

Southwest Regional Office CLEAN WATER PROGRAM

 Application Type
 Renewal

 Facility Type
 Municipal

 Major / Minor
 Major

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

 Application No.
 PA0038237

 APS ID
 724106

 Authorization ID
 1212368

Applicant and Facility Information

Applicant Name	Rostraver Township Sewer Authority	Facility Name	Pollock Run WPCP
Applicant Address	1744 Rostraver Road	Facility Address	1411 Coal Hollow Road
	Rostraver Township, PA 15012		West Newton, PA 15089
Applicant Contact	Ms. Ann C. Scott	Facility Contact	Same as Applicant
Applicant Phone	(724) 930-7667	Facility Phone	Same as Applicant
Client ID	78919	Site ID	251186
Ch 94 Load Status	Not Overloaded	Municipality	Rostraver Township
Connection Status	No Limitations	County	Westmoreland
Date Application Rece	vived December 29, 2017	EPA Waived?	No
Date Application Acce	pted January 4, 2018	If No, Reason	Major Facility

Summary of Review

The applicant has applied for a renewal of an existing NPDES Permit, Permit No. PA0038237, which was previously issued by the Department on June 11, 2013. That permit expired on June 30, 2018.

WQM Permit 6570407 A-4, issued on August 4, 2000, approved construction of a STP with a hydraulic design capacity of 1.50 MGD and organic capacity of 2778 lbs/day. The existing treatment process consists of 4 SBRs, 2 aerobic digester, chlorine gas disinfection and a belt filter press for the dewatering of digested sludge. Dewatered biosolids are disposed of at a Landfill.

The receiving stream, Youghiogheny River, is classified as a WWF and is located in State Watershed No. 19-D.

The applicant has complied with Act 14 Notifications and no comments were received.

The application states there are no stormwater related outfalls located at the STP. Part C will not contain language titled "Requirements Applicable to Stormwater Outfalls".

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that

Approve	Deny	Signatures	Date
х		William C. Mitchell, E.I.T. / Environmental Engineering Specialist	February 8, 2021
х		Christopher Kriley, P.E. / Clean Water Program Manager	February 9, 2021

Summary of Review

there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Discharge, Receiving Waters and Water Supply Info	rmation		
Outfall No. 001	Design Flow (MGD)	1.5	
Latitude 40° 13' 39.00"	Longitude	-79º 47' 15.00"	
Quad Name Donora	Quad Code	1707	
Wastewater Description: Sewage Effluent			
Receiving Waters _ Youghiogheny River (WWF)	Stream Code	37456	
NHD Com ID 69913403	RMI	16.6	
Drainage Area 1700	Yield (cfs/mi ²)		
Q ₇₋₁₀ Flow (cfs)510	Q ₇₋₁₀ Basis	US Army Corp of Engineers USGS StreamStats	
Elevation (ft) 738	Slope (ft/ft)	0.001	
Watershed No. 19-D	Chapter 93 Class.	WWF	
Existing Use	Existing Use Qualifier		
Exceptions to Use	Exceptions to Criteria		
Assessment Status Impaired			
Cause(s) of Impairment SILTATION & METALS			
Source(s) of Impairment URBAN RUNOFF/STOR	M SEWERS & SOURCE UNKNO	OWN	
TMDL Status	Name		
Background/Ambient Data pH (SU)	Data Source		
Temperature (°F)			
Hardness (mg/L)			
Other:	. <u></u>		
Nearest Downstream Public Water Supply Intake	Westmoreland County Munici	pal Authority	
PWS Waters Youghiogheny River	Flow at Intake (cfs)		
PWS RMI 1.6	Distance from Outfall (mi) 15.0		

Changes Since Last Permit Issuance: NONE

Treatment Facility Summary

Treatment Facility Na	me: Pollock Run WPCP			
WQM Permit No.	Issuance Date			
6570407 A-4	08/04/2000			
	Degree of			Avg Annual
Waste Type	Treatment	Process Type	Disinfection	Flow (MGD)
Sewage	Secondary	SRBs	Gas Chlorine	0.787
Hydraulic Capacity	Organic Capacity			Biosolids
(MGD)	(lbs/day)	Load Status	Biosolids Treatment	Use/Disposal
1.5	2778	Not Overloaded	Belt Filter Press	Landfill

Changes Since Last Permit Issuance: NONE

Compliance History

Operations Compliance Check Summary Report

Facility: Pollock_Run_STP

NPDES Permit No.: PA0038237

Compliance Review Period: 12/22/2015 – 12/22/2020

Open Violations by Client Summary

None.

Inspection Summary

INSP ID	INSPECTED DATE	INSP TYPE	AGENCY	INSPECTION RESULT DESC	# OF VIOLATIONS
3089908	10/06/2020	Compliance Evaluation	PA Dept of Environmental Protection	No Violations Noted	0
2905636	07/10/2019	Compliance Evaluation	PA Dept of Environmental Protection	No Violations Noted	0
2745412	06/25/2018	Compliance Evaluation	PA Dept of Environmental Protection	No Violations Noted	0
2610274	06/29/2017	Compliance Evaluation	PA Dept of Environmental Protection	No Violations Noted	0
2608134	09/09/2016	Complaint Inspection	PA Dept of Environmental Protection	No Violations Noted	0
2504160	07/06/2016	Compliance Evaluation	PA Dept of Environmental Protection	No Violations Noted	0

Violation Summary

No violations in eFACTS.

Enforcement Summary

No enforcement actions.

DMR Violation Summary

Current eDMR user.

Effluent limit violation summary 12/22/2015 – 12/22/2020:

No violations reported in eDMR.

Compliance Status:

Facility has no compliance issues.

Completed by: David Roote

Completed date: 12/22/2020

Development of Effluent Limitations

Outfall No.	001		Design Flow (MGD)	1.5
Latitude	40º 13' 39.00	11	Longitude	-79º 47' 15.00"
Wastewater D	escription:	Sewage Effluent		

Technology-Based Limitations

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Pollutant	Limit (mg/l)	SBC	Federal Regulation	State Regulation
CBOD ₅	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
CBOD5	40	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)
	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
Total Suspended Solids	45	Average Weekly	133.102(b)(2)	92a.47(a)(2)
pH	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform				
(5/1 – 9/30)	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
Fecal Coliform				
(5/1 – 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform				
(10/1 – 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
Fecal Coliform				
(10/1 - 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)
Total Residual Chlorine	0.5	Average Monthly	-	92a.48(b)(2)

Comments: Water Quality Analysis Modeling for CBOD5, DO and Ammonia-Nitrogen is not necessary, and we will again re-impose Federal Minimum Secondary Effluent Limitations due to the large dilution available in the Youghiogheny River. Q7-10 flow of the Youghiogheny River at the point of discharge is 510 cfs. The instream to wasteflow dilution ration = total stream flow (512.3208 cfs) / discharge flow (2.3208 cfs) = 220/1.

For existing discharges (NPDES Renewal Applications), if WQM7.0 modeling results for summer indicates that an average monthly warm period limit of 25 mg/L (default in model) is acceptable for ammonia-nitrogen, a year-round monitoring requirement, at a minimum should be established. Due to the large dilution ration discussed above, assume that a monthly warm period limit of 25 mg/L is acceptable for ammonia-nitrogen and impose a year-round monitoring requirement for ammonia-nitrogen that is consistent with Table 6-3 of the Permit Writers Manual. Application data for Outfall # 001 indicates that long-term average ammonia-nitrogen concentration in the discharge is 19.1 mg/L.

Water Quality-Based Limitations

A "Reasonable Potential Analysis" (Attachment Toxic Management Spreadsheet) was conducted. No limitations were determined through water quality modeling, using DEPs Toxic Management Spreadsheet Version 1.1, and no WQBELs will be imposed on this facility during this permit cycle. For modeling purposes, the river width is 351 ft. (measured from Google Earth Pro) and an assumed river depth of 10 ft.

Best Professional Judgment (BPJ) Limitations

Comments: A Dissolved Oxygen minimum limitation of 4.0 mg/L will be implemented based on the standard in 25 PA Code Chapter 93 and best professional judgment.

Anti-Backsliding

Section 402(o) of the Clean Water Act (CWA), enacted in the Water Quality Act of 1987, establishes anti-backsliding rules governing two situations. The first situation occurs when a permittee seeks to revise a Technology-Based effluent limitation based on BPJ to reflect a subsequently promulgated effluent guideline which is less stringent. The second situation addressed by Section 402(o) arises when a permittee seeks relaxation of an effluent limitation which is based upon a State treatment standard of water quality standard.

Previous limits can be used pursuant to EPA's anti-backsliding regulation 40 CFR 122.44 (I) Reissued permits. (1) Except as provided in paragraph (I)(2) of this section when a permit is renewed or reissued. Interim effluent limitations, standards or conditions must be at least as stringent as the final effluent limitations, standards, or conditions in the previous permit (unless the circumstances on which the previous permit was based have materially and substantially changed since the time the permit was issued and would constitute cause for permit modification or revocation and reissuance under §122.62). (2) In the case of effluent limitations established on the basis of Section 402(a)(1)(B) of the CWA, a permit may not be renewed, reissued, or modified on the basis of effluent guidelines promulgated under section 304(b) subsequent to the original issuance of such permit, to contain effluent limitations which are less stringent than the comparable effluent limitations in the previous permit.

The facility is not seeking to revise the previously permitted effluent limits.

Additional Considerations:

For pH, DO and TRC, a monitoring frequency 1/day has been imposed. In general, less frequent monitoring may be established only when the permittee demonstrates that there will be no discharge on days where monitoring is not required.

Nutrient monitoring is required to establish the nutrient load from the wastewater treatment facility and the impacts that load may have on the quality of the receiving stream(s). A 1/quarter monitor and report requirement for Total N & Total P has been added to the permit as per Chapter 92.a.61.

Mass loading limits are applicable for publicly owned treatment works. Current policy requires average monthly mass loading limits be established for CBOD5, TSS, and NH₃-N and average weekly mass loading limits be established for CBOD5 and TSS. Average monthly mass loading limits (lbs/day) are based on the formula: design flow (MGD) x concentration limit (mg/L) x conversion factor (8.34).

For POTWs with design flows greater than 2,000 GPD influent BOD₅ and TSS monitoring must be established in the permit, and the monitoring should be consistent with the same frequency and sample type as is used for other effluent parameters.

Monitoring frequency for the proposed effluent limits are based upon Table 6-3, Self-Monitoring Requirements for Sewage Dischargers, from the Departments Technical Guidance for the Development and Specification of Effluent Limitations. Please note that Monitoring Requirements were changed for Flow to 2/week Metered to be consistent with the guidance.

Total Dissolved Solids (TDS) and its Major Constituents

Total Dissolved Solids (TDS) and its major constituents including sulfate, chloride, and bromide have emerged as pollutants of concern in several major watersheds in the Commonwealth. The conservative nature of these solids allows them to accumulate in surface waters and they may remain a concern even if the immediate downstream public water supply is not directly impacted. Bromide has been linked to formation of disinfection byproducts at increased levels in public water systems.

Based on these concerns and under the authority of §92a.61, DEP has determined it should implement increased monitoring in NPDES permits for these parameters: TDS, sulfate, chloride, bromide, and 1,4-dioxane.

Increased monitoring in NPDES permits will only occur when the following conditions are met:

- Where the concentration of TDS in the discharge exceeds 1,000 mg/L, or the net TDS load from a discharge exceeds 20,000 lbs/day, and the discharge flow exceeds 0.1 MGD, Part A of the permit should include monitor and report for TDS, sulfate, chloride, and bromide. Discharges of 0.1 MGD or less should monitor and report for TDS, sulfate, chloride, and bromide if the concentration of TDS in the discharge exceeds 5,000 mg/L.
- Where the concentration of bromide in a discharge exceeds 1 mg/L and the discharge flow exceeds 0.1 MGD, Part
 A of the permit should include monitor and report for bromide. Discharges of 0.1 MGD or less should monitor and
 report for bromide if the concentration of bromide in the discharge exceeds 10 mg/L.

Where the concentration of 1,4-dioxane (CAS 123-91-1) in a discharge exceeds 10 µg/L and the discharge flow exceeds 0.1 MGD, Part A of the permit should include monitor and report for 1,4-dioxane. Discharges of 0.1 MGD or less should monitor and report for 1,4-dioxane if the concentration of 1,4-dioxane in the discharge exceeds 100 µg/L.

Monitoring is not required for TDS, sulfate, chloride, bromide & 1,4-dioxane. Concentrations of bromide is less than 1 mg/L (application reports 0.573 mg/L), TDS is less than 1000 mg/L (application reports 426 mg/L) & 1,4-dioxane is less than 10 ug/L (application reports 0.3).

Whole Effluent Toxicity (WET)

For Outfall 001, \Box Acute \boxtimes Chronic WET Testing was completed:

 \square

For the permit renewal application (4 tests).

Quarterly throughout the permit term.

Quarterly throughout the permit term and a TIE/TRE was conducted.

Other:

The dilution series used for the tests was: 100%, 60%, 30%, 2%, and 1%. The Target Instream Waste Concentration (TIWC) to be used for analysis of the results is: 0.02 or 2%.

Summary of Four Most Recent Test Results

TST Data Analysis

(Please see the attached DEP WET Analysis Spreadsheet).

	Ceriodaphnia	Results (Pass/Fail)	Pimephales Results (Pass/Fail		
Test Date	Survival	Reproduction	Survival	Growth	
08/08/2017	PASS	PASS	PASS	PASS	
09/12/2017	PASS	PASS	PASS	PASS	
10/10/2017	PASS	PASS	PASS	PASS	
11/14/2017	PASS	PASS	PASS	PASS	

* A "passing" result is that in which the replicate data for the TIWC is not statistically significant from the control condition. This is exhibited when the calculated t value ("T-Test Result") is greater than the critical t value. A "failing" result is exhibited when the calculated t value ("T-Test Result") is less than the critical t value.

Is there reasonable potential for an excursion above water quality standards based on the results of these tests? (*NOTE* – *In general, reasonable potential is determined anytime there is at least one test failure in the previous four tests*).

Comments: Part C.III, Whole Effluent Toxicity (WET), has been added to the permit and requires annual testing in conformance with the Federal Regulations.

Evaluation of Test Type, IWC and Dilution Series for Renewed Permit

Acute Partial Mix Factor (PMFa): 0.299 Chronic Partial Mix Factor (PMFc): 1.0

1. Determine IWC – Acute (IWCa):

(Q_d x 1.547) / ((Q₇₋₁₀ x PMFa) + (Q_d x 1.547))

[(1.5 MGD x 1.547) / ((510 cfs x 0.299) + (1.5 MGD x 1.547))] x 100 = **1.5%**

Is IWCa < 1%? YES X NO (YES - Acute Tests Required OR NO - Chronic Tests Required)

Type of Test for Permit Renewal: Chronic Tests

2a. Determine Target IWCa (If Acute Tests Required)

TIWCa = 1.5% / 0.3 = 4.99%

2b. Determine Target IWCc (If Chronic Tests Required)

(Q_d x 1.547) / (Q₇₋₁₀ x PMFc) + (Q_d x 1.547)

[(1.5 MGD x 1.547) / ((510 cfs x 1) + (1.5 MGD x 1.547))] x 100 = **1** %

3. Determine Dilution Series

Dilution Series = 100%, 60%, 30%, 2%, and 1%.

WET Limits

Has reasonable potential been determined? YES
NO

Will WET limits be established in the permit? \Box YES \boxtimes NO

If WET limits will be established, identify the species and the limit values for the permit (TU).

N/A

If WET limits will not be established, but reasonable potential was determined, indicate the rationale for not establishing WET limits:

N/A

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

			Effluent L	imitations			Monitoring Requiremen	
Deremeter	Mass Units	Mass Units (Ibs/day) ⁽¹⁾			Concentrations (mg/L)			Required
Parameter	Average Monthly	Weekly Average	Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report Daily Max	xxx	xxx	xxx	xxx	2/week	Metered
pH (S.U.)	ххх	XXX	6.0 Avg Mo	XXX	XXX	9.0	1/day	Grab
DO	ххх	XXX	4.0 Inst Min	xxx	XXX	xxx	1/day	Grab
TRC	ххх	XXX	xxx	0.5	xxx	1.6	1/day	Grab
CBOD5	310	475	xxx	25.0	38.0	50	2/week	24-Hr Composite
BOD5 Raw Sewage Influent	Report	Report Daily Max	XXX	Report	XXX	xxx	2/week	24-Hr Composite
TSS	375	560	xxx	30.0	45.0	60	2/week	24-Hr Composite
TSS Raw Sewage Influent	Report	Report Daily Max	XXX	Report	XXX	xxx	2/week	24-Hr Composite
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	XXX	XXX	XXX	2000 Geo Mean	XXX	10000	2/week	Grab
Fecal Coliform (No./100 ml) May 1 - Sep 30	XXX	XXX	XXX	200 Geo Mean	XXX	1000	2/week	Grab
Total Nitrogen	XXX	XXX	XXX	XXX	Report Daily Max	XXX	1/quarter	24-Hr Composite
Ammonia-Nitrogen	Report	xxx	XXX	Report	XXX	XXX	2/week	24-Hr Composite
Total Phosphorus	XXX	XXX	XXX	XXX	Report Daily Max	XXX	1/quarter	24-Hr Composite

Compliance Sampling Location: Outfall # 001.

Copy of TRC_CALC

TRC EVALUATION

510	= Q stream (vfc)	0.5	= CV Daily	
	= Q discharg	-		= CV Hourly	
		· · · ·			
	= no. sample			= AFC_Partial Mix Factor	
		emand of Stream		= CFC_Partial N	
		emand of Discharge		-	Compliance Time (min)
0.5	= BAT/BPJ V		720	-	Compliance Time (min)
		of Safety (FOS)		=Decay Coeffici	
Source	Reference	AFC Calculations		Reference	CFC Calculations
TRC	1.3.2.iii	WLA afc =	20.982	1.3.2.iii	WLA cfc = 68.363
PENTOXSD TRG	5.1a	LTAMULT afc =	0.373	5.1c	LTAMULT cfc = 0.581
PENTOXSD TRG	5.1b	LTA_afc=	7.818	5.1d	LTA_cfc = 39.743
Source		Efflue	nt Limit Calcul	lations	
PENTOXSD TRG	5.1f		AML MULT =	1.720	
PENTOXSD TRG	5.1g	AVG MON I	LIMIT (mg/l) =	0.500	BAT/BPJ
		INST MAX I	LIMIT (mg/l) =	1.170	
WLA afc		C_tc)) + [(AFC_Yc*Qs* C_Yc*Qs*Xs/Qd)]*(1-F(AFC_tc))	
LTAMULT afc	EXP((0.5*LN(cvh^2+1))-2.326*LN(cvl	h^2+1)^0.5)		
LTA_afc	wla_afc*LTAM	IULT_afc			
WLA_cfc		C_tc) + [(CFC_Yc*Qs* C_Yc*Qs*Xs/Qd)]*(1-F(-	CFC_tc))	
LTAMULT_cfc	EXP((0.5*LN(cvd^2/no_samples+1))-	2.326*LN(cvd	^2/no_samples+1	1)^0.5)
LTA_cfc	LTA_cfc wla_cfc'LTAMULT_cfc				
AML MULT	EXP(2.326*LI	N((cvd^2/no_samples+1)^0.5)-0.5*LN	(cvd^2/no_sample	es+1))
AVG MON LIMIT	MIN(BAT_BP	J,MIN(LTA_afc,LTA_cfd)*AML_MULT)	
INST MAX LIMIT	1.5*((av_mor	_limit/AML_MULT)/LT	AMULT_afc)		

StreamStats Report

 Region ID:
 PA

 Workspace ID:
 PA20201222171546331000

 Clicked Point (Latitude, Longitude):
 40.22824, -79.78748

 Time:
 2020-12-22 12:16:10 -0500

Basin Characteristics			
Parameter Code	Parameter Description	Value	Unit
DRNAREA	Area that drains to a point on a stream	1700	square miles
ELEV	Mean Basin Elevation	2026	feet

Low-Flow Statistics Pa	arameters(100 Percent (1700 square mi	les) Low Flow Region	4		
Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	1700	square miles	2.26	1400

Toxics Management Spreadsheet Version 1.1, October 2020

Discharge Information

Instructions Discl	harge Stream		
Facility: Polloci	k Run WPCP	NPDES Permit No.: PA0038237	Outfall No.: 001
Evaluation Type:	Major Sewage / Industrial Waste	Wastewater Description: Treated Sewage	

			Discharge	Characterist	tics					
Design Flow	Hardness (mg/l)*	-11 (610)*	P	artial Mix Fa	actors (PMF	5)	Complete Mix Times (min)			
(MGD)*	Haroness (mg/l)*	pH (SU)*	AFC	CFC	THH	CRL	Q ₇₋₁₀	Qh		
1.5	183	7								

					0 If le	nt blank	0.5 If le	eft blank	6) if left blan	k	1 If lef	t blank
	Discharge Pollutant	Units	Ma	x Discharge Conc	Trib Conc	Stream Conc	Daily CV	Hourly CV	Strea m CV	Fate Coeff	FOS	Criteri a Mod	Chem Transl
	Total Dissolved Solids (PWS)	mg/L		426		-							
5	Chloride (PWS)	mg/L		86									
Group	Bromide	mg/L		0.573									
6	Sulfate (PWS)	mg/L		48.1		-							
	Fluoride (PWS)	mg/L											
	Total Aluminum	µg/L		100									
	Total Antimony	µg/L		5		-							
	Total Arsenic	µg/L		5		-							
	Total Barium	µg/L		100		-							
	Total Beryllium	µg/L		2									
	Total Boron	µg/L		250		-							
	Total Cadmium	µg/L		2		-							
	Total Chromium (III)	µg/L		20									
	Hexavalent Chromium	µg/L		5									
	Total Cobalt	µg/L		5		-							
	Total Copper	µg/L		20		-							
2	Free Cyanide	µg/L		24									
8	Total Cyanide	µg/L		15		-							
Group	Dissolved Iron	µg/L		120		-							
ľ	Total Iron	µg/L		130		-							
	Total Lead	µg/L		5									
	Total Manganese	µg/L		50		-							
	Total Mercury	µg/L		1		-							
	Total Nickel	µg/L		20									
	Total Phenols (Phenolics) (PWS)	µg/L		10		-							
	Total Selenium	µg/L		5		-							
	Total Silver	µg/L		5		-							
	Total Thallium	µg/L		2									
	Total Zinc	µg/L		70		-							
1	Total Molybdenum	µg/L		5									
	Acrolein	µg/L	<	5									
	Acrylamide	µg/L	<	1		-							
	Acrylonitrile	µg/L	<	1		-							
	Benzene	µg/L	<	1									
	Bromoform	µg/L	<	1									
I	oromoroffi	Pyrc	-										

Discharge Information

1	Carbon Tetrachloride	µg/L	<	1								
1	Chlorobenzene	µg/L	<	1								
1	Chlorodibromomethane	µg/L	<	1	\rightarrow		-					
1	Chloroethane	µg/L	<	1	H		F					
1	2-Chloroethyl Vinyl Ether	µg/L	<	1	Ħ	+-	F					
1	Chloroform	µg/L		1.8	T	1	Ĺ				i i	
1	Dichlorobromomethane	µg/L	<	1			E					
1	1,1-Dichloroethane	µg/L	<	1	╞╡	+	H					++
1	-			-	┢┼	+-	-				┢─┼╸	-+-+
3	1,2-Dichloroethane	µg/L	<	1	H	+	1				╞╪	++
Group	1,1-Dichloroethylene	µg/L	<	1	Ħ	+	È					++
1 S	1,2-Dichloropropane	µg/L	<	1			Ĺ					
10	1,3-Dichloropropylene	µg/L	<	2								
1	1,4-Dioxane	µg/L		0.3	$ \rightarrow$		Ļ					
1	Ethylbenzene	µg/L	<	1	\square		-					
	Methyl Bromide	µg/L	<	1	Ħ	+	F					
1	Methyl Chloride	µg/L	<	1								
1	Methylene Chloride	µg/L	<	1			E					
1	1,1,2,2-Tetrachloroethane	µg/L	<	1	Ħ	+	t					++
1			-	-	╞╡	+	╞				╞┼┼	++
	Tetrachloroethylene	µg/L	<	1	+		4					++
	Toluene	µg/L	<	1		+	F					++
	1,2-trans-Dichloroethylene	µg/L	<	1								
1	1,1,1-Trichloroethane	µg/L	<	1								
1	1,1,2-Trichloroethane	µg/L	<	1	Ц							
1	Trichloroethylene	µg/L	<	1	H	-						
1	Vinyl Chloride	µg/L	<	1	Ħ	+	H					
\vdash	2-Chlorophenol	µg/L	<	1	Ħ	+-	h				li i i	
1	2,4-Dichlorophenol	µg/L	<	1	Ħ	÷	Ħ				i i i	ŦŦ
1				1			E					
	2,4-Dimethylphenol	µg/L	<	-	⊢	_	Ļ					+++
4	4,6-Dinitro-o-Cresol	µg/L	<	1	++		L				\vdash	
a	2,4-Dinitrophenol	µg/L	<	1		+						
Group	2-Nitrophenol	µg/L	<	1								
6	4-Nitrophenol	µg/L	<	1	Ť		Ĺ				İİ	
	p-Chloro-m-Cresol	µg/L	<	1								
	Pentachlorophenol	µg/L	<	1		-						
	Phenol	µg/L	<	1	H	-	F					
	2,4,6-Trichlorophenol	µg/L	<	1	H	+-						
\vdash	Acenaphthene	µg/L	<	1	Ħ	+-	Ħ				i i i	+++
	Acenaphthylene	µg/L	<	1			E					
1			<	1	╞╡	+-	H				╞┼╴┥	++
	Anthracene	µg/L		-	++	+					++	++
1	Benzidine	µg/L	<	1	H	+	-					++
	Benzo(a)Anthracene	µg/L	<	1		+						
1	Benzo(a)Pyrene	µg/L	<	1	Ť	1	Ì				it	
	3,4-Benzofluoranthene	µg/L	<	1								
	Benzo(ghi)Perylene	µg/L	<	1	H							
1	Benzo(k)Fluoranthene	µg/L	<	1	H		-					
1	Bis(2-Chloroethoxy)Methane	µg/L	<	1	Ħ	-	Ħ					
	Bis(2-Chloroethyl)Ether	µg/L	<	1	Ľ		Ē				ÌÌÌ	ŤŤ
1	Bis(2-Chloroisopropyl)Ether	µg/L	<	1		-	E					
	Bis(2-Ethylhexyl)Phthalate		-	11.7	+	-						++
1		µg/L			++	_	-					+++
1	4-Bromophenyl Phenyl Ether	µg/L	<	1		+	1				++	++
1	Butyl Benzyl Phthalate	µg/L	<	1	Ħ	-	È					
	2-Chloronaphthalene	µg/L	<	1								
	4-Chlorophenyl Phenyl Ether	µg/L	<	1								
	Chrysene	µg/L	<	1	H		H					
	Dibenzo(a,h)Anthrancene	µg/L	<	1			F					
	1,2-Dichlorobenzene	µg/L	<	1	Ħ	-	F					
	1,3-Dichlorobenzene	µg/L	<	1								
	1,4-Dichlorobenzene	µg/L	<	1			E					
5 d	3,3-Dichlorobenzidine		<	1								++
Group		µg/L	<	1	++	_	-					++
5	Diethyl Phthalate	µg/L	-			-	-				++	++
1	Dimethyl Phthalate	µg/L	<	1	Ħ	-	F					++
1	Di-n-Butyl Phthalate 2,4-Dinitrotoluene	µg/L	<	1	Þ	j.						
1		µg/L	<	1								

Discharge Information

						_	_			 	 		_
	2,6-Dinitrotoluene	µg/L	<	1	Ì	Ì	Í.						Ť
	Di-n-Octyl Phthalate	µg/L	<	1									
	1,2-Diphenylhydrazine	µg/L	۷	1	\rightarrow	_	+					_	
	Fluoranthene	µg/L	۷	1	H		Ŧ				H	-	-1
	Fluorene	µg/L	۷	1	T		T				iTi		T
	Hexachlorobenzene	µg/L	<	1		T	Т						Т
	Hexachlorobutadiene	µg/L	<	1		+	Ŧ						
	Hexachlorocyclopentadiene	µg/L	<	1	Ħ	Ŧ	ŧ				Ħ	=	Ħ
	Hexachloroethane	µg/L	<	1	H	+	╈				H	-	Ť
	Indeno(1,2,3-cd)Pyrene	µg/L	<	1	Ē	÷	t				Ħ	Ē	÷
	Isophorone	µg/L	<	1		+	+					_	-
	Naphthalene		<	1	╞╡	+	+				╞	+	-++
	Nitrobenzene	µg/L	/ v	1	┝┼	┿	╈				H	+	-+
		µg/L			Ħ	÷	÷				Ħ	Ŧ	÷
	n-Nitrosodimethylamine	µg/L	<	1		_	+					_	-
	n-Nitrosodi-n-Propylamine	µg/L	<	1	\vdash	+	+					_	+
	n-Nitrosodiphenylamine	µg/L	<	1	⊨	+	╧					=	
	Phenanthrene	µg/L	<	1	Ħ	\Rightarrow	╧						-11
	Pyrene	µg/L	<	1	Ì	Ì	Ì					Ì	Ť
	1,2,4-Trichlorobenzene	µg/L	<	1									
	Aldrin	µg/L	۷										_
	alpha-BHC	µg/L	۷		H		+				H		-
	beta-BHC	µg/L	۷		ī	T					\square		T
	gamma-BHC	µg/L	<			Ţ							
	delta BHC	µg/L	<		H		+						\mp
	Chlordane	µg/L	<		Ħ	+	Ŧ				H	=	井
	4.4-DDT	µg/L	<		Ħ	Ť	╈				iTi	7	Ť
	4.4-DDE	µg/L	<			t	t					T	Ŧ
	4,4-DDD	µg/L	<			+	+					_	-
	Dieldrin	µg/L	<		╞╡	+	┿				╞	+	-+
	alpha-Endosulfan		<		H	╈	╈				H	+	H
		µg/L	<i>v v</i>		Ħ	÷	÷				Ħ	Ŧ	Ħ
	beta-Endosulfan	µg/L				-	-					4	
₽	Endosulfan Sulfate	µg/L	<		\vdash	+	+				\vdash	_	+
<u> </u>	Endrin	µg/L	<		╞╡	╪	╪				⊢	4	
G	Endrin Aldehyde	µg/L	<		Ħ	\mp	÷				Ħ	7	\mp
	Heptachlor	µg/L	<		ļ	ļ.	ļ.					ļ	Ť
	Heptachlor Epoxide	µg/L	<		H	+	+					4	
	PCB-1016	µg/L	<			_	+						
	PCB-1221	µg/L	<			+	╧						
	PCB-1232	µg/L	۷		Ĩ	Ť	T				iTi		Ē
	PCB-1242	µg/L	۷		\square	_	Ļ					_	
	PCB-1248	µg/L	<			-	-					_	
	PCB-1254	µg/L	۷		H	-	+				H	-	-1
	PCB-1260	µg/L	<		H	+	+						+
	PCBs, Total	µg/L	<			1	t					Ì	
	Toxaphene	µg/L	<		H	+	+						
	2,3,7,8-TCDD	ng/L	<		Ħ	+	+				H	-	Ħ
	Gross Alpha	pCi/L			H	1	Ť				h		Ť
	Total Beta	pCi/L	<		Ē	ŧ	t				Ð		Ŧ
p 7	Radium 226/228	pCi/L	<		H	+	+				H	-	+
	Total Strontium	µg/L	<		H	+	+				+	-	+
້ອ	Total Uranium	µg/L µg/L	/ v		Ħ	+	+				Ħ	=	Ħ
	Osmotic Pressure												$\overline{+}$
	Osmotic Pressure	mOs/kg			H	+	+						_
					┝┥	+	┿						_
					Þ	+	╧						
					Ì	Ť	Ì						
							_						
					H								
					Ì	Ì							
						+	-						
					Ħ	+	+						
			_		-	-	1	 				-	_

Stream / Surface Water Information

Toxics Management Spreadsheet Version 1.1, October 2020

Pollock Run WPCP, NPDES Permit No. PA0038237, Outfall 001

Instructions Discharge Stream

Receiving Surface V	Vater Name: You	ughiogheny	River		_	No. Reaches to Mod	el: <u>1</u>
Location	Stream Code*	RMI	Elevation (ft)*	DA (mi ²)*	Slope (ft/ft)	PWS Withdrawal (MGD)	Apply Fish Criteria*
Point of Discharge	037456	16.6	738	1700	0.001		Yes
End of Reach 1	037456	16	737.9	1710	0.001		Yes

Statewide Criteria
 Great Lakes Criteria
 ORSANCO Criteria

Q 7-10

Location	RMI	LFY	Flow	(cfs)	W/D	Width	Depth	Velocit	Time	Tributa	iry	Stream	n	Analys	sis
Location	TSIMI	(cfs/mi ²)*	Stream	Tributary	Ratio	(ft)	(ft)	y (fps)	(days)	Hardness	pН	Hardness*	pH*	Hardness	pН
Point of Discharge	16.6	0.1	510			351	10					100	7		
End of Reach 1	16	0.1													

Qh

Location	RMI	LFY	Flow	(cfs)	W/D	Width	Depth	Velocit	Time	Tributa	ary	Stream	m	Analys	is
Location	rswii	(cfs/mi ²)	Stream	Tributary	Ratio	(ft)	(ft)	y (fps)	(days)	Hardness	pН	Hardness	pН	Hardness	pН
Point of Discharge	16.6														
End of Reach 1	16														

Stream / Surface Water Information

12/22/2020

NPDES Permit No. PA0038237

DEPARTMENT OF ENVIRONMENTAL PROTECTION

Toxics Management Spreadsheet Version 1.1, October 2020

Model Results

Pollock Run WPCP, NPDES Permit No. PA0038237, Outfall 001

Instructions	Results	RETURN TO INPUTS	SAVE AS PDF	PRINT) 🖲 All	⊖ Inputs	⊖ Results	🔿 Limits

Hydrodynamics

Q 7-10

RMI	Stream Flow (cfs)	PWS Withdrawal (cfs)	Net Stream Flow (cfs)	Discharge Analysis Flow (cfs)	Slope (ft/ft)	Depth (ft)	Width (ft)	W/D Ratio	Velocity (fps)	Time (days)	Complete Mix Time (min)
16.6	510		510	2.321	0.001	10.	351.	35.1	0.146	0.251	167.34
16	511		511								

Qh

RMI	Stream Flow (cfs)	PWS Withdrawal (cfs)	Net Stream Flow (cfs)	Discharge Analysis Flow (cfs)	Slope (ft/ft)	Depth (ft)	Width (ft)	W/D Ratio	Velocity (fps)	Time (days)	Complete Mix Time (min)
16.6	1727.45		1727.45	2.321	0.001	17.081	351.	20.549	0.289	0.127	75.44
16	1730.409		1730.41								

✓ Wasteload Allocations

AFC CC	T (min): 1	15	PMF:	0.299	Ana	lysis Hardnes	ss (mg/l):	101.24 Analysis pH: 7.00
Pollutants	Conc	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A	
Chloride (PWS)	0	0		0	N/A	N/A	N/A	
Sulfate (PWS)	0	0		0	N/A	N/A	N/A	
Total Aluminum	0	0		0	750	750	50,101	
Total Antimony	0	0		0	1,100	1,100	73,481	
Total Arsenic	0	0		0	340	340	22,712	Chem Translator of 1 applied
Total Barium	0	0		0	21,000	21,000	1,402,829	
Total Boron	0	0		0	8,100	8,100	541,091	
Total Cadmium	0	0		0	2.038	2.16	144	Chem Translator of 0.943 applied
Total Chromium (III)	0	0		0	575.555	1,821	121,670	Chem Translator of 0.316 applied
Hexavalent Chromium	0	0		0	16	16.3	1,088	Chem Translator of 0.982 applied
Total Cobalt	0	0		0	95	95.0	6,346	
Total Copper	0	0		0	13.596	14.2	946	Chem Translator of 0.96 applied
Free Cyanide	0	0		0	22	22.0	1,470	

Model Results

12/22/2020

Dissolved Iron	0	0	H-H			0	N/A	N/A	N/A	
Total Iron	0	0	┝┼╌┼	+	++-	ō	N/A	N/A	N/A	
Total Lead	0	0	<u> </u>	÷	++-	0	65,455	82.9	5,540	Chem Translator of 0.789 applied
Total Manganese	0	0		+		0	N/A	02.8 N/A	N/A	Chem translator or 0.768 applied
Total Mercury	0	ŏ		+	++-	0	1.400	1.65	110	Chem Translator of 0.85 applied
Total Nickel	0	ŏ	++	+	++	ŏ	473,153	474	31,671	Chem Translator of 0.998 applied
Total Phenols (Phenolics) (PWS)	0	0		+	÷÷	0	N/A	N/A	N/A	Chem translator or 0.888 applied
Total Selenium	0	ō		+		ō	N/A	N/A	N/A	Chem Translator of 0.922 applied
Total Silver	0	ō	┝┼┼	+	┿	0	3.286	3.87	258	Chem Translator of 0.85 applied
Total Thallium	0	0	┝┼╾┼	┿	++-	0	65	65.0	4.342	Chem translator of 0.00 applied
Total Zinc	0	0		÷	Ħ	0	118,413	121	8,088	Chem Translator of 0.978 applied
Acrolein	0	0		+		0	3	3.0	200	Chem translator or 0.978 applied
Acrylamide	0	0	┝┼╌┼	+	┿┿	0	N/A	N/A	200 N/A	
	0	0		+	╞╞╞	0	650	650	43,421	
Acrylonitrile	0	0	11	÷	i i	0	640	640	43,421 42,753	
Benzene Bromoform	0	0		-		0	1,800	1,800	42,753	
		-	+++	-	++-	-				
Carbon Tetrachloride	0	0		+	++-	0	2,800	2,800	187,044	
Chlorobenzene	-		11	÷	i i	0	1,200	1,200	80,162	
Chlorodibromomethane	0	0		_	<u></u>	0	N/A 18.000	N/A 18.000	N/A 1.202.424	
2-Chloroethyl Vinyl Ether		_	┝┼┼	+	╞┼╞	0				
Chloroform	0	0		+		0	1,900	1,900	126,923	
Dichlorobromomethane	0	0				0	N/A	N/A	N/A	
1,2-Dichloroethane	0	0		_	\square	0	15,000	15,000	1,002,020	
1,1-Dichloroethylene	0	0		+		0	7,500	7,500	501,010	
1,2-Dichloropropane	0	0		+		0	11,000	11,000	734,815	
1,3-Dichloropropylene	0	0				0	310	310	20,708	
Ethylbenzene	0	0				0	2,900	2,900	193,724	
Methyl Bromide	0	0		_		0	550	550	36,741	
Methyl Chloride	0	0		+		0	28,000	28,000	1,870,438	
Methylene Chloride	0	0	\square			0	12,000	12,000	801,616	
1,1,2,2-Tetrachloroethane	0	0				0	1,000	1,000	66,801	
Tetrachloroethylene	0	0				0	700	700	46,761	
Toluene	0	0				0	1,700	1,700	113,562	
1,2-trans-Dichloroethylene	0	0				0	6,800	6,800	454,249	
1,1,1-Trichloroethane	0	0				0	3,000	3,000	200,404	
1,1,2-Trichloroethane	0	0				0	3,400	3,400	227,125	
Trichloroethylene	0	0	1 I			0	2,300	2,300	153,643	
Vinyl Chloride	0	0				0	N/A	N/A	N/A	
2-Chlorophenol	0	0				0	560	560	37,409	
2,4-Dichlorophenol	0	0				0	1,700	1,700	113,562	
2,4-Dimethylphenol	0	0	1 Î			0	660	660	44,089	
4,6-Dinitro-o-Cresol	0	0				0	80	80.0	5,344	
2,4-Dinitrophenol	0	0				0	660	660	44,089	
2-Nitrophenol	0	0				0	8,000	8,000	534,411	
4-Nitrophenol	0	0				0	2,300	2,300	153,643	
p-Chloro-m-Cresol	0	0	Цļ			0	160	160	10,688	
Pentachlorophenol	0	0				0	8.723	8.72	583	
Phenol	0	0	H	-		0	N/A	N/A	N/A	

Model Results

12/22/2020

2,4,6-Trichlorophenol	0	0		0	460	460	30,729	
Acenaphthene	0	ŏ		ŏ	83	83.0	5.545	
Anthracene	0	ō		ō	N/A	N/A	N/A	
Benzidine	0	0		0	300	300	20.040	
Benzo(a)Anthracene	0	0		0	0.5	0.5	33.4	
	0	0		0	0.5 N/A	U.5 N/A	33.4 N/A	
Benzo(a)Pyrene	_	-		-				
3,4-Benzofluoranthene	0	0		0	N/A	N/A	N/A	
Benzo(k)Fluoranthene	0	0		0	N/A	N/A	N/A	
Bis(2-Chloroethyl)Ether	0	0		0	30,000	30,000	2,004,041	
Bis(2-Chloroisopropyl)Ether	0	0		0	N/A	N/A	N/A	
Bis(2-Ethylhexyl)Phthalate	0	0		0	4,500	4,500	300,606	
4-Bromophenyl Phenyl Ether	0	0		0	270	270	18,036	
Butyl Benzyl Phthalate	0	0		0	140	140	9,352	
2-Chloronaphthalene	0	0		0	N/A	N/A	N/A	
Chrysene	0	0		0	N/A	N/A	N/A	
Dibenzo(a,h)Anthrancene	0	0		0	N/A	N/A	N/A	
1,2-Dichlorobenzene	0	0		0	820	820	54,777	
1,3-Dichlorobenzene	0	0		0	350	350	23,380	
1.4-Dichlorobenzene	0	0		0	730	730	48,765	
3,3-Dichlorobenzidine	0	0		0	N/A	N/A	N/A	
Diethyl Phthalate	0	0		0	4.000	4.000	267,205	
Dimethyl Phthalate	0	0		0	2,500	2,500	167,003	
Di-n-Butyl Phthalate	0	0		0	110	110	7.348	
2.4-Dinitrotoluene	0	0		0	1,600	1,600	106,882	
2,6-Dinitrotoluene	0	0		0	990	990	66,133	
1,2-Diphenylhydrazine	0	ŏ		ŏ	15	15.0	1.002	
Fluoranthene	0	ŏ		ŏ	200	200	13,360	
Fluorene	0	0		0	200 N/A	N/A	N/A	
Hexachlorobenzene	0	0		0	N/A	N/A N/A	N/A	
Hexachlorobutadiene	0	0		0	10	10.0	668	
	0	0		0	5	10.0	334	
Hexachlorocyclopentadiene		-		-	-			
Hexachloroethane	0	0		0	60	60.0	4,008	
Indeno(1,2,3-cd)Pyrene	0	0		0	N/A	N/A	N/A	
Isophorone	0	0		0	10,000	10,000	668,014	
Naphthalene	0	0		0	140	140	9,352	
Nitrobenzene	0	0		0	4,000	4,000	267,205	
n-Nitrosodimethylamine	0	0		0	17,000	17,000	1,135,623	
n-Nitrosodi-n-Propylamine	0	0		0	N/A	N/A	N/A	
n-Nitrosodiphenylamine	0	0		0	300	300	20,040	
Phenanthrene	0	0		0	5	5.0	334	
Pyrene	0	0		0	N/A	N/A	N/A	
1,2,4-Trichlorobenzene	0	0		0	130	130	8,684	
	CT (min): ##	****	PMF:	1	Ana	alysis Hardne	ss (mg/l):	100.38 Analysis pH: 7.00
Pollutants	Conc (un/L)	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A	
(-	-		-				1

Model Results

12/22/2020

Chloride (PWS)	0	0	0	N/A	N/A	N/A	
Sulfate (PWS)	0	0	0	N/A	N/A	N/A	
Total Aluminum	0	0	0	N/A	N/A	N/A	
Total Antimony	0	0	0	220	220	48.572	
Total Arsenic	0	0	0	150	150	33,117	Chem Translator of 1 applied
Total Barium	0	0	0	4,100	4.100	905,199	
Total Boron	0	0	0	1.600	1.600	353,248	
Total Cadmium	0	0	0	0.247	0.27	59.9	Chem Translator of 0.909 applied
Total Chromium (III)	0	0	0	74.343	86.4	19.085	Chem Translator of 0.86 applied
Hexavalent Chromium	0	0	0	10	10.4	2.295	Chem Translator of 0.962 applied
Total Cobalt	0	0	0	19	19.0	4,195	
Total Copper	0	0	0	8.985	9.36	2,066	Chem Translator of 0.96 applied
Free Cyanide	0	0	0	5.2	5.2	1,148	
Dissolved Iron	0	0	0	N/A	N/A	N/A	
Total Iron	0	0	0	1.500	1.500	331,170	WQC = 30 day average; PMF = 1
Total Lead	0	0	0	2.527	3.2	706	Chem Translator of 0.79 applied
Total Manganese	0	0	0	N/A	N/A	N/A	
Total Mercury	0	0	0	0.770	0.91	200	Chem Translator of 0.85 applied
Total Nickel	0	0	0	52.172	52.3	11,553	Chem Translator of 0.997 applied
Total Phenols (Phenolics) (PWS)	0	0	0	N/A	N/A	N/A	
Total Selenium	0	0	0	4.600	4.99	1,102	Chem Translator of 0.922 applied
Total Silver	0	0	0	N/A	N/A	N/A	Chem Translator of 1 applied
Total Thallium	0	0	0	13	13.0	2.870	
Total Zinc	0	0	0	118.515	120	26.537	Chem Translator of 0.986 applied
Acrolein	0	0	0	3	3.0	662	
Acrylamide	0	0	0	N/A	N/A	N/A	
Acrylonitrile	0	0	0	130	130	28,701	
Benzene	0	0	0	130	130	28,701	
Bromoform	0	0	0	370	370	81,689	
Carbon Tetrachloride	0	0	0	560	560	123,637	
Chlorobenzene	0	0	0	240	240	52,987	
Chlorodibromomethane	0	0	0	N/A	N/A	N/A	
2-Chloroethyl Vinyl Ether	0	0	0	3,500	3,500	772,731	
Chloroform	0	0	0	390	390	86,104	
Dichlorobromomethane	0	0	0	N/A	N/A	N/A	
1,2-Dichloroethane	0	0	0	3,100	3,100	684,419	
1,1-Dichloroethylene	0	0	0	1,500	1,500	331,170	
1,2-Dichloropropane	0	0	0	2,200	2,200	485,716	
1,3-Dichloropropylene	0	0	0	61	61.0	13,468	
Ethylbenzene	0	0	0	580	580	128,053	
Methyl Bromide	0	0	0	110	110	24,286	
Methyl Chloride	0	0	0	5,500	5,500	1,214,291	
Methylene Chloride	0	0	0	2,400	2,400	529,873	
1,1,2,2-Tetrachloroethane	0	0	0	210	210	46,364	
Tetrachloroethylene	0	0	0	140	140	30,909	

Model Results

12/22/2020

Toluene	0	0	0	330	330	72.857	
1.2-trans-Dichloroethylene	0	0	0	1,400	1,400	309,092	
1,1,1-Trichloroethane	0	0	0	610	610	134,676	
1.1.2-Trichloroethane	0	0	0	680	680	150,131	
Trichloroethylene	0	0	0	450	450	99,351	
Vinyl Chloride	0	0	0	N/A	N/A	N/A	
2-Chlorophenol	0	0	0	110	110	24,286	
2.4-Dichlorophenol	0	0	0	340	340	75,065	
2,4-Dimethylphenol	0	0	0	130	130	28,701	
4,6-Dinitro-o-Cresol	0	0	0	16	16.0	3,532	
2,4-Dinitrophenol	0	0	0	130	130	28,701	
2-Nitrophenol	0	0	0	1,600	1,600	353,248	
4-Nitrophenol	0	0	0	470	470	103,767	
p-Chloro-m-Cresol	0	0	0	30	30.0	6,623	
Pentachlorophenol	0	0	0	6.693	6.69	1,478	
Phenol	0	0	0	N/A	N/A	N/A	
2,4,6-Trichlorophenol	0	0	0	91	91.0	20,091	
Acenaphthene	0	0	0	17	17.0	3,753	
Anthracene	0	0	0	N/A	N/A	N/A	
Benzidine	0	0	0	59	59.0	13,026	
Benzo(a)Anthracene	0	0	0	0.1	0.1	22.1	
Benzo(a)Pyrene	0	0	0	N/A	N/A	N/A	
3,4-Benzofluoranthene	0	0	0	N/A	N/A	N/A	
Benzo(k)Fluoranthene	0	0	0	N/A	N/A	N/A	
Bis(2-Chloroethyl)Ether	0	0	0	6,000	6,000	1,324,681	
Bis(2-Chloroisopropyl)Ether	0	0	0	N/A	N/A	N/A	
Bis(2-Ethylhexyl)Phthalate	0	0	0	910	910	200,910	
4-Bromophenyl Phenyl Ether	0	0	0	54	54.0	11,922	
Butyl Benzyl Phthalate	0	0	0	35	35.0	7,727	
2-Chloronaphthalene	0	0	0	N/A	N/A	N/A	
Chrysene	0	0	0	N/A	N/A	N/A	
Dibenzo(a,h)Anthrancene	0	0	0	N/A	N/A	N/A	
1,2-Dichlorobenzene	0	0	0	160	160	35,325	
1,3-Dichlorobenzene	0	0	0	69	69.0	15,234	
1,4-Dichlorobenzene	0	0	0	150	150	33,117	
3,3-Dichlorobenzidine	0	0	0	N/A	N/A	N/A	
Diethyl Phthalate	0	0	0	800	800	176,624	
Dimethyl Phthalate	0	0	0	500	500	110,390	
Di-n-Butyl Phthalate	0	0	0	21	21.0	4,636	
2,4-Dinitrotoluene	0	0	0	320	320	70,650	
2,6-Dinitrotoluene	0	0	0	200	200	44,156	
1,2-Diphenylhydrazine	0	0	0	3	3.0	662	
Fluoranthene	0	0	0	40	40.0	8,831	
Fluorene	0	0	0	N/A	N/A	N/A	
Hexachlorobenzene	0	0	0	N/A	N/A	N/A	

Model Results

12/22/2020

Hexachlorobutadiene	0	0		0	2	2.0	442	
	-				2			
Hexachlorocyclopentadiene	0	0		0	1	1.0	221	
Hexachloroethane	0	0		0	12	12.0	2,649	
Indeno(1,2,3-cd)Pyrene	0	0		0	N/A	N/A	N/A	
Isophorone	0	0		0	2,100	2,100	463,638	
Naphthalene	0	0		0	43	43.0	9,494	
Nitrobenzene	0	0		0	810	810	178,832	
n-Nitrosodimethylamine	0	0		0	3,400	3,400	750,653	
n-Nitrosodi-n-Propylamine	0	0		0	N/A	N/A	N/A	
n-Nitrosodiphenylamine	0	0		0	59	59.0	13,026	
Phenanthrene	0	0		0	1	1.0	221	
Pyrene	0	0		0	N/A	N/A	N/A	
1,2,4-Trichlorobenzene	0	0		0	26	26.0	5,740	
<i>⊡ тнн</i> сс	T (min): ###		PMF:	1	Ana	alysis Hardne	ess (mg/l):	N/A Analysis pH: N/A

	oream							
Pollutants	Conc	Stream	Trib Conc	Fate	WQC	WQ Obj	WLA (µg/L)	Comments
	(up/L)	CV	(µg/L)	Coef	(µg/L)	(µg/L)		
Total Dissolved Solids (PWS)	0	0		0	500,000	500,000	N/A	
Chloride (PWS)	0	0		0	250,000	250,000	N/A	
Sulfate (PWS)	0	0		0	250,000	250,000	N/A	
Total Aluminum	0	0		0	N/A	N/A	N/A	
Total Antimony	0	0		0	5.6	5.6	1,236	
Total Arsenic	0	0		0	10	10.0	2,208	
Total Barium	0	0		0	2,400	2,400	529,873	
Total Boron	0	0		0	3,100	3,100	684,419	
Total Cadmium	0	0		0	N/A	N/A	N/A	
Total Chromium (III)	0	0		0	N/A	N/A	N/A	
Hexavalent Chromium	0	0		0	N/A	N/A	N/A	
Total Cobalt	0	0		0	N/A	N/A	N/A	
Total Copper	0	0		0	N/A	N/A	N/A	
Free Cyanide	0	0		0	140	140	30,909	
Dissolved Iron	0	0		0	300	300	66,234	
Total Iron	0	0		0	N/A	N/A	N/A	
Total Lead	0	0		0	N/A	N/A	N/A	
Total Manganese	0	0		0	1,000	1,000	220,780	
Total Mercury	0	0		0	0.050	0.05	11.0	
Total Nickel	0	0		0	610	610	134,676	
Total Phenols (Phenolics) (PWS)	0	0		0	5	5.0	N/A	
Total Selenium	0	0		0	N/A	N/A	N/A	
Total Silver	0	0		0	N/A	N/A	N/A	
Total Thallium	0	0		0	0.24	0.24	53.0	
Total Zinc	0	0		0	N/A	N/A	N/A	
Acrolein	0	0		0	6	6.0	1,325	
Acrylamide	0	0		0	N/A	N/A	N/A	

Model Results

12/22/2020

Acrylonitrile	0	0	0	N/A	N/A	N/A	
Benzene	0	0	0	N/A	N/A	N/A	
Bromoform	0	0	0	N/A	N/A	N/A	
Carbon Tetrachloride	0	0	0	N/A	N/A	N/A	
Chlorobenzene	0	0	0	130	130	28,701	
Chlorodibromomethane	0	0	0	N/A	N/A	N/A	
2-Chloroethyl Vinyl Ether	0	0	0	N/A	N/A	N/A	
Chloroform	0	0	0	N/A	N/A	N/A	
Dichlorobromomethane	0	0	0	N/A	N/A	N/A	
1.2-Dichloroethane	0	0	0	N/A	N/A	N/A	
1,1-Dichloroethylene	0	0	0	33	33.0	7,286	
1,2-Dichloropropane	0	0	0	N/A	N/A	N/A	
1,3-Dichloropropylene	0	0	0	N/A	N/A	N/A	
Ethylbenzene	0	0	0	530	530	117,014	
Methyl Bromide	0	0	0	47	47.0	10,377	
Methyl Chloride	0	0	0	N/A	N/A	N/A	
Methylene Chloride	0	0	0	N/A	N/A	N/A	
1,1,2,2-Tetrachloroethane	0	0	0	N/A	N/A	N/A	
Tetrachloroethylene	0	0	0	N/A	N/A	N/A	
Toluene	0	0	0	1,300	1,300	287,014	
1,2-trans-Dichloroethylene	0	0	0	140	140	30,909	
1,1,1-Trichloroethane	0	0	0	N/A	N/A	N/A	
1,1,2-Trichloroethane	0	0	0	N/A	N/A	N/A	
Trichloroethylene	0	0	0	N/A	N/A	N/A	
Vinyl Chloride	0	0	0	N/A	N/A	N/A	
2-Chlorophenol	0	0	0	81	81.0	17,883	
2,4-Dichlorophenol	0	0	0	77	77.0	17,000	
2,4-Dimethylphenol	0	0	0	380	380	83,896	
4,6-Dinitro-o-Cresol	0	0	0	13	13.0	2,870	
2,4-Dinitrophenol	0	0	0	69	69.0	15,234	
2-Nitrophenol	0	0	0	N/A	N/A	N/A	
4-Nitrophenol	0	0	0	N/A	N/A	N/A	
p-Chloro-m-Cresol	0	0	0	N/A	N/A	N/A	
Pentachlorophenol	0	0	0	N/A	N/A	N/A	
Phenol	0	0	0	10,400	10,400	2,296,114	
2,4,6-Trichlorophenol	0	0	0	N/A	N/A	N/A	
Acenaphthene	0	0	0	670	670	147,923	
Anthracene	0	0	0	8,300	8,300	1,832,476	
Benzidine	0	0	0	N/A	N/A	N/A	
Benzo(a)Anthracene	0	0	0	N/A	N/A	N/A	
Benzo(a)Pyrene	0	0	0	N/A	N/A	N/A	
3,4-Benzofluoranthene	0	0	0	N/A	N/A	N/A	
Benzo(k)Fluoranthene	0	0	0	N/A	N/A	N/A	
Bis(2-Chloroethyl)Ether	0	0	0	N/A	N/A	N/A	
Bis(2-Chloroisopropyl)Ether	0	0	0	1,400	1,400	309,092	

Model Results

12/22/2020

	_	-	 	-				
Bis(2-Ethylhexyl)Phthalate	0	0		0	N/A	N/A	N/A	
4-Bromophenyl Phenyl Ether	0	0		0	N/A	N/A	N/A	
Butyl Benzyl Phthalate	0	0		0	150	150	33,117	
2-Chloronaphthalene	0	0		0	1,000	1,000	220,780	
Chrysene	0	0		0	N/A	N/A	N/A	
Dibenzo(a,h)Anthrancene	0	0		0	N/A	N/A	N/A	
1,2-Dichlorobenzene	0	0		0	420	420	92,728	
1,3-Dichlorobenzene	0	0		0	420	420	92,728	
1,4-Dichlorobenzene	0	0		0	420	420	92,728	
3,3-Dichlorobenzidine	0	0		0	N/A	N/A	N/A	
Diethyl Phthalate	0	0		0	17,000	17,000	3,753,264	
Dimethyl Phthalate	0	0		0	270,000	270,000	59,610,659	
Di-n-Butyl Phthalate	0	0		0	2,000	2,000	441,560	
2,4-Dinitrotoluene	0	0		0	N/A	N/A	N/A	
2,6-Dinitrotoluene	0	0		0	N/A	N/A	N/A	
1,2-Diphenylhydrazine	0	0		0	N/A	N/A	N/A	
Fluoranthene	0	0		0	130	130	28,701	
Fluorene	0	0		0	1,100	1,100	242,858	
Hexachlorobenzene	0	0		0	N/A	N/A	N/A	
Hexachlorobutadiene	0	0		0	N/A	N/A	N/A	
Hexachlorocyclopentadiene	0	0		0	40	40.0	8,831	
Hexachloroethane	0	0		0	N/A	N/A	N/A	
Indeno(1,2,3-cd)Pyrene	0	0		0	0.0038	0.004	0.84	
Isophorone	0	0		0	35	35.0	7,727	
Naphthalene	0	0		0	N/A	N/A	N/A	
Nitrobenzene	0	0		0	17	17.0	3,753	
n-Nitrosodimethylamine	0	0		0	N/A	N/A	N/A	
n-Nitrosodi-n-Propylamine	0	0		0	N/A	N/A	N/A	
n-Nitrosodiphenylamine	0	0		0	N/A	N/A	N/A	
Phenanthrene	0	0		0	N/A	N/A	N/A	
Pyrene	0	0		0	830	830	183,248	
1,2,4-Trichlorobenzene	0	0		0	35	35.0	7,727	

⊘ CRL C	CT (min): 75.440		PMF: 1		Analysis Hardness (mg/l)			N/A Analysis pH: N/A
Pollutants	Conc (ug/L)	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A	
Chloride (PWS)	0	0		0	N/A	N/A	N/A	
Sulfate (PWS)	0	0		0	N/A	N/A	N/A	
Total Aluminum	0	0		0	N/A	N/A	N/A	
Total Antimony	0	0		0	N/A	N/A	N/A	
Total Arsenic	0	0		0	N/A	N/A	N/A	
Total Barium	0	0		0	N/A	N/A	N/A	
Total Boron	0	0		0	N/A	N/A	N/A	

Model Results

12/22/2020

			 _				
Total Cadmium	0	0	0	N/A	N/A	N/A	
Total Chromium (III)	0	0	0	N/A	N/A	N/A	
Hexavalent Chromium	0	0	0	N/A	N/A	N/A	
Total Cobalt	0	0	0	N/A	N/A	N/A	
Total Copper	0	0	0	N/A	N/A	N/A	
Free Cyanide	0	0	0	N/A	N/A	N/A	
Dissolved Iron	0	0	0	N/A	N/A	N/A	
Total Iron	0	0	0	N/A	N/A	N/A	
Total Lead	0	0	0	N/A	N/A	N/A	
Total Manganese	0	0	0	N/A	N/A	N/A	
Total Mercury	0	0	0	N/A	N/A	N/A	
Total Nickel	0	0	0	N/A	N/A	N/A	
Total Phenols (Phenolics) (PWS)	0	0	0	N/A	N/A	N/A	
Total Selenium	0	0	0	N/A	N/A	N/A	
Total Silver	0	0	0	N/A	N/A	N/A	
Total Thallium	0	0	0	N/A	N/A	N/A	
Total Zinc	0	0	0	N/A	N/A	N/A	
Acrolein	0	0	0	N/A	N/A	N/A	
Acrylamide	0	0	0	0.07	0.07	52.2	
Acrylonitrile	0	0	0	0.051	0.051	38.0	
Benzene	0	0	0	1.2	1.2	895	
Bromoform	0	0	0	4.3	4.3	3,205	
Carbon Tetrachloride	0	0	0	0.23	0.23	171	
Chlorobenzene	0	0	0	N/A	N/A	N/A	
Chlorodibromomethane	0	0	0	0.4	0.4	298	
2-Chloroethyl Vinyl Ether	0	0	0	N/A	N/A	N/A	
Chloroform	0	0	0	5.7	5.7	4,249	
Dichlorobromomethane	0	0	0	0.55	0.55	410	
1,2-Dichloroethane	0	0	0	0.38	0.38	283	
1,1-Dichloroethylene	0	0	0	N/A	N/A	N/A	
1,2-Dichloropropane	0	0	0	N/A	N/A	N/A	
1,3-Dichloropropylene	0	0	- 0	0.34	0.34	253	
Ethylbenzene	0	0	0	N/A	N/A	N/A	
Methyl Bromide	0	0	0	N/A	N/A	N/A	
Methyl Chloride	0	0	- 0	N/A	N/A	N/A	
Methylene Chloride	0	0	0	4.6	4.6	3,429	
1,1,2,2-Tetrachloroethane	0	0	0	0.17	0.17	127	
Tetrachloroethylene	0	0	0	0.69	0.69	514	
Toluene	0	0	0	N/A	N/A	N/A	
1,2-trans-Dichloroethylene	0	0	0	N/A	N/A	N/A	
1,1,1-Trichloroethane	0	0	0	N/A	N/A	N/A	
1,1,2-Trichloroethane	0	0	0	0.59	0.59	440	
Trichloroethylene	0	0	0	2.5	2.5	1,864	
Vinyl Chloride	0	0	0	0.025	0.025	18.6	
2-Chlorophenol	0	0	0	N/A	N/A	N/A	

Model Results

12/22/2020

2,4-Dichlorophenol	0	0	0	N/A	N/A	N/A	
2,4-Dimethylphenol	0	0	0	N/A	N/A	N/A	
4,6-Dinitro-o-Cresol	0	0	0	N/A	N/A	N/A	
2,4-Dinitrophenol	0	0	0	N/A	N/A	N/A	
2-Nitrophenol	0	0	0	N/A	N/A	N/A	
4-Nitrophenol	0	0	0	N/A	N/A	N/A	
p-Chloro-m-Cresol	0	0	0	N/A	N/A	N/A	
Pentachlorophenol	0	0	0	0.270	0.27	201	
Phenol	0	0	0	N/A	N/A	N/A	
2,4,6-Trichlorophenol	0	0	0	1.4	1.4	1.044	
Acenaphthene	0	0	0	N/A	N/A	N/A	
Anthracene	0	0	0	N/A	N/A	N/A	
Benzidine	0	0	0	0.000086	0.00009	0.064	
Benzo(a)Anthracene	0	0	0	0.0038	0.004	2.83	
Benzo(a)Pyrene	0	0	0	0.0038	0.004	2.83	
3.4-Benzofluoranthene	0	0	0	0.0038	0.004	2.83	
Benzo(k)Fluoranthene	0	0	ō	0.0038	0.004	2.83	
Bis(2-Chloroethyl)Ether	0	0	ŏ	0.03	0.03	22.03	
Bis(2-Chloroisopropyl)Ether	0	0	ŏ	N/A	N/A	N/A	
Bis(2-Ethylhexyl)Phthalate	0	0	0	1.2	1.2	895	
4-Bromophenyl Phenyl Ether	0	0	0	N/A	N/A	N/A	
· · · ·	0	0	0	N/A	N/A	N/A	
Butyl Benzyl Phthalate 2-Chloronaphthalene	0	0	0	N/A N/A	N/A N/A	N/A N/A	
	0	0	0	0.0038	0.004	2.83	
Chrysene	-	-	-	0.0038	0.004	2.83	
Dibenzo(a,h)Anthrancene	0	0	0	0.0038 N/A		2.83 N/A	
1,2-Dichlorobenzene	-	-	-		N/A		
1,3-Dichlorobenzene	0	0	0	N/A	N/A	N/A	
1,4-Dichlorobenzene	0	0	0	N/A	N/A	N/A	
3,3-Dichlorobenzidine	0	0	0	0.021	0.021	15.7	
Diethyl Phthalate	0	0	0	N/A	N/A	N/A	
Dimethyl Phthalate	0	0	0	N/A	N/A	N/A	
Di-n-Butyl Phthalate	0	0	0	N/A	N/A	N/A	
2,4-Dinitrotoluene	0	0	0	0.05	0.05	37.3	
2,6-Dinitrotoluene	0	0	0	0.05	0.05	37.3	
1,2-Diphenylhydrazine	0	0	0	0.036	0.036	26.8	
Fluoranthene	0	0	0	N/A	N/A	N/A	
Fluorene	0	0	0	N/A	N/A	N/A	
Hexachlorobenzene	0	0	0	0.00028	0.0003	0.21	
Hexachlorobutadiene	0	0	0	0.44	0.44	328	
Hexachlorocyclopentadiene	0	0	0	N/A	N/A	N/A	
Hexachloroethane	0	0	0	1.4	1.4	1,044	
Indeno(1,2,3-cd)Pyrene	0	0	0	N/A	N/A	N/A	
Isophorone	0	0	0	N/A	N/A	N/A	
Naphthalene	0	0	0	N/A	N/A	N/A	
Nitrobenzene	0	0	0	N/A	N/A	N/A	

Model Results

12/22/2020

n-Nitrosodimethylamine	0	0	0	0.00069	0.0007	0.51	
n-Nitrosodi-n-Propylamine	0	0	0	0.005	0.005	3.73	
n-Nitrosodiphenylamine	0	0	- 0	3.3	3.3	2,460	
Phenanthrene	0	0	0	N/A	N/A	N/A	
Pyrene	0	0	0	N/A	N/A	N/A	
1,2,4-Trichlorobenzene	0	0	- 0	N/A	N/A	N/A	

☑ Recommended WQBELs & Monitoring Requirements

No. Samples/Month: 4

	Mass Limits		Concentration Limits						
Pollutants	AML (lbs/day)	MDL (lbs/day)	AML	MDL	IMAX	Units	Governing WQBEL	WQBEL Basis	Comments

Other Pollutants without Limits or Monitoring

The following pollutants do not require effluent limits or monitoring based on water quality because reasonable potential to exceed water quality criteria was not determined and the discharge concentration was less than thresholds for monitoring, or the pollutant was not detected and a sufficiently sensitive analytical method was used (e.g., <= Target QL).

Pollutants	Governing WQBEL	Units	Comments
Total Dissolved Solids (PWS)	N/A	N/A	PWS Not Applicable
Chloride (PWS)	N/A	N/A	PWS Not Applicable
Bromide	N/A	N/A	No WQS
Sulfate (PWS)	N/A	N/A	PWS Not Applicable
Total Aluminum	32,113	µg/L	Discharge Conc ≤ 10% WQBEL
Total Antimony	1,236	µg/L	Discharge Conc ≤ 10% WQBEL
Total Arsenic	2,208	µg/L	Discharge Conc ≤ 10% WQBEL
Total Barium	529,873	µg/L	Discharge Conc ≤ 10% WQBEL
Total Beryllium	N/A	N/A	No WQS
Total Boron	346,818	µg/L	Discharge Conc ≤ 10% WQBEL
Total Cadmium	59.9	µg/L	Discharge Conc ≤ 10% WQBEL
Total Chromium (III)	19,085	µg/L	Discharge Conc ≤ 10% WQBEL
Hexavalent Chromium	698	µg/L	Discharge Conc ≤ 10% WQBEL
Total Cobalt	4,068	µg/L	Discharge Conc ≤ 10% WQBEL
Total Copper	606	µg/L	Discharge Conc ≤ 10% WQBEL
Free Cyanide	942	µg/L	Discharge Conc ≤ 25% WQBEL
Total Cyanide	N/A	N/A	No WQS
Dissolved Iron	66,234	µg/L	Discharge Conc ≤ 10% WQBEL
Total Iron	331,170	µg/L	Discharge Conc ≤ 10% WQBEL
Total Lead	706	µg/L	Discharge Conc ≤ 10% WQBEL
Total Manganese	220,780	µg/L	Discharge Conc ≤ 10% WQBEL
Total Mercury	11.0	µg/L	Discharge Conc ≤ 10% WQBEL
Total Nickel	11,553	µg/L	Discharge Conc ≤ 10% WQBEL

Model Results

12/22/2020

Total Phenols (Phenolics) (PWS)		µg/L	PWS Not Applicable
Total Selenium	1,102	µg/L	Discharge Conc ≤ 10% WQBEL
Total Silver	166	µg/L	Discharge Conc ≤ 10% WQBEL
Total Thallium	53.0	µg/L	Discharge Conc ≤ 10% WQBEL
Total Zinc	5,184	µg/L	Discharge Conc ≤ 10% WQBEL
Total Molybdenum	N/A	N/A	No WQS
Acrolein	128	µg/L	Discharge Conc ≤ 25% WQBEL
Acrylamide	52.2	µg/L	Discharge Conc ≤ 25% WQBEL
Acrylonitrile	38.0	µg/L	Discharge Conc < TQL
Benzene	895	µg/L	Discharge Conc ≤ 25% WQBEL
Bromoform	3,205	µg/L	Discharge Conc ≤ 25% WQBEL
Carbon Tetrachloride	171	µg/L	Discharge Conc ≤ 25% WQBEL
Chlorobenzene	28,701	µg/L	Discharge Conc ≤ 25% WQBEL
Chlorodibromomethane	298	µg/L	Discharge Conc ≤ 25% WQBEL
Chloroethane	N/A	N/A	No WQS
2-Chloroethyl Vinyl Ether	770,706	µg/L	Discharge Conc < TQL
Chloroform	4,249	µg/L	Discharge Conc ≤ 25% WQBEL
Dichlorobromomethane	410	µg/L	Discharge Conc ≤ 25% WQBEL
1,1-Dichloroethane	N/A	N/A	No WQS
1,2-Dichloroethane	283	µg/L	Discharge Conc ≤ 25% WQBEL
1,1-Dichloroethylene	7,286	µg/L	Discharge Conc ≤ 25% WQBEL
1,2-Dichloropropane	470,987	µg/L	Discharge Conc ≤ 25% WQBEL
1,3-Dichloropropylene	253	µg/L	Discharge Conc ≤ 25% WQBEL
1,4-Dioxane	N/A	N/A	No WQS
Ethylbenzene	117,014	µg/L	Discharge Conc ≤ 25% WQBEL
Methyl Bromide	10,377	µg/L	Discharge Conc ≤ 25% WQBEL
Methyl Chloride	1,198,875	µg/L	Discharge Conc ≤ 25% WQBEL
Methylene Chloride	3,429	µg/L	Discharge Conc ≤ 25% WQBEL
1,1,2,2-Tetrachloroethane	127	µg/L	Discharge Conc ≤ 25% WQBEL
Tetrachloroethylene	514	µg/L	Discharge Conc ≤ 25% WQBEL
Toluene	72,789	µg/L	Discharge Conc ≤ 25% WQBEL
1,2-trans-Dichloroethylene	30,909	µg/L	Discharge Conc ≤ 25% WQBEL
1,1,1-Trichloroethane	128,451	µg/L	Discharge Conc ≤ 25% WQBEL
1,1,2-Trichloroethane	440	µg/L	Discharge Conc ≤ 25% WQBEL
Trichloroethylene	1,864	µg/L	Discharge Conc ≤ 25% WQBEL
Vinyl Chloride	18.6	µg/L	Discharge Conc ≤ 25% WQBEL
2-Chlorophenol	17,883	µg/L	Discharge Conc < TQL
2,4-Dichlorophenol	17,000	µg/L	Discharge Conc < TQL
2,4-Dimethylphenol	28,259	µg/L	Discharge Conc < TQL
4,6-Dinitro-o-Cresol	2,870	µg/L	Discharge Conc < TQL
2,4-Dinitrophenol	15,234	µg/L	Discharge Conc < TQL
2-Nitrophenol	342,536	µg/L	Discharge Conc < TQL
4-Nitrophenol	98,479	µg/L	Discharge Conc < TQL
p-Chloro-m-Cresol	6,623	µg/L	Discharge Conc < TQL
Pentachlorophenol	201	µg/L	Discharge Conc < TQL

Model Results

12/22/2020

NPDES Permit No. PA0038237

Phenol	2,296,114	µg/L	Discharge Conc < TQL
2,4,6-Trichlorophenol	1,044	µg/L	Discharge Conc < TQL
Acenaphthene	3,554	µg/L	Discharge Conc < TQL
Acenaphthylene	N/A	N/A	No WQS
Anthracene	1,832,476	µg/L	Discharge Conc < TQL
Benzidine	0.064	µg/L	Discharge Conc < TQL
Benzo(a)Anthracene	2.83	µg/L	Discharge Conc < TQL
Benzo(a)Pyrene	2.83	µg/L	Discharge Conc < TQL
3,4-Benzofluoranthene	2.83	µg/L	Discharge Conc < TQL
Benzo(ghi)Perylene	N/A	N/A	No WQS
Benzo(k)Fluoranthene	2.83	µg/L	Discharge Conc < TQL
Bis(2-Chloroethoxy)Methane	N/A	N/A	No WQS
Bis(2-Chloroethyl)Ether	22.4	µg/L	Discharge Conc < TQL
Bis(2-Chloroisopropyl)Ether	309,092	µg/L	Discharge Conc < TQL
Bis(2-Ethylhexyl)Phthalate	895	µg/L	Discharge Conc ≤ 25% WQBEL
4-Bromophenyl Phenyl Ether	11,561	µg/L	Discharge Conc < TQL
Butyl Benzyl Phthalate	5,994	µg/L	Discharge Conc < TQL
2-Chloronaphthalene	220,780	µg/L	Discharge Conc < TQL
4-Chlorophenyl Phenyl Ether	N/A	N/A	No WQS
Chrysene	2.83	µg/L	Discharge Conc < TQL
Dibenzo(a,h)Anthrancene	2.83	µg/L	Discharge Conc < TQL
1,2-Dichlorobenzene	35,110	µg/L	Discharge Conc ≤ 25% WQBEL
1,3-Dichlorobenzene	14,986	µg/L	Discharge Conc ≤ 25% WQBEL
1,4-Dichlorobenzene	31,256	µg/L	Discharge Conc ≤ 25% WQBEL
3,3-Dichlorobenzidine	15.7	µg/L	Discharge Conc < TQL
Diethyl Phthalate	171,268	µg/L	Discharge Conc < TQL
Dimethyl Phthalate	107,042	µg/L	Discharge Conc < TQL
Di-n-Butyl Phthalate	4,636	µg/L	Discharge Conc < TQL
2,4-Dinitrotoluene	37.3	µg/L	Discharge Conc < TQL
2,6-Dinitrotoluene	37.3	µg/L	Discharge Conc < TQL
Di-n-Octyl Phthalate	N/A	N/A	No WQS
1,2-Diphenylhydrazine	26.8	µg/L	Discharge Conc < TQL
Fluoranthene	8,563	µg/L	Discharge Conc < TQL
Fluorene	242,858	µg/L	Discharge Conc < TQL
Hexachlorobenzene	0.21	µg/L	Discharge Conc < TQL
Hexachlorobutadiene	328	µg/L	Discharge Conc ≤ 25% WQBEL
Hexachlorocyclopentadiene	214	µg/L	Discharge Conc < TQL
Hexachloroethane	1,044	µg/L	Discharge Conc < TQL
Indeno(1,2,3-cd)Pyrene	0.84	µg/L	Discharge Conc < TQL
Isophorone	7,727	µg/L	Discharge Conc < TQL
Naphthalene	5,994	µg/L	Discharge Conc ≤ 25% WQBEL
Nitrobenzene	3,753	µg/L	Discharge Conc < TQL
n-Nitrosodimethylamine	0.51	µg/L	Discharge Conc < TQL
n-Nitrosodi-n-Propylamine	3.73	µg/L	Discharge Conc < TQL
n-Nitrosodiphenylamine	2,460	µg/L	Discharge Conc < TQL

Model Results

12/22/2020

NPDES Permit No. PA0038237

Phenanthrene	214	µg/L	Discharge Conc < TQL
Pyrene	183,248	µg/L	Discharge Conc < TQL
1,2,4-Trichlorobenzene	5,566	µg/L	Discharge Conc ≤ 25% WQBEL

Model Results

12/22/2020

Applicant:	Rostraver Township SA
Name of plant:	Pollock Run WPCP
Permit Number:	PA0038237
Municipality:	Rostraver Township
County:	Westmoreland County
Receiving stream:	Youghiogheny River

The following program will calulate partial mix factors for acute and chronic conditions:

calculated fields

net stream flow (Qs cfs)=	510
discharge flow (Qd mgd)=	1.5
velocity (fps)=	0.146
width (feet) =	351
depth (feet) =	10
slope (ft/ft) =	0.001

or

complete mix time (min) =

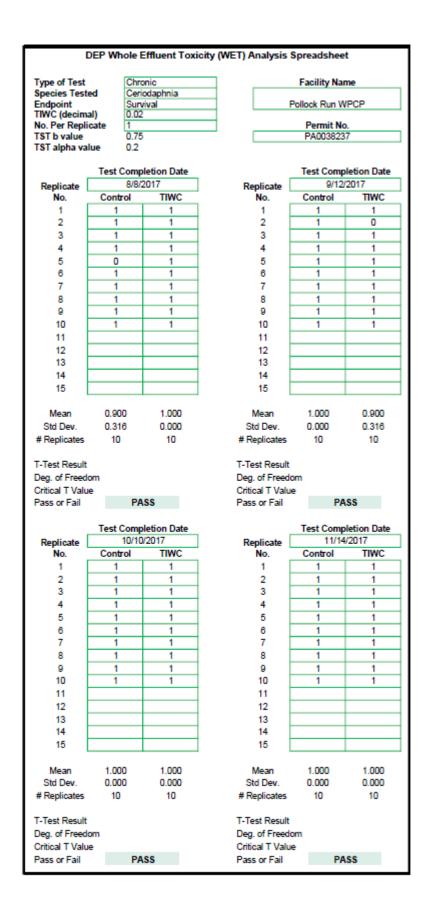
FOR ACUTE CONDITIONS: IF COMPLETE MIX TIME < 15 MINUTES THEN PMF = 1, IF > 15 MINUTES CALCULATE PMFa

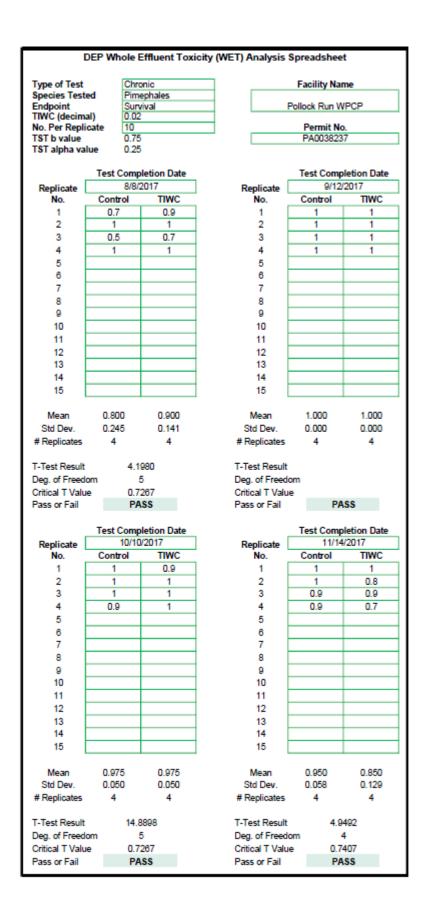
167.34

PMFa =

0.299	1
29.9	4%

FOR CHRONIC CONDITIONS: IF COMPLETE MIX TIME < 720 MINUTES THEN PMF = 1, IF > 720 MINUTES CALCULATE PMFc


PMFc =	or 100.00 %	2
IWCc=[Qd * 1.547] / [(Q	ts*PMFc) + (Qd * 1.547)] =	0.0045
Target IWCc=IWCc/1=	0.005	0.45 %
IWCa=[Qd * 1.547] / [(Q	s*PMFa) + (Qd * 1.547)] =	0.0150
Target IWCa=IWCa/0.3=	0.050 or	4.99 %
	f percentage for C.dubia LC50 a ute) or NOEC > target IWCc (chi	and P.promelas LC50 are greater ronic).


Program written by David Ponchione on April 8, 1999

Program run by : on December 23, 2020

For Department use only

0	EP Whole	Effluent Toxici	ity (WET) Analysis §	Spreadshee	t
Type of Test	Ch	ronic		Facility Na	me
Species Teste		riodaphnia			
Endpoint		production	F	Pollock Run W	VPCP
TIWC (decima No. Per Replic		2	-	Permit No	
TST b value	0.7	5		PA003823	
TST alpha val	lue 0.2	2			
				_	
		pletion Date			oletion Date
Replicate		/2017 TIWC	Replicate		/2017 TIWC
No.	Control 23	22	No.	Control 37	33
2	18	26	2	32	15
3	20	17	3	36	34
4	18	30	4	39	35
5	0	26	5	33	34
ĕ	22	25	6	38	39
7	24	29	7	35	34
8	13	28	8	35	38
9	20	30	9	32	31
10	17	29	10	31	36
11			11		
12			12		
13			13		
14			14		
15			15		
Mean	17.500	26.200	Mean	34.800	32.900
Std Dev.	6.932	4.104	Std Dev.	2.741	6.707
# Replicates	10	10	# Replicates	10	10
T-Test Result	6	2421	T-Test Result	30	652
Deg. of Freedo		17	Deg. of Freedo		12
Critical T Value		8633	Critical T Value	e 0.8	726
Pass or Fail					
	P	ASS	Pass or Fail	PA	SS
	P		Pass or Fail	PA	ISS
	Test Com	ASS	Pass or Fail	Test Comp	oletion Date
Replicate	Test Com 10/1	ASS pletion Date 0/2017	Replicate	Test Comp 11/14	oletion Date
Replicate No.	Test Com 10/1 Control	ASS pletion Date 0/2017 TIWC	Replicate No.	Test Comp 11/14 Control	oletion Date 1/2017 TIWC
Replicate No. 1	Test Com 10/1 Control 24	ASS pletion Date 0/2017 TIWC 31	Replicate [No. 1 [Test Comp 11/14 Control 30	V2017 TIWC 28
Replicate No. 1 2	Test Com 10/1 Control 24 19	ASS pletion Date 0/2017 TIWC 31 30	Replicate [No. 1 2	Test Comp 11/14 Control 30 27	V2017 TIWC 28 25
Replicate No. 1 2 3	Test Com 10/1 Control 24 19 20	ASS pletion Date 0/2017 TIWC 31 30 31	Replicate No. 1 2 3	Test Comp 11/14 Control 30 27 26	0letion Date 1/2017 TIWC 28 25 30
Replicate No. 1 2 3 4	Test Com 10/1 Control 24 19 20 22	ASS pletion Date 0/2017 TIWC 31 30 31 29	Replicate No. 1 2 3 4	Test Comp 11/14 Control 30 27 26 27 26 27	oletion Date 1/2017 28 25 30 19
Replicate No. 1 2 3 4 5	Test Com 10/1 Control 24 19 20 22 22 29	ASS pletion Date 0/2017 TIWC 31 30 31 29 32	Replicate No. 1 2 3 4 5	Test Comp 11/14 Control 30 27 26 27 26 27 28	oletion Date 1/2017 28 25 30 19 24
Replicate No. 1 2 3 4 5 6	Test Com 10/1 24 19 20 22 29 31	ASS pletion Date 0/2017 TIWC 31 30 31 29 32 28	Replicate No. 1 2 3 4 5 6	Test Comp 11/14 Control 30 27 26 27 26 27 26 28	0letion Date 1/2017 TIWC 28 25 30 19 24 25
Replicate No. 1 2 3 4 5 6 7	Test Com 10/1 24 19 20 22 29 31 18	ASS pletion Date 0/2017 TIWC 31 30 31 29 32 28 30	Replicate No. 1 2 3 4 5 6 7	Test Comp 11/14 Control 30 27 28 27 28 27 28 28 28 21	Detion Date 1/2017 TIWC 28 25 30 19 24 25 29
Replicate No. 1 2 3 4 5 6 7 8	Test Com 10/1 24 19 20 22 29 31 18 29	ASS pletion Date 0/2017 TIWC 31 30 31 29 32 28 30 33	Replicate No. 1 2 3 4 5 6 7 8	Test Comp 11/14 Control 30 27 28 27 28 27 28 28 28 21 24	Section Date V/2017 TIWC 28 25 30 19 24 25 29 29
Replicate No. 1 2 3 4 5 6 7	Test Com 10/1 24 19 20 22 29 31 18	ASS pletion Date 0/2017 TIWC 31 30 31 29 32 28 30	Replicate No. 1 2 3 4 5 6 7	Test Comp 11/14 Control 30 27 28 27 28 27 28 28 28 21	Detion Date 1/2017 TIWC 28 25 30 19 24 25 29
Replicate No. 1 2 3 4 5 6 7 8 9 10	Test Com 10/1 24 19 20 22 29 31 18 29 25	ASS pletion Date 0/2017 TIWC 31 30 31 29 32 28 30 33 28	Replicate No. 1 2 3 4 5 6 7 8 9 10	Test Comp 11/14 Control 30 27 26 27 26 27 26 27 28 28 21 24 23	Section Date V/2017 TIWC 28 25 30 19 24 25 29 29 26
Replicate No. 1 2 3 4 5 6 7 8 9	Test Com 10/1 24 19 20 22 29 31 18 29 25	ASS pletion Date 0/2017 TIWC 31 30 31 29 32 28 30 33 28	Replicate No. 1 2 3 4 5 6 7 8 9	Test Comp 11/14 Control 30 27 26 27 26 27 26 27 28 28 21 24 23	Section Date V/2017 TIWC 28 25 30 19 24 25 29 29 28
Replicate No. 1 2 3 4 5 6 7 8 9 10 11	Test Com 10/1 24 19 20 22 29 31 18 29 25	ASS pletion Date 0/2017 TIWC 31 30 31 29 32 28 30 33 28	Replicate No. 1 2 3 4 5 6 7 8 9 10 11	Test Comp 11/14 Control 30 27 26 27 26 27 26 27 28 28 21 24 23	Section Date V/2017 TIWC 28 25 30 19 24 25 29 29 28
Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12	Test Com 10/1 24 19 20 22 29 31 18 29 25	ASS pletion Date 0/2017 TIWC 31 30 31 29 32 28 30 33 28	Replicate No. 1 2 3 4 5 6 7 8 9 10 11 11	Test Comp 11/14 Control 30 27 26 27 26 27 26 27 28 28 21 24 23	Section Date V/2017 TIWC 28 25 30 19 24 25 29 29 28
Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13	Test Com 10/1 24 19 20 22 29 31 18 29 25	ASS pletion Date 0/2017 TIWC 31 30 31 29 32 28 30 33 28	Replicate No. 1 2 3 4 5 6 7 8 9 10 11 11 12 13	Test Comp 11/14 Control 30 27 26 27 26 27 26 27 28 28 21 24 23	Section Date V/2017 TIWC 28 25 30 19 24 25 29 29 26
Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14	Test Com 10/1 24 19 20 22 29 31 18 29 25	ASS pletion Date 0/2017 TIWC 31 30 31 29 32 28 30 33 28	Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14	Test Comp 11/14 Control 30 27 26 27 26 27 26 27 28 28 21 24 23	Section Date V/2017 TIWC 28 25 30 19 24 25 29 29 28
Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14	Test Com 10/1 24 19 20 22 29 31 18 29 25	ASS pletion Date 0/2017 TIWC 31 30 31 29 32 28 30 33 28	Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean	Test Comp 11/14 Control 30 27 26 27 26 27 26 27 28 28 21 24 23	28 25 30 19 24 25 29 29 28 30
Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	Test Com 10/1 24 19 20 22 29 31 18 29 25 25 25	ASS pletion Date 0/2017 TIWC 31 30 31 29 32 28 30 33 28 13 13 13	Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	Test Comp 11/14 Control 30 27 26 27 26 27 26 21 24 23 26 21 24 23 26	28 25 30 19 24 25 29 29 28 30
Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean	Test Com 10/1 24 19 20 22 29 31 18 29 25 25 25 25	ASS pletion Date 0/2017 TIWC 31 30 31 29 32 28 30 33 28 13 13 28 13 28 13 28 28 28 28 28 28 28 28 28 28	Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean	Test Comp 11/14 Control 30 27 28 27 28 27 28 27 28 21 24 23 28 21 24 23 28 21 24 23 28 20 21 24 23 26 21 24 23 26 21 24 23 26 21 24 25 26 21 26 27 26 26 27 26 26 27 26 27 26 26 27 26 26 27 26 26 27 26 26 26 27 26 26 26 26 26 26 26 26 26 26	28 25 30 19 24 25 29 29 28 30
Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates	Test Com 10/1 24 19 20 22 29 31 18 29 25 25 25 25 25 25 25 25 25 25 25 25 25	ASS pletion Date 0/2017 TIWC 31 30 31 29 32 28 30 33 28 13 28 13 28 13 28 13 28 13 28 13 28 13 28 13 13 28 13 13 28 13 13 28 13 13 28 13 13 28 13 13 28 13 13 13 28 13 13 13 28 13 13 13 28 13 13 28 13 13 13 13 13 13 13 13 13 13	Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates	Test Comp 11/14 Control 30 27 26 27 26 27 26 27 26 21 24 23 26 21 24 23 26 21 24 23 26 21 24 23 26 21 24 23 26 21 24 23 26 21 24 23 26 21 24 23 26 21 24 23 26 21 24 23 26 21 24 23 26 21 24 23 26 21 24 23 26 21 24 26 21 24 26 21 24 26 21 24 26 21 24 26 21 24 26 21 24 26 21 24 26 21 24 26 21 26 26 21 26 26 26 26 26 26 26 26 26 26	26.500 3.440 10
Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result	Test Com 10/1 24 19 20 22 29 31 18 29 25 25 25 25 25 25 25 25 25 25 25 25 25	ASS pletion Date 0/2017 TIWC 31 30 31 29 32 28 30 33 28 13 28 28 13 28 13 28 28 13 28 28 28 13 28 28 28 13 28 28 28 28 28 28 28 28 28 28	Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result	Test Comp 11/14 Control 30 27 26 27 26 27 26 27 26 21 24 23 26 21 24 23 26 21 24 23 26 21 24 23 26 21 24 23 26 21 24 23 26 21 26 21 26 21 26 21 26 21 26 21 26 21 26 21 26 21 26 27 26 26 21 26 26 21 26 21 26 26 21 26 26 21 26 26 21 26 26 21 26 26 21 26 26 21 26 26 21 26 26 21 26 26 21 26 26 26 26 21 26 26 26 26 21 26 26 26 26 26 26 26 26 26 26	26.500 3.440 10 146
Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result Deg. of Freedot	Test Com 10/1 24 19 20 22 29 31 18 29 25 25 25 25 25 25 25 25 25 25 25 25 25	ASS pletion Date 0/2017 TIWC 31 30 31 29 32 28 30 33 28 13 28 28 13 28 28 13 28 28 13 28 28 13 28 28 28 13 28 28 28 28 28 28 28 28 28 28	Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result Deg. of Freedot	Test Comp 11/14 Control 30 27 26 27 26 27 26 27 26 21 24 23 26 21 24 23 26 21 24 23 26 21 24 23 26 21 24 23 26 21 24 23 26 26 21 24 23 26 27 26 26 27 26 26 27 26 26 27 26 26 26 27 26 26 26 27 26 26 26 27 26 26 27 26 26 26 27 26 26 26 27 26 26 26 26 26 26 26 26 26 26	26,500 3,440 10 146 15
Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result	Test Com 10/1 24 19 20 22 29 31 18 29 25 25 25 25 25 25 25 25 25 25	ASS pletion Date 0/2017 TIWC 31 30 31 29 32 28 30 33 28 13 28 28 13 28 13 28 28 13 28 28 28 13 28 28 28 13 28 28 28 28 28 28 28 28 28 28	Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result	Test Comp 11/14 Control 30 27 26 26 27 26 26 27 26 27 26 27 26 26 27 26 26 27 26 26 26 27 26 26 26 27 26 26 26 27 26 26 26 27 26 26 26 27 26 26 26 27 26 26 27 26 26 27 26 26 26 27 26 26 26 27 26 26 26 26 26 26 26 26 26 26	26.500 3.440 10 1146

Type of Test Species Tested Endpoint TIWC (decimal) No. Per Replica TST b value TST alpha valu Replicate No. 1 2 3	d Pina Grov) 0.02 ate 10 0.75 re 0.25 Test Comp	onic ephales wth	r (WET) Analysis §	Facility Nar		
Species Tested Endpoint TIWC (decimal) No. Per Replica TST b value TST alpha value Replicate No. 1 2 3	d Pinne Grov) 0.02 ate 10 0.75 ie 0.25 Test Comp	ephales wth		a awinty ridi		
Endpoint TIWC (decimal) No. Per Replica TST b value TST alpha valu Replicate No. 1 2 3) Grov 0.02 ate 10 0.75 ie 0.25 Test Comp	with	1 .			
No. Per Replica TST b value TST alpha valu Replicate No. 1 2 3	ate 10 0.75 ie 0.25 Test Comp	;	Pollock Run WPCP			
TST b value TST alpha valu Replicate No. 1 2 3	0.75 ie 0.25 Test Comp			-		
TST alpha valu Replicate No. 1 2 3	ie 0.25 Test Comp			Permit No PA003823		
Replicate No. 1 2 3	Test Comp			PA003623	1	
No. 1 2 3						
No. 1 2 3		letion Date		Test Comp	letion Date	
1 2 3		2017	Replicate	9/12/	2017	
2 3	Control	TIWC	No.	Control	TIWC	
3	0.212	0.3778	1	0.334	0.319	
-	0.338	0.408	2	0.295	0.323	
	0.142	0.174	3	0.417	0.368	
4	0.37	0.339	4	0.375	0.354	
5			5			
6			6			
7			7			
8			8			
9			9			
10			10			
11			11			
12			12			
13			13			
14			14			
15			15			
Mean	0.266	0.325	Mean	0.355	0.341	
Std Dev.	0.107	0.104	Std Dev.	0.053	0.024	
# Replicates	4	4	# Replicates	4	4	
T-Test Result	1.0	083	T-Test Result	3.2	272	
Deg. of Freedon		5	Deg. of Freedo		5/2	
Critical T Value		267	Critical T Value			
Pass or Fail		SS	Pass or Fail		SS	
	Test Comp	letion Date		Test Comp	letion Date	
Replicate		/2017	Replicate	11/14		
	Control	TIWC	No.	Control		
No.	CONTROL		_		TIWC	
No.	0.494	0.446	1	0.257	TIWC 0.346	
			1 2			
1	0.494	0.446		0.257	0.346	
1 2	0.494 0.464	0.446	2	0.257 0.313	0.346 0.198	
1 2 3	0.494 0.464 0.476	0.446 0.445 0.496	2 3	0.257 0.313 0.328	0.346 0.198 0.414	
1 2 3 4	0.494 0.464 0.476	0.446 0.445 0.496	2 3 4	0.257 0.313 0.328	0.346 0.198 0.414	
1 2 3 4 5	0.494 0.464 0.476	0.446 0.445 0.496	2 3 4 5	0.257 0.313 0.328	0.346 0.198 0.414	
1 2 3 4 5 6	0.494 0.464 0.476	0.446 0.445 0.496	2 3 4 5 6	0.257 0.313 0.328	0.346 0.198 0.414	
1 2 3 4 5 6 7	0.494 0.464 0.476	0.446 0.445 0.496	2 3 4 5 6 7	0.257 0.313 0.328	0.346 0.198 0.414	
1 2 3 4 5 6 7 8	0.494 0.464 0.476	0.446 0.445 0.496	2 3 5 6 7 8	0.257 0.313 0.328	0.346 0.198 0.414	
1 2 3 4 5 6 7 8 9	0.494 0.464 0.476	0.446 0.445 0.496	2 3 5 6 7 8 9	0.257 0.313 0.328	0.346 0.198 0.414	
1 2 3 4 5 6 7 8 9 10	0.494 0.464 0.476	0.446 0.445 0.496	2 3 5 6 7 8 9 10	0.257 0.313 0.328	0.346 0.198 0.414	
1 2 3 4 5 6 7 8 9 10 11	0.494 0.464 0.476	0.446 0.445 0.496	2 3 5 6 7 8 9 10 11	0.257 0.313 0.328	0.346 0.198 0.414	
1 2 3 4 5 6 7 8 9 10 11 12	0.494 0.464 0.476	0.446 0.445 0.496	2 3 4 5 6 7 8 9 10 11 11	0.257 0.313 0.328	0.346 0.198 0.414	
1 2 3 4 5 6 7 8 9 10 11 12 13	0.494 0.464 0.476	0.446 0.445 0.496	2 3 4 5 8 9 10 11 12 13	0.257 0.313 0.328	0.346 0.198 0.414	
1 2 3 4 5 6 7 8 9 10 11 12 13 14	0.494 0.464 0.476	0.446 0.445 0.496	2 3 4 5 6 7 8 9 10 11 12 13 14	0.257 0.313 0.328	0.346 0.198 0.414	
1 2 3 4 5 6 7 8 9 10 11 12 13 14	0.494 0.464 0.476	0.446 0.445 0.496	2 3 4 5 6 7 8 9 10 11 12 13 14	0.257 0.313 0.328	0.346 0.198 0.414	
1 2 3 4 5 6 7 8 9 10 11 11 12 13 14 15	0.494 0.464 0.476 0.443	0.446 0.445 0.496 0.523	2 3 4 5 8 9 10 11 12 13 14 15	0.257 0.313 0.328 0.315	0.346 0.198 0.414 0.184	
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean	0.404 0.464 0.476 0.443	0.448 0.445 0.498 0.523 0.523 0.478	2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean	0.257 0.313 0.328 0.315	0.346 0.198 0.414 0.184 0.184	
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates	0.494 0.464 0.476 0.443 0.443	0.446 0.445 0.496 0.523 0.523 0.523 0.523	2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates	0.257 0.313 0.328 0.315 0.315 0.315 0.303 0.032 4	0.346 0.198 0.414 0.184 0.184 0.184 0.286 0.113 4	
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result	0.494 0.464 0.476 0.443 0.443 0.443 0.443 0.021 4 6.0	0.448 0.445 0.496 0.523 0.523 0.523 0.523 0.523 0.523 0.523 0.523 0.523 0.523 0.523 0.523 0.523	2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result	0.257 0.313 0.328 0.315 0.315 0.315 0.303 0.032 4 1.00	0.346 0.198 0.414 0.184 0.184 0.184 0.184 0.184 0.184 0.184 0.184 0.184	
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result Deg. of Freedon	0.494 0.464 0.476 0.443 0.443 0.443 0.0443 0.021 4 6.0 m 4	0.448 0.445 0.496 0.523 0.525 0.555 0.	2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result Deg. of Freedo	0.257 0.313 0.328 0.315 0.315 0.315 0.303 0.032 4 1.00 m 3	0.346 0.198 0.414 0.184 0.184 0.184 0.184 0.184 0.184 0.184 0.184 0.184 0.184 0.184 0.184 0.184 0.184	
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result	0.494 0.464 0.476 0.443 0.443 0.443 0.0443 0.021 4 6.0 m 4 0.7	0.448 0.445 0.496 0.523 0.523 0.523 0.523 0.523 0.523 0.523 0.523 0.523 0.523 0.523 0.523 0.523	2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result	0.257 0.313 0.328 0.315 0.315 0.315 0.303 0.032 4 1.00 m 3	0.346 0.198 0.414 0.184	

WET Summary and Evaluation						
WET Summary and Evaluation						
Facility Name	Pollock Run W	PCP				
Permit No.	PA0038237					
Design Flow (MGD)	1.5					
Q ₇₋₁₀ Flow (cfs)	510					
PMFa	0.299					
PMFc	1					
			Test Result	s (Pass/Fail)		
		Test Date	Test Date	Test Date	Test Date	
Species	Endpoint	8/8/17	9/12/17	10/10/17	11/14/17	
Ceriodaphnia	Reproduction	PASS	PASS	PASS	PASS	
			Test Result	s (Pass/Fail)		
		Test Date	Test Date	Test Date	Test Date	
Species	Endpoint	8/8/17	9/12/17	10/10/17	11/14/17	
Ceriodaphnia	Survival	PASS	PASS	PASS	PASS	
				s (Pass/Fail)		
		Test Date	Test Date	Test Date	Test Date	
Species	Endpoint	8/8/17	9/12/17	10/10/17	11/14/17	
Pimephales	Survival	PASS	PASS	PASS	PASS	
		Test Date	Test Result		Tast Data	
0- seites	Endnaint	Test Date	Test Date	Test Date	Test Date	
Species Pimephales	Endpoint Growth	8/8/17 PASS	9/12/17 PASS	10/10/17 PASS	11/14/17 PASS	
Pimephaies	Growin	PASS	PASS	PASS	PASS	
Reasonable Potentia	1? NO					
Reasonable Potentia						
Permit Recommenda	tions					
Test Type	Chronic					
TIWC		% Effluent				
Dilution Series		30, 60, 100	% Effluent			
Permit Limit	None	,,	20 Endone			
Permit Limit Species	none					
1 on the Link op on to						