

Northcentral Regional Office CLEAN WATER PROGRAM

Application Type	Renewal
Facility Type	Municipal
Major / Minor	Minor

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

Application No.	PA0036820
APS ID	911964
Authorization ID	1131708

Applicant and Facility Information				
Applicant Name	Galeton Borough Authority	Facility Name	Galeton Borough Authority Sewer System STP	
Applicant Address	15 West Street	Facility Address	Mill Street	
	Galeton, PA 16922-1264		Galeton, PA 16922	
Applicant Contact	Trixie Blass	Facility Contact	Trixie Blass	
Applicant Phone	(814) 435-2275	Facility Phone	(814) 435-2275	
Client ID	1669	Site ID	248335	
Ch 94 Load Status	Not Overloaded	Municipality	Galeton Borough	
Connection Status	No Limitations	County	Potter	
Date Application Rece	eived April 1, 2016	EPA Waived?	No	
Date Application Acce	epted April 14, 2016	If No, Reason	Significant CB Discharge	

Summary of Review

The Galeton Borough Authority has submitted an application for the renewal of the existing NPDES Permit PA0036820 for the Department's review. DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Approve	Deny	Signatures	Date
X		Jonathan P. Peterman	
		Jonathan P. Peterman / Project Manager	February 26, 2021
Х		Nicholas W. Hartranft	
Α		Nicholas W. Hartranft, P.E. / Environmental Engineer Manager	March 11, 2021

Discharge, Receiving	y Water	s and Water Supply Inform	nation	
Outfall No. 002			Design Flow (MGD)	N/A
Latitude 41° 4	4' 1.05"	_	Longitude	-77º 38' 28.87"
Quad Name Ga	leton	_	Quad Code	0524
Wastewater Descrip	otion:	Combined Sewer Overflow		
Receiving Waters	Pine (Creek (EV (existing use))	Stream Code	21166
NHD Com ID	66536	8899	RMI	71.53
Drainage Area	177		Yield (cfs/mi²)	0.04
Q ₇₋₁₀ Flow (cfs)	7.09		Q ₇₋₁₀ Basis	Gage No. 1548500
Elevation (ft)	1292		Slope (ft/ft)	0.00334
Watershed No.	9-A		Chapter 93 Class.	HQ-CWF
Existing Use	EV (E	XCEPTIONAL VALUE)	Existing Use Qualifier	RBP - Antidegradation
Exceptions to Use	None	·	Exceptions to Criteria	None.
Assessment Status		Attaining Use(s)		
Cause(s) of Impairn	nent	N/A		
Source(s) of Impair	ment	N/A		
TMDL Status N/A		Name N/A		
Nearest Downstream	m Publi	c Water Supply Intake	Jersey Shore Area Joint Water	er Authority
PWS Waters F	Pine Cre	eek	Flow at Intake (cfs)	39
PWS RMI 1.92		Distance from Outfall (mi)	69.61	

Discharge, Receiving Waters and Water Supply Information					
Outfall No. 001		Design Flow (MGD)	0.5		
Latitude 41° 44' 1.05	ıı .	Longitude	-77° 38' 28.87"		
Quad Name Galeton		Quad Code	0524		
Wastewater Description:	Sewage Effluent				
			_		
Receiving Waters Pine	Creek (EV (existing use))	Stream Code	21166		
NHD Com ID 6653	6899	RMI	71.53		
Drainage Area177		Yield (cfs/mi²)	0.04		
Q ₇₋₁₀ Flow (cfs) 7.09		Q ₇₋₁₀ Basis	Gage No. 1548500		
Elevation (ft) 1292		Slope (ft/ft)	0.00334		
Watershed No. 9-A		Chapter 93 Class.	HQ-CWF		
Existing Use EV (I	EXCEPTIONAL VALUE)	Existing Use Qualifier	RBP - Antidegradation		
Exceptions to Use None	9.	Exceptions to Criteria	None.		
Assessment Status	Attaining Use(s)				
Cause(s) of Impairment	N/A				
Source(s) of Impairment N/A					
TMDL Status N/A		Name N/A			
Nearest Downstream Pub	lic Water Supply Intake	Jersey Shore Area Joint Wate	er Authority		
PWS Waters Pine Co	eek	Flow at Intake (cfs)	39		
PWS RMI 1.92		Distance from Outfall (mi)			

Changes Since Last Permit Issuance: The updated Q_{7-10} data was obtained from the updated stream gage information obtained from *Stuckey, M.H., and Roland, M.A., 2011, Selected Streamflow Statistics for Streamgage Locations In and Near Pennsylvania*. Given that there is a stream gage located downstream (Pine Creek at Cedar Run, PA 1548500) of the discharge location, a simple comparative stream analysis is needed. This analysis reveals that the Q_{7-10} is 7.09 cfs. Q_{7-10} calculations are attached in Appendix A. The previous review utilized 6.96 cfs.

Other Comments: None.

DEP has evaluated information indicating that the existing use of the receiving waters is different than the designated use under 25 Pa. Code § 93.9. In developing the draft NPDES permit, DEP is proposing to protect the existing use of the receiving waters. Following DEP's notice of the receipt of the application and the draft permit in the Pennsylvania Bulletin, DEP will accept written comments during the public comment period regarding DEP's tentative determination to protect the existing use. DEP will make a final determination on existing use protection for the receiving waters as part of the final permit action.

Treatment Facility Summary

Treatment Facility Name: Galeton Borough WWTP

WQM Permit No.	Issuance Date
5302402	8/7/2000
5305401	4/4/2006
5309401	8/28/2009

Waste Type	Degree of Treatment	Process Type	Disinfection	Avg Annual Flow (MGD)
Sewage	Secondary	Extended Aeration	No Disinfection	0.5

Hydraulic Capacity (MGD)	Organic Capacity (Ibs/day)	Load Status	Biosolids Treatment	Biosolids Use/Disposal
0.5	340	Not Overloaded	Aerobic Digestion	Land Application

Treatment System Components:

- One (1) Influent Mechanical Bar Screen.
- One (1) Influent Lift Station.
- Two (2) Combination Circular Aeration Basins with interior clarifiers.
- One (1) Chlorine Disinfection System.
- One (1) Chlorine Contact Tank.
- One (1) Dechlorination System.
- One (1) Outfall 001.
- One (1) CSO Outfall 002.
- One (1) Sludge Drying Bed.

Changes Since Last Permit Issuance: None.

Other Comments: See Appendix D for the facility schematic.

Industrial/ Commercial Wastewater Contributions

The application indicates that there are no industrial users.

Trucked-In Waste

The application indicates that the facility receives hauled-in waste from residential septage haulers. The annual average volume is approximately 100,000 gallons. A Part-C condition will be placed in the draft permit.

Anti-Backsliding

In accordance with 40 CFR 122.44(I)(1) and (2), this permit does not contain effluent limitations, standards, or conditions that are less stringent than the previous permit.

Chesapeake Bay Requirements

In order to address the TMDL, Pennsylvania developed a Chesapeake Watershed Implementation Plan (WIP) – Phase I. Since the publication of Pennsylvania's Phase I Chesapeake WIP in January 2011 and the Chesapeake Bay TMDL, several activities have occurred that necessitated the development of the Phase II WIP. Initially, a phased approach was utilized which imposed TN and TP cap loads in reissued permits for significant sewage dischargers. Accordingly, Galeton Borough Authority's renewed permit, issued 9/29/11, included these TN and TP cap loads. In accordance with the Wastewater Supplement to Phase II WIP, these cap loads will remain in the permit. Per the April 6, 2015 revisions to the

Chesapeake Bay Watershed Implementation Plan (WIP), Phase II, the monitoring frequencies for the Nitrogen series and Total Phosphorus have been increased from 1/week to 2/week. Additionally, the Chesapeake Bay language at Part C I of the permit has been revised to reflect the revised WIP.

The limitations and monitoring requirements specified below are proposed for the draft permit, to comply with Pennsylvania's Chesapeake Bay Tributary Strategy:

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date

Effluent Limitations				Monitoring Requirements			
Discharge	Mass Units (lbs/day)		Concentrations (mg/L)		Minimum		
Parameter	Monthly	Annual	Minimum	Monthly Average	Maximum	Measurement Frequency	Required Sample Type
AmmoniaN	Report	Report Total Annual		Report		2/week	8-Hr Comp.
KjeldahlN	Report			Report		2/week	8-Hr Comp.
Nitrate-Nitrite as N	Report			Report		2/week	8-Hr Comp.
Total Nitrogen	Report	Report Total Annual		Report		1/month	Calculation
Total Phosphorus	Report	Report Total Annual		Report		2/week	8-Hr Comp.
Net Total Nitrogen	Report	9,132* Total Annual				1/month	Calculation
Net Total Phosphorus	Report	1,218** Total Annual				1/month	Calculation

^{*}TN = 0.5 MGD x 6.0 mg/l x 8.34 x 365 days/yr = 9,132 lb/yr

Combined Sewer Overflow

Galeton has one remaining Combined Sewer Overflow (CSO) Outfall 002 that is located at the WWTP. When the influent flow rate exceeds the facility's hydraulic design capacity during wet weather events, this CSO Outfall 002 is used to divert both sewage and stormwater flows directly to the receiving stream. The combined flow is diverted using an overflow channel that is usually closed off by a manually operated slide gate. An elevation difference between the two channels ultimately controls the discharge. From the overflow channel the combined flow connects with the facility's treated effluent piping and discharges into Pine Creek at Outfall 001.

		Location	
Name of Outfall	Receiving Stream Name	Latitude	Longitude
Mill Street (002)	Pine Creek	41° 44' 14"	77° 38' 03"

CSO dischargers are required to demonstrate implementation of the Nine Minimum Controls (NMCs) and develop a Long-Term Control Plan (LTCP). Galeton's current LTCP is to complete a full separation of the collection system. The last update to LTCP was in November of 2012 where the cost estimates of the final phases were provided. This LTCP will be revised once funding is secured and projected completion dates can be established.

The remaining interim milestones of the 2012 LTCP are as follows.

Event	Date
Phase 3B of the South Sewershed Improvements	To Be Determined
Phase 3C of the South Sewershed	To Be
Improvements	Determined

The Annual CSO Status Reports have been submitted as part of the permittee's annual Chapter 94 Municipal Wasteload Management Report. In 2019 there were a total of 60 CSO events. No dry weather events were recorded. The

^{**}TP = 0.5 MGD x 0.8 mg/l x 8.34 x 365 days/yr = 1,218 lb/yr

Department has requested that an update to the existing LTCP be submitted to account for the additional separation projects that have been completed.

The Department conducted discussions with EPA prior to the drafting of this permit. The final correspondence, dated 2/5/21, is attached. The following changes PADEP made to the permit based on these discussions are as follows:

- To provide clarity into the reporting of nutrient limits, "Total Annual" was added in Part A.I.C of the permit.
- The part C conditions were updated to reflect the "Bypass" scenario.
- The Department has updated Part C.III.B.3 of the permit to reflect the final LTCP goal of complete separation.
- The Department has updated the implementation schedule in Part C.III.B.3 of the permit. The Permittee will be required to "Provide the Department with an LTCP update" with two years of permit issuance (April 1, 2023). This date will be verified by the permittee.
 - Additionally, this update should include a post construction monitoring program plan adequate to verify compliance with water quality standards and protection of designated uses as well as to ascertain the effectiveness of CSO controls. This water quality compliance monitoring program should include a plan to be approved by the Department that details the monitoring protocols to be followed.
 - The LTCP should develop updated design conditions through characterization, monitoring, and modeling of the Combined Sewer System.
- The Permittee will be required to verify the LTCP Final Compliance Date of 2042.
- The Department will be in contact with the permittee regarding the "bypass".

Existing Effluent Limitations and Monitoring Requirements

Existing Limits - Outfall 001

					Limitations			
	Mass	(lb/day)		Concen	tration (mg/l	_)	Monitoring Re	equirements
Discharge Parameter	Monthly Average	Daily Maximum	Minimum	Average Monthly	Average Weekly	Instantaneous Maximum	Minimum Frequency	Sample Type
Flow (MGD)	Report	Report					Continuous	Metered
C-BOD₅	100	165		25	40	50	1/ Week	8-Hr Comp
TSS	125	185		30	45	60	1/ Week	8-Hr Comp
pH (Std. Units)			6.0			9.0	1/ Day	Grab
TRC				Report		0.05	1/ Day	Grab
NH3-N (5/1-10/31)	50	75		12	18	24	1/ Week	Grab
Fecal Coliforms (5/1-9/30)	20	0 colonies/1	00 ml as a g	eometric me	ean	1,000	1/ Week	Crob
Fecal Coliforms (10/1-4/30)	2,0	00 colonies/	100 ml as a	geometric m	nean	10,000	i/ vveek	Grab

^{*}The existing effluent limits for Outfall 001 were based on a design flow of 0.5 MGD.

	Development of Eff	luent Limitations	
Outfall No. Latitude Wastewater D	002 41° 44' 17.10" escription: Combined Sewer Overflow	Design Flow (MGD) Longitude	0 -77° 38' 5.20"
Outfall No. Latitude Wastewater D	001 41° 44' 14.50" escription: Sewage Effluent	Design Flow (MGD) Longitude	

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Pollutant	Limit (mg/l)	SBC	Federal Regulation	State Regulation
CBOD ₅	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
CBOD ₅	40	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)
Total Suspended	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
Solids	45	Average Weekly	133.102(b)(2)	92a.47(a)(2)
pH	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform (5/1 – 9/30)	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
Fecal Coliform (5/1 – 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform (10/1 – 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
Fecal Coliform (10/1 – 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)
Total Residual Chlorine	0.5	Average Monthly	-	92a.48(b)(2)

Water Quality-Based Limitations

To establish whether or not water-quality based effluent limitations (WQBELs) are required, the Department models instream conditions. In order to determine limitations for CBOD5, ammonia-N and dissolved oxygen, the Department utilizes the WQM 7.0 v1.0b model and in order to determine limitations for toxics, the Department utilizes the PENTOXSD v2.0d model.

WQM 7.0 for Windows, Version 1.0b, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen The model was run using the Q7-10 stream flow, background water quality, average annual design flow, and other discharge characteristics. The existing water technology-based limits for CBOD₅ (25 mg/l) and water quality-based NH3-N (12.0 mg/l) were used as inputs for the modeling. The DO minimum daily average criterion from §93.7 (6.0 mg/L for CWF) was used for the in-stream objective for the model. The summary of the output is as follows:

Dovemeter	Effl	uent Limit	
Parameter	30 Day Average	Maximum	Minimum
CBOD5	25	N/A	N/A
Ammonia-N	12.8	240	N/A
Dissolved Oxygen	N/A	N/A	3

The previous model did not recommend more stringent water-quality based effluent limitations with regards to CBOD5, ammonia-nitrogen, and dissolved oxygen. Refer to Appendix B for the previous WQM 7.0 inputs and results.

PENTOXSD for Windows Version 2.0d

PENTOXSD V2.0d is a single discharge Wasteload Allocation (WLA) program for toxics that uses a mass-balance water quality analysis to determine recommended water quality-based effluent limits. The model incorporates consideration for mixing, first-order decay and other factors to computes a WLA for each applicable criterion. Finally, the model determines a maximum water quality-based effluent limitation (WQBEL) for each parameter and outputs the more stringent of the WQBEL or the input concentration. The output of which is the recommended average monthly and maximum daily effluent limitations.

In order to determine which parameters are required to be analyzed in the PENTOXSD model, a Toxics Screening Analysis is used to identify toxic pollutants of concern. In this particular case, sampling for pollutants was submitted with the application. This is required by the application given the types of industrial users connected to the collection system. These values were input into the Toxics Screening Analysis v2.7 spreadsheet to determine if each pollutant was a candidate for PENTOXSD modeling (pollutant of concern). Refer to Appendix C for the Toxics Screening Analysis v2.7.

The Toxics Screening Analysis v2.7 determines pollutants of concern using the following logic:

- All toxic pollutants whose maximum concentrations, as reported in the permit application or on DMRs, that are greater than the most stringent applicable water quality criterion were considered to be pollutants of concern.
- Also, where the maximum reported value in an application for a pollutant is less than the detection limit using the most sensitive analytical method listed in Chapter 16, the parameter is not a parameter of concern, even if the maximum reported value exceeds the applicable Chapter 93 criterion.
- Where the maximum reported values in an application for a parameter is less than the detection limit for some analytical method other than the most sensitive analytical method listed in Chapter 16, the parameter is a pollutant of concern if the maximum reported value exceeds the Chapter 93 criterion, even if the value is reported as "non-detect."

The PENTOXSD model was then run for all parameters of concern to evaluate reasonable potential (RP) for other toxic pollutants to cause an excursion above water quality standards. See Appendix D for the PENTOXSD model input/output. The most stringent WQBEL recommended by the model was then entered back into the same Toxics Screening Analysis v2.7 spreadsheet in order to determine which action to take regarding the pollutant. The permit recommendations of Monitor, Establish Limits, or to take no action (-) are established in the Toxics Screening Analysis v2.7 spreadsheet for each pollutant based upon the following logic:

- Establish average monthly and IMAX limits in the draft permit where the maximum reported concentration exceeds 50% of the WQBEL.
- For non-conservative pollutants, establish monitoring requirements where the maximum reported concentration is between 25% 50% of the WQBEL.
- For conservative pollutants, establish monitoring requirements where the maximum reported concentration is between 10% 50% of the WQBEL.

A "Reasonable Potential Analysis" (See Appendix C) determined that the following parameters were candidates for monitoring or limitations shown below:

Parameter	Effluent Limit (µg/l)	Governing Criterion	Max Daily Limit (µg/l)	WQBEL (µg/l)	WQBEL Criterion	Permit Recommendation
Total Copper	9.92	INPUT	15.477	48.129	AFC	Monitor

Comments: See the Total Copper effluent limit section below.

Best Professional Judgment (BPJ) Limitations

See D.O. and Ammonia-Nitrogen section below.

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit and reflect the most stringent limitations amongst the abovementioned technology, water quality, and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001) and/or BPJ.

Proposed Limits - Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date

					Limitations			
	Mass	(lb/day)		Concen	Monitoring Requirements			
Discharge Parameter	Monthly Average	Daily Maximum	Minimum	Average Monthly	Average Weekly	Instantaneous Maximum	Minimum Frequency	Sample Type
Flow (MGD)	Report	Report					Continuous	Metered
C-BOD₅	100	165		25	40	50	1/ Week	8-Hr Comp
BOD₅ Raw Sewage Influent	Report	Report		Report			1/ Week	8-Hr Comp

TSS	125	185		30	45	60	1/ Week	8-Hr Comp
TSS Raw Sewage Influent	Report	Report		Report			1/ Week	8-Hr Comp
D.O.				Report			1/ Day	Grab
pH (Std. Units)			6.0			9.0	1/ Day	Grab
TRC				Report		0.5	1/ Day	Grab
Total Copper				Report			1/ Month	8-Hr Comp
NH3-N (5/1-10/31)	50	75		12	18	24	1/ Week	Crob
NH3-N (11/1-4/30)	Report	Report		Report	Report	Report	17 VVeek	Grab
Fecal Coliforms (5/1-9/30)	20	0 colonies/1	00 ml as a g	eometric me	ean	1,000	1/ Week	Grab
Fecal Coliforms (10/1-4/30)	2,0	00 colonies/	100 ml as a	geometric m	nean	10,000	17 VVEEK	Giab

^{*}The proposed effluent limits for Outfall 001 were based on a design flow of 0.5 MGD.

Effluent Limit Determination for Outfall 001

General Information

The associated mass-based limits (lbs/day) for all parameters were based on the formula: design flow (average annual) (MGD) x concentration limit (mg/L) at design flow x conversion factor (8.34). All effluent limits were then rounded down in accordance with the rounding rules established in the *Technical Guidance for the Development and Specification of Effluent Limitations* (362-0400-001), Chapter 5 - Specifying Effluent Limitations in NPDES Permits. The existing monitoring frequencies and sample types for these parameters generally correspond with the *Technical Guidance for the Development and Specification of Effluent Limitations* (362-0400-001) Table 6-3 and will remain.

Flow

Reporting of the average monthly and daily maximum flow is consistent with monitoring requirements for other treatment plants of this size.

Carbonaceous Biochemical Oxygen Demand (CBOD₅)

The results of the WQM 7.0 model show that the previously applied secondary treatment standards (25 PA Code §92a.47 (a) (1&2)) for CBOD₅ are protective of water quality and will remain.

Total Suspended Solids (TSS)

The previously applied technology based secondary treatment standards (25 PA Code §92a.47 (a) (1&2)) for TSS will remain as well.

рн

CFR Title 40 §133.102(c) and 25 PA Code §95.2(1) provide the basis of effluent limitations for pH. The existing limits will remain.

Fecal Coliforms

The existing fecal coliform limits with I-max limits were updated from the previous Chapter 92 code to correspond with what is specified in the updated 25 PA Code § 92a.47 (a)(4)&(5) and will remain.

Ammonia-Nitrogen (NH3-N)

The results of the WQM 7.0 model show that the previously applied water quality-based limits for Ammonia-Nitrogen are protective of water quality and will remain. The Implementation Guidance also states that the winter seasonal limits shall be 3.0 times the summer limits. However, effluent concentrations of NH3-N are not expected to exceed 25 mg/l which is considered a conventional influent level (*Table 7-3*, *Metcalf & Eddy*). Therefore, in order to maintain consistency with

other sewage facilities, monitoring of NH3-N concentrations in the effluent will be established as a minimum BPJ requirement for the winter months.

Influent BOD₅ and TSS

The Department requires the reporting of raw sewage influent monitoring for BOD₅ and TSS in all POTW permits. This provides the Department with the ability to monitor the percent removal of each parameter as stipulated in section 2 of the Part A conditions and maintain records of the BOD₅ loading as required by 25 Pa. Code Chapter 94. The monitoring frequencies and sample types are identical to the effluent sampling.

Dissolved Oxygen (DO)

Given results of the WQM 7.0 model, a discharge of effluent from this facility with a DO concentration of 3 mg/l would not result in an exceedance of water quality requirements for this stream. It is anticipated, based on similar technology, that the DO concentration in the effluent would be greater than 3.0 mg/l. Therefore, based on BPJ, only monitoring will be required for this facility. This will also provide historical data to establish baseline DO levels in the effluent for future reviews.

Total Copper

The Reasonable Potential Analysis / Toxics Screening Analysis v2.7 spreadsheet suggests establishing a monitoring only requirement for Total Copper. Therefore, monitoring for total copper will be required over the next permit term.

Total Residual Chlorine (TRC)

Under the authority of 25 Pa. Code § 93.4c, the use of chlorine for disinfection will generally not be authorized special protection watersheds. Given that the use of chlorine is approved, the average monthly effluent limitation will be set to 0.02 mg/l ("non-detect") and the associated Part C language will be used. The previous permit established an IMAX non-detect limit of 0.05 mg/l. However, current policy dictates that the average monthly MDL in NPDES permits for TRC should be specified as 0.02 mg/L, which is believed to be reasonable for standardized TRC methods. The permittee is not authorized to discharge chlorine in detectable quantities, therefore, no compliance schedule is required.

Part C Requirements

The proposed permit contains the following requirements in Part C:

- Chesapeake Bay Nutrient Requirements
- · Combined Sewer Overflows
- Solids Management
- TRC Effluent Limitations Below Quantitation Limits
- Other Requirements

Compliance History

<u>Summary of Inspections</u> -The most recent Clean Water Program onsite inspections for this facility were a Compliance Evaluation Inspection on 08/21/2019, and a Combined Sewer Overflow inspection on 09/11/2019. A recent Compliance Evaluation was completed on 3/19/20. The inspection reports indicated that the facility was operating normally.

<u>WMS Query Summary</u> - A WMS Query was run at *Reports - Violations & Enforcements - Open Violations for Client Report* to determine whether there are any unresolved violations associated with the client that will affect issuance of the permit (per CSL Section 609). This query revealed the following open violations:

CLIENT ‡	CLIENT ‡	INSP PROGRAM	VIOLATION ‡	VIOLATION DATE	VIOLATION CODE	VIOLATION ‡	PF INSPECTOR ‡
1669	GALETON BORO AUTH	Safe Drinking Water	875213	01/30/2020	C1A	FAILURE TO MEET DESIGN AND CONSTRUCTION STANDARDS	ACCETTULLA, MARK

NPDES Permit Fact Sheet Galeton Borough Authority Sewer System STP

	POTTER CNTY						
1669	GALETON BORO AUTH POTTER CNTY	Safe Drinking Water	875214	01/30/2020	C1A	FAILURE TO MEET DESIGN AND CONSTRUCTION STANDARDS	ACCETTULLA, MARK
1669	GALETON BORO AUTH POTTER CNTY	Safe Drinking Water	875329	01/30/2020	C1A	FAILURE TO MEET DESIGN AND CONSTRUCTION STANDARDS	ACCETTULLA, MARK

These violations will need to be under the process of being corrected to the satisfaction of the Safe Drinking Water Program or closed prior to issuance of this permit. The NCRO Safe Drinking Water program will be contacted regarding these violations.

<u>eDMRs Summary</u> - Upon review of the eDMR's, the facility has generally been in compliance with the existing effluent limits. A slight exceedance was recorded on 05/31/19 for CBOD₅. This was resolved by the next month's report.

Compliance History

DMR Data for Outfall 001 (from April 1, 2019 to March 31, 2020)

Parameter	MAR-20	FEB-20	JAN-20	DEC-19	NOV-19	OCT-19	SEP-19	AUG-19	JUL-19	JUN-19	MAY-19	APR-19
Flow (MGD)												
Average Monthly	0.244	0.210	0.166	0.168	0.136	0.109	0.089	0.100	0.134	0.184	0.192	0.202
Flow (MGD)												
Daily Maximum	0.404	0.342	0.241	0.320	0.253	0.207	0.202	0.289	0.289	0.328	0.297	0.297
pH (S.U.)												
Minimum	6.30	6.00	6.00	6.05	6.00	6.00	6.00	6.00	6.00	6.04	6.00	6.03
pH (S.U.)												
Maximum	7.00	6.98	6.76	6.88	7.31	6.70	6.59	6.46	7.18	6.83	6.82	6.62
TRC (mg/L)												
Average Monthly	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02
TRC (mg/L)												
Instantaneous												
Maximum	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02
CBOD5 (lbs/day)												
Average Monthly	3	3	3	3	3	2	2	2	2	4	32	5
CBOD5 (lbs/day)												
Weekly Average	6	4	4	5	4	4	3	4	4	5	82	8
CBOD5 (mg/L)												
Average Monthly	2	2	2	2	2	3	2	2	2	2	17	3
CBOD5 (mg/L)												
Weekly Average	2	2	3	3	3	4	3	2	2	3	43	3
TSS (lbs/day)												
Average Monthly	6	9	5	8	6	4	4	7	4	8	8	7
TSS (lbs/day)			_		_	_	_		_			
Weekly Average	10	14	7	19	8	7	8	12	6	12	12	10
TSS (mg/L)		_		_	_	_	_	_		_		
Average Monthly	4	6	4	5	5	4	5	8	4	5	4	4
TSS (mg/L)				_	_	_	_			_	_	
Weekly Average	4	11	4	8	6	5	7	11	4	7	5	4
Fecal Coliform												
(CFU/100 ml)	40.0004	4.04000	0.00704	0.07005	4 00004	0.54000	0.0544	4 40007	0.04000	5 570 47	0.40000	7.05000
Geometric Mean	16.6831	4.24268	3.20701	2.27365	1.69221	2.54003	2.2544	4.40337	2.01238	5.57347	2.40269	7.85303
Fecal Coliform												
(CFU/100 ml)												
Instantaneous	1006.0	20.4	0.6	0.0	4.4	10.0	6.0	70.0	1 4 4	116	6.0	404
Maximum	1986.3	20.1	8.6	9.8	4.1	10.9	6.3	72.3	4.1	14.6	6.3	13.1

NPDES Permit Fact Sheet Galeton Borough Authority Sewer System STP

Nitrate-Nitrite (mg/L)												
Average Monthly	4.4	8	8	8.6	12.1	16.7	19.9	16.9	10.2	9.1	8.9	6.3
Nitrate-Nitrite (lbs)						-			-	-		
Total Monthly	187	313	338	348	427	456	449	402	304	449	525	308
Total Nitrogen (mg/L)												
Average Monthly	6.8	9.8	9.4	10.1	15.6	18.8	21	19	11.7	10.1	10.3	7.9
Total Nitrogen (lbs)												
Effluent Net 												
Total Monthly	304	393	397	411	545	512	475	447	347	502	609	401
Total Nitrogen (lbs)												
Total Monthly	304	393	397	411	545	512	475	447	347	502	609	401
Total Nitrogen (lbs)												
Effluent Net 												
Total Annual							5554					
Total Nitrogen (lbs)												
Total Annual							5554					
Ammonia (lbs/day)												
Average Monthly						0.53	0.26	0.43	0.65	0.27	0.48	
Ammonia (lbs/day)												
Weekly Average						1.23	0.38	0.85	1.42	0.34	1.01	
Ammonia (mg/L)												
Average Monthly	1.41	0.51	0.14	0.53	2.15	0.68	0.42	0.61	0.63	0.18	0.28	0.19
Ammonia (mg/L)												
Weekly Average						1.8	0.68	1.6	1.5	0.26	0.77	
Ammonia (lbs)												
Total Monthly	69	28	6	17	65	17	8	13	16	8	15	11
Ammonia (lbs)												
Total Annual							351					
TKN (mg/L)												
Average Monthly	2.5	1.8	1.4	1.6	3.5	2.1	1.1	2.1	1.5	1.0	1.4	1.7
TKN (lbs)												
Total Monthly	118	81	59	63	119	55	26	45	42	53	84	92
Total Phosphorus												
(mg/L)												
Average Monthly	0.54	0.5	0.6	0.91	1.01	3.2	2.1	5.2	1.72	1.43	1.09	0.51
Total Phosphorus (lbs)												
Effluent Net 												
Total Monthly	27	21	25	35	35	87	44	127	44	73	69	26
Total Phosphorus (lbs)												
Total Monthly	27	21	25	35	35	87	44	127	44	73	69	26
Total Phosphorus (lbs)												
Effluent Net 												
Total Annual							641					

NPDES Permit Fact Sheet Galeton Borough Authority Sewer System STP

NPDES Permit No. PA0036820

Total Phosphorus (lbs)							
Total Annual				641			

Compliance History

Effluent Violations for Outfall 001, from: May 1, 2019 To: March 31, 2020

Parameter	Date	SBC	DMR Value	Units	Limit Value	Units
CBOD5	05/31/19	Wkly Avg	43	ma/L	40	ma/L

	Tools and References Used to Develop Permit
\square	Q7-10 Analysis and Stream Data (see Appendix A)
	WQM 7.0 Model Input/Output (see Appendix B)
	Toxics Screening Analysis v2.4 (see Appendix C)
	PENTOXSD v2.0d Model Input/Output (see Appendix D)
	Facility Map and Schematic (see Appendix E)
	TRC Evaluation Spreadsheet (see Appendix)
	Lake Model Output (see Appendix)
	WETT Spreadsheet (see Appendix)
	Water Quality Toxics Management Strategy, 361-0100-003, 4/06.
	Technical Guidance for the Development and Specification of Effluent Limitations, 362-0400-001, 10/97.
	Policy for Permitting Surface Water Diversions, 362-2000-003, 3/98.
<u> </u>	Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 362-2000-008, 11/96.
	Technology-Based Control Requirements for Water Treatment Plant Wastes, 362-2183-003, 10/97.
	Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 362-2183-004, 12/97.
	Pennsylvania CSO Policy, 385-2000-011, 9/08.
	Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03.
	Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 391-2000-002, 4/97.
\square	Determining Water Quality-Based Effluent Limits, 391-2000-003, 12/97.
	Implementation Guidance Design Conditions, 391-2000-006, 9/97.
\boxtimes	Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen, Version 1.0, 391-2000-007, 6/2004.
	Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 391-2000-008, 10/1997.
	Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments, 391-2000-010, 3/99.
	Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 391-2000-011, 5/2004.
\boxtimes	Implementation Guidance for Section 93.7 Ammonia Criteria, 391-2000-013, 11/97.
	Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 391-2000-014, 4/2008.
\boxtimes	Implementation Guidance Total Residual Chlorine (TRC) Regulation, 391-2000-015, 11/1994.
	Implementation Guidance for Temperature Criteria, 391-2000-017, 4/09.
	Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 391-2000-018, 10/97.
	Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 391-2000-019, 10/97.
	Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 391-2000-021, 3/99.
	Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 391-2000-022, 3/1999.
	Design Stream Flows, 391-2000-023, 9/98.
	Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 391-2000-024, 10/98.
	Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 391-3200-013, 6/97.
	Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07.
	SOP: New and Reissuance Sewage Individual NPDES Permit Applications - Version 1.9 – 1/6/20
	SOP: New and Reissuance Sewage individual NPDES Fermit Applications - Version 1.9 – 1/6/20 SOP: Establishing Effluent Limitations for Individual Sewage Permits – Version 1.7 – 1/6/20
	Other:
	Outon

Attachments

APPENDIX A

Q7-10 ANALYSIS AND STREAM DATA

Prepared in cooperation with the Pennsylvania Department of Environmental Protection

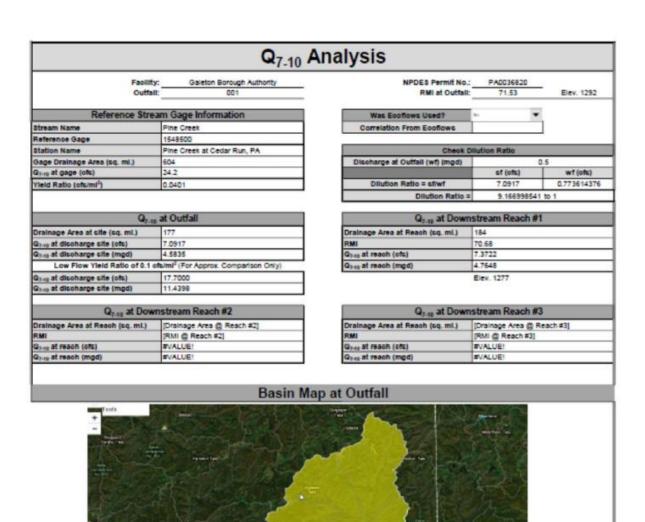
Selected Streamflow Statistics for Streamgage Locations in and near Pennsylvania

Open-File Report 2011-1070

U.S. Department of the Interior U.S. Geological Survey

26 Selected Streamflow Statistics for Streamgage Locations in and near Pennsylvania

Table 2. Selected low-flow statistics for streamgage locations in and near Pennsylvania.—Continued


[ft⁵/s; cubic feet per second; ---, statistic not computed; <, less than]

Streamgage number	Period of record used in analysis ¹	Number of years used in analysis	1-day, 10-year (ft³/s)	7-day, 10-year (ft¹/s)	7-day, 2-year (ft³/s)	30-day, 10-year (ft³/s)	30-day, 2-year (ft³/s)	90-day, 10-year (ft³/s)
01546000	1912-1934	17	1.8	2.2	6.8	3.7	12.1	11.2
01546400	1986-2008	23	13.5	14.0	19.6	15.4	22.3	18.7
01546500	1942-2008	67	26.8	29.0	41.3	31.2	44.2	33.7
01547100	1969-2008	40	102	105	128	111	133	117
01547200	1957-2008	52	99.4	101	132	106	142	115
01547500	21971-2008	38	28.2	109	151	131	172	153
01547500	31956-1969	14	90.0	94.9	123	98.1	131	105
01547700	1957-2008	52	.5	.6	2.7	1.1	3.9	2.3
01547800	1971-1981	11	1.6	1.8	2.4	2.1	2.9	3.
01547950	1970-2008	39	12.1	13.6	28.2	17.3	36.4	23.
01548005	1971-2000	25	142	151	206	178	241	223
01548005	21912-1969	58	105	114	147	125	165	140
01548500	1920-2008	89	21.2	24.2	50.1	33.6	68.6	49.
01549000	1910-1920	11	26.0	32.9	78.0	46.4	106	89.
01549500	1943-2008	67	.6	.8	2.5	1.4	3.9	2.6
01549700	1959-2008	50	33.3	37.2	83.8	51.2	117	78.
01550000	1915-2008	94	6.6	7.6	16.8	11.2	24.6	18.
01551500	21963-2008	46	520	578	1.020	678	1,330	919
01551500	31901-1961	61	400	439	742	523	943	752
01552000	1927-2008	80	20.5	22.2	49.5	29.2	69.8	49.
01552500	1942-2008	67	.9	1.2	3.1	1.7	4.4	3.3
01553130	1969-1981	13	1.0	1.1	1.5	1.3	1.8	1.1
01553500	² 1968–2008	41	760	838	1.440	1.000	1.850	1.470
01553500	31941—1966	26	562	619	880	690	1,090	881
01553700	1981-2008	28	9.1	10.9	15.0	12.6	17.1	15.3
01554000	21981 – 2008	28	1,830	1,990	3,270	2,320	4,210	3,160
01554000	1939-1979	41	1,560	1,630	2.870	1.880	3.620	2,570
01554500	1941-1993	53	16.2	22.0	31.2	25.9	35.7	31.4
01555000	1931-2008	78	33.5	37.6	58.8	43.4	69.6	54.6
01555500	1931-2008	78	4.9	6.5	18.0	9.4	24.3	16.
01556000	1931-2008	91	43.3	47.8	66.0	55.1	75.0	63.1
01557500	1946-2008	63	2.8	3.2	6.3	4.2	8.1	5.1
01557500	1940-2008	69	56.3	59.0	79.8	65.7	86.2	
	1943-2008	66		177	249	198	279	73.
01559000	1931-1958	28	104	10.5	15.0	12.4	17.8	227
01559500				2.710	2414		7719	
01559700	1963-1978	16	.1	.1	.2	.1	.3	
01560000	1941-2008	68	8.5	9.4	15.6	12.0	20.2	16.
01561000	1932-1958	27	.4	.5	1.6	.8	2.5	1.7
01562000	1913-2008	96	64.1	67.1	106	77.4	122	94.
01562500	1931-1957	27	1.1	1.6	3.8	2.3	5.4	3,
01563200	21974-2008	35		_		112	266	129
01563200	³ 1948–1972	25	10.3	28.2	86.1	64.5	113	95.
01563500	² 1974-2008	35	384	415	519	441	580	493
01563500	31939-1972	34	153	242	343	278	399	333
01564500	1940-2008	69	3.6	4.2	10.0	6.2	14.4	10

Table 1 13

Table 1. List of U.S. Geological Survey streamgage locations in and near Pennsylvania with updated streamflow statistics.—Continued [Latitude and Longitude in decimal degrees; mir., square miles]

Streamgage number	Streamgage name	Latitude	Longitude	Drainage area (mi²)	Regulated
01541303	West Branch Susquehanna River at Hyde, Pa.	41.005	-78.457	474	Y
01541308	Bradley Run near Ashville, Pa.	40.509	-78.584	6.77	N
01541500	Clearfield Creek at Dimeling, Pa.	40.972	-78.406	371	Y
01542000	Moshannon Creek at Osceola Mills, Pa.	40.850	-78.268	68.8	N
01542500	WB Susquehanna River at Karthaus, Pa.	41.118	-78.109	1,462	Y
01542810	Waldy Run near Emporium, Pa.	41.579	-78.293	5.24	N
01543000	Driftwood Branch Sinnemahoning Creek at Sterling Run, Pa.	41,413	-78.197	272	N
01543500	Sinnemahoning Creek at Sinnemahoning, Pa.	41.317	-78.103	685	N
01544000	First Fork Sinnemahoning Creek near Sinnemahoning, Pa.	41.402	■78.024	245	Y
01544500	Kettle Creek at Cross Fork, Pa.	41,476	-77.826	136	N
01545000	Kettle Creek near Westport, Pa.	41.320	-77.874	233	Y
01545500	West Branch Susquehanna River at Renovo, Pa.	41.325	-77.751	2,975	Y
01545600	Young Womans Creek near Renovo, Pa.	41.390	-77.691	46.2	N
01546000	North Bald Eagle Creek at Milesburg, Pa.	40.942	-77,794	119	N
01546400	Spring Creek at Houserville, Pa.	40.834	-77.828	58.5	N
01546500	Spring Creek near Axemann, Pa.	40.890	-77.794	87.2	N
01547100	Spring Creek at Milesburg, Pa.	40,932	-77.786	142	N
01547200	Bald Eagle Creek below Spring Creek at Milesburg, Pa.	40.943	-77.786	265	N
01547500	Bald Eagle Creek at Blanchard, Pa.	41.052	-77.604	339	Y
01547700	Marsh Creek at Blanchard, Pa.	41.060	-77.606	44.1	N
01547800	South Fork Beech Creek near Snow Shoe, Pa.	41.024	-77.904	12.2	N
01547950	Beech Creek at Monument, Pa.	41.112	-77.702	152	N
01548005	Bald Eagle Creek near Beech Creek Station, Pa.	41.081	-77.549	562	Y
01548500	Pine Creek at Cedar Run, Pa.	41.522	-77.447	604	N
01549000	Pine Creek near Waterville, Pa.	41.313	-77.379	750	N
01549500	Blockhouse Creek near English Center, Pa.	41,474	-77.231	37.7	N
01549700	Pine Creek below Little Pine Creek near Waterville, Pa.	41.274	-77.324	944	Y
01550000	Lycoming Creek near Trout Run, Pa.	41.418	-77.033	173	N
01551500	WB Susquehanna River at Williamsport, Pa.	41.236	-76.997	5,682	Y
01552000	Loyalsock Creek at Loyalsockville, Pa.	41.325	-76.912	435	N
01552500	Muncy Creek near Sonestown, Pa.	41.357	-76.535	23.8	N
01553130	Sand Spring Run near White Deer, Pa.	41.059	-77.077	4.93	N
01553500	West Branch Susquehanna River at Lewisburg, Pa.	40.968	-76.876	6,847	Y
01553700	Chillisquaque Creek at Washingtonville, Pa.	41.062	-76.680	51.3	N
01554000	Susquehanna River at Sunbury, Pa.	40.835	-76.827	18,300	Y
01554500	Shamokin Creek near Shamokin, Pa.	40.810	-76.584	54.2	N
01555000	Penns Creek at Penns Creek, Pa.	40.867	-77.048	301	N
01555500	East Mahantango Creek near Dalmatia, Pa.	40.611	-76.912	162	N
01556000	Frankstown Branch Juniata River at Williamsburg, Pa.	40.463	-78.200	291	N
01557500	Bald Eagle Creek at Tyrone, Pa.	40.684	− 78.234	44.1	N
01558000	Little Juniata River at Spruce Creek, Pa.	40.613	-78.141	220	N
01559000	Juniata River at Huntingdon, Pa.	40.485	-78.019	816	LF
01559500	Standing Stone Creek near Huntingdon, Pa.	40,524	-77.971	128	N
01559700	Sulphur Springs Creek near Manns Choice, Pa.	39.978	-78.619	5.28	N
01560000	Dunning Creek at Belden, Pa.	40.072	-78.493	172	N

APPENDIX B

WQM 7.0 MODEL INPUT/OUTPUT

Input Data WQM 7.0

	SWP			Stre	eam Name		RMI	Ele	(ft)	Drainag Area (sq mi		(ft/ft)	PW: Withdra (mg	awal	Apply
	09A	211	166 PINE	CREEK			71.53	0	1292.00	177	7.00 0.	00000		0.00	V
					St	ream Dat	a								
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	n Te	<u>Tributar</u>	¥ pH	Tem	Stream p	рН	
Cond.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(7	C)		(°C)		
Q7-10	0.100	0.00	7.09	0.000	0.000	0.0	0.00	0.0	00	20.00	7.00	(0.00	0.00	
Q1-10		0.00	0.00	0.000	0.000										
Q30-10		0.00	0.00	0.000	0.000										
					Di	scharge [Data								
			Name	Per	mit Number	Disc	Permitte Disc Flow (mgd)	Dis	sc Re	serve	Disc Temp (°C)		sc H		
		Galet	ton	PAG	0036820	0.5000	0.500	0 0.	5000	0.000	25.0	10	7.00		
					Pa	rameter I	Data								
				Paramete	Neme	Di		rib	Stream	Fate Coef					
				raramete	rivame	(m	g/L) (m	g/L)	(mg/L)	(1/days	5)				
			CBOD5				25.00	2.00	0.0	0 1.5	50				
			Dissolved	Oxygen			3.00	8.24	0.0	0.0	00				
			NH3-N				12.00	0.00	0.0	0 0.7	70		- 1		

WQM 7.0 Hydrodynamic Outputs

	SW	P Basin	Strea	m Code				Stream	Name			
		09A	2	1166				PINE C	REEK			
RMI	Stream Flow	PWS With	Net Stream Flow	Disc Analysis Flow	Reach Slope	Depth	Width	W/D Ratio	Velocity	Reach Trav Time	Analysis Temp	Analysis pH
	(cfs)	(cfs)	(cfs)	(cfs)	(ft/ft)	(ft)	(ft)		(fps)	(days)	(°C)	
Q7-1	0 Flow											
71.530	7.09	0.00	7.09	.7735	0.00334	.782	48.72	62.32	0.21	0.252	20.49	7.00
Q1-1	0 Flow											
71.530	6.37	0.00	6.37	.7735	0.00334	NA	NA	NA	0.20	0.265	20.54	7.00
Q30-	10 Flow	*										
71.530	8.30	0.00	8.30	.7735	0.00334	NA	NA	NA	0.22	0.232	20.43	7.00

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	\checkmark
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.899	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.17	Temperature Adjust Kr	\checkmark
D.O. Saturation	90.00%	Use Balanced Technology	\checkmark
D.O. Goal	6		

Friday, May 22, 2020 Version 1.0b Page 1 of 1

WQM 7.0 Wasteload Allocations

		V	VOINT	.u	vvas	leivat	1 1	IIIO	catio	115		
	SWP Basin	Stream	m Code				St	ream	Name			
	09A	21	166				PI	NE C	REEK			
NH3-N	Acute Alloc	ations	8									
RMI	Discharge	Name	Baseline Criterion (mg/L)		aseline WLA (mg/L)	Multipli Criterio (mg/L	nc	V	itiple VLA ng/L)	Critical Reach	Percent Reductio	
71.5	30 Galeton		9.3		24		9.3		24	0	0	-
NH3-N	Chronic All				·							
RMI	Discharge N	000	Baseline Criterion (mg/L)	٧	seline VLA ng/L)	Multiple Criterion (mg/L)		Multi WI (mg	A	Reach	Percent Reduction	
71.5	30 Galeton		1.86		12	1	.86		12	0	0	
Dissolv	ed Oxygen	Alloca	itions									
			2	CBO	D5	NH	3-N		Dissolv	ed Oxygen	Critical	Percent
RMI	Dischar	ge Nam	e Baselir (mg/L		Multiple (mg/L)	Baseline (mg/L)		ltiple g/L)	Baseline (mg/L)			Reductio
71	53 Galeton			25	25	12		12	3	3	0	0

WQM 7.0 D.O.Simulation

SWP Basin St	ream Code			Stream Name	
09A	21166			PINE CREEK	
RMI	Total Discharge	Flow (mgd	() Ana	lysis Temperature (°C)	Analysis pH
71.530	0.50	0		20.492	7.000
Reach Width (ft)	Reach De	oth (ft)		Reach WDRatio	Reach Velocity (fps)
48.716	0.78	2		62.318	0.208
Reach CBOD5 (mg/L)	Reach Kc (1/days)	E	leach NH3-N (mg/L)	Reach Kn (1/days)
4.26	0.79	-		1.18	0.727
Reach DO (mg/L)	Reach Kr (Kr Equation	Heach DU Goal (mg/L)
7.727	6.63	4		Tsivoglou	6
Reach Travel Time (days)		Subreach	Results		
0.252	TravTime (days)	CBOD5 (mg/L)	NH3-N (mg/L)	D.O. (mg/L)	
	0.025	4.18	1.16	7.73	
	0.050	4.09	1.14	7.73	
	0.075	4.01	1.12	7.73	
	0.101	3.93	1.10	7.74	
	0.126	3.85	1.08	7.75	
	0.151	3.77	1.06	7.77	
	0.176	3.69	1.04	7.78	
	0.201	3.62	1.02	7.80	
	0.226	3.55	1.00	7.82	
	0.252	3.47	0.98	7.83	

Friday, May 22, 2020 Version 1.0b Page 1 of 1

WQM 7.0 Effluent Limits

	SWP Basin 09A	Stream Code 21166		Stream Name			
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)		Effi. Limit Minimum (mg/L)
71.530	Galeton	PA0036820	0.500	CBOD5	25		
				NH3-N	12	24	
				Dissolved Oxygen			3

Friday, May 22, 2020 Version 1.0b Page 1 of 1

<u>APPENDIX C</u>

TOXIC SCREENING ANALYSIS

			WATER QUALITY PO	EENING ANALYS LLUTANTS OF RSION 2.7			
	Facility: Galeton			NPDES Permit N	n · DAGGGC	820	Outfall: 001
	Analysis Hardness (mg/L): 100 Stream Flow, Q ₇₋₁₀ (cfs): 7.09			Discharge Flow (ysis pH (SU): 7
	Parameter		laximum Concentration in pplication or DMRs (µg/L)	Most Stringent Criterion (µg/L)	Candidate for PENTOX8D Modeling?	Most Stringent WQBEL (µg/L)	Soreening Recommendation
-	Total Dissolved Solids		237000	500000	No		
g.	Chloride		58400	250000	No		
Group	Bromide Suifate	«	100 29400	N/A 250000	No No		
_	Total Aluminum		29400	750	NO		
	Total Antimony			5.6			
	Total Arsenic			10			
	Total Barium Total Beryllum			2400 N/A			
	Total Boron			1600			
	Total Cadmium			0.271			
	Total Chromium			N/A			
	Hexavalent Chromium Total Cobalt			10.4			
	Total Copper		9.92	9.3	Yes	48.129	Monitor
Jp 2	Free Available Cyanide			5.2			
Group	Total Cyanide			N/A			
9	Dissolved Iron Total Iron			300 1500			
	Total Lead	-	0.5	3.2	No (Value = QL)		
	Total Manganese			1000			
	Total Mercury Total Nickel			0.05 52.2			
	Total Phenois (Phenolics)			5			
	Total Selenium			5.0			
	Total Silver Total Thailium			0.24			
	Total Zinc		60.2	119.8	No		
	Total Molybdenum			N/A			
	Acrolein	<		3			
	Acrylonitrie Benzene	«		0.051			
	Bromoform	*<		4.3			
	Carbon Tetrachioride	<		0.23			
	Chloroberizene Chlorodibromomethane	«		130			
	Chloroethane	« c		N/A			
	2-Chloroethyl Vinyl Ether	«		3500			
	Chloroform Dichlorobromomethane	<		5.7 0.55			
	1,1-Dichloroethane	«		N/A			
e	1,2-Dichloroethane	•€		0.38			
ġ.	1,1-Dichloroethylene	•		33			
Group	1,3-Dichioropropylene	*		2200 0.34			
-	1,4-Dioxane	«		N/A			
	Ethylbenzene	<		530			
	Methyl Bromide Methyl Chloride	*		47 5500			
	Methylene Chloride	<		4.6			
	1,1,2,2-Tetrachioroethane	*		0.17			
	Tetrachioroethylene Toluene	<		0.69 330			
	1,2-trans-Dichioroethylene	«		140			
	1,1,1-Trichioroethane	*		610			
	1,1,2-Trichioroethane			0.69			
	Trichloroethylene Vinyl Chloride	«		2.5 0.025			
	2-Chiorophenoi	*		81			
	2,4-Dichlorophenol	«		77			
	2,4-Dimethylphenoi 4,6-Dinitro-o-Cresoi	<		130			
4	2,4-Dintrophenol	46		69			
Group	2-Nitrophenol	-6		1600			
ĕ	4-Nitrophenoi	«		470			
	p-Chloro-m-Cresol Pentachlorophenol	<		30 0.27			
	Phenol	4 C		10400			

Galeton Toxics Screening Analysis Spreadsheet (v 2.7).xism, 5/22/2020

<u>APPENDIX D</u>

PENTOXSD MODELING

Friday, May 22, 2020

Page 1 of 1

PENTOXSD

Strea Cod		RMI	Elevation (ft)		Area (sq mi)		Slope	PWS (mg				pply FC				
211	66	71.53	1292			00	0.00000		0.00			$\overline{\mathbf{v}}$				
									Stream D:	ata						
		LFY	Trib Flow	Stream			Rch Width	Rch	Rch Velocity	Rch Trav Time	<u>Tributa</u> Hard	pH pH	Stream Hard	pH	Analys Hard	pH
		(cfsm)	(cfs)	(cfs))		(ft)	(ft)	(fps)		(mg/L)		(mg/L)		(mg/L)	
27-10		0.1	0	7.0	09	0	0	0	0	0	100	7	100	0	0	(
Qh			0		0	0	0	0	0	0	100	7	0	0	0	(
								D	ischarge D)ata						
	Nar	ne	Perm		xisting Disc Flow		mitted Disc Flow	Design Disc Flow	Reserve Factor	AFC PMF	CFC PMF	THH	CRL	Disc Hard	Disc pH	
					(mgd)		mgd)	(mgd)						(mg/L)		
	Gale	eton	PA0036	1820	0.5		0.5	0.5	0	0	0	0	0	100	7	
	-								arameter D		-		500			
	Pa	rameter N	lame		Disi Cor (µg/l	C	Trib Conc (µg/L)	Disc Daily CV	Hour		c CV	Fate Coe		Mod	Max Disc Conc (µg/L)	
COPPE	R				9.9	12	0	0.5	5 0.5	0	0	0	0	- 1	0	
Strea		RMI	Elevation (ft)		rainage Area (sq mi)		Slope	PWS \				pply FC				
211	66	70.68	1277		Street Street Laboratory	00	0.00000		0.00			abla				
									Stream Da	ata						
		LFY	Trib Flow	Stream			Rch Width	Rch Depth	Rch Velocity	Rch Trav Time	<u>Tributa</u> Hard	pH	<u>Stream</u> Hard	pH	<u>Analys</u> Hard	pH
	-	(cfsm)	(cfs)	(cfs))		(ft)	(ft)	(fps)	(days)	(mg/L)		(mg/L)		(mg/L)	
27-10		0.1	0	7.3	37	0	0	0	0	0	100	7	100	0	0	(
Qh			0		0	0	0	0	0	0	100	7	0	0	0	(
									ischarge D)ata						
	Nar	me	Perm		xisting Disc Flow		rmitted Disc Flow	Design Disc Flow	Reserve Factor	AFC PMF	CFC PMF	THH	PMF	Disc Hard	Disc pH	
					(mgd)	(mgd)	(mgd)						(mg/L)		
					0		0	0	0	0	0	0	0	100	7	
									arameter D		_					
	Pa	rameter N	lame		Dis Cor (µg/l	C	Trib Conc (µg/L)	Disk Daily CV	Hourt		c CV	Coe		Orit Mod	Max Disc Conc (μg/L)	
COPPE	R				(P8-		0	0.5	5 0.5		0	0	0	1	(pg/c)	

Version 2.0d

PENTOXSD Analysis Results

Hydrodynamics

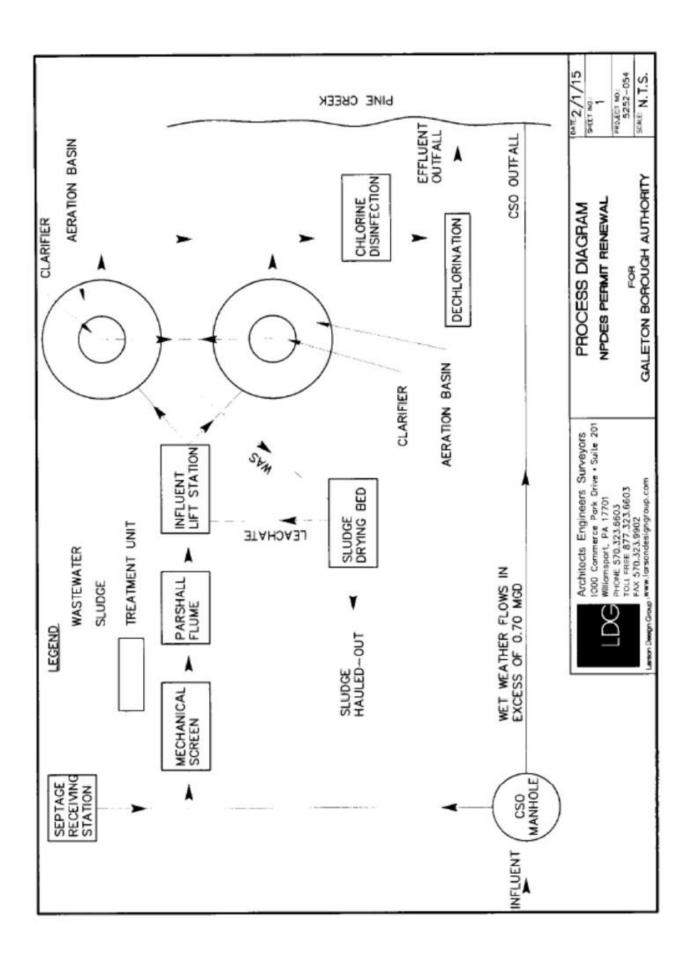
S	WP Basin	<u>n</u>	Stream	n Code:			Strea	m Name	<u>:</u>		
	09A		21	166							
RMI	Stream Flow (cfs)	PWS With (cfs)	With Stream Flow	Disc Analysis Flow (cfs)	Reach Slope	Depth (ft)	Width (ft)	WD Ratio	Velocity (fps)	Reach Trav Time (days)	CMT (min)
					Q7-	-10 Hyd	irodyna	amics			
71.530	7.09	0	7.09	0.7735	0.0033	0.7817	48.718	62.318	0.2065	0.2516	66.179
70.680	7.37	0	7.37	NA	0	0	0	0	0	0	NA
					Q	h Hydr	odynar	nics			
71.530	41.158	0	41.158	0.7735	0.0033	1.6327	48.716	29.838	0.5272	0.0985	25.984
70.680	42.575	0	42.575	NA	0	0	0	0	0	0	NA

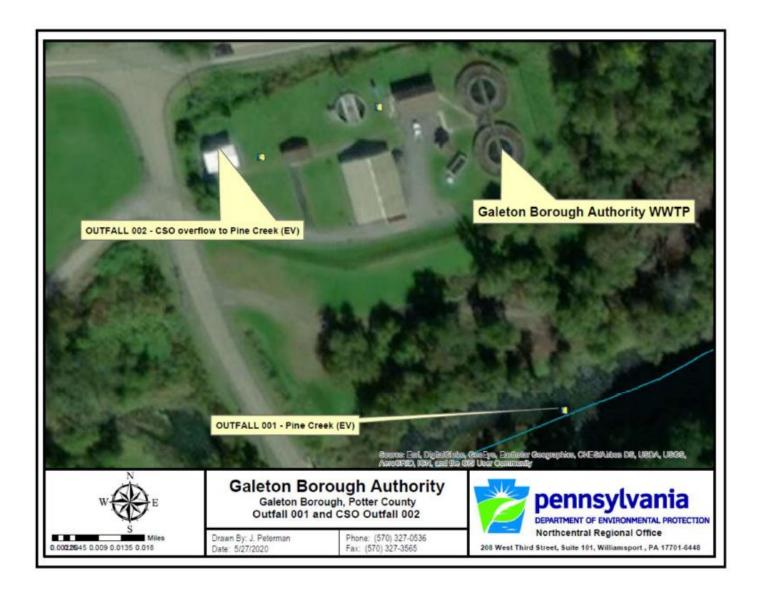
Friday, May 22, 2020 Version 2.0d Page 1 of 1

PENTOXSD Analysis Results

Wasteload Allocations

							-			
RMI	Name F	Permit Nur	mber							
71.53	Galeton	PA00368	320							
					AFC					
Q7-10:	CCT (min)	15	PMF	0.476	Analysis	pH	7	Analysis	Hardness	100
	Parameter		Conc	Stream CV	Trib	Fate Coef		WQC	WQ Obj	WLA
r:			(µg/L)		(µg/L)			(µg/L)	(µg/L)	(µg/L)
	COPPER		0	0	0	0		13.439	13.999	75.089
		D	issolved	WQC. C	hemical tran	nslator	of 0	.96 applied.		
				(FC					
Q7-10:	CCT (min)	66.179	PMF	1	Analysis	рН	7	Analysis	s Hardness	100
			Stream	Stream		Fate		WQC	WQ	WLA
	Parameter	Conc. (µg/L)		CV	Conc. (µg/L)	Coef		(µg/L)	Obj (µg/L)	(µg/L)
	COPPER		0	0	0	0		8.956	0.320	94.839
		D	issolved	WQC. C	hemical tran	nslator	of 0	.96 applied.		
				1	ТНН					
Q7-10:	CCT (min)	66.179	PMF	NA	Analysis	pH	NA	Analysis	s Hardness	NA
		\$	Stream	Stream	Trib	Fate		WQC	WQ	WLA
	Parameter		Conc (µg/L)	CV	Conc (µg/L)	Coef		(µg/L)	Obj (µg/L)	(µg/L)
	COPPER		0	0	0	0		NA	NA	NA
				(CRL					
Qh:	CCT (min)	25.984	4 PMF	1						
	_		Stream	Stream	Trib	Fate		WQC	WQ	WLA
	Parameter		Conc (µg/L)	CV	Conc (µg/L)	Coe	ef.	(µg/L)	Obj (µg/L)	(µg/L)
	COPPER		0	0	0	0		NA	NA	NA


PENTOXSD Analysis Results


Recommended Effluent Limitations

SWP Basin	Stream Code			Stream			
09A	21166			PINE C	REEK		
RMI	Name		Permit Number				
71.53	Galeton	PA00	36820	0.5000	_		
		Effluent			Max.	Most S	tringent
	Parameter	Limit (µg/L)	Gover		Daily Limit (µg/L)	WQBEL (µg/L)	WQBEL Criterion
COPPER		9.92	INP	UΤ	15.477	48.129	AFC

<u>APPENDIX E</u>

FACILITY MAP AND SCHEMATIC

EPA Pre-Draft Comments/Discussion

From: Price-Fay, Michelle
To: Randis, Thomas

Cc: Hartranft, Nicholas; Peterman, Jonathan; Furjanic, Sean; Patel, Jay (DEP); Hales, Dana; Martinsen, Jessica

Subject: [External] PA0036820 Galeton CSO comments

Date: Friday, February 5, 2021 8:09:52 PM

Attachments: CSO LETTER TO EPA 09June2020 .pdf

4 15 POLICY WP Memo to Begin Rulemaking Chapter 92a.pdf

ATTENTION: This email message is from an external sender. Do not open links or attachments from unknown sources. To report suspicious email, forward the message as an attachment to CWOPA_SPAM@pa.gov.

Hello Tom.

EPA is pleased to provide preliminary informal comments based upon its review of the draft PADEP CSO permit (provided to EPA on October 22, 2020) and associated Long Term Control Plan for:

Galeton Borough Authority Sewer System STP

Permit Number: PA0036820

The draft permit and fact sheet were submitted to EPA for informal review. EPA review and the comments provided reflect the recent understanding between the EPA Region III Water Director and PADEP Deputy Secretary for Water Programs regarding how to proceed with reissuance of permits with CSOs and LTCPs consistent with Section 402(q) of the CWA and EPA's 1994 CSO Policy. As you know, consistent with that understanding, PADEP has committed to making changes to its CSO program as noted in the its June 9, 2020 letter to EPA and its April 15, 2020 memo (see attached). PADEP's memo documents its commitment to initiate the regulatory revisions process for modifying its compliance schedule regulations at 25 Pa. Code § 92a.51(a), so that schedules for LTCP implementation can be placed in an NPDES permit. PADEP will draft CSO permits using the template language agreed upon by PADEP and EPA. EPA notes that once PADEP's compliance schedule regulations are revised and final, the template language will need to be modified to incorporate a CSO compliance schedule that meets the requirements of 40 CFR 122.47 and includes the final compliance date for LTCP implementation. EPA's Phase 2 e-Reporting rule requires electronic reporting of Sewer Overflow/Bypass Events, and PADEP will need to make modifications to this template that will be necessary to address the requirements of the e-Reporting rule that is effective at the time that the permit is issued.

In addition, consistent with the understanding between EPA and PADEP, once PADEP's proposed seasonal E. coli standard becomes effective, PADEP will then incorporate E. coli monitoring in subsequently reissued NPDES permits and ensure it is included in CSO post-construction compliance monitoring (PCCM) plans to verify compliance with water quality standards and designated uses. Consistent with the CSO Policy, EPA notes that there will also need to be a requirement added to implement a PCCM plan with an established schedule in the NPDES permit once the facility begins to implement its approved plan.

EPA offers the following comments based on the Galeton draft permit and supporting documents, as well as the phone conversation between EPA and PADEP on January 14, 2021:

1. Regarding the permit:

- a. Based on our phone conversation and email correspondence, it is understood that at this time Galeton will be fully separating its combined system. If that remains accurate, EPA recommends that PADEP impose complete separation of the combined sewer system as the performance standard in Part C.II.C.2. (CSO Water Quality-Based Effluent Limit) of the permit. PADEP could choose to impose the 85% capture by volume standard now, and the separation standard once the facility documents it has achieved 85% capture, but as discussed this is not an expectation of EPA's CSO Policy.
- b. If the 85% capture standard remains in the permit, we would recommend that the facility define the design conditions under which 85% capture by volume is expected to be achieved and that this be included in Part C.II.C.2 of the permit (when available).
- c. As PADEP works with Galeton, it should ensure that the end date of 2042 is the appropriate date for completing implementation of the LTCP when considering the remaining work to be undertaken by the community.

2. Regarding the Fact Sheet:

- a. The fact sheet explains that CSO outfall 002 bypasses the primary treatment units at the plant, although flows do receive solids and floatable removal and disposal. Per our email and phone conversations, this discharge is not a CSO (as it is located after the headworks of the plant) and cannot be considered a CSO-related bypass since it does not meet the minimum expectations of the CSO Policy. EPA recommends that this discharge would be most appropriate handled by an enforcement action outside of the permit. As they are currently configured, the permit would not be able to authorize discharges via outfall 002.
- b. Please revise the fact sheet to clarify or document any changes PADEP will make to the permit based on our discussions and/or conversations with the community.

3. Regarding the LTCP:

- a. The LTCP did not appear to have a PCCM plan. PADEP should ensure that Galeton develops this plan and that its implementation is required in the permit, when appropriate. Even for collection systems that are fully separating, PCCM is important to define the steps by which the permittee will document full separation of its system, which could even include monitoring of former CSO outfalls that are not closed/sealed but are converted into stormwater outfalls.
- b. EPA recognizes the amount of progress made by this community to date on CSO outfall removal.

Thank you for all of your discussions regarding this permit. Should you have any questions, please feel free to contact me or Dana Hales, the lead permit reviewer for Pennsylvania. Dana is copied on this email and can be reached via telephone at 215-814-2928.

Sincerely, Michelle