

## Southcentral Regional Office CLEAN WATER PROGRAM

Application Type

Facility Type

Major / Minor

Minor

# NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

 Application No.
 PA0036269

 APS ID
 313723

 Authorization ID
 1301158

| Applicant Name        | Stew Coun | artstown Borough Authority York<br>ty | Facility Name    | Stewartstown STP         |
|-----------------------|-----------|---------------------------------------|------------------|--------------------------|
| Applicant Address     | 6 Nor     | th Main Street                        | Facility Address | 3750 Stewartstown Road   |
|                       | Stewa     | artstown, PA 17363-4132               |                  | Stewartstown, PA 17363   |
| Applicant Contact     | Ira W     | alker                                 | Facility Contact | Ira Walker               |
| Applicant Phone       | (717)     | 993-6463                              | Facility Phone   | (717) 993-6463           |
| Client ID             | 7463      | 1                                     | Site ID          | 1924                     |
| Ch 94 Load Status     | Not C     | verloaded                             | Municipality     | Stewartstown Borough     |
| Connection Status     | No Li     | mitations                             | County           | York                     |
| Date Application Rece | eived     | December 17, 2019                     | EPA Waived?      | No                       |
| Date Application Acce | pted      | January 10, 2020                      | If No, Reason    | Significant CB Discharge |

| Approve | Deny | Signatures                                                                                     | Date          |
|---------|------|------------------------------------------------------------------------------------------------|---------------|
| х       |      | Nicholas Hong, P.E. / Environmental Engineer  Nick Hong (via electronic signature)             | June 16, 2021 |
| Х       |      | Daniel W. Martin, P.E. / Environmental Engineer Manager  Maria D. Bebenek for Daniel W. Martin | June 21, 2021 |
| х       |      | Maria D. Bebenek, P.E. / Environmental Program Manager  Maria D. Bebenek                       | June 21, 2021 |

#### **Summary of Review**

The application submitted by the applicant requests a NPDES renewal permit for the Stewartstown WWTP located at 3750 Stewartstown Road, Stewartstown, PA 17363 in York County, municipality of Hopewell. The existing permit became effective on July 1, 2015 and expired on June 30, 2020. The application for renewal was received by DEP Southcentral Regional Office (SCRO) on December 17, 2019.

The purpose of this Fact Sheet is to present the basis of information used for establishing the proposed NPDES permit effluent limitations. The Fact Sheet includes a description of the facility, a description of the facility's receiving waters, a description of the facility's receiving waters attainment/non-attainment assessment status, and a description of any changes to the proposed monitoring/sampling frequency. Section 6 provides the justification for the proposed NPDES effluent limits derived from technology based effluent limits (TBEL), water quality based effluent limits (WQBEL), total maximum daily loading (TMDL), antidegradation, anti-backsliding, and/or whole effluent toxicity (WET). A brief summary of the outlined descriptions has been included in the Summary of Review section.

The subject facility is a 0.625 MGD treatment facility. The applicant does not anticipate any proposed upgrades to the treatment facility in the next five years. The NPDES application has been processed as a Minor Sewage Facility (Level 2) due to the type of sewage and the design flow rate for the facility. The applicant disclosed the Act 14 requirement to York County Commissioners and Hopewell Township and the notice was received by the parties on December 3, 2019. A planning approval letter was not necessary as the facility is neither new or expanding.

Utilizing the DEP's web-based Emap-PA information system, the receiving waters has been determined to be Ebaughs Creek. The sequence of receiving streams that the Ebaughs Creek discharges into are Deer Creek, and the Susquehanna River which eventually drains into the Chesapeake Bay. The subject site is subject to the Chesapeake Bay implementation requirements. The receiving water has protected water usage for cold water fishes (CWF) and migratory fishes (MF). No Class A Wild Trout fisheries are impacted by this discharge. The absence of high quality and/or exceptional value surface waters removes the need for an additional evaluation of anti-degradation requirements.

The Ebaughs Creek is a Category 5 stream listed in the 2020 Integrated List of All Waters (formerly 303d Listed Streams). This stream is an impaired stream for aquatic life due to chlorine from municipal point sources. The receiving waters is not subject to a total maximum daily load (TMDL) plan to improve water quality in the subject facility's watershed.

The existing permit and proposed permit differ as follows:

• Monitoring shall be required for E. Coli, total copper, total lead, and total zinc.

Sludge use and disposal description and location(s): Sewage sludge was disposed at the following locations: Manifold Farm, McGinnis Farm, and Wisnom Farm in York County.

The proposed permit will expire five (5) years from the effective date.

Based on the review in this report, it is recommended that the permit be drafted. DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Any additional information or public review of documents associated with the discharge or facility may be available at PA DEP Southcentral Regional Office (SCRO), 909 Elmerton Avenue, Harrisburg, PA 17110. To make an appointment for file review, contact the SCRO File Review Coordinator at 717.705.4700.

#### 1.0 Applicant

#### 1.1 General Information

This fact sheet summarizes PA Department of Environmental Protection's review for the NPDES renewal for the following subject facility.

Facility Name: Stewartstown WWTP

NPDES Permit # PA0036269

Physical Address: 3750 Stewartstown Road

Stewartstown, PA 17363

Mailing Address: 6 North Main Street

Stewartstown, PA 17363

Contact: Ira Walker

Stewartstown Borough Sewer/Water Supervisor

sbplant@stewartstown.org

Consultant: Charles Kehew, II, PE

Project Engineer ckehew@jrholley.com

#### 1.2 Permit History

Description of Facility

- The permit was amended in April 2016 to eliminate monitoring for Bis(2-Ethylhexyl) Phthalate.
- Special conditions apply to the permit due to receipt of landfill leachate.

Permit submittal included the following information.

- NPDES Application
- Flow Diagrams

#### 2.0 Treatment Facility Summary

#### 2.1.1 Site location

The physical address for the facility is 3750 Stewartstown Road, Stewartstown, PA 17363. A topographical and an aerial photograph of the facility are depicted as Figure 1 and Figure 2.

Figure 1: Topographical map of the subject facility



Figure 2: Aerial Photograph of the subject facility



#### 2.1.2 Sources of Wastewater/Stormwater

The wastewater treatment plant receives wastewater contributions from the following municipalities:

Stewartstown Borough 50.4% Hopewell Township 49.6%

The facility receives wastewater contributions from industrial users. See the table summary.

#### INDUSTRIAL/COMMERCIAL/INSTITUTIONAL WASTEWATER CONTRIBUTIONS

| Address Type | Account Name                               | Usage   | Usage/Day | EDU Business Type                  |
|--------------|--------------------------------------------|---------|-----------|------------------------------------|
| Commercial   | SHORES, MICHAEL                            | 46,000  | 142       | 4 Residence                        |
| Commercia!   | M&T BANK                                   | 15,000  | 46        | 4 Bank                             |
| Commercial   | Word for the World Community Church        | 4,000   | 12        | 4 Church                           |
| Commercial   | Word for the World Community Church        | 101,000 | 311       | 4 Church                           |
| Commercial   | UNITED STATES POST OFFICE                  | 19,000  | 58        | 4 Post Office                      |
| Commercial   | Aaron Beiler                               | 42,000  | 129       | 4 Residence                        |
| Commercial   | STEWARTSTOWN VFW                           | 27,000  | 83        | 8 Veterans of Foreign Wars         |
| Commercial   | DAVID WILLIAMS                             | 234,000 | 720       | 4 Dentist office                   |
| Commercial   | RICHLAND PARTNERS, LLC                     | 2,000   | 6         | 2 Fuel Office                      |
| Commercial   | Carroll Independent Fuel, LLC              | 2,000   | 6         | 3 Gas station                      |
| Commercial   | Carroll Independent Fuel, LLC              | 32,000  | 98        | 4 Gas station                      |
| Commercial   | VERIZON                                    | 4,000   | 12        | 4 Phone/internet hub/office        |
| Commercial   | COUNTY OF YORK                             | 17,000  | 52        | 8 District Justice                 |
| Commercial   | CHR CORP. RUTTERS                          | 90,000  | 277       | 4 Rutter's Farm Store              |
| Commercial   | STEWART. SERVICE CENTER INC.               | 11,000  | 34        | 16 Service Center/Garage           |
| Commercial   | Farley Rentals, LLC                        | 17,000  | 52        | 4 Residence/apt building           |
| Commercial   | COUNTY OF YORK                             | 14,000  | 43        | 8 District Justice                 |
| Commercial   | Beatty Property Group, LLC                 | 0       | 0         | 0 Car Wash/Laundromat              |
| Commercial   | RED LION BUS, INC.                         | 12,000  | 37        | 4 Bus Company                      |
| Commercial   | SHARAR, BENTLEY & ANDREA                   | 1,000   | 3         | 4 Flooring sales                   |
| Commercial   | SVEC PROPERTIES, LLC                       | 10,000  | 31        | 8 Office building                  |
| Commercial   | Hartenstein Funeral & Cremation Care, Inc. | 37,000  | 114       | 4 Funeral home                     |
| Commercial   | WELLS FARGO BANK                           | 14,000  | 43        | 4 Bank                             |
| Commercial   | JOINES, RALPH & SHIRLEY                    | 32,000  | 98        | 4 Residence/apt building           |
| Commercial   | RGRG Partners                              | 52,000  | 160       | 4 Residence/apt building           |
| Commercial   | SGL INVESTMENT GROUP INC                   | 23,000  | 71        | 8 Dog groomers                     |
| Commercial   | SGL INVESTMENT GROUP INC                   | 8,000   | 25        | 8 Office building                  |
| Commercial   | ESTATE OF STANLEY LLOYD                    | 0       | 0         | 4 Office building                  |
| Commercial   | ESTATE OF STANLEY LLOYD                    | 1,000   | 3         | 4 Strip mall/business offices      |
| Commercial   | STANLEY LLOYD                              | 4,000   | 12        | 4 Financial office                 |
| Commercial   | ESTATE OF STANLEY LLOYD                    | 0       | 0         | 20 Vacant bldg/previous restaurant |

| Commercial    | ESTATE OF STANLEY LLOYD           | 11,000    | 34    | 4 Strip mall/business offices        |
|---------------|-----------------------------------|-----------|-------|--------------------------------------|
| Commercial    | WISNOM PROPERTIES LLC             | 29,000    | 89    | 4 Service Center/Garage              |
| Commercial    | GORDON'S BODY SHOP                | 79,000    | 243   | 4 Service Center/Garage              |
| Commercial    | HAMMOND BODY SHOP                 | 16,000    | 49    | 4 Service Center/Garage              |
| Commercial    | LIMITED, HILL STREET PROPERTIES   | 6,000     | 18    | 4 Service Center/Garage              |
| Commercial    | MILL STREET MINI STORAGE LLC      | 36,000    | 111   | 4 Service Center/Garage              |
| Commercial    | CAPTAIN BOB'S CRABS, LLC          | 0         | 0     | 4 Seasonal restaurant/take-out sales |
| Commercial    | Amy & Joseph A. Miller, III       | 16,000    | 49    | 12 Dental office                     |
| Commercial    | ORIGINAL PIZZA                    | 87,000    | 268   | 4 Restaurant                         |
| Commercial    | MANE STREET STATION, LLC          | 77,000    | 237   | 12 Hair salon                        |
| Commercial    | Kenton Kurtz                      | 604,000   | 1,858 | 4 Residence                          |
| Commercial    | CHR CORP-RUTTERS FARM STORE #45   | 301,000   | 926   | 16 Rutter's Farm Store               |
| Commercial    | Stewartstown Railroad             | 3,000     | 9     | 4 Railroad office                    |
| Commercial    | OLD MILL RENTALS                  | 26,000    | 80    | 4 Office building                    |
| Commercial    | STEWARTSTOWN RAILROAD CO.         | 9,000     | 28    | 4 Railroad office                    |
| Commercial    | KURTZ, KENTON                     | 0.        | 0     | 4 Residence                          |
| Commercial    | STEWARTSTOWN STATION SHOP         | 8,000     | 25    | 4 Shopping center/grocery store      |
| Commercial    | STEWARTSTOWN STATION SHOP         | 57,000    | 175   | 4 Shopping center/grocery store      |
| Commercial    | STEWARTSTOWN STATION SHOP         | 347,000   | 1,068 | 24 Shopping center/grocery store     |
| Commercial    | BAILEY SPRINGS HOMEOWNERS ASSOC.  | 4,000     | 12    | 4 Condo office                       |
| Commercial    | STATEWIDE PROPERTIES, LP          | 82,000    | 252   | 24 Strip mall/business offices       |
| Commercial    | CHR CORP-RUTTERS CAR WASH         | 1,168,000 | 3,594 | 52 Rutter's Farm Store               |
| Commercial    | NEAL, WILLIAM                     | 0         | 0     | 0 Vacant movie theater               |
| Commercial    | Olsen Accounting Services, LLC    | 3,000     | 9     | 3 Vacant accounting office           |
| Commercial    | Stewartstown Borough              | 0         | 0     | 1 Borough Office                     |
| Commercial    | Dollar General Store              | 9,000     | 28    | 4 Retail store                       |
| Commercial    | Bailey Springs Plaza              | 491,000   | 1,511 | 3 Office building                    |
| Commercial .  | Bailey Springs, LP                | 158,000   | 486   | 2 Office building                    |
| Commercial    | Cornerstone Investment Group, LLC | 2,000     | 6     | 4 Office building                    |
|               |                                   |           |       |                                      |
| Institutional | EUREKA FIRE COMPANY               | 73,000    | 225   | 4 Fire Station                       |
| Institutional | SOUTH EASTERN SCHOOL DISTRICT     | 330,000   | 1,015 | 36 Elementary School                 |
| Institutional | PRESBYTERIAN CHURCH               | 17,000    | 52    | 4 Church                             |
| Institutional | PRESBYTERIAN CHURCH               | 18,000    | 55    | 4 Church                             |
|               |                                   |           |       |                                      |

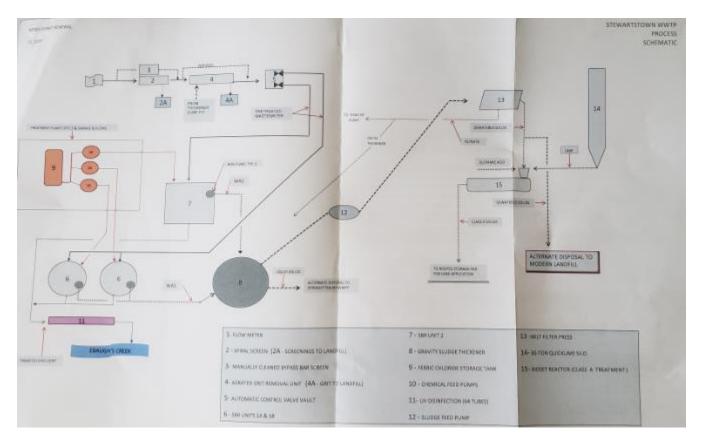
| Institutional | STEWARTSTOWN METHODIST CHURCH       | 85,000  | 262  | 4 Church          |
|---------------|-------------------------------------|---------|------|-------------------|
| Institutional | MASON DIXON LIBRARY                 | 8,000   | 25   | 4 Library         |
| Institutional | STEWARTSTOWN POST 455 AMERICAN LEGN | 206,000 | 634  | 8 American Legion |
|               |                                     |         |      |                   |
| Industrial    | York County Solid Waste Authority   | 945,396 | 3110 | 113 Landfill      |

Notes:

- None of the above customers is considered to be a Significant Industrial User (SIU) or a Non-Significant Categorical Industrial User (NSCIU).
- None of the above customers hauls in wastewater to the treatment facility.
- "Usage" in the table above is water usage in gallons from 1/1/19 through 11/21/19, except for the Industrial customer (York County Solid Waste Authority), where "Usage" is gallons pumped from the landfill from 1/1/19 through 10/31/19.

The facility does not have any pretreatment requirements.

The facility reported hauled-in waste contributions. The estimated volume of septage received in the past three years was 1,371,033 gallons. The facility anticipates receiving 1.5 - 2.0 million gallons over the next five years.


#### 2.2 Description of Wastewater Treatment Process

The subject facility is a 0.625 MGD design flow facility. The subject facility treats wastewater using a bar screen/grit chamber, a sequencing batch reactor(s) (SBR) with nitrification/denitrification, and uv disinfection prior to discharge through the outfall. The facility is being evaluated for flow, pH, dissolved oxygen, UV transmittance, CBOD5, TSS, fecal coliform, nitrogen species, phosphorus, and total zinc. The existing permits limits for the facility is summarized in Section 2.4.

The treatment process is summarized in the table.

| Treatment Facility Summary |                             |                             |                     |                          |  |  |  |
|----------------------------|-----------------------------|-----------------------------|---------------------|--------------------------|--|--|--|
| Treatment Facility Nar     | <b>me:</b> Stewartstown STP |                             |                     |                          |  |  |  |
| Waste Type                 | Degree of Treatment         | Process Type                | Disinfection        | Avg Annual<br>Flow (MGD) |  |  |  |
| Cowage                     | Cocondon                    | Sequencing Batch<br>Reactor | Ultraviolet         | 0.625                    |  |  |  |
| Sewage                     | Secondary                   | Reactor                     | Oitraviolet         | 0.625                    |  |  |  |
|                            |                             |                             |                     |                          |  |  |  |
| Hydraulic Capacity         | Organic Capacity            |                             |                     | Biosolids                |  |  |  |
| (MGD)                      | (lbs/day)                   | Load Status                 | Biosolids Treatment | Use/Disposal             |  |  |  |
| 0.7                        | 1543                        | Not Overloaded              | Dewatering          | Landfill                 |  |  |  |

A schematic of the process flow diagram is shown.



#### 2.3 Facility Outfall Information

The facility has the following outfall information for wastewater.

| Outfall No.  | 001                         | Design Flow (MGD) | 625             |
|--------------|-----------------------------|-------------------|-----------------|
| Latitude     | 39º 44' 41.00"              | Longitude -       | -76º 36' 17.00" |
| Wastewater D | escription: Sewage Effluent |                   |                 |

#### 2.3.1 Operational Considerations- Chemical Additives

Chemical additives are chemical products introduced into a waste stream that is used for cleaning, disinfecting, or maintenance and which may be detected in effluent discharged to waters of the Commonwealth. Chemicals excluded are those used for neutralization of waste streams, the production of goods, and treatment of wastewater.

The subject facility utilizes the following chemicals as part of their treatment process.

• Ferric chloride for controlling phosphorus

#### **2.4 Existing NPDES Permits Limits**

The existing NPDES permit limits are summarized in the table.

| PART  | A - EFFLUENT LIMITA | ATIONS, MONITORING, RECORDKEEPING AND REPORTING REQUIREMENTS                                                                 |
|-------|---------------------|------------------------------------------------------------------------------------------------------------------------------|
| I. A. | For Outfall 001     | _, Latitude <u>39° 44′ 41.00"</u> , Longitude <u>76° 36′ 17.00"</u> , River Mile Index <u>3.3</u> , Stream Code <u>06810</u> |
|       | Receiving Waters:   | Ebaughs Creek                                                                                                                |
|       | Type of Effluent:   | Treated Sewage                                                                                                               |

Based on the anticipated wastewater characteristics and flows described in the permit application and its supporting documents and/or amendments, the
following effluent limitations and monitoring requirements apply (see also Additional Requirements and Footnotes).

|                                                          |                    |                     | Effluent L | imitations.           | Monitoring Requirements |                     |                          |                   |  |
|----------------------------------------------------------|--------------------|---------------------|------------|-----------------------|-------------------------|---------------------|--------------------------|-------------------|--|
| Parameter                                                | Mass Units         | (lbs/day) (1)       |            | Concentrations (mg/L) |                         |                     |                          | Required          |  |
| rarameter                                                | Average<br>Monthly | Weekly<br>Average   | Minimum    | Average<br>Monthly    | Weekly<br>Average       | Instant.<br>Maximum | Measurement<br>Frequency | Sample<br>Type    |  |
| Flow (MGD)                                               | Report             | Report<br>Daily Max | xxx        | xxx                   | xxx                     | xxx                 | Continuous               | Measured          |  |
| pH (S.U.)                                                | XXX                | XXX                 | 6.0        | XXX                   | XXX                     | 9.0                 | 1/day                    | Grab              |  |
| Dissolved Oxygen                                         | XXX                | xxx                 | 5.0        | XXX                   | XXX                     | xxx                 | 1/day                    | Grab              |  |
| UV Transmittance (%)                                     | XXX                | XXX                 | Report     | XXX                   | XXX                     | XXX                 | 1/day                    | Measured          |  |
| Specific Conductance<br>(µmhos/cm) (3)<br>May 1 - Oct 31 | XXX                | XXX                 | XXX        | xxx                   | Report                  | XXX                 | 1/day                    | Grab              |  |
| CBOD5<br>May 1 - Oct 31                                  | 78                 | 115                 | xxx        | 15                    | 22                      | 30                  | 1/week                   | 8-Hr<br>Composite |  |
| CBOD5<br>Nov 1 - Apr 30                                  | 130                | 209                 | xxx        | 25                    | 40                      | 50                  | 1/week                   | 8-Hr<br>Composite |  |
| BOD5<br>Raw Sewage Influent                              | Report             | Report<br>Daily Max | XXX        | Report                | XXX                     | XXX                 | 1/week                   | 8-Hr<br>Composite |  |
| Total Suspended Solids                                   | 156                | 235                 | XXX        | 30                    | 45                      | 60                  | 1/week                   | 8-Hr<br>Composite |  |
| Total Suspended Solids<br>Raw Sewage Influent            | Report             | Report<br>Daily Max | XXX        | Report                | XXX                     | XXX                 | 1/week                   | 8-Hr<br>Composite |  |
| Fecal Coliform (CFU/100 ml)<br>May 1 - Sep 30            | XXX                | XXX                 | XXX        | 200<br>Geo Mean       | XXX                     | 1,000               | 1/week                   | Grab              |  |
| Fecal Coliform (CFU/100 ml)<br>Oct 1 - Apr 30            | XXX                | XXX                 | xxx        | 2,000<br>Geo Mean     | XXX                     | 10,000              | 1/week                   | Grab              |  |

Outfall 001, Continued (from July 1, 2015 through June 30, 2020)

|                  | Effluent Limitations |               |                       |         |           |          | Monitoring Requirements |           |
|------------------|----------------------|---------------|-----------------------|---------|-----------|----------|-------------------------|-----------|
| Parameter        | Mass Units           | (lbs/day) (1) | Concentrations (mg/L) |         |           |          | Minimum (2)             | Required  |
| I didilietei     | Average              | Weekly        |                       | Average | Weekly    | Instant. | Measurement             | Sample    |
|                  | Monthly              | Average       | Minimum               | Monthly | Average   | Maximum  | Frequency               | Type      |
| Ammonia-Nitrogen |                      |               |                       |         |           |          |                         | 8-Hr      |
| May 1 - Oct 31   | 17                   | XXX           | XXX                   | 3.5     | XXX       | 7.0      | 2/week                  | Composite |
| Ammonia-Nitrogen |                      |               |                       |         |           |          |                         | 8-Hr      |
| Nov 1 - Apr 30   | 44                   | XXX           | XXX                   | 8.5     | XXX       | 17       | 2/week                  | Composite |
|                  |                      |               |                       |         |           |          |                         | 8-Hr      |
| Total Phosphorus | 10.4                 | XXX           | XXX                   | 2.0     | XXX       | 4.0      | 2/week                  | Composite |
|                  |                      |               |                       |         | Report    |          |                         | 8-Hr      |
| Total Zinc       | XXX                  | XXX           | XXX                   | XXX     | Daily Max | XXX      | 1/year                  | Composite |

Samples taken in compliance with the monitoring requirements specified above shall be taken at the following location(s):

at Outfall 001

<sup>1.</sup> The permittee is authorized to discharge during the period from July 1, 2015 through June 30, 2020.

#### PART A - EFFLUENT LIMITATIONS, MONITORING, RECORDKEEPING AND REPORTING REQUIREMENTS

| I. B. | For Outfall 001   | , Latitude39° 44' 41.00", Longitude76° 36' 17.00", River Mile Index3.3, Stream Code06810 | _ |
|-------|-------------------|------------------------------------------------------------------------------------------|---|
|       | Receiving Waters: | Ebaughs Creek                                                                            |   |
|       | Type of Effluent: | Treated Sewage                                                                           |   |

Based on the anticipated wastewater characteristics and flows described in the permit application and its supporting documents and/or amendments, the following effluent limitations and monitoring requirements apply (see also Additional Requirements and Footnotes).

|                      |         | Ef        | Monitoring Requirements |                    |             |                          |                   |
|----------------------|---------|-----------|-------------------------|--------------------|-------------|--------------------------|-------------------|
| Parameter (1)        | Mass Un | its (lbs) | Cor                     | ncentrations (m    | Minimum (2) | Required                 |                   |
| i arameter           | Monthly | Annual    | Minimum                 | Monthly<br>Average | Maximum     | Measurement<br>Frequency | Sample<br>Type    |
| AmmoniaN             | Report  | Report    | XXX                     | Report             | xxx         | 2/week                   | 8-Hr<br>Composite |
| KjeldahlN            | Report  | XXX       | XXX                     | Report             | XXX         | 2/week                   | 8-Hr<br>Composite |
| Nitrate-Nitrite as N | Report  | XXX       | XXX                     | Report             | xxx         | 2/week                   | 8-Hr<br>Composite |
| Total Nitrogen       | Report  | Report    | XXX                     | Report             | XXX         | 1/month                  | Calculation       |
| Total Phosphorus     | Report  | Report    | XXX                     | Report             | xxx         | 2/week                   | 8-Hr<br>Composite |
| Net Total Nitrogen   | Report  | 11,415    | XXX                     | XXX                | xxx         | 1/month                  | Calculation       |
| Net Total Phosphorus | Report  | 1,522     | XXX                     | XXX                | XXX         | 1/month                  | Calculation       |

Samples taken in compliance with the monitoring requirements specified above shall be taken at the following location(s): Outfall QQ1.

#### Footnotes:

#### 3.0 Facility NPDES Compliance History

#### 3.1 Summary of Inspections

A summary of the most recent inspections during the existing permit review cycle is as follows.

The DEP inspector noted the following during the inspection.

#### 03/16/2016:

- The facility noted that the permit is being amended to remove bis(2-ethylhexyl)phthalate
- The tank next to sludge pad is used as a holding tank only to store waste there until hauler can haul to alternate WWTP.
- The facility stated that the facility receives leachate from the landfill. The landfill keeps track of permitting requirements in DMRs.
- DEP advised the facility to collect influent/effluent composite samples using flow proportion

#### 03/30/2016:

- The inspection was a follow up on violations during a previous inspection. Outfall 001 was not discharging at the
  time. Rags and feminine hygiene were noted on the rip rap as was in previous inspections. Solids was observed
  on the same side as the discharge for roughly 40 feet. Stringy growth was also observed hanging from debris in
  the stream. Solids were also observed 25 feet upstream of the outfall.
- The facility intends to do the following (a) install a gate at the outfall to provide more effective access, (b) ensure flow-proportioned composite sampling (c) no longer receive residential septic system waste for the purposes of temporary storage until either a permit or authorization has been received from DEP.

The permittee is authorized to discharge during the period from <u>July 1, 2015</u> through <u>June 30, 2020</u>.

<sup>(1)</sup> See Part C for Chesapeake Bay Requirements.

<sup>(2)</sup> This is the minimum number of sampling events required. Permittees are encouraged, and it may be advantageous in demonstrating compliance, to perform more than the minimum number of sampling events required.

#### 04/05/2016:

• The inspection was a follow-up to a report of an overflow from an onsite wet well. The wet well was no longer overflowing. It was not full and appeared to have plenty of freeboard. There was lime and solids adjacent and downslope of the wet well. The solids and lime traveled downslope to a storm drain. Debris was noted on top of the storm drain grate. Lime appeared going from the discharge pipe of the storm drain downslope to the edge of the stream.

#### 07/22/2016:

- Rag materials was observed on the UV lamps.
- Upstream and downstream on the bank closest to the STP was overgrown.

#### 04/25/2017:

• The membranes were replaced in SBR tank #2. Membranes in SBR 1a and 1B will be replaced later this year.

#### 02/11/2017:

• The facility was advised the following (a) adopt and maintain a temperature calibration log system for biosolids testing (b) maintain thermometers in the influent/effluent samplers.

#### 11/01/2019:

• On October 31, 2019, Tank #2 was being cleaned out to be placed back into service. During the cleaning process, the debris was collected and placed on the storage pad with the other screenings. The pad drains to a catch basin that drains to the headworks of the plant. The rags and debris from the collection emptied into the catch basin and clogged the screening in the influent channel. The channel overflowed and spilled toward the control building and onto the grassy area with a stormwater catch basin. The facility stated some raw sewage travelled to the catch basin which drains to Ebaughs Creek.

#### 12/30/2019:

• The purpose of the inspection was for Chesapeake Bay inspection. Minor discrepancies in reporting existed for TKN and ammonia

#### 02/04/2020:

There was nothing significant to report.

#### 04/16/2020:

• This inspection report was to report an overflow of sewage from pump station #4 (Ecker Ave). The facility stated the electrical breaker was tripped and the entire pump station had lost power and communication. Pump #2 had failed and potentially caused the breaker to trip. Sewage overflowed from the pump station to the ground surface and into UNT to Ebaughs Creek. Twelve bags of lime were spread on the impacted area.

#### 04/27/2020:

An administrative inspection was conducted. Aqua Aerobics made changes to the blower aeration times. This
increased the efficiency while increasing the quality of the effluent improving operations. The facility also ceased
receiving hauled in waste for about 2 weeks. Hauled in waste was not to be accepted until a new unit at the
headworks is installed. Issues have occurred with the headworks screw getting clogged and backing up flow in the
headworks area / flow recording.

#### 05/28/2020:

• This inspection report was to report sewage solids being discharge to Outfall 001 to Ebaughs Creek. Approximately 15,000 to 18,000 gallons of partially treated sewage was discharged. Maintenance was being conducted on Blower #2 which services SBR #2. The blower was exercised during the settle and decant cycles. The aeration during the decant caused mixed liquor to be discharged in to the UV channel, post EQ tank, and Ebaughs Creek.

#### 3.2 Summary of DMR Data

A review of approximately 1-year of DMR data shows that the monthly average flow data for the facility below the design capacity of the treatment system. The maximum average flow data for the DMR reviewed was 0.318 MGD in May 2020. The design capacity of the treatment system is 0.625 MGD.

The off-site laboratory used for the analysis of the parameters was LABS, Inc located at 125 Enterprise Drive, New Oxford, PA 17350.

#### **DMR Data for Outfall 001 (from May 1, 2020 to April 30, 2021)**

| Parameter              | APR-21 | MAR-21 | FEB-21 | JAN-21 | DEC-20 | NOV-20 | OCT-20 | SEP-20 | AUG-20 | JUL-20 | JUN-20 | MAY-20 |
|------------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| Flow (MGD)             |        |        |        |        |        |        |        |        |        |        |        |        |
| Average Monthly        | 0.288  | 0.293  | 0.264  | 0.286  | 0.274  | 0.257  | 0.257  | 0.244  | 0.261  | 0.244  | 0.279  | 0.318  |
| Flow (MGD)             |        |        |        |        |        |        |        |        |        |        |        |        |
| Daily Maximum          | 0.451  | 0.350  | 0.385  | 0.326  | 0.478  | 0.306  | 0.327  | 0.265  | 0.355  | 0.268  | 0.307  | 0.360  |
| pH (S.U.)              |        |        |        |        |        |        |        |        |        |        |        |        |
| Minimum                | 6.9    | 6.9    | 6.9    | 6.9    | 6.9    | 6.9    | 6.9    | 7.0    | 6.9    | 6.9    | 6.8    | 6.6    |
| pH (S.U.)              |        |        |        |        |        |        |        |        |        |        |        |        |
| Instantaneous          |        |        |        |        |        |        |        |        |        |        |        |        |
| Maximum                | 7.3    | 7.9    | 7.2    | 7.3    | 7.3    | 7.3    | 7.2    | 7.2    | 7.2    | 7.5    | 7.3    | 7.2    |
| DO (mg/L)              |        |        |        |        |        |        |        |        |        |        |        |        |
| Minimum '              | 5.2    | 5.5    | 6.0    | 5.5    | 5.3    | 5.1    | 5.7    | 5.0    | 5.5    | 5.2    | 5.1    | 5.7    |
| Specific Conductance   |        |        |        |        |        |        |        |        |        |        |        |        |
| (µmhos/cm)             |        |        |        |        |        |        |        |        |        |        |        |        |
| Weekly Average         |        |        |        |        |        |        | 371    | 351    | 336    | 355    | 350    | 338    |
| CBOD5 (lbs/day)        |        |        |        |        |        |        |        |        |        |        |        |        |
| Average Monthly        | < 6    | < 6    | < 6    | < 7    | < 6    | < 6    | 3      | 6      | 6      | 6      | 5      | < 8    |
| CBOD5 (lbs/day)        |        |        |        |        |        |        |        |        |        |        |        |        |
| Weekly Average         | 8      | < 6    | < 6    | < 7    | < 7    | < 7    | 3      | 6      | 6      | 6      | 7      | < 8    |
| CBOD5 (mg/L)           |        |        |        |        |        |        |        |        |        |        |        |        |
| Average Monthly        | < 2.6  | < 2.4  | < 2.7  | < 3    | < 3    | < 3    | 7      | 3      | 3      | 3      | 2.2    | < 3    |
| CBOD5 (mg/L)           |        |        |        |        |        |        |        |        |        |        |        |        |
| Weekly Average         | 3.1    | < 2.4  | < 3    | < 3    | 3      | < 3    | 8      | 3      | 3      | 3      | 3      | < 4    |
| BOD5 (lbs/day)         |        |        |        |        |        |        |        |        |        |        |        |        |
| Raw Sewage Influent    |        |        |        |        |        |        |        |        |        |        |        |        |
| <br>br/> Average       |        |        |        |        |        |        |        |        |        |        |        |        |
| Monthly                | 370    | 472    | 302    | 376    | 363    | 324    | 367    | 306    | 289    | 315    | 391    | 497    |
| BOD5 (lbs/day)         |        |        |        |        |        |        |        |        |        |        |        |        |
| Raw Sewage Influent    |        |        |        |        |        |        |        |        |        |        |        |        |
| <br>br/> Daily Maximum | 442    | 586    | 363    | 462    | 428    | 377    | 423    | 352    | 317    | 357    | 494    | 607    |
| BOD5 (mg/L)            |        |        |        |        |        |        |        |        |        |        |        |        |
| Raw Sewage Influent    |        |        |        |        |        |        |        |        |        |        |        |        |
| <br>br/> Average       |        |        |        |        |        |        |        |        |        |        |        |        |
| Monthly                | 161    | 194    | 140    | 162    | 170    | 151    | 171    | 151    | 143    | 158    | 167    | 192    |
| TSS (lbs/day)          |        |        |        |        |        |        |        |        |        |        |        |        |
| Average Monthly        | 12     | 8      | 7      | 12     | 11     | 10     | 8      | 8      | 8      | 6      | 6      | 19     |
| TSS (lbs/day)          |        |        |        |        |        |        |        |        |        |        |        |        |
| Raw Sewage Influent    |        |        |        |        |        |        |        |        |        |        |        |        |
| <br>br/> Average       |        |        |        |        |        |        |        |        |        |        |        |        |
| Monthly                | 276    | 386    | 171    | 278    | 250    | 238    | 272    | 213    | 159    | 117    | 240    | 316    |

| Raw Sewage Influent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | TSS (lbs/day)          |     |     |     |     |     |     |     |     |     |     |     |     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| ebr/s Daily Maximum         376         719         222         380         397         304         327         287         183         155         297         398           TSS (Ins/day)         Weekly Average         17         111         9         25         14         20         14         12         17         8         8         36           TSS (Ing/L)         Average Monthly         5         3         3         5         5         5         3         4         4         3         3         8           TSS (Ing/L)         Raw Sewage Influent solf-Naverage         7         4         4         10         7         9         5         6         8         4         3         16           TSS (Ing/L)         Yeekly Average         7         4         4         10         7         9         5         6         8         4         3         16           Fecal Coliform (CFL/100 ml)         GEOWINGTION (Instantaneous)         4         1         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Raw Sewage Influent    |     |     |     |     |     |     |     |     |     |     |     |     |
| Weekly Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <br>br/> Daily Maximum | 376 | 719 | 222 | 380 | 397 | 304 | 327 | 287 | 183 | 155 | 297 | 398 |
| TSS (mg/L) Average Monthly 5 3 3 3 5 5 5 5 3 4 4 3 3 3 8  Average Monthly 5 3 3 3 5 5 5 5 3 4 4 4 3 3 3 8  TSS (mg/L) RSS (mg/L) TSS (mg/L) TS | TSS (lbs/day)          |     |     |     |     |     |     |     |     |     |     |     |     |
| Average Monthly 5 3 3 3 5 5 5 5 3 4 4 4 3 3 3 8 TSS (mg/L) Raw Sewage Influent style Average Monthly 121 156 79 120 118 111 127 106 78 58 103 122 TSS (mg/L) Raw Sewage Influent style Average Monthly 121 156 79 120 118 111 127 106 78 58 103 122 TSS (mg/L) Weekly Average 7 4 4 10 7 9 5 6 8 4 3 16 Fecal Colliform (CFU/100 ml) Geometric Mean < 3 3 < 2 < 1 < 1 < 4 9 13 5 1 < 8 5 Fecal Colliform (CFU/100 ml) Instantaneous Maximum 11 8 8 8 2 3 84 63 2420 25 2 980 10 UV Transmittance (%) Minimum 61.6 75.1 69.7 57.1 72.7 71.2 74.4 68.1 75.4 76 76.5 77.4 Nitrate-Nitrite (mg/L) Average Monthly < 0.7 1.4 2.4 2.2 2.2 2.2 2.0 1.6 1.0 1.3 1.1 2.2 4.2 Nitrate-Nitrite (lbs) Total Nitrogen (mg/L) Total Nitrogen (mg/L) Total Nitrogen (lbs) Effluent Net + 5tr/> Total Nitrogen (lbs) Total Nitrogen (lbs) Total Nitrogen (lbs) Total Nitrogen (lbs) Effluent Net + 5tr/> Total Nitrogen (lbs) Total Nitrogen (lbs) Effluent Net + 5tr/> Total Nitrogen (lbs) Total Nitrogen (lbs) Total Nitrogen (lbs) Effluent Net + 5tr/> Total Annual Total Nitrogen (lbs) Effluent Net + 5tr/> Total Annual Total Nitrogen (lbs) Effluent Net + 5tr/> Total Annual Total Nitrogen (lbs) Effluent Net + 5tr/> Total Annual Total Nitrogen (lbs) Effluent Net + 5tr/> Total Annual Total Nitrogen (lbs) Effluent Net + 5tr/> Total Annual Total Nitrogen (lbs) Effluent Net + 5tr/> Total Annual Total Nitrogen (lbs) Effluent Net + 5tr/> Total Annual Total Nitrogen (lbs) Effluent Net + 5tr/> Total Nitrogen (lbs) Effluent Net + 5tr/ Total Nitrogen (lbs) Effluent Net + 5tr/ Total Nitrogen ( | Weekly Average         | 17  | 11  | 9   | 25  | 14  | 20  | 14  | 12  | 17  | 8   | 8   | 36  |
| TSS (mg/L) Raw Sewage Influent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                        |     |     |     |     |     |     |     |     |     |     |     |     |

#### NPDES Permit No. PA0036269

|                        |       | 1      |        | ı      | ı    | ı    | 1      |       |      |      | ı    | 1    |
|------------------------|-------|--------|--------|--------|------|------|--------|-------|------|------|------|------|
| Ammonia (lbs)          |       |        |        |        |      |      |        |       |      |      |      |      |
| Total Annual           |       |        |        |        |      |      |        | < 585 |      |      |      |      |
| TKN (mg/L)             |       |        |        |        |      |      |        |       |      |      |      |      |
| Average Monthly        | 2.9   | < 0.6  | < 0.7  | < 0.7  | 0.9  | 1.5  | 0.9    | 1.5   | 1.1  | 1.4  | 0.9  | 1.2  |
| TKN (lbs)              |       |        |        |        |      |      |        |       |      |      |      |      |
| Total Monthly          | 204.2 | < 47.9 | < 40.9 | < 48.9 | 57.3 | 95.1 | 61.4   | 91.2  | 72.9 | 87.4 | 63.1 | 91.1 |
| Total Phosphorus       |       |        |        |        |      |      |        |       |      |      |      |      |
| (lbs/day)              |       |        |        |        |      |      |        |       |      |      |      |      |
| Average Monthly        | 0.4   | < 0.3  | 0.4    | 0.3    | 0.4  | 0.6  | 0.4    | < 0.3 | 0.5  | 0.4  | 0.9  | 1.1  |
| Total Phosphorus       |       |        |        |        |      |      |        |       |      |      |      |      |
| (mg/L)                 |       |        |        |        |      |      |        |       |      |      |      |      |
| Average Monthly        | 0.2   | < 0.1  | 0.2    | 0.2    | 0.2  | 0.3  | < 0.2  | < 0.2 | 0.3  | 0.2  | 0.4  | 0.4  |
| Total Phosphorus (lbs) |       |        |        |        |      |      |        |       |      |      |      |      |
| Effluent Net<br>       |       |        |        |        |      |      |        |       |      |      |      |      |
| Total Monthly          | 13.1  | < 9.4  | 9.8    | 10.7   | 11.6 | 18   | < 12.9 | < 9.1 | 16.9 | 12.4 | 26.5 | 33.7 |
| Total Phosphorus (lbs) |       |        |        |        |      |      |        |       |      |      |      |      |
| Total Monthly          | 13.1  | < 9.4  | 9.8    | 10.7   | 11.6 | 18   | < 12.9 | < 9.1 | 16.9 | 12.4 | 26.5 | 33.7 |
| Total Phosphorus (lbs) |       |        |        |        |      |      |        |       |      |      |      |      |
| Effluent Net<br>       |       |        |        |        |      |      |        |       |      |      |      |      |
| Total Annual           |       |        |        |        |      |      |        | < 240 |      |      |      |      |
| Total Phosphorus (lbs) |       |        |        |        |      |      |        |       |      |      |      |      |
| Total Annual           |       |        |        |        |      |      |        | < 240 |      |      |      |      |
| Total Zinc (mg/L)      |       |        |        |        |      |      |        |       |      |      |      |      |
| Daily Maximum          |       |        |        |        | 0.05 |      |        |       |      |      |      |      |

#### 3.3 Non-Compliance

#### 3.3.1 Non-Compliance- NPDES Effluent

A summary of the non-compliance to the permit limits for the existing permit cycle is as follows.

From the DMR data beginning on July 1, 2015 to June 1, 2021, the following were the observed effluent non-compliances.

Summary of Non-Compliance with NPDES Effluent Limits
Beginning July 1, 2015 and Ending June 1, 2021

| NON COMPLIANCE<br>DATE | NON COMPLIANCE CATEGORY               | PARAMETER        | SAMPLE VALUE | VIOLATION<br>CONDITION | PERMIT VALUE | UNIT OF<br>MEASURE | STATISTICAL BASE CODE    |
|------------------------|---------------------------------------|------------------|--------------|------------------------|--------------|--------------------|--------------------------|
| 04/11/2017             | Concentration 2 Effluent<br>Violation | Ammonia-Nitrogen | 9.0          | >                      | 8.5          | mg/L               | Average Monthly          |
| 09/20/2017             | Concentration 1 Effluent Violation    | Dissolved Oxygen | 4.7          | <                      | 5.0          | mg/L               | Minimum                  |
| 06/06/2019             | Concentration 1 Effluent Violation    | Dissolved Oxygen | 4.8          | <                      | 5.0          | mg/L               | Minimum                  |
| 11/14/2019             | Concentration 1 Effluent Violation    | Dissolved Oxygen | 3.8          | <                      | 5.0          | mg/L               | Minimum                  |
| 10/20/2020             | Concentration 3 Effluent Violation    | Fecal Coliform   | 2420         | >                      | 1000         | CFU/100 ml         | Instantaneous<br>Maximum |

#### 3.3.2 Non-Compliance- Enforcement Actions

A summary of the non-compliance enforcement actions for the current permit cycle is as follows:

Beginning in July 1, 2015 to June 1, 2021, the following were observed enforcement actions.

Summary of Enforcement Actions
Beginning July 1, 2015 and Ending June 1, 2021

| ENF ID | ENF TYPE | ENF TYPE DESC | ENF CREATION<br>DATE | EXECUTED DATE | VIOLATIONS         | # OF VIOLATIONS | ENF FINALSTATUS | ENF CLOSED<br>DATE |
|--------|----------|---------------|----------------------|---------------|--------------------|-----------------|-----------------|--------------------|
| 344296 | NOV      | Notice of     | 06/24/2016           | 03/18/2016    | 92A.41(A)5; CSL201 | 2               | Comply/Closed   | 04/04/2016         |
|        |          | Violation     |                      |               |                    |                 |                 |                    |
| 335042 | NOV      | Notice of     | 02/29/2016           | 02/23/2016    | 271.917(A)         | 1               | Comply/Closed   | 03/04/2016         |
|        |          | Violation     |                      |               |                    |                 |                 |                    |
| 345339 | NOV      | Notice of     | 07/20/2016           | 04/21/2016    | 92A.41(A)5; CSL201 | 2               | Comply/Closed   | 05/05/2016         |
|        |          | Violation     |                      |               |                    |                 | ·               |                    |

#### 3.4 Summary of Sewage Sludge Disposal

A summary of the sewage sludge disposed of from the facility is as follows.

|               | 202                | 0               |           |
|---------------|--------------------|-----------------|-----------|
| Sewage        | Sludge / Biosolids | Production Info | rmation   |
|               |                    |                 |           |
|               | Hauled O           | ff-Site         |           |
| Date (YEAR)   | Tons Dewatered     | % Solids        | Dry Tons  |
| January       | 733.8              | 1.83            | 11.88     |
| February      | 733.8              | 1.63            | 11.88     |
| March         | 1355.3             | 1.3             | 17.47     |
| April         | 746.5              | 1.44            | 10.83     |
| May           | 742                | 1.25            | 9.32      |
| June          | 763.16             | 0.93            | 7.08      |
| July          | 903.5              | 1               | 9.03      |
| August        | 813.1              | 0.83            | 6.79      |
| September     | 688.05             | 0.98            | 6.75      |
| October       | 984.2              | 1.4             | 13.22     |
| November      | 550.5              | 1.3             | 7.99      |
| December      | 654                | 1.8             | 11.83     |
|               |                    |                 |           |
| Notes:        |                    |                 |           |
|               | disposed at Manifo | old Farm, McGin | nis Farm, |
| Wisnom Farm i | in York County     |                 |           |

Sewage sludge was disposed at the following locations: Manifold Farm, McGinnis Farm, and Wisnom Farm in York County.

#### 3.5 Open Violations

No open violations existed as of June 2021.

#### 4.0 Receiving Waters and Water Supply Information Detail Summary

#### 4.1 Receiving Waters

The receiving waters has been determined to be Ebaughs Creek. The sequence of receiving streams that the Ebaughs Creek discharges into are Deer Creek and the Susquehanna River which eventually drains into the Chesapeake Bay.

#### 4.2 Public Water Supply (PWS) Intake

The closest PWS to the subject facility is near the PA-MD State Border located approximately 2.5 miles downstream of the subject facility on the Ebaughs Creek. Based upon the distance and the flow rate of the facility, the PWS should not be impacted. (Information abstracted from Fact Sheet dated for February 10, 2015)

#### 4.3 Class A Wild Trout Streams

Class A Wild Trout Streams are waters that support a population of naturally produced trout of sufficient size and abundance to support long-term and rewarding sport fishery. DEP classifies these waters as high-quality coldwater fisheries.

The information obtained from EMAP suggests that no Class A Wild Trout Fishery will be impacted by this discharge.

#### 4.4 2020 Integrated List of All Waters (303d Listed Streams):

Section 303(d) of the Clean Water Act requires States to list all impaired surface waters not supporting uses even after appropriate and required water pollution control technologies have been applied. The 303(d) list includes the reason for impairment which may be one or more point sources (i.e. industrial or sewage discharges) or non-point sources (i.e. abandoned mine lands or agricultural runoff and the pollutant causing the impairment such as metals, pH, mercury or siltation).

States or the U.S. Environmental Protection Agency (EPA) must determine the conditions that would return the water to a condition that meets water quality standards. As a follow-up to listing, the state or EPA must develop a Total Maximum Daily Load (TMDL) for each waterbody on the list. A TMDL identifies allowable pollutant loads to a waterbody from both point and non-point sources that will prevent a violation of water quality standards. A TMDL also includes a margin of safety to ensure protection of the water.

The water quality status of Pennsylvania's waters uses a five-part categorization (lists) of waters per their attainment use status. The categories represent varying levels of attainment, ranging from Category 1, where all designated water uses are met to Category 5 where impairment by pollutants requires a TMDL for water quality protection.

The receiving waters is listed in the 2020 Pennsylvania Integrated Water Quality Monitoring and Assessment Report as a Category 5 waterbody. The surface waters is impaired stream for aquatic life due to chlorine from municipal point sources. The designated use has been classified as protected waters for cold water fishes (CWF) and migratory fishes (MF).

#### 4.5 Low Flow Stream Conditions

Water quality modeling estimates are based upon conservative data inputs. The data are typically estimated using either a stream gauge or through USGS web based StreamStats program. The NPDES effluent limits are based upon the combined flows from both the stream and the facility discharge.

A conservative approach to estimate the impact of the facility discharge using values which minimize the total combined volume of the stream and the facility discharge. The volumetric flow rate for the stream is based upon the seven-day, 10-year low flow (Q710) which is the lowest estimated flow rate of the stream during a 7 consecutive day period that occurs once in 10 -year time period. The facility discharge is based upon a known design capacity of the subject facility.

The closest gauge station to the subject facility is the Deer Creek station at Rocks, Maryland (USGS station number 0158000).

For WQM modeling, default values were used for pH and stream water temperature data. The default value for pH was 7.0 and the default stream water temperature was 20 C.

A default value for hardness of the stream of 100 mg/l CaCO<sub>3</sub> was used for modeling.

The low flow yield and the Q710 for the subject facility was estimated as shown below.

|                                             | Gauge Station Data                                               |                      |                 |  |
|---------------------------------------------|------------------------------------------------------------------|----------------------|-----------------|--|
| USGS Station Number                         | 0158000                                                          |                      |                 |  |
| Station Name                                | Deer Creek at Rocks,                                             | Maryland             |                 |  |
| Q710                                        | 22.8                                                             |                      |                 |  |
| Drainage Area (DA)                          | ninage Area (DA) 94.4 mi <sup>2</sup>                            |                      |                 |  |
| Calculations                                |                                                                  |                      |                 |  |
| The low flow yield of the                   | gauge station is:                                                |                      |                 |  |
| Low Flow Yield (LFY) = Q7                   | /10 / DA<br>( 22.8 ft <sup>3</sup> /sec / 94.4 mi <sup>2</sup> ) |                      |                 |  |
| LFY =                                       | 0.2415                                                           | ft³/sec/mi²          |                 |  |
| The low flow at the subje                   | ct site is based upon the DA of                                  | 4.79                 | mi <sup>2</sup> |  |
| Q710 = (LFY@gauge stati                     | on)(DA@Subject Site)                                             |                      |                 |  |
| $Q710 = (0.2415 \text{ ft}^3/\text{sec/m})$ | ni <sup>2</sup> )(4.79 mi <sup>2</sup> )                         |                      |                 |  |
| Q710 =                                      | 1.157                                                            | ft <sup>3</sup> /sec |                 |  |

| 6 Summary of Discharge, Receiving Waters and W | Vater Supply Information       |                             |  |  |
|------------------------------------------------|--------------------------------|-----------------------------|--|--|
| Outfall No. 001                                | Design Flow (MGD)              | .625                        |  |  |
| Latitude 39° 44′ 40.58″                        | Longitude                      | -76° 36' 17.24"             |  |  |
| Quad Name                                      | Quad Code                      |                             |  |  |
| Wastewater Description: Sewage Effluent        |                                |                             |  |  |
| Receiving Waters Ebaughs Creek (CWF, MF)       | Stream Code                    | 51008                       |  |  |
| NHD Com ID 57474977                            | Sheam Gode                     | 3.43                        |  |  |
| Drainage Area 4.79                             | Yield (cfs/mi²)                | 0.2415                      |  |  |
| Q <sub>7-10</sub> Flow (cfs) 1.157             | Q <sub>7-10</sub> Basis        | StreamStats/Streamgage      |  |  |
| Elevation (ft) 685                             | Slope (ft/ft)                  | Officariotats/officaringage |  |  |
| Watershed No. 7-I                              | Chapter 93 Class.              | CWF, MF                     |  |  |
| Existing Use Chapter 93 class                  | Existing Use Qualifier         | OVVI , IVII                 |  |  |
| Exceptions to Use                              | Exceptions to Criteria         |                             |  |  |
| Assessment Status Impaired for aquatic life    | <u> </u>                       |                             |  |  |
| Cause(s) of Impairment CHLORINE                |                                |                             |  |  |
| Source(s) of Impairment MUNICIPAL POINT SO     | URCE DISCHARGES                |                             |  |  |
| TMDL Status Not applicable                     | Name                           |                             |  |  |
|                                                |                                |                             |  |  |
| Background/Ambient Data                        | Data Source                    |                             |  |  |
| pH (SU) 7.0                                    | Default                        |                             |  |  |
| Temperature (°C) 20                            | Default                        |                             |  |  |
| Hardness (mg/L) 100                            | Default                        |                             |  |  |
| Other:                                         | -                              |                             |  |  |
| Nearest Downstream Public Water Supply Intake  | PA-MD State Border             |                             |  |  |
| PWS Waters Ebaughs                             | Flow at Intake (cfs)           |                             |  |  |
| PWS RMI 0.8                                    | Distance from Outfall (mi) 2.5 |                             |  |  |

#### 5.0: Overview of Presiding Water Quality Standards

#### 5.1 General

There are at least six (6) different policies which determines the effluent performance limits for the NPDES permit. The policies are technology based effluent limits (TBEL), water quality based effluent limits (WQBEL), antidegradation, total maximum daily loading (TMDL), anti-backsliding, and whole effluent toxicity (WET) The effluent performance limitations enforced are the selected permit limits that is most protective to the designated use of the receiving waters. An overview of each of the policies that are applicable to the subject facility has been presented in Section 6.

#### 5.2.1 Technology-Based Limitations

TBEL treatment requirements under section 301(b) of the Act represent the minimum level of control that must be imposed in a permit issued under section 402 of the Act (40 CFR 125.3). Available TBEL requirements for the state of Pennsylvania are itemized in PA Code 25, Chapter 92a.47.

The presiding sources for the basis for the effluent limitations are governed by either federal or state regulation. The reference sources for each of the parameters is itemized in the tables. The following technology-based limitations apply, subject to water quality analysis and best professional judgement (BPJ) where applicable:

| Parameter               | Limit (mg/l)    | SBC             | Federal Regulation | State Regulation |
|-------------------------|-----------------|-----------------|--------------------|------------------|
| CBOD₅                   | 25              | Average Monthly | 133.102(a)(4)(i)   | 92a.47(a)(1)     |
| CBOD5                   | 40              | Average Weekly  | 133.102(a)(4)(ii)  | 92a.47(a)(2)     |
| Total Suspended         | 30              | Average Monthly | 133.102(b)(1)      | 92a.47(a)(1)     |
| Solids                  | 45              | Average Weekly  | 133.102(b)(2)      | 92a.47(a)(2)     |
| pH                      | 6.0 – 9.0 S.U.  | Min – Max       | 133.102(c)         | 95.2(1)          |
| Fecal Coliform          |                 |                 |                    |                  |
| (5/1 - 9/30)            | 200 / 100 ml    | Geo Mean        | -                  | 92a.47(a)(4)     |
| Fecal Coliform          |                 |                 |                    |                  |
| (5/1 - 9/30)            | 1,000 / 100 ml  | IMAX            | -                  | 92a.47(a)(4)     |
| Fecal Coliform          |                 |                 |                    |                  |
| (10/1 – 4/30)           | 2,000 / 100 ml  | Geo Mean        | -                  | 92a.47(a)(5)     |
| Fecal Coliform          |                 |                 |                    |                  |
| (10/1 – 4/30)           | 10,000 / 100 ml | IMAX            | -                  | 92a.47(a)(5)     |
| Total Residual Chlorine | 0.5             | Average Monthly | -                  | 92a.48(b)(2)     |

#### 5.2.2 Mass Based Limits

For publicly owned treatment works (POTW), mass loadings are calculated based upon design flow rate of the facility and the permit limit concentration. The generalized calculation for mass loadings is shown below:

Quantity 
$$\left(\frac{lb}{day}\right) = (MGD)(Concentration)(8.34)$$

#### 5.3 Water Quality-Based Limitations

WQBEL are based on the need to attain or maintain the water quality criteria and to assure protection of designated and existing uses (PA Code 25, Chapter 92a.2). The subject facility that is typically enforced is the more stringent limit of either the TBEL or the WQBEL.

Determination of WQBEL is calculated by spreadsheet analysis or by a computer modeling program developed by DEP. DEP permit engineers utilize the following computing programs for WQBEL permit limitations: (1) MS Excel worksheet for Total Residual Chorine (TRC); (2) WQM 7.0 for Windows Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen Version 1.1 (WQM Model) and (3) Toxics using DEP Toxics Management Spreadsheet for Toxics pollutants.

#### 5.3.1 Water Quality Modeling 7.0

The WQM Model is a computer model that is used to determine NPDES discharge effluent limitations for Carbonaceous BOD (CBOD5), Ammonia Nitrogen (NH3-N), and Dissolved Oxygen (DO) for single and multiple point source discharges scenarios. WQM Model is a complete-mix model which means that the discharge flow and the stream flow are assumed to instantly and completely mixed at the discharge node.

WQM recommends effluent limits for DO, CBOD5, and NH<sub>3</sub>-N in mg/l for the discharge(s) in the simulation.

Four types of limits may be recommended. The limits are

- (a) a minimum concentration for DO in the discharge as 30-day average;
- (b) a 30-day average concentration for CBOD5 in the discharge:
- (c) a 30-day average concentration for the NH<sub>3</sub>-N in the discharge;
- (d) 24-hour average concentration for NH<sub>3</sub>-N in the discharge.

The WQM Model requires several input values for calculating output values. The source of data originates from either EMAP, the National Map, or Stream Stats. Data for stream gauge information, if any, was abstracted from USGS Low-Flow, Base-Flow, and Mean-Flow Regression Equations for Pennsylvania Streams authored by Marla H. Stuckey (Scientific Investigations Report 2006-5130).

The input values utilized for the modeling are summarized in the table which can be found in Attachment B.

The applicable WQM Effluent Limit Type are discussed in Section 6 under the corresponding parameter which is either DO, CBOD, or ammonia-nitrogen.

#### **5.3.2 Toxics Modeling**

The Toxics Management Spreadsheet model is a computer model that is used to determine effluent limitations for toxics (and other substances) for single discharge wasteload allocations. This computer model uses a mass-balance water quality analysis that includes consideration for mixing, first-order decay, and other factors used to determine recommended water quality-based effluent limits. Toxics Management Spreadsheet does not assume that all discharges completely mix with the stream. The point of compliance with water quality criteria are established using criteria compliance times (CCTs). The available CCTs are either acute fish criterion (AFC), chronic fish criterion (CFC), or human health criteria (THH & CRL).

**Acute Fish Criterion (AFC)** measures the criteria compliance time as either the maximum criteria compliance time (i.e.15 minutes travel time downstream of the current discharge) or the complete mix time whichever comes first. AFC is evaluated at Q710 conditions.

**Chronic Fish Criterion (CFC)** measures the criteria compliance time as either the maximum criteria compliance time (i.e. 12 hours travel time downstream of the current discharge) or the complete mix time whichever comes first. CFC is evaluated at Q710 conditions.

**Threshold Human Health (THH)** measures the criteria compliance time as either the maximum criteria compliance time (i.e. 12 hours travel time downstream of the current discharge) or the estimated travel time downstream to the nearest potable water supply intake whichever comes first. THH is evaluated at Q710 conditions.

**Cancer Risk Level (CRL)** measures the criteria compliance time as either the maximum criteria compliance time (i.e. 12 hours travel time downstream of the current discharge) or the complete mix time whichever comes first. CRL is evaluated at Qh (harmonic mean or normal flow) conditions.

The Toxics Model requires several input values for calculating output values. The source of data originates from either EMAP, the National Map, or Stream Stats. Data for stream gauge information, if any, was abstracted from USGS Low-Flow, Base-Flow, and Mean-Flow Regression Equations for Pennsylvania Streams authored by Marla H. Stuckey (Scientific Investigations Report 2006-5130).

The input values utilized for the modeling are summarized in the table which can be found in Attachment B.

#### 5.3.2.1 Determining if NPDES Permit Will Require Monitoring/Limits in the Proposed Permit for Toxic Pollutants

To determine if Toxics modeling is necessary, DEP has developed a Toxics Management Spreadsheet to identify toxics of concern. Toxic pollutants whose maximum concentrations as reported in the permit application or on DMRs are greater than the most stringent applicable water quality criterion are pollutants of concern. A Reasonable Potential Analysis was utilized to determine (a) if the toxic parameters modeled would require monitoring or (b) if permit limitations would be required for the parameters. The toxics reviewed for reasonable potential were TDS, chloride, bromide, sulfate, total copper, total lead, and total zinc.

Based upon the SOP- Establishing Water Quality-Based Effluent Limitations (WQBELs) and Permit Conditions for Toxic Pollutants (Revised January 10, 2019), monitoring and/or limits will be established as follows.

- (a) When reasonable potential is demonstrated, establish limits where the maximum reported concentration equals or exceeds 50% of the WQBEL.
- (b) For non-conservative pollutants, establish monitoring requirements where the maximum reported concentration is between 25% 50% of the WQBEL.
- (c) For conservative pollutants, establish monitoring requirements where the maximum reported concentration is between 10% 50% of the WQBEL.

Applicable monitoring or permit limits for toxics are summarized in Section 6.

The Toxics Management Spreadsheet output has been included in Attachment B.

#### 5.3.3 Whole Effluent Toxicity (WET)

Prior renewals did include WET testing. This was critical since Stewartstown failed two WET tests out of four tests completed. Although Stewartstown was not required to include WET testing, DEP requested them based on the facility receiving landfill leachate. DEP and the permittee concurred that WET limits and specific conductance limits would be removed in lieu of daily monitoring of the specific conductance level (Fact Sheet dated February 2015).

The specific conductance level of 1,200 µmhos/cm was based on the past analysis conducted by Stewartstown and York County Solid Waste and Refuse Authority (YCSWRA) showing that the likelihood of WET failures increased when the final plant effluent specific conductance exceeds 1,200 µmhos/cm.

The table summarizes the facility's specific conductance from July 2015 to October 2020. Results indicate that the specific conductance does not exceed 1,200 µmhos/cm.

## Summary of Specific Conductance Beginning July 2015 and Ending October 2020

| Monitoring Period Begin Date | Monitoring<br>Period End<br>Date | DMR<br>Value | Units    | Statistical Base<br>Code |
|------------------------------|----------------------------------|--------------|----------|--------------------------|
| 07/01/2015                   | 07/31/2015                       | 312          | µmhos/cm | Weekly Average           |
| 08/01/2015                   | 08/31/2015                       | 349          | µmhos/cm | Weekly Average           |
| 09/01/2015                   | 09/30/2015                       | 315          | µmhos/cm | Weekly Average           |
| 10/01/2015                   | 10/31/2015                       | 322          | µmhos/cm | Weekly Average           |
| 05/01/2016                   | 05/31/2016                       | 291          | µmhos/cm | Weekly Average           |
| 06/01/2016                   | 06/30/2016                       | 317          | µmhos/cm | Weekly Average           |
| 07/01/2016                   | 07/31/2016                       | 335          | µmhos/cm | Weekly Average           |
| 08/01/2016                   | 08/31/2016                       | 338          | µmhos/cm | Weekly Average           |
| 09/01/2016                   | 09/30/2016                       | 333          | µmhos/cm | Weekly Average           |
| 10/01/2016                   | 10/31/2016                       | 338          | µmhos/cm | Weekly Average           |
| 05/01/2017                   | 05/31/2017                       | 326          | µmhos/cm | Weekly Average           |
| 06/01/2017                   | 06/30/2017                       | 334          | µmhos/cm | Weekly Average           |
| 07/01/2017                   | 07/31/2017                       | 342          | µmhos/cm | Weekly Average           |
| 08/01/2017                   | 08/31/2017                       | 352          | µmhos/cm | Weekly Average           |
| 09/01/2017                   | 09/30/2017                       | 346          | µmhos/cm | Weekly Average           |
| 10/01/2017                   | 10/31/2017                       | 351          | µmhos/cm | Weekly Average           |
| 05/01/2018                   | 05/31/2018                       | 328          | µmhos/cm | Weekly Average           |
| 06/01/2018                   | 06/30/2018                       | 328          | µmhos/cm | Weekly Average           |
| 07/01/2018                   | 07/31/2018                       | 345          | µmhos/cm | Weekly Average           |
| 08/01/2018                   | 08/31/2018                       | 326          | µmhos/cm | Weekly Average           |
| 09/01/2018                   | 09/30/2018                       | 310          | µmhos/cm | Weekly Average           |
| 10/01/2018                   | 10/31/2018                       | 306          | µmhos/cm | Weekly Average           |
| 05/01/2019                   | 05/31/2019                       | 304          | µmhos/cm | Weekly Average           |
| 06/01/2019                   | 06/30/2019                       | 323          | µmhos/cm | Weekly Average           |
| 07/01/2019                   | 07/31/2019                       | 329          | µmhos/cm | Weekly Average           |
| 08/01/2019                   | 08/31/2019                       | 360          | µmhos/cm | Weekly Average           |
| 09/01/2019                   | 09/30/2019                       | 371          | µmhos/cm | Weekly Average           |
| 10/01/2019                   | 10/31/2019                       | 368          | µmhos/cm | Weekly Average           |
| 05/01/2020                   | 05/31/2020                       | 338          | µmhos/cm | Weekly Average           |
| 06/01/2020                   | 06/30/2020                       | 350          | µmhos/cm | Weekly Average           |
| 07/01/2020                   | 07/31/2020                       | 355          | µmhos/cm | Weekly Average           |
| 08/01/2020                   | 08/31/2020                       | 336          | µmhos/cm | Weekly Average           |
| 09/01/2020                   | 09/30/2020                       | 351          | µmhos/cm | Weekly Average           |
| 10/01/2020                   | 10/31/2020                       | 371          | µmhos/cm | Weekly Average           |

Since Stewartstown continues to accept leachate, daily monitoring of the specific conductance level shall continue to the proposed permit with the same Part A footnote.

A Part C condition shall exist as a part of an alternate method of controlling toxicity in lieu of WET testing. The Q710 flow of 21.3 cfs from the USGS gage station on Deer Creek (USGS 0158000) was previously calculated by Susquehanna River Basin Commission (SRBC). The study prepared by Stewartstown correlates between various stream flows, leachate conductivity, and leachate flows for examination. As a result, establishing a threshold using a critical flow condition was necessary to avoid exceedance of no observed effect concentration (NOEC).

Consistent with the Fact Sheet dated for February 2015, Deer Creek was addressed since the receiving stream (Ebaughs Creek) is a tributary of Deer Creek and real time data are available through the USGS website. DEP has determined that 21.3 cfs is still a reasonable value for the critical flow condition since the most recent USGS streamflow statistics report is showing an estimated Q710 of 22.8 cfs at this gage. According to the previous fact sheet, the elevation of 905 ft msl is used by YCSWRA as the level it should not exceed to ensure compliance with its Waste Management Permit. The existing Part C condition shall continue in the proposed permit.

Refer to Section 6.3.2 for applicable Part A and C Conditions

#### 5.4 Total Maximum Daily Loading (TMDL)

#### 5.4.1 TMDL

The goal of the Clean Water Act (CWA), which governs water pollution, is to ensure that all of the Nation's waters are clean and healthy enough to support aquatic life and recreation. To achieve this goal, the CWA created programs designed to regulate and reduce the amount of pollution entering United States waters. Section 303(d) of the CWA requires states to assess their waterbodies to identify those not meeting water quality standards. If a waterbody is not meeting standards, it is listed as impaired and reported to the U.S. Environmental Protection Agency. The state then develops a plan to clean up the impaired waterbody. This plan includes the development of a Total Maximum Daily Load (TMDL) for the pollutant(s) that were found to be the cause of the water quality violations. A Total Maximum Daily Load (TMDL) calculates the maximum amount of a specific pollutant that a waterbody can receive and still meet water quality standards.

Pennsylvania has committed to restoring all impaired waters by developing TMDLs and TMDL alternatives for all impaired waterbodies. The TMDL serves as the starting point or planning tool for restoring water quality.

#### **5.4.1.1 Local TMDL**

The subject facility does not discharge into a local TMDL.

#### 5.4.1.2 Chesapeake Bay TMDL Requirement

The Chesapeake Bay Watershed is a large ecosystem that encompasses approximately 64,000 square miles in Maryland, Delaware, Virginia, West Virginia, Pennsylvania, New York and the District of Columbia. An ecosystem is composed of interrelated parts that interact with each other to form a whole. All of the plants and animals in an ecosystem depend on each other in some way. Every living thing needs a healthy ecosystem to survive. Human activities affect the Chesapeake Bay ecosystem by adding pollution, using resources and changing the character of the land.

Most of the Chesapeake Bay and many of its tidal tributaries have been listed as impaired under Section 303(d) of the federal Water Pollution Control Act ("Clean Water Act"), 33 U.S.C. § 1313(d). While the Chesapeake Bay is outside the boundaries of Pennsylvania, more than half of the State lies within the watershed. Two major rivers in Pennsylvania are part of the Chesapeake Bay Watershed. They are (a) the Susquehanna River and (b) the Potomac River. These two rivers total 40 percent of the entire Chesapeake Bay watershed.

The overall management approach needed for reducing nitrogen, phosphorus and sediment are provided in the Bay TMDL document and the Phase I, II, and III WIPs which is described in the Bay TMDL document and Executive Order 13508.

The Bay TMDL is a comprehensive pollution reduction effort in the Chesapeake Bay watershed identifying the necessary pollution reductions of nitrogen, phosphorus and sediment across the seven Bay watershed jurisdictions of Delaware, Maryland, New York, Pennsylvania, Virginia, West Virginia and the District of Columbia to meet applicable water quality standards in the Bay and its tidal waters.

The Watershed Implementation Plans (WIPs) provides objectives for how the jurisdictions in partnership with federal and local governments will achieve the Bay TMDL's nutrient and sediment allocations.

Phase 3 WIP provides an update on Chesapeake Bay TMDL implementation activities for point sources and DEP's current implementation strategy for wastewater. The latest revision of the supplement was December 17, 2019.

The Chesapeake Bay TMDL (Appendix Q) categorizes point sources into four sectors:

- Sector A- significant sewage dischargers;
- Sector B- significant industrial waste (IW) dischargers;
- Sector C- non-significant dischargers (both sewage and IW facilities); and
- Sector D- combined sewer overflows (CSOs).

All sectors contain a listing of individual facilities with NPDES permits that were believed to be discharging at the time the TMDL was published (2010). All sectors with the exception of the non-significant dischargers have individual wasteload allocations (WLAs) for TN and TP assigned to specific facilities. Non-significant dischargers have a bulk or aggregate allocation for TN and TP based on the facilities in that sector that were believed to be discharging at that time and their estimated nutrient loads.

Based upon the supplement the subject facility has been categorized as a Sector A discharger. The supplement defines Sector A as a sewage facility that is considered significant if it has a design flow of at least 0.4 MGD. For rollout of its permitting strategy, DEP classified these facilities into three phases. Thirty IW facilities have individual WLAs in the TMDL.

Table 5 presents all NPDES permits for Significant Sewage dischargers with Cap Loads. The NPDES Permit No., phase, facility name, latest permit issuance date, expiration date, Cap Load compliance start date, TN and TP Cap Loads, and TN and TP Delivery Ratios are presented. In addition, if TN Offsets were incorporated into the TN Cap Loads when the permit was issued, the amount is shown; these Offsets will be removed from Cap Loads upon issuance of renewed permits to implement Section IV of the WIP document (i.e., a facility may use Offsets for compliance but may not register them as credits).

The total nitrogen (TN) and total phosphorus (TP) cap loads itemized by Table 5 for the subject facility are as follows:

| TN Cap Load (lbs/yr) | 11,415 |
|----------------------|--------|
| TN Delivery Ratio    | 1      |
| TP Cap Load (lbs/yr) | 1,522  |
| TP Delivery Ratio    | 1      |

Expansions by any Significant Sewage discharger will not result in any increase in Cap Loads. Where non-significant facilities expand to a design flow of 0.4 MGD or greater, the lesser of baseline Cap Loads of 7,306 lbs/yr TN and 974 lbs/yr TP or existing performance will be used for permits, and the load will be moved from the Non-Significant sector load to the Significant Sewage sector load. If considered necessary for environmental protection, DEP may decide to move load from the Point Source Reserve to the Significant Sewage sector in the future.

The minimum monitoring frequency for TN species and TP in new or renewed NPDES permits for Significant Sewage dischargers is 2/week.

This facility is subject to Sector A monitoring requirements. Consistent with the Phase 3 WIP Wastewater Supplement, the facility shall have a cap load flow of 0.625 mg/l. Monitoring shall be required at least 2x/wk for nitrogen species and phosphorus.

#### Reporting

Cap Loads will be established in permits as Net Annual TN and TP loads (lbs/yr) that apply during the period of October 1 – September 30.

Facilities with NPDES permits must use DEP's eDMR system for reporting, except small flow treatment facilities. An Annual DMR must be submitted by the end of the Truing Period, November 28. As attachments to the Annual DMR a facility must submit a completed Annual Chesapeake Bay Spreadsheet, available through DEP's Supplemental Reports website, which contains an Annual Nutrient Monitoring worksheet and an Annual Nutrient Budget worksheet. This Spreadsheet will be submitted once per Compliance Year only, and reflect all nutrient sample results (for the period October 1 – September 30), Credit transactions (including the Truing Period) and Offsets applied during the Compliance Year.

#### 5.5 Anti-Degradation Requirement

Chapter 93.4a of the PA regulations requires that surface water of the Commonwealth of Pennsylvania may not be degraded below levels that protect the existing uses. The regulations specifically state that Existing instream water uses and the level of water quality necessary to protect the existing uses shall be maintained and protected. Antidegradation requirements are implemented through DEP's guidance manual entitled Water Quality Antidegradation Implementation Guidance (Document #391-0300-02).

The policy requires DEP to protect the existing uses of all surface waters and the existing quality of High Quality (HQ) and Exceptional Value (EV) Waters. Existing uses are protected when DEP makes a final decision on any permit or approval for an activity that may affect a protected use. Existing uses are protected based upon DEP's evaluation of the best available information (which satisfies DEP protocols and Quality Assurance/Quality Control (QA/QC) procedures) that indicates the protected use of the waterbody.

For a new, additional, or increased point source discharge to an HQ or EV water, the person proposing the discharge is required to utilize a nondischarge alternative that is cost-effective and environmentally sound when compared with the cost of the proposed discharge. If a nondischarge alternative is not cost-effective and environmentally sound, the person must use the best available combination of treatment, pollution prevention, and wastewater reuse technologies and assure that any discharge is nondegrading. In the case of HQ waters, DEP may find that after satisfaction of intergovernmental coordination and public participation requirements lower water quality is necessary to accommodate important economic or social development in the area in which the waters are located. In addition, DEP will assure that cost-effective and reasonable best management practices for nonpoint source control in HQ and EV waters are achieved.

The subject facility's discharge will be to a non-special protection waters and the permit conditions are imposed to protect existing instream water quality and uses. Neither HQ waters or EV waters is impacted by this discharge.

#### 5.6 Anti-Backsliding

Anti-backsliding is a federal regulation which prohibits a permit from being renewed, reissued, or modified containing effluent limitations which are less stringent than the comparable effluent limitations in the previous permit (40 CFR 122.I.1 and 40 CFR 122.I.2). A review of the existing permit limitations with the proposed permit limitations confirm that the facility is consistent with anti-backsliding requirements. The facility has proposed effluent limitations that are as stringent as the existing permit.

#### **6.0 NPDES Parameter Details**

The basis for the proposed sampling and their monitoring frequency that will appear in the permit for each individual parameter are itemized in this Section. The final limits are the more stringent of technology based effluent treatment (TBEL) requirements, water quality based (WQBEL) limits, TMDL, antidegradation, anti-degradation, or WET.

The reader will find in this section:

- a) a justification of recommended permit monitoring requirements and limitations for each parameter in the proposed NPDES permit;
- b) a summary of changes from the existing NPDES permit to the proposed permit; and
- c) a summary of the proposed NPDES effluent limits.

#### 6.1 Recommended Monitoring Requirements and Effluent Limitations

A summary of the recommended monitoring requirements and effluent limitations are itemized in the tables. The tables are categorized by (a) Conventional Pollutants and Disinfection, (b) Nitrogen Species and Phosphorus, and (c) Toxics.

#### 6.1.1 Conventional Pollutants and Disinfection

|                             | Summary of                 |                                                                                                                                                                                                                                                                                                                                          | Stewartstown WWTP; PA0036269                                                                                                                                                                                                                                                                                                                                                                                               |
|-----------------------------|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                             | Permit Limitation          |                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Parameter                   | Required by <sup>1</sup> : |                                                                                                                                                                                                                                                                                                                                          | Recommendation                                                                                                                                                                                                                                                                                                                                                                                                             |
|                             |                            | Monitoring:                                                                                                                                                                                                                                                                                                                              | The monitoring frequency shall be daily as a grab sample (Table 6-3).                                                                                                                                                                                                                                                                                                                                                      |
| pH (S.U.)                   | TBEL                       | Effluent Limit:                                                                                                                                                                                                                                                                                                                          | Effluent limits may range from pH = 6.0 to 9.0                                                                                                                                                                                                                                                                                                                                                                             |
| pri (0.0.)                  | R                          |                                                                                                                                                                                                                                                                                                                                          | The monitoring frequency has been assigned in accordance with Table 6-3 and the effluent limits assigned by Chapter 95.2(1).                                                                                                                                                                                                                                                                                               |
|                             |                            | Monitoring:                                                                                                                                                                                                                                                                                                                              | The monitoring frequency shall be daily as a grab sample (Table 6-3).                                                                                                                                                                                                                                                                                                                                                      |
| Dissolved                   | BPJ                        | Effluent Limit:                                                                                                                                                                                                                                                                                                                          | Effluent limits shall be greater than 5.0 mg/l.                                                                                                                                                                                                                                                                                                                                                                            |
| Oxygen                      | 2. 0                       | Rationale:                                                                                                                                                                                                                                                                                                                               | The monitoring frequency has been assigned in accordance with Table 6-3 and the effluent limits assigned by best professional judgement.                                                                                                                                                                                                                                                                                   |
|                             |                            | Monitoring:                                                                                                                                                                                                                                                                                                                              | The monitoring frequency shall be 1x/wk as an 8-hr composite sample (Table 6-3).                                                                                                                                                                                                                                                                                                                                           |
| CBOD                        | CBOD WQBEL                 | Effluent Limit:                                                                                                                                                                                                                                                                                                                          | During the months of May 1, to October 31, effluent limits shall not exceed 78 lbs/day and 15 mg/l as an average monthly. During the months of November 1 to April 30, effluent limits shall not exceed 130 lbs/day and 25 mg/l as an average monthly                                                                                                                                                                      |
|                             |                            | Rationale:                                                                                                                                                                                                                                                                                                                               | The monitoring frequency has been assigned in accordance with Table 6-3 and the effluent limits assigned by Chapter 92a.47(a)(1). WQM modeling indicates that the WQBEL is more stringent than the TBEL. Thus, the permit limit is confined to WQBEL.                                                                                                                                                                      |
|                             |                            | Monitoring:                                                                                                                                                                                                                                                                                                                              | The monitoring frequency shall be 1/week as an 8-hr composite sample (Table 6-3).                                                                                                                                                                                                                                                                                                                                          |
|                             |                            | Effluent Limit:                                                                                                                                                                                                                                                                                                                          | Effluent limits shall not exceed 156 lbs/day and 30 mg/l as an average monthly.                                                                                                                                                                                                                                                                                                                                            |
| TSS TBEL                    | Rationale:                 | The monitoring frequency has been assigned in accordance with Table 6-3 and the effluent limits assigned by Chapter 92a.47(a)(1). While there is no WQM modeling for this parameter, the permit limit for TSS is generally assigned similar effluent limits as CBOD or BOD. Since the TBEL is more stringent than TBEL, TBEL will apply. |                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                             |                            | Monitoring:                                                                                                                                                                                                                                                                                                                              | The monitoring frequency is 1/day as a grab sample.                                                                                                                                                                                                                                                                                                                                                                        |
|                             |                            | Effluent Limit:                                                                                                                                                                                                                                                                                                                          | No effluent requirements.                                                                                                                                                                                                                                                                                                                                                                                                  |
| Specific<br>Conductance     | BPJ                        | Rationale:                                                                                                                                                                                                                                                                                                                               | Since Stewartstown continues to accept leachate, daily monitoring of the specific conductance level shall continue to the proposed permit. A Part A footnote from the existing permit shall continue to the proposed permit. Stewartstown and York County Solid Waste and Refuse Authority (YCSWRA) projects WET failures will increase when the final plant effluent specific conductance is greater than 1,200 µmhos/cm. |
|                             |                            | Monitoring:                                                                                                                                                                                                                                                                                                                              | The monitoring frequency is 1/day. The facility will be required to recording the UV transmittance                                                                                                                                                                                                                                                                                                                         |
| UV                          |                            | Effluent Limit:                                                                                                                                                                                                                                                                                                                          | No effluent requirements.                                                                                                                                                                                                                                                                                                                                                                                                  |
| disinfection                | SOP                        | Rationale:                                                                                                                                                                                                                                                                                                                               | Consistent with the SOP- Establishing Effluent Limitations for Individual Sewage Permits (Revised January 10, 2019), the facility will be required to have routine monitoring for UV transmittance, UV dosage, or UV intensity.                                                                                                                                                                                            |
|                             |                            | Monitoring:                                                                                                                                                                                                                                                                                                                              | The monitoring frequency shall be 1x/wk as a grab sample (Table 6-3).                                                                                                                                                                                                                                                                                                                                                      |
| Fecal<br>Coliform           | TBEL                       | Effluent Limit:                                                                                                                                                                                                                                                                                                                          | Summer effluent limits shall not exceed 200 No./100 mL as a geometric mean. Winter effluent limits shall not exceed 2000 No./100 mL as a geometric mean.                                                                                                                                                                                                                                                                   |
| Comorni                     | Rationale:                 |                                                                                                                                                                                                                                                                                                                                          | The monitoring frequency has been assigned in accordance with Table 6-3 and the effluent limits assigned by Chapter 92a.47(a)(4) and 92a.47(a)(5).                                                                                                                                                                                                                                                                         |
|                             |                            | Monitoring:                                                                                                                                                                                                                                                                                                                              | The monitoring frequency shall be 1x/quarter as a grab sample (SOP).                                                                                                                                                                                                                                                                                                                                                       |
|                             | SOP: Chanter               | Effluent Limit:                                                                                                                                                                                                                                                                                                                          | No effluent requirements.                                                                                                                                                                                                                                                                                                                                                                                                  |
| E. Coli SOP; Chapter 92a.61 |                            | Rationale:                                                                                                                                                                                                                                                                                                                               | Consistent with the SOP- Establishing Effluent Limitations for Individual Sewage Permits (Revised March 22, 2019) and under the authority of Chapter 92a.61, the facility will be required to monitor for E.Coli.                                                                                                                                                                                                          |

<sup>1</sup> The NPDES permit was limited by (a) anti-Backsliding, (b) Anti-Degradation, (c) SOP, (d) TBEL, (e) TMDL, (f) WQBEL, (g) WET, or (h) Other

<sup>2</sup> Monitoring frequency based on flow rate of 0.625 MGD.
3 Table 6-3 (Self Monitoring Requirements for Sewage Discharges) in Technical Guidance for the Development and Specification of Effluent

Limitations and Other Permit Conditions in NPDES Permits) (Document # 362-0400-001) Revised 10/97

<sup>4</sup> Water Quality Antidegradation Implementation Guidance (Document # 391-0300-002)

<sup>5</sup> Phase 2 Watershed Implementation Plan Wastewater Supplement, Revised September 6, 2017

#### **6.1.2 Nitrogen Species and Phosphorus**

**Permit Limitation** 

#### Summary of Proposed NPDES Parameter Details for Nitrogen Species and Phosphorus

Stewartstown WWTP; PA0036269

# Recommendation

| Parameter               | Required by <sup>1</sup> : | Recommendation  |                                                                                                                                                                                                                                                        |  |  |  |  |
|-------------------------|----------------------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|                         | WQBEL                      | Monitoring:     | The monitoring frequency shall be 2x/wk as an 8-hr composite sample                                                                                                                                                                                    |  |  |  |  |
| Ammonia-<br>Nitrogen    |                            | Effluent Limit: | During the months of May 1, to October 31, effluent limits shall not exceed 17 lbs/day and 3.5 mg/l as an average monthly. During the months of November 1 to April 30, effluent limits shall not exceed 44 lbs/day and 8.5 mg/l as an average monthly |  |  |  |  |
|                         |                            | Rationale:      | Water quality modeling recommends water quality based effluent limits.                                                                                                                                                                                 |  |  |  |  |
|                         |                            | Monitoring:     | The monitoring frequency shall be 2x/wk as an 8-hr composite sample                                                                                                                                                                                    |  |  |  |  |
| Nitrate-                | Chesapeake Bay             | Effluent Limit: | No effluent requirements.                                                                                                                                                                                                                              |  |  |  |  |
| Nitrite as N            | TMDL                       | Rationale:      | Due to the Chesapeake Bay Implementation Plan, the facility is required to be monitored on a frequency at least 2x/wk.                                                                                                                                 |  |  |  |  |
|                         |                            | Monitoring:     | The monitoring frequency shall be 1x/mo as a calculation.                                                                                                                                                                                              |  |  |  |  |
| Total                   | Chesapeake Bay             | Effluent Limit: | No effluent requirements.                                                                                                                                                                                                                              |  |  |  |  |
| Nitrogen                | TMDL                       | Rationale:      | Due to the Chesapeake Bay Implementation Plan, the facility is required to be monitored on a frequency at least 1x/month.                                                                                                                              |  |  |  |  |
|                         | Chesapeake Bay<br>TMDL     | Monitoring:     | The monitoring frequency shall be 2x/wk as an 8-hr composite sample                                                                                                                                                                                    |  |  |  |  |
| TKN                     |                            | Effluent Limit: | No effluent requirements.                                                                                                                                                                                                                              |  |  |  |  |
| IKN                     |                            | Rationale:      | Due to the Chesapeake Bay Implementation Plan, the facility is required to be monitored on a frequency at least 2x/wk.                                                                                                                                 |  |  |  |  |
|                         | Antibacksliding            | Monitoring:     | The monitoring frequency shall be 2x/wk as an 8-hr composite sample                                                                                                                                                                                    |  |  |  |  |
| Total                   |                            | Effluent Limit: | Effluent limits shall not exceed 10.4 lbs/day and 2.0 mg/l as an average monthly.                                                                                                                                                                      |  |  |  |  |
| Phosphorus              |                            | Rationale:      | Due to the Chesapeake Bay Implementation Plan, the facility is required to be monitored on a frequency at least 2x/wk. The effluent limits from the current permit shall continue to the proposed permit because of anti-backsliding.                  |  |  |  |  |
|                         |                            | Monitoring:     | The monitoring frequency shall be 1x/mo as a calculation.                                                                                                                                                                                              |  |  |  |  |
| Net Total               | Chesapeake Bay             | Effluent Limit: | Effluent limit shall not exceed 11,415 lbs/yr.                                                                                                                                                                                                         |  |  |  |  |
| Nitrogen                | TMDL                       | Rationale:      | Due to the Chesapeake Bay Implementation Plan, the facility is required to be monitored on a frequency at least 2x/yr.                                                                                                                                 |  |  |  |  |
| Net Total<br>Phosphorus |                            | Monitoring:     | The monitoring frequency shall be 1x/mo as a calculation.                                                                                                                                                                                              |  |  |  |  |
|                         | Chesapeake Bay<br>TMDL     | Effluent Limit: | Effluent limit shall not exceed 1,522 lbs/yr.                                                                                                                                                                                                          |  |  |  |  |
|                         |                            | Rationale:      | Due to the Chesapeake Bay Implementation Plan, the facility is required to be monitored on a frequency at least 2x/yr.                                                                                                                                 |  |  |  |  |
| Notes:                  |                            |                 |                                                                                                                                                                                                                                                        |  |  |  |  |

<sup>1</sup> The NPDES permit was limited by (a) anti-Backsliding, (b) Anti-Degradation, (c) SOP, (d) TBEL, (e) TMDL, (f) WQBEL, (g) WET, or (h) Other 2 Monitoring frequency based on flow rate of 0.625 MGD.

<sup>3</sup> Table 6-3 (Self Monitoring Requirements for Sewage Discharges) in Technical Guidance for the Development and Specification of Effluent Limitations and Other Permit Conditions in NPDES Permits) (Document # 362-0400-001) Revised 10/97

<sup>4</sup> Water Quality Antidegradation Implementation Guidance (Document # 391-0300-002)

<sup>5</sup> Phase 2 Watershed Implementation Plan Wastewater Supplement, Revised September 6, 2017

#### **6.1.3 Toxics**

Notes:

#### Summary of Proposed NPDES Parameter Details for Toxics

| Stewartstown WWTP; PA0036269 |                                                 |                 |                                                                                                                                                                                                                                                                                |  |  |  |  |
|------------------------------|-------------------------------------------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Parameter                    | Permit Limitation<br>Required by <sup>1</sup> : | Recommendation  |                                                                                                                                                                                                                                                                                |  |  |  |  |
|                              |                                                 | Monitoring:     | The monitoring frequency shall be 2x/yr as an 8-hr composite sample (Table 6-3).                                                                                                                                                                                               |  |  |  |  |
|                              |                                                 | Effluent Limit: | No effluent requirements.                                                                                                                                                                                                                                                      |  |  |  |  |
| Total Copper                 | WQBEL                                           | Rationale:      | Toxics Management Spreadsheet modeling results recommend monitoring. Additional samples should be collected to confirm this parameter during the proposed renewal. Pending favorable sampling results, future renewals may reduce or eliminate this parameter from monitoring. |  |  |  |  |
|                              | WQBEL                                           | Monitoring:     | The monitoring frequency shall be 2x/yr as an 8-hr composite sample (Table 6-3).                                                                                                                                                                                               |  |  |  |  |
|                              |                                                 | Effluent Limit: | No effluent requirements.                                                                                                                                                                                                                                                      |  |  |  |  |
| Total Lead                   |                                                 | Rationale:      | While Toxics Management Spreadsheet modeling results recommend an effluent limit, additional samples should be collected to confirm this parameter. Pending favorable sampling results, future renewals may reduce or eliminate this parameter from monitoring.                |  |  |  |  |
|                              |                                                 | Monitoring:     | The monitoring frequency shall be 2x/yr as an 8-hr composite sample (Table 6-3).                                                                                                                                                                                               |  |  |  |  |
|                              |                                                 | Effluent Limit: | No effluent requirements.                                                                                                                                                                                                                                                      |  |  |  |  |
| Total Zinc                   | WQBEL                                           | Rationale:      | Toxics Management Spreadsheet modeling results recommend monitoring. Additional samples should be collected to confirm this parameter during the proposed renewal. Pending favorable sampling results, future renewals may reduce or eliminate this parameter from monitoring. |  |  |  |  |
|                              |                                                 |                 |                                                                                                                                                                                                                                                                                |  |  |  |  |

<sup>1</sup> The NPDES permit was limited by (a) anti-Backsliding, (b) Anti-Degradation, (c) SOP, (d) TBEL, (e) TMDL, (f) WQBEL, (g) WET, or (h) Other 2 Monitoring frequency based on flow rate of 0.625 MGD.

#### 6.2 Summary of Changes From Existing Permit to Proposed Permit

A summary of how the proposed NPDES permit differs from the existing NPDES permit is summarized as follows.

|              | Changes in Permit Monitoring or Effluent Quality |                                                       |  |  |  |  |
|--------------|--------------------------------------------------|-------------------------------------------------------|--|--|--|--|
| Parameter    | Existing Permit                                  | Draft Permit                                          |  |  |  |  |
| E.Coli       |                                                  | Due to the EPA Triennial review, monitoring shall be  |  |  |  |  |
| E.COII       | No monitoring or effluent limits.                | required 1x/quarter                                   |  |  |  |  |
| Total Copper |                                                  | Monitoring shall be on a 2x/yr basis. Future renewals |  |  |  |  |
| Total Copper | No monitoring or effluent limits.                | may reduce or eliminate this parameter                |  |  |  |  |
| Total Lead   |                                                  | Monitoring shall be on a 2x/yr basis. Future renewals |  |  |  |  |
| Total Leau   | No monitoring or effluent limits.                | may reduce or eliminate this parameter                |  |  |  |  |
| Total Zinc   |                                                  | Monitoring shall be on a 2x/yr basis. Future renewals |  |  |  |  |
| TOTAL ZITIC  | Monitoring is required 1x/yr                     | may reduce or eliminate this parameter                |  |  |  |  |

<sup>3</sup> Table 6-3 (Self Monitoring Requirements for Sewage Discharges) in Technical Guidance for the Development and Specification of Effluent Limitations and Other Permit Conditions in NPDES Permits) (Document # 362-0400-001) Revised 10/97

<sup>4</sup> Water Quality Antidegradation Implementation Guidance (Document # 391-0300-002)

<sup>5</sup> Phase 2 Watershed Implementation Plan Wastewater Supplement, Revised September 6, 2017

#### 6.3.1 Summary of Proposed NPDES Effluent Limits

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

The proposed NPDES effluent limitations are summarized in the table below.

| PART  | A - EFFLUENT LIMITAT | TIONS, MONITORING, RECORDKEEPING AND REPORTING REQUIREMENTS                                    |
|-------|----------------------|------------------------------------------------------------------------------------------------|
| I. A. | For Outfall 001      | Latitude 39° 44′ 41.00" , Longitude 76° 36′ 17.00" , River Mile Index 51008 , Stream Code 3.43 |
|       | Receiving Waters:    | Ebaughs Creek (CWF, MF)                                                                        |
|       | Type of Effluent:    | Sewage Effluent                                                                                |

<sup>1.</sup> The permittee is authorized to discharge during the period from Permit Effective Date through Permit Expiration Date.

Based on the anticipated wastewater characteristics and flows described in the permit application and its supporting documents and/or amendments, the following effluent limitations and monitoring requirements apply (see also Additional Requirements and Footnotes).

|                                                                     |                          | Monitoring Re       | quirements               |                    |                   |                     |                          |                   |
|---------------------------------------------------------------------|--------------------------|---------------------|--------------------------|--------------------|-------------------|---------------------|--------------------------|-------------------|
| Parameter                                                           | Mass Units (lbs(day) (1) |                     |                          | Concentrati        | Minimum (2)       | Required            |                          |                   |
| r arameter                                                          | Average<br>Monthly       | Weekly<br>Average   | Instantaneous<br>Minimum | Average<br>Monthly | Weekly<br>Average | Instant.<br>Maximum | Measurement<br>Frequency | Sample<br>Type    |
| Flow (MGD)                                                          | Report                   | Report<br>Daily Max | xxx                      | XXX                | XXX               | XXX                 | Continuous               | Measured          |
| pH (S.U.)                                                           | XXX                      | XXX                 | 6.0                      | XXX                | XXX               | 9.0                 | 1/day                    | Grab              |
| Dissolved Oxygen                                                    | XXX                      | XXX                 | 5.0                      | XXX                | XXX               | xxx                 | 1/day                    | Grab              |
| Specific Conductance (a)<br>(µmhos/cm)<br>May 1 - Oct 31            | XXX                      | XXX                 | xxx                      | XXX                | Report            | XXX                 | 1/day                    | Grab              |
| Carbonaceous Biochemical<br>Oxygen Demand (CBOD5)<br>Nov 1 - Apr 30 | 130                      | 209                 | xxx                      | 25                 | 40                | 50                  | 1/week                   | 8-Hr<br>Composite |
| Carbonaceous Biochemical<br>Oxygen Demand (CBOD5)<br>May 1 - Oct 31 | 78                       | 115                 | xxx                      | 15                 | 22                | 30                  | 1/week                   | 8-Hr<br>Composite |
| Biochemical Oxygen Demand<br>(BOD5)<br>Raw Sewage Influent          | Report                   | Report<br>Daily Max | xxx                      | Report             | XXX               | XXX                 | 1/week                   | 8-Hr<br>Composite |
| Total Suspended Solids                                              | 156                      | 235                 | xxx                      | 30                 | 45                | 60                  | 1/week                   | 8-Hr<br>Composite |
| Total Suspended Solids<br>Raw Sewage Influent                       | Report                   | Report<br>Daily Max | xxx                      | Report             | XXX               | xxx                 | 1/week                   | 8-Hr<br>Composite |

Outfall 001, Continued (from Permit Effective Date through Permit Expiration Date)

|                                 |                          | Monitoring Re     | quirements               |                    |                   |                     |                          |                |
|---------------------------------|--------------------------|-------------------|--------------------------|--------------------|-------------------|---------------------|--------------------------|----------------|
| Parameter                       | Mass Units (lbs(day) (1) |                   |                          | Concentrati        | Minimum (2)       | Required            |                          |                |
| raiametei                       | Average<br>Monthly       | Weekly<br>Average | Instantaneous<br>Minimum | Average<br>Monthly | Weekly<br>Average | Instant.<br>Maximum | Measurement<br>Frequency | Sample<br>Type |
| Fecal Coliform (No./100 ml)     |                          |                   |                          | 2000               | _                 |                     |                          | •              |
| Oct 1 - Apr 30                  | XXX                      | XXX               | XXX                      | Geo Mean           | XXX               | 10000               | 1/week                   | Grab           |
| Fecal Coliform (No./100 ml)     |                          |                   |                          | 200                |                   |                     |                          |                |
| May 1 - Sep 30                  | XXX                      | XXX               | XXX                      | Geo Mean           | XXX               | 1000                | 1/week                   | Grab           |
| Ultraviolet light transmittance |                          |                   |                          |                    |                   |                     |                          |                |
| (%)                             | XXX                      | XXX               | Report                   | XXX                | XXX               | XXX                 | 1/day                    | Measured       |
| Ammonia-Nitrogen                |                          |                   |                          |                    |                   |                     |                          | 8-Hr           |
| Nov 1 - Apr 30                  | 44                       | XXX               | XXX                      | 8.5                | XXX               | 17                  | 2/week                   | Composite      |
| Ammonia-Nitrogen                |                          |                   |                          |                    |                   |                     |                          | 8-Hr           |
| May 1 - Oct 31                  | 17                       | XXX               | XXX                      | 3.5                | XXX               | 7                   | 2/week                   | Composite      |
| •                               |                          |                   |                          |                    |                   |                     |                          | 8-Hr           |
| Total Phosphorus                | 10.4                     | XXX               | XXX                      | 2.0                | XXX               | 4                   | 2/week                   | Composite      |
|                                 | Report                   |                   |                          | Report             |                   |                     |                          | 8-Hr           |
| Copper, Total                   | SEMI AVG                 | XXX               | XXX                      | Daily Max          | XXX               | XXX                 | 1/6 months               | Composite      |
|                                 | Report                   |                   |                          | Report             |                   |                     |                          | 8-Hr           |
| Lead, Total                     | SEMÍ AVG                 | XXX               | XXX                      | Daily Max          | XXX               | XXX                 | 1/6 months               | Composite      |
|                                 | Report                   |                   |                          | Report             |                   |                     |                          | 8-Hr           |
| Zinc, Total                     | SEMÍ AVG                 | XXX               | XXX                      | Daily Max          | XXX               | XXX                 | 1/6 months               | Composite      |

Samples taken in compliance with the monitoring requirements specified above shall be taken at the following location(s):

at Outfall 001

#### PART A - EFFLUENT LIMITATIONS, MONITORING, RECORDKEEPING AND REPORTING REQUIREMENTS 001 Latitude 39° 44′ 41.00" Longitude 76° 36′ 17.00" River Mile Index 51008 Stream Code I. B. For Outfall Receiving Waters: Ebaughs Creek (CWF, MF) Type of Effluent: Sewage Effluent

- 1. The permittee is authorized to discharge during the period from Permit Effective Date through Permit Expiration Date.
- 2. Based on the anticipated wastewater characteristics and flows described in the permit application and its supporting documents and/or amendments, the following effluent limitations and monitoring requirements apply (see also Additional Requirements and Footnotes).

|                      |            | Monitoring Re | quirements |                    |             |                     |                          |                   |
|----------------------|------------|---------------|------------|--------------------|-------------|---------------------|--------------------------|-------------------|
| Parameter            | Mass Units | (lbs(day) (1) |            | Concentrat         | Minimum (2) | Required            |                          |                   |
| i didiletei          | Monthly    | Annual        | Monthly    | Monthly<br>Average | Maximum     | Instant.<br>Maximum | Measurement<br>Frequency | Sample<br>Type    |
| AmmoniaN             | Report     | Report        | XXX        | Report             | XXX         | XXX                 | 2/week                   | 8-Hr<br>Composite |
| KjeldahlN            | Report     | XXX           | XXX        | Report             | XXX         | XXX                 | 2/week                   | 8-Hr<br>Composite |
| Nitrate-Nitrite as N | Report     | XXX           | XXX        | Report             | XXX         | XXX                 | 2/week                   | 8-Hr<br>Composite |
| Total Nitrogen       | Report     | Report        | XXX        | Report             | XXX         | XXX                 | 1/month                  | Calculation       |
| Total Phosphorus     | Report     | Report        | XXX        | Report             | XXX         | XXX                 | 2/week                   | 8-Hr<br>Composite |
| Net Total Nitrogen   | Report     | 11415         | XXX        | XXX                | XXX         | XXX                 | 1/month                  | Calculation       |
| Net Total Phosphorus | Report     | 1522          | XXX        | XXX                | XXX         | XXX                 | 1/month                  | Calculation       |

Samples taken in compliance with the monitoring requirements specified above shall be taken at the following location(s):

at Outfall 001

#### Footnotes:

<sup>(1)</sup> See Part C for Chesapeake Bay Requirements.
(2) This is the minimum number of sampling events required. Permittees are encouraged, and it may be advantageous in demonstrating compliance, to perform more than the minimum number of sampling events required.

#### 6.3.2 Summary of Proposed Permit Part A and C Conditions

The subject facility has the following Part A conditions.

• DEP will evaluate conductance levels and may require WET testing with the submission of the next NPDES permit renewal application if conductance levels exceed 1,200 µmhos/cm.

The subject facility has the following Part C conditions.

- SBR Batch Discharge Condition
- Hauled-in Waste Restrictions
- Chesapeake Bay Nutrient Definitions
- Solids Management for Non-Lagoon Treatment Systems
- The permittee shall not accept landfill leachate when the stream flow as measured at USGS Station No 01580000 on Deer Creek (Rocks, MD) is less than or equal to 21.3 cfs unless the level of leachate in the York County Sanitary Landfill (YCSL) storage pond exceeds an elevation of 905 ft above mean sea level (msl). The permittee shall report the daily volume and specific conductance of leachate received at the plant and YCSL leachate elevations on DMR Supplemental Reporting forms and submit the data on a monthly basis as an attachment to the DMR.

| Tools and References Used to Develop Permit                                                                                                                                                                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| T                                                                                                                                                                                                                  |
| WQM for Windows Model (see Attachment )                                                                                                                                                                            |
| Toxics Management Spreadsheet (see Attachment )                                                                                                                                                                    |
| TRC Model Spreadsheet (see Attachment )                                                                                                                                                                            |
| Temperature Model Spreadsheet (see Attachment )                                                                                                                                                                    |
| Water Quality Toxics Management Strategy, 361-0100-003, 4/06.                                                                                                                                                      |
| Technical Guidance for the Development and Specification of Effluent Limitations, 362-0400-001, 10/97.                                                                                                             |
| Policy for Permitting Surface Water Diversions, 362-2000-003, 3/98.                                                                                                                                                |
| Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 362-2000-008, 11/96.                                                                                                                  |
| Technology-Based Control Requirements for Water Treatment Plant Wastes, 362-2183-003, 10/97.                                                                                                                       |
| Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 362-2183-004, 12/97.                                                                                                      |
| Pennsylvania CSO Policy, 385-2000-011, 9/08.                                                                                                                                                                       |
| Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03.                                                                                                                                        |
| Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 391-2000-002, 4/97.                                                                                           |
| Determining Water Quality-Based Effluent Limits, 391-2000-003, 12/97.                                                                                                                                              |
| Implementation Guidance Design Conditions, 391-2000-006, 9/97.                                                                                                                                                     |
| Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen, Version 1.0, 391-2000-007, 6/2004.                                                    |
| Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 391-2000-008, 10/1997.                                                                             |
| Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments, 391-2000-010, 3/99.                                                                   |
| Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 391-2000-011, 5/2004.                                                              |
| Implementation Guidance for Section 93.7 Ammonia Criteria, 391-2000-013, 11/97.                                                                                                                                    |
| Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 391-2000-014, 4/2008.                                             |
| Implementation Guidance Total Residual Chlorine (TRC) Regulation, 391-2000-015, 11/1994.                                                                                                                           |
| Implementation Guidance for Temperature Criteria, 391-2000-017, 4/09.                                                                                                                                              |
| Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 391-2000-018, 10/97.                                                                                                       |
| Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 391-2000-019, 10/97.       |
| Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 391-2000-021, 3/99.                                                                               |
| Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 391-2000-022, 3/1999. |
| Design Stream Flows, 391-2000-023, 9/98.                                                                                                                                                                           |
| Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 391-2000-024, 10/98.                                     |
| Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 391-3200-013, 6/97.                                                                                                                         |
| Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07.                                                                                                                   |
| SOP: New and Reissuance Sewage Individual NPDES Permit Applications, revised October 11, 2013                                                                                                                      |
| Other:                                                                                                                                                                                                             |

# Attachment A Stream Stats/Gauge Data

#### 14 Selected Streamflow Statistics for Streamgage Locations in and near Pennsylvania

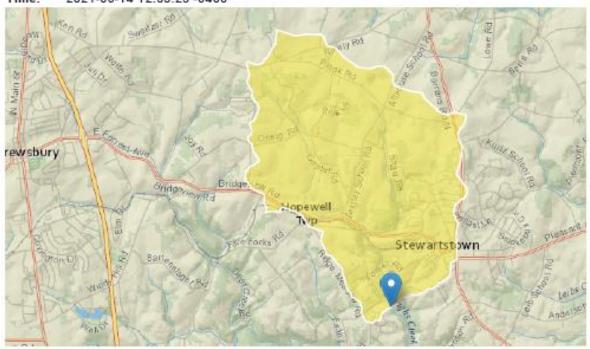
Table 1. List of U.S. Geological Survey streamgage locations in and near Pennsylvania with updated streamflow statistics.—Continued [Latitude and Longitude in decimal degrees; mi², square miles]

| Streamgage<br>number | Streamgage name                                                 | Latitude | Longitude          | Drainage<br>area<br>(mi²) | Regulated <sup>1</sup> |
|----------------------|-----------------------------------------------------------------|----------|--------------------|---------------------------|------------------------|
| 01561000             | Brush Creek at Gapsville, Pa.                                   | 39.956   | -78.254            | 36.8                      | N                      |
| 01562000             | Raystown Branch Juniata River at Saxton, Pa.                    | 40.216   | -78.265            | 756                       | N                      |
| 01562500             | Great Trough Creek near Marklesburg, Pa.                        | 40.350   | -78.130            | 84.6                      | N                      |
| 01563200             | Raystown Branch Juniata River below Rays Dam nr Huntingdon, Pa. | 40.429   | -77.991            | 960                       | Y                      |
| 01563500             | Juniata River at Mapleton Depot, Pa.                            | 40.392   | -77.935            | 2,030                     | Y                      |
| 01564500             | Aughwick Creek near Three Springs, Pa.                          | 40.213   | -77.925            | 205                       | N                      |
| 01565000             | Kishacoquillas Creek at Reedsville, Pa.                         | 40.655   | -77.583            | 164                       | N                      |
| 01565700             | Little Lost Creek at Oakland Mills, Pa.                         | 40.605   | -77.311            | 6.52                      | N                      |
| 01566000             | Tuscarora Creek near Port Royal, Pa.                            | 40.515   | -77.419            | 214                       | N                      |
| 01566500             | Cocolamus Creek near Millerstown, Pa.                           | 40.566   | -77.118            | 57.2                      | N                      |
| 01567000             | Juniata River at Newport, Pa.                                   | 40.478   | -77.129            | 3,354                     | Y                      |
| 01567500             | Bixler Run near Loysville, Pa.                                  | 40.371   | -77.402            | 15.0                      | N                      |
| 01568000             | Sherman Creek at Shermans Dale, Pa.                             | 40.323   | -77.169            | 207                       | N                      |
| 01568500             | Clark Creek near Carsonville, Pa.                               | 40.460   | -76.751            | 22.5                      | LF                     |
| 01569000             | Stony Creek nr Dauphin, Pa.                                     | 40.380   | -76.907            | 33.2                      | N                      |
| 01569800             | Letort Spring Run near Carlisle, Pa.                            | 40.235   | -77.139            | 21.6                      | N                      |
| 01570000             | Conodoguinet Creek near Hogestown, Pa.                          | 40.252   | -77.021            | 470                       | LF                     |
| 01570500             | Susquehanna River at Harrisburg, Pa.                            | 40.255   | -76.886            | 24,100                    | Y                      |
| 01570300             | Paxton Creek near Penbrook, Pa.                                 | 40.308   | -76.850            | 11.2                      | N                      |
| 01571500             | Yellow Breeches Creek near Camp Hill. Pa.                       | 40.225   | -76.898            | 213                       | N                      |
| 01572000             | Lower Little Swatara Creek at Pine Grove, Pa.                   | 40.538   | -76.377            | 34.3                      | N                      |
| 01572000             | Swatara Creek near Pine Grove, Pa.                              | 40.533   | -76.402            | 116                       | N                      |
| 01572025             | Swatara Creek near Inwood, Pa.                                  | 40.333   | -76.531            | 167                       | N                      |
| 01572190             |                                                                 | 40.403   |                    |                           |                        |
| 01573000             | Swatara Creek at Harper Tavern, Pa.                             | 40.403   | -76.577<br>-76.483 | 337<br>7.87               | N<br>N                 |
|                      | Beck Creek near Cleona, Pa.                                     |          |                    |                           |                        |
| 01573160             | Quittapahilla Creek near Bellegrove, Pa.                        | 40.343   | -76.562            | 74.2                      | N                      |
| 01573500             | Manada Creek at Manada Gap, Pa.                                 | 40.397   | -76.709            | 13.5                      | N                      |
| 01573560             | Swatara Creek near Hershey, Pa.                                 | 40.298   | -76.668            | 483                       | N                      |
| 01574000             | West Conewago Creek near Manchester, Pa.                        | 40.082   | -76.720            | 510                       | N                      |
| 01574500             | Codorus Creek at Spring Grove, Pa.                              | 39.879   | -76.853            | 75.5                      | Y                      |
| 01575000             | South Branch Codorus Creek near York, Pa.                       | 39.921   | -76.749            | 117                       | Y                      |
| 01575500             | Codorus Creek near York, Pa.                                    | 39.946   | -76.755            | 222                       | Y                      |
| 01576000             | Susquehanna River at Marietta, Pa.                              | 40.055   | -76.531            | 25,990                    | Y                      |
| 01576085             | Little Conestoga Creek near Churchtown, Pa.                     | 40.145   | -75.989            | 5.82                      | N                      |
| 01576500             | Conestoga River at Lancaster, Pa.                               | 40.050   | -76.277            | 324                       | N                      |
| 01576754             | Conestoga River at Conestoga, Pa.                               | 39.946   | -76.368            | 470                       | N                      |
| 01578310             | Susquehanna River at Conowingo, Md.                             | 39.658   | -76.174            | 27,100                    | Y                      |
| 01578400             | Bowery Run near Quarryville, Pa.                                | 39.895   | -76.114            | 5.98                      | N                      |
| 01580000             | Deer Creek at Rocks, Md.                                        | 39.630   | -76.403            | 94.4                      | N                      |
| 01581500             | Bynum Run at Bel Air, Md.                                       | 39.541   | -76.330            | 8.52                      | N                      |
| 01581700             | Winters Run near Benson, Md.                                    | 39.520   | -76.373            | 34.8                      | N                      |
| 01582000             | Little Falls at Blue Mount, Md.                                 | 39.604   | -76.620            | 52.9                      | N                      |
| 01582500             | Gunpowder Falls at Glencoe, Md.                                 | 39.550   | -76.636            | 160                       | Y                      |
| 01583000             | Slade Run near Glyndon, Md.                                     | 39.495   | -76.795            | 2.09                      | N                      |
| 01583100             | Piney Run at Dover, Md.                                         | 39.521   | -76.767            | 12.3                      | N                      |

 Table 2.
 Selected low-flow statistics for streamgage locations in and near Pennsylvania.—Continued

 [ft³/s; cubic feet per second; —, statistic not computed; <, less than]</th>

| Streamgage<br>number | Period of record<br>used in<br>analysis <sup>1</sup> | Number of<br>years used in<br>analysis | 1-day,<br>10-year<br>(ft³/s) | 7-day,<br>10-year<br>(ft³/s) | 7-day,<br>2-year<br>(ft³/s) | 30-day,<br>10-year<br>(ft½s) | 30-day,<br>2-year<br>(ft³/s) | 90-day,<br>10-year<br>(ft³/s) |
|----------------------|------------------------------------------------------|----------------------------------------|------------------------------|------------------------------|-----------------------------|------------------------------|------------------------------|-------------------------------|
| 01565000             | 1941-2008                                            | 37                                     | 17.6                         | 18.6                         | 28.6                        | 20.3                         | 32.4                         | 24.4                          |
| 01565700             | 1965-1981                                            | 17                                     | .4                           | .4                           | .9                          | .5                           | 1.1                          | .8                            |
| 01566000             | 1913-2008                                            | 52                                     | 4.3                          | 7.9                          | 18.8                        | 12.4                         | 25.6                         | 19.2                          |
| 01566500             | 1932-1958                                            | 27                                     | 1.7                          | 2.4                          | 4.0                         | 3.2                          | 5.7                          | 4.9                           |
| 01567000             | 21974-2008                                           | 35                                     | 504                          | 534                          | 725                         | 589                          | 857                          | 727                           |
| 01567000             | 31901-1972                                           | 72                                     | 311                          | 367                          | 571                         | 439                          | 704                          | 547                           |
| 01567500             | 1955-2008                                            | 54                                     | 2.0                          | 2.2                          | 3.3                         | 2.6                          | 3.8                          | 3.1                           |
| 01568000             | 1931-2008                                            | 78                                     | 12.7                         | 15.5                         | 25.5                        | 19.2                         | 32.0                         | 26.0                          |
| 01568500             | 21943-1997                                           | 55                                     | 1.8                          | 2.3                          | 4.3                         | 2.7                          | 5.0                          | 3.1                           |
| 01569000             | 1939–1974                                            | 14                                     | 2.6                          | 4.0                          | 7.4                         | 5.1                          | 9.4                          | 7.8                           |
| 01569800             | 1978-2008                                            | 31                                     | 15.9                         | 17.0                         | 24.4                        | 18.4                         | 26.1                         | 20.3                          |
| 01570000             | 31913-1969                                           | 35                                     |                              | 63.1                         | 110                         | 76.1                         | 124                          | 95.3                          |
| 01570000             | <sup>2</sup> 1971–2008                               | 38                                     | 63.1                         | 69.3                         | 109                         | 78.3                         | 125                          | 97.8                          |
| 01570500             | 31901-1972                                           | 72                                     | 2,310                        | 2,440                        | 4,000                       | 2,830                        | 4,950                        | 3,850                         |
| 01570500             | 21974-2008                                           | 35                                     | 3,020                        | 3,200                        | 5,180                       | 3,690                        | 6,490                        | 4,960                         |
| 01571000             | 1941–1995                                            | 16                                     | .1                           | .2                           | .6                          | 3,030                        | 1.2                          | -,500                         |
| 01571500             | 1911–2008                                            | 62                                     | 81.6                         | 86.8                         | 115                         | 94.0                         | 124                          | 105                           |
| 01572000             | 1921–1984                                            | 14                                     | 2.1                          | 2.3                          | 4.8                         | 3.0                          | 6.5                          | 4.5                           |
| 01572005             | 1990–2008                                            | 17                                     | 15.2                         | 16.4                         |                             | 18.5                         |                              |                               |
| 01572025             | 1990–2008                                            | 17                                     | 19.1                         | 20.5                         | 26.7<br>36.2                | 23.9                         | 34.6<br>45.8                 | 27.7<br>35.3                  |
|                      |                                                      | 89                                     | 18.0                         |                              | 52.0                        |                              |                              |                               |
| 01573000<br>01573086 | 1920–2008<br>1965–1981                               | 17                                     |                              | 22.0                         |                             | 30.8<br>.8                   | 69.2<br>3.3                  | 50.9                          |
|                      |                                                      |                                        | .5                           |                              | 2.6                         |                              |                              | 1.1                           |
| 01573160             | 1977–1994                                            | 18                                     | 26.9                         | 29.6                         | 46.4                        | 33.6                         | 51.9                         | 39.5                          |
| 01573500             | 1939–1958                                            | 20                                     | 1.3                          | 1.4                          | 2.5                         | 1.8                          | 3.2                          | 2.6                           |
| 01573560             | 1977–2008                                            | 30                                     | 50.3                         | 62.0                         | 104                         | 76.9                         | 131                          | 108                           |
| 01574000             | 1930–2008                                            | 79                                     | 8.0                          | 11.1                         | 32.0                        | 17.7                         | 47.0                         | 33.9                          |
| 01574500             | <sup>2</sup> 1968–2008                               | 41                                     | 14.2                         | 24.0                         | 35.9                        | 29.4                         | 42.0                         | 33.3                          |
| 01574500             | 31930-1966                                           | 34                                     | 2.3                          | 7.1                          | 11.5                        | 9.3                          | 14.8                         | 12.7                          |
| 01575000             | <sup>2</sup> 1973–1995                               | 23                                     | .7                           | 1.4                          | 6.7                         | 3.2                          | 12.0                         | 9.3                           |
| 01575000             | 31929-1971                                           | 43                                     | .1                           | .6                           | 10.3                        | 2.3                          | 15.0                         | 6.1                           |
| 01575500             | 21948-1996                                           | 49                                     | 12.1                         | 18.7                         | 41.3                        | 23.9                         | 50.0                         | 33.8                          |
| 01576000             | 31933-1972                                           | 40                                     | 2,100                        | 2,420                        | 4,160                       | 2,960                        | 5,130                        | 4,100                         |
| 01576000             | <sup>2</sup> 1974–2008                               | 35                                     | 2,990                        | 3,270                        | 5,680                       | 3,980                        | 7,180                        | 5,540                         |
| 01576085             | 1984-1995                                            | 12                                     | .4                           | .5                           | .8                          | .7                           | 1.2                          | 1.2                           |
| 01576500             | 1931-2008                                            | 78                                     | 27.2                         | 38.6                         | 79.4                        | 49.1                         | 97.3                         | 66.1                          |
| 01576754             | 1986-2008                                            | 23                                     | 74.2                         | 84.9                         | 151                         | 106                          | 189                          | 147                           |
| 401578310            | 1969-2008                                            | 40                                     | 549                          | 2,820                        | 5,650                       | 4,190                        | 7,380                        | 6,140                         |
| 01578400             | 1964-1981                                            | 18                                     | 1.4                          | 1.5                          | 2.7                         | 1.9                          | 3.2                          | 2.5                           |
| 401580000            | 1928-2008                                            | 81                                     | 19.7                         | 22.8                         | 48.1                        | 28.1                         | 51.8                         | 35.4                          |
| 401581500            | 1946-2008                                            | 28                                     | .2                           | .3                           | 1.2                         | .8                           | 1.7                          | 1.5                           |
| 401581700            | 1969-2008                                            | 40                                     | 4.7                          | 5.5                          | 17.5                        | 8.1                          | 18.3                         | 12.0                          |
| 401582000            | 1946-2008                                            | 63                                     | 11.3                         | 12.5                         | 25.0                        | 15.5                         | 28.0                         | 20.3                          |
| 401582500            | 1979-2008                                            | 27                                     | 41.2                         | 43.9                         | 78.8                        | 53.8                         | 90.6                         | 74.1                          |
| 401583000            | 1949-1981                                            | 33                                     | .3                           | .3                           | .7                          | .3                           | 1.0                          | .6                            |
| 401583100            | 1984-2008                                            | 15                                     | 2.1                          | 2.4                          | 5.5                         | 3.2                          | 6.0                          | 4.2                           |


# StreamStats Report

Region ID: PA

Workspace ID: PA20210614165306069000

Clicked Point (Latitude, Longitude): 39.74455, -76.60490

Time: 2021-06-14 12:53:23 -0400



Stewartstown WWTP PA0036269 Modeling Point #1 June 2021

| Basin Characteristics |                                            |        |              |
|-----------------------|--------------------------------------------|--------|--------------|
| Parameter Code        | Parameter Description                      | Value  | Unit         |
| DRNAREA               | Area that drains to a point on a stream    | 4.79   | square miles |
| BSLOPD                | Mean basin slope measured in degrees       | 4.7632 | degrees      |
| ROCKDEP               | Depth to rock                              | 5      | feet         |
| URBAN                 | Percentage of basin with urban development | 5.5198 | percent      |

https://streamstats.usgs.gov/ss/

| Low-Flow Statistics F | Parameters [Low Flow Region 1] |        |              |           |           |
|-----------------------|--------------------------------|--------|--------------|-----------|-----------|
| Parameter Code        | Parameter Name                 | Value  | Units        | Min Limit | Max Limit |
| DRNAREA               | Drainage Area                  | 4.79   | square miles | 4.78      | 1150      |
| BSLOPD                | Mean Basin Slope degrees       | 4.7632 | degrees      | 1.7       | 6.4       |
| ROCKDEP               | Depth to Rock                  | 5      | feet         | 4.13      | 5.21      |
| URBAN                 | Percent Urban                  | 5.5198 | percent      | 0         | 89        |

Low-Flow Statistics Flow Report [Low Flow Region 1]

PII: Prediction Interval-Lower, PIu: Prediction Interval-Upper, SEp: Standard Error of Prediction, SE: Standard Error (other -- see report)

| Statistic               | Value | Unit   | SE | SEp |
|-------------------------|-------|--------|----|-----|
| 7 Day 2 Year Low Flow   | 1.35  | ft^3/s | 46 | 46  |
| 30 Day 2 Year Low Flow  | 1.69  | ft*3/s | 38 | 38  |
| 7 Day 10 Year Low Flow  | 0.657 | ft^3/s | 51 | 51  |
| 30 Day 10 Year Low Flow | 0.846 | ft^3/s | 46 | 46  |
| 90 Day 10 Year Low Flow | 1.26  | ft^3/s | 41 | 41  |

Low-Flow Statistics Citations

Stuckey, M.H., 2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006-5130, 84 p. (http://pubs.usgs.gov/sir/2006/5130/)

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the functionality of the software and related material nor shall the fact of release constitute any such warranty. Furthermore, the software is released on condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized use.

USGS Product Names Disclaimer: Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

https://streamstats.usgs.gov/ss/ 2/3

# StreamStats Report

Region ID: MD

Workspace ID: MD20210614165610557000

Clicked Point (Latitude, Longitude): 39.70752, -76.58992

Time: 2021-06-14 12:56:29 -0400



Stewartstown WWTP PA0036269 Modeling Point #2 June 2021

| Basin Characteristics |                                         |       |              |
|-----------------------|-----------------------------------------|-------|--------------|
| Parameter Code        | Parameter Description                   | Value | Unit         |
| DRNAREA               | Area that drains to a point on a stream | 24.3  | square miles |

| Low-Flow Statistics Parameters [Low Flow Eastern Piedmont Subregion C] |                |       |              |           |           |  |  |  |
|------------------------------------------------------------------------|----------------|-------|--------------|-----------|-----------|--|--|--|
| Parameter Code                                                         | Parameter Name | Value | Units        | Min Limit | Max Limit |  |  |  |
| DRNAREA                                                                | Drainage Area  | 24.3  | square miles | 2.09      | 133       |  |  |  |

https://streamstats.usgs.gov/ss/

Low-Flow Statistics Flow Report [Low Flow Eastern Piedmont Subregion C]

PII: Prediction Interval-Lower, Plu: Prediction Interval-Upper, SEp: Standard Error of Prediction, SE: Standard Error (other -- see report)

| Statistic               | Value | Unit   | SE   | SEp  |
|-------------------------|-------|--------|------|------|
| 7 Day 2 Year Low Flow   | 10.5  | ft^3/s | 12   | 12   |
| 7 Day 10 Year Low Flow  | 5.34  | ft^3/s | 20.1 | 20.1 |
| 7 Day 20 Year Low Flow  | 4.28  | ft^3/s | 25.1 | 25.1 |
| 14 Day 2 Year Low Flow  | 11.1  | ft^3/s | 10   | 10   |
| 14 Day 10 Year Low Flow | 5.75  | ft^3/s | 19.1 | 19.1 |
| 14 Day 20 Year Low Flow | 4.63  | ft^3/s | 24.1 | 24.1 |
| 30 Day 2 Year Low Flow  | 11.8  | ft^3/s | 8.9  | 8.9  |
| 30 Day 10 Year Low Flow | 6.47  | ft^3/s | 18.1 | 18.1 |
| 30 Day 20 Year Low Flow | 5.35  | ft^3/s | 23.1 | 23.1 |

Low-Flow Statistics Citations

Carpenter, D.H., and Hayes, D.C.,1996, Low-flow characteristics of streams in Maryland and Delaware: U.S. Geological Survey Water-Resources Investigations Report 94-4020, 113 p., 10 plates (https://pubs.er.usgs.gov/publication/wri944020)

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the functionality of the software and related material nor shall the fact of release constitute any such warranty. Furthermore, the software is released on condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized use.

USGS Product Names Disclaimer: Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Application Version: 4.5.3

StreamStats Services Version: 1.2.22

NSS Services Version: 2.1.2

# Attachment B

WQM 7.0 Modeling Output Values
Toxics Management Spreadsheet Output
Values

## WQM 7.0 Effluent Limits

|       | SWP Basin Str<br>17A | 5 1008           |                       | Stream Name UNNAME D | 2                                    |                                  |                                  |
|-------|----------------------|------------------|-----------------------|----------------------|--------------------------------------|----------------------------------|----------------------------------|
| RMI   | Name                 | Permit<br>Number | Disc<br>Flow<br>(mgd) | Parameter            | Effl. Limit<br>30-day Ave.<br>(mg/L) | Effl. Limit<br>Maximum<br>(mg/L) | Effl. Limit<br>Minimum<br>(mg/L) |
| 3.430 | Stewartstown         | PA0036269        | 0.625                 | CB OD5               | 15                                   |                                  |                                  |
|       |                      |                  |                       | NH3-N                | 3.5                                  | 7                                |                                  |
|       |                      |                  |                       | Dissolved Oxygen     |                                      |                                  | 5                                |
|       |                      |                  |                       |                      |                                      |                                  |                                  |

# WQM 7.0 Wasteload Allocations

| SWP Basin | Stream Code | Stream Name |
|-----------|-------------|-------------|
| 17A       | 51008       | UNNAMED     |

| RMI    | Discharge Name   | Baseline<br>Criterion<br>(mg/L)        | Baseline<br>WLA<br>(mg/L) | Multiple<br>Criterion<br>(mg/L) | Multiple<br>WLA<br>(mg/L) | Critical<br>Reach | Percent<br>Reduction |
|--------|------------------|----------------------------------------|---------------------------|---------------------------------|---------------------------|-------------------|----------------------|
| 3,430  | Stewartstown     | 8.1                                    | 7                         | 8.1                             | 7                         | . 0               | 0                    |
|        |                  |                                        |                           |                                 |                           |                   |                      |
| H3-N C | hronic Allocati  | ons                                    |                           |                                 |                           |                   |                      |
| H3-N C | Chronic Allocati | ons<br>Baseline<br>Criterion<br>(mg/L) | Baseline<br>WLA<br>(mg/L) | Multiple<br>Criterion<br>(mg/L) | Multiple<br>WLA<br>(mg/L) | Critical<br>Reach | Percent<br>Reduction |

#### Dissolved Oxygen Allocations

|       |                | CBC                |                    | NH                 | 3 <u>-N</u> | Dissolver          | d Oxygen | Parameter 1 | Percent   |
|-------|----------------|--------------------|--------------------|--------------------|-------------|--------------------|----------|-------------|-----------|
| RMI   | Discharge Name | Baseline<br>(mg/L) | Multiple<br>(mg/L) | Baseline<br>(mg/L) | Multiple    | Baseline<br>(mg/L) | Multiple | Reach       | Reduction |
| 3,435 | Stewartstown   | 15                 | 15                 | 3.5                | 3.5         | 5                  | 5        | 0           | 0         |

### WQM 7.0 D.O.Simulation

| SWP Basin<br>17A                                                                                     | Stream Code<br>51008                                                                     |                                                |                              | Stream Name<br>UNNAMED                                                                                             |                                        |
|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|------------------------------------------------|------------------------------|--------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| RMI<br>3.430<br>Reach Width (ft)<br>15.930<br>Reach CBOD5 (mg/L)<br>7.92<br>Reach DO (mg/L)<br>6.768 | Total Discharge<br>0.62<br>Reach De<br>0.56<br>Reach Kc (<br>1.11<br>Reach Kr (<br>20.93 | 5<br>pth (ft)<br>1<br>(1/days)<br>4<br>1/days) |                              | lysis Temperature (*<br>22.276<br>Reach WDRatio<br>28.417<br>each NH3-N (mg/L)<br>1.59<br>Kr Equation<br>Tsivoglou | 7.000<br>Reach Velocity (fps)<br>0.238 |
| Reach Travel Time (days<br>0.881                                                                     | TravTime<br>(days)                                                                       |                                                | NH3-N<br>(mg/L)              | D.O.<br>(mg/L)                                                                                                     |                                        |
|                                                                                                      | 0.088<br>0.176<br>0.264                                                                  | 6.37<br>5.71                                   | 1.48<br>1.38<br>1.28         | 7.68<br>7.90<br>7.91                                                                                               |                                        |
|                                                                                                      | 0.353<br>0.441<br>0.529<br>0.617                                                         | 4.59<br>4.12                                   | 1.19<br>1.10<br>1.03<br>0.95 | 7.91<br>7.91<br>7.91<br>7.91                                                                                       |                                        |
|                                                                                                      | 0.705<br>0.793<br>0.881                                                                  | 3.31                                           | 0.88<br>0.82<br>0.76         | 7.91<br>7.91<br>7.91                                                                                               |                                        |

Tuesday, June 15, 2021 Version 1.0b Page 1 of 1

# WQM 7.0 Modeling Specifications

| Parameters         | Both   | Use Inputted Q1-10 and Q30-10 Flows | • |
|--------------------|--------|-------------------------------------|---|
| WLA Method         | EMPR   | Use Inputted W/D Ratio              |   |
| Q1-10/Q7-10 Ratio  | 0.86   | Use Inputted Reach Travel Times     |   |
| Q30-10/Q7-10 Ratio | 1.23   | Temperature Adjust Kr               | V |
| D.O. Saturation    | 90.00% | Use Balanced Technology             | 7 |
| D.O. Goal          | 5      |                                     |   |

Tuesday, June 15, 2021 Version 1.0b Page 1 of 1

### WQM 7.0 Hydrodynamic Outputs

|       | SW            | P Basin     | Strea                 | m Code                   |                |          |       | Stream       | Name     |                       |                  |                |  |  |  |
|-------|---------------|-------------|-----------------------|--------------------------|----------------|----------|-------|--------------|----------|-----------------------|------------------|----------------|--|--|--|
|       | 17A           |             | 5                     | 51008                    |                | UNNAME D |       |              |          |                       |                  |                |  |  |  |
| RMI   | Stream<br>Row | PWS<br>With | Net<br>Stream<br>Flow | Disc<br>Analysis<br>Flow | Reach<br>Slope | Depth    | Width | W/D<br>Ratio | Velocity | Reach<br>Trav<br>Time | Analysis<br>Temp | Analysis<br>pH |  |  |  |
|       | (cfs)         | (cfs)       | (cfs)                 | (cfs)                    | (ft/ft)        | (ft)     | (ft)  |              | (fps)    | (days)                | (°C)             |                |  |  |  |
| Q7-1  | 0 Flow        |             |                       |                          |                |          |       |              |          |                       |                  |                |  |  |  |
| 3.430 | 1.16          | 0.00        | 1.16                  | .9869                    | 0.00878        | .561     | 15.93 | 28.42        | 0.24     | 0.881                 | 22.28            | 7.00           |  |  |  |
| Q1-1  | 0 Flow        |             |                       |                          |                |          |       |              |          |                       |                  |                |  |  |  |
| 3.430 | 0.99          | 0.00        | 0.99                  | .9889                    | 0.00878        | NA.      | NA    | NA           | 0.23     | 0.922                 | 22.46            | 7.00           |  |  |  |
| Q30-  | 10 Flow       | ,           |                       |                          |                |          |       |              |          |                       |                  |                |  |  |  |
| 3.430 | 1.42          | 0.00        | 1.42                  | .9869                    | 0.00878        | NA.      | NA.   | NA           | 0.25     | 0.825                 | 22.02            | 7.00           |  |  |  |

Tuesday, June 15, 2021 Version 1.0b Page 1 of 1

### Input Data WQM 7.0

|                          |        | SWP Stream<br>Basin Code |                | Stream Name             |                 | RMI         |                                 | wation<br>(ft) | Drainago<br>Area<br>(sq mi) |                  | ope<br>Vft)          | PWS<br>Vithdrawal<br>(mgd) | Apply<br>FC |   |
|--------------------------|--------|--------------------------|----------------|-------------------------|-----------------|-------------|---------------------------------|----------------|-----------------------------|------------------|----------------------|----------------------------|-------------|---|
|                          | 17A    | 510                      | 008 UNNA       | MED                     |                 |             | 3.4                             | 30             | 685.00                      | 4.               | 79 0.0               | 0000                       | 0.00        | ☑ |
|                          |        |                          |                |                         | S               | tream Da    | ta                              |                |                             |                  |                      |                            |             |   |
| Design<br>Cond.          | LFY    | Trib<br>Flow             | Stream<br>Flow | Rch<br>Trav<br>Time     | Rch<br>Velocity | WD<br>Ratio | Rch<br>Width                    | Rch<br>Depth   | Ten                         | Tributary<br>p p | Н                    | Temp                       | ream<br>pH  |   |
| COIM.                    | (cfsm) | (ds)                     | (cfs)          | (days)                  | (fps)           |             | (ft)                            | (ft)           | (°C                         | )                |                      | (°C)                       |             |   |
| Q7-10<br>Q1-10<br>Q30-10 | 0.242  | 0.00<br>0.00<br>0.00     | 0.00           | 0.000<br>0.000<br>0.000 | 0.000           | 0.0         | 0.00                            | 0.0            | 00 2                        | 0.00             | 7.00                 | 0.0                        | 0.00        | ) |
|                          |        | Disc                     |                |                         |                 |             | Data                            |                |                             |                  |                      |                            | $\neg$      |   |
|                          |        |                          | Name           | Per                     | mit Numbe       | Disc        | Permiti<br>Disc<br>Flow<br>(mgd | Dis<br>Flo     | ic Res<br>w Fa              | erve ctor        | Disc<br>Temp<br>(°C) | Disc<br>pH                 |             |   |
|                          |        | Stewa                    | artstown       | PA                      | 0036269         | 0.625       | 0 0.62                          | 50 0.6         | 250                         | 0.000            | 25.00                | 7.                         | 00          |   |
|                          |        |                          |                |                         | P               | arame ter   | Data                            |                |                             |                  |                      |                            |             |   |
|                          |        |                          |                | Paramete                | r Nama          |             |                                 | Trib<br>Canc   | Stream<br>Conc              | Fate<br>Coef     |                      |                            |             |   |
|                          |        |                          |                | raramete                | rivante         | (m          | ng/L) (i                        | mg/L)          | (mg/L)                      | (1/days)         | )                    |                            |             |   |
|                          |        |                          | CBOD5          |                         |                 |             | 15.00                           | 2.00           | 0.00                        | 1.50             | 0                    |                            |             |   |
|                          |        |                          | Dissolved      | Oxygen                  |                 |             | 5.00                            | 8.24           | 0.00                        | 0.00             | 0                    |                            |             |   |
|                          |        |                          | NH3-N          |                         |                 |             | 3.50                            | 0.00           | 0.00                        | 0.70             | 0                    |                            |             |   |

### Input Data WQM 7.0

|                          | SWP<br>Basin |                      |                      | Str                     | eam Name        |             | RM                             | l Be         | evation<br>(ft) | Drainage<br>Area<br>(sq mi) | Slop<br>(ft/ft     | With           | VS<br>drawal<br>gd) | Apply<br>FC  |
|--------------------------|--------------|----------------------|----------------------|-------------------------|-----------------|-------------|--------------------------------|--------------|-----------------|-----------------------------|--------------------|----------------|---------------------|--------------|
|                          | 17A          | 510                  | 008 UNNA             | MED                     |                 |             | 0.0                            | 00           | 526.00          | 24.3                        | 0.00               | 000            | 0.00                | $\mathbf{V}$ |
|                          |              |                      |                      |                         | Si              | ream Da     | ta                             |              |                 |                             |                    |                |                     |              |
| Design<br>Cond.          | LFY          | Trib<br>Flow         | Stream<br>Flow       | Rch<br>Trav<br>Time     | Rch<br>Velocity | WD<br>Ratio | Rch<br>Width                   | Rch<br>Depth | Ten             | Tributary<br>np pl          | н 1                | Strear<br>Temp | m<br>pH             |              |
| COIM.                    | (cfsm)       | (ɗs)                 | (cfs)                | (days)                  | (fps)           |             | (ft)                           | (ft)         | (°C             | ;)                          |                    | (°C)           |                     |              |
| Q7-10<br>Q1-10<br>Q30-10 | 0.242        | 0.00<br>0.00<br>0.00 | 0.00<br>0.00<br>0.00 | 0.000<br>0.000<br>0.000 | 0.000           | 0.0         | 0.00                           | 0.0          | 00 2            | 0.00                        | 7.00               | 0.00           | 0.00                |              |
|                          |              |                      |                      |                         | D               | scharge     | Data                           |              |                 |                             |                    |                | 1                   |              |
|                          |              |                      | Name                 | Pe                      | mit Numbe       | Disc        | Permit<br>Disc<br>Flow<br>(mgd | Dis          | sc Res          | ctor                        | oisc<br>emp<br>°C) | Disc<br>pH     |                     |              |
|                          |              |                      |                      |                         |                 | 0.000       | 0.00                           | 00 0.0       | 0000            | 0.000                       | 25.00              | 7.00           |                     |              |
|                          |              |                      |                      |                         | P               | arame ter   | Data                           |              |                 |                             |                    |                |                     |              |
|                          |              |                      |                      | Paramete                | - Nomo          | _           |                                | Trib<br>Conc | Stream<br>Conc  | Fate<br>Coef                |                    |                |                     |              |
|                          |              |                      |                      | Paramete                | rivame          | (m          | ng/L) (i                       | mg/L)        | (mg/L)          | (1/days)                    |                    |                |                     |              |
|                          |              |                      | CBOD5                |                         |                 |             | 25.00                          | 2.00         | 0.00            | 1.50                        |                    |                |                     |              |
|                          |              |                      | Dissolved            | Oxygen                  |                 |             | 3.00                           | 8.24         | 0.00            | 0.00                        |                    |                |                     |              |
|                          |              |                      | NH3-N                |                         |                 |             | 25.00                          | 0.00         | 0.00            | 0.70                        |                    |                |                     |              |

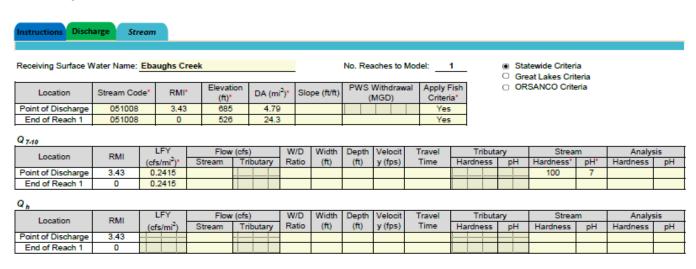


Toxics Management Spreadsheet Version 1.3, March 2021

## Discharge Information

| Instructions Discharge Stream                   |                                         |                  |
|-------------------------------------------------|-----------------------------------------|------------------|
| Facility: Stewartstown WWTP                     | NPDES Permit No.: PA0036269             | Outfall No.: 001 |
| Evaluation Type Major Sewage / Industrial Waste | Wastewater Description: Sewage effluent |                  |

|   | Discharge Characteristics |                  |          |     |                                                     |     |     |                   |    |  |  |  |  |
|---|---------------------------|------------------|----------|-----|-----------------------------------------------------|-----|-----|-------------------|----|--|--|--|--|
|   | Design Flow               | Hardness (mg/l)* | pH (SU)* | P   | Partial Mix Factors (PMFs) Complete Mix Times (min) |     |     |                   |    |  |  |  |  |
|   | (MGD)*                    | naruness (mg/l)* | pn (30)  | AFC | CFC                                                 | THH | CRL | Q <sub>7-10</sub> | Qh |  |  |  |  |
| Ī | 0.625                     | 100              | 6.36     |     |                                                     |     |     |                   |    |  |  |  |  |


|          |                                 |       |     |                     |              | ft blank       | 0.5 If left blank |              | 0             | If left blan  | k   | 1 If left blank |                |
|----------|---------------------------------|-------|-----|---------------------|--------------|----------------|-------------------|--------------|---------------|---------------|-----|-----------------|----------------|
|          | Discharge Pollutant             | Units | Max | x Discharge<br>Conc | Trib<br>Conc | Stream<br>Conc | Daily<br>CV       | Hourly<br>CV | Strea<br>m CV | Fate<br>Coeff | FOS | I               | Chem<br>Transl |
| -        | Total Dissolved Solids (PWS)    | mg/L  |     | 410                 |              |                |                   |              |               |               |     |                 |                |
| 12       | Chloride (PWS)                  | mg/L  |     | 110                 |              |                |                   |              |               |               |     |                 |                |
| 18       | Bromide                         | mg/L  | ۸   | 0.5                 |              |                |                   |              |               |               |     |                 |                |
| Group    | Sulfate (PWS)                   | mg/L  |     | 29                  |              |                |                   |              |               |               |     |                 |                |
|          | Fluoride (PWS)                  | mg/L  |     |                     |              |                |                   |              |               |               |     |                 |                |
|          | Total Aluminum                  | µg/L  |     |                     |              |                |                   |              |               |               |     |                 |                |
|          | Total Antimony                  | µg/L  |     |                     |              |                |                   |              |               |               |     |                 |                |
|          | Total Arsenic                   | μg/L  |     |                     |              |                |                   |              |               |               |     |                 |                |
|          | Total Barium                    | μg/L  |     |                     |              |                |                   |              |               |               |     |                 |                |
|          | Total Beryllium                 | µg/L  |     |                     |              |                |                   |              |               |               |     |                 |                |
|          | Total Boron                     | µg/L  |     |                     |              |                |                   |              |               |               |     |                 |                |
|          | Total Cadmium                   | μg/L  |     |                     |              |                |                   |              |               |               |     |                 |                |
|          | Total Chromium (III)            | μg/L  |     |                     |              |                |                   |              |               |               |     |                 |                |
|          | Hexavalent Chromium             | µg/L  |     |                     |              |                |                   |              |               |               |     |                 |                |
|          | Total Cobalt                    | µg/L  |     |                     |              |                |                   |              |               |               |     |                 |                |
|          | Total Copper                    | mg/L  | <   | 0.005               |              |                |                   |              |               |               |     |                 |                |
| 2        | Free Cyanide                    | μg/L  |     |                     |              |                |                   |              |               |               |     |                 |                |
| ΙŽ       | Total Cyanide                   | µg/L  |     |                     |              |                |                   |              |               |               |     |                 |                |
| Group    | Dissolved Iron                  | µg/L  |     |                     |              |                |                   |              |               |               |     |                 |                |
| 1        | Total Iron                      | µg/L  |     |                     |              |                |                   |              |               |               |     |                 |                |
|          | Total Lead                      | mg/L  | <   | 0.005               |              |                |                   |              |               |               |     |                 |                |
|          | Total Manganese                 | µg/L  |     |                     |              |                |                   |              |               |               |     |                 |                |
|          | Total Mercury                   | µg/L  |     |                     |              |                |                   |              |               |               |     |                 |                |
|          | Total Nickel                    | µg/L  |     |                     | $\neg \neg$  |                |                   |              |               |               |     |                 |                |
|          | Total Phenols (Phenolics) (PWS) | µg/L  |     |                     |              |                |                   |              |               |               |     |                 |                |
|          | Total Selenium                  | µg/L  |     |                     |              |                |                   |              |               |               |     |                 |                |
|          | Total Silver                    | µg/L  |     |                     |              |                |                   |              |               |               |     |                 |                |
|          | Total Thallium                  | µg/L  |     |                     |              |                |                   |              |               |               |     |                 |                |
|          | Total Zinc                      | mg/L  |     | 0.07                |              |                |                   |              |               |               |     |                 |                |
| 1        | Total Molybdenum                | µg/L  |     |                     |              |                |                   |              |               |               |     |                 |                |
| $\vdash$ | Acrolein                        | µg/L  | <   |                     |              |                |                   |              |               |               |     |                 |                |
|          | Acrylamide                      | µg/L  | <   |                     |              |                |                   |              |               |               |     |                 |                |
|          | Acrylonitrile                   | µg/L  | <   |                     |              |                |                   |              |               |               |     |                 |                |
|          | Benzene                         | µg/L  | <   |                     |              |                |                   |              |               |               |     |                 |                |
|          | Bromoform                       | µg/L  | <   |                     |              |                |                   |              |               |               |     |                 |                |
| 1        | Carbon Tetrachloride            | µg/L  | <   |                     |              |                |                   |              |               |               |     |                 |                |
| 1        | Chlorobenzene                   | µg/L  |     |                     |              |                |                   |              |               |               |     |                 |                |
| 1        | Chlorodibromomethane            | µg/L  | <   |                     |              |                |                   |              |               |               |     |                 |                |
| 1        | Chloroethane                    | µg/L  | <   |                     |              |                |                   |              |               |               |     |                 |                |
|          | 2-Chloroethyl Vinyl Ether       | µg/L  | <   |                     |              |                |                   |              |               |               |     |                 |                |
| 1        | E-comprovedly) virily) Eurei    | P9'C  |     |                     |              |                |                   |              |               |               |     |                 |                |



Toxics Management Spreadsheet Version 1.3, March 2021

#### Stream / Surface Water Information

Stewartstown WWTP, NPDES Permit No. PA0036269, Outfall 001





Toxics Management Spreadsheet Version 1.3, March 2021

#### **Model Results**

Stewartstown WWTP, NPDES Permit No. PA0036269, Outfall 001

| Instructions Results                           | RETURN           | TO INPUTS        | SAV    | E AS PDF  | Pi          | RINT ) | O All ()           | Inputs ()      | Results () Limits                  |
|------------------------------------------------|------------------|------------------|--------|-----------|-------------|--------|--------------------|----------------|------------------------------------|
| Hydrodynamics                                  |                  |                  |        |           |             |        |                    |                |                                    |
| ☐ Wasteload Allocations                        |                  |                  |        |           |             |        |                    |                |                                    |
| ☑ Recommended WQBELs & Monitoring Requirements |                  |                  |        |           |             |        |                    |                |                                    |
| No. Samples/Month: 4                           |                  |                  |        |           |             |        |                    |                |                                    |
|                                                | Mass             | Limits           |        | Concentra | tion Limits |        | T                  |                |                                    |
| Pollutants                                     | AML<br>(lbs/day) | MDL<br>(lbs/day) | AML    | MDL       | IMAX        | Units  | Governing<br>WQBEL | WQBEL<br>Basis | Comments                           |
| Total Copper                                   | Report           | Report           | Report | Report    | Report      | mg/L   | 0.02               | AFC            | Discharge Conc > 10% WQBEL (no RP) |
| Total Lead                                     | 0.036            | 0.057            | 0.007  | 0.011     | 0.017       | mg/L   | 0.007              | CFC            | Discharge Conc ≥ 50% WQBEL (RP)    |
| Total Zinc                                     | Report           | Report           | Report | Report    | Report      | mg/L   | 0.17               | AFC            | Discharge Conc > 10% WQBEL (no RP) |

#### ☑ Other Pollutants without Limits or Monitoring

The following pollutants do not require effluent limits or monitoring based on water quality because reasonable potential to exceed water quality criteria was not determined and the discharge concentration was less than thresholds for monitoring, or the pollutant was not detected and a sufficiently sensitive analytical method was used (e.g., <= Target QL).

| Pollutants                   | Governing<br>WQBEL | Units | Comments           |
|------------------------------|--------------------|-------|--------------------|
| Total Dissolved Solids (PWS) | N/A                | N/A   | PWS Not Applicable |
| Chloride (PWS)               | N/A                | N/A   | PWS Not Applicable |
| Bromide                      | N/A                | N/A   | No WQS             |
| Sulfate (PWS)                | N/A                | N/A   | PWS Not Applicable |
|                              |                    |       |                    |

Model Results 6/15/2021 Page 5