

Application Type Renewal  
Facility Type Municipal  
Major / Minor Major

Application No. **PA0038181**  
APS ID **1110734**  
Authorization ID **1479138**

**NPDES PERMIT FACT SHEET  
INDIVIDUAL SEWAGE**

**Applicant and Facility Information**

|                           |                                                   |                  |                                               |
|---------------------------|---------------------------------------------------|------------------|-----------------------------------------------|
| Applicant Name            | <b>Municipal Authority of Westmoreland County</b> | Facility Name    | <b>New Stanton STP</b>                        |
| Applicant Address         | 124 Park and Pool Road<br>New Stanton, PA 15672   | Facility Address | 157 Penn Valley Road<br>Hunker, PA 15639-1227 |
| Applicant Contact         | Norman Stout                                      | Facility Contact | Tim Keunzig                                   |
| Applicant Phone           | (724) 755-5800                                    | Facility Phone   | (724) 925-7280                                |
| Client ID                 | 64197                                             | Site ID          | 250808                                        |
| Ch 94 Load Status         | Not Overloaded                                    | Municipality     | Hempfield Township                            |
| Connection Status         | Dept. Imposed Connection Prohibitions             | County           | Westmoreland                                  |
| Date Application Received | April 2, 2024                                     | EPA Waived?      | No                                            |
| Date Application Accepted |                                                   | If No, Reason    | Major Facility, Pretreatment                  |
| Purpose of Application    | NPDES permit renewal application.                 |                  |                                               |

**Summary of Review**

The Pa Department of Environmental Protection (PADEP/Department) received an NPDES permit renewal application from Gibson-Thomas Engineering Co, Inc (consultant) on April 2, 2024 on behalf of Municipal Authority of Westmoreland County (MAWC/permittee) for Permittee's New Stanton STP (facility). This is a major sewage facility with a design flow of 7.2 MGD that discharges into Sewickley Creek (WWF) in state watershed 19-D. The current permit will expire on September 30, 2024. The terms and conditions of the current permit is automatically extended since the renewal application was received at least 180 days prior to expiration date. Renewal NPDES permit application under Clean Water Program are not covered by PADEP's PDG per 021-2100-001. This fact sheet is developed in accordance with 40 CFR §124.56.

Changes to existing permit: Added: monitoring for Total Antimony, Total Arsenic, Total Boron, Dissolved Iron, Total Mercury, Total Zinc, PFOA, PFOS, HFPO-DA, PFBS, and E-Coli. More stringent limits for NH3-N and CBOD5. Removed monitoring for TDS and its constituents.

Sludge use and disposal description and location(s): Sludge is digested in the anaerobic digesters and aerobic digester, thickened in the day tank, dewatered by belt filtration, and taken to the landfill for final disposal.

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

| Approve | Deny | Signatures                                                                                                                          | Date          |
|---------|------|-------------------------------------------------------------------------------------------------------------------------------------|---------------|
| ✓       |      | Reza H. Chowdhury, E.I.T. / Project Manager<br> | July 30, 2024 |
| ✓       |      | Mahbuba Iasmin<br>                               | July 31, 2024 |

| Discharge, Receiving Waters and Water Supply Information |                       |                              |                           |
|----------------------------------------------------------|-----------------------|------------------------------|---------------------------|
| Outfall No.                                              | 001                   | Design Flow (MGD)            | 7.2                       |
| Latitude                                                 | 40° 12' 8"            | Longitude                    | -79° 37' 43"              |
| Quad Name                                                | Smithton              | Quad Code                    | 1708                      |
| Wastewater Description:                                  | Sewage Effluent       |                              |                           |
| Receiving Waters                                         | Sewickley Creek (WWF) | Stream Code                  | 37556                     |
| NHD Com ID                                               | 69913471              | RMI                          | 15.44                     |
| Drainage Area                                            | 102 mi <sup>2</sup>   | Yield (cfs/mi <sup>2</sup> ) | 0.04                      |
| Q <sub>7-10</sub> Flow (cfs)                             | 4.08                  | Q <sub>7-10</sub> Basis      | Calculation               |
| Elevation (ft)                                           | 911.46                | Slope (ft/ft)                |                           |
| Watershed No.                                            | 19-D                  | Chapter 93 Class.            | WWF                       |
| Existing Use                                             |                       | Existing Use Qualifier       |                           |
| Exceptions to Use                                        | None                  | Exceptions to Criteria       | None                      |
| Assessment Status                                        | Impaired              |                              |                           |
| Cause(s) of Impairment                                   | METALS, PH            |                              |                           |
| Source(s) of Impairment                                  | ACID MINE DRAINAGE    |                              |                           |
| TMDL Status                                              | Final                 | Name                         | Sewickley Creek Watershed |
| Background/Ambient Data                                  |                       |                              |                           |
| pH (SU)                                                  | 7.0                   | Data Source                  | Default                   |
| Temperature (°C)                                         | 25                    |                              | Default                   |
| Hardness (mg/L)                                          | 100                   |                              | Default                   |
| Other:                                                   |                       |                              |                           |
| Nearest Downstream Public Water Supply Intake            |                       |                              |                           |
| PWS Waters                                               | Youghiogheny River    | Flow at Intake (cfs)         | 510                       |
| PWS RMI                                                  | 1.39                  | Distance from Outfall (mi)   | 31.19                     |

Changes Since Last Permit Issuance: None

Other Comments:

**Streamflow:**

The nearest USGS Streamgage is 03083500 on Youghiogheny River at Suttersville, at RMI 14.87, which is approximately 17.65 miles downstream and therefore isn't representative. The USGS's web based watershed delineation tool StreamStats (accessible at <https://streamstats.usgs.gov/ss/>, accessed on June 24, 2024) was utilized to determine the drainage area at discharge point and at confluence with UNT 37648 (node 2). The drainage area at Outfall 001 was found to be 102 mi<sup>2</sup> and 110 mi<sup>2</sup> at node 2. The previous permit utilized a yield of 0.04 cfs/mi<sup>2</sup> that results in a stream Q<sub>7-10</sub> of 102\*0.04 or 4.08 cfs. Default Q<sub>1-10</sub>:Q<sub>7-10</sub> of 0.64 and Q<sub>30-10</sub>:Q<sub>7-10</sub> of 1.36 will be used for modeling. The previous permit also utilized a Q<sub>7-10</sub> of 12.496 cfs for WETT Evaluation with the consideration of two upstream sewage dischargers (Greater Greensburg STP, average flow of 5.1 MGD for Ch 94 years 2014-2028, and Youngwood Borough STP). However, Youngwood Borough STP ceased discharge in 2020 and annual average flow from Greater Greensburg STP is changed to 4.86 MGD for Ch. 94 years 2019-2023, which leaves revised flow to 11.6 cfs.

**Stormwater Outfalls:**

The permit application lists following five stormwater-only outfalls:

| Outfall | Coordinates                | Receiving Waters | Chapter 93 Class | Drainage Area          |
|---------|----------------------------|------------------|------------------|------------------------|
| 010     | 40°12'12.6"N, 79°37'42.3"W | Sewickley Creek  | WWF              | 36,409 ft <sup>2</sup> |
| 011     | 40°12'11.5"N, 79°37'42.8"W | Sewickley Creek  | WWF              | 12,313 ft <sup>2</sup> |
| 012     | 40°12'09.1"N, 79°37'43.7"W | Sewickley Creek  | WWF              | 1,486 ft <sup>2</sup>  |
| 013     | 40°12'08.1"N, 79°37'38.8"W | Sewickley Creek  | WWF              | 22,835 ft <sup>2</sup> |
| 014     | 40°12'08.9"N, 79°37'33.9"W | Sewickley Creek  | WWF              | 16,942 ft <sup>2</sup> |

Part C of the permit will contain special condition pertaining to stormwater discharge requirements from industrial activities, as required in 40 CFR 122.26(b)(14)(ix).

**PWS Intake:**

The nearest downstream public water supply is Municipal Authority of Westmoreland County-McKeesport on Youghiogheny River at RMI 1.39. Its approximately 31.19 miles downstream of Outfall 001. Discharge from this facility is expected not to impact the PWS intake.

**Wastewater Characteristics:**

The 90<sup>th</sup> percentile pH of 7.13 was calculated from daily DMR during dry months July through September for the years 2022-2023. The application data indicated an average Total Hardness of 218 mg/l. The application indicated an average discharge temperature of 64.3°F or 17.9°C.

**Background data:**

The nearest WQN station is 0706 on Youghiogheny River at RMI 14.87 which is approximately 17.65 miles downstream of Outfall 001 and not representative. In absence of site-specific data, a default pH of 7.0 S.U., stream hardness of 100 mg/l, and temperature of 25°C will be used for modeling.

**Sewickley Creek Watershed TMDL:**

The discharge is to Sewickley Creek which has a Final TMDL, Sewickley Creek Watershed TMDL, and is impaired by metals and pH. This sewage discharge is not expected to contribute to the stream impairment for which abandoned mine drainage is source of such impairment. No WLAs have been developed for this sewage discharge and they are not expected to contribute to the stream impairment for these pollutants. A 1/quarter monitoring requirement is imposed in the existing permit for the parameters of Total Iron, Total Manganese and Total Aluminum. These monitoring requirements will be carried over unless a numeric limit is warranted from WQM modeling efforts.

**Antidegradation (93.4):**

The effluent limits for this discharge have been developed to ensure that existing in-stream water uses and the level of water quality necessary to protect the existing uses are maintained and protected. The receiving streams are designated as Warm Water Fishes (WWF). No High-Quality stream or Exceptional Value water is impacted by this discharge; therefore, no Antidegradation Analysis is performed for the discharge.

**Class A Wild Trout Fisheries:**

No Class A Wild Trout Fisheries are impacted by this discharge.

| Treatment Facility Summary                       |                      |                                      |                 |                       |
|--------------------------------------------------|----------------------|--------------------------------------|-----------------|-----------------------|
| <b>Treatment Facility Name:</b> New Stanton WPCP |                      |                                      |                 |                       |
| <b>WQM Permit No.</b>                            | <b>Issuance Date</b> |                                      |                 |                       |
|                                                  |                      |                                      |                 |                       |
| Waste Type                                       | Degree of Treatment  | Process Type                         | Disinfection    | Avg Annual Flow (MGD) |
| Sewage                                           | Tertiary             | Activated Sludge With Solids Removal | UV Disinfection | 7.2                   |

| Hydraulic Capacity (MGD) | Organic Capacity (lbs/day) | Load Status    | Biosolids Treatment | Biosolids Use/Disposal |
|--------------------------|----------------------------|----------------|---------------------|------------------------|
| 7.2                      | 11,330                     | Not Overloaded | Belt filter press   | Landfill               |

Changes Since Last Permit Issuance: None

#### Facility Information

New Stanton STP is a major sewage treatment plant owned and operated by Municipal Authority of Westmoreland County. The Average Annual design flow is 7.2 MGD, Hydraulic Design Capacity is 7.2 MGD, and Organic Design Capacity is 11,330 lbs. BOD5/day. The facility serves the following municipalities:

| TRIBUTARY INFORMATION    |                       |                      |              |            |
|--------------------------|-----------------------|----------------------|--------------|------------|
| Municipalities Served    | Flow Contribution (%) | Type of Sewer System |              | Population |
|                          |                       | Separate (%)         | Combined (%) |            |
| Hempfield Township       | 82.73                 | 100                  | 0            | 22955      |
| Youngwood Borough        | 6.88                  | 100                  | 0            | 1909       |
| New Stanton Borough      | 5.24                  | 100                  | 0            | 1455       |
| Unity Township           | 3.06                  | 100                  | 0            | 849        |
| Hunker Borough           | 1.10                  | 100                  | 0            | 306        |
| East Huntingdon Township | 0.92                  | 100                  | 0            | 255        |
| City of Greensburg       | 0.03                  | 100                  | 0            | 9          |
| Mt. Pleasant Township    | 0.03                  | 100                  | 0            | 9          |

Per the application, the treatment system consists of the following treatment units: 1 mechanical bar screen, 1 equalization tank, 2 primary clarifiers, 6 aeration tanks, 6 secondary clarifiers, 1 UV disinfection system, 1 aerobic digester, 2 anaerobic digesters, 1 sludge holding tank, and 1 belt filter press.

Per the pre-treatment report, there are two SIUs contributing to the treatment system: Cintas and Greenridge Reclamation. The facility is implementing an approved pretreatment program administered by EPA and most recent approval of local limits by EPA is June 2, 2022.

Magnesium Hydroxide is used to increase alkalinity for nitrification at a rate of 5.6 gal./hour.

Sludge is digested in the anaerobic digesters and aerobic digester, thickened in the day tank, dewatered by belt filtration, and taken to the landfill for final disposal.

The facility receives leachate from Greenridge landfill. The leachate is pumped in Greenridge's private line to a certain point from where it gravity flows into MAWC's line and mixes with facility's sewage about half a mile from the STP. The landfill can turn off the leachate pump to stop pumping to facility's collection system. MAWC has a service agreement with the landfill which allows the MAWC to shut-off leachate acceptance. The maximum daily flow to the STP is 90,000 GPD and average is 55,000 GPD. MAWC has a pretreatment permit with the landfill which is reviewed in every three years.

The facility is planning to upgrade sludge processing equipment and add a grit removal system within next five years.

Compliance History

DMR Data for Outfall 001 (from May 1, 2023 to April 30, 2024)

| Parameter                                                | APR-24  | MAR-24  | FEB-24 | JAN-24  | DEC-23 | NOV-23  | OCT-23  | SEP-23  | AUG-23  | JUL-23 | JUN-23 | MAY-23  |
|----------------------------------------------------------|---------|---------|--------|---------|--------|---------|---------|---------|---------|--------|--------|---------|
| Flow (MGD)<br>Average Monthly                            | 7.497   | 5.862   | 4.264  | 6.379   | 3.977  | 3.829   | 3.716   | 3.362   | 4.283   | 3.97   | 3.914  | 3.51    |
| Flow (MGD)<br>Daily Maximum                              | 24.003  | 13.795  | 7.765  | 14.647  | 6.937  | 7.495   | 8.814   | 4.26    | 10.92   | 7.36   | 7.01   | 5.40    |
| pH (S.U.)<br>Daily Minimum                               | 6.27    | 6.53    | 6.51   | 6.59    | 6.7    | 6.57    | 6.22    | 6.49    | 6.15    | 6.21   | 6.29   | 6.27    |
| pH (S.U.)<br>Daily Maximum                               | 7.16    | 7.07    | 6.99   | 7.15    | 7.22   | 7.42    | 7.03    | 7.72    | 7.03    | 6.99   | 6.94   | 6.81    |
| DO (mg/L)<br>Daily Minimum                               | 6.84    | 8.69    | 9.33   | 9.16    | 8.52   | 8.12    | 7.33    | 7.02    | 6.82    | 7.06   | 6.77   | 7.96    |
| TRC (mg/L)<br>Average Monthly                            | GG      | GG      | GG     | GG      | GG     | GG      | GG      | GG      | GG      | GG     | GG     | GG      |
| TRC (mg/L) IMAX                                          | GG      | GG      | GG     | GG      | GG     | GG      | GG      | GG      | GG      | GG     | GG     | GG      |
| CBOD5 (lbs/day)<br>Average Monthly                       | < 214.1 | < 158.8 | 161.0  | < 285.1 | 147.5  | < 121.7 | 130.8   | < 137.2 | 175.7   | 207.9  | 173.7  | < 119.2 |
| CBOD5 (lbs/day)<br>Weekly Average                        | < 410.1 | < 215.1 | 189.5  | < 367.0 | 196.3  | 163.7   | 145.3   | 163.2   | 274.4   | 336.8  | 213.5  | 172.2   |
| CBOD5 (mg/L)<br>Average Monthly                          | < 3.1   | < 3.3   | 4.7    | < 5.5   | 4.4    | < 3.8   | 4.2     | < 4.9   | 4.8     | 6.3    | 5.4    | < 4.0   |
| CBOD5 (mg/L)<br>Weekly Average                           | < 3.9   | < 3.7   | 6.1    | 7.2     | 5.1    | 4.3     | 4.9     | 5.6     | 5.8     | 9.9    | 6.7    | 4.8     |
| BOD5 (lbs/day)<br>Raw Sewage Influent<br>Average Monthly | 6527    | 6131    | 5831   | 6112.0  | 6222   | 5708    | 5666    | 5459    | 6147    | 5825   | 5544   | 5491    |
| BOD5 (lbs/day)<br>Raw Sewage Influent<br>Daily Maximum   | 24623   | 13783   | 10745  | 13497.0 | 12514  | 12708   | 17672   | 9099    | 20063   | 12952  | 10025  | 9458    |
| BOD5 (mg/L)<br>Raw Sewage Influent<br>Average Monthly    | 115     | 133     | 167    | 124.0   | 187    | 180     | 182     | 195     | 171     | 174    | 172    | 189     |
| TSS (lbs/day)<br>Average Monthly                         | < 341.2 | < 184.5 | 193.6  | 1543.5  | 279.7  | 176.7   | < 222.9 | 247.5   | < 294.0 | 192.2  | 360.9  | 184.2   |
| TSS (lbs/day)<br>Raw Sewage Influent<br>Average Monthly  | 7097    | 5913    | 5243   | 6623.0  | 5629   | 5325    | 6063    | 4719    | 5862    | 6061   | 5298   | 5081    |
| TSS (lbs/day)<br>Raw Sewage Influent<br>Daily Maximum    | 31229   | 11655   | 10962  | 18354.0 | 16191  | 11660   | 17773   | 7816    | 17934   | 18798  | 8668   | 10809   |

NPDES Permit Fact Sheet  
New Stanton STP

NPDES Permit No. PA0038181

|                                                      |        |         |         |          |          |          |          |          |          |          |          |          |
|------------------------------------------------------|--------|---------|---------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| TSS (lbs/day)<br>Weekly Average                      | 727.7  | 214.3   | 275.9   | 5372.8   | 387.7    | 258.4    | 284.6    | 367.2    | 615.6    | 246.3    | 569.3    | 340.0    |
| TSS (mg/L)<br>Average Monthly                        | < 5.2  | < 4.2   | 5.7     | 24.1     | 8.1      | 5.5      | < 7.0    | 8.7      | < 7.5    | 5.8      | 11.2     | 6.0      |
| TSS (mg/L)<br>Raw Sewage Influent<br>Average Monthly | 117    | 133     | 150     | 130.0    | 166      | 169      | 188      | 169      | 162      | 184      | 164      | 174      |
| TSS (mg/L)<br>Weekly Average                         | 8.1    | 6.0     | 7.7     | 77.6     | 10.0     | 8.6      | 9.4      | 12.4     | 12.7     | 7.0      | 18.0     | 9.4      |
| Total Dissolved Solids<br>(mg/L)<br>Daily Maximum    | 552.0  | 619.0   | 581.0   | 762.5    | 468.0    | 587.0    | 596.0    | 613      | 464.0    | 681      | 594      | 690      |
| Fecal Coliform<br>(No./100 ml)<br>Geometric Mean     | < 6.0  | < 5.0   | < 6     | < 7.0    | 5.0      | 6.0      | 15.0     | 34       | 24.0     | 20       | < 17     | < 5.0    |
| Fecal Coliform<br>(No./100 ml) IMAX                  | 136.0  | 18.0    | 69      | 48       | 23.0     | 13.0     | 96.0     | 108      | 140      | 94       | 231      | 34       |
| UV Transmittance (%)<br>Daily Minimum                | 54.0   | 53.0    | 49.0    | 54.0     | 55.0     | 55.0     | 50.0     | 49       | 45.0     | 51.0     | 46.0     | 48.0     |
| Total Nitrogen (mg/L)<br>Daily Maximum               |        | 45.9    |         |          | 25.3     |          |          | 27.1     |          |          | 25.5     |          |
| Ammonia (lbs/day)<br>Average Monthly                 | < 13.0 | < 5.8   | < 4.6   | < 7.9    | < 8.6    | < 7.1    | < 3.7    | < 7.1    | < 42.3   | < 5.6    | < 33.1   | < 5.70   |
| Ammonia (mg/L)<br>Average Monthly                    | < 0.1  | < 0.1   | < 0.1   | < 0.1    | < 0.2    | < 0.2    | < 0.1    | < 0.3    | < 1.0    | < 0.20   | < 0.9    | < 0.2    |
| Ammonia (mg/L)<br>Instantaneous<br>Maximum           | 0.94   | 0.22    | 0.33    | 0.44     | 3.97     | 1.83     | 0.32     | 0.42     | 3.46     | 0.81     | 4.14     | 0.39     |
| Total Phosphorus<br>(mg/L)<br>Daily Maximum          |        | 1.6     |         |          | 2.0      |          |          | 3.0      |          |          | 2.0      |          |
| Total Aluminum<br>(mg/L)<br>Daily Maximum            |        | 0.049   |         |          | 0.011    |          |          | 0.039    |          |          | 0.05     |          |
| Total Copper (mg/L)<br>Average Monthly               | 0.005  | 0.005   | 0.008   | 0.010    | 0.006    | 0.006    | 0.006    | 0.007    | 0.005    | 0.009    | 0.007    | 0.007    |
| Total Copper (mg/L)<br>Daily Maximum                 | 0.006  | 0.006   | 0.01    | 0.050    | 0.008    | 0.007    | 0.009    | 0.009    | 0.005    | 0.013    | 0.01     | 0.008    |
| Free Cyanide (mg/L)<br>Average Monthly               | 0.0005 | < 0.002 | < 0.001 | < 0.0045 | < 0.0011 | < 0.0015 | < 0.0017 | < 0.0005 | < 0.0015 | < 0.0009 | < 0.0013 | < 0.0024 |
| Free Cyanide (mg/L)<br>Daily Maximum                 | 0.0005 | 0.004   | 0.002   | 0.017    | 0.003    | 0.004    | 0.006    | 0.0005   | 0.004    | 0.002    | 0.003    | 0.007    |
| Total Iron (mg/L)<br>Daily Maximum                   |        | 0.297   |         |          | 0.053    |          |          | 0.277    |          |          | 0.238    |          |

|                                         |       |       |       |       |       |       |       |      |       |       |       |
|-----------------------------------------|-------|-------|-------|-------|-------|-------|-------|------|-------|-------|-------|
| Total Manganese (mg/L)<br>Daily Maximum |       | 0.035 |       | 0.01  |       |       | 0.05  |      |       | 0.035 |       |
| Sulfate (mg/L)<br>Daily Maximum         | 49.1  | 49.4  | 46.4  | 43.5  | 38.1  | 44.0  | 45.6  | 43.3 | 43.4  | 48.7  | 52.8  |
| Chloride (mg/L)<br>Daily Maximum        | 155.0 | 170.0 | 196.0 | 280.0 | 131.0 | 157.0 | 171.0 | 162  | 148.0 | 182   | 169.0 |
| Bromide (mg/L)<br>Daily Maximum         | 0.38  | 0.38  | 0.35  | 0.38  | 0.318 | 0.403 | 0.474 | 0.41 | 0.277 | 0.46  | 0.42  |

### Compliance History

#### Effluent Violations for Outfall 001, from: June 1, 2023 To: April 30, 2024

| Parameter    | Date     | SBC       | DMR Value | Units   | Limit Value | Units   |
|--------------|----------|-----------|-----------|---------|-------------|---------|
| TSS          | 01/31/24 | Wkly Avg  | 5372.8    | lbs/day | 2700.0      | lbs/day |
| TSS          | 01/31/24 | Wkly Avg  | 5372.8    | lbs/day | 2700.0      | lbs/day |
| TSS          | 01/31/24 | Wkly Avg  | 77.6      | mg/L    | 45.0        | mg/L    |
| TSS          | 01/31/24 | Wkly Avg  | 77.6      | mg/L    | 45.0        | mg/L    |
| Total Copper | 01/31/24 | Daily Max | 0.050     | mg/L    | .04         | mg/L    |
| Total Copper | 01/31/24 | Daily Max | 0.050     | mg/L    | .04         | mg/L    |

Other Comments: The permittee sent a non-compliance reporting form for January 2024 violations. The probable causes for the violations are high flows due to rainfall, SCADA issues, two aeration tanks and two clarifiers offline for maintenance. Corrective actions taken including resolving SCADA issues, all aeration tanks and clarifiers were back online.

#### Summary of Inspections:

June 26, 2024: CEI conducted. Violations noted including 24 SSOs between August 2023 to June 2024.

August 15, 2022: CEI conducted. Violations noted including 18 SSOs between August 2022 to August 2023.

August 9, 2022: CEI conducted. Violations noted including 23 SSOs between May 2021 to September 2022 and failure to monitor pollutants as required by the permit. Influent sampling wasn't prior to all return flows.

October 26, 2021: RPTP conducted. No violation identified during the inspection. The inspection was conducted to go over questions about leachate that NS STP accepts from Greenridge Landfill.

| Existing Limits                                         |                                     |                  |                       |                  |                  |                  |                                                 |                      |
|---------------------------------------------------------|-------------------------------------|------------------|-----------------------|------------------|------------------|------------------|-------------------------------------------------|----------------------|
| Parameter                                               | Effluent Limitations                |                  |                       |                  |                  |                  | Monitoring Requirements                         |                      |
|                                                         | Mass Units (lbs/day) <sup>(1)</sup> |                  | Concentrations (mg/L) |                  |                  |                  | Minimum <sup>(2)</sup><br>Measurement Frequency | Required Sample Type |
|                                                         | Average Monthly                     | Weekly Average   | Daily Minimum         | Average Monthly  | Daily Maximum    | Instant. Maximum |                                                 |                      |
| Flow (MGD)                                              | Report                              | Report Daily Max | XXX                   | XXX              | XXX              | XXX              | 1/day                                           | Metered              |
| pH (S.U.)                                               | XXX                                 | XXX              | 6.0                   | XXX              | 9.0              | XXX              | 1/day                                           | Grab                 |
| Dissolved Oxygen                                        | XXX                                 | XXX              | 5.0                   | XXX              | XXX              | XXX              | 1/day                                           | Grab                 |
| Total Residual Chlorine (TRC)                           | XXX                                 | XXX              | XXX                   | 0.06             | XXX              | 0.19             | 1/day                                           | Grab                 |
| Carbonaceous Biochemical Oxygen Demand (CBOD5)          | 1500.0                              | 2400.0           | XXX                   | 25.0             | 40.0<br>Wkly Avg | 50               | 1/day                                           | 24-Hr Composite      |
| Biochemical Oxygen Demand (BOD5)<br>Raw Sewage Influent | Report                              | Report Daily Max | XXX                   | Report           | XXX              | XXX              | 1/day                                           | 24-Hr Composite      |
| Total Suspended Solids<br>Raw Sewage Influent           | Report                              | Report Daily Max | XXX                   | Report           | XXX              | XXX              | 1/day                                           | 24-Hr Composite      |
| Total Suspended Solids                                  | 1800.0                              | 2700.0           | XXX                   | 30.0             | 45.0<br>Wkly Avg | 60               | 1/day                                           | 24-Hr Composite      |
| Total Dissolved Solids                                  | XXX                                 | XXX              | XXX                   | XXX              | Report           | XXX              | 1/month                                         | 24-Hr Composite      |
| Fecal Coliform (No./100 ml)<br>Oct 1 - Apr 30           | XXX                                 | XXX              | XXX                   | 2000<br>Geo Mean | XXX              | 10000            | 1/day                                           | Grab                 |
| Fecal Coliform (No./100 ml)<br>May 1 - Sep 30           | XXX                                 | XXX              | XXX                   | 200<br>Geo Mean  | XXX              | 1000             | 1/day                                           | Grab                 |
| Ultraviolet light transmittance (%)                     | XXX                                 | XXX              | Report                | XXX              | XXX              | XXX              | 1/day                                           | Measured             |
| Total Nitrogen                                          | XXX                                 | XXX              | XXX                   | XXX              | Report           | XXX              | 1/quarter                                       | 24-Hr Composite      |
| Ammonia-Nitrogen<br>Nov 1 - Apr 30                      | 510.0                               | XXX              | XXX                   | 8.5              | XXX              | 17.0             | 1/day                                           | 24-Hr Composite      |
| Ammonia-Nitrogen<br>May 1 - Oct 31                      | 210.0                               | XXX              | XXX                   | 3.5              | XXX              | 7.0              | 1/day                                           | 24-Hr Composite      |
| Total Phosphorus                                        | XXX                                 | XXX              | XXX                   | XXX              | Report           | XXX              | 1/quarter                                       | 24-Hr Composite      |
| Aluminum, Total                                         | XXX                                 | XXX              | XXX                   | XXX              | Report           | XXX              | 1/quarter                                       | 24-Hr Composite      |

| Parameter        | Effluent Limitations                |                   |                       |                    |                  |                     | Monitoring Requirements                         |                            |
|------------------|-------------------------------------|-------------------|-----------------------|--------------------|------------------|---------------------|-------------------------------------------------|----------------------------|
|                  | Mass Units (lbs/day) <sup>(1)</sup> |                   | Concentrations (mg/L) |                    |                  |                     | Minimum <sup>(2)</sup><br>Measurement Frequency | Required<br>Sample<br>Type |
|                  | Average<br>Monthly                  | Weekly<br>Average | Daily<br>Minimum      | Average<br>Monthly | Daily<br>Maximum | Instant.<br>Maximum |                                                 |                            |
| Copper, Total    | XXX                                 | XXX               | XXX                   | 0.026              | 0.04             | XXX                 | 1/week                                          | 24-Hr<br>Composite         |
| Cyanide, Free    | XXX                                 | XXX               | XXX                   | Report             | Report           | XXX                 | 1/week                                          | 24-Hr<br>Composite         |
| Iron, Total      | XXX                                 | XXX               | XXX                   | XXX                | Report           | XXX                 | 1/quarter                                       | 24-Hr<br>Composite         |
| Manganese, Total | XXX                                 | XXX               | XXX                   | XXX                | Report           | XXX                 | 1/quarter                                       | 24-Hr<br>Composite         |
| Sulfate, Total   | XXX                                 | XXX               | XXX                   | XXX                | Report           | XXX                 | 1/month                                         | 24-Hr<br>Composite         |
| Chloride         | XXX                                 | XXX               | XXX                   | XXX                | Report           | XXX                 | 1/month                                         | 24-Hr<br>Composite         |
| Bromide          | XXX                                 | XXX               | XXX                   | XXX                | Report           | XXX                 | 1/month                                         | 24-Hr<br>Composite         |

**Development of Effluent Limitations**

Outfall No. 001  
Latitude 40° 12' 8.00"  
Wastewater Description: Sewage Effluent

Design Flow (MGD) 7.2  
Longitude -79° 37' 43.00"

**Technology-Based Limitations**

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

| Pollutant                    | Limit (mg/l)    | SBC             | Federal Regulation | State Regulation |
|------------------------------|-----------------|-----------------|--------------------|------------------|
| CBOD <sub>5</sub>            | 25              | Average Monthly | 133.102(a)(4)(i)   | 92a.47(a)(1)     |
|                              | 40              | Average Weekly  | 133.102(a)(4)(ii)  | 92a.47(a)(2)     |
| Total Suspended Solids       | 30              | Average Monthly | 133.102(b)(1)      | 92a.47(a)(1)     |
|                              | 45              | Average Weekly  | 133.102(b)(2)      | 92a.47(a)(2)     |
| pH                           | 6.0 – 9.0 S.U.  | Min – Max       | 133.102(c)         | 95.2(1)          |
| Fecal Coliform (5/1 – 9/30)  | 200 / 100 ml    | Geo Mean        | -                  | 92a.47(a)(4)     |
| Fecal Coliform (5/1 – 9/30)  | 1,000 / 100 ml  | IMAX            | -                  | 92a.47(a)(4)     |
| Fecal Coliform (10/1 – 4/30) | 2,000 / 100 ml  | Geo Mean        | -                  | 92a.47(a)(5)     |
| Fecal Coliform (10/1 – 4/30) | 10,000 / 100 ml | IMAX            | -                  | 92a.47(a)(5)     |
| Total Residual Chlorine      | 0.5             | Average Monthly | -                  | 92a.48(b)(2)     |

**Mass-Based Limits**

The federal regulation at 40 CFR 122.45(f) requires that effluent limits be expressed in terms of mass, if possible. The regulation at 40 CFR 122.45(b) requires that effluent limitations for POTWs be calculated based on the design flow of the facility. The mass-based limits are expressed in pounds per day and are calculated as follows:

Mass based limit (lb/day) = concentration limit (mg/L) × design flow (mgd) × 8.34

**Model input data**

The following data will be used for modeling, as needed:

|                         |          |                                                                  |
|-------------------------|----------|------------------------------------------------------------------|
| • Discharge pH          | 7.13     | (90 <sup>th</sup> percentile, July-Sep 2022-23, daily eDMR data) |
| • Discharge Temperature | 17.9°C   | (Application data)                                               |
| • Discharge Hardness    | 218 mg/l | (Application data)                                               |
| • Stream pH             | 7.0      | (Default)                                                        |
| • Stream Temperature    | 25.0°C   | (Default)                                                        |
| • Stream Hardness       | 100 mg/l | (Default)                                                        |

The following two nodes were used in modeling:

Node 1: At the outfall 001 on Sewickley Creek (37556)  
 Elevation: 911.72 ft (National Map-Advanced Viewer, 07/24/2024)  
 Drainage Area: 102 mi<sup>2</sup> (StreamStat Version 3.0, 06/24/2024)  
 River Mile Index: 15.44 (PA DEP eMapPA)  
 Low Flow Yield: 0.04 cfs/mi<sup>2</sup>  
 Q<sub>7-10</sub>: 4.08 cfs  
 Discharge Flow: 7.2 MGD

Node 2: At confluence with UNT 37648 to Sewickley Creek  
 Elevation: 900.42 ft (National Map-Advanced Viewer, 07/24/2024)  
 Drainage Area: 110 mi<sup>2</sup> (StreamStat Version 3.0, 06/24/2024)  
 River Mile Index: 12.81 (PA DEP eMapPA)  
 Low Flow Yield: 0.04 cfs/mi<sup>2</sup>

Discharge Flow: 0.0 MGD

### **WQM 7.0 Model**

WQM 7.0 version 1.11 is a water quality model designed to assist DEP to determine appropriate effluent limits for CBOD<sub>5</sub>, NH<sub>3</sub>-N and DO. The model simulates two basic processes. In the NH<sub>3</sub>-N module, the model simulates the mixing and degradation of NH<sub>3</sub>-N in the stream and compares calculated instream NH<sub>3</sub>-N concentrations to NH<sub>3</sub>-N water quality criteria. In the D.O. module, the model simulates the mixing and consumption of D.O. in the stream due to the degradation of CBOD<sub>5</sub> and NH<sub>3</sub>N and compares calculated instream D.O. concentrations to D.O. water quality criteria. The model was utilized for this permit renewal by using Q<sub>7-10</sub> and current background water quality levels of the stream.

### **NH<sub>3</sub>-N**

WQM 7.0 suggested NH<sub>3</sub>-N limit of 1.76 mg/l as monthly average and 3.52 mg/l as IMAX limit during summer to protect water quality standards. The calculated mass-based AML is 105.68 lbs./day and IMAX limit of 211.37 lbs./day. These limits are more stringent than existing limits. A review of 12 months DMR data indicated that the facility is meeting the limits 100% of the time. The winter limits are calculated by multiplying the summer limits with a factor of 2.5. Since the permittee is meeting the proposed limits already, its not necessary to include that in the pre-draft survey. The more stringent limits will be effective from the effective date of the permit.

### **CBOD5**

WQM 7.0 suggests CBOD5 limit of 5.85 mg/l as AML which is more stringent than current permit. A review of the past 12 months DMR (May 2023 to April 2024) indicated the facility was meeting this limit 11 instances out of 12 (91.6%). The mass-based AML is 351.28 lbs./day which the permittee is meeting 10% of the time. Since the facility is meeting the more stringent limits at least 90% of the time, it is not necessary to include this in the pre-draft survey. The more stringent limits will be effective from the effective date of the permit.

### **DO**

WQM 7.0 suggests minimum DO of 5.0 mg/l which is the model input and same as existing limit. Existing limit will be carried over.

### **General Discussion on Toxics Management Spreadsheet (TMS)**

Based on the available data, PADEP utilizes Toxics Management Spreadsheet (TMS) to (1) evaluate reasonable potential for toxic pollutants to cause or contribute to an excursion above the water quality standards and (2) develop WQBELs for those such toxic pollutants (i.e., 40 CFR § 122.44(d)(1)(i)). It is noteworthy that some of these pollutants that may be reported as "non-detect", but still exceeded the criteria, were determined to be candidates for modeling because the method detection levels used to analyze those pollutants were higher than target QLs and/or the most stringent Chapter 93 criteria. The model then recommended the appropriate action for the Pollutants of Concerns based on the following logic as stated in PADEP's SOP titled *"Establishing Water Quality-Based Effluent Limitations (WQBELs) and Permit Conditions for Toxic Pollutants in NPDES Permits for Existing Dischargers (DEP SOP No.: BCW-PMT-037, Revised May 20, 2021)"*:

1. In general, establish limits in the draft permit where the effluent concentration determined in B.1 or B.2 equals or exceeds 50% of the WQBEL (i.e., RP is demonstrated). Use the average monthly, maximum daily and instantaneous maximum (IMAX) limits for the permit as recommended by the TMS (or, if appropriate, use a multiplier of 2 times the average monthly limit for the maximum daily limit and 2.5 times the average monthly limit for IMAX).
2. For non-conservative pollutants, in general, establish monitoring requirements where the effluent concentration determined in B.1 or B.2 is between 25% - 50% of the WQBEL.
3. For conservative pollutants, in general, establish monitoring requirements where the effluent concentration determined in B.1 or B.2 is between 10% - 50% of the WQBEL.

**NOTE 4** – If the effluent concentration determined in B.1 or B.2 is "non-detect" at or below the target quantitation limit (TQL) for the pollutant as specified in the TMS and permit application, the pollutant may be eliminated as a candidate for WQBELs or monitoring requirements unless 1) a more sensitive analytical method is available for the pollutant under 40 CFR Part 136 where the quantitation limit for the method is less than the applicable water quality criterion and 2) a detection at the more sensitive method may lead to a determination that an effluent limitation is necessary, considering available dilution at design conditions.

**NOTE 5** – If the effluent concentration determined in B.1 or B.2 is a detection below the TQL but above or equal to the applicable water quality criterion, WQBELs or monitoring may be established for the pollutant.

4. Application managers may, on a site- and pollutant-specific basis, deviate from these guidelines where there is specific rationale that is documented in the fact sheet.

Major sewage facilities are required to sample for pollutants group 1-5, at a minimum, and 6 and/or 7, if applicable. TMDL parameters, as applicable, are also required to be sampled if they aren't covered in any pollutant groups or by Part A of the permit. Pollutants groups 2-7 are modeled through TMS. The facility is required to provide at least three sample results of the effluent from outfall(s) discharging processed wastewater. The permittee submitted at least three sample results of all pollutants in groups 1-5. Maximum sample results of a given pollutant is the input of the model if the sample size is less than 10. For pollutants with sample size  $\geq 10$ , PADEP utilizes TOXCONC to calculate Average Monthly Effluent Concentration (AMEC) and Coefficient of Variation (CoV) to refine the model input. The statistical methodologies used in this spreadsheet are taken from EPA's *TSD for Water Quality-based Toxics Control, Appendix E* and are consistent with PADEP's technical guidance 391-2000-024.

The pollutants are modeled through TMS and output from the TMS is provided below:

**Recommended WQBELs & Monitoring Requirements**

No. Samples/Month: 4

| Pollutants     | Mass Limits   |               | Concentration Limits |        |        |                 | Governing WQBEL | WQBEL Basis | Comments                           |
|----------------|---------------|---------------|----------------------|--------|--------|-----------------|-----------------|-------------|------------------------------------|
|                | AML (lbs/day) | MDL (lbs/day) | AML                  | MDL    | IMAX   | Units           |                 |             |                                    |
| Total Antimony | Report        | Report        | Report               | Report | Report | $\mu\text{g/L}$ | 7.65            | THH         | Discharge Conc > 10% WQBEL (no RP) |
| Total Arsenic  | Report        | Report        | Report               | Report | Report | $\mu\text{g/L}$ | 13.7            | THH         | Discharge Conc > 10% WQBEL (no RP) |
| Total Boron    | Report        | Report        | Report               | Report | Report | $\mu\text{g/L}$ | 2,186           | CFC         | Discharge Conc > 10% WQBEL (no RP) |
| Dissolved Iron | Report        | Report        | Report               | Report | Report | $\mu\text{g/L}$ | 410             | THH         | Discharge Conc > 10% WQBEL (no RP) |
| Total Iron     | Report        | Report        | Report               | Report | Report | $\mu\text{g/L}$ | 2,049           | CFC         | Discharge Conc > 10% WQBEL (no RP) |
| Total Mercury  | Report        | Report        | Report               | Report | Report | $\mu\text{g/L}$ | 0.068           | THH         | Discharge Conc > 10% WQBEL (no RP) |
| Total Zinc     | Report        | Report        | Report               | Report | Report | $\mu\text{g/L}$ | 204             | AFC         | Discharge Conc > 10% WQBEL (no RP) |

Each of the parameters are discussed below:

**Total Antimony:**

The TMS model suggested monitoring requirements for Total Antimony based on a model input concentration of 2.3 ug/l (maximum of 3 sample results). A quarterly monitoring will be included.

**Total Arsenic:**

The TMS model suggested monitoring requirements for Total Arsenic based on a model input concentration of 4.0 ug/l (maximum of 8 sample results). A quarterly monitoring will be included.

**Total Boron:**

The TMS model suggested monitoring requirements for Total Boron based on a model input concentration of 343 ug/l (maximum of 3 sample results). A quarterly monitoring will be included.

**Dissolved Iron:**

The TMS model suggested monitoring requirements for Dissolved Iron based on a model input concentration of 108 ug/l (maximum of 3 sample results). A quarterly monitoring will be included.

**Total Iron:**

The TMS model suggested monitoring requirements for Total Iron based on a model input concentration of 277 ug/l (maximum of 8 sample results). A quarterly monitoring will be included.

**Total Mercury:**

The TMS model suggested monitoring requirements for Total Mercury based on a model input concentration of 0.02 ug/l (maximum of 8 sample results). A quarterly monitoring will be included.

**Total Zinc:**

The TMS model suggested monitoring requirements for Total Zinc based on a model input concentration of 42 ug/l (maximum of 8 sample results). A quarterly monitoring will be included.

**Nutrients monitoring:**

PADEP's SOP BCW-PMT-033 recommends monitoring for Total Nitrogen and Total Phosphorus for facilities with design flow more than 2000-GPD, which is also supported by Pa Code 25 Ch. 92a.61. Current monitoring requirement will be continued.

**Fecal Coliform:**

The recent coliform guidance in 25 Pa. code § 92a.47.(a)(4) requires a summer technology limit of 200/100 ml as a geometric mean and an instantaneous maximum not greater than 1,000/100ml and § 92a.47.(a)(5) requires a winter limit of 2,000/100ml as a geometric mean and an instantaneous maximum not greater than 10,000/100ml. These are existing requirements and will be carried over in this renewal.

**E. Coli:**

Pa Code 25 § 92a. 61 requires monitoring of E. Coli. DEP's SOP titled "Establishing Effluent Limitations for Individual Sewage Permits (BCW-PMT-033, revised March 24, 2021) recommends monthly E. Coli monitoring for major sewage dischargers. This requirement will be applied from this permit term.

**pH:**

The TBEL for pH is above 6.0 and below 9.0 S.U. (40 CFR §133.102(c) and Pa Code 25 §§ 95.2(1), 92a.47) which are existing limits and will be carried over.

**Total Suspended Solids (TSS):**

There is no water quality criterion for TSS. The existing limits of 30 mg/L average monthly, 45 mg/l average weekly, and 60 mg/L instantaneous maximum will remain in the permit based on the minimum level of effluent quality attainable by secondary treatment, 25 Pa. Code § 92a.47 and 40CFR 133.102(b). The mass based average monthly and weekly average limits are calculated to be 1,800 lbs./day and 2,700 lbs./day respectively, which are the same as were in existing permit and will be carried over.

**UV Disinfection:**

PADEP's SOP BCW-PMT-033 recommends UV parameter monitoring where UV is used as a method of disinfection, with the same frequency as would be if Chlorine is used for disinfection. The current permit has UV Transmittance in % reporting requirement which will be carried over in this renewal.

**PFOA, PFOS, HFPO-DA and PFBS:**

Per BCW-PMT-033 (revised February 5, 2024) and under the authority of Pa Code 25 § 92a.61, annual monitoring for PFOA, PFOS, HFPO-DA, and PFBS will be added in this renewal with a footnote that will read:

*"The permittee may discontinue monitoring for PFOA, PFOS, HFPO-DA, and PFBS if the results in 4 consecutive monitoring periods indicate non-detect results at or below Quantitation Limits of 4.0 ng/L for PFOA, 3.7 ng/L for PFOS, 3.5 ng/L for PFBS and 6.4 ng/L for HFPO-DA. When monitoring is discontinued, permittees must enter a No Discharge Indicator (NODI) Code of "GG" on DMRs."*

**TDS, Sulfate, Chloride, Bromide, 1,4-Dioxane:**

Historically PADEP utilized the following logics to determine limits/monitoring requirements for these special monitoring parameters:

- Where the concentration of TDS in the discharge exceeds 1,000 mg/L, or the net TDS load from a discharge exceeds 20,000 lbs./day, and the discharge flow exceeds 0.1 MGD, Part A of the permit should include monitor and report for TDS, sulfate, chloride, and bromide. Discharges of 0.1 MGD or less should monitor and report for TDS, sulfate, chloride, and bromide if the concentration of TDS in the discharge exceeds 5,000 mg/L.
- Where the concentration of bromide in a discharge exceeds 1 mg/L and the discharge flow exceeds 0.1 MGD, Part A of the permit should include monitor and report for bromide. Discharges of 0.1 MGD or less should monitor and report for bromide if the concentration of bromide in the discharge exceeds 10 mg/L.

PADEP has determined that they have sufficient data over the past 7 years of implementing the special monitoring logic for these parameters and it is no longer needed. The monitoring requirements for Sulfate, Chloride, and Bromide will be removed from the permit. This is consistent with Anti-backsliding Prohibition exception as stated in CWA Section 402(o)(2)(i) and 40 CFR § 122.44.(l)(2)(i)(B)(1).

**TMDL Parameters:**

No RP were demonstrated for TMDL parameters; therefore, existing monitoring will be carried over.

**Total Residual Chlorine (TRC)**

The facility stores chlorine to use as backup disinfectant. The current permit has daily monitoring requirements for TRC with limits. Existing limits are still protective and will be continued in the permit.

**Monitoring Frequency and Sample Types:**

Otherwise specified above, the monitoring frequency and sample type of compliance monitoring for existing parameters are recommended by DEP's SOP and Permit Writers Manual and/or on a case-by-case basis using best professional judgment (BPJ).

**Flow and Influent BOD<sub>5</sub> and TSS Monitoring Requirement:**

The requirement to monitor the volume of effluent will remain in the draft permit per 40 CFR § 122.44(i)(1)(ii). Influent BOD<sub>5</sub> and TSS monitoring requirements are established in the permit per the requirements set in Pa Code 25 Chapter 94.

**Anti-Backsliding**

Anti-backsliding prohibition is justified in sections where an exception is justified for the affected pollutant(s). For remaining pollutants, this prohibition isn't applicable since the proposed limits are at least as stringent as were in current permit.

**Whole Effluent Toxicity (WET)**

For Outfall 001,  **Acute**  **Chronic** WET Testing was completed:

- For the permit renewal application (4 tests).
- Quarterly throughout the permit term.
- Quarterly throughout the permit term and a TIE/TRE was conducted.
- Other: [REDACTED]

The dilution series used for the tests was: 100%, 74%, 47%, 24%, and 12%. The Target Instream Waste Concentration (TIWC) to be used for analysis of the results is: 47%.

**Summary of Four Most Recent Test Results**

(NOTE – Enter results into one table, depending on which data analysis method was used).

NOEC/LC50 Data Analysis

| Test Date | Ceriodaphnia Results (% Effluent) |                   |       | Pimephales Results (% Effluent) |             |       | Pass? * |
|-----------|-----------------------------------|-------------------|-------|---------------------------------|-------------|-------|---------|
|           | NOEC Survival                     | NOEC Reproduction | LC50  | NOEC Survival                   | NOEC Growth | LC50  |         |
| 05/2020   | 100%                              | 100%              | >100% | 100%                            | 100%        | >100% | Pass    |
| 05/2021   | 100%                              | 100%              | >100% | 100%                            | 100%        | >100% | Pass    |
| 05/2022   | 100%                              | 100%              | >100% | 100%                            | 100%        | >100% | Pass    |
| 05/2023   | 100%                              | 100%              | >100% | 100%                            | 100%        | >100% | Pass    |

\* A “passing” result is that which is greater than or equal to the TIWC value.

Is there reasonable potential for an excursion above water quality standards based on the results of these tests? (NOTE – In general, reasonable potential is determined anytime there is at least one test failure in the previous four tests).

**YES**  **NO**

**Comments:** There were two tests failures in 2020 and 2023, retests of which passed.

**Evaluation of Test Type, IWC and Dilution Series for Renewed Permit**

Acute Partial Mix Factor (PMFa): **0.441**

Chronic Partial Mix Factor (PMFc): **1.0**

**1. Determine IWC – Acute (IWCa):**

$$(Q_d \times 1.547) / ((Q_{7-10} \times PMFa) + (Q_d \times 1.547))$$

$$[(7.2 \text{ MGD} \times 1.547) / ((11.6 \text{ cfs} \times 0.441) + (7.2 \text{ MGD} \times 1.547))] \times 100 = \mathbf{68.52\%}$$

Is IWCa < 1%?  **YES**  **NO** (YES - Acute Tests Required OR NO - Chronic Tests Required)

If the discharge is to the tidal portion of the Delaware River, indicate how the type of test was determined:

[REDACTED]

**Type of Test for Permit Renewal: Chronic**

**2a. Determine Target IWCa (If Acute Tests Required)**

$$TIWCa = IWCa / 0.3 = \mathbf{[REDACTED]} \%$$

**2b. Determine Target IWCc (If Chronic Tests Required)**

$$(Q_d \times 1.547) / (Q_{7-10} \times PMFc) + (Q_d \times 1.547)$$

$$[(7.2 \text{ MGD} \times 1.547) / ((11.6 \text{ cfs} \times 1) + (7.2 \text{ MGD} \times 1.547))] \times 100 = 49\%$$

### 3. Determine Dilution Series

(NOTE – check Attachment C of WET SOP for dilution series based on TIWCa or TIWCC, whichever applies).

Dilution Series = 100%, 75%, 49%, 25%, and 12%.

#### WET Limits

Has reasonable potential been determined?  YES  NO

Will WET limits be established in the permit?  YES  NO

If WET limits will be established, identify the species and the limit values for the permit (TU).

If WET limits will not be established, but reasonable potential was determined, indicate the rationale for not establishing WET limits:

**Proposed Effluent Limitations and Monitoring Requirements**

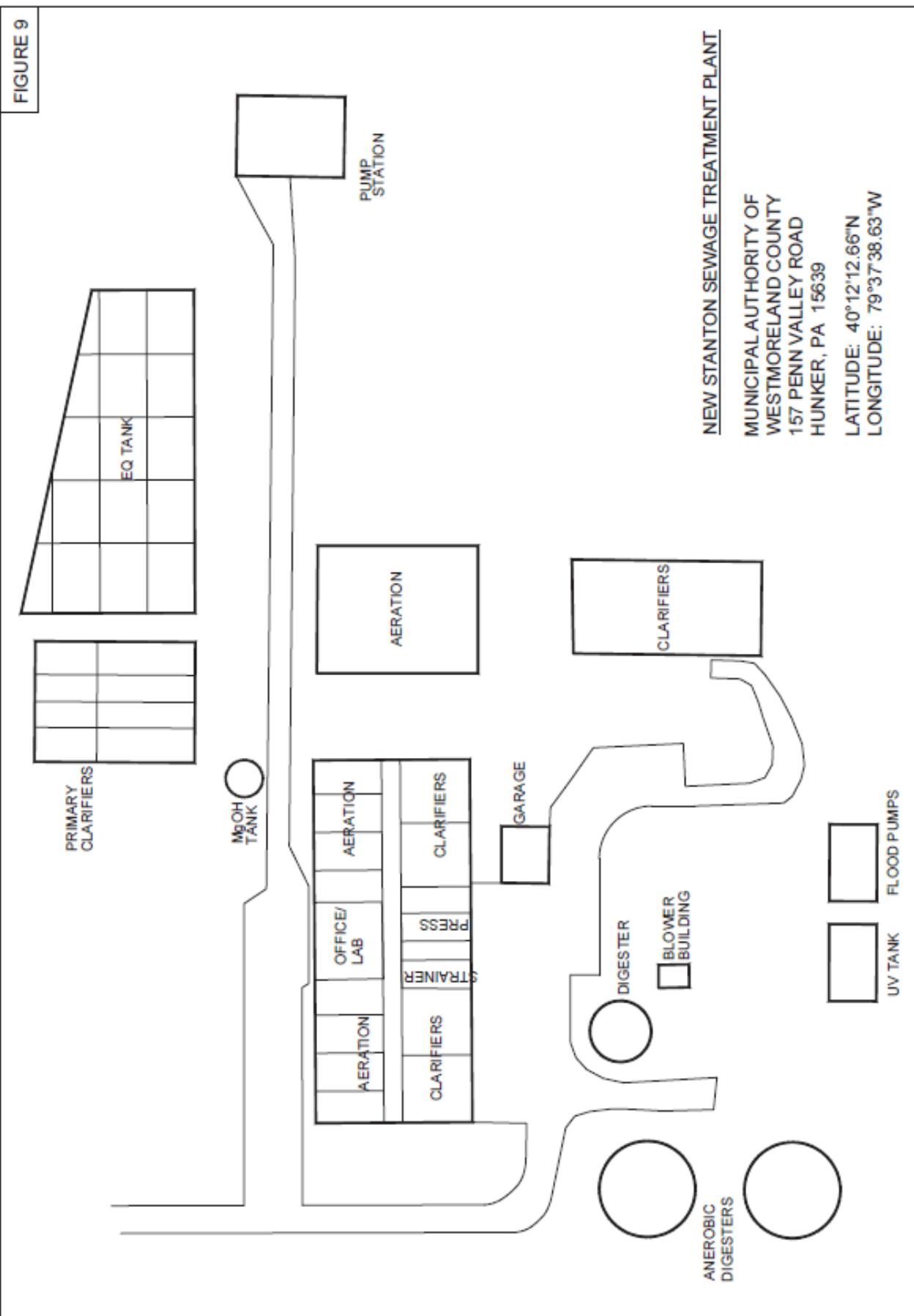
The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (386-0400-001), SOPs and/or BPJ.

**Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.**

| Parameter                                               | Effluent Limitations                |                  |                       |                  |                  |                  | Monitoring Requirements                         |                      |
|---------------------------------------------------------|-------------------------------------|------------------|-----------------------|------------------|------------------|------------------|-------------------------------------------------|----------------------|
|                                                         | Mass Units (lbs/day) <sup>(1)</sup> |                  | Concentrations (mg/L) |                  |                  |                  | Minimum <sup>(2)</sup><br>Measurement Frequency | Required Sample Type |
|                                                         | Average Monthly                     | Weekly Average   | Daily Minimum         | Average Monthly  | Daily Maximum    | Instant. Maximum |                                                 |                      |
| Flow (MGD)                                              | Report                              | Daily Max        | XXX                   | XXX              | XXX              | XXX              | 1/day                                           | Metered              |
| pH (S.U.)                                               | XXX                                 | XXX              | 6.0                   | XXX              | 9.0              | XXX              | 1/day                                           | Grab                 |
| Dissolved Oxygen                                        | XXX                                 | XXX              | 5.0                   | XXX              | XXX              | XXX              | 1/day                                           | Grab                 |
| Total Residual Chlorine (TRC)                           | XXX                                 | XXX              | XXX                   | 0.06             | XXX              | 0.19             | 1/day                                           | Grab                 |
| Carbonaceous Biochemical Oxygen Demand (CBOD5)          | 1500.0                              | 2400.0           | XXX                   | 25.0             | 40.0<br>Wkly Avg | 50               | 1/day                                           | 24-Hr Composite      |
| Biochemical Oxygen Demand (BOD5)<br>Raw Sewage Influent | Report                              | Report Daily Max | XXX                   | Report           | XXX              | XXX              | 1/day                                           | 24-Hr Composite      |
| Total Suspended Solids<br>Raw Sewage Influent           | Report                              | Report Daily Max | XXX                   | Report           | XXX              | XXX              | 1/day                                           | 24-Hr Composite      |
| Total Suspended Solids                                  | 1800.0                              | 2700.0           | XXX                   | 30.0             | 45.0<br>Wkly Avg | 60               | 1/day                                           | 24-Hr Composite      |
| Fecal Coliform (No./100 ml)<br>Oct 1 - Apr 30           | XXX                                 | XXX              | XXX                   | 2000<br>Geo Mean | XXX              | 10000            | 1/day                                           | Grab                 |
| Fecal Coliform (No./100 ml)<br>May 1 - Sep 30           | XXX                                 | XXX              | XXX                   | 200<br>Geo Mean  | XXX              | 1000             | 1/day                                           | Grab                 |
| E. Coli (No./100 ml)                                    | XXX                                 | XXX              | XXX                   | XXX              | XXX              | Report           | 1/month                                         | Grab                 |
| Ultraviolet light transmittance (%)                     | XXX                                 | XXX              | Report                | XXX              | XXX              | XXX              | 1/day                                           | Measured             |
| Total Nitrogen                                          | XXX                                 | XXX              | XXX                   | XXX              | Report           | XXX              | 1/quarter                                       | 24-Hr Composite      |
| Ammonia-Nitrogen<br>Nov 1 - Apr 30                      | 510.0                               | XXX              | XXX                   | 8.5              | XXX              | 17.0             | 1/day                                           | 24-Hr Composite      |

Outfall 001, Continued (from Permit Effective Date through Permit Expiration Date)

| Parameter                          | Effluent Limitations                |                |                       |                 |               |                  | Monitoring Requirements                         |                      |
|------------------------------------|-------------------------------------|----------------|-----------------------|-----------------|---------------|------------------|-------------------------------------------------|----------------------|
|                                    | Mass Units (lbs/day) <sup>(1)</sup> |                | Concentrations (mg/L) |                 |               |                  | Minimum <sup>(2)</sup><br>Measurement Frequency | Required Sample Type |
|                                    | Average Monthly                     | Weekly Average | Daily Minimum         | Average Monthly | Daily Maximum | Instant. Maximum |                                                 |                      |
| Ammonia-Nitrogen<br>May 1 - Oct 31 | 210.0                               | XXX            | XXX                   | 3.5             | XXX           | 7.0              | 1/day                                           | 24-Hr Composite      |
| Total Phosphorus                   | XXX                                 | XXX            | XXX                   | XXX             | Report        | XXX              | 1/quarter                                       | 24-Hr Composite      |
| Aluminum, Total                    | XXX                                 | XXX            | XXX                   | XXX             | Report        | XXX              | 1/quarter                                       | 24-Hr Composite      |
| Antimony, Total                    | XXX                                 | XXX            | XXX                   | XXX             | Report        | XXX              | 1/quarter                                       | 24-Hr Composite      |
| Arsenic, Total                     | XXX                                 | XXX            | XXX                   | XXX             | Report        | XXX              | 1/quarter                                       | 24-Hr Composite      |
| Boron, Total                       | XXX                                 | XXX            | XXX                   | XXX             | Report        | XXX              | 1/quarter                                       | 24-Hr Composite      |
| Copper, Total                      | XXX                                 | XXX            | XXX                   | 0.026           | 0.04          | XXX              | 1/week                                          | 24-Hr Composite      |
| Cyanide, Free                      | XXX                                 | XXX            | XXX                   | Report          | Report        | XXX              | 1/week                                          | 24-Hr Composite      |
| Iron, Dissolved                    | XXX                                 | XXX            | XXX                   | XXX             | Report        | XXX              | 1/quarter                                       | 24-Hr Composite      |
| Iron, Total                        | XXX                                 | XXX            | XXX                   | XXX             | Report        | XXX              | 1/quarter                                       | 24-Hr Composite      |
| Manganese, Total                   | XXX                                 | XXX            | XXX                   | XXX             | Report        | XXX              | 1/quarter                                       | 24-Hr Composite      |
| Mercury, Total                     | XXX                                 | XXX            | XXX                   | XXX             | Report        | XXX              | 1/quarter                                       | 24-Hr Composite      |
| Zinc, Total                        | XXX                                 | XXX            | XXX                   | XXX             | Report        | XXX              | 1/quarter                                       | 24-Hr Composite      |
| PFOA (ug/L)                        | XXX                                 | XXX            | XXX                   | XXX             | Report        | XXX              | 1/year                                          | Grab                 |
| PFOS (ug/L)                        | XXX                                 | XXX            | XXX                   | XXX             | Report        | XXX              | 1/year                                          | Grab                 |
| PFBS (ug/L)                        | XXX                                 | XXX            | XXX                   | XXX             | Report        | XXX              | 1/year                                          | Grab                 |
| HFPO-DA (ug/L)                     | XXX                                 | XXX            | XXX                   | XXX             | Report        | XXX              | 1/year                                          | Grab                 |


Compliance Sampling Location: At Outfall 001  
Other Comments: None

| Tools and References Used to Develop Permit |                                                                                                                                                                                                                    |
|---------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <input checked="" type="checkbox"/>         | WQM for Windows Model (see Attachment █ )                                                                                                                                                                          |
| <input checked="" type="checkbox"/>         | Toxics Management Spreadsheet (see Attachment █ )                                                                                                                                                                  |
| <input checked="" type="checkbox"/>         | TRC Model Spreadsheet (see Attachment █ )                                                                                                                                                                          |
| <input type="checkbox"/>                    | Temperature Model Spreadsheet (see Attachment █ )                                                                                                                                                                  |
| <input type="checkbox"/>                    | Water Quality Toxics Management Strategy, 361-0100-003, 4/06.                                                                                                                                                      |
| <input type="checkbox"/>                    | Technical Guidance for the Development and Specification of Effluent Limitations, 386-0400-001, 10/97.                                                                                                             |
| <input type="checkbox"/>                    | Policy for Permitting Surface Water Diversions, 386-2000-019, 3/98.                                                                                                                                                |
| <input type="checkbox"/>                    | Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 386-2000-018, 11/96.                                                                                                                  |
| <input type="checkbox"/>                    | Technology-Based Control Requirements for Water Treatment Plant Wastes, 386-2183-001, 10/97.                                                                                                                       |
| <input type="checkbox"/>                    | Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 386-2183-002, 12/97.                                                                                                      |
| <input type="checkbox"/>                    | Pennsylvania CSO Policy, 386-2000-002, 9/08.                                                                                                                                                                       |
| <input type="checkbox"/>                    | Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03.                                                                                                                                        |
| <input type="checkbox"/>                    | Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 386-2000-008, 4/97.                                                                                           |
| <input type="checkbox"/>                    | Determining Water Quality-Based Effluent Limits, 386-2000-004, 12/97.                                                                                                                                              |
| <input type="checkbox"/>                    | Implementation Guidance Design Conditions, 386-2000-007, 9/97.                                                                                                                                                     |
| <input type="checkbox"/>                    | Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen, Version 1.0, 386-2000-016, 6/2004.                                                    |
| <input type="checkbox"/>                    | Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 386-2000-012, 10/1997.                                                                             |
| <input type="checkbox"/>                    | Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments, 386-2000-009, 3/99.                                                                   |
| <input type="checkbox"/>                    | Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 386-2000-015, 5/2004.                                                              |
| <input type="checkbox"/>                    | Implementation Guidance for Section 93.7 Ammonia Criteria, 386-2000-022, 11/97.                                                                                                                                    |
| <input type="checkbox"/>                    | Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 386-2000-013, 4/2008.                                             |
| <input type="checkbox"/>                    | Implementation Guidance Total Residual Chlorine (TRC) Regulation, 386-2000-011, 11/1994.                                                                                                                           |
| <input type="checkbox"/>                    | Implementation Guidance for Temperature Criteria, 386-2000-001, 4/09.                                                                                                                                              |
| <input type="checkbox"/>                    | Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 386-2000-021, 10/97.                                                                                                       |
| <input type="checkbox"/>                    | Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 386-2000-020, 10/97.       |
| <input type="checkbox"/>                    | Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 386-2000-005, 3/99.                                                                               |
| <input type="checkbox"/>                    | Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 386-2000-010, 3/1999. |
| <input type="checkbox"/>                    | Design Stream Flows, 386-2000-003, 9/98.                                                                                                                                                                           |
| <input type="checkbox"/>                    | Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 386-2000-006, 10/98.                                     |
| <input type="checkbox"/>                    | Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 386-3200-001, 6/97.                                                                                                                         |
| <input type="checkbox"/>                    | Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07.                                                                                                                   |
| <input type="checkbox"/>                    | SOP: █                                                                                                                                                                                                             |
| <input type="checkbox"/>                    | Other: █                                                                                                                                                                                                           |

## USGS Location



Process flow diagram



## PA0038181 at Outfall 001

Region ID: PA

Workspace ID: PA20240625002902197000

Clicked Point (Latitude, Longitude): 40.20205, -79.62865

Time: 2024-06-24 20:29:23 -0400


[Collapse All](#)

### ► Basin Characteristics

| Parameter Code | Parameter Description                   | Value | Unit         |
|----------------|-----------------------------------------|-------|--------------|
| DRNAREA        | Area that drains to a point on a stream | 102   | square miles |
| ELEV           | Mean Basin Elevation                    | 1161  | feet         |

### ► Low-Flow Statistics

#### Low-Flow Statistics Parameters [Low Flow Region 4]

| Parameter Code | Parameter Name       | Value | Units        | Min Limit | Max Limit |
|----------------|----------------------|-------|--------------|-----------|-----------|
| DRNAREA        | Drainage Area        | 102   | square miles | 2.26      | 1400      |
| ELEV           | Mean Basin Elevation | 1161  | feet         | 1050      | 2580      |

## Low-Flow Statistics Flow Report [Low Flow Region 4]

PIL: Lower 90% Prediction Interval, PIU: Upper 90% Prediction Interval, ASEp: Average Standard Error of Prediction, SE: Standard Error, PC: Percent Correct (other -- see report)

| Statistic               | Value | Unit               | SE | ASEp |
|-------------------------|-------|--------------------|----|------|
| 7 Day 2 Year Low Flow   | 5.31  | ft <sup>3</sup> /s | 43 | 43   |
| 30 Day 2 Year Low Flow  | 8.23  | ft <sup>3</sup> /s | 38 | 38   |
| 7 Day 10 Year Low Flow  | 2.42  | ft <sup>3</sup> /s | 66 | 66   |
| 30 Day 10 Year Low Flow | 3.65  | ft <sup>3</sup> /s | 54 | 54   |
| 90 Day 10 Year Low Flow | 5.91  | ft <sup>3</sup> /s | 41 | 41   |

### *Low-Flow Statistics Citations*

**Stuckey, M.H., 2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006-5130, 84 p.**  
(<http://pubs.usgs.gov/sir/2006/5130/>)

**USGS Data Disclaimer:** Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

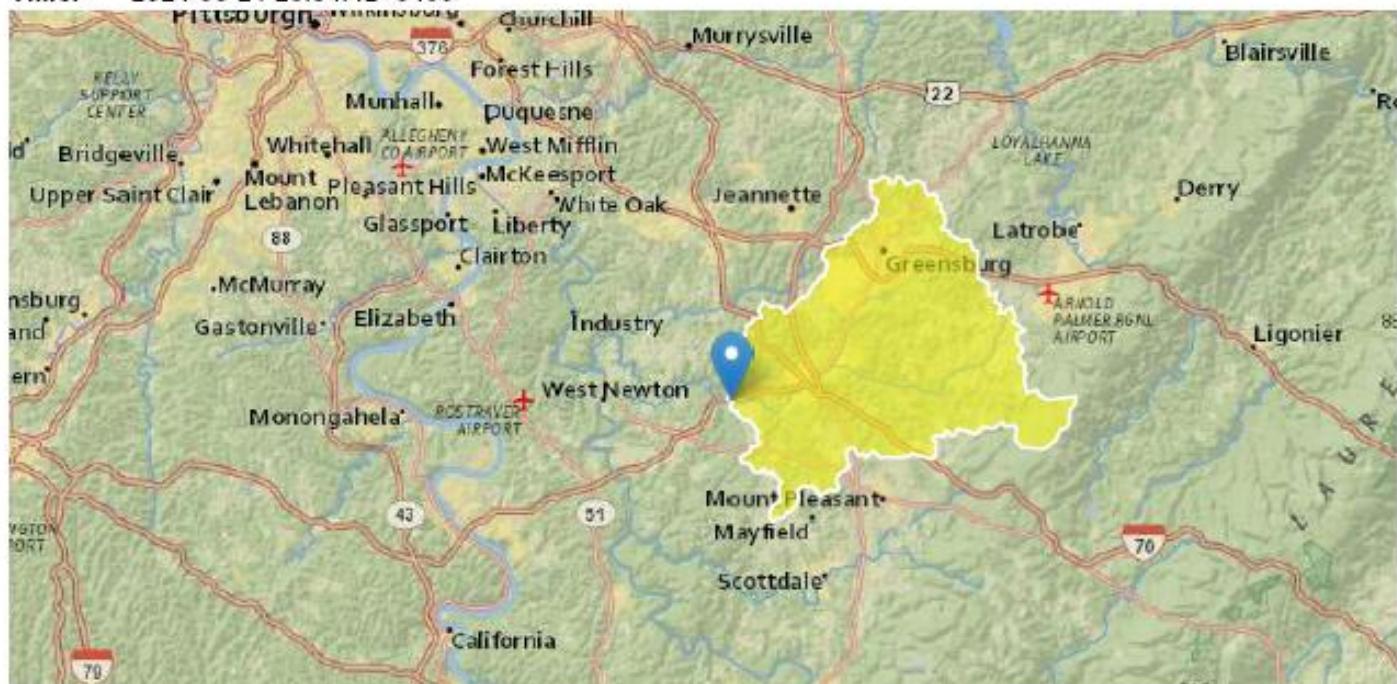
**USGS Software Disclaimer:** This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the functionality of the software and related material nor shall the fact of release constitute any such warranty. Furthermore, the software is released on condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized use.

**USGS Product Names Disclaimer:** Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Application Version: 4.21.0

StreamStats Services Version: 1.2.22

NSS Services Version: 2.2.1


## PA0038181 at node 2

Region ID: PA

Workspace ID: PA20240625003420856000

Clicked Point (Latitude, Longitude): 40.20938, -79.66358

Time: 2024-06-24 20:34:42 -0400


⊕ [Collapse All](#)

#### ➤ Basin Characteristics

| Parameter Code | Parameter Description                   | Value | Unit         |
|----------------|-----------------------------------------|-------|--------------|
| DRNAREA        | Area that drains to a point on a stream | 110   | square miles |
| ELEV           | Mean Basin Elevation                    | 1156  | feet         |

#### ➤ Low-Flow Statistics

##### Low-Flow Statistics Parameters [Low Flow Region 4]

| Parameter Code | Parameter Name       | Value | Units        | Min Limit | Max Limit |
|----------------|----------------------|-------|--------------|-----------|-----------|
| DRNAREA        | Drainage Area        | 110   | square miles | 2.26      | 1400      |
| ELEV           | Mean Basin Elevation | 1156  | feet         | 1050      | 2580      |

## Low-Flow Statistics Flow Report [Low Flow Region 4]

PIL: Lower 90% Prediction Interval, PIU: Upper 90% Prediction Interval, ASEp: Average Standard Error of Prediction, SE: Standard Error, PC: Percent Correct (other – see report)

| Statistic               | Value | Unit               | SE | ASEp |
|-------------------------|-------|--------------------|----|------|
| 7 Day 2 Year Low Flow   | 5.76  | ft <sup>3</sup> /s | 43 | 43   |
| 30 Day 2 Year Low Flow  | 8.9   | ft <sup>3</sup> /s | 38 | 38   |
| 7 Day 10 Year Low Flow  | 2.65  | ft <sup>3</sup> /s | 66 | 66   |
| 30 Day 10 Year Low Flow | 3.97  | ft <sup>3</sup> /s | 54 | 54   |
| 90 Day 10 Year Low Flow | 6.41  | ft <sup>3</sup> /s | 41 | 41   |

### Low-Flow Statistics Citations

**Stuckey, M.H., 2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006-5130, 84 p.**  
(<http://pubs.usgs.gov/sir/2006/5130/>)

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the functionality of the software and related material nor shall the fact of release constitute any such warranty. Furthermore, the software is released on condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized use.

USGS Product Names Disclaimer: Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Application Version: 4.21.0

StreamStats Services Version: 1.2.22

NSS Services Version: 2.2.1

## Input Data WQM 7.0

| SWP Basin             | Stream Code   | Stream Name        | RMI                 | Elevation<br>(ft) | Drainage Area<br>(sq mi) | Slope     | PWS Withdrawal<br>(mgd) | Apply FC  |                                     |             |           |
|-----------------------|---------------|--------------------|---------------------|-------------------|--------------------------|-----------|-------------------------|-----------|-------------------------------------|-------------|-----------|
|                       |               |                    |                     |                   |                          |           |                         |           |                                     |             |           |
| 19D                   | 37556         | SEWICKLEY CREEK    |                     | 15.440            | 911.72                   | 102.00    | 0.00000                 | 0.00      | <input checked="" type="checkbox"/> |             |           |
| <b>Stream Data</b>    |               |                    |                     |                   |                          |           |                         |           |                                     |             |           |
| Design Cond.          | LFY           | Trib Flow          | Stream Flow         | Rch Trav Time     | Rch Velocity             | WD Ratio  | Rch Width               | Rch Depth | Tributary Temp                      | Stream Temp | Stream pH |
|                       | (cfsm)        | (cfs)              | (cfs)               | (days)            | (fps)                    |           | (ft)                    | (ft)      | (°C)                                | (°C)        | (°C)      |
| Q7-10                 | 0.040         | 0.00               | 0.00                | 0.000             | 0.000                    | 0.0       | 0.00                    | 0.00      | 25.00                               | 7.00        | 0.00      |
| Q1-10                 |               | 0.00               | 0.00                | 0.000             | 0.000                    |           |                         |           |                                     |             |           |
| Q30-10                |               | 0.00               | 0.00                | 0.000             | 0.000                    |           |                         |           |                                     |             |           |
| <b>Discharge Data</b> |               |                    |                     |                   |                          |           |                         |           |                                     |             |           |
| Name                  | Permit Number | Existing Disc Flow | Permitted Disc Flow | Design Disc Flow  | Reserve Factor           | Disc Temp | Disc pH                 |           |                                     |             |           |
|                       |               | (mgd)              | (mgd)               | (mgd)             |                          |           |                         |           |                                     |             |           |
| New Stanton STP       | PA0038181     | 7.2000             | 7.2000              | 7.2000            | 0.000                    | 25.00     | 7.00                    |           |                                     |             |           |
| <b>Parameter Data</b> |               |                    |                     |                   |                          |           |                         |           |                                     |             |           |
| Parameter Name        | Disc Conc     | Trib Conc          | Stream Conc         | Fate Coef         |                          |           |                         |           |                                     |             |           |
|                       | (mg/L)        | (mg/L)             | (mg/L)              | (1/days)          |                          |           |                         |           |                                     |             |           |
| CBOD5                 | 25.00         | 2.00               | 0.00                | 1.50              |                          |           |                         |           |                                     |             |           |
| Dissolved Oxygen      | 5.00          | 8.24               | 0.00                | 0.00              |                          |           |                         |           |                                     |             |           |
| NH3-N                 | 3.50          | 0.00               | 0.00                | 0.70              |                          |           |                         |           |                                     |             |           |

### Input Data WQM 7.0

| SWP Basin             | Stream Code   | Stream Name                 |                              |                           | RMI                   | Elevation (ft)    | Drainage Area (sq mi) | Slope (ft/ft)     | PWS Withdrawal (mgd)   | Apply FC                            |  |  |  |
|-----------------------|---------------|-----------------------------|------------------------------|---------------------------|-----------------------|-------------------|-----------------------|-------------------|------------------------|-------------------------------------|--|--|--|
| 19D                   | 37556         | SEWICKLEY CREEK             |                              |                           | 12.810                | 900.42            | 110.00                | 0.00000           | 0.00                   | <input checked="" type="checkbox"/> |  |  |  |
| <b>Stream Data</b>    |               |                             |                              |                           |                       |                   |                       |                   |                        |                                     |  |  |  |
| Design Cond.          | LFY<br>(cfsm) | Trib Flow<br>(cfs)          | Stream Flow<br>(cfs)         | Rch Trav Time<br>(days)   | Rch Velocity<br>(fps) | WD Ratio<br>(ft)  | Rch Width<br>(ft)     | Rch Depth<br>(ft) | Tributary Temp<br>(°C) | Stream Temp<br>(°C)                 |  |  |  |
| Q7-10                 | 0.040         | 0.00                        | 0.00                         | 0.000                     | 0.000                 | 0.0               | 0.00                  | 0.00              | 25.00                  | 7.00                                |  |  |  |
| Q1-10                 |               | 0.00                        | 0.00                         | 0.000                     | 0.000                 |                   |                       |                   |                        |                                     |  |  |  |
| Q30-10                |               | 0.00                        | 0.00                         | 0.000                     | 0.000                 |                   |                       |                   |                        |                                     |  |  |  |
| <b>Discharge Data</b> |               |                             |                              |                           |                       |                   |                       |                   |                        |                                     |  |  |  |
| Name                  | Permit Number | Existing Disc Flow<br>(mgd) | Permitted Disc Flow<br>(mgd) | Design Disc Flow<br>(mgd) | Reserve Factor        | Disc Temp<br>(°C) | Disc pH               |                   |                        |                                     |  |  |  |
|                       |               | 0.0000                      | 0.0000                       | 0.0000                    | 0.000                 | 25.00             | 7.00                  |                   |                        |                                     |  |  |  |
| <b>Parameter Data</b> |               |                             |                              |                           |                       |                   |                       |                   |                        |                                     |  |  |  |
| Parameter Name        |               | Disc Conc<br>(mg/L)         | Trib Conc<br>(mg/L)          | Stream Conc<br>(mg/L)     | Fate Coef<br>(1/days) |                   |                       |                   |                        |                                     |  |  |  |
| CBOD5                 |               | 25.00                       | 2.00                         | 0.00                      | 1.50                  |                   |                       |                   |                        |                                     |  |  |  |
| Dissolved Oxygen      |               | 3.00                        | 8.24                         | 0.00                      | 0.00                  |                   |                       |                   |                        |                                     |  |  |  |
| NH3-N                 |               | 25.00                       | 0.00                         | 0.00                      | 0.70                  |                   |                       |                   |                        |                                     |  |  |  |

### WQM 7.0 Hydrodynamic Outputs

| SWP Basin          | Stream Code          | Stream Name       |                          |                             |
|--------------------|----------------------|-------------------|--------------------------|-----------------------------|
| 19D                |                      | 37556             |                          |                             |
| RMI                | Stream Flow<br>(cfs) | PWS With<br>(cfs) | Net Stream Flow<br>(cfs) | Disc Analysis Flow<br>(cfs) |
| <b>Q7-10 Flow</b>  | 15.440               | 4.08              | 0.00                     | 4.08 11.1384 0.00081        |
| <b>Q1-10 Flow</b>  | 15.440               | 2.61              | 0.00                     | 2.61 11.1384 0.00081        |
| <b>Q30-10 Flow</b> | 15.440               | 5.55              | 0.00                     | 5.55 11.1384 0.00081        |
|                    |                      |                   |                          | NA NA NA                    |
|                    |                      |                   |                          | 0.30 0.28 0.32              |
|                    |                      |                   |                          | 0.536 0.567 0.509           |
|                    |                      |                   |                          | 25.00 25.00 25.00           |
|                    |                      |                   |                          | 7.00 7.00 7.00              |

### WQM 7.0 Modeling Specifications

|                    |        |                                     |                                     |
|--------------------|--------|-------------------------------------|-------------------------------------|
| Parameters         | Both   | Use Inputted Q1-10 and Q30-10 Flows | <input checked="" type="checkbox"/> |
| WLA Method         | EMPR   | Use Inputted W/D Ratio              | <input type="checkbox"/>            |
| Q1-10/Q7-10 Ratio  | 0.64   | Use Inputted Reach Travel Times     | <input type="checkbox"/>            |
| Q30-10/Q7-10 Ratio | 1.36   | Temperature Adjust Kr               | <input checked="" type="checkbox"/> |
| D.O. Saturation    | 90.00% | Use Balanced Technology             | <input checked="" type="checkbox"/> |
| D.O. Goal          | 5      |                                     |                                     |

## WQM 7.0 Wasteload Allocations

| <u>SWP Basin</u>                    |                 | <u>Stream Code</u>        | <u>Stream Name</u>    |                           |                       |                                  |                                  |  |
|-------------------------------------|-----------------|---------------------------|-----------------------|---------------------------|-----------------------|----------------------------------|----------------------------------|--|
| 19D                                 |                 | 37556                     | SEWICKLEY CREEK       |                           |                       |                                  |                                  |  |
| <b>NH3-N Acute Allocations</b>      |                 |                           |                       |                           |                       |                                  |                                  |  |
| RMI                                 | Discharge Name  | Baseline Criterion (mg/L) | Baseline WLA (mg/L)   | Multiple Criterion (mg/L) | Multiple WLA (mg/L)   | Critical Reach                   | Percent Reduction                |  |
| 15.440                              | New Stanton STP | 11.07                     | 7                     | 11.07                     | 7                     | 0                                | 0                                |  |
| <b>NH3-N Chronic Allocations</b>    |                 |                           |                       |                           |                       |                                  |                                  |  |
| RMI                                 | Discharge Name  | Baseline Criterion (mg/L) | Baseline WLA (mg/L)   | Multiple Criterion (mg/L) | Multiple WLA (mg/L)   | Critical Reach                   | Percent Reduction                |  |
| 15.440                              | New Stanton STP | 1.37                      | 2.05                  | 1.37                      | 2.05                  | 0                                | 0                                |  |
| <b>Dissolved Oxygen Allocations</b> |                 |                           |                       |                           |                       |                                  |                                  |  |
| RMI                                 | Discharge Name  | CBOD5 Baseline (mg/L)     | CBOD5 Multiple (mg/L) | NH3-N Baseline (mg/L)     | NH3-N Multiple (mg/L) | Dissolved Oxygen Baseline (mg/L) | Dissolved Oxygen Multiple (mg/L) |  |
| 15.44                               | New Stanton STP | 5.85                      | 5.85                  | 1.76                      | 1.76                  | 5                                | 5                                |  |
|                                     |                 |                           |                       |                           |                       | Critical Reach                   | Percent Reduction                |  |
|                                     |                 |                           |                       |                           |                       | 0                                | 0                                |  |

## WQM 7.0 D.O. Simulation

| <u>SWP Basin</u>                |  | <u>Stream Code</u>                | <u>Stream Name</u> |                                  |             |                             |  |  |
|---------------------------------|--|-----------------------------------|--------------------|----------------------------------|-------------|-----------------------------|--|--|
| 19D                             |  | 37556                             | SEWICKLEY CREEK    |                                  |             |                             |  |  |
| <u>RMI</u>                      |  | <u>Total Discharge Flow (mgd)</u> |                    | <u>Analysis Temperature (°C)</u> |             | <u>Analysis pH</u>          |  |  |
| 15.440                          |  | 7.200                             |                    | 25.000                           |             | 7.000                       |  |  |
| <u>Reach Width (ft)</u>         |  | <u>Reach Depth (ft)</u>           |                    | <u>Reach WDRatio</u>             |             | <u>Reach Velocity (fps)</u> |  |  |
| 61.016                          |  | 0.831                             |                    | 73.404                           |             | 0.300                       |  |  |
| <u>Reach CBOD5 (mg/L)</u>       |  | <u>Reach Kc (1/days)</u>          |                    | <u>Reach NH3-N (mg/L)</u>        |             | <u>Reach Kn (1/days)</u>    |  |  |
| 4.82                            |  | 0.308                             |                    | 1.28                             |             | 1.029                       |  |  |
| <u>Reach DO (mg/L)</u>          |  | <u>Reach Kr (1/days)</u>          |                    | <u>Kr Equation</u>               |             | <u>Reach DO Goal (mg/L)</u> |  |  |
| 5.869                           |  | 1.876                             |                    | Tsivoglou                        |             | 5                           |  |  |
| <u>Reach Travel Time (days)</u> |  | <u>Subreach Results</u>           |                    |                                  |             |                             |  |  |
| 0.536                           |  | TravTime (days)                   | CBOD5 (mg/L)       | NH3-N (mg/L)                     | D.O. (mg/L) |                             |  |  |
|                                 |  | 0.054                             | 4.72               | 1.22                             | 5.67        |                             |  |  |
|                                 |  | 0.107                             | 4.62               | 1.15                             | 5.51        |                             |  |  |
|                                 |  | 0.161                             | 4.53               | 1.09                             | 5.38        |                             |  |  |
|                                 |  | 0.214                             | 4.44               | 1.03                             | 5.28        |                             |  |  |
|                                 |  | 0.268                             | 4.34               | 0.98                             | 5.20        |                             |  |  |
|                                 |  | 0.321                             | 4.26               | 0.92                             | 5.15        |                             |  |  |
|                                 |  | 0.375                             | 4.17               | 0.87                             | 5.12        |                             |  |  |
|                                 |  | 0.429                             | 4.08               | 0.83                             | 5.11        |                             |  |  |
|                                 |  | 0.482                             | 4.00               | 0.78                             | 5.11        |                             |  |  |
|                                 |  | 0.536                             | 3.92               | 0.74                             | 5.12        |                             |  |  |

## WQM 7.0 Effluent Limits

| <u>SWP Basin</u> |                 | <u>Stream Code</u>   | <u>Stream Name</u>     |                  |                                       |                                   |                                   |  |
|------------------|-----------------|----------------------|------------------------|------------------|---------------------------------------|-----------------------------------|-----------------------------------|--|
| 19D              |                 | 37556                | SEWICKLEY CREEK        |                  |                                       |                                   |                                   |  |
| <u>RMI</u>       | <u>Name</u>     | <u>Permit Number</u> | <u>Disc Flow (mgd)</u> | <u>Parameter</u> | <u>Effl. Limit 30-day Ave. (mg/L)</u> | <u>Effl. Limit Maximum (mg/L)</u> | <u>Effl. Limit Minimum (mg/L)</u> |  |
| 15.440           | New Stanton STP | PA0038181            | 7.200                  | CBOD5            | 5.85                                  |                                   |                                   |  |
|                  |                 |                      |                        | NH3-N            | 1.76                                  | 3.52                              |                                   |  |
|                  |                 |                      |                        | Dissolved Oxygen |                                       |                                   | 5                                 |  |

# WETT

| WET Summary and Evaluation                     |  |                 |                          |           |           |           |
|------------------------------------------------|--|-----------------|--------------------------|-----------|-----------|-----------|
| Facility Name                                  |  | New Stanton STP |                          |           |           |           |
| Permit No.                                     |  | PA0038181       |                          |           |           |           |
| Design Flow (MGD)                              |  | 7.2             |                          |           |           |           |
| Q <sub>7-10</sub> Flow (cfs)                   |  | 11.6            |                          |           |           |           |
| PMF <sub>a</sub>                               |  | 0.441           |                          |           |           |           |
| PMF <sub>c</sub>                               |  | 1               |                          |           |           |           |
| Species                                        |  | Endpoint        | Test Results (Pass/Fail) |           |           |           |
|                                                |  |                 | Test Date                | Test Date | Test Date | Test Date |
| Pimephales                                     |  | Survival        | 6/30/20                  | 5/24/21   | 5/10/22   | 5/9/23    |
| Species                                        |  | Endpoint        | Test Results (Pass/Fail) |           |           |           |
|                                                |  |                 | Test Date                | Test Date | Test Date | Test Date |
| Pimephales                                     |  | Growth          | 6/30/20                  | 5/25/21   | 5/10/22   | 5/9/23    |
| Species                                        |  | Endpoint        | Test Results (Pass/Fail) |           |           |           |
|                                                |  |                 | Test Date                | Test Date | Test Date | Test Date |
| Ceriodaphnia                                   |  | Reproduction    | 5/20/20                  | 5/24/21   | 5/10/22   | 6/5/23    |
| Species                                        |  | Endpoint        | Test Results (Pass/Fail) |           |           |           |
|                                                |  |                 | Test Date                | Test Date | Test Date | Test Date |
| Ceriodaphnia                                   |  | Survival        | 5/24/20                  | 5/24/21   | 5/10/22   | 6/5/23    |
| Reasonable Potential? NO                       |  |                 |                          |           |           |           |
| <u>Permit Recommendations</u>                  |  |                 |                          |           |           |           |
| Test Type Chronic                              |  |                 |                          |           |           |           |
| TIWC 49 % Effluent                             |  |                 |                          |           |           |           |
| Dilution Series 12, 25, 49, 75, 100 % Effluent |  |                 |                          |           |           |           |
| Permit Limit None                              |  |                 |                          |           |           |           |
| Permit Limit Species                           |  |                 |                          |           |           |           |

| DEP Whole Effluent Toxicity (WET) Analysis Spreadsheet |  |            |       |       |  |  |  |
|--------------------------------------------------------|--|------------|-------|-------|--|--|--|
| Type of Test                                           |  | Chronic    |       |       |  |  |  |
| Species Tested                                         |  | Pimephales |       |       |  |  |  |
| Endpoint                                               |  | Survival   |       |       |  |  |  |
| TIWC (decimal)                                         |  | 0.47       |       |       |  |  |  |
| No. Per Replicates                                     |  | 1          |       |       |  |  |  |
| TST b value                                            |  | 0.75       |       |       |  |  |  |
| TST alpha value                                        |  | 0.25       |       |       |  |  |  |
| Test Completion Date 6/30/2020                         |  |            |       |       |  |  |  |
| Replicate No.                                          |  | Control    | TIWC  |       |  |  |  |
| 1                                                      |  | 1          | 0.9   |       |  |  |  |
| 2                                                      |  | 1          | 0.9   |       |  |  |  |
| 3                                                      |  | 1          | 1     |       |  |  |  |
| 4                                                      |  | 1          | 1     |       |  |  |  |
| 5                                                      |  |            |       |       |  |  |  |
| 6                                                      |  |            |       |       |  |  |  |
| 7                                                      |  |            |       |       |  |  |  |
| 8                                                      |  |            |       |       |  |  |  |
| 9                                                      |  |            |       |       |  |  |  |
| 10                                                     |  |            |       |       |  |  |  |
| 11                                                     |  |            |       |       |  |  |  |
| 12                                                     |  |            |       |       |  |  |  |
| 13                                                     |  |            |       |       |  |  |  |
| 14                                                     |  |            |       |       |  |  |  |
| 15                                                     |  |            |       |       |  |  |  |
| Mean                                                   |  | 1.000      |       | 0.950 |  |  |  |
| Std. Dev.                                              |  | 0.000      |       | 0.058 |  |  |  |
| # Replicates                                           |  | 4          |       | 4     |  |  |  |
| T-Test Result                                          |  | 6.2250     |       |       |  |  |  |
| Deg. of Freedom                                        |  | 3          |       |       |  |  |  |
| Critical T Value                                       |  | 0.7649     |       |       |  |  |  |
| Pass or Fail                                           |  | PASS       |       |       |  |  |  |
| Test Completion Date 5/24/2021                         |  |            |       |       |  |  |  |
| Replicate No.                                          |  | Control    | TIWC  |       |  |  |  |
| 1                                                      |  | 1          | 1     |       |  |  |  |
| 2                                                      |  | 1          | 0.8   |       |  |  |  |
| 3                                                      |  | 1          | 0.7   |       |  |  |  |
| 4                                                      |  | 1          | 0.9   |       |  |  |  |
| 5                                                      |  |            |       |       |  |  |  |
| 6                                                      |  |            |       |       |  |  |  |
| 7                                                      |  |            |       |       |  |  |  |
| 8                                                      |  |            |       |       |  |  |  |
| 9                                                      |  |            |       |       |  |  |  |
| 10                                                     |  |            |       |       |  |  |  |
| 11                                                     |  |            |       |       |  |  |  |
| 12                                                     |  |            |       |       |  |  |  |
| 13                                                     |  |            |       |       |  |  |  |
| 14                                                     |  |            |       |       |  |  |  |
| 15                                                     |  |            |       |       |  |  |  |
| Mean                                                   |  | 1.000      |       | 0.850 |  |  |  |
| Std. Dev.                                              |  | 0.000      |       | 0.129 |  |  |  |
| # Replicates                                           |  | 4          |       | 4     |  |  |  |
| T-Test Result                                          |  | 5.6493     |       |       |  |  |  |
| Deg. of Freedom                                        |  | 3          |       |       |  |  |  |
| Critical T Value                                       |  | 0.7649     |       |       |  |  |  |
| Pass or Fail                                           |  | PASS       |       |       |  |  |  |
| Test Completion Date 5/10/2022                         |  |            |       |       |  |  |  |
| Replicate No.                                          |  | Control    | TIWC  |       |  |  |  |
| 1                                                      |  | 0.9        | 1     |       |  |  |  |
| 2                                                      |  | 1          | 0.8   |       |  |  |  |
| 3                                                      |  | 0.9        | 0.7   |       |  |  |  |
| 4                                                      |  | 1          | 0.9   |       |  |  |  |
| 5                                                      |  |            |       |       |  |  |  |
| 6                                                      |  |            |       |       |  |  |  |
| 7                                                      |  |            |       |       |  |  |  |
| 8                                                      |  |            |       |       |  |  |  |
| 9                                                      |  |            |       |       |  |  |  |
| 10                                                     |  |            |       |       |  |  |  |
| 11                                                     |  |            |       |       |  |  |  |
| 12                                                     |  |            |       |       |  |  |  |
| 13                                                     |  |            |       |       |  |  |  |
| 14                                                     |  |            |       |       |  |  |  |
| 15                                                     |  |            |       |       |  |  |  |
| Mean                                                   |  | 0.950      |       | 0.850 |  |  |  |
| Std. Dev.                                              |  | 0.058      |       | 0.129 |  |  |  |
| # Replicates                                           |  | 4          |       | 4     |  |  |  |
| T-Test Result                                          |  | 3.3647     |       |       |  |  |  |
| Deg. of Freedom                                        |  | 5          |       |       |  |  |  |
| Critical T Value                                       |  | 0.7267     |       |       |  |  |  |
| Pass or Fail                                           |  | PASS       |       |       |  |  |  |
| Test Completion Date 5/9/2023                          |  |            |       |       |  |  |  |
| Replicate No.                                          |  | Control    | TIWC  |       |  |  |  |
| 1                                                      |  | 1          | 1     |       |  |  |  |
| 2                                                      |  | 1          | 1     |       |  |  |  |
| 3                                                      |  | 1          | 0.5   |       |  |  |  |
| 4                                                      |  | 1          | 1     |       |  |  |  |
| 5                                                      |  |            |       |       |  |  |  |
| 6                                                      |  |            |       |       |  |  |  |
| 7                                                      |  |            |       |       |  |  |  |
| 8                                                      |  |            |       |       |  |  |  |
| 9                                                      |  |            |       |       |  |  |  |
| 10                                                     |  |            |       |       |  |  |  |
| 11                                                     |  |            |       |       |  |  |  |
| 12                                                     |  |            |       |       |  |  |  |
| 13                                                     |  |            |       |       |  |  |  |
| 14                                                     |  |            |       |       |  |  |  |
| 15                                                     |  |            |       |       |  |  |  |
| Mean                                                   |  | 1.000      |       | 0.875 |  |  |  |
| Std. Dev.                                              |  | 0.000      |       | 0.250 |  |  |  |
| # Replicates                                           |  | 4          |       | 4     |  |  |  |
| T-Test Result                                          |  | 3.0000     |       |       |  |  |  |
| Deg. of Freedom                                        |  | 3          |       |       |  |  |  |
| Critical T Value                                       |  | 0.7649     |       |       |  |  |  |
| Pass or Fail                                           |  | PASS       |       |       |  |  |  |
| Test Completion Date 5/10/2022                         |  |            |       |       |  |  |  |
| Replicate No.                                          |  | Control    | TIWC  |       |  |  |  |
| 1                                                      |  | 0.265      | 0.292 |       |  |  |  |
| 2                                                      |  | 0.288      | 0.143 |       |  |  |  |
| 3                                                      |  | 0.272      | 0.366 |       |  |  |  |
| 4                                                      |  | 0.321      | 0.363 |       |  |  |  |
| 5                                                      |  |            |       |       |  |  |  |
| 6                                                      |  |            |       |       |  |  |  |
| 7                                                      |  |            |       |       |  |  |  |
| 8                                                      |  |            |       |       |  |  |  |
| 9                                                      |  |            |       |       |  |  |  |
| 10                                                     |  |            |       |       |  |  |  |
| 11                                                     |  |            |       |       |  |  |  |
| 12                                                     |  |            |       |       |  |  |  |
| 13                                                     |  |            |       |       |  |  |  |
| 14                                                     |  |            |       |       |  |  |  |
| 15                                                     |  |            |       |       |  |  |  |
| Mean                                                   |  | 0.287      |       | 0.292 |  |  |  |
| Std. Dev.                                              |  | 0.025      |       | 0.106 |  |  |  |
| # Replicates                                           |  | 4          |       | 4     |  |  |  |
| T-Test Result                                          |  | 1.4322     |       |       |  |  |  |
| Deg. of Freedom                                        |  | 3          |       |       |  |  |  |
| Critical T Value                                       |  | 0.7649     |       |       |  |  |  |
| Pass or Fail                                           |  | PASS       |       |       |  |  |  |
| Test Completion Date 5/9/2023                          |  |            |       |       |  |  |  |
| Replicate No.                                          |  | Control    | TIWC  |       |  |  |  |
| 1                                                      |  | 0.407      | 0.449 |       |  |  |  |
| 2                                                      |  | 0.428      | 0.371 |       |  |  |  |
| 3                                                      |  | 0.4        | 0.219 |       |  |  |  |
| 4                                                      |  | 0.347      | 0.384 |       |  |  |  |
| 5                                                      |  |            |       |       |  |  |  |
| 6                                                      |  |            |       |       |  |  |  |
| 7                                                      |  |            |       |       |  |  |  |
| 8                                                      |  |            |       |       |  |  |  |
| 9                                                      |  |            |       |       |  |  |  |
| 10                                                     |  |            |       |       |  |  |  |
| 11                                                     |  |            |       |       |  |  |  |
| 12                                                     |  |            |       |       |  |  |  |
| 13                                                     |  |            |       |       |  |  |  |
| 14                                                     |  |            |       |       |  |  |  |
| 15                                                     |  |            |       |       |  |  |  |
| Mean                                                   |  | 0.396      |       | 0.356 |  |  |  |
| Std. Dev.                                              |  | 0.034      |       | 0.097 |  |  |  |
| # Replicates                                           |  | 4          |       | 4     |  |  |  |
| T-Test Result                                          |  | 1.1741     |       |       |  |  |  |
| Deg. of Freedom                                        |  | 4          |       |       |  |  |  |
| Critical T Value                                       |  | 0.7407     |       |       |  |  |  |
| Pass or Fail                                           |  | PASS       |       |       |  |  |  |

| DEP Whole Effluent Toxicity (WET) Analysis Spreadsheet |              |                 |                  |         |        |  |  |  |  |
|--------------------------------------------------------|--------------|-----------------|------------------|---------|--------|--|--|--|--|
| Type of Test                                           | Chronic      | Facility Name   |                  |         |        |  |  |  |  |
| Species Tested                                         | Ceriodaphnia | New Stanton STP |                  |         |        |  |  |  |  |
| Endpoint                                               | Reproduction |                 |                  |         |        |  |  |  |  |
| TIWC (decimal)                                         | 0.45         |                 |                  |         |        |  |  |  |  |
| No. Per Replicates                                     | 1            | Permit No.      |                  |         |        |  |  |  |  |
| TST b value                                            | 0.75         | PA036181        |                  |         |        |  |  |  |  |
| TST alpha value                                        | 0.2          |                 |                  |         |        |  |  |  |  |
| Test Completion Date                                   |              |                 |                  |         |        |  |  |  |  |
| 5/20/2020                                              |              |                 |                  |         |        |  |  |  |  |
| Replicate No.                                          | Control      | TIWC            | Replicate No.    | Control | TIWC   |  |  |  |  |
| 1                                                      | 31           | 36              | 1                | 0       | 38     |  |  |  |  |
| 2                                                      | 25           | 32              | 2                | 20      | 34     |  |  |  |  |
| 3                                                      | 28           | 28              | 3                | 20      | 33     |  |  |  |  |
| 4                                                      | 37           | 38              | 4                | 30      | 42     |  |  |  |  |
| 5                                                      | 46           | 37              | 5                | 24      | 36     |  |  |  |  |
| 6                                                      | 40           | 25              | 6                | 12      | 40     |  |  |  |  |
| 7                                                      | 24           | 15              | 7                | 21      | 47     |  |  |  |  |
| 8                                                      | 32           | 31              | 8                | 20      | 37     |  |  |  |  |
| 9                                                      | 24           | 35              | 9                | 29      | 52     |  |  |  |  |
| 10                                                     | 22           | 32              | 10               | 26      | 33     |  |  |  |  |
| 11                                                     |              |                 | 11               |         |        |  |  |  |  |
| 12                                                     |              |                 | 12               |         |        |  |  |  |  |
| 13                                                     |              |                 | 13               |         |        |  |  |  |  |
| 14                                                     |              |                 | 14               |         |        |  |  |  |  |
| 15                                                     |              |                 | 15               |         |        |  |  |  |  |
| Mean                                                   | 30.900       | 30.500          | Mean             | 20.200  | 37.200 |  |  |  |  |
| Std Dev.                                               | 7.537        | 6.903           | Std Dev.         | 8.804   | 4.733  |  |  |  |  |
| # Replicates                                           | 10           | 10              | # Replicates     | 10      | 10     |  |  |  |  |
| T-Test Result                                          | 2.6800       |                 | T-Test Result    | 8.5830  |        |  |  |  |  |
| Deg. of Freedom                                        | 17           |                 | Deg. of Freedom  | 17      |        |  |  |  |  |
| Critical T Value                                       | 0.8633       |                 | Critical T Value | 0.8633  |        |  |  |  |  |
| Pass or Fail                                           | PASS         |                 | Pass or Fail     | PASS    |        |  |  |  |  |
| Test Completion Date                                   |              |                 |                  |         |        |  |  |  |  |
| 5/10/2022                                              |              |                 |                  |         |        |  |  |  |  |
| Replicate No.                                          | Control      | TIWC            | Replicate No.    | Control | TIWC   |  |  |  |  |
| 1                                                      | 25           | 37              | 1                | 28      | 29     |  |  |  |  |
| 2                                                      | 23           | 30              | 2                | 30      | 29     |  |  |  |  |
| 3                                                      | 27           | 29              | 3                | 27      | 32     |  |  |  |  |
| 4                                                      | 18           | 26              | 4                | 29      | 30     |  |  |  |  |
| 5                                                      | 30           | 27              | 5                | 30      | 30     |  |  |  |  |
| 6                                                      | 17           | 24              | 6                | 31      | 28     |  |  |  |  |
| 7                                                      | 24           | 27              | 7                | 30      | 33     |  |  |  |  |
| 8                                                      | 26           | 28              | 8                | 32      | 32     |  |  |  |  |
| 9                                                      | 24           | 25              | 9                | 30      | 30     |  |  |  |  |
| 10                                                     | 9            | 30              | 10               | 31      | 30     |  |  |  |  |
| 11                                                     |              |                 | 11               |         |        |  |  |  |  |
| 12                                                     |              |                 | 12               |         |        |  |  |  |  |
| 13                                                     |              |                 | 13               |         |        |  |  |  |  |
| 14                                                     |              |                 | 14               |         |        |  |  |  |  |
| 15                                                     |              |                 | 15               |         |        |  |  |  |  |
| Mean                                                   | 22.300       | 28.300          | Mean             | 29.800  | 30.300 |  |  |  |  |
| Std Dev.                                               | 6.075        | 3.653           | Std Dev.         | 1.476   | 1.567  |  |  |  |  |
| # Replicates                                           | 10           | 10              | # Replicates     | 10      | 10     |  |  |  |  |
| T-Test Result                                          | 6.2682       |                 | T-Test Result    | 13.1042 |        |  |  |  |  |
| Deg. of Freedom                                        | 17           |                 | Deg. of Freedom  | 16      |        |  |  |  |  |
| Critical T Value                                       | 0.8633       |                 | Critical T Value | 0.8647  |        |  |  |  |  |
| Pass or Fail                                           | PASS         |                 | Pass or Fail     | PASS    |        |  |  |  |  |

| DEP Whole Effluent Toxicity (WET) Analysis Spreadsheet |              |                 |                  |         |       |  |  |  |  |
|--------------------------------------------------------|--------------|-----------------|------------------|---------|-------|--|--|--|--|
| Type of Test                                           | Chronic      | Facility Name   |                  |         |       |  |  |  |  |
| Species Tested                                         | Ceriodaphnia | New Stanton STP |                  |         |       |  |  |  |  |
| Endpoint                                               | Survival     |                 |                  |         |       |  |  |  |  |
| TIWC (decimal)                                         | 0.45         |                 |                  |         |       |  |  |  |  |
| No. Per Replicates                                     | 1            | Permit No.      |                  |         |       |  |  |  |  |
| TST b value                                            | 0.75         | PA036181        |                  |         |       |  |  |  |  |
| TST alpha value                                        | 0.2          |                 |                  |         |       |  |  |  |  |
| Test Completion Date                                   |              |                 |                  |         |       |  |  |  |  |
| 5/24/2020                                              |              |                 |                  |         |       |  |  |  |  |
| Replicate No.                                          | Control      | TIWC            | Replicate No.    | Control | TIWC  |  |  |  |  |
| 1                                                      | 1            | 1               | 1                | 0       | 1     |  |  |  |  |
| 2                                                      | 1            | 1               | 2                | 1       | 1     |  |  |  |  |
| 3                                                      | 1            | 1               | 3                | 1       | 1     |  |  |  |  |
| 4                                                      | 1            | 1               | 4                | 1       | 1     |  |  |  |  |
| 5                                                      | 1            | 1               | 5                | 1       | 1     |  |  |  |  |
| 6                                                      | 1            | 1               | 6                | 1       | 1     |  |  |  |  |
| 7                                                      | 1            | 1               | 7                | 1       | 1     |  |  |  |  |
| 8                                                      | 1            | 1               | 8                | 1       | 1     |  |  |  |  |
| 9                                                      | 1            | 1               | 9                | 1       | 1     |  |  |  |  |
| 10                                                     | 1            | 1               | 10               | 1       | 1     |  |  |  |  |
| 11                                                     |              |                 | 11               |         |       |  |  |  |  |
| 12                                                     |              |                 | 12               |         |       |  |  |  |  |
| 13                                                     |              |                 | 13               |         |       |  |  |  |  |
| 14                                                     |              |                 | 14               |         |       |  |  |  |  |
| 15                                                     |              |                 | 15               |         |       |  |  |  |  |
| Mean                                                   | 1.000        | 1.000           | Mean             | 0.900   | 1.000 |  |  |  |  |
| Std Dev.                                               | 0.000        | 0.000           | Std Dev.         | 0.316   | 0.000 |  |  |  |  |
| # Replicates                                           | 10           | 10              | # Replicates     | 10      | 10    |  |  |  |  |
| T-Test Result                                          |              |                 | T-Test Result    |         |       |  |  |  |  |
| Deg. of Freedom                                        |              |                 | Deg. of Freedom  |         |       |  |  |  |  |
| Critical T Value                                       |              |                 | Critical T Value |         |       |  |  |  |  |
| Pass or Fail                                           | PASS         |                 | Pass or Fail     | PASS    |       |  |  |  |  |
| Test Completion Date                                   |              |                 |                  |         |       |  |  |  |  |
| 5/24/2021                                              |              |                 |                  |         |       |  |  |  |  |
| Replicate No.                                          | Control      | TIWC            | Replicate No.    | Control | TIWC  |  |  |  |  |
| 1                                                      | 1            | 1               | 1                | 0       | 1     |  |  |  |  |
| 2                                                      | 1            | 1               | 2                | 1       | 1     |  |  |  |  |
| 3                                                      | 1            | 1               | 3                | 1       | 1     |  |  |  |  |
| 4                                                      | 1            | 1               | 4                | 1       | 1     |  |  |  |  |
| 5                                                      | 1            | 1               | 5                | 1       | 1     |  |  |  |  |
| 6                                                      | 1            | 1               | 6                | 1       | 1     |  |  |  |  |
| 7                                                      | 1            | 1               | 7                | 1       | 1     |  |  |  |  |
| 8                                                      | 1            | 1               | 8                | 1       | 1     |  |  |  |  |
| 9                                                      | 1            | 1               | 9                | 1       | 1     |  |  |  |  |
| 10                                                     | 1            | 1               | 10               | 1       | 1     |  |  |  |  |
| 11                                                     |              |                 | 11               |         |       |  |  |  |  |
| 12                                                     |              |                 | 12               |         |       |  |  |  |  |
| 13                                                     |              |                 | 13               |         |       |  |  |  |  |
| 14                                                     |              |                 | 14               |         |       |  |  |  |  |
| 15                                                     |              |                 | 15               |         |       |  |  |  |  |
| Mean                                                   | 1.000        | 1.000           | Mean             | 1.000   | 1.000 |  |  |  |  |
| Std Dev.                                               | 0.000        | 0.000           | Std Dev.         | 0.000   | 0.000 |  |  |  |  |
| # Replicates                                           | 10           | 10              | # Replicates     | 10      | 10    |  |  |  |  |
| T-Test Result                                          |              |                 | T-Test Result    |         |       |  |  |  |  |
| Deg. of Freedom                                        |              |                 | Deg. of Freedom  |         |       |  |  |  |  |
| Critical T Value                                       |              |                 | Critical T Value |         |       |  |  |  |  |
| Pass or Fail                                           | PASS         |                 | Pass or Fail     | PASS    |       |  |  |  |  |
| Test Completion Date                                   |              |                 |                  |         |       |  |  |  |  |
| 6/5/2022                                               |              |                 |                  |         |       |  |  |  |  |
| Replicate No.                                          | Control      | TIWC            | Replicate No.    | Control | TIWC  |  |  |  |  |
| 1                                                      | 1            | 1               | 1                | 1       | 1     |  |  |  |  |
| 2                                                      | 1            | 1               | 2                | 1       | 1     |  |  |  |  |
| 3                                                      | 1            | 1               | 3                | 1       | 1     |  |  |  |  |
| 4                                                      | 1            | 1               | 4                | 1       | 1     |  |  |  |  |
| 5                                                      | 1            | 1               | 5                | 1       | 1     |  |  |  |  |
| 6                                                      | 1            | 1               | 6                | 1       | 1     |  |  |  |  |
| 7                                                      | 1            | 1               | 7                | 1       | 1     |  |  |  |  |
| 8                                                      | 1            | 1               | 8                | 1       | 1     |  |  |  |  |
| 9                                                      | 1            | 1               | 9                | 1       | 1     |  |  |  |  |
| 10                                                     | 1            | 1               | 10               | 1       | 1     |  |  |  |  |
| 11                                                     |              |                 | 11               |         |       |  |  |  |  |
| 12                                                     |              |                 | 12               |         |       |  |  |  |  |
| 13                                                     |              |                 | 13               |         |       |  |  |  |  |
| 14                                                     |              |                 | 14               |         |       |  |  |  |  |
| 15                                                     |              |                 | 15               |         |       |  |  |  |  |
| Mean                                                   | 1.000        | 1.000           | Mean             | 1.000   | 1.000 |  |  |  |  |
| Std Dev.                                               | 0.000        | 0.000           | Std Dev.         | 0.000   | 0.000 |  |  |  |  |
| # Replicates                                           | 10           | 10              | # Replicates     | 10      | 10    |  |  |  |  |
| T-Test Result                                          |              |                 | T-Test Result    |         |       |  |  |  |  |
| Deg. of Freedom                                        |              |                 | Deg. of Freedom  |         |       |  |  |  |  |
| Critical T Value                                       |              |                 | Critical T Value |         |       |  |  |  |  |
| Pass or Fail                                           | PASS         |                 | Pass or Fail     | PASS    |       |  |  |  |  |
| Test Completion Date                                   |              |                 |                  |         |       |  |  |  |  |
| 6/5/2023                                               |              |                 |                  |         |       |  |  |  |  |
| Replicate No.                                          | Control      | TIWC            | Replicate No.    | Control | TIWC  |  |  |  |  |
| 1                                                      | 1            | 1               | 1                | 1       | 1     |  |  |  |  |
| 2                                                      | 1            | 1               | 2                | 1       | 1     |  |  |  |  |
| 3                                                      | 1            | 1               | 3                | 1       | 1     |  |  |  |  |
| 4                                                      | 1            | 1               | 4                | 1       | 1     |  |  |  |  |
| 5                                                      | 1            | 1               | 5                | 1       | 1     |  |  |  |  |
| 6                                                      | 1            | 1               | 6                | 1       | 1     |  |  |  |  |
| 7                                                      | 1            | 1               | 7                | 1       | 1     |  |  |  |  |
| 8                                                      | 1            | 1               | 8                | 1       | 1     |  |  |  |  |
| 9                                                      | 1            | 1               | 9                | 1       | 1     |  |  |  |  |
| 10                                                     | 1            | 1               | 10               | 1       | 1     |  |  |  |  |
| 11                                                     |              |                 | 11               |         |       |  |  |  |  |
| 12                                                     |              |                 | 12               |         |       |  |  |  |  |
| 13                                                     |              |                 | 13               |         |       |  |  |  |  |
| 14                                                     |              |                 | 14               |         |       |  |  |  |  |
| 15                                                     |              |                 | 15               |         |       |  |  |  |  |
| Mean                                                   | 1.000        | 1.000           | Mean             | 1.000   | 1.000 |  |  |  |  |
| Std Dev.                                               | 0.000        | 0.000           | Std Dev.         | 0.000   | 0.000 |  |  |  |  |
| # Replicates                                           | 10           | 10              | # Replicates     | 10      | 10    |  |  |  |  |
| T-Test Result                                          |              |                 | T-Test Result    |         |       |  |  |  |  |
| Deg. of Freedom                                        |              |                 | Deg. of Freedom  |         |       |  |  |  |  |
| Critical T Value                                       |              |                 | Critical T Value |         |       |  |  |  |  |
| Pass or Fail                                           | PASS         |                 | Pass or Fail     | PASS    |       |  |  |  |  |

## TRC\_Calc

## TRC\_CALC

| TRC EVALUATION                              |                                                                                                                                         |                               |           |                                      |  |
|---------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-----------|--------------------------------------|--|
| Input appropriate values in A3:A9 and D3:D9 |                                                                                                                                         |                               |           |                                      |  |
| 4.08                                        | = Q stream (cfs)                                                                                                                        |                               | 0.5       | = CV Daily                           |  |
| 7.2                                         | = Q discharge (MGD)                                                                                                                     |                               | 0.5       | = CV Hourly                          |  |
| 30                                          | = no. samples                                                                                                                           |                               | 1         | = AFC_Partial Mix Factor             |  |
| 0.3                                         | = Chlorine Demand of Stream                                                                                                             |                               | 1         | = CFC_Partial Mix Factor             |  |
| 0                                           | = Chlorine Demand of Discharge                                                                                                          |                               | 15        | = AFC_Criteria Compliance Time (min) |  |
| 0.5                                         | = BAT/BPJ Value                                                                                                                         |                               | 720       | = CFC_Criteria Compliance Time (min) |  |
| 0                                           | = % Factor of Safety (FOS)                                                                                                              |                               |           | =Decay Coefficient (K)               |  |
| Source                                      | Reference                                                                                                                               | AFC Calculations              | Reference | CFC Calculations                     |  |
| TRC                                         | 1.3.2.iii                                                                                                                               | WLA_afc = 0.136               | 1.3.2.iii | WLA_cfc = 0.125                      |  |
| PENTOXSD TRG                                | 5.1a                                                                                                                                    | LTAMULT_afc = 0.373           | 5.1c      | LTAMULT_cfc = 0.581                  |  |
| PENTOXSD TRG                                | 5.1b                                                                                                                                    | LTA_afc = 0.051               | 5.1d      | LTA_cfc = 0.073                      |  |
| Source                                      | Effluent Limit Calculations                                                                                                             |                               |           |                                      |  |
| PENTOXSD TRG                                | 5.1f                                                                                                                                    | AML MULT = 1.231              |           |                                      |  |
| PENTOXSD TRG                                | 5.1g                                                                                                                                    | AVG MON LIMIT (mg/l) = 0.062  |           | AFC                                  |  |
|                                             |                                                                                                                                         | INST MAX LIMIT (mg/l) = 0.204 |           |                                      |  |
| WLA_afc                                     | $(.019/e(-k*afc_{tc})) + [(afc_{Yc}^k * qs^k * .019 / Qd^k * e(-k*afc_{tc})) ... + Xd + (afc_{Yc}^k * qs^k * Xs / Qd)]^k * (1-FOS/100)$ |                               |           |                                      |  |
| LTAMULT_afc                                 | $\exp((0.5^k \ln(cvh^2 + 1)) - 2.326^k \ln(cvh^2 + 1)^{0.5})$                                                                           |                               |           |                                      |  |
| LTA_afc                                     | $wla\_afc^k * LTAMULT\_afc$                                                                                                             |                               |           |                                      |  |
| WLA_cfc                                     | $(.011/e(-k*cfc_{tc})) + [(cfc_{Yc}^k * qs^k * .011 / Qd^k * e(-k*cfc_{tc})) ... + Xd + (cfc_{Yc}^k * qs^k * Xs / Qd)]^k * (1-FOS/100)$ |                               |           |                                      |  |
| LTAMULT_cfc                                 | $\exp((0.5^k \ln(cvd^2 / no\_samples + 1)) - 2.326^k \ln(cvd^2 / no\_samples + 1)^{0.5})$                                               |                               |           |                                      |  |
| LTA_cfc                                     | $wla\_cfc^k * LTAMULT\_cfc$                                                                                                             |                               |           |                                      |  |
| AML MULT                                    | $\exp(2.326^k \ln((cvd^2 / no\_samples + 1)^{0.5}) - 0.5^k \ln(cvd^2 / no\_samples + 1))$                                               |                               |           |                                      |  |
| AVG MON LIMIT                               | $\min(\text{BAT\_BPJ}, \min(LTA\_afc, LTA\_cfc) * AML\_MULT)$                                                                           |                               |           |                                      |  |
| INST MAX LIMIT                              | $1.5^k * ((av\_mon\_limit / AML\_MULT) / LTAMULT\_afc)$                                                                                 |                               |           |                                      |  |

## Discharge Information

 Instructions **Discharge** Stream

 Facility: **New Stanton STP** NPDES Permit No.: **PA0038181** Outfall No.: **001**

 Evaluation Type: **Major Sewage / Industrial Waste** Wastewater Description: **Treated Sewage**

| Discharge Characteristics |                                 |          |                            |                    |           |             |                          |                |           |            |     |
|---------------------------|---------------------------------|----------|----------------------------|--------------------|-----------|-------------|--------------------------|----------------|-----------|------------|-----|
| Design Flow (MGD)*        | Hardness (mg/l)*                | pH (SU)* | Partial Mix Factors (PMFs) |                    |           |             | Complete Mix Times (min) |                |           |            |     |
|                           |                                 |          | AFC                        | CFC                | THH       | CRL         | Q <sub>7-10</sub>        | Q <sub>h</sub> |           |            |     |
| 7.2                       | 218                             | 7.13     |                            |                    |           |             |                          |                |           |            |     |
|                           |                                 |          |                            |                    |           |             |                          |                |           |            |     |
| Discharge Pollutant       |                                 |          | Units                      | Max Discharge Conc | Trib Conc | Stream Conc | Daily CV                 | Hourly CV      | Stream CV | Fate Coeff | FOS |
|                           |                                 |          |                            |                    |           |             |                          |                |           |            |     |
| <b>Group 1</b>            | Total Dissolved Solids (PWS)    | mg/L     |                            |                    |           |             |                          |                |           |            |     |
|                           | Chloride (PWS)                  | mg/L     |                            |                    |           |             |                          |                |           |            |     |
|                           | Bromide                         | mg/L     |                            |                    |           |             |                          |                |           |            |     |
|                           | Sulfate (PWS)                   | mg/L     |                            |                    |           |             |                          |                |           |            |     |
|                           | Fluoride (PWS)                  | mg/L     |                            |                    |           |             |                          |                |           |            |     |
| <b>Group 2</b>            | Total Aluminum                  | µg/L     | 62                         |                    |           |             |                          |                |           |            |     |
|                           | Total Antimony                  | µg/L     | 2.3                        |                    |           |             |                          |                |           |            |     |
|                           | Total Arsenic                   | µg/L     | 4                          |                    |           |             |                          |                |           |            |     |
|                           | Total Barium                    | µg/L     | 100                        |                    |           |             |                          |                |           |            |     |
|                           | Total Beryllium                 | µg/L     | < 0.8                      |                    |           |             |                          |                |           |            |     |
|                           | Total Boron                     | µg/L     | 343                        |                    |           |             |                          |                |           |            |     |
|                           | Total Cadmium                   | µg/L     | < 0.12                     |                    |           |             |                          |                |           |            |     |
|                           | Total Chromium (III)            | µg/L     |                            |                    |           |             |                          |                |           |            |     |
|                           | Hexavalent Chromium             | µg/L     | 0.25                       |                    |           |             |                          |                |           |            |     |
|                           | Total Cobalt                    | µg/L     | 1.75                       |                    |           |             |                          |                |           |            |     |
|                           | Total Copper                    | µg/L     | < 0.007                    |                    |           |             |                          |                |           |            |     |
|                           | Free Cyanide                    | µg/L     | < 0.002                    |                    |           |             |                          |                |           |            |     |
|                           | Total Cyanide                   | µg/L     | 3                          |                    |           |             |                          |                |           |            |     |
|                           | Dissolved Iron                  | µg/L     | 108                        |                    |           |             |                          |                |           |            |     |
|                           | Total Iron                      | µg/L     | 277                        |                    |           |             |                          |                |           |            |     |
|                           | Total Lead                      | µg/L     | 0.6                        |                    |           |             |                          |                |           |            |     |
|                           | Total Manganese                 | µg/L     | 50                         |                    |           |             |                          |                |           |            |     |
|                           | Total Mercury                   | µg/L     | 0.02                       |                    |           |             |                          |                |           |            |     |
|                           | Total Nickel                    | µg/L     | 7                          |                    |           |             |                          |                |           |            |     |
|                           | Total Phenols (Phenolics) (PWS) | µg/L     | 12                         |                    |           |             |                          |                |           |            |     |
|                           | Total Selenium                  | µg/L     | < 0.2                      |                    |           |             |                          |                |           |            |     |
|                           | Total Silver                    | µg/L     | < 0.0619                   |                    |           |             |                          |                |           |            |     |
|                           | Total Thallium                  | µg/L     | < 0.8                      |                    |           |             |                          |                |           |            |     |
|                           | Total Zinc                      | µg/L     | 42                         |                    |           |             |                          |                |           |            |     |
|                           | Total Molybdenum                | µg/L     | 2.15                       |                    |           |             |                          |                |           |            |     |
| <b>Group 3</b>            | Acrolein                        | µg/L     | < 1                        |                    |           |             |                          |                |           |            |     |
|                           | Acrylamide                      | µg/L     | <                          |                    |           |             |                          |                |           |            |     |
|                           | Acrylonitrile                   | µg/L     | < 0.5                      |                    |           |             |                          |                |           |            |     |
|                           | Benzene                         | µg/L     | < 0.5                      |                    |           |             |                          |                |           |            |     |
|                           | Bromoform                       | µg/L     | < 0.5                      |                    |           |             |                          |                |           |            |     |
|                           | Carbon Tetrachloride            | µg/L     | < 0.5                      |                    |           |             |                          |                |           |            |     |





## Stream / Surface Water Information

New Stanton STP, NPDES Permit No. PA0038181, Outfall 001

Instructions **Discharge** Stream

Receiving Surface Water Name: **Sewickley Creek**

No. Reaches to Model: **1**

- Statewide Criteria
- Great Lakes Criteria
- ORSANCO Criteria

| Location           | Stream Code* | RMI*  | Elevation (ft)* | DA (mi <sup>2</sup> )* | Slope (ft/ft) | PWS Withdrawal (MGD) | Apply Fish Criteria* |
|--------------------|--------------|-------|-----------------|------------------------|---------------|----------------------|----------------------|
| Point of Discharge | 037556       | 15.44 | 911.72          | 102                    |               |                      | Yes                  |
| End of Reach 1     | 037556       | 12.81 | 900.42          | 110                    |               |                      | Yes                  |

**Q<sub>7-10</sub>**

| Location           | RMI   | LFY (cfs/mi <sup>2</sup> )* | Flow (cfs) |           | W/D Ratio | Width (ft) | Depth (ft) | Velocity (fps) | Travel Time (days) | Tributary |    | Stream    |     | Analysis |    |
|--------------------|-------|-----------------------------|------------|-----------|-----------|------------|------------|----------------|--------------------|-----------|----|-----------|-----|----------|----|
|                    |       |                             | Stream     | Tributary |           |            |            |                |                    | Hardness  | pH | Hardness* | pH* | Hardness | pH |
| Point of Discharge | 15.44 | 0.04                        |            |           |           |            |            |                |                    |           |    | 100       | 7   |          |    |
| End of Reach 1     | 12.81 | 0.04                        |            |           |           |            |            |                |                    |           |    |           |     |          |    |

**Q<sub>h</sub>**

| Location           | RMI   | LFY (cfs/mi <sup>2</sup> )* | Flow (cfs) |           | W/D Ratio | Width (ft) | Depth (ft) | Velocity (fps) | Travel Time (days) | Tributary |    | Stream    |     | Analysis |    |
|--------------------|-------|-----------------------------|------------|-----------|-----------|------------|------------|----------------|--------------------|-----------|----|-----------|-----|----------|----|
|                    |       |                             | Stream     | Tributary |           |            |            |                |                    | Hardness  | pH | Hardness* | pH* | Hardness | pH |
| Point of Discharge | 15.44 |                             |            |           |           |            |            |                |                    |           |    |           |     |          |    |
| End of Reach 1     | 12.81 |                             |            |           |           |            |            |                |                    |           |    |           |     |          |    |

## Model Results

New Stanton STP, NPDES Permit No. PA0038181, Outfall 001

Instructions **Results**

RETURN TO INPUTS

SAVE AS PDF

PRINT

All 0 Inputs 0 Results 0 Limits

**Hydrodynamics**

**Wasteload Allocations**

AFC

CCT (min): 15

PMF: 0.940

Analysis Hardness (mg/l): 187.77

Analysis pH: 7.09

| Pollutants                      | Stream Conc | Stream CV | Trib Conc (µg/L) | Fate Coef | WQC (µg/L) | WQ Obj (µg/L) | WLA (µg/L) | Comments                         |
|---------------------------------|-------------|-----------|------------------|-----------|------------|---------------|------------|----------------------------------|
| Total Aluminum                  | 0           | 0         |                  | 0         | 750        | 750           | 1,008      |                                  |
| Total Antimony                  | 0           | 0         |                  | 0         | 1,100      | 1,100         | 1,479      |                                  |
| Total Arsenic                   | 0           | 0         |                  | 0         | 340        | 340           | 457        | Chem Translator of 1 applied     |
| Total Barium                    | 0           | 0         |                  | 0         | 21,000     | 21,000        | 28,233     |                                  |
| Total Boron                     | 0           | 0         |                  | 0         | 8,100      | 8,100         | 10,890     |                                  |
| Total Cadmium                   | 0           | 0         |                  | 0         | 3.714      | 4.05          | 5.44       | Chem Translator of 0.918 applied |
| Hexavalent Chromium             | 0           | 0         |                  | 0         | 16         | 16.3          | 21.9       | Chem Translator of 0.962 applied |
| Total Cobalt                    | 0           | 0         |                  | 0         | 95         | 95.0          | 128        |                                  |
| Total Copper                    | 0           | 0         |                  | 0         | 24.332     | 25.3          | 34.1       | Chem Translator of 0.96 applied  |
| Free Cyanide                    | 0           | 0         |                  | 0         | 22         | 22.0          | 29.6       |                                  |
| Dissolved Iron                  | 0           | 0         |                  | 0         | N/A        | N/A           | N/A        |                                  |
| Total Iron                      | 0           | 0         |                  | 0         | N/A        | N/A           | N/A        |                                  |
| Total Lead                      | 0           | 0         |                  | 0         | 127.307    | 182           | 245        | Chem Translator of 0.699 applied |
| Total Manganese                 | 0           | 0         |                  | 0         | N/A        | N/A           | N/A        |                                  |
| Total Mercury                   | 0           | 0         |                  | 0         | 1,400      | 1,65          | 2.21       | Chem Translator of 0.85 applied  |
| Total Nickel                    | 0           | 0         |                  | 0         | 797.905    | 800           | 1,075      | Chem Translator of 0.998 applied |
| Total Phenols (Phenolics) (PWS) | 0           | 0         |                  | 0         | N/A        | N/A           | N/A        |                                  |
| Total Selenium                  | 0           | 0         |                  | 0         | N/A        | N/A           | N/A        | Chem Translator of 0.922 applied |
| Total Silver                    | 0           | 0         |                  | 0         | 9.507      | 11.2          | 15.0       | Chem Translator of 0.85 applied  |
| Total Thallium                  | 0           | 0         |                  | 0         | 65         | 65.0          | 87.4       |                                  |
| Total Zinc                      | 0           | 0         |                  | 0         | 199.847    | 204           | 275        | Chem Translator of 0.978 applied |
| Acrolein                        | 0           | 0         |                  | 0         | 3          | 3.0           | 4.03       |                                  |
| Acrylonitrile                   | 0           | 0         |                  | 0         | 650        | 650           | 874        |                                  |
| Benzene                         | 0           | 0         |                  | 0         | 640        | 640           | 860        |                                  |
| Bromoform                       | 0           | 0         |                  | 0         | 1,800      | 1,800         | 2,420      |                                  |
| Carbon Tetrachloride            | 0           | 0         |                  | 0         | 2,800      | 2,800         | 3,764      |                                  |
| Chlorobenzene                   | 0           | 0         |                  | 0         | 1,200      | 1,200         | 1,613      |                                  |

Model Results

7/24/2024

Page 5

|                             |   |   |  |   |        |        |        |
|-----------------------------|---|---|--|---|--------|--------|--------|
| Chlorodibromomethane        | 0 | 0 |  | 0 | N/A    | N/A    | N/A    |
| 2-Chloroethyl Vinyl Ether   | 0 | 0 |  | 0 | 18,000 | 18,000 | 24,200 |
| Chloroform                  | 0 | 0 |  | 0 | 1,900  | 1,900  | 2,554  |
| Dichlorobromomethane        | 0 | 0 |  | 0 | N/A    | N/A    | N/A    |
| 1,2-Dichloroethane          | 0 | 0 |  | 0 | 15,000 | 15,000 | 20,166 |
| 1,1-Dichloroethylene        | 0 | 0 |  | 0 | 7,500  | 7,500  | 10,083 |
| 1,2-Dichloropropane         | 0 | 0 |  | 0 | 11,000 | 11,000 | 14,789 |
| 1,3-Dichloropropylene       | 0 | 0 |  | 0 | 310    | 310    | 417    |
| Ethylbenzene                | 0 | 0 |  | 0 | 2,900  | 2,900  | 3,899  |
| Methyl Bromide              | 0 | 0 |  | 0 | 550    | 550    | 739    |
| Methyl Chloride             | 0 | 0 |  | 0 | 28,000 | 28,000 | 37,644 |
| Methylene Chloride          | 0 | 0 |  | 0 | 12,000 | 12,000 | 16,133 |
| 1,1,2,2-Tetrachloroethane   | 0 | 0 |  | 0 | 1,000  | 1,000  | 1,344  |
| Tetrachloroethylene         | 0 | 0 |  | 0 | 700    | 700    | 941    |
| Toluene                     | 0 | 0 |  | 0 | 1,700  | 1,700  | 2,286  |
| 1,2-trans-Dichloroethylene  | 0 | 0 |  | 0 | 6,800  | 6,800  | 9,142  |
| 1,1,1-Trichloroethane       | 0 | 0 |  | 0 | 3,000  | 3,000  | 4,033  |
| 1,1,2-Trichloroethane       | 0 | 0 |  | 0 | 3,400  | 3,400  | 4,571  |
| Trichloroethylene           | 0 | 0 |  | 0 | 2,300  | 2,300  | 3,092  |
| Vinyl Chloride              | 0 | 0 |  | 0 | N/A    | N/A    | N/A    |
| 2-Chlorophenol              | 0 | 0 |  | 0 | 560    | 560    | 753    |
| 2,4-Dichlorophenol          | 0 | 0 |  | 0 | 1,700  | 1,700  | 2,286  |
| 2,4-Dimethylphenol          | 0 | 0 |  | 0 | 660    | 660    | 887    |
| 4,6-Dinitro-o-Cresol        | 0 | 0 |  | 0 | 80     | 80.0   | 108    |
| 2,4-Dinitrophenol           | 0 | 0 |  | 0 | 660    | 660    | 887    |
| 2-Nitrophenol               | 0 | 0 |  | 0 | 8,000  | 8,000  | 10,755 |
| 4-Nitrophenol               | 0 | 0 |  | 0 | 2,300  | 2,300  | 3,092  |
| p-Chloro-m-Cresol           | 0 | 0 |  | 0 | 160    | 160    | 215    |
| Pentachlorophenol           | 0 | 0 |  | 0 | 9.576  | 9.58   | 12.9   |
| Phenol                      | 0 | 0 |  | 0 | N/A    | N/A    | N/A    |
| 2,4,6-Trichlorophenol       | 0 | 0 |  | 0 | 460    | 460    | 618    |
| Acenaphthene                | 0 | 0 |  | 0 | 83     | 83.0   | 112    |
| Anthracene                  | 0 | 0 |  | 0 | N/A    | N/A    | N/A    |
| Benzidine                   | 0 | 0 |  | 0 | 300    | 300    | 403    |
| Benzo(a)Anthracene          | 0 | 0 |  | 0 | 0.5    | 0.5    | 0.67   |
| Benzo(a)Pyrene              | 0 | 0 |  | 0 | N/A    | N/A    | N/A    |
| 3,4-Benzo fluoranthene      | 0 | 0 |  | 0 | N/A    | N/A    | N/A    |
| Benz(k)Fluoranthene         | 0 | 0 |  | 0 | N/A    | N/A    | N/A    |
| Bis(2-Chloroethyl)Ether     | 0 | 0 |  | 0 | 30,000 | 30,000 | 40,333 |
| Bis(2-Chloroisopropyl)Ether | 0 | 0 |  | 0 | N/A    | N/A    | N/A    |
| Bis(2-Ethylhexyl)Phthalate  | 0 | 0 |  | 0 | 4,500  | 4,500  | 6,050  |
| 4-Bromophenyl Phenyl Ether  | 0 | 0 |  | 0 | 270    | 270    | 363    |
| Butyl Benzyl Phthalate      | 0 | 0 |  | 0 | 140    | 140    | 188    |
| 2-Chloronaphthalene         | 0 | 0 |  | 0 | N/A    | N/A    | N/A    |
| Chrysene                    | 0 | 0 |  | 0 | N/A    | N/A    | N/A    |
| Dibenzo(a,h)Anthracene      | 0 | 0 |  | 0 | N/A    | N/A    | N/A    |
| 1,2-Dichlorobenzene         | 0 | 0 |  | 0 | 820    | 820    | 1,102  |
| 1,3-Dichlorobenzene         | 0 | 0 |  | 0 | 350    | 350    | 471    |

Model Results

7/24/2024

Page 6

|                           |   |   |  |   |        |        |        |
|---------------------------|---|---|--|---|--------|--------|--------|
| 1,4-Dichlorobenzene       | 0 | 0 |  | 0 | 730    | 730    | 981    |
| 3,3-Dichlorobenzidine     | 0 | 0 |  | 0 | N/A    | N/A    | N/A    |
| Diethyl Phthalate         | 0 | 0 |  | 0 | 4,000  | 4,000  | 5,378  |
| Dimethyl Phthalate        | 0 | 0 |  | 0 | 2,500  | 2,500  | 3,361  |
| Di-n-Butyl Phthalate      | 0 | 0 |  | 0 | 110    | 110    | 148    |
| 2,4-Dinitrotoluene        | 0 | 0 |  | 0 | 1,600  | 1,600  | 2,151  |
| 2,6-Dinitrotoluene        | 0 | 0 |  | 0 | 990    | 990    | 1,331  |
| 1,2-Diphenylhydrazine     | 0 | 0 |  | 0 | 15     | 15.0   | 20.2   |
| Fluoranthene              | 0 | 0 |  | 0 | 200    | 200    | 269    |
| Fluorene                  | 0 | 0 |  | 0 | N/A    | N/A    | N/A    |
| Hexachlorobenzene         | 0 | 0 |  | 0 | N/A    | N/A    | N/A    |
| Hexachlorobutadiene       | 0 | 0 |  | 0 | 10     | 10.0   | 13.4   |
| Hexachlorocyclopentadiene | 0 | 0 |  | 0 | 5      | 5.0    | 6.72   |
| Hexachloroethane          | 0 | 0 |  | 0 | 60     | 60.0   | 80.7   |
| Indeno(1,2,3-cd)Pyrene    | 0 | 0 |  | 0 | N/A    | N/A    | N/A    |
| Isophorone                | 0 | 0 |  | 0 | 10,000 | 10,000 | 13,444 |
| Naphthalene               | 0 | 0 |  | 0 | 140    | 140    | 188    |
| Nitrobenzene              | 0 | 0 |  | 0 | 4,000  | 4,000  | 5,378  |
| n-Nitrosodimethylamine    | 0 | 0 |  | 0 | 17,000 | 17,000 | 22,855 |
| n-Nitrosodi-n-Propylamine | 0 | 0 |  | 0 | N/A    | N/A    | N/A    |
| n-Nitrosodiphenylamine    | 0 | 0 |  | 0 | 300    | 300    | 403    |
| Phenanthrene              | 0 | 0 |  | 0 | 5      | 5.0    | 6.72   |
| Pyrene                    | 0 | 0 |  | 0 | N/A    | N/A    | N/A    |
| 1,2,4-Trichlorobenzene    | 0 | 0 |  | 0 | 130    | 130    | 175    |

CFC      CCT (min): 16.965      PMF: 1      Analysis Hardness (mg/l): 186.36      Analysis pH: 7.09

| Pollutants                      | Stream Conc (µg/L) | Stream CV | Trb Conc (µg/L) | Fate Coef | WQC (µg/L) | WQ Obj (µg/L) | WLA (µg/L) | Comments                         |
|---------------------------------|--------------------|-----------|-----------------|-----------|------------|---------------|------------|----------------------------------|
| Total Aluminum                  | 0                  | 0         |                 | 0         | N/A        | N/A           | N/A        |                                  |
| Total Antimony                  | 0                  | 0         |                 | 0         | 220        | 220           | 301        |                                  |
| Total Arsenic                   | 0                  | 0         |                 | 0         | 150        | 150           | 205        | Chem Translator of 1 applied     |
| Total Barium                    | 0                  | 0         |                 | 0         | 4,100      | 4,100         | 5,602      |                                  |
| Total Boron                     | 0                  | 0         |                 | 0         | 1,600      | 1,600         | 2,186      |                                  |
| Total Cadmium                   | 0                  | 0         |                 | 0         | 0.379      | 0.43          | 0.59       | Chem Translator of 0.883 applied |
| Hexavalent Chromium             | 0                  | 0         |                 | 0         | 10         | 10.4          | 14.2       | Chem Translator of 0.962 applied |
| Total Cobalt                    | 0                  | 0         |                 | 0         | 19         | 19.0          | 26.0       |                                  |
| Total Copper                    | 0                  | 0         |                 | 0         | 15,245     | 15.9          | 21.7       | Chem Translator of 0.96 applied  |
| Free Cyanide                    | 0                  | 0         |                 | 0         | 5.2        | 5.2           | 7.1        |                                  |
| Dissolved Iron                  | 0                  | 0         |                 | 0         | N/A        | N/A           | N/A        |                                  |
| Total Iron                      | 0                  | 0         |                 | 0         | 1,500      | 1,500         | 2,049      | WQC = 30 day average; PMF = 1    |
| Total Lead                      | 0                  | 0         |                 | 0         | 4,921      | 7.03          | 9.6        | Chem Translator of 0.7 applied   |
| Total Manganese                 | 0                  | 0         |                 | 0         | N/A        | N/A           | N/A        |                                  |
| Total Mercury                   | 0                  | 0         |                 | 0         | 0.770      | 0.91          | 1.24       | Chem Translator of 0.85 applied  |
| Total Nickel                    | 0                  | 0         |                 | 0         | 88.061     | 88.3          | 121        | Chem Translator of 0.997 applied |
| Total Phenols (Phenolics) (PWS) | 0                  | 0         |                 | 0         | N/A        | N/A           | N/A        |                                  |

Model Results

7/24/2024

Page 7

|                            |   |   |  |   |         |       |       |                                  |
|----------------------------|---|---|--|---|---------|-------|-------|----------------------------------|
| Total Selenium             | 0 | 0 |  | 0 | 4,600   | 4.99  | 6.82  | Chem Translator of 0.922 applied |
| Total Silver               | 0 | 0 |  | 0 | N/A     | N/A   | N/A   | Chem Translator of 1 applied     |
| Total Thallium             | 0 | 0 |  | 0 | 13      | 13.0  | 17.8  |                                  |
| Total Zinc                 | 0 | 0 |  | 0 | 200,204 | 203   | 277   | Chem Translator of 0.966 applied |
| Acrolein                   | 0 | 0 |  | 0 | 3       | 3.0   | 4.1   |                                  |
| Acrylonitrile              | 0 | 0 |  | 0 | 130     | 130   | 178   |                                  |
| Benzene                    | 0 | 0 |  | 0 | 130     | 130   | 178   |                                  |
| Bromoform                  | 0 | 0 |  | 0 | 370     | 370   | 506   |                                  |
| Carbon Tetrachloride       | 0 | 0 |  | 0 | 560     | 560   | 765   |                                  |
| Chlorobenzene              | 0 | 0 |  | 0 | 240     | 240   | 328   |                                  |
| Chlorodibromomethane       | 0 | 0 |  | 0 | N/A     | N/A   | N/A   |                                  |
| 2-Chloroethyl Vinyl Ether  | 0 | 0 |  | 0 | 3,500   | 3,500 | 4,782 |                                  |
| Chloroform                 | 0 | 0 |  | 0 | 390     | 390   | 533   |                                  |
| Dichlorobromomethane       | 0 | 0 |  | 0 | N/A     | N/A   | N/A   |                                  |
| 1,2-Dichloroethane         | 0 | 0 |  | 0 | 3,100   | 3,100 | 4,236 |                                  |
| 1,1-Dichloroethylene       | 0 | 0 |  | 0 | 1,500   | 1,500 | 2,049 |                                  |
| 1,2-Dichloropropane        | 0 | 0 |  | 0 | 2,200   | 2,200 | 3,006 |                                  |
| 1,3-Dichloropropylene      | 0 | 0 |  | 0 | 61      | 61.0  | 83.3  |                                  |
| Ethylbenzene               | 0 | 0 |  | 0 | 580     | 580   | 792   |                                  |
| Methyl Bromide             | 0 | 0 |  | 0 | 110     | 110   | 150   |                                  |
| Methyl Chloride            | 0 | 0 |  | 0 | 5,500   | 5,500 | 7,515 |                                  |
| Methylene Chloride         | 0 | 0 |  | 0 | 2,400   | 2,400 | 3,279 |                                  |
| 1,1,2,2-Tetrachloroethane  | 0 | 0 |  | 0 | 210     | 210   | 287   |                                  |
| Tetrachloroethylene        | 0 | 0 |  | 0 | 140     | 140   | 191   |                                  |
| Toluene                    | 0 | 0 |  | 0 | 330     | 330   | 451   |                                  |
| 1,2-trans-Dichloroethylene | 0 | 0 |  | 0 | 1,400   | 1,400 | 1,913 |                                  |
| 1,1,1-Trichloroethane      | 0 | 0 |  | 0 | 610     | 610   | 833   |                                  |
| 1,1,2-Trichloroethane      | 0 | 0 |  | 0 | 680     | 680   | 929   |                                  |
| Trichloroethylene          | 0 | 0 |  | 0 | 450     | 450   | 615   |                                  |
| Vinyl Chloride             | 0 | 0 |  | 0 | N/A     | N/A   | N/A   |                                  |
| 2-Chlorophenol             | 0 | 0 |  | 0 | 110     | 110   | 150   |                                  |
| 2,4-Dichlorophenol         | 0 | 0 |  | 0 | 340     | 340   | 465   |                                  |
| 2,4-Dimethylphenol         | 0 | 0 |  | 0 | 130     | 130   | 178   |                                  |
| 4,6-Dinitro-o-Cresol       | 0 | 0 |  | 0 | 16      | 16.0  | 21.9  |                                  |
| 2,4-Dinitrophenol          | 0 | 0 |  | 0 | 130     | 130   | 178   |                                  |
| 2-Nitrophenol              | 0 | 0 |  | 0 | 1,600   | 1,600 | 2,166 |                                  |
| 4-Nitrophenol              | 0 | 0 |  | 0 | 470     | 470   | 642   |                                  |
| p-Chloro-m-Cresol          | 0 | 0 |  | 0 | 500     | 500   | 683   |                                  |
| Pentachlorophenol          | 0 | 0 |  | 0 | 7,347   | 7,35  | 10.0  |                                  |
| Phenol                     | 0 | 0 |  | 0 | N/A     | N/A   | N/A   |                                  |
| 2,4,6-Trichlorophenol      | 0 | 0 |  | 0 | 91      | 91.0  | 124   |                                  |
| Acenaphthene               | 0 | 0 |  | 0 | 17      | 17.0  | 23.2  |                                  |
| Anthracene                 | 0 | 0 |  | 0 | N/A     | N/A   | N/A   |                                  |
| Benzidine                  | 0 | 0 |  | 0 | 59      | 59.0  | 80.6  |                                  |
| Benzo(a)Anthracene         | 0 | 0 |  | 0 | 0.1     | 0.1   | 0.14  |                                  |
| Benzo(a)Pyrene             | 0 | 0 |  | 0 | N/A     | N/A   | N/A   |                                  |

Model Results

7/24/2024

Page 8

|                             |   |   |  |   |       |       |       |  |
|-----------------------------|---|---|--|---|-------|-------|-------|--|
| 3,4-Benzoquinanthene        | 0 | 0 |  | 0 | N/A   | N/A   | N/A   |  |
| Benzo(k)Fluoranthene        | 0 | 0 |  | 0 | N/A   | N/A   | N/A   |  |
| Bis(2-Chloroethyl)Ether     | 0 | 0 |  | 0 | 6,000 | 6,000 | 6,198 |  |
| Bis(2-Chloroisopropyl)Ether | 0 | 0 |  | 0 | N/A   | N/A   | N/A   |  |
| Bis(2-Ethylhexyl)Phthalate  | 0 | 0 |  | 0 | 910   | 910   | 1,243 |  |
| 4-Bromophenyl Phenyl Ether  | 0 | 0 |  | 0 | 54    | 54.0  | 73.8  |  |
| Butyl Benzyl Phthalate      | 0 | 0 |  | 0 | 35    | 35.0  | 47.8  |  |
| 2-Chloronaphthalene         | 0 | 0 |  | 0 | N/A   | N/A   | N/A   |  |
| Chrysene                    | 0 | 0 |  | 0 | N/A   | N/A   | N/A   |  |
| Dibenzo(a,h)Anthracene      | 0 | 0 |  | 0 | N/A   | N/A   | N/A   |  |
| 1,2-Dichlorobenzene         | 0 | 0 |  | 0 | 160   | 160   | 219   |  |
| 1,3-Dichlorobenzene         | 0 | 0 |  | 0 | 69    | 69.0  | 94.3  |  |
| 1,4-Dichlorobenzene         | 0 | 0 |  | 0 | 150   | 150   | 205   |  |
| 3,3-Dichlorobenzidine       | 0 | 0 |  | 0 | N/A   | N/A   | N/A   |  |
| Diethyl Phthalate           | 0 | 0 |  | 0 | 800   | 800   | 1,093 |  |
| Dimethyl Phthalate          | 0 | 0 |  | 0 | 500   | 500   | 683   |  |
| Di-n-Butyl Phthalate        | 0 | 0 |  | 0 | 21    | 21.0  | 28.7  |  |
| 2,4-Dinitrotoluene          | 0 | 0 |  | 0 | 320   | 320   | 437   |  |
| 2,6-Dinitrotoluene          | 0 | 0 |  | 0 | 200   | 200   | 273   |  |
| 1,2-Diphenylhydrazine       | 0 | 0 |  | 0 | 3     | 3.0   | 4.1   |  |
| Fluoranthene                | 0 | 0 |  | 0 | 40    | 40.0  | 54.7  |  |
| Fluorene                    | 0 | 0 |  | 0 | N/A   | N/A   | N/A   |  |
| Hexachlorobenzene           | 0 | 0 |  | 0 | N/A   | N/A   | N/A   |  |
| Hexachlorobutadiene         | 0 | 0 |  | 0 | 2     | 2.0   | 2.73  |  |
| Hexachlorocyclopentadiene   | 0 | 0 |  | 0 | 1     | 1.0   | 1.37  |  |
| Hexachloroethane            | 0 | 0 |  | 0 | 12    | 12.0  | 16.4  |  |
| Indeno(1,2,3-cd)Pyrene      | 0 | 0 |  | 0 | N/A   | N/A   | N/A   |  |
| Isophorone                  | 0 | 0 |  | 0 | 2,100 | 2,100 | 2,869 |  |
| Naphthalene                 | 0 | 0 |  | 0 | 43    | 43.0  | 58.8  |  |
| Nitrobenzene                | 0 | 0 |  | 0 | 810   | 810   | 1,107 |  |
| n-Nitrosodimethylamine      | 0 | 0 |  | 0 | 3,400 | 3,400 | 4,645 |  |
| n-Nitrosodi-n-Propylamine   | 0 | 0 |  | 0 | N/A   | N/A   | N/A   |  |
| n-Nitrosodiphenylamine      | 0 | 0 |  | 0 | 59    | 59.0  | 80.6  |  |
| Phenanthrene                | 0 | 0 |  | 0 | 1     | 1.0   | 1.37  |  |
| Pyrene                      | 0 | 0 |  | 0 | N/A   | N/A   | N/A   |  |
| 1,2,4-Trichlorobenzene      | 0 | 0 |  | 0 | 26    | 26.0  | 35.5  |  |

THH      CCT (min): 16.965      PMF: 1      Analysis Hardness (mg/l): N/A      Analysis pH: N/A

| Pollutants     | Stream Conc (µg/L) | Stream CV | Trib Conc (µg/L) | Fate Coef | WQC (µg/L) | WQ Obj (µg/L) | WLA (µg/L) | Comments |
|----------------|--------------------|-----------|------------------|-----------|------------|---------------|------------|----------|
| Total Aluminum | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Total Antimony | 0                  | 0         |                  | 0         | 5.6        | 5.6           | 7.65       |          |
| Total Arsenic  | 0                  | 0         |                  | 0         | 10         | 10.0          | 13.7       |          |
| Total Barium   | 0                  | 0         |                  | 0         | 2,400      | 2,400         | 3,279      |          |

Model Results

7/24/2024

Page 9

|                                 |   |   |  |   |        |        |        |  |
|---------------------------------|---|---|--|---|--------|--------|--------|--|
| Total Boron                     | 0 | 0 |  | 0 | 3,100  | 3,100  | 4,236  |  |
| Total Cadmium                   | 0 | 0 |  | 0 | N/A    | N/A    | N/A    |  |
| Hexavalent Chromium             | 0 | 0 |  | 0 | N/A    | N/A    | N/A    |  |
| Total Cobalt                    | 0 | 0 |  | 0 | N/A    | N/A    | N/A    |  |
| Total Copper                    | 0 | 0 |  | 0 | N/A    | N/A    | N/A    |  |
| Free Cyanide                    | 0 | 0 |  | 0 | 4      | 4.0    | 5.47   |  |
| Dissolved Iron                  | 0 | 0 |  | 0 | 300    | 300    | 410    |  |
| Total Iron                      | 0 | 0 |  | 0 | N/A    | N/A    | N/A    |  |
| Total Lead                      | 0 | 0 |  | 0 | N/A    | N/A    | N/A    |  |
| Total Manganese                 | 0 | 0 |  | 0 | 1,000  | 1,000  | 1,366  |  |
| Total Mercury                   | 0 | 0 |  | 0 | 0.050  | 0.05   | 0.068  |  |
| Total Nickel                    | 0 | 0 |  | 0 | 610    | 610    | 833    |  |
| Total Phenols (Phenolics) (PWS) | 0 | 0 |  | 0 | 5      | 5.0    | N/A    |  |
| Total Selenium                  | 0 | 0 |  | 0 | N/A    | N/A    | N/A    |  |
| Total Silver                    | 0 | 0 |  | 0 | N/A    | N/A    | N/A    |  |
| Total Thallium                  | 0 | 0 |  | 0 | 0.24   | 0.24   | 0.33   |  |
| Total Zinc                      | 0 | 0 |  | 0 | N/A    | N/A    | N/A    |  |
| Acrolein                        | 0 | 0 |  | 0 | 3      | 3.0    | 4.1    |  |
| Acrylonitrile                   | 0 | 0 |  | 0 | N/A    | N/A    | N/A    |  |
| Benzene                         | 0 | 0 |  | 0 | N/A    | N/A    | N/A    |  |
| Bromoform                       | 0 | 0 |  | 0 | N/A    | N/A    | N/A    |  |
| Carbon Tetrachloride            | 0 | 0 |  | 0 | N/A    | N/A    | N/A    |  |
| Chlorobenzene                   | 0 | 0 |  | 0 | 100    | 100.0  | 137    |  |
| Chlorodibromomethane            | 0 | 0 |  | 0 | N/A    | N/A    | N/A    |  |
| 2-Chloroethyl Vinyl Ether       | 0 | 0 |  | 0 | N/A    | N/A    | N/A    |  |
| Chloroform                      | 0 | 0 |  | 0 | 5.7    | 5.7    | 7.79   |  |
| Dichlorobromomethane            | 0 | 0 |  | 0 | N/A    | N/A    | N/A    |  |
| 1,2-Dichloroethane              | 0 | 0 |  | 0 | N/A    | N/A    | N/A    |  |
| 1,1-Dichloroethylene            | 0 | 0 |  | 0 | 33     | 33.0   | 45.1   |  |
| 1,2-Dichloropropane             | 0 | 0 |  | 0 | N/A    | N/A    | N/A    |  |
| 1,3-Dichloropropylene           | 0 | 0 |  | 0 | N/A    | N/A    | N/A    |  |
| Ethylbenzene                    | 0 | 0 |  | 0 | 68     | 68.0   | 92.9   |  |
| Methyl Bromide                  | 0 | 0 |  | 0 | 100    | 100.0  | 137    |  |
| Methyl Chloride                 | 0 | 0 |  | 0 | N/A    | N/A    | N/A    |  |
| Methylene Chloride              | 0 | 0 |  | 0 | N/A    | N/A    | N/A    |  |
| 1,1,2,2-Tetrachloroethane       | 0 | 0 |  | 0 | N/A    | N/A    | N/A    |  |
| Tetrachloroethylene             | 0 | 0 |  | 0 | N/A    | N/A    | N/A    |  |
| Toluene                         | 0 | 0 |  | 0 | 57     | 57.0   | 77.9   |  |
| 1,2-trans-Dichloroethylene      | 0 | 0 |  | 0 | 100    | 100.0  | 137    |  |
| 1,1,1-Trichloroethane           | 0 | 0 |  | 0 | 10,000 | 10,000 | 13,663 |  |
| 1,1,2-Trichloroethane           | 0 | 0 |  | 0 | N/A    | N/A    | N/A    |  |
| Trichloroethylene               | 0 | 0 |  | 0 | N/A    | N/A    | N/A    |  |
| Vinyl Chloride                  | 0 | 0 |  | 0 | N/A    | N/A    | N/A    |  |
| 2-Chlorophenol                  | 0 | 0 |  | 0 | 30     | 30.0   | 41.0   |  |
| 2,4-Dichlorophenol              | 0 | 0 |  | 0 | 10     | 10.0   | 13.7   |  |
| 2,4-Dimethylphenol              | 0 | 0 |  | 0 | 100    | 100.0  | 137    |  |

Model Results

7/24/2024

Page 10

|                             |   |   |  |   |       |       |       |  |
|-----------------------------|---|---|--|---|-------|-------|-------|--|
| 4,6-Dinitro-o-Cresol        | 0 | 0 |  | 0 | 2     | 2.0   | 2.73  |  |
| 2,4-Dinitrophenol           | 0 | 0 |  | 0 | 10    | 10.0  | 13.7  |  |
| 2-Nitrophenol               | 0 | 0 |  | 0 | N/A   | N/A   | N/A   |  |
| 4-Nitrophenol               | 0 | 0 |  | 0 | N/A   | N/A   | N/A   |  |
| p-Chloro-m-Cresol           | 0 | 0 |  | 0 | N/A   | N/A   | N/A   |  |
| Pentachlorophenol           | 0 | 0 |  | 0 | N/A   | N/A   | N/A   |  |
| Phenol                      | 0 | 0 |  | 0 | 4,000 | 4,000 | 5,465 |  |
| 2,4,6-Trichlorophenol       | 0 | 0 |  | 0 | N/A   | N/A   | N/A   |  |
| Acenaphthene                | 0 | 0 |  | 0 | 70    | 70.0  | 95.6  |  |
| Anthracene                  | 0 | 0 |  | 0 | 300   | 300   | 410   |  |
| Benzidine                   | 0 | 0 |  | 0 | N/A   | N/A   | N/A   |  |
| Benzo(a)Anthracene          | 0 | 0 |  | 0 | N/A   | N/A   | N/A   |  |
| Benzo(a)Pyrene              | 0 | 0 |  | 0 | N/A   | N/A   | N/A   |  |
| 3,4-Benzofluoranthene       | 0 | 0 |  | 0 | N/A   | N/A   | N/A   |  |
| Benzol(k)Fluoranthene       | 0 | 0 |  | 0 | N/A   | N/A   | N/A   |  |
| Bis(2-Chloroethyl)Ether     | 0 | 0 |  | 0 | N/A   | N/A   | N/A   |  |
| Bis(2-Chloroisopropyl)Ether | 0 | 0 |  | 0 | 200   | 200   | 273   |  |
| Bis(2-Ethylhexyl)Phthalate  | 0 | 0 |  | 0 | N/A   | N/A   | N/A   |  |
| 4-Bromophenyl Phenyl Ether  | 0 | 0 |  | 0 | N/A   | N/A   | N/A   |  |
| Butyl Benzyl Phthalate      | 0 | 0 |  | 0 | 0.1   | 0.1   | 0.14  |  |
| 2-Chloronaphthalene         | 0 | 0 |  | 0 | 800   | 800   | 1,093 |  |
| Chrysene                    | 0 | 0 |  | 0 | N/A   | N/A   | N/A   |  |
| Dibenz(a,h)Anthracene       | 0 | 0 |  | 0 | N/A   | N/A   | N/A   |  |
| 1,2-Dichlorobenzene         | 0 | 0 |  | 0 | 1,000 | 1,000 | 1,366 |  |
| 1,3-Dichlorobenzene         | 0 | 0 |  | 0 | 7     | 7.0   | 9.56  |  |
| 1,4-Dichlorobenzene         | 0 | 0 |  | 0 | 300   | 300   | 410   |  |
| 3,3-Dichlorobenzidine       | 0 | 0 |  | 0 | N/A   | N/A   | N/A   |  |
| Diethyl Phthalate           | 0 | 0 |  | 0 | 600   | 600   | 820   |  |
| Dimethyl Phthalate          | 0 | 0 |  | 0 | 2,000 | 2,000 | 2,733 |  |
| Di-n-Butyl Phthalate        | 0 | 0 |  | 0 | 20    | 20.0  | 27.3  |  |
| 2,4-Dinitrotoluene          | 0 | 0 |  | 0 | N/A   | N/A   | N/A   |  |
| 2,6-Dinitrotoluene          | 0 | 0 |  | 0 | N/A   | N/A   | N/A   |  |
| 1,2-Diphenylhydrazine       | 0 | 0 |  | 0 | N/A   | N/A   | N/A   |  |
| Fluoranthene                | 0 | 0 |  | 0 | 20    | 20.0  | 27.3  |  |
| Fluorene                    | 0 | 0 |  | 0 | 50    | 50.0  | 68.3  |  |
| Hexachlorobenzene           | 0 | 0 |  | 0 | N/A   | N/A   | N/A   |  |
| Hexachlorobutadiene         | 0 | 0 |  | 0 | N/A   | N/A   | N/A   |  |
| Hexachlorocyclopentadiene   | 0 | 0 |  | 0 | 4     | 4.0   | 5.47  |  |
| Hexachloroethane            | 0 | 0 |  | 0 | N/A   | N/A   | N/A   |  |
| Indeno(1,2,3-cd)Pyrene      | 0 | 0 |  | 0 | N/A   | N/A   | N/A   |  |
| Isophorone                  | 0 | 0 |  | 0 | 34    | 34.0  | 46.5  |  |
| Naphthalene                 | 0 | 0 |  | 0 | N/A   | N/A   | N/A   |  |
| Nitrobenzene                | 0 | 0 |  | 0 | 10    | 10.0  | 13.7  |  |
| n-Nitrosodimethylamine      | 0 | 0 |  | 0 | N/A   | N/A   | N/A   |  |
| n-Nitrosodi-n-Propylamine   | 0 | 0 |  | 0 | N/A   | N/A   | N/A   |  |
| n-Nitrosodiphenylamine      | 0 | 0 |  | 0 | N/A   | N/A   | N/A   |  |

Model Results

7/24/2024

Page 11

|                        |   |   |  |   |      |      |       |
|------------------------|---|---|--|---|------|------|-------|
| Phenanthrene           | 0 | 0 |  | 0 | N/A  | N/A  | N/A   |
| Pyrene                 | 0 | 0 |  | 0 | 20   | 20.0 | 27.3  |
| 1,2,4-Trichlorobenzene | 0 | 0 |  | 0 | 0.07 | 0.07 | 0.096 |

CRL CCT (min): 63.985 PMF: 1 Analysis Hardness (mg/l): N/A Analysis pH: N/A

| Pollutants                      | Stream Conc (µg/L) | Stream CV | Trib Conc (µg/L) | Fate Coef | WQC (µg/L) | WQ Obj (µg/L) | WLA (µg/L) | Comments |
|---------------------------------|--------------------|-----------|------------------|-----------|------------|---------------|------------|----------|
| Total Aluminum                  | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Total Antimony                  | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Total Arsenic                   | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Total Barium                    | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Total Boron                     | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Total Cadmium                   | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Hexavalent Chromium             | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Total Cobalt                    | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Total Copper                    | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Free Cyanide                    | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Dissolved Iron                  | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Total Iron                      | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Total Lead                      | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Total Manganese                 | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Total Mercury                   | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Total Nickel                    | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Total Phenols (Phenolics) (PWS) | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Total Selenium                  | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Total Silver                    | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Total Thallium                  | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Total Zinc                      | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Acrolein                        | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Acrylonitrile                   | 0                  | 0         |                  | 0         | 0.06       | 0.06          | 0.2        |          |
| Benzene                         | 0                  | 0         |                  | 0         | 0.58       | 0.58          | 1.9        |          |
| Bromoform                       | 0                  | 0         |                  | 0         | 7          | 7.0           | 23.0       |          |
| Carbon Tetrachloride            | 0                  | 0         |                  | 0         | 0.4        | 0.4           | 1.31       |          |
| Chlorobenzene                   | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Chlorodibromomethane            | 0                  | 0         |                  | 0         | 0.8        | 0.8           | 2.62       |          |
| 2-Chloroethyl Vinyl Ether       | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Chloroform                      | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Dichlorobromomethane            | 0                  | 0         |                  | 0         | 0.95       | 0.95          | 3.12       |          |
| 1,2-Dichloroethane              | 0                  | 0         |                  | 0         | 9.9        | 9.9           | 32.5       |          |
| 1,1-Dichloroethylene            | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| 1,2-Dichloropropane             | 0                  | 0         |                  | 0         | 0.9        | 0.9           | 2.95       |          |
| 1,3-Dichloropropylene           | 0                  | 0         |                  | 0         | 0.27       | 0.27          | 0.89       |          |
| Ethylbenzene                    | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Methyl Bromide                  | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |          |

Model Results

7/24/2024

Page 12

|                             |   |   |  |   |        |        |        |  |
|-----------------------------|---|---|--|---|--------|--------|--------|--|
| Methyl Chloride             | 0 | 0 |  | 0 | N/A    | N/A    | N/A    |  |
| Methylene Chloride          | 0 | 0 |  | 0 | 20     | 20.0   | 65.6   |  |
| 1,1,2,2-Tetrachloroethane   | 0 | 0 |  | 0 | 0.2    | 0.2    | 0.66   |  |
| Tetrachloroethylene         | 0 | 0 |  | 0 | 10     | 10.0   | 32.8   |  |
| Toluene                     | 0 | 0 |  | 0 | N/A    | N/A    | N/A    |  |
| 1,2-trans-Dichloroethylene  | 0 | 0 |  | 0 | N/A    | N/A    | N/A    |  |
| 1,1,1-Trichloroethane       | 0 | 0 |  | 0 | N/A    | N/A    | N/A    |  |
| 1,1,2-Trichloroethane       | 0 | 0 |  | 0 | 0.55   | 0.55   | 1.8    |  |
| Trichloroethylene           | 0 | 0 |  | 0 | 0.6    | 0.6    | 1.97   |  |
| Vinyl Chloride              | 0 | 0 |  | 0 | 0.02   | 0.02   | 0.066  |  |
| 2-Chlorophenol              | 0 | 0 |  | 0 | N/A    | N/A    | N/A    |  |
| 2,4-Dichlorophenol          | 0 | 0 |  | 0 | N/A    | N/A    | N/A    |  |
| 2,4-Dimethylphenol          | 0 | 0 |  | 0 | N/A    | N/A    | N/A    |  |
| 4,6-Dinitro-o-Cresol        | 0 | 0 |  | 0 | N/A    | N/A    | N/A    |  |
| 2,4-Dinitrophenol           | 0 | 0 |  | 0 | N/A    | N/A    | N/A    |  |
| 2-Nitrophenol               | 0 | 0 |  | 0 | N/A    | N/A    | N/A    |  |
| 4-Nitrophenol               | 0 | 0 |  | 0 | N/A    | N/A    | N/A    |  |
| p-Chloro-m-Cresol           | 0 | 0 |  | 0 | N/A    | N/A    | N/A    |  |
| Pentachlorophenol           | 0 | 0 |  | 0 | 0.030  | 0.03   | 0.098  |  |
| Phenol                      | 0 | 0 |  | 0 | N/A    | N/A    | N/A    |  |
| 2,4,6-Trichlorophenol       | 0 | 0 |  | 0 | 1.5    | 1.5    | 4.92   |  |
| Acenaphthene                | 0 | 0 |  | 0 | N/A    | N/A    | N/A    |  |
| Anthracene                  | 0 | 0 |  | 0 | N/A    | N/A    | N/A    |  |
| Benzidine                   | 0 | 0 |  | 0 | 0.0001 | 0.0001 | 0.0003 |  |
| Benz(a)Anthracene           | 0 | 0 |  | 0 | 0.001  | 0.001  | 0.003  |  |
| Benz(a)Pyrene               | 0 | 0 |  | 0 | 0.0001 | 0.0001 | 0.0003 |  |
| 3,4-Benzofluoranthene       | 0 | 0 |  | 0 | 0.001  | 0.001  | 0.003  |  |
| Benz(k)Fluoranthene         | 0 | 0 |  | 0 | 0.01   | 0.01   | 0.033  |  |
| Bis(2-Chloroethyl)Ether     | 0 | 0 |  | 0 | 0.03   | 0.03   | 0.098  |  |
| Bis(2-Chloroisopropyl)Ether | 0 | 0 |  | 0 | N/A    | N/A    | N/A    |  |
| Bis(2-Ethylhexyl)Phthalate  | 0 | 0 |  | 0 | 0.32   | 0.32   | 1.05   |  |
| 4-Bromophenyl Phenyl Ether  | 0 | 0 |  | 0 | N/A    | N/A    | N/A    |  |
| Butyl Benzyl Phthalate      | 0 | 0 |  | 0 | N/A    | N/A    | N/A    |  |
| 2-Chloronaphthalene         | 0 | 0 |  | 0 | N/A    | N/A    | N/A    |  |
| Chrysene                    | 0 | 0 |  | 0 | 0.12   | 0.12   | 0.39   |  |
| Dibenzo(a,h)Anthracene      | 0 | 0 |  | 0 | 0.0001 | 0.0001 | 0.0003 |  |
| 1,2-Dichlorobenzene         | 0 | 0 |  | 0 | N/A    | N/A    | N/A    |  |
| 1,3-Dichlorobenzene         | 0 | 0 |  | 0 | N/A    | N/A    | N/A    |  |
| 1,4-Dichlorobenzene         | 0 | 0 |  | 0 | N/A    | N/A    | N/A    |  |
| 3,3-Dichlorobenzidine       | 0 | 0 |  | 0 | 0.05   | 0.05   | 0.16   |  |
| Diethyl Phthalate           | 0 | 0 |  | 0 | N/A    | N/A    | N/A    |  |
| Dimethyl Phthalate          | 0 | 0 |  | 0 | N/A    | N/A    | N/A    |  |
| Di-n-Butyl Phthalate        | 0 | 0 |  | 0 | N/A    | N/A    | N/A    |  |
| 2,4-Dinitrotoluene          | 0 | 0 |  | 0 | 0.05   | 0.05   | 0.16   |  |
| 2,6-Dinitrotoluene          | 0 | 0 |  | 0 | 0.05   | 0.05   | 0.16   |  |
| 1,2-Diphenylhydrazine       | 0 | 0 |  | 0 | 0.03   | 0.03   | 0.098  |  |

Model Results

7/24/2024

Page 13

|                           |   |   |  |   |         |         |        |
|---------------------------|---|---|--|---|---------|---------|--------|
| Fluoranthene              | 0 | 0 |  | 0 | N/A     | N/A     | N/A    |
| Fluorene                  | 0 | 0 |  | 0 | N/A     | N/A     | N/A    |
| Hexachlorobenzene         | 0 | 0 |  | 0 | 0.00008 | 0.00008 | 0.0003 |
| Hexachlorobutadiene       | 0 | 0 |  | 0 | 0.01    | 0.01    | 0.033  |
| Hexachlorocyclopentadiene | 0 | 0 |  | 0 | N/A     | N/A     | N/A    |
| Hexachloroethane          | 0 | 0 |  | 0 | 0.1     | 0.1     | 0.33   |
| Indeno(1,2,3-cd)Pyrene    | 0 | 0 |  | 0 | 0.001   | 0.001   | 0.003  |
| Isophorone                | 0 | 0 |  | 0 | N/A     | N/A     | N/A    |
| Naphthalene               | 0 | 0 |  | 0 | N/A     | N/A     | N/A    |
| Nitrobenzene              | 0 | 0 |  | 0 | N/A     | N/A     | N/A    |
| n-Nitrosodimethylamine    | 0 | 0 |  | 0 | 0.0007  | 0.0007  | 0.002  |
| n-Nitrosodi-n-Propylamine | 0 | 0 |  | 0 | 0.005   | 0.005   | 0.016  |
| n-Nitrosodiphenylamine    | 0 | 0 |  | 0 | 3.3     | 3.3     | 10.8   |
| Phenanthrene              | 0 | 0 |  | 0 | N/A     | N/A     | N/A    |
| Pyrene                    | 0 | 0 |  | 0 | N/A     | N/A     | N/A    |
| 1,2,4-Trichlorobenzene    | 0 | 0 |  | 0 | N/A     | N/A     | N/A    |

Recommended WQBELs & Monitoring Requirements

No. Samples/Month: 4

| Pollutants     | Mass Limits   |               | Concentration Limits |        |        |       | Governing WQBEL | WQBEL Basis | Comments                           |
|----------------|---------------|---------------|----------------------|--------|--------|-------|-----------------|-------------|------------------------------------|
|                | AML (lbs/day) | MDL (lbs/day) | AML                  | MDL    | IMAX   | Units |                 |             |                                    |
| Total Antimony | Report        | Report        | Report               | Report | Report | µg/L  | 7.65            | THH         | Discharge Conc > 10% WQBEL (no RP) |
| Total Arsenic  | Report        | Report        | Report               | Report | Report | µg/L  | 13.7            | THH         | Discharge Conc > 10% WQBEL (no RP) |
| Total Boron    | Report        | Report        | Report               | Report | Report | µg/L  | 2,186           | CFC         | Discharge Conc > 10% WQBEL (no RP) |
| Dissolved Iron | Report        | Report        | Report               | Report | Report | µg/L  | 410             | THH         | Discharge Conc > 10% WQBEL (no RP) |
| Total Iron     | Report        | Report        | Report               | Report | Report | µg/L  | 2,049           | CFC         | Discharge Conc > 10% WQBEL (no RP) |
| Total Mercury  | Report        | Report        | Report               | Report | Report | µg/L  | 0.068           | THH         | Discharge Conc > 10% WQBEL (no RP) |
| Total Zinc     | Report        | Report        | Report               | Report | Report | µg/L  | 204             | AFC         | Discharge Conc > 10% WQBEL (no RP) |

Other Pollutants without Limits or Monitoring

The following pollutants do not require effluent limits or monitoring based on water quality because reasonable potential to exceed water quality criteria was not determined and the discharge concentration was less than thresholds for monitoring, or the pollutant was not detected and a sufficiently sensitive analytical method was used (e.g., <= Target QL).

| Pollutants          | Governing WQBEL | Units | Comments                   |
|---------------------|-----------------|-------|----------------------------|
| Total Aluminum      | 750             | µg/L  | Discharge Conc ≤ 10% WQBEL |
| Total Barium        | 3,279           | µg/L  | Discharge Conc ≤ 10% WQBEL |
| Total Beryllium     | N/A             | N/A   | No WQS                     |
| Total Cadmium       | N/A             | N/A   | Discharge Conc < TQL       |
| Hexavalent Chromium | 14.2            | µg/L  | Discharge Conc ≤ 10% WQBEL |
| Total Cobalt        | 26.0            | µg/L  | Discharge Conc ≤ 10% WQBEL |

Model Results

7/24/2024

Page 14

|                                 |       |      |                            |
|---------------------------------|-------|------|----------------------------|
| Total Copper                    | N/A   | N/A  | Discharge Conc < TQL       |
| Free Cyanide                    | N/A   | N/A  | Discharge Conc < TQL       |
| Total Cyanide                   | N/A   | N/A  | No WQS                     |
| Total Lead                      | 9.6   | µg/L | Discharge Conc ≤ 10% WQBEL |
| Total Manganese                 | 1,366 | µg/L | Discharge Conc ≤ 10% WQBEL |
| Total Nickel                    | 121   | µg/L | Discharge Conc ≤ 10% WQBEL |
| Total Phenols (Phenolics) (PWS) |       | µg/L | PWS Not Applicable         |
| Total Selenium                  | 6.82  | µg/L | Discharge Conc < TQL       |
| Total Silver                    | 11.2  | µg/L | Discharge Conc < TQL       |
| Total Thallium                  | 0.33  | µg/L | Discharge Conc < TQL       |
| Total Molybdenum                | N/A   | N/A  | No WQS                     |
| Acrolein                        | 3.0   | µg/L | Discharge Conc < TQL       |
| Acrylonitrile                   | 0.2   | µg/L | Discharge Conc < TQL       |
| Benzene                         | 1.9   | µg/L | Discharge Conc < TQL       |
| Bromoform                       | 23.0  | µg/L | Discharge Conc < TQL       |
| Carbon Tetrachloride            | 1.31  | µg/L | Discharge Conc < TQL       |
| Chlorobenzene                   | 137   | µg/L | Discharge Conc ≤ 25% WQBEL |
| Chlorodibromomethane            | 2.62  | µg/L | Discharge Conc < TQL       |
| Chloroethane                    | N/A   | N/A  | No WQS                     |
| 2-Chloroethyl Vinyl Ether       | 4,782 | µg/L | Discharge Conc < TQL       |
| Chloroform                      | 7.79  | µg/L | Discharge Conc ≤ 25% WQBEL |
| Dichlorobromomethane            | 3.12  | µg/L | Discharge Conc < TQL       |
| 1,1-Dichloroethane              | N/A   | N/A  | No WQS                     |
| 1,2-Dichloroethane              | 32.5  | µg/L | Discharge Conc < TQL       |
| 1,1-Dichloroethylene            | 45.1  | µg/L | Discharge Conc < TQL       |
| 1,2-Dichloropropane             | 2.95  | µg/L | Discharge Conc < TQL       |
| 1,3-Dichloropropylene           | 0.89  | µg/L | Discharge Conc < TQL       |
| 1,4-Dioxane                     | N/A   | N/A  | No WQS                     |
| Ethylbenzene                    | 92.9  | µg/L | Discharge Conc < TQL       |
| Methyl Bromide                  | 137   | µg/L | Discharge Conc < TQL       |
| Methyl Chloride                 | 7,515 | µg/L | Discharge Conc < TQL       |
| Methylene Chloride              | 65.6  | µg/L | Discharge Conc < TQL       |
| 1,1,2,2-Tetrachloroethane       | 0.66  | µg/L | Discharge Conc < TQL       |
| Tetrachloroethylene             | 32.8  | µg/L | Discharge Conc < TQL       |
| Toluene                         | 77.9  | µg/L | Discharge Conc < TQL       |
| 1,2-trans-Dichloroethylene      | 137   | µg/L | Discharge Conc < TQL       |
| 1,1,1-Trichloroethane           | 833   | µg/L | Discharge Conc < TQL       |
| 1,1,2-Trichloroethane           | 1.8   | µg/L | Discharge Conc < TQL       |
| Trichloroethylene               | 1.97  | µg/L | Discharge Conc < TQL       |
| Vinyl Chloride                  | 0.066 | µg/L | Discharge Conc < TQL       |
| 2-Chlorophenol                  | 41.0  | µg/L | Discharge Conc < TQL       |
| 2,4-Dichlorophenol              | 13.7  | µg/L | Discharge Conc < TQL       |
| 2,4-Dimethylphenol              | 137   | µg/L | Discharge Conc < TQL       |
| 4,6-Dinitro-o-Cresol            | 2.73  | µg/L | Discharge Conc < TQL       |
| 2,4-Dinitrophenol               | 13.7  | µg/L | Discharge Conc < TQL       |
| 2-Nitrophenol                   | 2,186 | µg/L | Discharge Conc < TQL       |

Model Results

7/24/2024

Page 15

|                             |        |      |                      |
|-----------------------------|--------|------|----------------------|
| 4-Nitrophenol               | 642    | µg/L | Discharge Conc < TQL |
| p-Chloro-m-Cresol           | 160    | µg/L | Discharge Conc < TQL |
| Pentachlorophenol           | 0.098  | µg/L | Discharge Conc < TQL |
| Phenol                      | 5.465  | µg/L | Discharge Conc < TQL |
| 2,4,6-Trichlorophenol       | 4.92   | µg/L | Discharge Conc < TQL |
| Acenaphthene                | 23.2   | µg/L | Discharge Conc < TQL |
| Acenaphthylene              | N/A    | N/A  | No WQS               |
| Anthracene                  | 410    | µg/L | Discharge Conc < TQL |
| Benzidine                   | 0.0003 | µg/L | Discharge Conc < TQL |
| Benzo(a)Anthracene          | 0.003  | µg/L | Discharge Conc < TQL |
| Benzo(a)Pyrene              | 0.0003 | µg/L | Discharge Conc < TQL |
| 3,4-Benzofluoranthene       | 0.003  | µg/L | Discharge Conc < TQL |
| Benzo(ghi)Perylene          | N/A    | N/A  | No WQS               |
| Benzo(k)Fluoranthene        | 0.033  | µg/L | Discharge Conc < TQL |
| Bis(2-Chloroethoxy)Methane  | N/A    | N/A  | No WQS               |
| Bis(2-Chloroethyl)Ether     | 0.098  | µg/L | Discharge Conc < TQL |
| Bis(2-Chloroisopropyl)Ether | 273    | µg/L | Discharge Conc < TQL |
| Bis(2-Ethyhexyl)Phthalate   | 1.05   | µg/L | Discharge Conc < TQL |
| 4-Bromophenyl Phenyl Ether  | 73.8   | µg/L | Discharge Conc < TQL |
| Butyl Benzyl Phthalate      | 0.14   | µg/L | Discharge Conc < TQL |
| 2-Chloronaphthalene         | 1,093  | µg/L | Discharge Conc < TQL |
| 4-Chlorophenyl Phenyl Ether | N/A    | N/A  | No WQS               |
| Chrysene                    | 0.39   | µg/L | Discharge Conc < TQL |
| Dibenz(a,h)Anthracene       | 0.0003 | µg/L | Discharge Conc < TQL |
| 1,2-Dichlorobenzene         | 219    | µg/L | Discharge Conc < TQL |
| 1,3-Dichlorobenzene         | 9.56   | µg/L | Discharge Conc < TQL |
| 1,4-Dichlorobenzene         | 205    | µg/L | Discharge Conc < TQL |
| 3,3-Dichlorobenzidine       | 0.16   | µg/L | Discharge Conc < TQL |
| Diethyl Phthalate           | 820    | µg/L | Discharge Conc < TQL |
| Dimethyl Phthalate          | 683    | µg/L | Discharge Conc < TQL |
| Di-n-Butyl Phthalate        | 27.3   | µg/L | Discharge Conc < TQL |
| 2,4-Dinitrotoluene          | 0.16   | µg/L | Discharge Conc < TQL |
| 2,6-Dinitrotoluene          | 0.16   | µg/L | Discharge Conc < TQL |
| Di-n-Octyl Phthalate        | N/A    | N/A  | No WQS               |
| 1,2-Diphenylhydrazine       | 0.098  | µg/L | Discharge Conc < TQL |
| Fluoranthene                | 27.3   | µg/L | Discharge Conc < TQL |
| Fluorene                    | 68.3   | µg/L | Discharge Conc < TQL |
| Hexachlorobenzene           | 0.0003 | µg/L | Discharge Conc < TQL |
| Hexachlorobutadiene         | 0.033  | µg/L | Discharge Conc < TQL |
| Hexachlorocyclopentadiene   | 1.37   | µg/L | Discharge Conc < TQL |
| Hexachloroethane            | 0.33   | µg/L | Discharge Conc < TQL |
| Indeno(1,2,3-cd)Pyrene      | 0.003  | µg/L | Discharge Conc < TQL |
| Isophorone                  | 46.5   | µg/L | Discharge Conc < TQL |
| Naphthalene                 | 56.8   | µg/L | Discharge Conc < TQL |
| Nitrobenzene                | 13.7   | µg/L | Discharge Conc < TQL |
| n-Nitrosodimethylamine      | 0.002  | µg/L | Discharge Conc < TQL |

Model Results

7/24/2024

Page 16

|                           |       |      |                      |
|---------------------------|-------|------|----------------------|
| n-Nitrosodi-n-Propylamine | 0.016 | µg/L | Discharge Conc < TQL |
| n-Nitrosodiphenylamine    | 10.8  | µg/L | Discharge Conc < TQL |
| Phenanthrene              | 1.37  | µg/L | Discharge Conc < TQL |
| Pyrene                    | 27.3  | µg/L | Discharge Conc < TQL |
| 1,2,4-Trichlorobenzene    | 0.096 | µg/L | Discharge Conc < TQL |