1,550	22.0	31.2	25.9	35.7	31.4
01555000	1941-1993	78	33.5	37.6	58.8	43.4	69.6	54.0
			4.9		38.8 18.0	43.4 9.4	24,3	16,0
01555500	1931-2008	78	 Research to Product and Products 	6,5	66.0	and a second second to be a second of the second	24.3 75.0	63.7
01556000	1918-2008	91	43.3	47.8	C. C. NGLO PROMINING	55.1	そんかく アンエンス ていたん たいちょう スノト	CARLES CONTRACTOR
01557500	1946-2008	63	2.8	3.2	6.3 70 P	4.2	· 8.1	5.8
01558000	1940-2008	69	56.3	59.0	79.8	65.7	86.2	
01559000	1943-2008	66	104	. 177	249	198	279	227
01559500	1931-1958	28	9,3	10.5	15.0	12.4	17.8	15.8
01559700	19631978	16	I.	.1	.2	.1	.3	.2
01560000	1941-2008	68	8.5	9.4	15.6	12.0	20.2	16.2
01561000	1932-1958	27	.4	.5	1.6	8.	2.5	1.3
01562000	1913-2008	96	64.1	67.1	106	77.4	122	94.5
01562500	19311957	27	1.1 1700-1500-1500	1.6	3.8	2.3	5.4 ಮಾಜಾಲ್ 29296969	3.7 2020-2020
01563200	21974-2008	35			· · · · · · · · · · · · · · · · · · ·	112	266	129
01563200	³ 1948–1972	25	10.3	28.2	86.1	. 64.5	113	95.
01563500	²19742008	35	384	415	519	441	580	493
01563500	³ 1939–1972	34	153	242	343	278	399	. 333
01564500	1940-2008	69	3.6	4,2	10.0	6.2	14.4	-10.0

Facility	: Hoeganaes Corp.	NPDES Permit No.:	PA0035777
Outfall	001, 002, 003	RMI at Outfall:	1.73
Reference Strea	Im Gage Information	Was BaSE Used?	-
Stream Name	Sand Spring Run	Correlation From Ecoflows	
Reference Gage	1553130		
Station Name	Sand Spring Run near White Deer, PA	Check D	
Gage Drainage Area (sq. ml.)	4.93	Discharge at Outfall (wf) (mgd)	0,001
Q _{7.10} at gage (cfs)	1.1		sf (cfs) wf (cfs) 0.2410 0.001547229
(leid Ratio (cis/ml²)	0.2231	Dilution Ratio = sf/wf Dilution Ratio =	0.2410 0.001547229 155.745318 to 1
Q ₇₋₁₀	at Outfall	Q ₇₋₁₀ at Down	stream Reach #1
Drainage Area at site (sq. mi.)	1.08	Orainage Area at Reach (sq. ml.)	11.37
Q ₇₋₁₀ at discharge site (cfs)	0.2410	RMI	0
Q _{7.10} at discharge site (mgd)	0.1557	Q _{7-t0} at reach (cfs)	2.5369
	fs/mf ² (For Approx. Comparison Only)	Q _{7.10} at reach (mgd)	1.6397 Elev. 460'
Q ₇₋₁₀ at discharge site (cfs) Q ₇₋₁₀ at discharge site (mgd)	0.1080 0.0698		E107. 400
Q7.10 at Down			stream Reach #3
Orainage Area at Reach (sq. ml.)	[Orainsge Area @ Reach #2]	Drainage Area at Reach (sq. ml.)	[Drainage Area @ Reach #3]
RMI	[RMI @ Reach #2]	RMI	[RMI @ Reach #3]
Q ₇₋₁₀ at reach (cfs) Q ₇₋₁₀ at reach (mgd)	#VALUEI	Q ₇₋₁₀ at reach (cfs) Q ₇₋₁₀ at reach (mgd)	#VALUE!
Date: Mon Apr 6 2015 08:31:45 M NAD27 Latitude: 41.0603 (41 03 NAD27 Longitude: -76.8337 (-76 NAD83 Latitude: 41.0603 (41 03	37) 50 01) 37)	Basin Ma	p at Outfall
Date: Mon Apr 6 2015 08:31:45 M NAD27 Latitude: 41.0603 (41 03 NAD27 Longitude: -76.8337 (-76 NAD83 Latitude: 41.0603 (41 03 NAD83 Longitude: -76.8334 (-76	10untain Daylight Time 37) 50 01) 37) 50 00)	Basin Ma	p at Outfall
Date: Mon Apr 6 2015 08:31:45 M NAD27 Latitude: 41.0603 (41 03 NAD27 Longitude: -76.8337 (-76 NAD83 Latitude: 41.0603 (41 03 NAD83 Longitude: -76.8334 (-76 Parameter	10untain Daylight Time 37) 50 01) 37) 50 00) Value	Basin Ma	p at Outfall
Date: Mon Apr 6 2015 08:31:45 M NAD27 Latitude: 41.0603 (41 03 NAD27 Longitude: -76.8337 (-76 NAD83 Latitude: 41.0603 (41 03 NAD83 Longitude: -76.8334 (-76 Parameter Area in square miles	10untain Daylight Time 37) 50 01) 37) 50 00)	Basin Ma	p at Outfall
Date: Mon Apr 6 2015 08:31:45 M NAD27 Latitude: 41.0603 (41 03 NAD27 Longitude: -76.8337 (-76 NAD83 Latitude: 41.0603 (41 03 NAD83 Longitude: -76.8334 (-76 Parameter Area in square miles Mean Basin Elevation in feet	10untain Daylight Time 37) 50 01) 37) 50 00) Value 1.08	Basin Ma	p at Outfall
Date: Mon Apr 6 2015 08:31:45 M NAD27 Latitude: 41.0603 (41 03 NAD27 Longitude: -76.8337 (-76 NAD83 Latitude: 41.0603 (41 03 NAD83 Longitude: -76.8334 (-76 Parameter Area in square miles Mean Basin Elevation in feet Unadjusted basin slope, in degrees Adjusted basin slope, in degrees	Sountain Daylight Time 37) 50 01) 37) 50 00) Value 1.08 561	Basin Ma	p at Outfall
Date: Mon Apr 6 2015 08:31:45 M NAD27 Latitude: 41.0603 (41 03 NAD27 Longitude: -76.8337 (-76 NAD83 Latitude: 41.0603 (41 03 NAD83 Longitude: -76.8334 (-76 Parameter Area in square miles Mean Basin Elevation in feet Unadjusted basin slope, in degrees Adjusted basin slope, in degrees Total stream length in miles	Sountain Daylight Time 37) 50 01) 37) 50 00) Value 1.08 561 2.83 2.7 1.46	Basin Ma	p at Outfall
Date: Mon Apr 6 2015 08:31:45 M NAD27 Latitude: 41.0603 (41 03 : NAD27 Longitude: -76.8337 (-76 NAD83 Latitude: 41.0603 (41 03 : NAD83 Longitude: -76.8334 (-76 Parameter Area in square miles Mean Basin Elevation in feet Unadjusted basin slope, in degrees Adjusted basin slope, in degrees Total stream length in miles Stream density (miles/square mile)	Sountain Daylight Time 37) 50 01) 37) 50 00) Value 1.08 561 2.88 2.7	Basin Ma	p at Outfall
Date: Mon Apr 6 2015 08:31:45 M NAD27 Latitude: 41.0603 (41 03 NAD27 Longitude: -76.8337 (-76 NAD83 Latitude: 41.0603 (41 03 NAD83 Longitude: -76.8334 (-76 Parameter Area in square miles Mean Basin Elevation In feet Unadjusted basin slope, in degrees Adjusted basin slope, in degrees Total stream length in miles Stream density (miles/square mile) Percent of area covered by lakes, ponds, reservoirs and wetlands	Sountain Daylight Time 37) 50 01) 37) 50 00) Value 1.08 561 2.83 2.7 1.46	Basin Ma	p at Outfall
Date: Mon Apr 6 2015 08:31:45 M NAD27 Latitude: 41.0603 (41 03 NAD27 Longitude: -76.8337 (-76 NAD83 Latitude: 41.0603 (41 03 NAD83 Longitude: -76.8334 (-76 Parameter Area in square miles Mean Basin Elevation in feet Juadjusted basin slope, in degrees Industed basin slope, in degrees Itotal stream length in miles Stream density (miles/square mile) Percent of area covered by lakes, ponds, reservoirs and weilands	Sountain Daylight Time 37) 50 01) 37) 50 00) Value 1.08 561 2.83 2.7 1.46	Basin Ma	p at Outfall
Date: Mon Apr 6 2015 08:31:45 M NAD27 Latitude: 41.0603 (41 03 : NAD27 Longitude: -76.8337 (-76 NAD83 Latitude: 41.0603 (41 03 : NAD83 Longitude: -76.8334 (-76 Parameter Area in square miles Mean Basin Elevation in feet Unadjusted basin slope, in degrees Adjusted basin slope, in degrees Total stream length in miles Stream density (miles/square mile) Percent of area covered by lakes, ponds, reservoirs and wetlands Percent of area covered by carbonate bedkock	Tountain Daylight Time 37) 50 01) 37) 50 00) Value 1.08 2.88 2.7 1.46 1.36 0 0	Basin Ma	p at Outfall
Date: Mon Apr 6 2015 08:31:45 M NAD27 Latitude: 41.0603 (41 03 : NAD27 Longitude: -76.8337 (-76 NAD83 Latitude: 41.0603 (41 03 : NAD83 Longitude: -76.8334 (-76 Parameter Area in square miles Mean Basin Elevation in feet Unadjusted basin slope, in degrees Adjusted basin slope, in degrees Total stream length in miles Stream density (miles/square mile) Percent of area covered by lakes, ponds, reservoirs and wellands Percent of area covered by carbonate bedkock Percent of area covered by glacial activity	Tountain Daylight Time 37) 50 01) 37) 50 00) Value 1.08 2.88 2.7 1.46 1.36 0 0	Basin Ma	p at Outfall
Date: Mon Apr 6 2015 08:31:45 M NAD27 Latitude: 41.0603 (41 03 : NAD27 Longitude: -76.8337 (-76 NAD83 Latitude: 41.0603 (41 03 : NAD83 Longitude: -76.8334 (-76 Parameter Area in square miles Mean Basin Elevation in feet Unadjusted basin slope, in degrees Adjusted basin slope, in degrees Total stream length in miles Stream density (miles/square mile) Percent of area covered by lakes, ponds, reservoirs and wetlands Percent of area covered by carbonate bedkock Percent of area covered by glacial activity Depth to rock in feet	Sountain Daylight Time 37) 50 01) 37) 50 00) Value 1.08 561 2.88 2.7 1.46 1.36 0 0	Basin Ma	p at Outfall
Date: Mon Apr 6 2015 08:31:45 M NAD27 Latitude: 41.0603 (41 03 : NAD27 Longitude: -76.8337 (-76 NAD83 Latitude: 41.0603 (41 03 : NAD83 Longitude: -76.8334 (-76 Parameter Area in square miles Mean Basin Elevation in feet Unadjusted basin slope, in degrees Adjusted basin slope, in degrees Total stream length in miles Stream density (miles/square mile)	Value 1.08 50 01) 37) 50 00) 50 00) Value 1.08 561 2.88 2.7 1.46 1.36 0 0 0 41 41	Basin Ma	p at Outfall
Date: Mon Apr 6 2015 08:31:45 M NAD27 Latitude: 41.0603 (41.03) NAD27 Longitude: -76.8337 (-76 NAD83 Latitude: 41.0603 (41.03) NAD83 Longitude: -76.8334 (-76 Parameter Area in square miles Mean Basin Elevation in feet Unadjusted basin slope, in degrees Adjusted basin slope, in degrees Total stream length in miles Stream density (miles/square mile) Percent of area covered by lakes, ponds, reservoirs and wetlands Percent of area covered by carbonate bedrock Percent of area covered by glacial activity Depth to rock in feet Mean annual precipitation in inches Maximum Daity Temperature in degrees F	Value 1.08 50 01) 37) 50 00) 50 00) Value 1.08 561 2.88 2.7 1.46 1.36 0 0 0 41 41	Basin Ma	p at Outfall
Date: Mon Apr 6 2015 08:31:45 M NAD27 Latitude: 41.0603 (41.03) NAD27 Longitude: -76.8337 (-76 NAD83 Latitude: 41.0603 (41.03) NAD83 Longitude: -76.8334 (-76 Parameter Area in square miles Mean Basin Elevation In feet Unadjusted basin slope, In degrees Adjusted basin slope, In degrees Total stream length In miles Stream density (miles/square mile) Percent of area covered by lakes, ponds, reservoirs and wetlands Percent of area covered by carbonate bedrock Percent of area covered by carbonate bedrock Percent of area covered by glacial activity Depth to rock in feet Mean annual precipitation in Inches Maximum Daily Temperature in degrees F Percent of area covered by forest Percent of area covered by forest	Value 0001tain Daylight Time 37) 50 01) 37) 50 00) Value 1.08 561 2.83 2.7 1.46 1.36 0 0 41 60	Basin Ma	p at Outfall
Date: Mon Apr 6 2015 08:31:45 M NAD27 Latitude: 41.0603 (41.03) NAD27 Longitude: -76.8337 (-76 NAD83 Latitude: 41.0603 (41.03) NAD83 Longitude: -76.8334 (-76 Parameter Area in square miles Mean Basin Elevation in feet Unadjusted basin slope, in degrees Adjusted basin slope, in degrees Total stream length in miles Stream density (miles/square mile) Percent of area covered by lakes, ponds, reservoirs and wellands Percent of area covered by carbonate bedrock Percent of area covered by glacial activity Depth to rock in feet Mean annual precipitation in inches Maximum Daily Temperature in degrees F Percent of area covered by forest Percent of rom NLCD 2001 impervious siteset	Value 0001tain Daylight Time 37) 50 01) 37) 50 00) Value 1.08 561 2.83 2.7 1.46 1.36 0 0 41 60	Basin Ma	p at Outfall
Date: Mon Apr 6 2015 08:31:45 M NAD27 Latitude: 41.0603 (41.03) NAD27 Longitude: -76.8337 (-76 NAD83 Latitude: 41.0603 (41.03) NAD83 Longitude: -76.8334 (-76 Parameter Area in square miles Mean Basin Elevation in feet Unadjusted basin slope, in degrees Adjusted basin slope, in degrees Total stream length in miles Stream density (miles/square mile) Percent of area covered by lakes, ponds, reservoirs and wellands Percent of area covered by carbonate bedrock Percent of area covered by glacial activity Depth to rock in feet Mean annual precipitation in inches Maximum Daily Temperature in degrees F Percent of area covered by forest Percent of area covered by forest	Value 0001tain Daylight Time 37) 50 01) 37) 50 00) Value 1.08 561 2.83 2.7 1.46 1.36 0 0 41 60	Basin Ma	p at Outfall
Date: Mon Apr 6 2015 08:31:45 M NAD27 Latitude: 41.0603 (41 03 NAD27 Longitude: -76.8337 (-76 NAD83 Latitude: 41.0603 (41 03 NAD83 Longitude: -76.8334 (-76 Parameter Area in square miles Mean Basin Elevation in feet Juadjusted basin slope, in degrees Adjusted basin slope, in degrees Idjusted basi	Value 0001tain Daylight Time 37) 50 01) 37) 50 00) Value 1.08 561 2.83 2.7 1.46 1.36 0 0 41 60	Basin Ma	p at Outfall
Date: Mon Apr 6 2015 08:31:45 M NAD27 Latitude: 41.0603 (41 03 NAD27 Longitude: -76.8337 (-76 NAD83 Latitude: 41.0603 (41 03 NAD83 Longitude: -76.8334 (-76 Parameter Area in square miles Mean Basin Elevation in feet Jnadjusted basin slope, in degrees Adjusted basin slope, in degrees Stream density (miles/ square mile) Percent of area covered by carbonate percent of area covered by urban land percentage of impervious area percentage of urban fand cover	Value 0001tain Daylight Time 37) 50 01) 37) 50 00) Value 1.08 561 2.83 2.7 1.46 1.36 0 0 41 60	Basin Ma	p at Outfall
Date: Mon Apr 6 2015 08:31:45 M NAD27 Latitude: 41.0603 (41 03 NAD27 Longitude: -76.8337 (-76 NAD83 Latitude: 41.0603 (41 03 NAD83 Longitude: -76.8334 (-76 Parameter Area in square miles Hean Basin Elevation in feet Jinadjusted basin slope, in degrees Adjusted basin slope, in degrees Steam density (miles/square mile) Percent of area covered by lakes, ponds, reservoirs and wetlands Percent of area covered by carbonate editock Percent of area covered by lakes, ponds, reservoirs and wetlands Percent of area covered by lakes ponds, reservoirs and wetlands Percent of area covered by lakes ponds, reservoirs and setting Percent of area covered by lakes for Percent of area covered by lakes for Percent of area covered by lakes for port of area covered by lakes for percent of area covered by lakes for percent of area covered by lakes for percent of area covered by urban land seconding to an enhanced version of HCD 1992 Percentage of urban land cover stetermined from NLCD 2001 land cover	Value 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 10000	Basin Ma	p at Outfall
Date: Mon Apr 6 2015 08:31:45 M NAD27 Latitude: 41.0603 (41 03 NAD27 Longitude: -76.8337 (-76 NAD83 Latitude: 41.0603 (41 03 NAD83 Longitude: -76.8334 (-76 Parameter Area in square miles Mean Basin Elevation in feet Jinadjusted basin skope, in degrees Majusted basin skope, in degrees Steam density (miles/square mile) Percent of area covered by lakes, ponds, reservoirs and wellands Percent of area covered by carbonate bedrock Percent of area covered by carbonate bedrock Percent of area covered by forest Maximum Daily Temperature in degrees F Percent of area covered by forest Maximum Daily Temperature in degrees F Percent of area covered by forest Maximum Daily Temperature in degrees F Percentage of impervious area Idetermined from NLCD 2001 impervious Jataset Percentage of urban fand cover Idetermined from NLCD 2001 ind cover Jataset Drainage quality Index from STATSGO	Value 1.08 50 01) 37) 50 00) Value 1.08 561 2.88 2.7 1.46 1.36 0 0 0 1.46 1.36 0 0 0 1.46 1.36 0 11 3 6	Basin Ma	p at Outfall
Date: Mon Apr 6 2015 08:31:45 M NAD27 Latitude: 41.0603 (41 03 NAD27 Longitude: -76.8337 (-76 NAD83 Latitude: 41.0603 (41 03 NAD83 Longitude: -76.8334 (-76 Parameter Vrea in square miles Vrea in squ	Value 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 10000	Basin Ma	p at Outfall
Date: Mon Apr 6 2015 08:31:45 M NAD27 Latitude: 41.0603 (41 03 NAD27 Longitude: -76.8337 (-76 NAD83 Latitude: 41.0603 (41 03 NAD83 Longitude: -76.8334 (-76 Parameter Area in square miles Hean Basin Elevation In feet Jnadjusted basin slope, In degrees Adjusted basin slope, In degrees Total stream length In miles Stream density (miles/square mile) Percent of area covered by carbonate befock Percent of area covered by forest Percent of area covered by forest Percent of area covered by urban land scoreling to an enhanced version of <u>HCD 1992</u> Percentage of urban fand cover fetermined from NLCD 2001 Inpervious jalaset Dralage quality Index from STATSGO C coordinate of the centrold, in map prolection, meters	Value 1.08 50 01) 37) 50 00) Value 1.08 2.89 2.7 1.46 1.36 0 0 41 60 11 3 6 10 3.1 93381.7	Basin Ma	p at Outfall
Date: Mon Apr 6 2015 08:31:45 M NAD27 Latitude: 41.0603 (41 03 NAD27 Longitude: -76.8337 (-76 NAD83 Latitude: 41.0603 (41 03 NAD83 Longitude: -76.8334 (-76 Parameter Area in square miles Mean Basin Elevation in feet Juadjusted basin slope, in degrees Adjusted basin slope, in degrees Indijusted basin slope, in degrees Indijusted basin slope, in degrees Stream density (miles/square mile) Percent of area covered by lakes, ponds, reservoirs and weilands Percent of area covered by glacial activity Depth to rock in feet Mean annual precipitation in Inches Maximum Daily Temperature in degrees F Percent of area covered by glacial activity Depth to rock in feet Mean annual precipitation in Inches Maximum Daily Temperature in degrees F Percent of area covered by urban land second of under the centrold in standard second of under and cover determined from NLCD 2001 Impervious falaset Descent of area covered by urban land second of urban fand cover determined from NLCD 2001 India cover	Value 37) 50 01) 37) 50 00) Value 1.08 561 2.83 2.7 1.46 1.35 0 0 41 60 11 3 60 11 3 60 10 3.1 93381.7 229065.2	Basin Ma	p at Outfall
Date: Mon Apr 6 2015 08:31:45 M NAD27 Latitude: 41.0603 (41 03 NAD27 Longitude: -76.8337 (-76 NAD83 Latitude: 41.0603 (41 03 NAD83 Longitude: -76.8334 (-76 Parameter Visa in square miles Hean Basin Elevation in feet Jinadjusted basin slope, in degrees Mijusted basin slope, in degrees Mijusted basin slope, in degrees Steam density (miles/ square mile) Percent of area covered by lakes, ponds, eservoirs and wetlands Percent of area covered by carbonate wetlock. Percent of area covered by carbonate wetlock. Percent of area covered by forest Hean ansual precipitation in Inches Hazimum Daity Temperature in degrees F Percent of area covered by forest Hearcentage of Impervious area Istermined from NLCD 2001 Impervious Ialaset Drainage quality Index from STATSGO Cocordinate of the centrold, in map xolection, meters Cocordinate of the centrold, in map xolection, meters	Value 1.08 50 01) 37) 50 00) Value 1.08 2.89 2.7 1.46 1.36 0 0 41 60 11 3 6 10 3.1 93381.7	Basin Ma	p at Outfall
Date: Mon Apr 6 2015 08:31:45 M NAD27 Latitude: 41.0603 (41 03 NAD27 Longitude: -76.8337 (-76 NAD83 Latitude: 41.0603 (41 03 NAD83 Longitude: -76.8334 (-76 Parameter Area in square miles Hean Basin Elevation In feet Jinadjusted basin slope, in degrees Adjusted basin slope, in degrees Stream density (miles/ square mile) Percent of area covered by lakes, ponds, eseropics and wellands Percent of area covered by carbonate eddock. Percent of area covered by forest Percent of area covered by forest Percent of area covered by forest Percent of area covered by forest Percentage of impervious area determined from NLCD 2001 impervious jataset. Dralnage quality Index from STATSGO C coordinate of the centrold, in map rolociding to the centrold, in map	Value 37) 50 01) 37) 50 00) Value 1.08 561 2.83 2.7 1.46 1.35 0 0 41 60 11 3 60 11 3 60 10 3.1 93381.7 229065.2	Basin Ma	p at Outfall

NPDES Permit No. PA0035777

APPENDIX B WQM 7.0 MODEL INPUT/OUTPUT

Input Data WQM 7.0

	SWF Basi			Stre	am Name		RMI	Elev: (f		Drainage Area (sq mi)	Slope (ft/ft)	PWS Withdrawal (mgd)	Apply FC
	10D	191	126 Trib 19	9126 to M	uddy Run		1.73	30 4	195.00	1.08	0.00000	0.00	
				E3 07 15-	St	tream Da	ta						
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	<u>Tributary</u> p pH	Tem	<u>Stream</u> np pH	
Cona.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C))	(°C)	
27-10	0.100	0.00	0.24	0.000	0.000	0.0	0.00	0.00	20	.00 7.0	00	0.00 0.00)
21-10		0.00	0.00	0.000	0.000								
230-10		0.00	0.00	0.000	0.000								

Name	Permit Number	Existing Disc Flow (mgd)	Permitte Disc Flow (mgd)	Dis	sc Res ow Fa	erve T ctor	Disc emp (°C)	Disc pH
Hoeganaes Corp	PA0035777	0.0110	0.011	0 0.0	0110 (0.000	25.00	7.00
	Par	ameter D	ata					
Dora				rib Ionc	Stream Conc	Fate Coef		
Fala	meter Name	(mg	/L) (n	ng/L)	(mg/L)	(1/days)		
CBOD5		2	5.00	2.00	0.00	1.50	:	- V- F
Dissolved Oxy	gen	;	3.00	8.24	0.00	0.00		
NH3-N		2	0.00	0.00	0.00	0.70		

Input Data WQM 7.0

	SWP Basi			Stre	am Name		RMI		ation ft}	Drainage Area (sq mi)	Slope (ft/ft)	PWS Withdrawal (mgd)	Apply FC
	10D	191	126 Trib 1	9126 to M	uddy Run		0.00	00	460.00	11.37	0.00000	0.00) 🗸
					S	tream Da	ta						
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocily	WD Ratio	Rch Width	Rch Depth	Terr	<u>Tributary</u> np pH	Tem	<u>Stream</u> np pH	
oona.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)	(°C)	
Q7-10	0.100	0.00	2.50	0.000	0.000	0.0	0.00	0.00) 2	0.00 7.0	00	0.00 0.0	0
Q1-10		0.00	0.00	0.000	0.000								
Q30-10		0.00	0.00	0.000	0.000								
					r	ischarge	Data						

Name	Permit Number	Existing Disc Flow (mgd)	Permitte Disc Flow (mgd)	Di	sc Re	eserve Factor	Disc Temp (°C)	Disc pH
 		0.0000	0.000	0 0.	0000	0.000	25.00	7.00
	Par	rameter Da	ata					
	rameter Name	Disc Cor		rib onc	Stream Conc			
r a		(mg	/L) (n	ng/L)	(mg/L)	/L) (1/days)	/s)	
 CBOD5		25	5,00	2.00	0.0	00 1.	.50	
Dissolved O	xygen	\$	3.00	8.24	0.0	0 0	.00	
NH3-N		25	5.00	0.00	0.0	0 0	.70	

.

	SW	<u>P Basin</u> 10D		<u>m Code</u> 9126				Stream 9126 to	<u>Name</u> Muddy Ri	un			
RMI	Stream Flow (cfs)	PWS With (cfs)	Net Stream Flow (cfs)	Disc Analysis Flow (cfs)	Reach Siope (ft/ft)	Depth (ft)	Width (ft)	W/D Ratio	Velocity (fps)	Reach Trav Time (days)	Analysis Temp (°C)	Analysis pH	
-	0 Flow											7.00	
1.730	0.24	0.00	0.24	.017	0.00383	.413	6.59	15.94	0.09	1.120	20.33	7.00	
Q1-1(0 Flow												
1.730	0.22	0.00	0.22	.017	0.00383	NA	NA	NA	0.09	1.177	20.36	7.00	
Q30-1	10 Flow	,											
1.730	0.28	0.00	0.28	.017	0.00383	NA	NA	NA	0.10	1.026	20.28	7.00	

WQM 7.0 Hydrodynamic Outputs

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.909	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.18	Temperature Adjust Kr	\checkmark
D.O. Saturation	90.00%	Use Balanced Technology	\checkmark
D.O. Goal	5		

1	SWP Basin Stre	am Code		Str	eam Name			
		9126			26 to Muddy	Run		
	100	0120						
NH3-N	Acute Allocation	IS						
RMI	Discharge Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction	1
1.73	0 Hoeganaes Corp	9.42	40	9.42	40	0	0	
NH3-N RMI	Chronic Allocati	Baseline Criterion	Baseline WLA	Multiple Criterion	Multiple WLA	Critical Reach	Percent Reduction	
		(mg/L)	(mg/L)	(mg/L)	(mg/L)			_
		4 66	20	1.88	20	0	0	
1.73	0 Hoeganaes Corp	1.88	20	1.00				_
	0 Hoeganaes Corp		20	1.00	**			_
		ations	CBOD5	<u>NH3-N</u>	Dissol	ved Oxyger	1 Critical	Perce
		ations	CBOD5 ne Multiple	<u>NH3-N</u> Baseline Mu		ne Multiple	Reach	Percer Reduct

<u>SWP Basin</u> S 10D	<u>tream Code</u> 19126		Trib	<u>Stream Name</u> 19126 to Muddy Run	
<u>RMI</u> 1.730 <u>Reach Width (ft)</u> 6.587 <u>Reach CBOD5 (mg/L)</u> 3.52 <u>Reach DO (mg/L)</u> 7.896	<u>Total Discharge</u> 0.01 <u>Reach De</u> 0.41 <u>Reach Kc (</u> 0.42 <u>Reach Kr (</u> 23.07	1 o <u>th (ft)</u> 3 <u>1/days)</u> 7 1/days)	Ŀ	ysis Temperature (°C) 20.331 <u>Reach WDRatio</u> 15.938 <u>each NH3-N (mg/L)</u> 1.32 <u>Kr Equation</u> Owens	<u>Analysis pH</u> 7.000 <u>Reach Velocity (fps)</u> 0.094 <u>Reach Kn (1/days)</u> 0.718 <u>Reach DO Goal (mg/L)</u> 5
Reach Travel Time (days) 1.120	TravTime (days)	Subreach CBOD5 (mg/L)	NH3-N (mg/L)	D.O. (mg/L)	
	0.112	3.36 3.20	1.22	8.19 8.19	
	0.336	3.05	1.04	8.19 8.19	
	0.560 0.672	2.76 2.63	0.89 0.82	8.19 8.19	
	0.784 0.896		0.75	. 8.19 8.19	
	1.008 1.120		0.64 0.59	8.19 8.19	

WQM 7.0 D.O.Simulation

		am Code 19126		<u>Stream Name</u> Trib 19126 to Mude	-		
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
1.730	Hoeganaes Corp	PA0035777	0.011	CBOD5	25		
				NH3-N	20	40	
				Dissolved Oxygen			3

5

WQM 7.0 Effluent Limits

APPENDIX C TOXICS MANAGEMENT SPREADSHEET

Toxics Management Spreadsheet Version 1.3, March 2021

Discharge Information

Ins	tructions D	ischarge Stream													
Fac	cility: Hoe	ganaes				I	NP	DES Per	mit No.:	PA0035	777		Outfall	No.: 001	
Eva	aluation Type:	Major Sewage /	Industr	ial W	/aste	١	Wa	stewater	Descrip	tion: Nor	n-Contae	ct Coolir	ng Wate	r	
					Discha	rge C	ha	racterist	tics						
De	esign Flow					-		al Mix Fa		PMFs)		Com	plete Mi	x Times	(min)
	(MGD)*	Hardness (mg/l)*	pH (SU)*	AFC			CFC	ТНН		CRL		7-10		۲ _h
	0.009	100		7									-10		-11
	0.000	100													
						0	if lefi	t blank	0.5 if le	ft blank	() if left blan	k	1 if lef	t blank
	(
	Discha	arge Pollutant	Units	Max	k Discharge Conc	Tri Cor		Stream Conc	Daily CV	Hourly CV	Strea m CV	Fate Coeff	FOS	Criteri a Mod	Chem Transl
	Total Dissolve	d Solids (PWS)	mg/L												
-	Chloride (PW	S)	mg/L												
Group	Bromide		mg/L												
ō	Sulfate (PWS)	mg/L												
	Fluoride (PW	S)	mg/L												
	Total Aluminu		µg/L		0.00005										
	Total Antimon	у	µg/L		0.0000055										
	Total Arsenic		µg/L		0.0000045										
	Total Barium		µg/L		0.000045										
	Total Berylliur	n	µg/L		0.0000026										
	Total Boron		µg/L		0.00022										
	Total Cadmiu		µg/L		0.00000034										
	Total Chromiu		µg/L		0.00000066										
	Hexavalent C	nromium	µg/L		0.00000045										
	Total Cobalt Total Copper		µg/L		0.00000045										
8	Free Cyanide		μg/L μg/L		0.000029										
dn	Total Cyanide		µg/L		0.0000082										
Group	Dissolved Iror		µg/L		90.8										
	Total Iron	•	µg/L		0.0003										
	Total Lead		µg/L		0.0000024										
	Total Mangan	ese	µg/L		0.000011										
	Total Mercury		µg/L		0.03										
	Total Nickel		µg/L		0.000021										
	Total Phenols	(Phenolics) (PWS)	µg/L		0.000016										
	Total Seleniur	n	µg/L		0.0000038										
	Total Silver		µg/L		0.0000011										
	Total Thallium)	µg/L		0.0000033										
	Total Zinc		µg/L		0.000043										
	Total Molybde	num	µg/L		0.000021										
	Acrolein		µg/L	<											
	Acrylamide		µg/L	<											
	Acrylonitrile		µg/L	<											
	Benzene		µg/L	<											
	Bromoform		µg/L	<											

1								
	Carbon Tetrachloride	µg/L	<					
	Chlorobenzene	µg/L						
	Chlorodibromomethane	µg/L	<					
	Chloroethane	µg/L	<					
	2-Chloroethyl Vinyl Ether	µg/L	<					
	Chloroform	µg/L	<					
	Dichlorobromomethane	µg/L	<					
	1,1-Dichloroethane	µg/L	<					
3	1,2-Dichloroethane	µg/L	<					
d	1,1-Dichloroethylene	µg/L	<					
Group	1,2-Dichloropropane	µg/L	<					
ō	1,3-Dichloropropylene	µg/L	<					
	1,4-Dioxane	µg/L	<					
	Ethylbenzene	µg/L	<	 				
			<					
	Methyl Bromide	µg/L						
	Methyl Chloride	µg/L	<					
	Methylene Chloride	µg/L	<	 				
	1,1,2,2-Tetrachloroethane	µg/L	<					
	Tetrachloroethylene	µg/L	<					
	Toluene	µg/L	<					
	1,2-trans-Dichloroethylene	µg/L	<					
	1,1,1-Trichloroethane	µg/L	<					
	1,1,2-Trichloroethane	µg/L	<					
	Trichloroethylene	µg/L	<					
	Vinyl Chloride	µg/L	<					
	2-Chlorophenol	µg/L	<					
	2,4-Dichlorophenol	µg/L	<					
	2,4-Dimethylphenol	µg/L	<					
	4,6-Dinitro-o-Cresol	µg/L	<					
4	2,4-Dinitrophenol	µg/L	<					
Group	2-Nitrophenol	µg/L	<					
2	4-Nitrophenol	µg/L	<					
0	p-Chloro-m-Cresol	μg/L	<		 			
	Pentachlorophenol	μg/L	<					
	Phenol	µg/L	<					
			<					
	2,4,6-Trichlorophenol Acenaphthene	µg/L			 			
		µg/L	<	 				
	Acenaphthylene	µg/L						
	Anthracene	µg/L	<					
	Benzidine	µg/L	<	 				
	Benzo(a)Anthracene	µg/L	<					
	Benzo(a)Pyrene	µg/L	<					
	3,4-Benzofluoranthene	µg/L	<					
	Benzo(ghi)Perylene	µg/L	<			 		
	Benzo(k)Fluoranthene	µg/L	<					
	Bis(2-Chloroethoxy)Methane	µg/L	<					
	Bis(2-Chloroethyl)Ether	µg/L	<					
	Bis(2-Chloroisopropyl)Ether	µg/L	<					
	Bis(2-Ethylhexyl)Phthalate	µg/L	<					
	4-Bromophenyl Phenyl Ether	µg/L	<					
	Butyl Benzyl Phthalate	µg/L	<					
	2-Chloronaphthalene	µg/L	<					
	4-Chlorophenyl Phenyl Ether	µg/L	<					
	Chrysene	µg/L	<					
	Dibenzo(a,h)Anthrancene	µg/L	<					
	1,2-Dichlorobenzene	μg/L	<					
	1,3-Dichlorobenzene	μg/L	<					
	1,4-Dichlorobenzene	µg/L	<					
05		1		 				
Ino	3,3-Dichlorobenzidine	µg/L	<	 				
Group	Diethyl Phthalate	µg/L	<	 				
1	Dimethyl Phthalate	µg/L	<					
	Di-n-Butyl Phthalate	µg/L	<					
	2,4-Dinitrotoluene	µg/L	<					

	2,6-Dinitrotoluene	µg/L	<					
	Di-n-Octyl Phthalate	µg/L	<					
	1,2-Diphenylhydrazine	µg/L	<					
	Fluoranthene	µg/L	<					
	Fluorene	µg/L	<					
	Hexachlorobenzene	µg/L	<					
	Hexachlorobutadiene	µg/L	<					
	Hexachlorocyclopentadiene	µg/L	<					
	Hexachloroethane	µg/L	<					
	Indeno(1,2,3-cd)Pyrene	µg/L	<					
	Isophorone	µg/L	<					
	Naphthalene	µg/L	<					
	Nitrobenzene	µg/L	<					
	n-Nitrosodimethylamine	µg/L	<					
			<					
	n-Nitrosodi-n-Propylamine	µg/L	<					
	n-Nitrosodiphenylamine	µg/L						
	Phenanthrene	µg/L	<					
	Pyrene	µg/L	<					
	1,2,4-Trichlorobenzene	µg/L	<					
	Aldrin	µg/L	<					
	alpha-BHC	µg/L	<					
	beta-BHC	µg/L	<					
	gamma-BHC	µg/L	<					
	delta BHC	µg/L	<					
	Chlordane	µg/L	<					
	4,4-DDT	µg/L	<					
	4,4-DDE	µg/L	<					
	4.4-DDD	µg/L	<					
	Dieldrin	µg/L	<					
	alpha-Endosulfan	µg/L	<					
	beta-Endosulfan		<					
9		µg/L						
Group	Endosulfan Sulfate	µg/L	<					
Z	Endrin	µg/L	<			 		
G	Endrin Aldehyde	µg/L	<					
	Heptachlor	µg/L	<					
	Heptachlor Epoxide	µg/L	<					
	PCB-1016	µg/L	<					
	PCB-1221	µg/L	<					
	PCB-1232	µg/L	<					
	PCB-1242	µg/L	<					
	PCB-1248	µg/L	<					
	PCB-1254	µg/L	<					
	PCB-1260	µg/L	<					
	PCBs, Total	µg/L	<					
	Toxaphene	µg/L	<					
	2,3,7,8-TCDD	ng/L	<					
	Gross Alpha	pCi/L						
	Total Beta	pCi/L	<					
0 7	Radium 226/228		<					
_		pCi/L						
Š	Total Strontium	µg/L	<					
-	Total Uranium	µg/L	<			 	 	
	Osmotic Pressure	mOs/kg						
			_					
			_					

Toxics Management Spreadsheet Version 1.3, March 2021

Stream / Surface Water Information

Hoeganaes, NPDES Permit No. PA0035777, Outfall 001

Instructions Discharge Stream

Receiving Surface W	/ater Name: Unr	named Tribu	itary of Mud	dy Run		No. Reaches to Mod	 Statewide Criteria Great Lakes Criteria 	
Location	Stream Code*	RMI*	Elevation (ft)*	DA (mi ²)*	Slope (ft/ft)	PWS Withdrawal (MGD)	Apply Fish Criteria*	ORSANCO Criteria
Point of Discharge	019126	1.73	495	1.08			Yes	
End of Reach 1	019126	0	460	11.37			Yes	

Q 7-10

Location	RMI	LFY	Flow	v (cfs)	W/D	Width	Depth	Velocit	Time	Tributa	ary	Stream	n	Analys	sis
Location	EXIVIT	(cfs/mi ²)*	Stream	Tributary	Ratio	(ft)	(ft)	y (fps)	Time (days)	Hardness	pН	Hardness*	pH*	Hardness	pН
Point of Discharge	1.73	0.1	0.24									100	7		
End of Reach 1	0	0.1	2.5												

Q_h

Location	RMI	LFY	Flow	r (cfs)	W/D	Width	Depth	Velocit	Time	Tributa	ary	Strea	m	Analys	sis
Location	EXIVII	(cfs/mi ²)	Stream	Tributary	Ratio	(ft)	(ft)	y (fps)	(days)	Hardness	pН	Hardness	pН	Hardness	pН
Point of Discharge	1.73														
End of Reach 1	0														

m / Surface Water Information

9/10/2021

NPDES Permit No. PA0035777

Toxics Management Spreadsheet Version 1.3, March 2021

Pennsylvania DEPARTMENT OF ENVIRONMENTAL PROTECTION

Hoeganaes, NPDES Permit No. PA0035777, Outfall 001

Instructions Results	RETURN	TO INPU	TS	SAVE AS	PDF	PRINT	T @ A	NI 🔿 Inputs 🔿 Results 🔿 Limits
Hydrodynamics								
Wasteload Allocations								
AFC CC	T (min): 3.	218	PMF:	1	Ana	Ilysis Hardne	ess (mg/l):	100 Analysis pH: 7.00
Pollutants	Conc	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Aluminum	0	0		0	750	750	13,678	
Total Antimony	0	0		0	1,100	1,100	20,061	
Total Arsenic	0	0		0	340	340	6,201	Chem Translator of 1 applied
Total Barium	0	0		0	21,000	21,000	382,991	
Total Boron	0	0		0	8,100	8,100	147,725	
Total Cadmium	0	0		0	2.014	2.13	38.9	Chem Translator of 0.944 applied
Total Chromium (III)	0	0		0	569.763	1,803	32,883	Chem Translator of 0.316 applied
Total Cobalt	0	0		0	95	95.0	1,733	
Total Copper	0	0		0	13.439	14.0	255	Chem Translator of 0.96 applied
Dissolved Iron	0	0		0	N/A	N/A	N/A	
Total Iron	0	0		0	N/A	N/A	N/A	
Total Lead	0	0		0	64.581	81.6	1,489	Chem Translator of 0.791 applied
Total Manganese	0	0		0	N/A	N/A	N/A	
Total Mercury	0	0		0	1.400	1.65	30.0	Chem Translator of 0.85 applied
Total Nickel	0	0		0	468.236	469	8,557	Chem Translator of 0.998 applied
Total Phenols (Phenolics) (PWS)	0	0		0	N/A	N/A	N/A	
Total Selenium	0	0		0	N/A	N/A	N/A	Chem Translator of 0.922 applied
Total Silver	0	0		0	3.217	3.78	69.0	Chem Translator of 0.85 applied
Total Thallium	0	0		0	65	65.0	1,185	
Total Zinc	0	0		0	117.180	120	2,185	Chem Translator of 0.978 applied
CFC CC		218	PMF:	1	Ana	alysis Hardne	ess (mg/l):	100 Analysis pH: 7.00
Pollutants	Conc (ug/L)	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Aluminum	0	0		0	N/A	N/A	N/A	

Model Results

9/10/2021

=		-		-				
Total Antimony	0	0		0	220	220	4,012	
Total Arsenic	0	0		0	150	150	2,736	Chem Translator of 1 applied
Total Barium	0	0		0	4,100	4,100	74,774	
Total Boron	0	0		0	1,600	1,600	29,180	
Total Cadmium	0	0		0	0.246	0.27	4.94	Chem Translator of 0.909 applied
Total Chromium (III)	0	0		0	74.115	86.2	1,572	Chem Translator of 0.86 applied
Total Cobalt	0	0		0	19	19.0	347	
Total Copper	0	0		0	8.956	9.33	170	Chem Translator of 0.96 applied
Dissolved Iron	0	0		0	N/A	N/A	N/A	
Total Iron	0	0		0	1,500	1,500	27,356	WQC = 30 day average; PMF = 1
Total Lead	0	0		0	2.517	3.18	58.0	Chem Translator of 0.791 applied
Total Manganese	0	0		0	N/A	N/A	N/A	
Total Mercury	0	0		0	0.770	0.91	16.5	Chem Translator of 0.85 applied
Total Nickel	0	0		0	52.007	52.2	951	Chem Translator of 0.997 applied
Total Phenols (Phenolics) (PWS)	0	0		0	N/A	N/A	N/A	
Total Selenium	0	0		0	4.600	4.99	91.0	Chem Translator of 0.922 applied
Total Silver	0	0		0	N/A	N/A	N/A	Chem Translator of 1 applied
Total Thallium	0	0		0	13	13.0	237	
Total Zinc	0	0		0	118.139	120	2,185	Chem Translator of 0.986 applied
Dollutanta	Stream	Stream	Trib Conc	Fate	WQC	WQ Obj		
Pollutants	Conc (ug/L)	CV	(µg/L)	Coef	(µg/L)	(µg/L)	WLA (µg/L)	Comments
Total Aluminum	0	0		0	N/A	N/A	N/A	
Total Antimony	0	0		0	5.6	5.6	102	
Total Arsenic	0	0		0	10	10.0	182	
Total Barium	0	0		0	2,400	2,400	43,770	
Total Boron	0	0		0	3,100	3,100	56,537	
Total Cadmium	0	0		0	N/A	N/A	N/A	
Total Chromium (III)	0	0		0	N/A	N/A	N/A	
Total Cobalt	0	0		0				
Total Copper	_	-		-	N/A	N/A	N/A	
Dissolved Iron	0	0		0	N/A	N/A	N/A N/A	
	0	0		0	N/A 300	N/A 300	N/A N/A 5,471	
Total Iron	0	0 0 0		0 0 0	N/A 300 N/A	N/A 300 N/A	N/A N/A 5,471 N/A	
Total Iron Total Lead	0 0 0 0	0 0 0 0		0 0 0 0	N/A 300 N/A N/A	N/A 300 N/A N/A	N/A N/A 5,471 N/A N/A	
Total Iron Total Lead Total Manganese	0 0 0 0 0	0 0 0 0 0		0 0 0 0 0	N/A 300 N/A N/A 1,000	N/A 300 N/A N/A 1,000	N/A N/A 5,471 N/A N/A 18,238	
Total Iron Total Lead Total Manganese Total Mercury	0 0 0 0 0 0	0 0 0 0 0 0		0 0 0 0 0	N/A 300 N/A N/A 1,000 0.050	N/A 300 N/A N/A 1,000 0.05	N/A N/A 5,471 N/A N/A 18,238 0.91	
Total Iron Total Lead Total Manganese Total Mercury Total Nickel	0 0 0 0 0 0 0	0 0 0 0 0 0 0		0 0 0 0 0 0	N/A 300 N/A N/A 1,000 0.050 610	N/A 300 N/A N/A 1,000 0.05 610	N/A N/A 5,471 N/A N/A 18,238 0.91 11,125	
Total Iron Total Lead Total Manganese Total Mercury Total Nickel Total Phenols (Phenolics) (PWS)	0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0		0 0 0 0 0 0 0 0	N/A 300 N/A 1,000 0.050 610 5	N/A 300 N/A 1,000 0.05 610 5.0	N/A N/A 5,471 N/A 18,238 0.91 11,125 N/A	
Total Iron Total Lead Total Manganese Total Mercury Total Nickel Total Phenols (Phenolics) (PWS) Total Selenium	0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0		0 0 0 0 0 0 0 0 0	N/A 300 N/A 1,000 0.050 610 5 N/A	N/A 300 N/A 1,000 0.05 610 5.0 N/A	N/A N/A 5,471 N/A 18,238 0.91 11,125 N/A N/A	
Total Iron Total Lead Total Manganese Total Mercury Total Nickel Total Phenols (Phenolics) (PWS) Total Selenium Total Silver	0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0		0 0 0 0 0 0 0 0 0 0	N/A 300 N/A 1,000 0.050 610 5 N/A N/A	N/A 300 N/A 1,000 0.05 610 5.0 N/A N/A	N/A N/A 5,471 N/A 18,238 0.91 11,125 N/A N/A N/A	
Total Iron Total Lead Total Manganese Total Mercury Total Nickel Total Phenols (Phenolics) (PWS) Total Selenium	0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0		0 0 0 0 0 0 0 0 0	N/A 300 N/A 1,000 0.050 610 5 N/A	N/A 300 N/A 1,000 0.05 610 5.0 N/A	N/A N/A 5,471 N/A 18,238 0.91 11,125 N/A N/A	

Aodel Results

9/10/2021

NPDES Permit No. PA0035777

CRL C	CT (min): 0.	869	PMF:	1	Ana	alysis Hardne	ess (mg/l):	N/A Analysis pH: N/A
Pollutants	Conc (ug/L)	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Aluminum	0	0		0	N/A	N/A	N/A	
Total Antimony	0	0		0	N/A	N/A	N/A	
Total Arsenic	0	0		0	N/A	N/A	N/A	
Total Barium	0	0		0	N/A	N/A	N/A	
Total Boron	0	0		0	N/A	N/A	N/A	
Total Cadmium	0	0		0	N/A	N/A	N/A	
Total Chromium (III)	0	0		0	N/A	N/A	N/A	
Total Cobalt	0	0		0	N/A	N/A	N/A	
Total Copper	0	0		0	N/A	N/A	N/A	
Dissolved Iron	0	0		0	N/A	N/A	N/A	
Total Iron	0	0		0	N/A	N/A	N/A	
Total Lead	0	0		0	N/A	N/A	N/A	
Total Manganese	0	0		0	N/A	N/A	N/A	
Total Mercury	0	0		0	N/A	N/A	N/A	
Total Nickel	0	0		0	N/A	N/A	N/A	
Total Phenols (Phenolics) (PWS)	0	0		0	N/A	N/A	N/A	
Total Selenium	0	0		0	N/A	N/A	N/A	
Total Silver	0	0		0	N/A	N/A	N/A	
Total Thallium	0	0		0	N/A	N/A	N/A	
Total Zinc	0	0		0	N/A	N/A	N/A	

☑ Recommended WQBELs & Monitoring Requirements

No. Samples/Month: 4

	Mass	Limits		Concentra	tion Limits				
Pollutants	AML (Ibs/day)	MDL (Ibs/day)	AML	MDL	IMAX	Units	Governing WQBEL	WQBEL Basis	Comments

☑ Other Pollutants without Limits or Monitoring

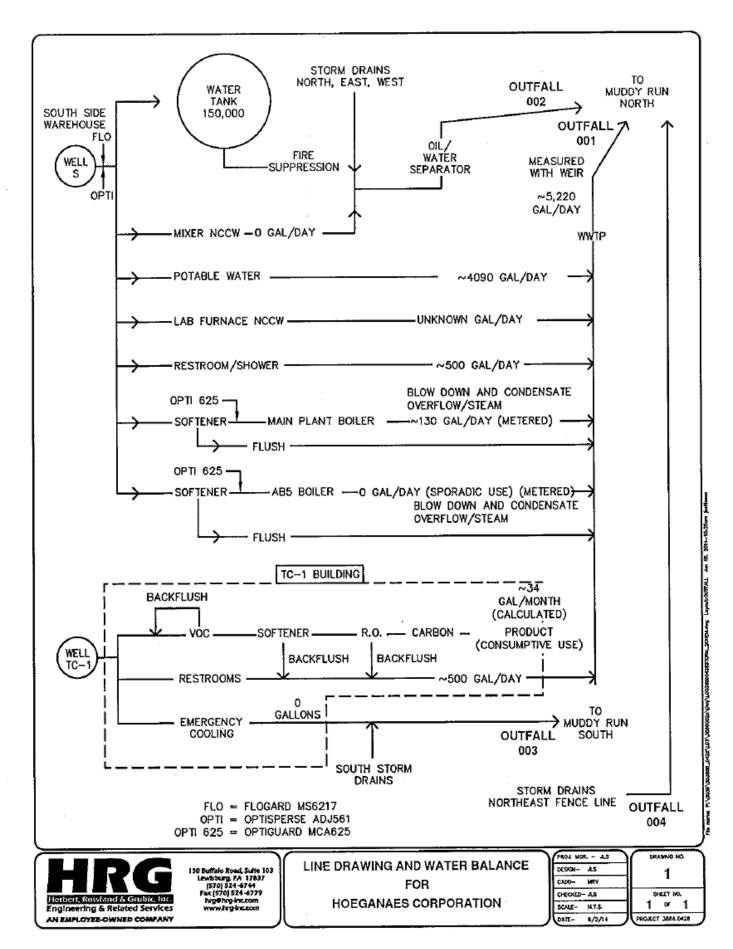
The following pollutants do not require effluent limits or monitoring based on water quality because reasonable potential to exceed water quality criteria was not determined and the discharge concentration was less than thresholds for monitoring, or the pollutant was not detected and a sufficiently sensitive analytical method was used (e.g., <= Target QL).

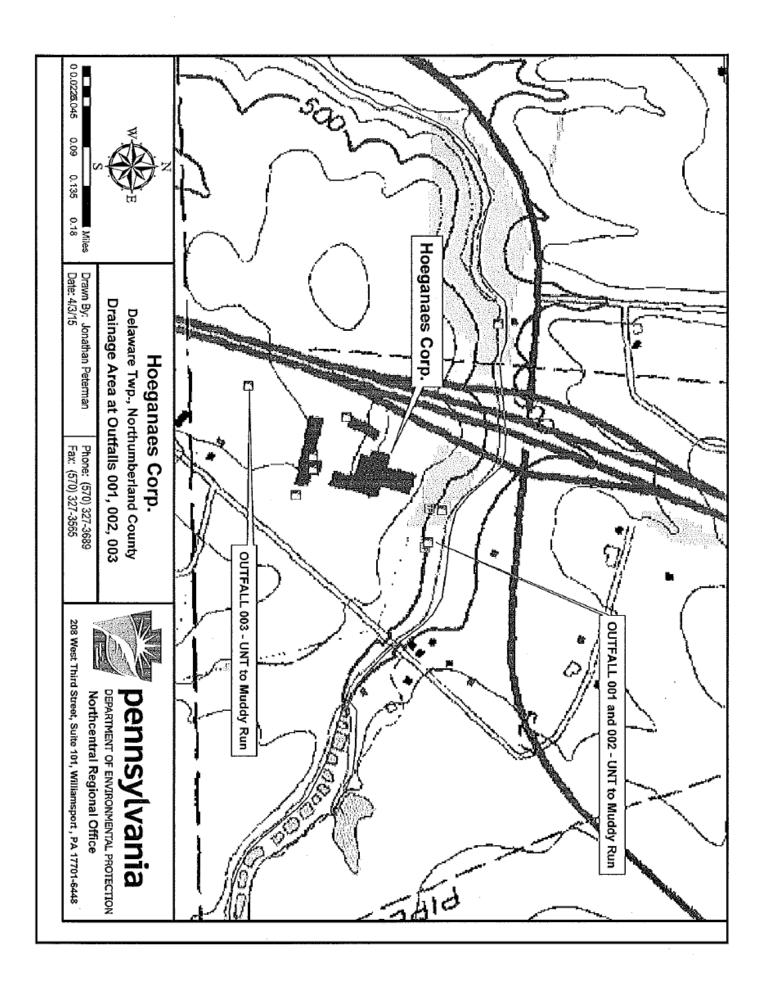
Pollutants	Governing WQBEL	Units	Comments
Total Aluminum	8,767	µg/L	Discharge Conc ≤ 10% WQBEL
Total Antimony	102	µg/L	Discharge Conc ≤ 10% WQBEL
Total Arsenic	182	µg/L	Discharge Conc ≤ 10% WQBEL

Model Results

9/10/2021

43,770	µg/L	Discharge Conc ≤ 10% WQBEL	
N/A	N/A	No WQS	
29,180 µg/L Discharge Conc ≤ 10%		Discharge Conc ≤ 10% WQBEL	
4.94	µg/L Discharge Conc ≤ 10% WQBE		
1,572 μg/L Discharge Conc ≤ 10%		Discharge Conc ≤ 10% WQBEL	
347	µg/L	Discharge Conc ≤ 10% WQBEL	
164	µg/L	Discharge Conc ≤ 10% WQBEL	
N/A	N/A	No WQS	
5,471	µg/L	Discharge Conc ≤ 10% WQBEL	
27,356	µg/L	Discharge Conc ≤ 10% WQBEL	
58.0	µg/L	Discharge Conc ≤ 10% WQBEL	
18,238	µg/L	Discharge Conc ≤ 10% WQBEL	
0.91	µg/L	Discharge Conc ≤ 10% WQBEL	
951	µg/L	Discharge Conc ≤ 10% WQBEL	
	µg/L	PWS Not Applicable	
91.0	µg/L	Discharge Conc ≤ 10% WQBEL	
44.2	µg/L	Discharge Conc ≤ 10% WQBEL	
4.38	µg/L	Discharge Conc ≤ 10% WQBEL	
1,401	µg/L	Discharge Conc ≤ 10% WQBEL	
N/A	N/A	No WQS	
	N/A 29,180 4.94 1,572 347 164 N/A 5,471 27,356 58.0 18,238 0.91 951 91.0 44.2 4.38 1,401	N/A N/A 29,180 µg/L 4.94 µg/L 1,572 µg/L 347 µg/L 164 µg/L N/A N/A 5,471 µg/L 27,356 µg/L 58.0 µg/L 18,238 µg/L 951 µg/L 951 µg/L 91.0 µg/L 91.0 µg/L 44.2 µg/L 1,401 µg/L	


9/10/2021



1A	В	С	D	Е	F	G			
2	TRC EVALU		Hoeganaes PA00357	77					
3	nput appropriate values in B4:B8 and E4:E7								
4		= Q stream (,		= CV Daily				
5		1 = Q discharge (MGD)			= CV Hourly				
6		0 = no. samples			= AFC_Partial Mix Factor				
7		3 = Chlorine Demand of Stream			= CFC_Partial Mix Factor				
8		0 = Chlorine Demand of Discharge			= AFC_Criteria Compliance Time (min)				
9		0.5 = BAT/BPJ Value			= CFC_Criteria Compliance Time (min)				
10			of Safety (FOS)	U	=Decay Coefficient (K)				
10 11	Source TRC	Reference 1.3.2.iii	AFC Calculations WLA afc =	4 5 4 0	Reference 1.3.2.iii	CFC Calculations WLA cfc = 4.397			
	PENTOXSD TRG		LTAMULT afc =		5.1c	LTAMULT cfc = 0.581			
	PENTOXSD TRG		LTA_afc=		5.1d	LTA_cfc = 2.556			
14		0.1.0	2		0.114	20.0 2.000			
15	Source		Effluent	Limit Calo	culations				
16	PENTOXSD TRG	XSD TRG 5.1f AML MULT = 1.231							
	PENTOXSD TRG	OXSD TRG 5.1g AVG MON LIMIT (mg/l) = 0.500 BAT/BPJ							
18	INST MAX LIMIT (mg/l) = 1.635								
	WLA afc	(.019/e(-k*AFC_tc)) + [(AFC_Yc*Qs*.019/Qd*e(-k*AFC_tc)) + Xd + (AFC_Yc*Qs*Xs/Qd)]*(1-FOS/100)							
	LTAMULT afc	$EXP((0.5*LN(cvh^{2}+1))-2.326*LN(cvh^{2}+1)^{0.5})$							
	LTA_afc	wla_afc*LTAMULT_afc							
	WLA_cfc	(.011/e(-k*CFC_tc) + [(CFC_Yc*Qs*.011/Qd*e(-k*CFC_tc)) + Xd + (CFC_Yc*Qs*Xs/Qd)]*(1-FOS/100)							
	LTAMULT_cfc	EXP((0.5*LN(cvd^2/no_samples+1))-2.326*LN(cvd^2/no_samples+1)^0.5)							
	LTA_cfc	wla_cfc*LTAMULT_cfc							
	AML MULT AVG MON LIMIT INST MAX LIMIT								

NPDES Permit No. PA0035777

