

Southcentral Regional Office CLEAN WATER PROGRAM

Application Type Renewal
Facility Type Municipal
Major / Minor Minor

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

 Application No.
 PA0037711

 APS ID
 30580

 Authorization ID
 1183397

Applicant and Facility Information							
Applicant Name	Everett Borough Area Municipal Authority Bedford County	Facility Name	Everett STP				
Applicant Address	100 Mechanic Street	Facility Address	183 Sewer Plant Road				
	Everett, PA 15537-1177	<u> </u>	Everett, PA 15537-1177				
Applicant Contact	Kirk Feaster	Facility Contact	Kirk Feaster				
Applicant Phone	(814) 652-9202	Facility Phone	(814) 652-9202				
Client ID	87467	Site ID	249247				
Ch 94 Load Status	Not Overloaded	Municipality	Everett Borough				
Connection Status	No Limitations	County	Bedford				
Date Application Rece	eived May 15, 2017	EPA Waived?	No				
Date Application Acce	pted _ May 25, 2017	If No, Reason	Significant CB Discharge				

Summary of Review

Approve	Deny	Signatures	Date
Х		Nicholas Hong, P.E. / Environmental Engineer Nick Hong (via electronic signature)	February 10, 2021
		Daniel W. Martin, P.E. / Environmental Engineer Manager	
		Maria Bebenek, P.E. / Environmental Program Manager	

Summary of Review

The application submitted by the applicant requests a NPDES renewal permit for the Everett Area Wastewater Treatment Plant located at 183 Sewer Plant Road, Everett, PA 15537 in Bedford County, municipality of Everett Borough. The existing permit became effective on December 1, 2012 and expired on November 30, 2017. The application for renewal was received by DEP Southcentral Regional Office (SCRO) on May 15, 2017. The processing of the NPDES renewal was delayed until the Consent Order and Agreement was executed.

The purpose of this Fact Sheet is to present the basis of information used for establishing the proposed NPDES permit effluent limitations. The Fact Sheet includes a description of the facility, a description of the facility's receiving waters, a description of the facility's attainment/non-attainment assessment status, and a description of any changes to the proposed monitoring/sampling frequency. Section 6 provides the justification for the proposed NPDES effluent limits derived from technology based effluent limits (TBEL), water quality based effluent limits (WQBEL), total maximum daily loading (TMDL), antidegradation, anti-backsliding, and/or whole effluent toxicity (WET). A brief summary of the outlined descriptions has been included in the Summary of Review section.

The subject facility is a 1.08 MGD (hydraulic design) treatment facility. The annual average flow for the facility is 0.87 MGD. The annual average flow rate is used to determine allowable mass loadings in NPDES permits. VIA the Consent Order and Agreement dated for February 4, 2021, the applicant shall make necessary upgrades to eliminate the SSOs and hydraulic overload conditions by January 31, 2026. The NPDES application has been processed as a Minor Sewage Facility (Level 2) due to the type of sewage and the design flow rate for the facility. The applicant disclosed the Act 14 requirement to Bedford County Commissioners, Bedford County Planning Commission, Borough of Everett, Borough of Everett Area Municipal Authority, Everett Borough Planning Commission, Borough of Everett Area Municipal Authority, and West Providence Township and the notice was received by the parties in April 2017. A planning approval letter was not necessary as the facility is neither new or expanding.

Utilizing the DEP's web-based Emap-PA information system, the receiving waters has been determined to be Raystown Branch Juniata River. The sequence of receiving streams that the Raystown Branch Juniata River discharges into are the Juniata River and the Susquehanna River which eventually drains into the Chesapeake Bay. The subject site is subject to the Chesapeake Bay implementation requirements. The receiving water has protected water usage for migratory fishes (MF) and trout stocking fishes (TSF). No Class A Wild Trout fisheries are impacted by this discharge. The absence of high quality and/or exceptional value surface waters removes the need for an additional evaluation of anti-degradation requirements.

Raystown Branch Juniata River is a Category 2 stream listed in the 2020 Integrated List of All Waters (formerly 303d Listed Streams). This stream is an attaining stream that supports aquatic life. The receiving waters is not subject to a total maximum daily load (TMDL) plan to improve water quality in the subject facility's watershed.

The existing permit and proposed permit differ as follows:

- Due to the Chesapeake Bay Implementation Plan, the monitoring frequency for nitrogen species and phosphorus will be increased to 2x/wk.
- Monitoring will be required for total copper at least 1x/quarter.

The designated Sludge/Biosolids disposal location is West Providence Township (Bedford County), LoJo Farm Field 32 (Bedford County), and LoJo Farm Field 13 (Bedford County) for agricultural utilization.

The proposed permit will expire five (5) years from the effective date.

Based on the review in this report, it is recommended that the permit be drafted. DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Any additional information or public review of documents associated with the discharge or facility may be available at PA

Summary of Review				
DEP Southcentral Regional Office (SCRO), 909 Elmerton Avenue, Harrisburg, PA 17110. To make an appointment for file review, contact the SCRO File Review Coordinator at 717.705.4700.				

1.0 Applicant

1.1 General Information

This fact sheet summarizes PA Department of Environmental Protection's review for the NPDES renewal for the following subject facility.

Facility Name: Everett Area Wastewater Treatment Plant

NPDES Permit # PA0037711

Physical Address: 183 Sewer Plant Road

Everett, PA 15537

Mailing Address: 100 Mechanic Street

Everett, PA 15537

Contact: Kirk Feaster

Manager

watersewer@embarqmail.com

Consultant: Kevin Nester

Project Engineer

GHD

321 Washington Street Huntingdon, PA 16652 Kevin.nester@ghd.com

1.2 Permit History

Summarize SSO

Sanitary sewer overflows occur due to hydraulic overload conditions created by inflow and infiltration and are discharged through Outfall 004 (Bloody Run SSO) and the SSO 002 (at the WWTP).

A COA was signed on September 21, 2012 to address ongoing SSOs caused by inflow and infiltration. The COA required the elimination of the SSOs by October 31, 2018.

An amended COA was signed on September 9, 2014 to revise timelines for completion of corrective actions. The timelines were not revised in the amendment.

A superseded COA was signed on February 4, 2021. The COA requires the facility to eliminate the SSOs by January 31, 2026. Refer to the COA for the complete correction actions and time schedules.

The permit submittal included the following information.

- NPDES Application
- Flow Diagrams

Correspondence

- Consent Order and Agreement dated March 21, 2012
- Borough of Everett Area MA Letter dated May 7, 2019
- DEP Letter dated for July 3, 2019
- DEP Letter dated August 21, 2019

- Borough of Everett Area MA Letter dated September 15, 2019
- Consent Order and Agreement dated February 4, 2021

2.0 Treatment Facility Summary

2.1 Site location

The physical address for the facility is 183 Sewer Plant Road, Everett, PA 15537. A topographical and an aerial photograph of the facility are depicted as Figure 1 and Figure 2.

Figure 1: Topographical map of the subject facility

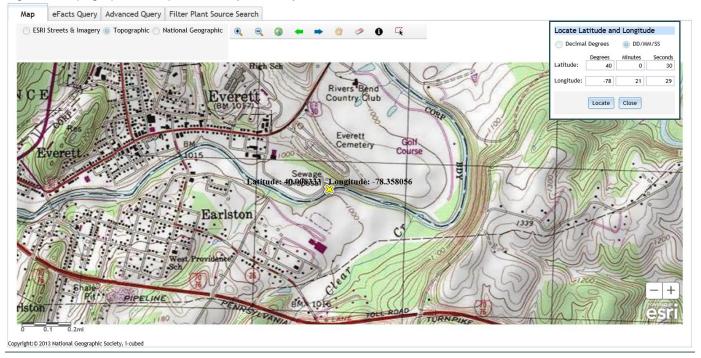
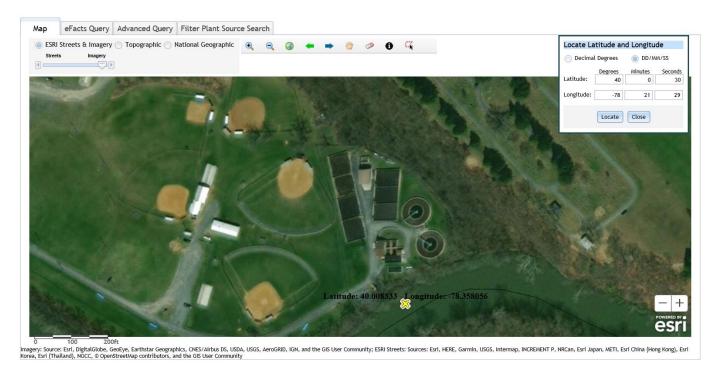



Figure 2: Aerial Photograph of the subject facility

2.1.2 Sources of Wastewater/Stormwater

The facility received contributions of flow from multiple municipalities and has contributions from an industrial user.

The following is a summary of municipalities served.

Municipalities Served	Flow Contribution	Population
Everett Borough	55%	1834
West Providence Township	45%	1742
Total	100%	3576

Industrial users

The facility has the following industrial users:

• Lampire Biological Laboratories with an average wastewater flow of 0.0024 MGD. Lampire is a business that prepares raw material blood, glands, tissues or organs.

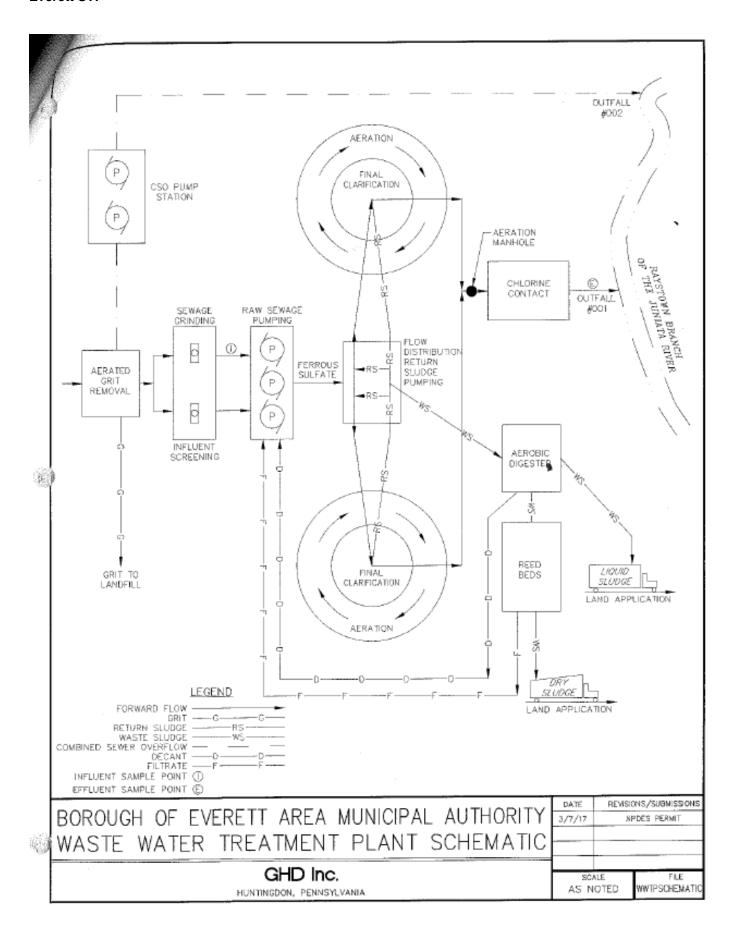
Sanitary Sewer Overflow

The facility consists of two sanitary sewer outfalls. The table below summarizes the number of sanitary sewer overflows from 2012 to October 2020.

Number of Sanitary Sewer Overflows for SSO-002 (WWTP)										
Month	2012	2013	2014	2015	2016	2017	2018	2019	2020	
January	1	1	0	0	0	1	0	1	1	
February	1	0	0	0	1	0	3	2	0	
March	0	1	0	0	0	1	0	0	1	
April	1	1	0	1	0	0	2	2	1	
May	2	1	1	0	0	2	1	2	0	
June	0	3	3	2	1	1	0	0	1	
July	2	1	0	0	0	2	1	1	5	
August	1	1	0	0	0	1	5	0	0	
September	1	0	0	0	1	0	9	0	1	
October	1	0	1	0	0	1	2	0	1	
November	0	0	0	0	0	0	1	No data	No data	
December	1	0	0	0	0	0	3	No data	No data	
Total	11	9	5	3	3	9	27	8	11	
Votes:										
- Data for 2019	and 2020 a	bstracted f	rom COA do	ated for Feb	ruarv 4. 20	21				

Data for 2019 and 2020 abstracted from COA dated for February 4, 2021

	Nui	mber of Sa	nitary Sewe	er Overflov	vs for SSO-0	003 (Blood	y Run PS)		
Month	2012	2013	2014	2015	2016	2017	2018	2019	2020
January	0	1	0	0	0	0	0	0	0
February	1	0	0	0	0	0	2	0	0
March	0	0	0	0	0	1	0	0	0
April	0	0	0	1	0	0	2	0	0
May	1	0	1	0	0	2	0	0	0
June	0	1	2	2	2	1	0	0	1
July	1	0	0	0	0	2	1	1	1
August	1	0	0	0	0	1	3	0	0
September	1	0	0	0	0	0	8	0	0
October	1	0	1	0	0	1	1	0	0
November	0	0	0	0	0	0	0	No data	No data
December	0	0	0	0	0	0	0	No data	No data
Total	6	2	4	3	2	8	17	1	2
lotes:									


2.2 Description of Wastewater Treatment Process

The subject facility is a 1.08 MGD (hydraulic design capacity) design flow facility. The annual average design flow is 0.87 MGD. The subject facility treats wastewater using a Schreibers tank(s), a post aeration tank, a chlorine contact tank, an aerobic digester(s), and reed beds. The facility is being evaluated for flow, pH, dissolved oxygen, TRC, CBOD, TSS, fecal coliform, nitrogen species, and phosphorus. The existing permits limits for the facility is summarized in Section 2.4.

The treatment process is summarized in the table.

	Treatment Facility Summary								
Treatment Facility Na	me: Everett STP								
Waste Type	Degree of Treatment	Process Type	Disinfection	Avg Annual Flow (MGD)					
Sewage	Secondary	Counter Current	Gas Chlorine	0.87					
Hydraulic Capacity	Organic Capacity			Biosolids					
(MGD)	(lbs/day)	Load Status	Biosolids Treatment	Use/Disposal					
1.08	1021	Not Overloaded							

A schematic of the process is shown in the figure.

2.3 Facility Outfall Information

The facility has the following outfall information.

Outfall No.	001	Design Flow (MGD)	.87
Latitude	40° 0' 30.62"	Longitude	-78° 21' 29.17"
Wastewater D	escription: Effluent		

The subject facility outfall is within the vicinity of another sewage/wastewater outfall. The downstream outfall is Snake Spring Township STP (PA0084077) which is about 6 miles from the subject facility.

2.3.1 Operational Considerations- Chemical Additives

Chemical additives are chemical products introduced into a waste stream that is used for cleaning, disinfecting, or maintenance and which may be detected in effluent discharged to waters of the Commonwealth. Chemicals excluded are those used for neutralization of waste streams, the production of goods, and treatment of wastewater.

The subject facility utilizes the following chemicals as part of their treatment process.

Ferrous sulfate (Odophos) for phosphorus removal

2.4 Existing NPDES Permits Limits

The existing NPDES permit limits are summarized in the table.

PART A - EFFLUENT LIMITATIONS, MONITORING, RECORDKEEPING AND REPORTING REQUIREMENTS									
I. A. For Outfall 001	_, Latitude _40° 0′ 30.61" _, Longitude _78° 21′ 29.16" _, River Mile Index _81.99 _, Stream Code _13349								
Receiving Waters: Raystown Branch Juniata River									
Type of Effluent:	Sewage								

- 1. The permittee is authorized to discharge during the period from <u>December 1, 2012</u> through <u>November 30, 2017</u>.
- Based on the anticipated wastewater characteristics and flows described in the permit application and its supporting documents and/or amendments, the following effluent limitations and monitoring requirements apply (see also Additional Requirements and Footnotes).

			Monitoring Requirements					
Parameter	Mass Units	(lbs/day) (1)		Concentrations (mg/L)				Required
raiametei	Average Monthly	Daily Maximum	Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report	XXX	XXX	XXX	XXX	Continuous	Measured
pH (S.U.)	XXX	XXX	6.0	XXX	XXX	9.0	1/day	Grab
Dissolved Oxygen	XXX	XXX	5.0	XXX	XXX	XXX	1/day	Grab
Total Residual Chlorine	XXX	XXX	XXX	0.5	XXX	1.6	1/day	Grab
CBOD5	181	290 Wkly Avg	XXX	25	40	50	1/week	24-Hr Composite
BOD5 Raw Sewage Influent	Report	Report	XXX	Report	XXX	XXX	1/week	24-Hr Composite
Total Suspended Solids	218	327 Wkly Avg	XXX	30	45	60	1/week	24-Hr Composite
Total Suspended Solids Raw Sewage Influent	Report	Report	XXX	Report	XXX	XXX	1/week	24-Hr Composite
Fecal Coliform (CFU/100 ml) May 1 - Sep 30	XXX	XXX	XXX	200 Geo Mean	XXX	1,000	1/week	Grab
Fecal Coliform (CFU/100 ml) Oct 1 - Apr 30	XXX	XXX	XXX	2,000 Geo Mean	XXX	10,000	1/week	Grab
Total Phosphorus	15	XXX	XXX	2.0	XXX	4.0	1/week	24-Hr Composite

Samples taken in compliance with the monitoring requirements specified above shall be taken at the following location(s): at Outfall 001

PART A - EFFLUENT LIMITATIONS, MONITORING, RECORDKEEPING AND REPORTING REQUIREMENTS									
I. B. For Outfall 001	_, Latitude _40° 0′ 30.61" _, Longitude _78° 21′ 29.16" _, River Mile Index _81.99 _, Stream Code _13349								
Receiving Waters:	Raystown Branch Juniata River								
Type of Effluent:	Sewage								

^{1.} The permittee is authorized to discharge during the period from December 1, 2012 through November 30, 2017.

Based on the anticipated wastewater characteristics and flows described in the permit application and its supporting documents and/or amendments, the following effluent limitations and monitoring requirements apply (see also Additional Requirements and Footnotes).

		Ef	Monitoring Re	quirements			
Parameter (1)	Mass Ur	nits (<mark>lbs</mark>)	Cor	centrations (m	Minimum (2)	Required	
raiametei ··	Monthly	Annual	Minimum	Monthly Average	Maximum	Measurement Frequency	Sample Type
AmmoniaN	Report	Report	XXX	Report	XXX	1/week	24-Hr Composite
KieldahlN	Report	XXX	XXX	Report	XXX	1/week	24-Hr Composite
Nitrate-Nitrite as N	Report	XXX	XXX	Report	XXX	1/week	24-Hr Composite
Total Nitrogen	Report	Report	XXX	Report	XXX	1/month	Calculation
Total Phosphorus	Report	Report	XXX	Report	XXX	1/week	24-Hr Composite
Net Total Nitrogen	Report	15,890	XXX	XXX	XXX	1/month	Calculation
Net Total Phosphorus	Report	2,119	XXX	XXX	XXX	1/month	Calculation

Samples taken in compliance with the monitoring requirements specified above shall be taken at the following location(s): Outfall 001.

Footnotes:

(1) See Part C for Chesapeake Bay Requirements.

3.0 Facility NPDES Compliance History

3.1 Summary of Inspections

A summary of the most recent inspections during the existing permit review cycle is as follows.

The DEP inspector noted the following during the inspection.

05/16/2013:

- The plant was recently approved to install a new vertical mechanical fine screen that will replace 1 of the 2 comminutors. The remaining comminutor will be used as a backup unit if needed. Both comminutors were in operation during inspection.
- The south Schreiber unit skimmer was rusted and corroded substantially. The weir contained solids. The facility stated that the scraper in the bottom of the unit does not function properly causing some sludge to remain on the bottom of the clarifier. The sludge denitrifies and was causing the floating solids in the weir. The facility stated they are planning to fix this issue as the weather becomes more dry and the north unit will be able to handle the load of the plant. Currently the facility will pump out the south unit and repair/replace the scraper.
- The chlorine contact tank had pin floc with some solids leaving in the effluent. The facility stated this is due to the south unit. When the unit is repaired this will eliminate the problem. The facility was advised to pump and clean solids from the chlorine contact tank.

⁽²⁾ This is the minimum number of sampling events required. Permittees are encouraged, and it may be advantageous in demonstrating compliance, to perform more than the minimum number of sampling events required.

05/06/2014:

- The North Schreiber clarifier had minor amount of algae and some minor pin-floc.
- The South Schreiber clarifier unit also had some algae and minor pin-floc. The skimmer appeared to be substantially rusted. The facility stated that a new skimmer will be installed once there is an opening with drier weather.
- The facility stated that they have been conducting smoke testing and have been removing I&I from the collection system which appeared to be aiding in reducing the occurrence of overflows from Outfall 002.

05/12/2015:

Nothing significant to report

02/03/2016:

- The facility stated that they observed a sanitary sewer overflow at Outfall 002 and it was reported to the DEP.
- The chlorine contact was cloudy and had visible solids. Solids carryover from a portion of the clarifier in the North side of the Schreiber unit was noticed. The operator believes the solids loss is due to high flows entering the plant. The operator intends to retain the solids by temporarily shutting off the air the Schreiber unit and/or waste solids to the digester.
- The facility was advised to develop a High Flow Management Plan to mitigate solids loss during rain events.

05/26/2016:

- The facility stated that the solids washout in February 2016 was caused by a blockage in the conveyance line between the north side SBR and the post aeration tank. The facility decided to jet the line on a quarterly basis to prevent the possibility of the line clogging up in the future.
- The facility was advised that effluent composite samples should be flow proportional. The flow meter should be interfaced with composite sampler.
- The facility was advised that the monthly Chesapeake Bay nutrient report has been replaced with a new Annual Chesapeake Bay spreadsheet.

01/10/2017:

Nothing significant to report

05/24/2017:

- The facility is currently servicing the fine screen and anticipates that it would be back in service in about 2 weeks. The unit needed a new basket and brushes.
- The facility replaced the metal scum baffles on both Schreiber tanks.
- One of the Schreiber units had the air line and diffuser replaced.
- The Borough is working on the SSO separation. The COA deadlines for the new sewer lines to be installed by December 15, 2017 and for the two SSOs to be eliminated by October 31, 2018.

10/01/2019:

- The influent comminutor was replaced with a standard bar screen. About half the influent flow goes through a fine screen and the remainder through the bar screen only.
- Collection systems repair under the COA were completed in 2017. Most lateral pipe repairs and replacement were completed but some still remain.
- COA required elimination of SSO for outfalls 002 and 004 by October 31, 2018. Several SSO discharges occurred
 from both outfalls since the deadline. SSO events occurred in September 2018, October 2018, April 2019, May
 2019, and July 2019 due to heavy rain events.

NPDES Permit Fact Sheet Everett STP

12/24/2020:

 An administrative review of the annual Chesapeake Bay report was conducted. The facility was utilizing an older release of the Chesapeake Bay supplemental spreadsheet. The facility was advised to use a newer release of the supplemental form.

3.2 Summary of DMR Data

A review of approximately 1-year of DMR data shows that the monthly average flow data for the facility below the design capacity of the treatment system. The maximum average flow data for the DMR reviewed was 0.5233 MGD in April 2020. The hydraulic design capacity of the treatment system is 1.08 MGD.

DMR Data for Outfall 001 (from December 1, 2019 to November 30, 2020)

Parameter	NOV-20	OCT-20	SEP-20	AUG-20	JUL-20	JUN-20	MAY-20	APR-20	MAR-20	FEB-20	JAN-20	DEC-19
Flow (MGD)												
Average Monthly	0.3257	0.2881	0.3176	0.2822	0.3600	0.2844	0.3954	0.5233	0.4642	0.3695	0.4106	0.3286
Flow (MGD)												
Daily Maximum	0.9557	1.4355	1.0560	0.6715	1.1627	0.9275	1.1822	1.6657	1.5892	0.7771	1.5776	1.1036
pH (S.U.)												
Minimum	6.8	6.9	6.9	6.8	6.9	6.8	6.9	6.9	6.7	7.0	6.7	6.7
pH (S.U.)												
Maximum	7.3	7.4	7.3	7.4	7.3	7.3	7.3	7.3	7.3	7.2	7.3	7.3
DO (mg/L)												
Minimum	6.6	7.6	7.4	7.0	7.0	6.9	7.0	8.5	7.2	8.5	5.7	8.9
TRC (mg/L)												
Average Monthly	0.5	0.45	0.39	0.35	0.37	0.40	0.39	0.36	0.37	0.36	0.38	0.42
TRC (mg/L)												
Instantaneous												
Maximum	1.54	0.88	0.66	0.62	0.56	0.63	0.70	0.76	0.83	0.67	0.69	0.68
CBOD5 (lbs/day)												
Average Monthly	9.4	5.9	9.8	6.7	7.3	6.3	8.7	12.7	14.1	< 9.9	10.3	14.6
CBOD5 (lbs/day)												
Weekly Average	16.0	7.3	22.8	9.0	10.3	8.9	12.7	14.6	29.1	15.8	12.7	30.8
CBOD5 (mg/L)	4.4	0.0	0.0	0.0	0.0	0.0	0.4	0.5	4.4	0.0	0.50	4.0
Average Monthly	4.1	3.0	3.2	< 3.0	3.0	3.2	< 3.1	3.5	4.1	< 3.6	< 3.56	4.2
CBOD5 (mg/L)	7.0	0.0	0.0	0.0	0.0	4.0	0.5	4.0	5.0	4.5	5.05	7.0
Weekly Average	7.6	3.0	3.9	< 3.0	3.0	4.0	3.5	4.8	5.2	4.5	5.25	7.2
BOD5 (lbs/day)												
Raw Sewage Influent Average												
Monthly	437	347	498	458	375	208	120	182	267	278	279	242
BOD5 (lbs/day)	437	347	490	436	3/3	200	120	102	207	210	219	242
Raw Sewage Influent												
<pre> </pre>	668	472	852	545	575	277	226	239	326	509	462	503
BOD5 (mg/L)	000	712	002	343	373	211	220	200	320	303	702	303
Raw Sewage Influent												
 Average												
Monthly	200	185	181	209	168	107	52	51	92	105	99	88
TSS (lbs/day)		100			100	107	02	Ŭ,	Ü2	100	- 55	
Average Monthly	12.5	6.7	13.4	6.9	7.4	4.7	4.8	13.9	10.9	< 4.5	< 7.2	15.5
TSS (lbs/day)		<u> </u>						. 3.3	. 5.5	1110		
Raw Sewage Influent												
 Average												
Monthly	426	353	315	6.9	353	176	63	149	144	131	168	119

NPDES Permit Fact Sheet Everett STP

	,	1		ı	1	ı	1	1	1	ı	1	· · · · · · · · · · · · · · · · · · ·
TSS (lbs/day)												
Raw Sewage Influent												
 br/> Daily Maximum	716	446	717	8.4	722	259	110	200	209	179	398	341
TSS (lbs/day)												
Weekly Average	17.4	9.6	28.2	8.4	13.7	10.1	6.8	19.0	25.7	5.6	10.3	44.2
TSS (mg/L)												
Average Monthly	5.5	3.6	4.3	3.1	2.9	2.4	1.8	4.0	3.2	< 1.7	< 2.60	3.7
TSS (mg/L)												
Raw Sewage Influent												
 br/> Average												
Monthly	193	184	109	3.1	152	88	25	39	52	50	65	42
TSS (mg/L)												
Weekly Average	8.2	5.6	11.0	3.6	4.0	5.6	2.0	6.4	4.8	2.0	4.40	5.2
Fecal Coliform												
(CFU/100 ml)												
Geometric Mean	74.1	10.0	9.7	11.6	14.9	20.3	12.1	9.9	18.4	43.2	17.4	8.6
Fecal Coliform			-						_			
(CFU/100 ml)												
Instantaneous												
Maximum	2419.6	23.1	35.9	13.4	20.1	33.1	23.1	18.9	25.3	64.4	93.2	24.9
Nitrate-Nitrite (mg/L)			00.0			55.1				0	00.2	
Average Monthly	< 6.645	< 5.174	< 6.923	< 6.427	< 5.248	< 5.177	< 7.085	< 6.644	< 6.981	< 5.421	< 7.18	< 6.801
Nitrate-Nitrite (lbs)	1 0.0 10	(0.17)	10.020	(0.12)	10.210	(0.117	17.000	10.011	1 0.001	(0.12)	17110	1 0.001
Total Monthly	< 482	< 307	< 575	< 432	< 396	< 305	< 609	< 791	< 770	< 416	< 679	< 813
Total Nitrogen (mg/L)	1.02	1001	1010	102	1000	1000	1 000	1701	1110	110	10.0	1010
Average Monthly	< 12.298	< 5.674	< 7.995	< 7.449	< 5.748	< 6.093	< 7.585	< 7.740	< 7.629	< 6.114	< 8.741	< 8.972
Total Nitrogen (lbs)	12.200	V 0.07 1	V 7.000	77.110	V 0.7 10	V 0.000	17.000	77.710	17.020	V 0.111	V 0.7 11	V 0.072
Effluent Net 												
Total Monthly	< 833	< 338	< 654	< 502	< 434	< 361	< 653	< 901	< 835	< 469	< 805	< 1036
Total Nitrogen (lbs)	\ 000	\ 000	₹ 00 +	V 002	V 101	<u> </u>	V 000	V 301	V 000	V 400	\ 000	V 1000
Total Monthly	< 833	< 338	< 654	< 502	< 434	< 361	< 653	< 901	< 835	< 469	< 805	< 1036
Total Nitrogen (lbs)	1 000	1 000	V 00 1	1002	V 10 1	V 001	1 000	7 00 1	1000	100	1 000	1 1000
Effluent Net 												
Total Annual			< 1222									
Total Nitrogen (lbs)			< 1222									
Total Annual			< 1222									
Ammonia (mg/L)			< 1222									
Average Monthly	< 1.8510	< 0.1280	< 0.1000	< 0.1000	< 0.1000	< 0.1000	< 0.1000	< 0.5748	< 0.1850	< 0.1968	< 1.0678	< 1.406
Ammonia (lbs)	× 1.0010	< 0.1200	~ 0.1000	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	× 0.1300	× 1.0070	\ 1. 4 00
Total Monthly	< 126	< 8	< 8.8	< 7	< 8	< 5.9	< 9	< 54	< 18.8	< 14	< 82	< 145
Ammonia (lbs)	< 120	<u> </u>	< 0.0		<u> </u>	< 3.8	\ \ \ \ \	< 54	< 10.0	< 14	< 02	< 140
			, GE									
Total Annual			< 65									
TKN (mg/L)	, F 0F30	. 0 5000	. 1 070	1 0010	. 0 5000	. 0.010	. 0 5000	. 1 000	. 0.640	. 0.000	. 1 550	. 0 474
Average Monthly	< 5.6538	< 0.5000	< 1.072	1.0213	< 0.5000	< 0.916	< 0.5000	< 1.096	< 0.648	< 0.693	< 1.559	< 2.171

NPDES Permit Fact Sheet Everett STP

NPDES Permit No. PA0037711

TKN (lbs) Total Monthly	< 351	< 30	< 79	70	< 38	< 56	< 44	< 110	< 65	< 53	< 126	< 224
Total Phosphorus	<u> </u>	7 30	V 13	70	V 30	V 30	\ 11	V 110	V 00	V 00	V 120	\ <u>\</u> \ <u>\</u> \ <u>\</u> \ <u>\</u> \ \ <u>\</u> \ \ <u>\</u> \ \ \ \
(lbs/day)												
Average Monthly	1.7	1.9	4.8	3.0	3.3	2.6	2.2	4.0	3.2	2.2	1.8	3.16
Total Phosphorus												
(mg/L)												
Average Monthly	0.72	0.98	1.60	1.40	1.40	1.29	0.82	1.14	1.01	0.837	0.599	0.872
Total Phosphorus (lbs)												
Effluent Net 												
Total Monthly	52	59	143	94	103	78	68	120	98	65	55	98
Total Phosphorus (lbs)												
Total Monthly	52	59	143	94	103	78	68	120	98	65	55	98
Total Phosphorus (lbs)												
Effluent Net 												
Total Annual			150									
Total Phosphorus (lbs)												
Total Annual			150									

3.2.1 Chesapeake Bay Annual Nutrient Summary

The table below summarizes nitrogen and phosphorus loading on the Chesapeake Bay. The facility appears to be meeting the Chesapeake Bay TMDL cap loads.

The net effluent limits for 2019 are suspect. Upon reviewing the XLS, the net effluent limits were based upon 52 weeks rather than 365 days/yr. The facility was requested to re-submit a revision.

Chesa	peake Bay Annual	Nutrient Summary							
Everett STP									
PA0037711									
	Net Efflu	ent Limits	Compliant with Permit Limits (Yes/No)						
Year for Truing Period (Oct 1 - Nov 28)	Nitrogen (lbs)	Phosphorus (lbs)	Nitrogon	Phosphorus					
	15,890	2,119	Nitrogen	Filospilorus					
2017	13,710	1,643	Yes	Yes					
2018	15,417	1,700	Yes	Yes					
2019	1747	185							
2020	8439	1036	Yes	Yes					
Notes:									

The net effluent limits for 2019 are suspect. Upon reviewing the XLS, the net effluent limits were based upon 52 weeks rather than 365 days/yr. The facility was requested to re-submit a revision.

3.3 Non-Compliance

3.3.1 Non-Compliance- NPDES Effluent

A summary of the non-compliance to the permit limits for the existing permit cycle is as follows.

From the DMR data beginning in December 1, 2012 to January 12, 2021, the table summarizes observed effluent non-compliances.

The table populates data subsequent to when the facility began using eDMR.

		ary of Non-Complian							
Beginning Date 12/01/2012 and Ending Date January 12, 2021									
NON COMPLIANCE DATE	PARAMETER	SAMPLE VALUE	VIOLATION CONDITION	PERMIT VALUE	UNIT OF MEASURE	STATISTICAL BASE CODE			
12/12/2015	Fecal Coliform	3300	>	1000	CFU/100 ml	Instantaneous Maximum			
12/12/2015	Fecal Coliform	2000	>	1000	CFU/100 ml	Instantaneous Maximum			
10/11/2016	Fecal Coliform	2419.6	>	1000	CFU/100 ml	Instantaneous Maximum			
12/13/2016	Total Phosphorus	2.61	>	2.0	mg/L	Average Monthly			
10/12/2017	Total Phosphorus	2.94	>	2.0	mg/L	Average Monthly			
04/08/2018	Total Phosphorus	2.07	>	2.0	mg/L	Average Monthly			
09/13/2018	Fecal Coliform	1553.1	>	1000	CFU/100 ml	Instantaneous Maximum			
10/11/2018	Fecal Coliform	2966	>	1000	CFU/100 ml	Instantaneous Maximum			

3.3.2 Non-Compliance- Enforcement Actions

A summary of the non-compliance enforcement actions for the current permit cycle is as follows:

No observed enforcement actions from the search beginning on December 1, 2012 to January 12, 2021.

3.4 Summary of Biosolids Disposal

A summary of the biosolids disposed of from the facility is as follows.

From the PAG-08 reporting form for biosolids in 2018, a total of 39.34 dry tons of sludge were applied to reed beds on-site at the wastewater treatment facility. The average volatile solids reduction was 40.3%.

No Sludge/Biosolids was reported disposed from January 2020 to November 2020.

The designated Sludge/Biosolids disposal location is West Providence Township (Bedford County), LoJo Farm Field 32 (Bedford County), and LoJo Farm Field 13 (Bedford County) for agricultural utilization.

3.5 Open Violations

The table summarizes open violations as of February 2021.

Summary of Open Violations

VIOLATION ID	VIOLATION DATE	VIOLATION CODE	VIOLATION
907276	02/04/2021	CSL201	CSL - Unauthorized, unpermitted discharge of sewage to waters of the Commonwealth
907277	02/04/2021	CSL201	CSL - Unauthorized, unpermitted discharge of sewage to waters of the Commonwealth

The facility entered into a Consent Order and Agreement on February 4, 2021. The SSOs shall be eliminated by January 31, 2026. Refer to the corrective actions in the COA for a complete schedule of milestones.

4.0 Receiving Waters and Water Supply Information Detail Summary

4.1 Receiving Waters

The receiving waters has been determined to be Raystown Branch Juniata River. The sequence of receiving streams that the Raystown Branch Juniata River discharges into are the Juniata River and the Susquehanna River which eventually drains into the Chesapeake Bay.

4.2 Public Water Supply (PWS) Intake

The closest PWS to the subject facility is Saxton Municipal Water Authority (PWS ID #4050021) located approximately 40.1 miles downstream of the subject facility on the Raystown Branch Juniata River. Based upon the distance and the flow rate of the facility, the PWS should not be impacted.

4.3 Class A Wild Trout Streams

Class A Wild Trout Streams are waters that support a population of naturally produced trout of sufficient size and abundance to support long-term and rewarding sport fishery. DEP classifies these waters as high-quality coldwater fisheries.

The information obtained from EMAP suggests that no Class A Wild Trout Fishery will be impacted by this discharge.

4.4 2020 Integrated List of All Waters (303d Listed Streams):

Section 303(d) of the Clean Water Act requires States to list all impaired surface waters not supporting uses even after appropriate and required water pollution control technologies have been applied. The 303(d) list includes the reason for impairment which may be one or more point sources (i.e. industrial or sewage discharges) or non-point sources (i.e. abandoned mine lands or agricultural runoff and the pollutant causing the impairment such as metals, pH, mercury or siltation).

States or the U.S. Environmental Protection Agency (EPA) must determine the conditions that would return the water to a condition that meets water quality standards. As a follow-up to listing, the state or EPA must develop a Total Maximum Daily Load (TMDL) for each waterbody on the list. A TMDL identifies allowable pollutant loads to a waterbody from both point and non-point sources that will prevent a violation of water quality standards. A TMDL also includes a margin of safety to ensure protection of the water.

NPDES Permit Fact Sheet Everett STP

The water quality status of Pennsylvania's waters uses a five-part categorization (lists) of waters per their attainment use status. The categories represent varying levels of attainment, ranging from Category 1, where all designated water uses are met to Category 5 where impairment by pollutants requires a TMDL for water quality protection.

The receiving waters is listed in the 2020 Pennsylvania Integrated Water Quality Monitoring and Assessment Report as a Category 2 waterbody. The surface waters is an attaining stream that supports aquatic life. The designated use has been classified as protected waters for migratory fishes (MF) and trout stocking fishes (TSF).

4.5 Low Flow Stream Conditions

Water quality modeling estimates are based upon conservative data inputs. The data are typically estimated using either a stream gauge or through USGS web based StreamStats program. The NPDES effluent limits are based upon the combined flows from both the stream and the facility discharge.

A conservative approach to estimate the impact of the facility discharge using values which minimize the total combined volume of the stream and the facility discharge. The volumetric flow rate for the stream is based upon the seven-day, 10-year low flow (Q710) which is the lowest estimated flow rate of the stream during a 7 consecutive day period that occurs once in 10 year time period. The facility discharge is based upon a known design capacity of the subject facility.

The closest WQN and gauge stations to the subject facility is the Raystown Branch Juniata River station at Saxton, PA (WQN223 or USGS station number 1562000). This WQN station is located approximately 38 miles downstream of the subject facility while the gauge station is located 38 miles downstream of the subject facility.

For WQM modeling, pH and stream water temperature data from the water quality network station was used. pH was estimated to be 8.0 and the stream water temperature was estimated to be 23.3 C.

The hardness was estimated from WQN as 96 mg/l.

The low flow yield and the Q710 for the subject facility was estimated as shown below.

Gauge Station Data						
USGS Station Number 1562000						
Station Name Raystown Branch Juniata River at Saxton, PA						
Q710	67.1	ft³/sec				
Drainage Area (DA) 756 mi ²						

Calculations

The low flow yield of the gauge station is:

Low Flow Yield (LFY) = Q710 / DA

LFY =
$$(67.1 \text{ ft}^3/\text{sec} / 756 \text{ mi}^2)$$

	LFY =	0.0888	ft³/sec/mi²				
The low flow at the	subject site is bas	sed upon the DA of	433	mi ²			
0710 = (LFY@gaug	e station)(DA@Su	hiect Site)					
Q710 = (LFY@gauge station)(DA@Subject Site) Q710 = (0.0888 ft ³ /sec/mi ²)(433 mi ²)							
Q710 - (0.0888 It 7	360/1111)(433 1111)						
Q710 =		38.432	ft³/sec				

Outfall No. 001			Design Flow (MGD)	.87			
Latitude 40Â	0' 30.0	2"	Longitude	-78º 21' 28.86"			
Quad Name			Quad Code				
Wastewater Desc	ription:	Effluent					
	Rays	town Branch Juniata River					
Receiving Waters	(TSF		Stream Code	13349			
NHD Com ID	6584	7407	RMI	79			
Drainage Area	433		Yield (cfs/mi²)	0.088			
Q ₇₋₁₀ Flow (cfs)	38.4		Q ₇₋₁₀ Basis	StreamStats/StreamGauge			
Elevation (ft)	1010		Slope (ft/ft)				
Watershed No.	11-C		Chapter 93 Class.	TSF, MF			
Existing Use	Same	e as Chapter 93	Existing Use Qualifier				
Exceptions to Use	e		Exceptions to Criteria	None			
Assessment Statu	ıs	Attaining Use(s) support	s aquatic life				
Cause(s) of Impai	rment	Not appl.					
Source(s) of Impa	irment	Not appl.					
TMDL Status		Not appl.	Name				
Background/Ambi	ent Data		Data Source				
pH (SU)		8.0	WQN223; median July to Sep	t			
Temperature (°C)		23.3	WQN223; median July to Sep	t			
Hardness (mg/L)		96	WQN223; median historical				
Other:							
Nearest Downstre	am Publ	ic Water Supply Intake	Saxton Municipal Authority				
PWS Waters		wn Branch Juniata River	Flow at Intake (cfs)	•			
PWS RMI	39		Distance from Outfall (mi)	40			

Outfall No. 00	2		Design Flow (MGD)	0		
Latitude 40	º 0' 29.1	5"	Longitude	-78º 21' 30.56"		
Quad Name			Quad Code			
Wastewater Des	cription:	Sanitary Sewer Overflow				
		town Branch Juniata River				
Receiving Water			Stream Code	13349		
NHD Com ID	6584	7407	RMI	_79		
Drainage Area			Yield (cfs/mi²)	0.088		
Q ₇₋₁₀ Flow (cfs)	38.4		Q ₇₋₁₀ Basis	StreamStats/StreamGauge		
Elevation (ft)	1010		Slope (ft/ft)			
Watershed No.	11-C		Chapter 93 Class.	TSF, MF		
Existing Use	Same	e as Chapter 93	Existing Use Qualifier			
Exceptions to Us	e		Exceptions to Criteria	None		
Assessment Stat	:us	Attaining Use(s) supports	aquatic life			
Cause(s) of Impa	airment	Not appl.				
Source(s) of Imp	airment	Not appl.				
TMDL Status		Not appl.	Name			
Background/Amb	oient Data		Data Source			
pH (SU)		8.0	WQN223; median July to Sep	t		
Temperature (°C)	23.3	WQN223; median July to Sep	t		
Hardness (mg/L)		96	WQN223; median historical			
Other:						
Nearest Downstr	eam Publ	ic Water Supply Intake	Saxton Municipal Authority			
PWS Waters		wn Branch Juniata River	Flow at Intake (cfs)	•		
PWS RMI	39		Distance from Outfall (mi)	40		

Outfall No. 003		Design Flow (MGD)	0	
Latitude 40° 0' 35.	95"	Longitude	-78º 22' 16.24"	
Quad Name		Quad Code		
Wastewater Description:	Sanitary Sewer Overflow	r		
Receiving WatersBloo	ody Run (WWF)	Stream Code	13349	
NHD Com ID 658	47385	RMI	79.76	
Drainage Area		Yield (cfs/mi²)	0.088	
Q ₇₋₁₀ Flow (cfs) 38.4	1	Q ₇₋₁₀ Basis	StreamStats/StreamGauge	
Elevation (ft)		Slope (ft/ft)		
Watershed No. 11-0	3	Chapter 93 Class.	TSF, MF	
Existing Use San	ne as Chapter 93	Existing Use Qualifier	-	
Exceptions to Use		Exceptions to Criteria	None	
Assessment Status	Impaired			
Cause(s) of Impairment	SILTATION			
Source(s) of Impairment	URBAN RUNOFF/STOR	M SEWERS		
TMDL Status	Not appl.	Name		
Background/Ambient Dat	a	Data Source		
pH (SU)	8.0	WQN223; median July to Sep	ot	
Temperature (°C)	23.3	WQN223; median July to Sep	ot	
Hardness (mg/L)	96	WQN223; median historical		
Other:				
Nearest Downstream Pul	olic Water Supply Intake	Saxton Municipal Authority		
	own Branch Juniata River	Flow at Intake (cfs)		
PWS RMI 39		Distance from Outfall (mi)	40	

5.0: Overview of Presiding Water Quality Standards

5.1 General

There are at least six (6) different policies which determines the effluent performance limits for the NPDES permit. The policies are technology based effluent limits (TBEL), water quality based effluent limits (WQBEL), antidegradation, total maximum daily loading (TMDL), anti-backsliding, and whole effluent toxicity (WET) The effluent performance limitations enforced are the selected permit limits that is most protective to the designated use of the receiving waters. An overview of each of the policies that are applicable to the subject facility has been presented in Section 6.

5.2.1 Technology-Based Limitations

TBEL treatment requirements under section 301(b) of the Act represent the minimum level of control that must be imposed in a permit issued under section 402 of the Act (40 CFR 125.3). Available TBEL requirements for the state of Pennsylvania are itemized in PA Code 25, Chapter 92a.47.

The presiding sources for the basis for the effluent limitations are governed by either federal or state regulation. The reference sources for each of the parameters is itemized in the tables. The following technology-based limitations apply, subject to water quality analysis and best professional judgement (BPJ) where applicable:

Parameter	Limit (mg/l)	SBC	Federal Regulation	State Regulation
CBOD ₅	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
CBOD5	40	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)
	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
Total Suspended Solids	45	Average Weekly	133.102(b)(2)	92a.47(a)(2)
pН	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform				
(5/1 - 9/30)	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
Fecal Coliform				
(5/1 – 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform				
(10/1 – 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
Fecal Coliform				
(10/1 – 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)
Total Residual Chlorine	0.5	Average Monthly	-	92a.48(b)(2)

5.2.2 Mass Based Limits

For publicly owned treatment works (POTW), mass loadings are calculated based upon design flow rate of the facility and the permit limit concentration. The generalized calculation for mass loadings is shown below:

Quantity
$$\left(\frac{lb}{day}\right) = (MGD)(Concentration)(8.34)$$

5.3 Water Quality-Based Limitations

WQBEL are based on the need to attain or maintain the water quality criteria and to assure protection of designated and existing uses (PA Code 25, Chapter 92a.2). The subject facility that is typically enforced is the more stringent limit of either the TBEL or the WQBEL.

Determination of WQBEL is calculated by spreadsheet analysis or by a computer modeling program developed by DEP. DEP permit engineers utilize the following computing programs for WQBEL permit limitations: (1) MS Excel worksheet for Total Residual Chorine (TRC); (2) WQM 7.0 for Windows Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen Version 1.0 (WQM Model) and (3) PENTOXSD for Windows 2.0 (PENTOXSD) for Toxics pollutants.

5.3.1 Water Quality Modeling 7.0

The WQM Model is a computer model that is used to determine NPDES discharge effluent limitations for Carbonaceous BOD (CBOD5), Ammonia Nitrogen (NH3-N), and Dissolved Oxygen (DO) for single and multiple point source discharges scenarios. WQM Model is a complete-mix model which means that the discharge flow and the stream flow are assumed to instantly and completely mixed at the discharge node.

WQM recommends effluent limits for DO, CBOD5, and NH₃-N in mg/l for the discharge(s) in the simulation.

Four types of limits may be recommended. The limits are (a) a minimum concentration for DO in the discharge as 30-day average; (b) a 30-day average concentration for CBOD5 in the discharge; (c) a 30-day average concentration for NH₃-N in the discharge.

The WQM Model requires several input values for calculating output values. The source of data originates from either EMAP, the National Map, or Stream Stats. Data for stream gauge information, if any, was abstracted from USGS Low-Flow, Base-Flow, and Mean-Flow Regression Equations for Pennsylvania Streams authored by Marla H. Stuckey (Scientific Investigations Report 2006-5130).

The input values utilized for the modeling are summarized in the table which can be found in Attachment B.

The applicable WQM Effluent Limit Type are discussed in Section 6 under the corresponding parameter which is either DO, CBOD, or ammonia-nitrogen.

5.3.2 Toxics Modeling

The Toxics model is a computer model that is used to determine effluent limitations for toxics (and other substances) for single discharge wasteload allocations. This computer model uses a mass-balance water quality analysis that includes consideration for mixing, first-order decay, and other factors used to determine recommended water quality-based effluent limits. PENTOXSD does not assume that all discharges completely mix with the stream. The point of compliance with water quality criteria are established using criteria compliance times (CCTs). The available CCTs are either acute fish criterion (AFC), chronic fish criterion (CFC), or human health criteria (THH & CRL).

Acute Fish Criterion (AFC) measures the criteria compliance time as either the maximum criteria compliance time (i.e.15 minutes travel time downstream of the current discharge) or the complete mix time whichever comes first. AFC is evaluated at Q710 conditions.

Chronic Fish Criterion (CFC) measures the criteria compliance time as either the maximum criteria compliance time (i.e. 12 hours travel time downstream of the current discharge) or the complete mix time whichever comes first. CFC is evaluated at Q710 conditions.

Threshold Human Health (THH) measures the criteria compliance time as either the maximum criteria compliance time (i.e. 12 hours travel time downstream of the current discharge) or the estimated travel time downstream to the nearest potable water supply intake whichever comes first. THH is evaluated at Q710 conditions.

Cancer Risk Level (CRL) measures the criteria compliance time as either the maximum criteria compliance time (i.e. 12 hours travel time downstream of the current discharge) or the complete mix time whichever comes first. CRL is evaluated at Qh (harmonic mean or normal flow) conditions.

The PENTOXSD Model requires several input values for calculating output values. The source of data originates from either EMAP, the National Map, or Stream Stats. Data for stream gauge information, if any, was abstracted from USGS Low-Flow, Base-Flow, and Mean-Flow Regression Equations for Pennsylvania Streams authored by Marla H. Stuckey (Scientific Investigations Report 2006-5130).

The input values utilized for the modeling are summarized in the table which can be found in Attachment B.

5.3.3 Whole Effluent Toxicity (WET)

The facility is not subject to WETT.

5.3.2.1 Determining if NPDES Permit Will Require Monitoring/Limits in the Proposed Permit for Toxic Pollutants

To determine if toxics modeling is necessary, DEP has developed a Toxics Management Spreadsheet to identify toxics of concern. Toxic pollutants whose maximum concentrations as reported in the permit application or on DMRs are greater than the most stringent applicable water quality criterion are pollutants of concern. A Reasonable Potential Analysis was utilized to determine (a) if the toxic parameters modeled would require monitoring or (b) if permit limitations would be required for the parameters. The toxics reviewed for reasonable potential were total copper, total lead, and total zinc.

The sample data included in the NPDES reported total copper as 12.2 mg/l and total lead as <0.303 mg/l. The units were erroneously placed is mg/l. The corrected units is ug/l.

Due to laboratory sample detection limit results above that recommended by DEP, the facility was afforded the opportunity to re-sample. The laboratory results from the re-sample in June 2019 are as follows.

Summary of Re-Sampling Results										
Parameter / Date	5/15/2019	5/22/2019	5/29/2019							
Units	mg/l	mg/l	mg/l							
Copper	<0.0100	0.0111	<0.0100							
Hardness	175	209	163							

Modeling recommends monitoring for Total Copper.

Based upon the SOP- Establishing Water Quality-Based Effluent Limitations (WQBELs) and Permit Conditions for Toxic Pollutants (Revised January 10, 2019), monitoring and/or limits will be established as follows.

- (a) When reasonable potential is demonstrated, establish limits where the maximum reported concentration equals or exceeds 50% of the WQBEL.
- (b) For non-conservative pollutants, establish monitoring requirements where the maximum reported concentration is between 25% 50% of the WQBEL.
- (c) For conservative pollutants, establish monitoring requirements where the maximum reported concentration is between 10% 50% of the WQBEL.

The Toxics Management Spreadsheet output has been included in Attachment B.

5.4 Total Maximum Daily Loading (TMDL)

5.4.1 TMDL

The goal of the Clean Water Act (CWA), which governs water pollution, is to ensure that all of the Nation's waters are clean and healthy enough to support aquatic life and recreation. To achieve this goal, the CWA created programs designed to regulate and reduce the amount of pollution entering United States waters. Section 303(d) of the CWA requires states to assess their waterbodies to identify those not meeting water quality standards. If a waterbody is not meeting standards, it is listed as impaired and reported to the U.S. Environmental Protection Agency. The state then develops a plan to clean up the impaired waterbody. This plan includes the development of a Total Maximum Daily Load (TMDL) for the pollutant(s) that were found to be the cause of the water quality violations. A Total Maximum Daily Load (tmdl) calculates the maximum amount of a specific pollutant that a waterbody can receive and still meet water quality standards.

Pennsylvania has committed to restoring all impaired waters by developing TMDLs and TMDL alternatives for all impaired waterbodies. The TMDL serves as the starting point or planning tool for restoring water quality.

NPDES Permit Fact Sheet Everett STP

5.4.1.1 Local TMDL

The subject facility does not discharge into a local TMDL.

5.4.1.2 Chesapeake Bay TMDL Requirement

The Chesapeake Bay Watershed is a large ecosystem that encompasses approximately 64,000 square miles in Maryland, Delaware, Virginia, West Virginia, Pennsylvania, New York and the District of Columbia. An ecosystem is composed of interrelated parts that interact with each other to form a whole. All of the plants and animals in an ecosystem depend on each other in some way. Every living thing needs a healthy ecosystem to survive. Human activities affect the Chesapeake Bay ecosystem by adding pollution, using resources and changing the character of the land.

Most of the Chesapeake Bay and many of its tidal tributaries have been listed as impaired under Section 303(d) of the federal Water Pollution Control Act ("Clean Water Act"), 33 U.S.C. § 1313(d). While the Chesapeake Bay is outside the boundaries of Pennsylvania, more than half of the State lies within the watershed. Two major rivers in Pennsylvania are part of the Chesapeake Bay Watershed. They are (a) the Susquehanna River and (b) the Potomac River. These two rivers total 40 percent of the entire Chesapeake Bay watershed.

The overall management approach needed for reducing nitrogen, phosphorus and sediment are provided in the Bay TMDL document and the Phase I, II, and III WIPs which is described in the Bay TMDL document and Executive Order 13508.

The Bay TMDL is a comprehensive pollution reduction effort in the Chesapeake Bay watershed identifying the necessary pollution reductions of nitrogen, phosphorus and sediment across the seven Bay watershed jurisdictions of Delaware, Maryland, New York, Pennsylvania, Virginia, West Virginia and the District of Columbia to meet applicable water quality standards in the Bay and its tidal waters.

The Watershed Implementation Plans (WIPs) provides objectives for how the jurisdictions in partnership with federal and local governments will achieve the Bay TMDL's nutrient and sediment allocations.

Phase 3 WIP provides an update on Chesapeake Bay TMDL implementation activities for point sources and DEP's current implementation strategy for wastewater. The latest revision of the supplement was December 17, 2019.

The Chesapeake Bay TMDL (Appendix Q) categorizes point sources into four sectors:

- Sector A- significant sewage dischargers;
- Sector B- significant industrial waste (IW) dischargers;
- Sector C- non-significant dischargers (both sewage and IW facilities); and
- Sector D- combined sewer overflows (CSOs).

All sectors contain a listing of individual facilities with NPDES permits that were believed to be discharging at the time the TMDL was published (2010). All sectors with the exception of the non-significant dischargers have individual wasteload allocations (WLAs) for TN and TP assigned to specific facilities. Non-significant dischargers have a bulk or aggregate allocation for TN and TP based on the facilities in that sector that were believed to be discharging at that time and their estimated nutrient loads.

Based upon the supplement the subject facility has been categorized as a Sector A discharger. The supplement defines Sector A as a sewage facility that is considered significant if it has a design flow of at least 0.4 MGD. For rollout of its permitting strategy, DEP classified these facilities into three phases. Thirty IW facilities have individual WLAs in the TMDL.

Table 5 presents all NPDES permits for Significant Sewage dischargers with Cap Loads. The NPDES Permit No., phase, facility name, latest permit issuance date, expiration date, Cap Load compliance start date, TN and TP Cap Loads, and TN and TP Delivery Ratios are presented. In addition, if TN Offsets were incorporated into the TN Cap Loads when the permit was issued, the amount is shown; these Offsets will be removed from Cap Loads upon issuance of renewed permits to implement Section IV of the WIP document (i.e., a facility may use Offsets for compliance but may not register them as credits).

The total nitrogen (TN) and total phosphorus (TP) cap loads itemized by Table 5 for the subject facility are as follows:

TN Cap Load (lbs/yr) 1:	5.980	15.980	/r)	os/vr)	(Load	Cap	ΤN	ı
-------------------------	-------	--------	-----	--------	---	------	-----	----	---

NPDES Permit Fact Sheet Everett STP

TN Delivery Ratio	0.897
TP Cap Load (lbs/yr)	2,119
TP Delivery Ratio	0.436

Expansions by any Significant Sewage discharger will not result in any increase in Cap Loads. Where non-significant facilities expand to a design flow of 0.4 MGD or greater, the lesser of baseline Cap Loads of 7,306 lbs/yr TN and 974 lbs/yr TP or existing performance will be used for permits, and the load will be moved from the Non-Significant sector load to the Significant Sewage sector load. If considered necessary for environmental protection, DEP may decide to move load from the Point Source Reserve to the Significant Sewage sector in the future.

The minimum monitoring frequency for TN species and TP in new or renewed NPDES permits for Significant Sewage dischargers is 2/week.

This facility is subject to Sector A monitoring requirements. It is listed in Table 5 as a significant Chesapeake Bay contributor. Monitoring for nitrogen species and phosphorus has been recommended on a 2x/wk basis.

5.5 Anti-Degradation Requirement

Chapter 93.4a of the PA regulations requires that surface water of the Commonwealth of Pennsylvania may not be degraded below levels that protect the existing uses. The regulations specifically state that *Existing instream water uses* and the level of water quality necessary to protect the existing uses shall be maintained and protected. Antidegradation requirements are implemented through DEP's guidance manual entitled Water Quality Antidegradation Implementation Guidance (Document #391-0300-02).

The policy requires DEP to protect the existing uses of all surface waters and the existing quality of High Quality (HQ) and Exceptional Value (EV) Waters. Existing uses are protected when DEP makes a final decision on any permit or approval for an activity that may affect a protected use. Existing uses are protected based upon DEP's evaluation of the best available information (which satisfies DEP protocols and Quality Assurance/Quality Control (QA/QC) procedures) that indicates the protected use of the waterbody.

For a new, additional, or increased point source discharge to an HQ or EV water, the person proposing the discharge is required to utilize a nondischarge alternative that is cost-effective and environmentally sound when compared with the cost of the proposed discharge. If a nondischarge alternative is not cost-effective and environmentally sound, the person must use the best available combination of treatment, pollution prevention, and wastewater reuse technologies and assure that any discharge is nondegrading. In the case of HQ waters, DEP may find that after satisfaction of intergovernmental coordination and public participation requirements lower water quality is necessary to accommodate important economic or social development in the area in which the waters are located. In addition, DEP will assure that cost-effective and reasonable best management practices for nonpoint source control in HQ and EV waters are achieved.

The subject facility's discharge will be to a non-special protection waters and the permit conditions are imposed to protect existing instream water quality and uses. Neither HQ waters or EV waters is impacted by this discharge.

5.6 Anti-Backsliding

Anti-backsliding is a federal regulation which prohibits a permit from being renewed, reissued, or modified containing effluent limitations which are less stringent than the comparable effluent limitations in the previous permit (40 CFR 122.I.1 and 40 CFR 122.I.2). A review of the existing permit limitations with the proposed permit limitations confirm that the facility is consistent with anti-backsliding requirements. The facility has proposed effluent limitations that are as stringent as the existing permit.

6.0 NPDES Parameter Details

The basis for the proposed sampling and their monitoring frequency that will appear in the permit for each individual parameter are itemized in this Section. The final limits are the more stringent of technology based effluent treatment (TBEL) requirements, water quality based (WQBEL) limits, TMDL, antidegradation, anti-degradation, or WET.

The reader will find in this section:

- a) a justification of recommended permit monitoring requirements and limitations for each parameter in the proposed NPDES permit;
- b) a summary of changes from the existing NPDES permit to the proposed permit; and
- c) a summary of the proposed NPDES effluent limits.

6.1 Recommended Monitoring Requirements and Effluent Limitations

A summary of the recommended monitoring requirements and effluent limitations are itemized in the tables. The tables are categorized by (a) Conventional Pollutants and Disinfection, (b) Nitrogen Species and Phosphorus, and (c) Toxics.

6.1.1 Conventional Pollutants and Disinfection

	T =	Boro	ough of Everett Area Municipal Authority, PA0037711
Parameter	Permit Limitation Required by ¹ :		Recommendation
		Monitoring:	The monitoring frequency shall be daily as a grab sample (Table 6-3).
pH (S.U.)	TBEL		Effluent limits may range from pH = 6.0 to 9.0
p. (5.5.)	,	rkanonale.	The monitoring frequency has been assigned in accordance with Table 6-3 and the effluent limits assigned by Chapter 95.2(1).
Dissolved		Monitoring:	The monitoring frequency shall be daily as a grab sample (Table 6-3).
Dissolved	BPJ	Effluent Limit:	Effluent limits shall be greater than 5.0 mg/l.
Oxygen	DI 0	Rationale:	The monitoring frequency has been assigned in accordance with Table 6-3 and the effluent limits assigned by best professional judgement.
		Monitoring:	The monitoring frequency shall be 1x/wk as a 24-hr composite sample (Table 6-3).
CBOD	TDE:	Effluent Limit:	Effluent limits shall not exceed 25 mg/l as an average monthly and as 181 lbs/day as a monthly average.
	TBEL	Rationale:	The monitoring frequency has been assigned in accordance with Table 6-3 and the effluent limits assigned by Chapter 92a.47(a)(1). WQM modeling indicates that the TBEL is more stringent than the WQBEL. Thus, the permit limit is confined to TBEL.
	TBEL	Monitoring:	The monitoring frequency shall be 1/wk as a 24-hr composite sample (Table 6-3).
TSS		Effluent Limit:	Effluent limits shall not exceed 30 mg/l as an average monthly and as 218 lbs/day as a monthly average.
		Rationale:	The monitoring frequency has been assigned in accordance with Table 6-3 and the effluent limits assigned by Chapter 92a.47(a)(1). While there is no WQM modeling for this parameter, the permit limit for TSS is generally assigned similar effluent limits as CBOD or BOD. Since the TBEL is more stringent than TBEL, TBEL will apply.
		Monitoring:	The monitoring frequency shall be on a daily basis as a grab sample (Table 6-3).
		Effluent Limit:	The average monthly limit should not exceed 0.5 mg/l and/or 1.6 mg/l as an instantaneous maximum.
TRC	TBEL	forms of aquar imposed on a expressed in the (Implementation Based on the standard or the stan	orine in both combined (chloramine) and free form is extremely toxic to freshwater fish and other tic life (Implementation Guidance Total Residual Chlorine 1). The TRC effluent limitations to be discharger shall be the more stringent of either the WQBEL or TBEL requirements and shall be the NPDES permit as an average monthly and instantaneous maximum effluent concentration on Guidance Total Residual Chlorine 4). Stream flow rate (lowest 7-day flow rate in 10 years) and the design flow rate of the subject facility the TRC Evaluation worksheet, the TBEL is more stringent than the WQBEL. To frequency has been assigned in accordance with Table 6-3 and the effluent limits assigned by 8(b)(2)
			The monitoring frequency shall be 1x/wk as a grab sample (Table 6-3).
Fecal Coliform	TBEL	I HITIII I DOT I I IMIT'	Summer effluent limits shall not exceed 200 mg/l as a geometric mean. Winter effluent limits shall not exceed 2000 mg/l as a geometric mean.
Join 01 111		Rationale:	The monitoring frequency has been assigned in accordance with Table 6-3 and the effluent limits assigned by Chapter 92a.47(a)(4) and 92a.47(a)(5).

¹ The NPDES permit was limited by (a) anti-Backsliding, (b) Anti-Degradation, (c) SOP, (d) TBEL, (e) TMDL, (f) WQBEL, or (g) WET

² Monitoring frequency based on flow rate of 0.87 MGD.

³ Table 6-3 (Self Monitoring Requirements for Sewage Discharges) in Technical Guidance for the Development and Specification of Effluent Limitations and Other Permit Conditions in NPDES Permits) (Document # 362-0400-001) Revised 10/97

⁴ Water Quality Antidegradation Implementaton Guidance (Document # 391-0300-002)

⁵ Phase 2 Watershed Implementation Plan Wastewater Supplement, Revised September 6, 2017

6.1.2 Nitrogen Species and Phosphorus

Summary of Proposed NPDES Parameter Details for Nitrogen Species and Phosphorus

	<u> </u>	Borou	ugh of Everett Area Municipal Authority, PA0037711						
Parameter	Permit Limitation		Recommendation						
	Required by ¹ :								
		Monitoring:	ne monitoring frequency shall be 2x/wk as an 24-hr composite sample						
Ammonia- Nitrogen	Cheapeake Bay TMDL	Effluent Limit:	No effluent requirements. WQM modeling shows that amonia nitrogen will be greater than 15 mg/l. Limits greater than 15 mg/l do not require monitoring or limits.						
		Rationale:	Due to the Chesapeake Bay Implementation Plan, the facility is required to be monitored on a frequency at 2x/wk basis.						
		Monitoring:	The monitoring frequency shall be 2x/wk as an 24-hr composite sample						
Nitrate-	Cheapeake Bay	Effluent Limit:	No effluent requirements.						
Nitrite as N	TMDL	Rationale:	Due to the Chesapeake Bay Implementation Plan, the facility is required to be monitored on a frequency at 2x/wk basis.						
Total	Cheapeake Bay TMDL	Monitoring:	The monitoring frequency shall be 2x/wk.						
Nitrogen		Effluent Limit:	No effluent requirements.						
		Rationale:	Due to the Chesapeake Bay Implementation Plan, the facility will be monitored on a 2x/wk basis.						
		Monitoring:	The monitoring frequency shall be 2x/wk as an 24-hr composite sample						
TKN	Cheapeake Bay	Effluent Limit:	No effluent requirements.						
	TMDL	Rationale:	Due to the Chesapeake Bay Implementation Plan, the facility is required to be monitored on a frequency at 2x/wk basis.						
		Monitoring:	The monitoring frequency shall be 2x/wk as an 24-hr composite sample						
Total Phosphorus	Antibacksliding	Effluent Limit:	Effluent limits shall not exceed 2 mg/l as an average monthly and as 15 lbs/day as a monthly average.						
Thosphorus		Rationale:	The concentration limit originated from the protection of Lake Raystown. It is being carried to the proposes permit due to antibacksliding.						
Net Total	Chananagka Pay	Monitoring:	The monitoring frequency shall be 1x/mo.						
Net rotai Nitrogen	Chesapeake Bay TMDL	Effluent Limit:	Mass loading is restricted to 15,890 lbs/yr.						
Mitrogen	TIVIDE	Rationale:	Annual mass loading is restricted by the Chesapeake Bay TMDL.						
Net	Observation D.	Monitoring:	The monitoring frequency shall be 1x/mo.						
Net Phosphorus	Chesapeake Bay TMDL	Effluent Limit:	Annual mass loading is restricted to 2,119 lbs/yr.						
i nospilorus	TIVIDE	Rationale:	Annual mass loading is restricted by the Chesapeake Bay TMDL.						

¹ The NPDES permit was limited by (a) anti-Backsliding, (b) Anti-Degradation, (c) SOP, (d) TBEL, (e) TMDL, (f) WQBEL, or (g) WET

Notes:

² Monitoring frequency based on flow rate of 0.87 MGD.

³ Table 6-3 (Self Monitoring Requirements for Sewage Discharges) in Technical Guidance for the Development and Specification of Effluent Limitations and Other Permit Conditions in NPDES Permits) (Document # 362-0400-001) Revised 10/97

⁴ Water Quality Antidegradation Implementaton Guidance (Document # 391-0300-002)

⁵ Phase 2 Watershed Implementation Plan Wastewater Supplement, Revised September 6, 2017

6.1.3 Toxics

6.1.3.2 Summary of Toxics Monitoring/Limits

		Summa	ary of Proposed NPDES Parameter Details for Toxics		
		Borou	ugh of Everett Area Municipal Authority, PA0037711		
Parameter Permit Limitation Recommendation Recommendation					
Total Copper	WQBEL	Monitoring: Effluent Limit: Rationale:	The monitoring frequency shall be 1x/quarter as a 24-hr composite sample (Table 6-3). No effluent requirements. Toxics modeling suggests that monitoring be required. Pending favorable results from the sampling in the proposed permit, future renewals may reduce or eliminate the monitoring frequency.		
Notes:					
2 Monitoring f	requency based on f	low rate of 0.87			
			wage Discharges) in Technical Guidance for the Development and Specification of Effluent S Permits) (Document # 362-0400-001) Revised 10/97		
	, ,	•	Buidance (Document # 391-0300-002) Exercia Supplement, Revised September 6, 2017		

6.2 Summary of Changes From Existing Permit to Proposed Permit

A summary of how the proposed NPDES permit differs from the existing NPDES permit is summarized as follows.

	Changes in Permit Monitoring or Effluent Quality									
Parameter	Existing Permit	Draft Permit								
Ammonia-Nitrogen	Monitoring is 1x/wk	Due to Chesapeake Bay WIP, monitoring shall be 2x/wk								
Nitrate-Nitrite as N	Monitoring is 1x/wk	Due to Chesapeake Bay WIP, monitoring shall be 2x/wk								
TKN	Monitoring is 1x/wk	Due to Chesapeake Bay WIP, monitoring shall be 2x/wk								
Total Nitrogen	Monitoring is 1x/mo	Due to Chesapeake Bay WIP, monitoring shall be 2x/wk								
Phosphorus	Monitoring is 1x/wk	Due to Chesapeake Bay WIP, monitoring shall be 2x/wk								
Total Copper	No monitoring or effluent limits	Toxics modeling recommends monitoring. The monitoring frequency shall be 1x/quarter Based upon the sample results from the proposed renewal, the monitoring frequency may be decreased or eliminated in future renewals								

6.3.1 Summary of Proposed NPDES Effluent Limits

The proposed NPDES effluent limitations are summarized in the table below.

PART	A - EFFLUENT LIMITA	TIONS, MONITORING, RECORDKEEPING AND REPORTING REQUIREMENTS
I. A.	For Outfall 001	_, Latitude40° 0' 30.62", Longitude78° 21' 29.17", River Mile Index79, Stream Code13349
	Receiving Waters:	Raystown Branch Juniata River (TSF)
	Type of Effluent:	Effluent

Based on the anticipated wastewater characteristics and flows described in the permit application and its supporting documents and/or amendments, the following effluent limitations and monitoring requirements apply (see also Additional Requirements and Footnotes).

			Monitoring Re	uirements				
Parameter	Mass Units (lbs/day) (1)			Concentrations (mg/L)				Required
raiametei	Average Monthly	Weekly Average	Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report Daily Max	XXX	xxx	XXX	XXX	Continuous	Measured
pH (S.U.)	XXX	XXX	6.0 Inst Min	xxx	XXX	9.0	1/day	Grab
Dissolved Oxygen	XXX	XXX	5.0 Inst Min	xxx	XXX	XXX	1/day	Grab
Total Residual Chlorine (TRC)	XXX	XXX	XXX	0.5	XXX	1.6	1/day	Grab
Carbonaceous Biochemical Oxygen Demand (CBOD5)	181	290	XXX	25	40	50	1/week	24-Hr Composite
Biochemical Oxygen Demand (BOD5) Raw Sewage Influent	Report	Report Daily Max	XXX	Report	XXX	XXX	1/week	24-Hr Composite
Total Suspended Solids	218	327	XXX	30	45	60	1/week	24-Hr Composite
Total Suspended Solids Raw Sewage Influent	Report	Report Daily Max	XXX	Report	XXX	XXX	1/week	24-Hr Composite
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	XXX	XXX	XXX	2000 Geo Mean	XXX	10000	1/week	Grab
Fecal Coliform (No./100 ml) May 1 - Sep 30	XXX	XXX	XXX	200 Geo Mean	XXX	1000	1/week	Grab

Outfall 001, Continued (from Permit Effective Date through Permit Expiration Date)

		Monitoring Requirements						
Parameter	Mass Units	(lbs/day) (1)		Concentrat	Minimum (2)	Required		
Faianietei	Average	Weekly		Average	Weekly	Instant.	Measurement	Sample
	Monthly	Average	Minimum	Monthly	Average	Maximum	Frequency	Туре
								24-Hr
Ammonia-Nitrogen	XXX	XXX	XXX	Report	XXX	XXX	2/week	Composite
								24-Hr
Total Phosphorus	15	XXX	XXX	2.0	XXX	4	2/week	Composite
				Report				24-Hr
Copper, Total	XXX	XXX	XXX	Avg Qrtly	XXX	XXX	1/quarter	Composite

Samples taken in compliance with the monitoring requirements specified above shall be taken at the following location(s):

at Outfall 001

^{1.} The permittee is authorized to discharge during the period from Permit Effective Date through Permit Expiration Date.

PART	A - EFFLUENT	LIMITA	TIONS, MONI	TORING, RECORD	KEEPING AND	REPORTING REQU	IREMENTS			
I.B.	For Outfall	001	_, Latitude	40° 0' 30.62"	, Longitude	78° 21' 29.17" ,	River Mile Index	_79,	Stream Code	13349
	Receiving Wat	ters:	Raystown Br	anch Juniata River (TSF)					

--

Type of Effluent: Effluent

- 1. The permittee is authorized to discharge during the period from Permit Effective Date through Permit Expiration Date.
- Based on the anticipated wastewater characteristics and flows described in the permit application and its supporting documents and/or amendments, the following effluent limitations and monitoring requirements apply (see also Additional Requirements and Footnotes).

		Monitoring Requirements						
Parameter	Mass Units	(lbs/day) (1)		Concentrat	Minimum (2)	Required		
Farameter	Monthly	Annual	Monthly	Monthly Average	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
AmmoniaN	Report	Report	XXX	Report	XXX	XXX	2/week	24-Hr Composite
KieldahlN	Report	XXX	XXX	Report	XXX	XXX	2/week	24-Hr Composite
Nitrate-Nitrite as N	Report	XXX	XXX	Report	XXX	XXX	2/week	24-Hr Composite
Total Nitrogen	Report	Report	XXX	Report	XXX	XXX	2/week	Calculation
Total Phosphorus	Report	Report	XXX	Report	XXX	xxx	2/week	24-Hr Composite
Net Total Nitrogen	Report	15890	XXX	XXX	XXX	XXX	1/month	Calculation
Net Total Phosphorus	Report	2119	XXX	XXX	XXX	XXX	1/month	Calculation

Samples taken in compliance with the monitoring requirements specified above shall be taken at the following location(s):

at Outfall 001

Footnotes:

(1) See Part C for Chesapeake Bay Requirements.

6.3.2 Summary of Proposed Permit Part C Conditions

The subject facility does not have Part C conditions.

- Chlorine Minimization
- Peak Flow Management Plan
- Hauled-In Waste Restrictions
- Chesapeake Bay Nutrient Definitions
- Solids Management for Non-Lagoon Treatment Systems
- Chesapeake Bay Nutrient Definitions
- Solids Management for Non-Lagoon Treatment Systems
- Monitoring/Sampling for SSO

	Tools and References Used to Develop Permit
\square	WQM for Windows Model (see Attachment)
	PENTOXSD for Windows Model (see Attachment)
	TRC Model Spreadsheet (see Attachment)
	Temperature Model Spreadsheet (see Attachment)
$\overline{}$	Toxics Screening Analysis Spreadsheet (see Attachment)
	Water Quality Toxics Management Strategy, 361-0100-003, 4/06.
	Technical Guidance for the Development and Specification of Effluent Limitations, 362-0400-001, 10/97.
	Policy for Permitting Surface Water Diversions, 362-2000-003, 3/98.
	Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 362-2000-008, 11/96.
	Technology-Based Control Requirements for Water Treatment Plant Wastes, 362-2183-003, 10/97.
	Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 362-2183-004, 12/97.
	Pennsylvania CSO Policy, 385-2000-011, 9/08.
	Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03.
	Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 391-2000-002, 4/97.
	Determining Water Quality-Based Effluent Limits, 391-2000-003, 12/97.
	Implementation Guidance Design Conditions, 391-2000-006, 9/97.
	Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen, Version 1.0, 391-2000-007, 6/2004.
	Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 391-2000-008, 10/1997.
	Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments, 391-2000-010, 3/99.
	Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 391-2000-011, 5/2004.
	Implementation Guidance for Section 93.7 Ammonia Criteria, 391-2000-013, 11/97.
	Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 391-2000-014, 4/2008.
	Implementation Guidance Total Residual Chlorine (TRC) Regulation, 391-2000-015, 11/1994.
	Implementation Guidance for Temperature Criteria, 391-2000-017, 4/09.
	Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 391-2000-018, 10/97.
	Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 391-2000-019, 10/97.
	Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 391-2000-021, 3/99.
	Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 391-2000-022, 3/1999.
	Design Stream Flows, 391-2000-023, 9/98.
	Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 391-2000-024, 10/98.
	Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 391-3200-013, 6/97.
	Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07.
\boxtimes	SOP: New and Reissuance Sewage Individual NPDES Permit Applications, Revised, October 11, 2013
	Other:

Attachment A Stream Stats/Gauge Data

14 Selected Streamflow Statistics for Streamgage Locations in and near Pennsylvania

Table 1. List of U.S. Geological Survey streamgage locations in and near Pennsylvania with updated streamflow statistics.—Continued [Latitude and Longitude in decimal degrees; mi², square miles]

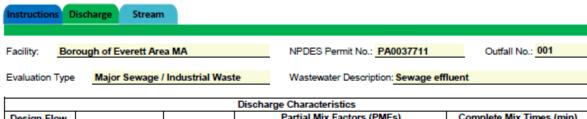
Streamgage number	Streamgage name	Latitude	Longitude	Drainage area (mi²)	Regulated ¹
01561000	Brush Creek at Gapsville, Pa.	39.956	-78.254	36.8	N
01562000	Raystown Branch Juniata River at Saxton, Pa.	40.216	-78.265	756	N
01562500	Great Trough Creek near Marklesburg, Pa.	40.350	-78.130	84.6	N
01563200	Raystown Branch Juniata River below Rays Dam nr Huntingdon, Pa.	40.429	-77.991	960	Y
01563500	Juniata River at Mapleton Depot, Pa.	40.392	-77.935	2,030	Y
01564500	Aughwick Creek near Three Springs, Pa.	40.213	-77.925	205	N
01565000	Kishacoquillas Creek at Reedsville, Pa.	40.655	-77.583	164	N
01565700	Little Lost Creek at Oakland Mills, Pa.	40.605	-77.311	6.52	N
01566000	Tuscarora Creek near Port Royal, Pa.	40.515	-77.419	214	N
01566500	Cocolamus Creek near Millerstown, Pa.	40.566	-77.118	57.2	N
01567000	Juniata River at Newport, Pa.	40.478	-77.129	3,354	Y
01567500	Bixler Run near Loysville, Pa.	40.371	-77.402	15.0	N
01568000	Sherman Creek at Shermans Dale, Pa.	40.323	-77.169	207	N
01568500	Clark Creek near Carsonville, Pa.	40.460	-76.751	22.5	LF
01569000	Stony Creek nr Dauphin, Pa.	40.380	-76.907	33.2	N
01569800	Letort Spring Run near Carlisle, Pa.	40.235	-77.139	21.6	N
01570000	Conodoguinet Creek near Hogestown, Pa.	40.252	-77.021	470	LF
01570500	Susquehanna River at Harrisburg, Pa.	40.255	-76.886	24,100	Y
01571000	Paxton Creek near Penbrook, Pa.	40.308	-76.850	11.2	N
01571500	Yellow Breeches Creek near Camp Hill, Pa.	40.225	-76.898	213	N
01572000	Lower Little Swatara Creek at Pine Grove, Pa.	40.538	-76.377	34.3	N
01572025	Swatara Creek near Pine Grove, Pa.	40.533	-76.402	116	N
01572190	Swatara Creek near Inwood, Pa.	40.479	-76.531	167	N
01573000	Swatara Creek at Harper Tavern, Pa.	40.403	-76.577	337	N
01573086	Beck Creek near Cleona, Pa.	40.323	-76.483	7.87	N
01573160	Quittapahilla Creek near Bellegrove, Pa.	40.343	-76.562	74.2	N
01573500	Manada Creek at Manada Gap, Pa.	40.397	-76.709	13.5	N
01573560	Swatara Creek near Hershey, Pa.	40.298	-76.668	483	N
01574000	West Conewago Creek near Manchester, Pa.	40.082	-76.720	510	N
01574500	Codorus Creek at Spring Grove, Pa.	39.879	-76.853	75.5	Y
01575000	South Branch Codorus Creek near York, Pa.	39.921	-76.749	117	Y
01575500	Codorus Creek near York, Pa.	39.946	-76.755	222	Y
01576000		40.055	-76.733 -76.531	25.990	Y
01576085	Susquehanna River at Marietta, Pa.		-75.989	,	N
	Little Conestoga Creek near Churchtown, Pa.	40.145		5.82	
01576500	Conestoga River at Lancaster, Pa.	40.050	-76.277	324	N
01576754	Conestoga River at Conestoga, Pa.	39.946	-76.368	470	N
01578310	Susquehanna River at Conowingo, Md.	39.658	-76.174	27,100	Y
01578400	Bowery Run near Quarryville, Pa.	39.895	-76.114	5.98	N
01580000	Deer Creek at Rocks, Md.	39.630	-76.403	94.4	N
01581500	Bynum Run at Bel Air, Md.	39.541	-76.330	8.52	N
01581700	Winters Run near Benson, Md.	39.520	-76.373	34.8	N
01582000	Little Falls at Blue Mount, Md.	39.604	-76.620	52.9	N
01582500	Gunpowder Falls at Glencoe, Md.	39.550	-76.636	160	Y
01583000	Slade Run near Glyndon, Md.	39.495	-76.795	2.09	N
01583100	Piney Run at Dover, Md.	39.521	-76.767	12.3	N

26 Selected Streamflow Statistics for Streamgage Locations in and near Pennsylvania

Table 2. Selected low-flow statistics for streamgage locations in and near Pennsylvania.—Continued [ft³/s; cubic feet per second; —, statistic not computed; <, less than]

Streamgage number	Period of record used in analysis¹	Number of years used in analysis	1-day, 10-year (ft³/s)	7-day, 10-year (ft³/s)	7-day, 2-year (ft³/s)	30-day, 10-year (ft³/s)	30-day, 2-year (ft³/s)	90-day, 10-year (ft³/s)
01546000	1912-1934	17	1.8	2.2	6.8	3.7	12.1	11.2
01546400	1986-2008	23	13.5	14.0	19.6	15.4	22.3	18.7
01546500	1942-2008	67	26.8	29.0	41.3	31.2	44.2	33.7
01547100	1969-2008	40	102	105	128	111	133	117
01547200	1957-2008	52	99.4	101	132	106	142	115
01547500	21971-2008	38	28.2	109	151	131	172	153
01547500	31956-1969	14	90.0	94.9	123	98.1	131	105
01547700	1957-2008	52	.5	.6	2.7	1.1	3.9	2.2
01547800	1971-1981	11	1.6	1.8	2.4	2.1	2.9	3.5
01547950	1970-2008	39	12.1	13.6	28.2	17.3	36.4	23.8
01548005	21971-2000	25	142	151	206	178	241	223
01548005	31912-1969	58	105	114	147	125	165	140
01548500	1920-2008	89	21.2	24.2	50.1	33.6	68.6	49.3
01549000	1910-1920	11	26.0	32.9	78.0	46.4	106	89.8
01549500	1942-2008	67	.6	.8	2.5	1.4	3.9	2.6
01549700	1959-2008	50	33.3	37.2	83.8	51.2	117	78.4
01550000	1915-2008	94	6.6	7.6	16.8	11.2	24.6	18.6
01551500	21963-2008	46	520	578	1,020	678	1,330	919
01551500	31901-1961	61	400	439	742	523	943	752
01552000	1927-2008	80	20.5	22.2	49.5	29.2	69.8	49.0
01552500	1942-2008	67	.9	1.2	3.1	1.7	4.4	3.3
01553130	1969-1981	13	1.0	1.1	1.5	1.3	1.8	1.7
01553500	21968-2008	41	760	838	1,440	1.000	1,850	1,470
01553500	31941-1966	26	562	619	880	690	1,090	881
01553700	1981-2008	28	9.1	10.9	15.0	12.6	17.1	15.3
01554000	21981-2008	28	1,830	1,990	3,270	2,320	4,210	3,160
01554000	31939-1979	41	1,560	1,630	2,870	1,880	3,620	2,570
01554500	1941-1993	53	16.2	22.0	31.2	25.9	35.7	31.4
01555000	1931-2008	78	33.5	37.6	58.8	43.4	69.6	54.0
01555500	1931-2008	78	4.9	6.5	18.0	9.4	24.3	16.0
01556000	1918-2008	91	43.3	47.8	66.0	55.1	75.0	63.7
01557500	1946-2008	63	2.8	3.2	6.3	4.2	8.1	5.8
01558000	1940-2008	69	56.3	59.0	79.8	65.7	86.2	73.7
01559000	1943-2008	66	104	177	249	198	279	227
01559500	1931–1958	28	9.3	10.5	15.0	12.4	17.8	15.8
01559700	1963–1978	16	.1	.1	.2	.1	.3	.2
01559700	1941–2008	68	8.5	9.4	15.6	12.0	20.2	16.3
01561000	1932-1958	27	.4	.5	1.6	.8	2.5	1.7
01562000	1913–2008	96	64.1	67.1	106	77.4	122	94.5
01562500	1931–1957	27	1.1	1.6	3.8	2.3	5.4	3.1
01563200								
01563200	21974-2008 31049-1072	35 25	10.3	28.2	86.1	112 64.5	266 113	129 95.5
01303200	31948-1972							
01662600								
01563500 01563500	² 1974–2008 ³ 1939–1972	35 34	384 153	415 242	519 343	441 278	580 399	493 333

Attachment B
Modeling Input Values
WQM 7.0 Modeling Output Values
Toxics Management Spreadsheet Modeling
Output Values


Master Input Sheet										
Borough of Everett Area Municipal Authority										
		PA003	7711							
		October	2019							
General Data 1 (Modeling Point #1)	Туре	Default	Input Value	Units						
Stream Code	R		13349							
River Mile Index	R		79	miles						
Elevation	R		993	feet						
Latitude			40.008333							
Longitude			-78.358056							
Drainage Area	R		433	sq miles						
Reach Slope	0		Default	ft/ft						
Low Flow Yield	R	0.1	0.0888	cfs/sq mile						
Potable Water	0	0	Dofault	ma and						
Supply Withdrawal	0	0	Default	mgd						
General Data 2	Туре	Default	Input Value	Units						
(Modeling Point #2)	Туре	Dejuun	input value	Omis						
Stream Code	R		13349							
River Mile Index	R		77.6	miles						
Elevation	R		987	feet						
Latitude			40.015903							
Longitude			-78.354043							
Drainage Area	R		451	sq miles						
Reach Slope	0		Default	ft/ft						
Low Flow Yield	R	0.1	0.0888	cfs/sq mile						
Potable Water	0	0	Default	mad						
Supply Withdrawal	U	U U	Default	mgd						
General Data 3	Туре	Default	Input Value	Units						
(Modeling Point #3)			-							
Stream Code	R		13349	.,						
River Mile Index	R		75.66	miles						
Elevation	R		979	feet						
Latitude			40.011998							
Longitude	D		-78.331693	sa milas						
Drainage Area	R O		454 Default	sq miles ft/ft						
Reach Slope Low Flow Yield	R	0.1	0.0888	cfs/sq mile						
Potable Water	N.	0.1	0.0888	crs/sq mile						
Supply Withdrawal	0	0	Default	mgd						
Supply Withdrawai										
Hydrodynamic and										
Related Data	Туре	Default	Input Value	Units						
Tributary Flow	0		Default	cfs						
Stream Flow	0		Default	cfs						
Tributary		20								
Temperature	R	20	23.3	С						
Tributary pH	R	7	8	pH units						
Stream Temperature	0		Default	С						
Stream pH	0	40	Default	pH Units						
Hardness		40	96	mg/l						

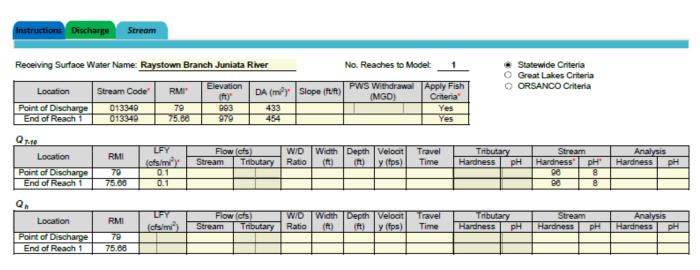
Discharge Data	Туре	Default	Input Value	Units
Discharge Name	R		Everett STP	15 character
Permit Number	R		PA0037711	PA0000000
Existing Discharge Flow	R		0.87	mgd
Permitted Discharge Flow	R		0.87	mgd
Design Discharge Flow	R		0.87	mgd
Reserve Factor	0	0	Default	decimal percent
Discharge	R	25	25	С
Temperature		7	7.1	mllmika
Discharge pH	R (Pontov)	7	7.1 182	pH units
Discharge Hardness	R (Pentox)	100	102	mg/l
Parameter Data	Туре	Default	Input Value	Units
CBOD				
Average Discharge	R	25	25	mg/l
Concentration	IX .	23	23	1116/1
Tributary	R	2	Default	mg/l
Concentration				- Gr
Stream	0		Default	mg/l
Concentration				<u>.</u>
Discharge	R	1.5	Default	1/day
Deoxygenation Rate				
NH3-N Average Discharge				
Concentration	R	25	25	mg/l
Tributary				
Concentration	R	0	Default	mg/l
Stream				
Concentration	0		Default	mg/l
Stream	_		- C 1	
Nitrification Rate	R	0.7	Default	1/day
DO				
Average Discharge	R	3	5	mg/l
Concentration		3	<u> </u>	1118/1
Tributary	R	Calculated	Default	mg/l
Concentration				8/ .
Stream	0		Default	mg/l
Concentration				<u>.</u>
Stream	0		Default	1/day
Reaeration Rate				
Tributary Saturation	R	90	Default	percent
Saturation				
Model Specifications	Туре	Default	Input Value	Units
Parameters	R	Both	Both	NH3-N/DO/Both
(DO/NH3-N)				
WLA Method	R	EMPR	EMPR	UT/EMPR/DO
Use entered Q1-10 and Q30-10 data	R	Yes	Yes	Yes/No
Default Q1-10 /Q7-				
10 ratio	R	0.64	0.96	Dimensionless
Default Q30-10 / Q7-				
10 ratio	R	1.6	1.15	Dimensionless
Use input reach		<u> </u>		
width/depth ratios	R	No	Default	Yes/No
Use input reach	5	Al -	D. C. 11	V /A1
travel times	R	No	Default	Yes/No
Temperature Adjust	R	Yes	Default	Yes/No
Kr	r.	res		162/140
Default DO Goal	R	6	5	mg/l
Use Balanced	R	_{Yes} 41	Yes	Yes/No
Technology		- *		,

Toxics Management Spreadsheet Version 1.1, October 2020

Discharge Information

	Discharge Characteristics										
Design Flow	Hardness (mg/l)*	pH (SU)*	P	artial Mix Fa	Complete Mix Times (min)						
(MGD)*	naruness (mg/l)	pn (30)*	AFC	CFC	THH	CRL	Q ₇₋₁₀ Q _h				
0.87	182	7.1									

						0 15 104	t blank	0586	if blank		If left blan	de	1 If left blank					
					O'll left blank U.S.II left blank			O'll leit Dialik			T II PELL DIGTIK							
	Discharge Pollutant	Units	Max			Max Discharge Conc				rib onc	Stream Conc	Daily CV	Hourly CV	Strea m CV		FOS		Chem Transl
	Total Dissolved Solids (PWS)	mg/L		444														
12	Chloride (PWS)	mg/L		158														
ΙĒ	Bromide	mg/L		0.4														
Group	Sulfate (PWS)	mg/L		59.9														
1	Fluoride (PWS)	mg/L																
\Box	Total Aluminum	µg/L																
1	Total Antimony	µg/L																
1	Total Arsenic	µg/L																
1	Total Barium	µg/L																
	Total Beryllium	µg/L																
1	Total Boron	µg/L																
1	Total Cadmium	µg/L																
1	Total Chromium (III)	µg/L																
1	Hexavalent Chromium	µg/L																
1	Total Cobalt	µg/L																
1	Total Copper	µg/L		11.1														
24	Free Cyanide	µg/L																
Group	Total Cyanide	µg/L																
1,2	Dissolved Iron	µg/L																
10	Total Iron	µg/L																
1	Total Lead	µg/L	<	0.303	\vdash													
1	Total Manganese	µg/L																
1	Total Mercury	µg/L																
1	Total Nickel	µg/L			\vdash													
1	Total Phenols (Phenolics) (PWS)	µg/L																
1	Total Selenium	µg/L			\vdash													
1	Total Silver	µg/L																
1	Total Thallium	µg/L																
1	Total Zinc	µg/L		51														
1	Total Molybdenum	µg/L																
\vdash	Acrolein	µg/L	<															
1	Acrylamide	µg/L	<															
	Acrylonitrile	µg/L	<															
	Benzene	µg/L	<															
	Bromoform	µg/L	<															
	Carbon Tetrachloride	µg/L	<															
	Chlorobenzene	µg/L																
	Chlorodibromomethane	µg/L	<															
	Chloroethane	µg/L	<															
	2-Chloroethyl Vinyl Ether	µg/L	<															
1	a considerily vinyi culci	P8-																


Discharge Information 2/10/2021 Page 1

Toxics Management Spreadsheet Version 1.1, October 2020

Stream / Surface Water Information

Borough of Everett Area MA, NPDES Permit No. PA0037711, Outfall 001

Toxics Management Spreadsheet Version 1.1, October 2020

Model Results

Borough of Everett Area MA, NPDES Permit No. PA0037711, Outfall 001

Instructions Results	RETURN	TO INPU	тѕ) (:	SAVE AS	PDF)	PRINT	r) 0 A	All Inputs	O Results	O Limits			
☐ Hydrodynamics] Hydrodynamics												
✓ Wasteload Allocations													
	COT (min) 15 DMC 0 481 Applyin Hardner (mail) 400 0 Applyin 11. 7.27												
✓ AFC CCT (min): 15 PMF: 0.181 Analysis Hardness (mg/l): 109.9 Analysis pH: 7.87													
Stream Stream Trib Conc Fate WQC WQ Obj W(A (1991)													
Pollutants	Conc	CV	(µg/L)	Coef	(µg/L)	(µg/L)	WLA (µg/L)		Con	nments			
Total Dissolved Solids (PWS)	0	0	(Pg/C/	0	N/A	N/A	N/A						
Chloride (PWS)	0	0		0	N/A	N/A	N/A						
Sulfate (PWS)	0	0		0	N/A	N/A	N/A						
Total Copper	0	0		0	14.689	15.3	94.7		Chem Transla	tor of 0.96 applied			
Total Lead	0	0		0	71.562	92.1	570	(Chem Translat	or of 0.777 applied			
Total Zinc	0	0		0	126.940	130	803		Chem Translat	tor of 0.978 applied			
☑ CFC CCT	Γ (min): ###	###	PMF:	1	Ana	llysis Hardne	ess (mg/l):	98.593	Analysis pH:	7.92			
Pollutants	Stream	Stream	Trib Conc	Fate	WQC	WQ Obj	WLA (µg/L)		Con	nments			
	Conc	CV	(µg/L)	Coef	(µg/L)	(µg/L)			Comments				
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A						
Chloride (PWS)	0	0		0	N/A	N/A	N/A						
Sulfate (PWS)	0	0		0	N/A	N/A	N/A						
Total Copper	0	0		0	8.848	9.22	306			tor of 0.96 applied			
Total Lead	0	0		0	2.478	3.12	104			or of 0.793 applied			
Total Zinc	0	0		0	116.729	118	3,927		Chem Translat	or of 0.986 applied			
⊡ тнн сст	Γ (min): ###		PMF:	1	'	llysis Hardne	ess (mg/l):	N/A	Analysis pH:	N/A			
Pollutants	Stream	Stream	Trib Conc	Fate	WQC	WQ Obj	WLA (µg/L)		Cor	nments			
	Conc	CV	(µg/L)	Coef	(µg/L)	(µg/L)				imens			
Total Dissolved Solids (PWS)	0	0		0	500,000	500,000	N/A						
Chloride (PWS)	0	0		0	250,000	250,000	N/A						
Sulfate (PWS)	0	0		0	250,000	250,000	N/A						
Total Copper	0	0		0	N/A	N/A	N/A						
Total Lead	0	0		0	N/A	N/A	N/A						
Total Zinc	0	0		0	N/A	N/A	N/A						

Model Results 2/10/2021 Page 5

Page 6

⊘ CRL CC	CT (min): ###	****	PMF:	1	Ana	alysis Hardne	ess (mg/l):	N/A Analysis pH: N/A
Pollutants	Stream Conc	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A	
Chloride (PWS)	0	0		0	N/A	N/A	N/A	
Sulfate (PWS)	0	0		0	N/A	N/A	N/A	
Total Copper	0	0		0	N/A	N/A	N/A	
Total Lead	0	0		0	N/A	N/A	N/A	
Total Zinc	0	0		0	N/A	N/A	N/A	

☑ Recommended WQBELs & Monitoring Requirements

No. Samples/Month: 4

Model Results

	Mass	Limits		Concentra	ition Limits				
Pollutants	AML (lbs/day)	MDL (lbs/day)	AML	AML MDL		Units	Governing WQBEL	WQBEL Basis	Comments
Total Copper	Report	Report	Report	rt Report Report		μg/L	60.7	AFC	Discharge Conc > 10% WQBEL (no RP)

2/10/2021

☐ Other Pollutants without Limits or Monitoring

Attachment C TRC Evaluation

Everett STP February 2021 PA0037711 Ε F 1A В С D G 2 TRC EVALUATION Input appropriate values in B4:B8 and E4:E7 0.5 = CV Daily 38.432 = Qstream (cfs) 1.08 = Qdischarge (MGD) 0.5 = CV Hourly 30 = no. samples = AFC Partial Mix Factor 0.3 = Chlorine Demand of Stream = CFC Partial Mix Factor = Chlorine Demand of Discharge 15 = AFC Criteria Compliance Time (min) 0.5 = BAT/BPJ Value 720 = CFC_Criteria Compliance Time (min) = % Factor of Safety (FOS) 0 =Decay Coefficient (K) 10 Source Heference AFC Calculations Reference CFC Calculations 11 TRC 1.32 iii WLA afc = 7.357 1.3.2iii WLA cfc = 7.165 12 PENTOXSD TRG LTAMULT cfc = 0.581 51a LTAMULT afc = 0.373 51c 13 PENTOXSD TRG 5.1b LTA afc= 2.741 5.1d LTA cfc = 4.165 14 15 Source Effluent Limit Calculations 16 PENTOXSD TRG 5.1f AML MULT = 1.231 17 PENTOXSD TRG 5.1g AVG MON LIMIT (mg/l) = 0.500BAT/BPJ 18 INST MAX LIMIT (mg/l) = 1.635 WLA afc (.019/e(-k*AFC_tc)) + [(AFC_Yc*Qs*.019/Qd*e(-k*AFC_tc))... ...+Xd+(AFC Yc*Qs*Xs/Qd)]*(1-FOS/100) LTAMULTafc EXP((0.5*LN(cvh^2+1))-2.326*LN(cvh^2+1)^0.5) LTA_afc wla afc*LTAMULT afc WLA_cfc (.011/e(-k*CFC_tc) + [(CFC_Yc*Qs*.011/Qd*e(-k*CFC_tc))... ...+Xd+(CFC_Yc*Qs*Xs/Qd)]*(1-FOS/100) LTAMULT_cfc EXP((0.5*LN(cvd^2/no_samples+1))-2.326*LN(cvd^2/no_samples+1)^0.5) LTA_cfc wla_cfc*LTAMULT_cfc AML MULT EXP(2.326*LN((cvd^2/no_samples+1)^0.5)-0.5*LN(cvd^2/no_samples+1)) MIN(BAT BPJ, MIN(LTA afc, LTA cfc)*AML MULT) AVG MON LIMIT INST MAX LIMIT 1.5*((av mon limit/AML MULT)/LTAMULT afc)