

Southcentral Regional Office CLEAN WATER PROGRAM

Application Type

Facility Type

Major / Minor

Major

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

Application No. PA0038415

APS ID 275687

Authorization ID 1318957

Applicant Name	East Pennsboro Township	Facility Name	East Pennsboro Township STP	
Applicant Address	98 S Enola Drive	Facility Address	21 Dulles Drive E	
	Enola, PA 17025-2704		Camp Hill, PA 17011-1108	
Applicant Contact	John Pietropaoli	Facility Contact	Andrew Kirkessner	
Applicant Phone	(717) 732-0711	Facility Phone	(717) 732-0711	
Client ID	85946	Site ID	251354	
Ch 94 Load Status	Not Overloaded	Municipality	East Pennsboro Township	
Connection Status	No Limitations	County	Cumberland	
Date Application Rece	eived July 1, 2020	EPA Waived?	No	
Date Application Acce	pted July 2, 2020	If No, Reason	Major Facility, Significant CB Discharge	
Purpose of Application	n NPDES Renewal.			

Summary of Review

On behalf of East Pennsboro Township (East Pennsboro), GHD consulting firm has applied to the Pennsylvania Department of Environmental Protection (DEP) for reissuance of the NPDES permit. The permit was last reissued on December 16, 2015 and became effective on January 1, 2016. The permit expired on December 31, 2020 but the terms and conditions of the permit have been extended since that time. A file review is available for any records associated with this facility or this permit at PA DEP SCRO 909 Elmerton Avenue, Harrisburg, PA 17110.

Based on the review, it is recommended that the permit be drafted.

Sludge use and disposal description and location(s): Sludge is processed onsite and then land applied under PAG083515.

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Approve	Deny	Signatures	Date		
X		Jinsu Kim			
		Jinsu Kim / Environmental Engineering Specialist	August 16, 2021		
Х		Daniel W. Martin Daniel W. Martin, P.E. / Environmental Engineer Manager	August 23, 2021		

		Discharge, Receiving Wa	ters and Water Supply Informa	tion
Outfall No. 001			Design Flow (MGD)	4.4
Latitude 40°	16' 18.0	0"	Longitude	76° 55' 8.00"
Quad Name Ha	arrisburg	g West	Quad Code	1630
Wastewater Description: Sewage Effluent				
Receiving Waters	Cono	doguinet Creek	Stream Code	10194
NHD Com ID	5640	2893	RMI	0.34
Drainage Area	506		Yield (cfs/mi²)	0.1492
Q ₇₋₁₀ Flow (cfs)	76.3		Q ₇₋₁₀ Basis	USGS StreamStats
Elevation (ft)			Slope (ft/ft)	
Watershed No.	7-B		Chapter 93 Class.	WWF, MF
Existing Use	WWF	, MF	Existing Use Qualifier	
Exceptions to Use			Exceptions to Criteria	
Assessment Status	<u></u>	Impaired		
Cause(s) of Impair	ment	Organic Enrichment		
Source(s) of Impair	ment	Source Unknown		
TMDL Status			Name	
Nearest Downstrea	am Publ	ic Water Supply Intake	Steelton Municipal Waterwork	S
PWS Waters _	Susque	hanna River	Flow at Intake (cfs)	23,198
PWS RMI 68.38			Distance from Outfall (mi)	4.45

Drainage Area

The discharge is to Conodoguinet Creek at RM 0.34. A drainage area upstream of this discharge point is estimated to be 506 sq.mi. according to USGS StreamStats available at https://streamstats.usgs.gov/ss/.

Streamflow

USGS StreamStats produced a Q7-10 flow of 76.3 cfs. This is slightly different from the Q7-10 flow obtained during the last permit renewal which was 68.49 cfs.

Conodoguinet Creek

Conodoguinet Creek is designated under 25 Pa Code §93.90 as a warm water and migratory fishes surface water. No special protection waters are impacted by this discharge. DEP's latest integrated water quality report finalized in 2020 indicates that Conodoguinet Creek at this discharge point is impaired for organic enrichment as a result of unknown sources. It is listed as impaired in 2018 under Category 5 of impairments. All impaired waters listed in this category require development of a Total Maximum Daily Load (TMDL). At this time, no TMDL has been developed to address this impairment for Conodoguinet Creek.

Public Water Supply Intake

The fact sheet developed for the last permit renewal indicates that the nearest downstream public water supply intake is Steelton Municipal Waterworks located on Susquehanna River (on the east bank of the river), approximately 4.45 miles from the discharge. Given the location of this intake, the discharge is not expected to affect the water supply.

	Treatment Facility Summary										
Treatment Facility Na	nme: East Pennsboro STP	•									
WQM Permit No.	Issuance Date										
2172401 09-1	April 23/2010										
	Degree of			Avg Annual							
Waste Type	Treatment	Process Type	Disinfection	Flow (MGD)							
	Secondary With Total										
Sewage	Nitrogen Reduction	Activated Sludge	Gas Chlorine	4.4							
		-									
Hydraulic Capacity	Organic Capacity			Biosolids							
(MGD)	(lbs/day)	Load Status	Biosolids Treatment	Use/Disposal							
6.0	7340	Not Overloaded	Digester/Dewatering	Land Applied							

East Pennsboro owns and operates a sanitary wastewater treatment plant located at 21 East Dulles Drive, Camp Hill PA 17011. This facility serves the areas of East Pennsboro Township (78%), Hampden Township (4%) and Wormleysburg Borough (18%). All sewer systems are 100% separated. The facility utilizes an activated sludge treatment process consisting of screening, grit/grease removal, primary settling tanks (7), aeration tanks (3), final clarifiers (3), chlorine contact tanks (2), and outfall structure. The facility is rated for 4.4 MGD (annual average design flow) and 6.0 MGD (hydraulic design capacity) with an organic design capacity of 7,340 lbs BOD/day.

Chlorine liquified gas is used for disinfection, polymer and Alum are used for coagulant and phosphorous removal, respectively.

Sludge is processed on-site using a digester and centrifuge. Solids (Class B biosolids) from this facility are then land applied to local farms under PAG083515. A list of farms accepted biosolids from this facility in 2019 was included in the renewal application.

The application indicates that there are no industrial/commercial users contributing wastewater to the sewer system. East Pennsboro also utilizes five (5) stormwater outfalls receiving stormwater drained from the site.

	Compliance History
Summary of DMRs:	A summary of past 12-month data is presented on the next page.
Summary of Inspections:	2/17/2021: Mike Benham, DEP Water Quality Specialist, conducted a routine inspection. No violation was noted at the time of inspection; yet, a number of recommendations associated with stormwater requirements were noted.
	1/19/2021: Mike Benham conducted a Chesapeake Bay nutrient monitoring inspection. An error was discovered during the inspection as the permittee incorrectly reported annual net mass loads. A follow-up inspection was conducted on 1/20/2021 and noted that all issues were resolved.
	4/24/2019: Mike Benham conducted a routine inspection. No violation was identified at the time of inspection.
Other Comments:	Since the last permit reissuance, there were three (3) effluent violation events reported by East Pennsboro; fecal coliform (2017), WETT limits (2019), and fecal coliform (2021).
	There are no open violations associated with this facility or permittee.

Effluent Data

DMR Data for Outfall 001 (from February 1, 2020 to January 31, 2021)

Parameter	JAN-21	DEC-20	NOV-20	OCT-20	SEP-20	AUG-20	JUL-20	JUN-20	MAY-20	APR-20	MAR-20	FEB-20
Flow (MGD)												
Average Monthly	2.297	3.047	1.908	1.923	1.697	1.913	1.67	2.118	2.819	2.822	3.003	2.768
Flow (MGD)												
Daily Maximum	3.911	10.224	3.471	3.695	2.955	3.732	2.117	3.632	9.554	9.015	7.049	5.293
pH (S.U.)												
Minimum	7.01	7.08	7.28	7.21	7.23	7.21	7.17	7.23	7.11	7.05	7.04	6.82
pH (S.U.)												
Instantaneous												
Maximum	7.6	7.74	7.93	8.1	7.94	7.92	7.98	7.89	7.81	7.60	7.82	7.66
DO (mg/L)												
Minimum	8.23	7.93	7.84	7.55	7.22	7.32	7.25	7.43	7.79	8.04	8.07	8.03
TRC (mg/L)												
Average Monthly	0.36	0.39	0.45	0.4	0.37	0.34	0.31	0.28	0.31	0.31	0.25	0.34
TRC (mg/L)												
Instantaneous					0.47		0.40	0.40	0.50	0.40		0.00
Maximum	0.66	0.77	0.87	0.9	0.47	0.55	0.48	0.43	0.53	0.49	0.55	0.60
CBOD5 (lbs/day)	00		00	4.4	00	50	40	40	00	00	00	50
Average Monthly	88	< 77	< 38	< 44	< 39	52	< 43	< 42	< 60	< 68	< 86	< 56
CBOD5 (lbs/day)	140	476	52	60	E4	60	48	46	110	. 140	04	70
Weekly Average CBOD5 (mg/L)	148	176	52	60	51	68	48	46	110	< 148	81	72
Average Monthly	4	< 3.1	< 2.4	< 2.7	< 3	3.4	< 3.2	< 2.6	< 2.6	< 3	< 3.3	< 2.6
CBOD5 (mg/L)	4	< 3.1	₹ 2.4	< 2.1	<u> </u>	3.4	₹ 3.2	< 2.0	< 2.0	< 3	< 3.3	< 2.0
Weekly Average	5.4	4.9	3.1	3.3	4.1	4.5	3.8	2.8	3	3.5	4.3	3.4
BOD5 (lbs/day)	0.4	7.5	0.1	0.0	7.1	7.0	0.0	2.0		0.0	7.0	0.4
Raw Sewage Influent												
Average Monthly	3743	3926	3270	2788	2992	2588	2281	3293	2895	3333	3634	3250
BOD5 (lbs/day)	00	0020	02.0	2.00				0200		0000	333.	0200
Raw Sewage Influent												
Daily Maximum	4837	4691	3742	3565	4143	3736	3324	4941	3480	4636	4432	4565
BOD5 (mg/L)												
Raw Sewage Influent												
Average Monthly	162	163	191	183	209	157	157	167	134	148	136	143
TSS (lbs/day)												
Average Monthly	139	107	< 38	< 28	< 15	< 29	< 23	< 27	< 47	40	105	< 55
TSS (lbs/day)												
Raw Sewage Influent												
Average Monthly	3756	3017	3179	2491	2631	2890	2798	3252	3497	3106	3616	3097

Parameter	JAN-21	DEC-20	NOV-20	OCT-20	SEP-20	AUG-20	JUL-20	JUN-20	MAY-20	APR-20	MAR-20	FEB-20
TSS (lbs/day)	-								_	_	_	_
Raw Sewage Influent												
Daily Maximum	5040	4656	5274	3482	3358	3847	3944	4143	4729	4280	6972	3754
TSS (lbs/day)												
Weekly Average	326	279	84	29	< 20	48	32	33	< 67	336	48	75
TSS (mg/L)												
Average Monthly	6	4	< 2	< 2	< 1	< 2	< 2	< 2	< 2	2	3	< 3
TSS (mg/L)												
Raw Sewage Influent												
Average Monthly	163	122	185	161	180	181	194	170	161	137	132	136
TSS (mg/L)												
Weekly Average	10	8	5	2	< 2	3	3	2	3	6	3	4
Fecal Coliform												
(CFU/100 ml)												
Geometric Mean	51	< 82	34	14	17	37	14	< 10	9	< 5	12	7
Fecal Coliform												
(CFU/100 ml)												
Instantaneous												
Maximum	750	340	590	36	38	3000	72	32	24	59	71	32
Nitrate-Nitrite (mg/L)												
Average Monthly	3.2	4.9	5.8	6.3	4.1	4.2	3.5	3.1	4.8	7.5	6.2	8.1
Nitrate-Nitrite (lbs)												
Total Monthly	2057	3690	2777	3135	1630	1974	1476	1494	3339	5152	5419	5077
Total Nitrogen (mg/L)												
Average Monthly	5.9	7.3	6.9	7.4	5.1	5.4	4.8	4.3	5.9	8.7	7.4	9.3
Total Nitrogen (lbs)												
Effluent Net												
Total Monthly	3894	5881	3293	3728	2011	2567	2010	2084	4014	6002	6485	5779
Total Nitrogen (lbs)												
Total Monthly	3894	5881	3293	3728	2011	2567	2010	2084	4014	6002	6485	5779
Total Nitrogen (lbs)												
Effluent Net												
Total Annual					50690							
Total Nitrogen (lbs)					54040							
Total Annual					< 51340							
Ammonia (lbs/day)	00	40	0		_	0	0		_			
Average Monthly	32	< 48	< 2	< 6	< 1	< 2	< 2	< 4	< 5	< 3	< 3	< 14
Ammonia (mg/L)	4 000	.4.000	.0.405	. 0. 400	.04	0.40	.0.404	. 0. 000	.0.050	.0.440	0.400	.0044
Average Monthly	1.389	< 1.363	< 0.135	< 0.402	< 0.1	< 0.13	< 0.124	< 0.229	< 0.258	< 0.113	< 0.123	< 0.314
Ammonia (lbs)	007	4.400	. 00	.400	. 40	. 01	. 50	.440	.440	. 77	.400	470
Total Monthly	997	< 1499	< 66	< 193	< 40	< 61	< 52	< 110	< 143	< 77	< 102	< 176
Ammonia (lbs)					4507							
Total Annual	l				< 1587]	

NPDES Permit No. PA0038415

Parameter	JAN-21	DEC-20	NOV-20	OCT-20	SEP-20	AUG-20	JUL-20	JUN-20	MAY-20	APR-20	MAR-20	FEB-20
TKN (mg/L)												
Average Monthly	2.6	2.4	1.1	1.2	1.0	1.3	1.3	1.2	1.1	1.2	1.2	1.2
TKN (lbs)												
Total Monthly	1837	2191	516	593	380	594	534	590	674	851	1066	702
Total Phosphorus												
(lbs/day)												
Average Monthly	13	19	11	13	10	15	22	19	< 17	25	12	8
Total Phosphorus												
(mg/L)												
Average Monthly	0.7	0.84	0.68	0.79	0.72	1.0	1.6	1.17	< 1.01	1.05	0.45	0.4
Total Phosphorus (lbs)												
Effluent Net												
Total Monthly	400	599	317	394	289	470	675	563	< 538	736	382	230
Total Phosphorus (lbs)												
Total Monthly	400	599	317	394	289	470	675	563	< 538	736	382	230
Total Phosphorus (lbs)												
Effluent Net												
Total Annual					5289							
Total Phosphorus (lbs)												
Total Annual					< 5289							
Total Copper (lbs/day)												
Average Monthly	0.1	0.1	0.1	0.1	0.1	0.1	0.09	0.1	< 0.09	0.1	0.1	0.09
Total Copper (mg/L)												
Average Monthly	0.0054	0.0051	0.0061	0.0066	0.0072	0.0068	0.0065	0.006	< 0.0045	0.0046	0.0036	0.0041
Total Zinc (lbs/day)												
Average Monthly	1	0.9	0.9	1	1.0	0.8	0.7	0.7	0.8	1	1	1
Total Zinc (mg/L)												
Average Monthly	0.049	0.047	0.056	0.063	0.064	0.051	0.052	0.044	0.04	0.044	0.044	0.046
Acute WET -										<u>-</u>		
Ceriodaphnia Survival												
(TUa)												
Daily Maximum		GG			GG			GG			1.0	

Existing Effluent Limits and Monitoring Requirements

Tables below summarize effluent limits and monitoring requirements specified in the current permit:

				Monitoring Requirements				
Parameter	Mass Unit	ts (lbs/day)		Concentrat	ions (mg/L)		Minimum	Required
rarameter	Average Monthly	Daily Maximum	Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report	XXX	XXX	XXX	XXX	Continuous	Measured
pH (S.U.)	XXX	XXX	6.0	XXX	XXX	9.0	1/day	Grab
Dissolved Oxygen	XXX	XXX	5.0	XXX	XXX	XXX	1/day	Grab
Total Residual Chlorine	XXX	XXX	XXX	0.5	XXX	1.6	1/day	Grab
CBOD5	917	1,467 Wkly Avg	XXX	25	40	50	2/week	24-Hr Composite
BOD5 Raw Sewage Influent	Report	Report	XXX	Report	XXX	XXX	2/week	24-Hr Composite
Total Suspended Solids	1,100	1,651 Wkly Avg	XXX	30	45	60	2/week	24-Hr Composite
Total Suspended Solids Raw Sewage Influent	Report	Report	XXX	Report	XXX	XXX	2/week	24-Hr Composite
Fecal Coliform (CFU/100 ml) May 1 - Sep 30	XXX	XXX	XXX	200 Geo Mean	XXX	1,000	2/week	Grab
Fecal Coliform (CFU/100 ml) Oct 1 - Apr 30	XXX	XXX	XXX	2,000 Geo Mean	XXX	10,000	2/week	Grab
Ammonia-Nitrogen May 1 - Oct 31	293	XXX	XXX	8.0	XXX	16	2/week	24-Hr Composite
Ammonia-Nitrogen Nov 1 - Apr 30	770	XXX	XXX	21	XXX	Report	2/week	24-Hr Composite
Total Phosphorus	61	XXX	XXX	2.0	XXX	4.0	2/week	24-Hr Composite
Total Copper	1.9	XXX	XXX	0.05	XXX	0.12	1/week	24-Hr Composite
Total Zinc	15	XXX	XXX	0.42	XXX	1.05	1/week	24-Hr Composite
Acute Toxicity - Ceriodaphnia Survival (TUa)	XXX	XXX	XXX	XXX	1.0 Daily Max	XXX	See Permit	See Permit

Existing Effluent Limits and Monitoring Requirements (continued)

		E		Monitoring Requirements			
Parameter	Mass Un	its (lbs)	Cor	centrations (m	ıg/L)	Minimum	Required
rarameter	Monthly	Annual	Minimum	Monthly Average	Maximum	Measurement Frequency	Sample Type
							24-Hr
AmmoniaN	Report	Report		Report		2/week	Composite
							24-Hr
KjeldahlN	Report			Report		2/week	Composite
							24-Hr
Nitrate-Nitrite as N	Report			Report		2/week	Composite
Total Nitrogen	Report	Report		Report		1/month	Calculation
							24-Hr
Total Phosphorus	Report	Report		Report		2/week	Composite
Net Total Nitrogen	Report	72,206				1/month	Calculation
Net Total Phosphorus	Report	9,589				1/month	Calculation

	Development of Effluent Limitations and Monitoring Requirements								
Outfall No.	001	Design Flow (MGD)	4.4						
Latitude	40° 16' 18.00"	Longitude	-76° 55' 8.00"						
Wastewater I	Description: Sewage Effluent	-							

Technology-Based Limitations

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Pollutant	Limit (mg/l)	SBC	Federal Regulation	State Regulation
CBOD ₅	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
CBOD5	40	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)
Total Suspended	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
Solids	45	Average Weekly	133.102(b)(2)	92a.47(a)(2)
рН	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform				
(5/1 - 9/30)	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
Fecal Coliform				
(5/1 - 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform				
(10/1 - 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
Fecal Coliform	· · · · · · · · · · · · · · · · · · ·			
(10/1 - 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)
Total Residual Chlorine	0.5	Average Monthly	-	92a.48(b)(2)

Water Quality-Based Limitations

CBOD5, NH3-N and Dissolved Oxygen (DO)

WQM 7.0 is a water quality model designed to assist DEP to determine appropriate permit requirements for CBOD5, NH3-N and DO. DEP's guidance no. 391-2000-007 provides the technical methods contained in WQM 7.0 for conducting wasteload allocation and for determining recommended NPDES effluent limits for point source discharges. DEP recently updated this model (ver. 1.1) to include the new ammonia criteria that has been approved by US EPA as part of the 2017 Triennial Review. The model output indicates that all existing effluent limits for these pollutants are still appropriate. No changes are therefore recommended.

Total Residual Chlorine (TRC)

Since chlorine gas is used for disinfection, TRC effluent levels must be regulated under 25 Pa Code §92a.48(b)(2). DEP's TRC_CALC worksheet has been utilized to see if an WQBEL is needed. The worksheet still recommends a BAT average monthly effluent limit of 0.5 mg/L and BPJ IMAX limit of 1.6 mg/L. No changes are therefore recommended.

Toxic Pollutants

DEP utilizes a Toxics Management Spreadsheet (last modified on March 2021 ver. 1.3) to facilitate calculations necessary for completing a reasonable potential analysis and determining WQBELs for toxic pollutants. The worksheet combines the functionality of DEP's Toxics Screening Analysis worksheet and PENTOXSD. The worksheet output recommends a routine monitoring requirement for Total Aluminum. For existing toxics pollutants of concern; Total Copper and Total Zinc, the worksheet recommends more stringent WQBELs. A review of the previous modeling efforts revealed that discharge/stream hardness inputs as well as acute/chronic fish criteria partial mixing factor inputs (PMF) were different from the inputs entered for this permit renewal. For this permit renewal, discharge/stream hardness values are obtained from the renewal application. A source is unknown for those PMFs (0.2 and 1.0) from the last permit renewal; therefore, it was not considered for this permit renewal. Based on a review of past DMR data, East Pennsboro is able to meet the WQBELs recommended by this Toxics Management Spreadsheet. Therefore, these WQBELs will be written in the permit in accordance with 40 CFR §122.44(d)(1)(iii).

Bis(2-Ethylhexyl)Phthalate (DEHP) was detected in effluent according to the analytical results provided in the application and DEP's Toxics Management Spreadsheet recommends a WQBEL for DEHP. Historically, DEP often noticed detectable levels of DEHP as facilities do not utilize a DEHP-free tubing or/and utilize a plastic sample container to collect samples.

DEHP is found in plastic products and all EPA analytical methods for DEHP require glassware to be used to collect and analyze samples. East Pennsboro confirmed that a DEHP free tubing was not utilized for the sampling; as a result, DEP requested for additional ten (10) samples to be collected using a DEHP free tubing and glass sample containers. DEHP was not detected in all ten (10) results ($< 2.8 \mu g/L$). Surprisingly, DEHP was consistently detected in influent as shown below:

Sample Date	4/12/2021	4/19/2021	4/26/2021	6/21/2021	6/28/2021	7/6/2021
Concentration, µg/L	4.2*	< 15*	8.1*	5.8	7.2	5.7

*plastic jug was used to collect samples

It is unclear as to why DEHP was detected in influent but not in effluent when the facility does not utilize any type of treatment to remove DEHP. However, certain studies show that a biodegradation of DEHP could potentially occur during a secondary treatment process, particularly through an activated sludge treatment process. This biodegradation can be varied significantly based on the wastewater volume, detention time, etc. It is still questionable whether DEHP is somehow removed throughout the treatment process utilized at this facility. Regardless, no permit requirement is recommended for DEHP for this permit renewal as no reasonable potential in effluent has been determined.

Whole Effluent Toxicity Testing

East Pennsboro is required under 40 CFR §122.21(h)(5)(ii)(A) to conduct WETT and submit the results to DEP. See WETT section of this fact sheet for more details on the results submitted by East Pennsboro.

Best Professional Judgment (BPJ) Limitations

Dissolved Oxygen

The existing minimum DO effluent limit is the current warm water fishery water quality criterion for DO listed in 25 Pa Code §93.7(a). It is recommended that this limit be maintained in the permit to ensure the protection of water quality standards. This approach is consistent with DEP's current Standard Operating Procedure (SOP) no. BPNPSM-PMT-033 and has been applied to other point source dischargers throughout the state.

Total Phosphorus

The existing permit contains average monthly and instantaneous maximum (IMAX) effluent limits of 2.0 mg/L and 4.0 mg/L, respectively. Historically a TP effluent limit of 2.0 mg/L was established in the permit when DEP generally determines that the facility is expected to contribute 0.25% or more of the total point source phosphorus loading at the point of impact (page 17 of DEP's technical guidance no. 391-2000-018). DEP previously documented that the discharge contributes more than 0.25% and phosphorus controls were therefore needed. There is no reason to relax or remove these effluent limits; therefore, continuation of existing effluent limits is still appropriate in accordance with 40 CFR §122.44(I)(1).

Additional Considerations

Flow Monitoring

The requirement to monitor the volume of effluent will remain in the draft permit per 40 CFR § 122.44(i)(1)(ii).

Influent BOD & TSS Monitoring

As a result of negotiation with EPA, the existing influent monitoring reporting requirement for TSS and BOD5 will be maintained in the draft permit. This requirement has been consistently assigned to all municipal wastewater treatment facilities.

Total Dissolved Solids (TDS)

TDS and its associated solids including Bromide, Chloride, and Sulfate have become statewide pollutants of concern. The requirement to monitor these pollutants must be considered under the criteria specified in 25 Pa. Code § 95.10 and the following January 23, 2014 DEP Central Office Directive:

For point source discharges and upon issuance or reissuance of an individual NPDES permit:

-Where the concentration of TDS in the discharge exceeds 1,000 mg/L, or the net TDS load from a discharge exceeds 20,000 lbs/day, and the discharge flow exceeds 0.1 MGD, Part A of the permit should include monitor and report for TDS, sulfate, chloride, and bromide. Discharges of 0.1 MGD or less should monitor and report for TDS, sulfate, chloride, and bromide if the concentration of TDS in the discharge exceeds 5.000 mg/L.

- Where the concentration of bromide in a discharge exceeds 1 mg/L and the discharge flow exceeds 0.1 MGD, Part A of the permit should include monitor and report for bromide. Discharges of 0.1 MGD or less should monitor and report for bromide if the concentration of bromide in the discharge exceeds 10 mg/L.
- -Where the concentration of 1,4-dioxane (CAS 123-91-1) in a discharge exceeds 10 μg/L and the discharge flow exceeds 0.1 MGD, Part A of the permit should include monitor and report for 1,4-dioxane. Discharges of 0.1 MGD or less should monitor and report for 1,4-dioxane if the concentration of 1,4-dioxane in the discharge exceeds 100 μg/L.

East Pennsboro reported maximum concentrations of 618 mg/L for TDS, < 0.03 mg/L for bromide, and < 0.32 mg/L for 1,4-dioxane. Accordingly, the requirement to monitor for these pollutants is not necessary.

Stormwater Requirements

Stormwater discharges from any POTWs (SIC Code 4952) described in 40 CFR § 122.26(b)(14)(ix) require coverage under an NPDES permit. As mentioned on page 3 of this fact sheet, there are currently five (5) stormwater outfalls collecting stormwater drained from the property. These outfalls are as follows:

Outfall No.	Receiving Stream	Area Drained (ft ²)	Latitude	Longitude	Description
002	Conodoguinet Creek	58,800	40° 16′ 23″	76° 55′ 16″	Pavement, grass
003	Conodoguinet Creek	79,200	40° 16′ 20″	76° 55′ 14″	Grass, biosolids area
004	Conodoguinet Creek	64,900	40° 16′ 17″	76° 55′ 10″	Pavement, grass
005	Conodoguinet Creek	43,000	40° 16′ 14″	76° 55′ 11″	Pavement, grass
006	Conodoguinet Creek	11,800	40° 16′ 25″	76° 55′ 17"	Pavement, grass

DEP's standard Part C stormwater requirements and site-specific best management practices (BMPs) will be included in the permit as this is a standard approach for major sewage facilities over 1.0 MGD.

Mass Loading Limitations

All effluent mass loading limits will be based on the formula: design flow x concentration limit x conversion factor of 8.34.

Chesapeake Bay TMDL

On March 30, 2012, DEP finalized Pennsylvania's Chesapeake Watershed Implementation Plan Phase 2 (i.e., Phase 2 WIP) to address U.S EPA's expectations for the Chesapeake Bay TMDL. The Chesapeake Bay TMDL identifies the necessary pollution reductions from major sources of nitrogen, phosphorus and sediment across the Bay jurisdictions and sets pollution limits necessary to meet water quality standards. The Phase 2 WIP is an update to the Pennsylvania's Chesapeake Bay TMDL Strategy (2004) and the Chesapeake WIP Phase I (2011). In August 2019, DEP finalized Phase 3 Chesapeake Bay Watershed Implementation Plan to provide the plans in place by 2025 to further achieve the nutrient and sediment reduction targets. The more details on the TMDL are available at www.dep.pa.gov.

As part of the Phase 3 WIP process, a Supplement to the Phase 3 WIP was developed, providing an update on TMDL implementation for point sources and a discussion of adjustments to the permitting strategy as a result of implementation experience. According to this document, East Pennsboro Township WWTP is a Phase 1 significant discharger located within the Chesapeake Bay watershed. The following Cap Loads specified in the current Supplement to the Phase 3 WIP will be included in the draft permit:

NPDES Permit No.	Phase	Facility	Latest Permit Issuance Date	Permit Expiration Date	Cap Load Compliance Start Date	TN Cap Load (lbs/yr)	TN Offsets Included in Cap Load (lbs/yr)	TP Cap Load (lbs/yr)	TN Delivery Ratio	TP Delivery Ratio
PA0038415	1	East Pennsboro Township	12/16/2015	12/30/2020	10/1/2012	72,206	-	9,589	0.951	0.436

East Pennsboro is currently, according to the last permit renewal, authorized to use 650 lbs/year as Total Nitrogen Offsets toward compliance with the above-referenced Total Nitrogen Cap Loads. These offsets were calculated based on the 25lbs/year per on-lot sewage disposal systems (in EDUs) and the reported 26 on-lot sewage disposal systems that have

NPDES Permit No. PA0038415

NPDES Permit Fact Sheet East Pennsboro Township WWTP

been connected to the sewer system after January 1, 2003. These offsets will continue to be allowed and will be specified in the permit.

Class A Wild Trout Fishery

A Class A Wild Trout stream is not impacted by this discharge.

Anti-backsliding Requirements

Unless stated otherwise in this fact sheet, all permit requirements proposed in this fact sheet are at least as stringent as those specified in the existing permit.

	Whole Effluent Toxicity (WET)
For Ou	utfall 001, 🗵 Acute 🗌 Chronic WET Testing was completed:
	For the permit renewal application (4 tests). Quarterly throughout the permit term. Quarterly throughout the permit term and a TIE/TRE was conducted. Other:
	lution series used for the tests was: 100%, 60%, 30%, 9%, and 4%. The Target Instream Waste Concentration) to be used for analysis of the results is: 100%.

Summary of Four Most Recent Test Results

(NOTE - Enter results into one table, depending on which data analysis method was used).

NOEC/LC50 Data Analysis

	Ceriodapi	hnia Results (% E	ffluent)	Pimephale	s Results (%	Effluent)	
Test Date	NOEC Survival	NOEC Reproduction	LC50	NOEC Survival	NOEC Growth	LC50	Pass? *
8/2/2019***	100			100			Yes
7/9/2019**	30			30			No
9/8/2018**	100			100			Yes
5/20/2017**	100			100			Yes
10/14/2016	100			100			Yes
7/15/2016	100			100			Yes
4/22/2016	100			100			Yes
1/9/2016	100			100			Yes

^{*} A "passing" result is that which is greater than or equal to the TIWC value.

Is there reasonable potential for an excursion above water quality standards based on the results of these tests? (*NOTE – In general, reasonable potential is determined anytime there is at least one test failure in the previous four tests*).

☐ YES ⊠ NO

Comments: Although a test failure is determined for the WET testing conducted on July 9, 2019, a passing result was determined for all endpoints in a re-test conducted on August 2, 2019. This retest will replace the original test; and therefore, all four (4) recent tests show no endpoint failures. As a result, no reasonable potential has been determined and the existing limit will be removed from the permit in accordance with 40 CFR §122.44(d)(iv). Two (2) separate Whole Effluent Toxicity Analysis worksheets have been developed; one for passing results, one for failure results and are attached to this fact sheet.

Evaluation of Test Type, IWC and Dilution Series for Renewed Permit

Acute Partial Mix Factor (PMFa): 0.134 Chronic Partial Mix Factor (PMFc): 0.926

1. Determine IWC - Acute (IWCa):

 $(Q_d \times 1.547) / ((Q_{7-10} \times PMFa) + (Q_d \times 1.547))$

 $[(4.4 \text{ MGD} \times 1.547) / ((76.3 \text{ cfs} \times 0.134) + (4.4 \text{ MGD} \times 1.547))] \times 100 = 40\%$

Is IWCa < 1%? Type YES NO (YES - Acute Tests Required OR NO - Chronic Tests Required)

^{**} As there were no endpoint failures occur in initial four (4) quarterly tests, East Pennsboro have reduced the monitoring frequency to annually. This approach is consistent with Part C.III.B.2 of the current permit renewal.

^{***} As a test failure is determined, East Pennsboro conducted a re-test within 45 days as required by Part C.III.B.3 of the current permit renewal.

Type of Test for Permit Renewal: Chronic

2a. Determine Target IWCa (If Acute Tests Required)

2b. Determine Target IWCc (If Chronic Tests Required)

$$(Q_d \times 1.547) / (Q_{7-10} \times PMFc) + (Q_d \times 1.547)$$

 $[(4.4 \text{ MGD} \times 1.547) / ((76.3 \text{ cfs} \times 0.926) + (4.4 \text{ MGD} \times 1.547))] \times 100 = 8.7\% = 9\%$

3. Determine Dilution Series

(NOTE – check Attachment C of WET SOP for dilution series based on TIWCa or TIWCc, whichever applies). Dilution Series = 100%, 60%, 30%, 9%, and 4%.

WET Limits

Has reasonable potential been determined? ☐ YES ☒ NO
Will WET limits be established in the permit? ☐ YES ☒ NO

If WET limits will be established, identify the species and the limit values for the permit (TU).

N/A

If WET limits will not be established, but reasonable potential was determined, indicate the rationale for not establishing WET limits:

N/A

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

			Effluent L	imitations			Monitoring Re	quirements
Parameter	Mass Units	(lbs/day) ⁽¹⁾		Concentrat	tions (mg/L)		Minimum (2)	Required
Farameter	Average	Weekly		Average	Weekly	Instant.	Measurement	Sample
	Monthly	Average	Minimum	Monthly	Average	Maximum	Frequency	Туре
		Report						
Flow (MGD)	Report	Daily Max	XXX	XXX	XXX	XXX	Continuous	Measured
pH (S.U.)	XXX	XXX	6.0	XXX	XXX	9.0	1/day	Grab
DO	xxx	XXX	5.0	XXX	XXX	XXX	1/day	Grab
TRC	XXX	XXX	XXX	0.5	XXX	1.6	1/day	Grab
								24-Hr
CBOD5	917	1467	XXX	25	40	50	2/week	Composite
								24-Hr
TSS	1100	1651	XXX	30	45	60	2/week	Composite
BOD5	_	_		_			-,	24-Hr
Raw Sewage Influent	Report	Report	XXX	Report	XXX	XXX	2/week	Composite
Total Suspended Solids								24-Hr
Raw Sewage Influent	Report	Report	XXX	Report	XXX	XXX	2/week	Composite
Ammonia	770	V/V/V	V/V/V	0.4	V/V/	V////	0/	24-Hr
Nov 1 - Apr 30	770	XXX	XXX	21	XXX	XXX	2/week	Composite
Ammonia	000	VVV	VVV	0.0	VVV	40	0/	24-Hr
May 1 - Oct 31	293	XXX	XXX	8.0	XXX	16	2/week	Composite
Total Phosphorus	61	XXX	xxx	2.0	XXX	4	2/week	24-Hr Composite
Total Filosphorus	Report		^^^	2.0	^^^	4	Z/Week	Composite
Total Phosphorus (lbs)	Total Mo	xxx	xxx	xxx	XXX	xxx	1/month	Calculation
Total i Hospilorus (ibs)	TOTAL IVIO	2.31	XXX	XXX	XXX	XXX	1/111011111	24-Hr
Total Copper	1.48	Daily Max	XXX	0.04	0.06	0.10	1/week	Composite
		18.6	, , , , , ,	0.0.	0.00	55	.,	24-Hr
Total Zinc	12	Daily Max	XXX	0.32	0.50	0.81	1/week	Composite
-		Report			Report			24-Hr
Total Aluminum	Report	Daily Max	XXX	Report	Daily Max	XXX	1/week	Composite

Proposed Effluent Limitations and Monitoring Requirements (continued)

The limitations and monitoring requirements specified below are proposed for the draft permit, to comply with Pennsylvania's Chesapeake Bay Tributary Strategy.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date

		E	Effluent Limitation	ıs		Monitoring Re	quirements
Parameter	Mass Unit	s (lbs/day)	Co	ncentrations (m	g/L)	Minimum	Required
T dramotor	Monthly	Annual	Minimum	Monthly Average	Maximum	Measurement Frequency	Sample Type
AmmoniaN	Report	Report	XXX	Report	XXX	2/week	24-Hr Composite
KjeldahlN	Report	XXX	XXX	Report	XXX	2/week	24-Hr Composite
Nitrate-Nitrite as N	Report	XXX	XXX	Report	XXX	2/week	24-Hr Composite
Total Nitrogen	Report	Report	XXX	Report	XXX	1/month	Calculation
Total Phosphorus	Report	Report	XXX	Report	XXX	2/week	24-Hr Composite
Net Total Nitrogen	XXX	72,206	XXX	XXX	XXX	1/month	Calculation
Net Total Phosphorus	XXX	9,589	XXX	XXX	XXX	1/month	Calculation

The permittee is authorized to use 650 lbs/year as Total Nitrogen (TN) Offsets toward compliance with the Annual Net TN mass load limitations (Cap Loads), in accordance with Part C of this permit. These Offsets may be applied throughout the Compliance Year or during the Truing Period. The application of offsets must be reported to DEP as described in Part C. The Offsets are authorized for the following pollutant load reduction activities:

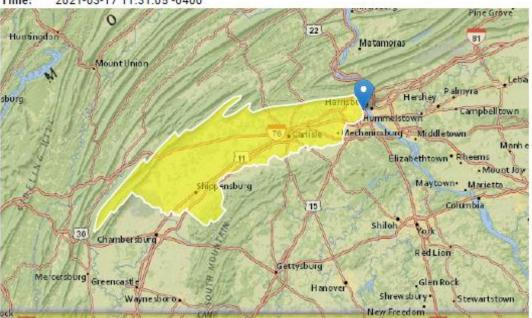
• Connection of 26 on-lot sewage disposal systems to the public sewer system after January 1, 2003, in which 25 lbs/year of TN offsets are granted per connection.

Tools and References Used to Develop Permit
MOM for Mindows Model (see Attachment
WQM for Windows Model (see Attachment Taylor Management Spreadsheet (see Attachment
Toxics Management Spreadsheet (see Attachment)
TRC Model Spreadsheet (see Attachment)
Temperature Model Spreadsheet (see Attachment)
Water Quality Toxics Management Strategy, 361-0100-003, 4/06.
Technical Guidance for the Development and Specification of Effluent Limitations, 362-0400-001, 10/97.
Policy for Permitting Surface Water Diversions, 362-2000-003, 3/98.
Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 362-2000-008, 11/96.
Technology-Based Control Requirements for Water Treatment Plant Wastes, 362-2183-003, 10/97.
Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 362-2183-004, 12/97.
Pennsylvania CSO Policy, 385-2000-011, 9/08.
Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03.
Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 391-2000-002, 4/97.
Determining Water Quality-Based Effluent Limits, 391-2000-003, 12/97.
Implementation Guidance Design Conditions, 391-2000-006, 9/97.
Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen, Version 1.0, 391-2000-007, 6/2004.
Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 391-2000-008, 10/1997.
Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments, 391-2000-010, 3/99.
Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 391-2000-011, 5/2004.
Implementation Guidance for Section 93.7 Ammonia Criteria, 391-2000-013, 11/97.
Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 391-2000-014, 4/2008.
Implementation Guidance Total Residual Chlorine (TRC) Regulation, 391-2000-015, 11/1994.
Implementation Guidance for Temperature Criteria, 391-2000-017, 4/09.
Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 391-2000-018, 10/97.
Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 391-2000-019, 10/97.
Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 391-2000-021, 3/99.
Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 391-2000-022, 3/1999.
Design Stream Flows, 391-2000-023, 9/98.
Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 391-2000-024, 10/98.
Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 391-3200-013, 6/97.
Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07.
SOP:
Other:

Attachments

1. StreamStats

StreamStats


StreamStats Report

Region ID: PA

Workspace ID: PA20210317153045642000

Clicked Point (Latitude, Longitude): 40.27163, -76.91889

Time: 2021-03-17 11:31:05 -0400

Parameter	Married Visit Action (Action (Action))	1883	52862
Code	Parameter Description	Value	Unit
DRNAREA	Area that drains to a point on a stream	506	square miles
PRECIP	Mean Annual Precipitation	39	inches
STRDEN	Stream Density total length of streams divided by drainage area	1.63	miles per square mile
ROCKDEP	Depth to rock	4.6	feet
CARBON	Percentage of area of carbonate rock	39.05	percent

https://streamstats.usgs.gov/ss/

3/17/2021 StreamStats

Low-Flow Statistics Parameters | Low Flow Region 2|

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	506	square miles	4.93	1280
PRECIP	Mean Annual Precipitation	39	inches	35	50.4
STRDEN	Stream Density	1.63	miles per square mile	0.51	3.1
ROCKDEP	Depth to Rock	4.6	feet	3.32	5.65
CARBON	Percent Carbonate	39.05	percent	0	99

Low-Flow Statistics Flow Report | Low Flow Region 2|

PII: Prediction Interval-Lower, Plu: Prediction Interval-Upper, SEp: Standard Error of Prediction, SE: Standard Error (other -- see report)

Statistic	Value	Unit	SE	SEp
7 Day 2 Year Low Flow	115	ft^3/s	38	38
30 Day 2 Year Low Flow	136	ft^3/s	33	33
7 Day 10 Year Low Flow	76.3	ft^3/s	51	51
30 Day 10 Year Low Flow	90.3	ft^3/s	46	46
90 Day 10 Year Low Flow	111	ft^3/s	36	36

Low-Flow Statistics Citations

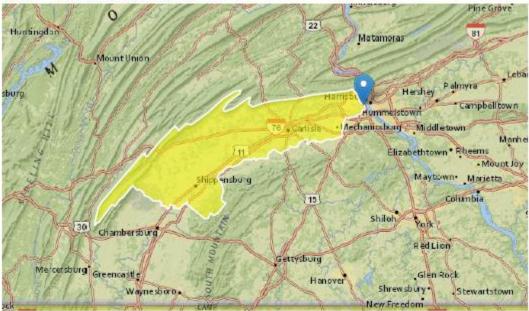
Stuckey, M.H.,2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006-5130, 84 p. (http://pubs.usgs.gov/sir/2006/5130/)

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the

https://streamstats.usgs.gov/ss/

3/17/2021 StreamStats


StreamStats Report

Region ID: PA

Workspace ID: PA20210317161520053000

Clicked Point (Latitude, Longitude): 40.27155, -76.91408

Time: 2021-03-17 12:15:38 -0400

Parameter		AWKET TO	2002
Code	Parameter Description	Value	Unit
DRNAREA	Area that drains to a point on a stream	506	square miles
PRECIP	Mean Annual Precipitation	39	inches
STRDEN	Stream Density total length of streams divided by drainage area	1.63	miles per square mile
ROCKDEP	Depth to rock	4.6	feet
CARBON	Percentage of area of carbonate rock	39.02	percent

https://streamstats.usgs.gov/ss/

3/17/2021 StreamStats

Low-Flow Statistics Parameters | Low Flow Region 2|

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	506	square miles	4.93	1280
PRECIP	Mean Annual Precipitation	39	inches	35	50.4
STRDEN	Stream Density	1.63	miles per square mile	0.51	3.1
ROCKDEP	Depth to Rock	4.6	feet	3.32	5.65
CARBON	Percent Carbonate	39.02	percent	0	99

Low-Flow Statistics Flow Report | Low Flow Region 2|

PII: Prediction Interval-Lower, Plu: Prediction Interval-Upper, SEp: Standard Error of Prediction, SE: Standard Error (other -- see report)

Statistic	Value	Unit	SE	SEp
7 Day 2 Year Low Flow	115	ft^3/s	38	38
30 Day 2 Year Low Flow	136	ft^3/s	33	33
7 Day 10 Year Low Flow	76.3	ft^3/s	51	51
30 Day 10 Year Low Flow	90.3	ft^3/s	46	46
90 Day 10 Year Low Flow	111	ft^3/s	36	36

Low-Flow Statistics Citations

Stuckey, M.H.,2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006-5130, 84 p. (http://pubs.usgs.gov/sir/2006/5130/)

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the

2. WQM 7.0 ver. 1.1

Input Data WQM 7.0

	SWP Stream Basin Code		Stre	Stream Name		RMI	Ele	evation (ft)	Drainage Area (sq ml)	Slope (ft/ft)	PW Withd (mg	rawal	Apply FC	
	07B	101	94 CONO	DOGUIN	ET CREEK		0.3	40	299.40	506.00	0.00000	0	0.00	✓
	Stream Data													
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth		<u>Tributary</u> p pH	Te	<u>Strean</u> mp	<u>п</u> рн	
Conu.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)	(°(C)		
Q7-10 Q1-10	0.100	0.00	76.30 0.00	0.000	0.000	0.0	0.00	0.0	00 2	5.00 7.	00	0.00	0.00	
Q30-10		0.00	0.00	0.000	0.000									
					DI	scharge l]	
		Name Permit Number		Disc	Permitt Disc Flow (mgd	Di Fi	sc Res	Dis erve Ter ctor (°C	np)isc pH				
		East i	Pennsboro	PA	00384150	4.400	0 4.40	00 4.	4000	0.000 2	25.00	7.00		
					Pa	arameter i	Data							
				Paramete	r Name			Trib Conc	Stream Conc	Fate Coef				
				didilicit	T THE ITE	(m	g/L) (1	mg/L)	(mg/L)	(1/days)				
		CBODS				25.00	2.00	0.00	1.50		_			
		Dissolved Oxygen				5.00	8.24	0.00	0.00					
		NH3-N				8.00	0.00	0.00	0.70					

Input Data WQM 7.0

	SWP Basir			Stream Name		RMI		evation (ft)	Drainage Area (sq mi)	Slope (ft/ft)		/S Irawal gd)	Appl FC	
	07B	101	194 CONO	DOGUIN	ET CREEK		0.0	00	298.00	507.00	0.00000	1	0.00	✓
					St	ream Dat	a							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth		Tributary p pH	Ter	<u>Strear</u> mp	<u>n</u> рн	
Conu.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)	(°(C)		
Q7-10 Q1-10 Q30-10	0.100	0.00 0.00 0.00	77.00 0.00 0.00	0.000 0.000 0.000	0.000	0.0	0.00	0.0	00 2	5.00 7.	.00	0.00	0.00	
	Discharge Data]	
			Name			Disc	Permitt Disc Flow (mgd	Dis Flo	ić Res w Fa	Di erve Ter ctor (%	mp)isc pH		
						0.000	0.000	0.0	0000	0.000	0.00	7.00		
					Pa	arameter i	Data							
		Darameter Name						Trib Conc	Stream Conc	Fate Coef				
				Parameter Name			ig/L) (r	ng/L)	(mg/L)	(1/days)				
	CBODS			25.00	2.00	0.00	1.50							
		Dissolved Oxygen				3.00	8.24	0.00	0.00					
			NH3-N				25.00	0.00	0.00	0.70				

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	~
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.64	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.36	Temperature Adjust Kr	✓
D.O. Saturation	90.00%	Use Balanced Technology	✓
D.O. Goal	5		

WQM 7.0 Hydrodynamic Outputs

	SW	P Basin	Stres	m Code				Stream	Name				
		07B	1	0194			CONC	DOGUII	NET CRE	EK			
RMI	Stream Flow	PWS With	Net Stream Flow	Flow		Depth	Width	W/D Ratio		Trav Time	Analysis Temp	Analysis pH	
	(cfs)	(cfs)	(cfs)	(cfs)	(ft/ft)	(ft)	(ft)		(fps)	(days)	(°C)		_
Q7-10	0 Flow												
0.340	76.30	0.00	76.30	6.8068	0.00078	1.084	151.47	139.68	0.51	0.041	25.00	7.00	
Q1-10	0 Flow												
0.340	48.83	0.00	48.83	6.8068	0.00078	NA	NA	NA	0.40	0.051	25.00	7.00	
Q30-	10 Flow	,											
0.340	103.77	0.00	103.77	6.8068	0.00078	NA	NA	NA	0.59	0.035	25.00	7.00	

WQM 7.0 D.O.Simulation

	ream Code					
07B	10194		CON	ODOGUINET CR	EEK	
RMI 0.340	Total Discharge) Ana	ysis Temperature 25.000	e (°C)	Analysis pH 7.000
Reach Width (ft)		_				
151.467	Reach De 1.08			Reach WDRatio 139.683	L	Reach Velocity (fps) 0.506
	Reach Kc	-		each NH3-N (mg	Reach Kn (1/days)	
Reach CBOD5 (mg/L) 3.88	0.77		<u> </u>	0.66	/L)	1.029
	Reach Kr (_		Kr Equation		Reach DO Goal (mg/L)
Reach DO (mg/L)	2.07			Tsivoglou		5
7.977	2.01	-		Tollogica		
Reach Travel Time (days)		Subreach				
0.041	TravTime		NH3-N	D.O.		
	(days)	(mg/L)	(mg/L)	(mg/L)		
	0.004	3.87	0.65	7.54		
	0.008	3.85	0.65	7.54		
	0.012	3.84	0.65	7.54		
	0.016	3.82	0.64	7.54		
	0.021	3.81	0.64	7.54		
	0.025	3.79	0.64	7.54		
	0.029	3.78	0.64	7.54		
	0.033	3.76	0.63	7.54		
	0.037	3.75	0.63	7.54		
	0.041	3.73	0.63	7.54		

WQM 7.0 Wasteload Allocations

	SWP Basin Str 07B	10194	Stream Name CONODOGUINET CREEK									
NH3-N	Acute Allocatio	ns										
RMI	Discharge Nam	Baseline e Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reductio					
0.34	0 East Pennsboro	11.07	16	11.07	16	0	0	_				
NH3-N (Chronic Alloca	Baseline	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction					
0.34	0 East Pennsboro	1.37	8	1.37	8	0	0					
Dissolve RMI	ed Oxygen Allo Discharge N	2				ved Oxygen ne Multiple) (mg/L)	Critical	Percent Reduction				
0.3	4 East Pennsboro		25 25	8	8 5	5	0	0				

Page 1 of 1

WQM 7.0 Effluent Limits

		am Code 0194					
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
0.340	East Pennsboro	PA00384150	4.400	CBOD5	25		
				NH3-N	8	16	
				Dissolved Oxygen			5

3. TRC_CALC

TRC_CALC

1A	В	С	D	E	F	G					
2	TRC EVALU	ATION					\Box				
3			B4:B8 and E4:E7				\Box				
4		= Q stream (= CV Daily		П				
5		= Q discharg			= CV Hourly		- 1				
6		= no. sample			= AFC_Partial M		- 1				
7			emand of Stream		= CFC_Partial M		- 1				
8		= Chlorine D = BAT/BPJ V	emand of Discharge	15 = AFC_Criteria Compliance Time (min)							
9			of Safety (FOS)	720 = CFC_Criteria Compliance Time (min) =Decay Coefficient (K)							
10	Source	Reference	AFC Calculations		Reference	CFC Calculations	-				
11	TRC	1.3.2.iii	WLA afc =	2 505	1.3.2.iii	WLA cfc = 3.497					
	PENTOXSD TRG		LTAMULT afc =		5.1c	LTAMULT cfc = 0.581					
	PENTOXSD TRG		LTA_afc=		5.1d	LTA_cfc = 2.033					
14							\Box				
15	Source		Effluent	Limit Cal	culations						
16	PENTOXSD TRG	5.1f	AMI	L MULT =	1.231		\neg				
-	PENTOXSD TRG	5.1g	AVG MON LIMI			BAT/BPJ	- 1				
18			INST MAX LIMI	T (mg/l) =	1.635		- 1				
							- 1				
	WLA afo	(.019/e(-k*A	FC_tc)) + [(AFC_Yc*Q	s*.019/Q	d*e(-k*AFC tc)).		- 1				
			C_Yc*Qs*Xs/Qd)]*(1-F				- 1				
	LTAMULT afo	EXP((0.5*LN	(cvh^2+1))-2.326*LN(cvh^2+1)	^ 0.5)		- 1				
	LTA_afo	wla_afc*LTA	MULT_afc								
							- 1				
	WLA_cfc		FC_tc) + [(CFC_Yc*Qs		*e(-k*CFC_tc)).		- 1				
	LTAMULT_cfc		C_Yc*Qs*Xs/Qd)]*(1-F (cvd^2/no_samples+1		M/oud^2/po con	nnlon+1\A0 E\	- 1				
	LTA_cfc	wla_cfc*LTA)/-2.320 L	.N(CVU Z/IIO_Sali	npies+1) 0.5)	- 1				
	AML MULT	EXP(2.326*L	N((cvd^2/no_samples	+1)^0.5)-(0.5*LN(cvd^2/no	_samples+1))					
	AVG MON LIMIT		J,MIN(LTA_afc,LTA_c								
	INST MAX LIMIT	1.5*((av_mo	n_limit/AML_MULT)/L1	TAMULT_	afc)						


Page 1

4. Toxics Management Spreadsheet

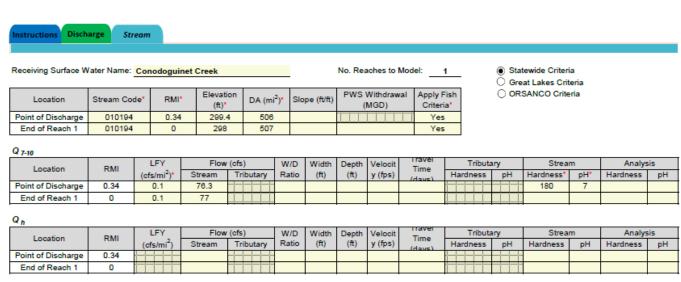
Toxics Management Spreadsheet Version 1.3, March 2021

Discharge Information

	Discharge Characteristics												
Design Flow	Hardness (mg/l)*	pH (SU)*	P	artial Mix Fa	actors (PMF	s)	Complete Mix Times (min)						
(MGD)*	naruness (mg/l)	рн (30)	AFC	CFC	THH	CRL	Q ₇₋₁₀	Qh					
4.4	197	7											

					0 if left blank			0.5 if left blank		0 If left blank		k	1 If left blank	
	Discharge Pollutant	Units	Max			ib nc	Stream Conc	Daily CV	Hourly CV	Strea m CV	Fate Coeff	FOS	Criteri a Mod	
	Total Dissolved Solids (PWS)	mg/L		618	Ļ	Щ								
7	Chloride (PWS)	mg/L		220										
Group	Bromide	mg/L	<	0.03	+	\square								\rightarrow
5	Sulfate (PWS)	mg/L		50.8										
	Fluoride (PWS)	mg/L				П								
	Total Aluminum	μg/L		439		П								
1	Total Antimony	μg/L	>	0.67	-	ĮŢ.								
1	Total Arsenic	μg/L	<	0.5	-	H								
1	Total Barium	μg/L		32										
1	Total Beryllium	μg/L	<	0.1		П								
1	Total Boron	μg/L		140		П								
1	Total Cadmium	μg/L	<	0.16	-	H								
	Total Chromium (III)	μg/L	<	0.63	-									
1	Hexavalent Chromium	μg/L	<	0.05		Ħ								
1	Total Cobalt	μg/L	<	0.83										
	Total Copper	μg/L		50		П								
2	Free Cyanide	μg/L		5										\rightarrow
Group	Total Cyanide	μg/L		9.7	-									
٥	Dissolved Iron	μg/L	<	20		Ħ								
	Total Iron	μg/L	<	21										
1	Total Lead	μg/L	<	0.33	\Box	H								
1	Total Manganese	μg/L		32										
1	Total Mercury	μg/L		0.0013	7									
1	Total Nickel	μg/L	<	1.2										
1	Total Phenols (Phenolics) (PWS)	μg/L	<	2										
1	Total Selenium	μg/L	<	0.66										
1	Total Silver	μg/L	<	0.33	-									
1	Total Thallium	μg/L	<	0.5										
1	Total Zinc	μg/L		420		\sqcap								
1	Total Molybdenum	μg/L	<	2.8		П								
	Acrolein	μg/L	<	1.3										
	Acrylamide	μg/L	<											
	Acrylonitrile	µg/L	<	2										
	Benzene	μg/L	<	0.12										
	Bromoform	μg/L	<	0.37										

ı	Carbon Tetrachloride	uall	<	0.23					1	1				
		μg/L	_	0.25		-	+	-					-	-
	Chlorobenzene	µg/L	_		Н	+	÷	_					\vdash	₩
	Chlorodibromomethane	μg/L	<	0.25	Н	-	+						-	+
	Chloroethane	μg/L	<	0.47	H	+	+						H	₩
	2-Chloroethyl Vinyl Ether	μg/L	<	3.1	H		\Rightarrow						H	\Rightarrow
	Chloroform	μg/L		2.2		\Rightarrow	Ţ						\Box	\Box
	Dichlorobromomethane	μg/L		0.77			Т							
	1,1-Dichloroethane	μg/L	<	0.05	Ш	4	4						\perp	\bot
ന	1,2-Dichloroethane	μg/L	<	0.12		4	\pm						\vdash	
Group	1,1-Dichloroethylene	μg/L	<	0.13			\pm						\vdash	
2	1,2-Dichloropropane	μg/L	<	0.26			\pm							
ဖ	1,3-Dichloropropylene	μg/L	<	0.47		T	Ŧ						\sqcap	\sqcap
	1,4-Dioxane	μg/L	<	0.32			T							
	Ethylbenzene	µg/L	<	0.2		II.	Ţ							П
	Methyl Bromide	μg/L	<	0.46	Е	7	7						H	\Rightarrow
	Methyl Chloride	μg/L	<	0.33	Ħ	-	+						Ħ	+
	Methylene Chloride	μg/L	<	0.14	Ħ	7	Ť						Ħ	++
	1.1.2.2-Tetrachloroethane	μg/L	<	0.38	т	_	Ť						\vdash	+++
	Tetrachloroethylene	µg/L	<	0.27										
	Toluene	µg/L	<	0.24		-	Ŧ							
	1,2-trans-Dichloroethylene	μg/L	<	0.24		-	+							
	1,1,1-Trichloroethane	μg/L μg/L	<	0.08	H	-	+						+	+
					Н	-	+						-	₩
	1,1,2-Trichloroethane	μg/L	<	0.13	F		+							
	Trichloroethylene	μg/L	<	0.29			#						H	\Rightarrow
<u> </u>	Vinyl Chloride	μg/L	<	0.33			Ţ							
	2-Chlorophenol	μg/L	<	0.36			1							
	2,4-Dichlorophenol	μg/L	<	0.41		_	4						Щ	Ш
	2,4-Dimethylphenol	μg/L	<	0.44		4	4						4	\bot
	4,6-Dinitro-o-Cresol	μg/L	<	1.2	Н	-	7						\vdash	+
4	2,4-Dinitrophenol	μg/L	<	2.6	Н	\exists	Ŧ							
Ĭ	2-Nitrophenol	μg/L	<	0.36	T	T	T						Ħ	Ħ
Group	4-Nitrophenol	μg/L	<	1.3			I							
_	p-Chloro-m-Cresol	μg/L	<	0.36			ļ							\Box
	Pentachlorophenol	μg/L	<	1.6	Е	7	7						Ħ	\Rightarrow
	Phenol	μg/L	<	0.24	Н	7	Ť						Ħ	#
	2,4,6-Trichlorophenol	μg/L	<	0.44	Н	\dashv	+						<u> </u>	++
\vdash	Acenaphthene	μg/L	<	0.37	П	\dashv	Ť						\vdash	₩
	Acenaphthylene	μg/L	<	0.38			I							
	Anthracene	µg/L	<	0.37	Н	-	+						H	#
	Benzidine	µg/L	<	2.3	H	#	+						H	₩
			<	0.38	Н	+	+	_					+	┿
	Benzo(a)Anthracene	μg/L		0.38	H	+	+						H	₩
	Benzo(a)Pyrene	μg/L	<		H	-	+	_					H	+
	3,4-Benzofluoranthene	μg/L	<	0.37	H	\Rightarrow	Ť						H	\Rightarrow
	Benzo(ghi)Perylene	μg/L	<	0.39			I							ш
	Benzo(k)Fluoranthene	μg/L	<	0.36		_	4						ш	\perp
	Bis(2-Chloroethoxy)Methane	μg/L	<	0.41		4	4						4	₩
	Bis(2-Chloroethyl)Ether	μg/L	<	0.35	Н	-	\pm						\vdash	+
	Bis(2-Chloroisopropyl)Ether	μg/L	<	0.41			\pm							
	Bis(2-Ethylhexyl)Phthalate	μg/L	<	2.8										
	4-Bromophenyl Phenyl Ether	μg/L	<	0.42										
	Butyl Benzyl Phthalate	μg/L	<	0.54		\Box	Ţ							П
	2-Chloronaphthalene	μg/L	<	0.37										
	4-Chlorophenyl Phenyl Ether	μg/L	<	0.37	F		+							
	Chrysene	μg/L	<	0.39	F		+							Ħ
	Dibenzo(a,h)Anthrancene	μg/L	<	0.4	T									
	1,2-Dichlorobenzene	µg/L	<	0.37			Ì							
			<	0.43	F		T							
		HOVE		0.10										
	1,3-Dichlorobenzene	µg/L	-	0.42										
p 5	1,3-Dichlorobenzene 1,4-Dichlorobenzene	μg/L	<	0.43	H	\exists	Ŧ						+	+
g dno	1,3-Dichlorobenzene 1,4-Dichlorobenzene 3,3-Dichlorobenzidine	μg/L μg/L	<	0.98										
Group 5	1,3-Dichlorobenzene 1,4-Dichlorobenzene 3,3-Dichlorobenzidine Diethyl Phthalate	µg/L µg/L µg/L	<	0.98 0.52										
Group 5	1,3-Dichlorobenzene 1,4-Dichlorobenzene 3,3-Dichlorobenzidine Diethyl Phthalate Dimethyl Phthalate	μg/L μg/L μg/L μg/L	< <	0.98 0.52 0.39										
Group 5	1,3-Dichlorobenzene 1,4-Dichlorobenzene 3,3-Dichlorobenzidine Diethyl Phthalate	µg/L µg/L µg/L	<	0.98 0.52										


1											_	
	2,6-Dinitrotoluene	μg/L	<	1.1			Ħ					
1	Di-n-Octyl Phthalate	µg/L	<	0.82			П					
1	1,2-Diphenylhydrazine	μg/L	<	0.35	Ц		Щ				L	Щ
1	Fluoranthene	μg/L	<	0.4	Ц		Щ					\square
1	Fluorene	μg/L	<	0.35	Н		H					
	Hexachlorobenzene	μg/L	<	0.4	Н		H				\vdash	
1	Hexachlorobutadiene	μg/L	<	0.45	П	F	П				F	m
1	Hexachlorocyclopentadiene	μg/L	<	0.68			П					
1	Hexachloroethane	µg/L	<	0.34								
1	Indeno(1,2,3-cd)Pyrene	µg/L	<	0.37			Ħ					
1	Isophorone	μg/L	<	0.4	Ħ		H				F	
1	Naphthalene	µg/L	<	0.37	Ħ	=	Ħ				F	H
1	Nitrobenzene	µg/L	<	0.48	Н		H				Н	\vdash
1	n-Nitrosodimethylamine	µg/L	<	1	Ħ	-	Ħ				H	
	n-Nitrosodi-n-Propylamine		<	0.39			Ħ					
		μg/L	<	0.45			\square					\blacksquare
1	n-Nitrosodiphenylamine	μg/L			Н		₩				H	${\color{red}{H}}$
	Phenanthrene	μg/L	<	0.36	Н	L	H				L	$\vdash \vdash$
	Pyrene	μg/L	<	0.39	H							
<u> </u>	1,2,4-Trichlorobenzene	μg/L	<	0.39	H							
1	Aldrin	μg/L	<									
1	alpha-BHC	µg/L	<									
	beta-BHC	μg/L	<				Ш					
	gamma-BHC	μg/L	<									
1	delta BHC	μg/L	<		Н		H					\Box
1	Chlordane	μg/L	<		Н	Е	H				F	
1	4.4-DDT	µg/L	<		Ħ	=	Ħ				F	Ħ
1	4.4-DDE	μg/L	<		Н		\vdash				Н	
1	4.4-DDD	µg/L	<		Ħ		Ħ					
1	Dieldrin	µg/L	<									
1	alpha-Endosulfan	µg/L	<		H		H					
1	beta-Endosulfan	µg/L	<		Н	-	H				H	\forall
9	Endosulfan Sulfate		<		Н		Н				H	\vdash
0		µg/L	-		H		H					\mapsto
Įē	Endrin	μg/L	<		Ħ		Ħ					
ဖ	Endrin Aldehyde	μg/L	٧									\blacksquare
1	Heptachlor	μg/L	<		Ц		Щ					Щ
1	Heptachlor Epoxide	μg/L	<		Ц	L	Щ				L	Щ
1	PCB-1016	μg/L	<		Н	_	H				L	\square
1	PCB-1221	μg/L	<		Н		H					
1	PCB-1232	μg/L	<		Н							
1	PCB-1242	μg/L	<		П							
1	PCB-1248	μg/L	<									
	PCB-1254	μg/L	<				П					
	PCB-1260	μg/L	<		Н		H					
	PCBs, Total	µg/L	<		Н		H				F	
1	Toxaphene	µg/L	<		H							
1	2,3,7,8-TCDD	ng/L	<		Н							
\vdash	Gross Alpha	pCi/L										
Ι.	Total Beta	pCi/L	<									
	Radium 226/228	pCi/L	<									
_	Total Strontium	_	-				H					\forall
5		μg/L	<		H							\vdash
	Total Uranium	μg/L	<		H							\forall
\sqsubseteq	Osmotic Pressure	mOs/kg			H							
											L	
					H							
					H							
					H							
					П							

Toxics Management Spreadsheet Version 1.3, March 2021

Stream / Surface Water Information

East Pennsboro Township WWTP, NPDES Permit No. PA0038415, Outfall 001

Toxics Management Spreadsheet Version 1.3, March 2021

Model Results

East Pennsboro Township WWTP, NPDES Permit No. PA0038415, Outfall 001

Instructions Results	RETURN	TO INPU	пѕ)	SAVE AS	PDF)	PRINT	r	All Inputs Results Limits
Hydrodynamics								
✓ Wasteload Allocations								
✓ AFC CC	T (min): 1	5	PMF:	0.134	Ana	lysis Hardne	ss (mg/l):	186.81 Analysis pH: 7.00
Pollutants	Conc	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A	
Chloride (PWS)	0	0		0	N/A	N/A	N/A	
Sulfate (PWS)	0	0		0	N/A	N/A	N/A	
Total Aluminum	0	0		0	750	750	1,873	
Total Antimony	0	0		0	1,100	1,100	2,747	
Total Arsenic	0	0		0	340	340	849	Chem Translator of 1 applied
Total Barium	0	0		0	21,000	21,000	52,446	
Total Boron	0	0		0	8,100	8,100	20,229	
Total Cadmium	0	0		0	3.696	4.03	10.1	Chem Translator of 0.918 applied
Total Chromium (III)	0	0		0	950.530	3,008	7,512	Chem Translator of 0.316 applied
Hexavalent Chromium	0	0		0	16	16.3	40.7	Chem Translator of 0.982 applied
Total Cobalt	0	0		0	95	95.0	237	
Total Copper	0	0		0	24.215	25.2	63.0	Chem Translator of 0.96 applied
Free Cyanide	0	0		0	22	22.0	54.9	
Dissolved Iron	0	0		0	N/A	N/A	N/A	
Total Iron	0	0		0	N/A	N/A	N/A	
Total Lead	0	0		0	126.613	181	452	Chem Translator of 0.7 applied
Total Manganese	0	0		0	N/A	N/A	N/A	
Total Mercury	0	0		0	1.400	1.65	4.11	Chem Translator of 0.85 applied
Total Nickel	0	0		0	794.444	796	1,988	Chem Translator of 0.998 applied
Total Phenols (Phenolics) (PWS)	0	0		0	N/A	N/A	N/A	
Total Selenium	0	0		0	N/A	N/A	N/A	Chem Translator of 0.922 applied
Total Silver	0	0		0	9.424	11.1	27.7	Chem Translator of 0.85 applied
Total Thallium	0	0		0	65	65.0	162	
Total Zinc	0	0		0	198.979	203	508	Chem Translator of 0.978 applied
Acrolein	0	0		0	3	3.0	7 49	

Acrylonitrile	0	0	- 0	650	650	1.623	
Benzene	0	0	0	640	640	1,598	
Bromoform	0	0	0	1.800	1.800	4.495	
Carbon Tetrachloride	0	0	0	2.800	2.800	6,993	
	0	0	_	-,	-,	-,	
Chlorobenzene	_		0	1,200	1,200	2,997	
Chlorodibromomethane	0	0	0	N/A	N/A	N/A	
2-Chloroethyl Vinyl Ether	0	0	0	18,000	18,000	44,953	
Chloroform	0	0	0	1,900	1,900	4,745	
Dichlorobromomethane	0	0	0	N/A	N/A	N/A	
1,2-Dichloroethane	0	0	- 0	15,000	15,000	37,461	
1,1-Dichloroethylene	0	0	- 0	7,500	7,500	18,731	
1,2-Dichloropropane	0	0	0	11,000	11,000	27,472	
1,3-Dichloropropylene	0	0	0	310	310	774	
Ethylbenzene	0	0	0	2,900	2,900	7,242	
Methyl Bromide	0	0	- 0	550	550	1,374	
Methyl Chloride	0	0	- 0	28,000	28,000	69,928	
Methylene Chloride	0	0	0	12,000	12,000	29,969	
1,1,2,2-Tetrachloroethane	0	0	0	1,000	1,000	2,497	
Tetrachloroethylene	0	0	0	700	700	1,748	
Toluene	0	0	0	1,700	1,700	4,246	
1,2-trans-Dichloroethylene	0	0	0	6,800	6,800	16,982	
1,1,1-Trichloroethane	0	0	0	3,000	3,000	7,492	
1,1,2-Trichloroethane	0	0	0	3,400	3,400	8,491	
Trichloroethylene	0	0	0	2,300	2,300	5,744	
Vinyl Chloride	0	0	0	N/A	N/A	N/A	
2-Chlorophenol	0	0	- 0	560	560	1,399	
2,4-Dichlorophenol	0	0	0	1,700	1,700	4,246	
2,4-Dimethylphenol	0	0	0	660	660	1,648	
4,6-Dinitro-o-Cresol	0	0	0	80	80.0	200	
2,4-Dinitrophenol	0	0	0	660	660	1.648	
2-Nitrophenol	0	0	0	8,000	8.000	19,979	
4-Nitrophenol	0	0	0	2,300	2,300	5,744	
p-Chloro-m-Cresol	0	0	0	160	160	400	
Pentachlorophenol	0	0	0	8.723	8.72	21.8	
Phenol	0	0	0	N/A	N/A	N/A	
2,4,6-Trichlorophenol	0	0	0	460	460	1,149	
Acenaphthene	0	0	0	83	83.0	207	
Anthracene	0	0	0	N/A	N/A	N/A	
Benzidine	0	0	0	300	300	749	
Benzo(a)Anthracene	0	0	0	0.5	0.5	1.25	
	0	0	0	N/A	N/A	1.25 N/A	
Benzo(a)Pyrene	0	0	0	N/A N/A	N/A N/A	N/A N/A	
3,4-Benzofluoranthene	0	0	0	N/A N/A	N/A N/A	N/A N/A	
Benzo(k)Fluoranthene		_	_				
Bis(2-Chloroethyl)Ether	0	0	0	30,000	30,000	74,922	
Bis(2-Chloroisopropyl)Ether	0	0	- 0	N/A	N/A	N/A	
Bis(2-Ethylhexyl)Phthalate	0	0	0	4,500	4,500	11,238	
4-Bromophenyl Phenyl Ether	0	0	0	270	270	674	
Butyl Benzyl Phthalate	0	0	0	140	140	350	

Model Results 8/16/2021 Page 6

2-Chloronaphthalene	0	0	0	N/A	N/A	N/A	
Chrysene	0	0	0	N/A	N/A	N/A	
Dibenzo(a,h)Anthrancene	0	0	0	N/A	N/A	N/A	
1,2-Dichlorobenzene	0	0	0	820	820	2,048	
1,3-Dichlorobenzene	0	0	0	350	350	874	
1,4-Dichlorobenzene	0	0	0	730	730	1,823	
3,3-Dichlorobenzidine	0	0	0	N/A	N/A	N/A	
Diethyl Phthalate	0	0	0	4,000	4,000	9,990	
Dimethyl Phthalate	0	0	0	2,500	2,500	6,244	
Di-n-Butyl Phthalate	0	0	0	110	110	275	
2,4-Dinitrotoluene	0	0	0	1,600	1,600	3,996	
2,6-Dinitrotoluene	0	0	0	990	990	2,472	
1,2-Diphenylhydrazine	0	0	0	15	15.0	37.5	
Fluoranthene	0	0	0	200	200	499	
Fluorene	0	0	0	N/A	N/A	N/A	
Hexachlorobenzene	0	0	0	N/A	N/A	N/A	
Hexachlorobutadiene	0	0	0	10	10.0	25.0	
Hexachlorocyclopentadiene	0	0	0	5	5.0	12.5	
Hexachloroethane	0	0	0	60	60.0	150	
Indeno(1,2,3-cd)Pyrene	0	0	0	N/A	N/A	N/A	
Isophorone	0	0	0	10,000	10,000	24,974	
Naphthalene	0	0	0	140	140	350	
Nitrobenzene	0	0	0	4,000	4,000	9,990	
n-Nitrosodimethylamine	0	0	0	17,000	17,000	42,456	
n-Nitrosodi-n-Propylamine	0	0	0	N/A	N/A	N/A	
n-Nitrosodiphenylamine	0	0	0	300	300	749	
Phenanthrene	0	0	0	5	5.0	12.5	
Pyrene	0	0	0	N/A	N/A	N/A	
1,2,4-Trichlorobenzene	0	0	0	130	130	325	

✓ CFC C	CT (min): 7	20	PMF:	0.926	Ana	alysis Hardne	ess (mg/l):	181.49 Analysis pH: 7.00			
Pollutants	Conc	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments			
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A				
Chloride (PWS)	0	0		0	N/A	N/A	N/A				
Sulfate (PWS)	0	0 .		0	N/A	N/A	N/A				
Total Aluminum	0	0 -		0	N/A	N/A	N/A				
Total Antimony	0	0		0	220	220	2,502				
Total Arsenic	0	0		0	150	150	1,706	Chem Translator of 1 applied			
Total Barium	0	0		0	4,100	4,100	46,635				
Total Boron	0	0		0	1,600	1,600	18,199				
Total Cadmium	0	0		0	0.372	0.42	4.79	Chem Translator of 0.884 applied			
Total Chromium (III)	0	0		0	120.757	140	1,597	Chem Translator of 0.86 applied			
Hexavalent Chromium	0	0 .		0	10	10.4	118	Chem Translator of 0.962 applied			
Total Cobalt	0	0		0	19	19.0	216				
Total Copper	0	0		0	14.904	15.5	177	Chem Translator of 0.98 applied			

Model Results 8/16/2021 Page 7

Free Consider			_	E 2	5.2	59.1	
Free Cyanide	0	0	0	5.2	5.2 N/A		
Dissolved Iron	0	_	0	N/A		N/A	
Total Iron	0	0	0	1,500	1,500	18,314	WQC = 30 day average; PMF = 1
Total Lead	0	0	0	4.785	6.79	77.3	Chem Translator of 0.704 applied
Total Manganese	0	0	0	N/A	N/A	N/A	
Total Mercury	0	0	0	0.770	0.91	10.3	Chem Translator of 0.85 applied
Total Nickel	0	0	0	86.111	86.4	982	Chem Translator of 0.997 applied
Total Phenols (Phenolics) (PWS)	0	0	0	N/A	N/A	N/A	
Total Selenium	0	0	0	4.600	4.99	56.7	Chem Translator of 0.922 applied
Total Silver	0	0	0	N/A	N/A	N/A	Chem Translator of 1 applied
Total Thallium	0	0	0	13	13.0	148	
Total Zinc	0	0	0	195.762	199	2,258	Chem Translator of 0.986 applied
Acrolein	0	0	0	3	3.0	34.1	
Acrylonitrile	0	0	0	130	130	1,479	
Benzene	0	0	0	130	130	1,479	
Bromoform	0	0	0	370	370	4,209	
Carbon Tetrachloride	0	0	0	560	560	6,370	
Chlorobenzene	0	0	0	240	240	2,730	
Chlorodibromomethane	0	0	0	N/A	N/A	N/A	
2-Chloroethyl Vinyl Ether	0	0	0	3,500	3,500	39,810	
Chloroform	0	0	0	390	390	4,436	
Dichlorobromomethane	0	0	0	N/A	N/A	N/A	
1,2-Dichloroethane	0	0	0	3,100	3,100	35,261	
1,1-Dichloroethylene	0	0	0	1,500	1,500	17,062	
1,2-Dichloropropane	0	0	0	2,200	2,200	25,024	
1,3-Dichloropropylene	0	0	0	61	61.0	694	
Ethylbenzene	0	0	0	580	580	6,597	
Methyl Bromide	0	0	0	110	110	1,251	
Methyl Chloride	0	0	0	5,500	5,500	62,559	
Methylene Chloride	0	0	0	2,400	2,400	27,298	
1,1,2,2-Tetrachloroethane	0	0	0	210	210	2,389	
Tetrachloroethylene	0	0	0	140	140	1,592	
Toluene	0	0	0	330	330	3,754	
1,2-trans-Dichloroethylene	0	0	0	1,400	1,400	15,924	
1,1,1-Trichloroethane	0	0	0	610	610	6,938	
1,1,2-Trichloroethane	0	0	0	680	680	7,735	
Trichloroethylene	0	0	0	450	450	5,118	
Vinyl Chloride	0	0	0	N/A	N/A	N/A	
2-Chlorophenol	0	0	0	110	110	1,251	
2,4-Dichlorophenol	0	0	0	340	340	3,867	
2,4-Dimethylphenol	0	0	0	130	130	1,479	
4.6-Dinitro-o-Cresol	0	0	0	16	16.0	182	
2,4-Dinitrophenol	0	0	0	130	130	1,479	
2-Nitrophenol	0	0	0	1,600	1.600	18,199	
-	0	0	0	470	470	5.346	
4-Nitrophenol	0	0	0	470	470	5,346	

Pentachlorophenol								,
Phenol	p-Chloro-m-Cresol	0	0	0	500	500	5,687	
2.4.6-Trichlorophenol	Pentachlorophenol	0	0	0	6.693	6.69	76.1	
Acensphthene	Phenol	0	0	0	N/A	N/A	N/A	
Anthracene 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2,4,6-Trichlorophenol	0	0	0	91	91.0	1,035	
Benzo(a)	Acenaphthene	0	0	0	17	17.0	193	
Benzo(a)Anthracene	Anthracene	0	0	0	N/A	N/A	N/A	
Benzo(s)Pyrene	Benzidine	0	0	0	59	59.0	671	
3.4-Benzofluoranthene	Benzo(a)Anthracene	0	0	0	0.1	0.1	1.14	
Benzo(k)Fluoranthene	Benzo(a)Pyrene	0	0	0	N/A	N/A	N/A	
Bis(2-Chloroethyl)Ether	3,4-Benzofluoranthene	0	0	0	N/A	N/A	N/A	
Bis(2-Chloroisopropyl)Ether	Benzo(k)Fluoranthene	0	0	0	N/A	N/A	N/A	
Bis(2-Etryhexyl)Phthalate	Bis(2-Chloroethyl)Ether	0	0	0	6,000	6,000	68,246	
## A-Bromophenyl Phenyl Ether ## Butyl Benzyl Phthalate ## 0	Bis(2-Chloroisopropyl)Ether	0	0	0	N/A	N/A	N/A	
Butyl Benzyl Phthalate	Bis(2-Ethylhexyl)Phthalate	0	0	0	910	910	10,351	
2-Chioronaphthalene 0 0 N/A N/A N/A N/A Chrysene 0 0 0 N/A N/A N/A N/A Dibenzo(a,h)Anthrancene 0 0 0 180 180 1820 1,2-Dichlorobenzene 0 0 0 180 1820 1820 1,3-Dichlorobenzene 0 0 0 69 69.0 785 1,4-Dichlorobenzene 0 0 0 150 150 1,708 3,3-Dichlorobenzidine 0 0 0 N/A N/A N/A Diethyl Phthalate 0 0 0 800 800 9,099 Di-n-Butyl Phthalate 0 0 0 21 21.0 239 2,4-Dinitrotoluene 0 0 320 320 3,640 2,8-Dinitrotoluene 0 0 200 200 202 2275 1,2-Diphenylhydrazine 0 0 0<	4-Bromophenyl Phenyl Ether	0	0	0	54	54.0	614	
Chrysene 0 0 N/A N/A N/A N/A Dibenzo(a,h)Anthrancene 0 0 N/A N/A N/A N/A 1,3-Dichlorobenzene 0 0 160 180 1,820 1,3-Dichlorobenzene 0 0 69 69.0 785 1,4-Dichlorobenzene 0 0 150 150 1,706 3,3-Dichlorobenzidine 0 0 N/A N/A N/A Diethyl Phthalate 0 0 0 800 800 9,099 Dimethyl Phthalate 0 0 0 500 500 5,687 Di-n-Butyl Phthalate 0 0 0 21 21.0 239 2,4-Dinitrotoluene 0 0 0 320 3,640 2,275 1,2-Diphenylhydrazine 0 0 0 200 202 2,275 1,2-Diphenylhydrazine 0 0 0 3 3.0 3.4.1	Butyl Benzyl Phthalate	0	0	0	35	35.0	398	
Dibenzo(a,h)Anthrancene	2-Chloronaphthalene	0	0	0	N/A	N/A	N/A	
1,2-Dichlorobenzene	Chrysene	0	0	0	N/A	N/A	N/A	
1,3-Dichlorobenzene 0 0 69 69.0 785 1,4-Dichlorobenzene 0 0 150 150 1,706 3,3-Dichlorobenzidine 0 0 0 150 1,706 3,3-Dichlorobenzidine 0 0 0 800 9,099 Diethyl Phthalate 0 0 0 500 500 5,687 Din-Butyl Phthalate 0 0 0 21 21.0 239 2,4-Dinitrotoluene 0 0 0 320 320 3,640 2,6-Dinitrotoluene 0 0 0 200 2,275 1,2-Diphenylhydrazine 0 0 0 3 3,0 34,1 Fluoranthene 0 0 0 0 N/A N/A N/A Fluoranthene 0 0 0 N/A N/A N/A Hexachlorobutadiene 0 0 N/A N/A N/A Hexachlorobut	Dibenzo(a,h)Anthrancene	0	0	0	N/A	N/A	N/A	
1,4-Dichlorobenzene 0 0 150 150 1,706 3,3-Dichlorobenzidine 0 0 N/A N/A N/A Diethyl Phthalate 0 0 800 800 9,099 Dimethyl Phthalate 0 0 500 500 5087 Di-n-Butyl Phthalate 0 0 21 21.0 239 2,4-Dinitrotoluene 0 0 200 200 200 2275 1,2-Diphenylhydrazine 0 0 0 33.0 34.1	1,2-Dichlorobenzene	0	0	0	160	160	1,820	
3,3-Dichlorobenzidine 0 0 N/A N/A N/A Diethyl Phthalate 0 0 800 800 9,099 Dirn-Butyl Phthalate 0 0 500 500 5,687 Di-n-Butyl Phthalate 0 0 21 21.0 239 2,4-Dinitrotoluene 0 0 320 320 3,640 2,6-Dinitrotoluene 0 0 200 2275 1,2-Diphenylhydrazine 0 0 3 3.0 34.1 Fluoranthene 0 0 40 40.0 455 Fluorene 0 0 N/A N/A N/A Hexachlorobenzene 0 0 N/A N/A N/A Hexachlorosyclopartadiene 0 0 0 1 1.0 11.4 Hexachlorosyclopartadiene 0 0 0 1 1.0 11.4 Hexachlorosyclopartadiene 0 0 0 1 1.0 </td <td>1,3-Dichlorobenzene</td> <td>0</td> <td>0</td> <td>0</td> <td>69</td> <td>69.0</td> <td>785</td> <td></td>	1,3-Dichlorobenzene	0	0	0	69	69.0	785	
Diethyl Phthalate	1,4-Dichlorobenzene	0	0	0	150	150	1,706	
Dimethyl Phthalate	3,3-Dichlorobenzidine	0	0	0	N/A	N/A	N/A	
Di-n-Butyl Phthalate 0 0 21 21.0 239 2,4-Dinitrotoluene 0 0 0 320 320 3,640 2,8-Dinitrotoluene 0 0 0 200 207 2,275 1,2-Diphenylhydrazine 0 0 0 3 3.0 34.1 Fluoranthene 0 0 0 40 40.0 455 Fluorene 0 0 0 N/A N/A N/A Hexachlorobenzene 0 0 N/A N/A N/A Hexachlorobutadiene 0 0 0 1.0 11.4 Hexachlorocyclopentadiene 0 0 1.2 12.0 136 Indeno(1,2,3-ed)Pyrene 0 0 0 12 12.0 136 Indeno(1,2,3-ed)Pyrene 0 0 0 1,10 23,886 Naphthalene 0 0 0 43 43.0 489 Nitrosodimethyla	Diethyl Phthalate	0	0	0	800	800	9,099	
2,4-Dinitrotoluene 0 0 320 320 3,640 2,6-Dinitrotoluene 0 0 200 200 2,275 1,2-Diphenylhydrazine 0 0 0 3 3.0 34.1 Fluoranthene 0 0 40 40.0 455 Fluorene 0 0 N/A N/A N/A Hexachlorobenzene 0 0 N/A N/A N/A Hexachlorobutadiene 0 0 0 1.0 11.4 Hexachlorocyclopentadiene 0 0 1 1.0 11.4 Hexachloroethane 0 0 12 12.0 136 Indeno(1,2,3-cd)Pyrene 0 0 N/A N/A N/A Isophorone 0 0 0 2,100 23,886 Naphthalene 0 0 43 43.0 489 Nitrobenzene 0 0 0 3,400 38,673	Dimethyl Phthalate	0	0	0	500	500	5,687	
2,8-Dinitrotoluene 0 0 200 200 2,275 1,2-Diphenylhydrazine 0 0 3 3.0 34.1 Fluoranthene 0 0 40 40.0 455 Fluorene 0 0 N/A N/A N/A Hexachlorobenzene 0 0 N/A N/A N/A Hexachlorobutadiene 0 0 0 1.0 11.4 Hexachlorocyclopentadiene 0 0 0 12 12.0 136 Indeno(1,2,3-cd)Pyrene 0 0 0 N/A N/A N/A N/A Isophorone 0 0 0 2,100 23,886 Naphthalene 0 0 43 43.0 489 Nitrobenzene 0 0 0 3,400 38,673 n-Nitrosodimethylamine 0 0 0 0 N/A N/A N/A n-Nitrosodiphenylamine 0 0 0	Di-n-Butyl Phthalate	0	0	0	21	21.0	239	
1,2-Diphenylhydrazine 0 0 0 3 3.0 34.1 Fluoranthene 0 0 40 40.0 455 Fluorene 0 0 N/A N/A N/A Hexachlorobenzene 0 0 N/A N/A N/A Hexachlorobutadiene 0 0 0 2 2.0 22.7 Hexachlorocydopentadiene 0 0 1 1.0 11.4 Hexachlorothane 0 0 12 12.0 136 Indeno(1,2,3-cd)Pyrene 0 0 N/A N/A N/A Isophorone 0 0 1 1.0 23,886 Naphthalene 0 0 43 43.0 489 Nitrobenzene 0 0 0 810 810 92.13 n-Nitrosodimethylamine 0 0 0 0 N/A N/A N/A n-Nitrosodiphenylamine 0 0 0	2,4-Dinitrotoluene	0	0	0	320	320	3,640	
Fluoranthene 0 0 40 40.0 455 Fluorene 0 0 0 N/A N/A N/A Hexachlorobenzene 0 0 0 N/A N/A N/A Hexachlorobutadiene 0 0 0 1 1.0 11.4 Hexachlorocytopentadiene 0 0 0 12 12.0 136 Indeno(1,2,3-cd)Pyrene 0 0 0 N/A N/A N/A Isophorone 0 0 0 2,100 23,886 Naphthalene 0 0 43 43.0 489 Nitrobenzene 0 0 0 810 810 9,213 n-Nitrosodimethylamine 0 0 0 3,400 3,400 38,673 n-Nitrosodiphenylamine 0 0 0 N/A N/A N/A n-Nitrosodiphenylamine 0 0 0 0 69 59.0 671 </td <td>2,6-Dinitrotoluene</td> <td>0</td> <td>0</td> <td>0</td> <td>200</td> <td>200</td> <td>2,275</td> <td></td>	2,6-Dinitrotoluene	0	0	0	200	200	2,275	
Fluorene 0 0 N/A N/A N/A N/A Hexachlorobutadiene 0 0 0 1 0 2 2.0 22.7 Hexachlorocyclopentadiene 0 0 1 1.0 11.4 Hexachloroethane 0 0 12 12.0 138 Indeno(1,2,3-od)Pyrene 0 0 N/A N/A N/A Isophorone 0 0 2,100 2,100 23,886 Naphthalene 0 0 43 43.0 489 Nitrobenzene 0 0 0 810 810 9,213 n-Nitrosodimethylamine 0 0 0 3,400 3,400 38,673 n-Nitrosodiphenylamine 0 0 0 0 69 59.0 671 Phenanthrene 0 0 0 1 1.0 11.4	1,2-Diphenylhydrazine	0	0	0	3	3.0	34.1	
Hexachlorobenzene 0 0 N/A N/A N/A Hexachlorobutadiene 0 0 2 2.0 22.7 Hexachlorocyclopentadiene 0 0 1 1.0 11.4 Hexachloroethane 0 0 0 12 12.0 136 Indeno(1,2,3-cd)Pyrene 0 0 N/A N/A N/A N/A Isophorone 0 0 0 2,100 2,100 23,886 Naphthalene 0 0 43 43.0 489 Nitrobenzene 0 0 810 810 9,213 n-Nitrosodimethylamine 0 0 0 3,400 38,673 n-Nitrosodiphenylamine 0 0 0 59 59.0 671 Phenanthrene 0 0 0 1 1.0 11.4	Fluoranthene	0	0	0	40	40.0	455	
Hexachlorobutadiene 0 0 2 2.0 22.7 Hexachlorocyclopentadiene 0 0 1 1.0 11.4 Hexachloroethane 0 0 12 12.0 136 Indeno(1,2,3-cd)Pyrene 0 0 N/A N/A N/A Isophorone 0 0 2,100 2,100 23,886 Naphthalene 0 0 43 43.0 489 Nitrobenzene 0 0 810 810 9,213 n-Nitrosodimethylamine 0 0 3,400 38,673 n-Nitrosodi-n-Propylamine 0 0 N/A N/A N/A n-Nitrosodiphenylamine 0 0 59 59.0 671 Phenanthrene 0 0 1 1.0 11.4	Fluorene	0	0	0	N/A	N/A	N/A	
Hexachlorocyclopentadiene 0 0 1 1.0 11.4 Hexachloroethane 0 0 12 12.0 136 Indeno(1,2,3-cd)Pyrene 0 0 0 N/A N/A N/A Isophorone 0 0 0 2,100 23,886 Naphthalene 0 0 43 43.0 489 Nitrobenzene 0 0 810 810 9,213 n-Nitrosodimethylamine 0 0 3,400 38,673 n-Nitrosodi-n-Propylamine 0 0 N/A N/A N/A n-Nitrosodiphenylamine 0 0 59 59.0 671 Phenanthrene 0 0 1 1.0 11.4	Hexachlorobenzene	0	0	0	N/A	N/A	N/A	
Hexachloroethane	Hexachlorobutadiene	0	0	0	2	2.0	22.7	
Indeno(1,2,3-od)Pyrene	Hexachlorocyclopentadiene	0	0	0	1	1.0	11.4	
Isophorone	Hexachloroethane	0	0	0	12	12.0	136	
Naphthalene 0 0 43 43.0 489 Nitrobenzene 0 0 810 810 9,213 n-Nitrosodimethylamine 0 0 3,400 38,673 n-Nitrosodin-Propylamine 0 0 N/A N/A N/A n-Nitrosodiphenylamine 0 0 59 59.0 671 Phenanthrene 0 0 1 1.0 11.4	Indeno(1,2,3-cd)Pyrene	0	0	0	N/A	N/A	N/A	
Nitrobenzene 0 0 810 810 9,213 n-Nitrosodimethylamine 0 0 0 3,400 38,673 n-Nitrosodi-n-Propylamine 0 0 0 N/A N/A N/A n-Nitrosodiphenylamine 0 0 59 59.0 671 Phenanthrene 0 0 1 1.0 11.4	Isophorone	0	0	0	2,100	2,100	23,886	
n-Nitrosodimethylamine 0 0 3,400 3,400 38,673 n-Nitrosodi-n-Propylamine 0 0 0 N/A N/A N/A n-Nitrosodiphenylamine 0 0 59 59.0 671 Phenanthrene 0 0 1 1.0 11.4	Naphthalene	0	0	0	43	43.0	489	
n-Nitrosodi-n-Propylamine 0 0 0 N/A N/A N/A n-Nitrosodiphenylamine 0 0 59 59.0 671 Phenanthrene 0 0 1 1.0 11.4	Nitrobenzene	0	0	0	810	810	9,213	
n-Nitrosodiphenylamine 0 0 59 59.0 671 Phenanthrene 0 0 1 1.0 11.4	n-Nitrosodimethylamine	0	0	0	3,400	3,400	38,673	
Phenanthrene 0 0 1 1.0 11.4	n-Nitrosodi-n-Propylamine	0	0	0	N/A	N/A	N/A	
	n-Nitrosodiphenylamine	0	0	0	59	59.0	671	
	Phenanthrene	0	0	0	1	1.0	11.4	
Pyrene 0 0 N/A N/A N/A	Pyrene	0	0	0	N/A	N/A	N/A	
1,2,4-Trichlorobenzene 0 0 0 26 26.0 296	1,2,4-Trichlorobenzene	0	0	0	26	26.0	296	

✓ THH CC		20	PMF:	0.926	Ana	alysis Hardne	ss (mg/l):	N/A Analysis pH: N/A
Pollutants	Conc	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0	100	0	500,000	500,000	N/A	
Chloride (PWS)	0	0		0	250,000	250,000	N/A	
Sulfate (PWS)	0	0		0	250,000	250,000	N/A	
Total Aluminum	0	0		0	N/A	N/A	N/A	
Total Antimony	0	0		0	5.6	5.6	63.7	
Total Arsenic	0	0		0	10	10.0	114	
Total Barium	0	0		0	2,400	2,400	27,298	
Total Boron	0	0		0	3,100	3,100	35,261	
Total Cadmium	0	0		0	N/A	N/A	N/A	
Total Chromium (III)	0	0		0	N/A	N/A	N/A	
Hexavalent Chromium	0	0		0	N/A	N/A	N/A	
Total Cobalt	0	0		0	N/A	N/A	N/A	
Total Copper	0	0		0	N/A	N/A	N/A	
Free Cyanide	0	0		0	4	4.0	45.5	
Dissolved Iron	0	0		0	300	300	3,412	
Total Iron	0	0		0	N/A	N/A	N/A	
Total Lead	0	0		0	N/A	N/A	N/A	
Total Manganese	0	0		0	1,000	1,000	11,374	
Total Mercury	0	0		0	0.050	0.05	0.57	
Total Nickel	0	0		0	610	610	6,938	
Total Phenols (Phenolics) (PWS)	0	0		0	5	5.0	N/A	
Total Selenium	0	0		0	N/A	N/A	N/A	
Total Silver	0	0		0	N/A	N/A	N/A	
Total Thallium	0	0		0	0.24	0.24	2.73	
Total Zinc	0	0		0	N/A	N/A	N/A	
Acrolein	0	0		0	3	3.0	34.1	
Acrylonitrile	0	0		0	N/A	N/A	N/A	
Benzene	0	0		0	N/A	N/A	N/A	
Bromoform	0	0		0	N/A	N/A	N/A	
Carbon Tetrachloride	0	0		0	N/A	N/A	N/A	
Chlorobenzene	0	0		0	100	100.0	1,137	
Chlorodibromomethane	0	0		0	N/A	N/A	N/A	
2-Chloroethyl Vinyl Ether	0	0		0	N/A	N/A	N/A	
Chloroform	0	0		0	N/A	N/A	N/A	
Dichlorobromomethane	0	0		0	N/A	N/A	N/A	
1,2-Dichloroethane	0	0		0	N/A	N/A	N/A	
1,1-Dichloroethylene	0	0		0	33	33.0	375	
1,2-Dichloropropane	0	0		0	N/A	N/A	N/A	
1,3-Dichloropropylene	0	0		0	N/A	N/A	N/A	
Ethylbenzene	0	0		0	68	68.0	773	

Methyl Bromide	0	0		0	100	100.0	1,137	
Methyl Chloride	0	0		0	N/A	N/A	N/A	
Methylene Chloride	0	0	 	0	N/A	N/A	N/A	
1,1,2,2-Tetrachloroethane	0	0		0	N/A	N/A	N/A	
Tetrachloroethylene	0	0		0	N/A	N/A	N/A	
Toluene	0	0		0	57	57.0	648	
1,2-trans-Dichloroethylene	0	0	 	0	100	100.0	1,137	
1,1,1-Trichloroethane	0	0		0	10,000	10.000	113,744	
1.1.2-Trichloroethane	0	0		0	N/A	N/A	N/A	
	0	0		0	N/A N/A	N/A N/A	N/A N/A	
Trichloroethylene	0	0		0	N/A N/A	N/A N/A	N/A	
Vinyl Chloride	_	_		_				
2-Chlorophenol	0	0		0	30	30.0	341	
2,4-Dichlorophenol	0	0		0	10	10.0	114	
2,4-Dimethylphenol	0	0		0	100	100.0	1,137	
4,6-Dinitro-o-Cresol	0	0		0	2	2.0	22.7	
2,4-Dinitrophenol	0	0		0	10	10.0	114	
2-Nitrophenol	0	0		0	N/A	N/A	N/A	
4-Nitrophenol	0	0		0	N/A	N/A	N/A	
p-Chloro-m-Cresol	0	0		0	N/A	N/A	N/A	
Pentachlorophenol	0	0		0	N/A	N/A	N/A	
Phenol	0	0		0	4,000	4,000	45,497	
2,4,6-Trichlorophenol	0	0		0	N/A	N/A	N/A	
Acenaphthene	0	0		0	70	70.0	796	
Anthracene	0	0		0	300	300	3,412	
Benzidine	0	0		0	N/A	N/A	N/A	
Benzo(a)Anthracene	0	0		0	N/A	N/A	N/A	
Benzo(a)Pyrene	0	0		0	N/A	N/A	N/A	
3,4-Benzofluoranthene	0	0		0	N/A	N/A	N/A	
Benzo(k)Fluoranthene	0	0		0	N/A	N/A	N/A	
Bis(2-Chloroethyl)Ether	0	0		0	N/A	N/A	N/A	
Bis(2-Chloroisopropyl)Ether	0	0		0	200	200	2,275	
Bis(2-Ethylhexyl)Phthalate	0	0		0	N/A	N/A	N/A	
4-Bromophenyl Phenyl Ether	0	0		0	N/A	N/A	N/A	
Butyl Benzyl Phthalate	0	0		0	0.1	0.1	1.14	
2-Chloronaphthalene	0	0		0	800	800	9,099	
Chrysene	0	0		0	N/A	N/A	N/A	
Dibenzo(a,h)Anthrancene	0	0		0	N/A	N/A	N/A	
1,2-Dichlorobenzene	0	0		0	1,000	1,000	11,374	
1,3-Dichlorobenzene	0	0		0	7	7.0	79.6	
1,4-Dichlorobenzene	0	0		0	300	300	3,412	
3,3-Dichlorobenzidine	0	0		0	N/A	N/A	N/A	
Diethyl Phthalate	0	0		0	600	600	6,825	
Dimethyl Phthalate	0	0		0	2,000	2,000	22,749	
Di-n-Butyl Phthalate	0	0		0	20	20.0	227	
2.4-Dinitrotoluene	0	0		0	N/A	N/A	N/A	
Z,T-Dillidoloidelle				U	DUZ	TWA	DIFF	

2,6-Dinitrotoluene	0	0	0	N/A	N/A	N/A	
1,2-Diphenylhydrazine	0	0	0	N/A	N/A	N/A	
Fluoranthene	0	0	0	20	20.0	227	
Fluorene	0	0	0	50	50.0	569	
Hexachlorobenzene	0	0	0	N/A	N/A	N/A	
Hexachlorobutadiene	0	0	0	N/A	N/A	N/A	
Hexachlorocyclopentadiene	0	0	0	4	4.0	45.5	
Hexachloroethane	0	0	0	N/A	N/A	N/A	
Indeno(1,2,3-cd)Pyrene	0	0	0	N/A	N/A	N/A	
Isophorone	0	0	0	34	34.0	387	
Naphthalene	0	0	0	N/A	N/A	N/A	
Nitrobenzene	0	0	0	10	10.0	114	
n-Nitrosodimethylamine	0	0	0	N/A	N/A	N/A	
n-Nitrosodi-n-Propylamine	0	0	0	N/A	N/A	N/A	
n-Nitrosodiphenylamine	0	0	0	N/A	N/A	N/A	
Phenanthrene	0	0	0	N/A	N/A	N/A	
Pyrene	0	0	0	20	20.0	227	
1,2,4-Trichlorobenzene	0	0	0	0.07	0.07	0.8	

☑ CRL	CCT (min): ##	******	PMF:	1	Ana	alysis Hardne	ess (mg/l):	N/A Analysis pH: N/A
Pollutants	Conc	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A	
Chloride (PWS)	0	0		0	N/A	N/A	N/A	
Sulfate (PWS)	0	0		0	N/A	N/A	N/A	
Total Aluminum	0	0		0	N/A	N/A	N/A	
Total Antimony	0	0		0	N/A	N/A	N/A	
Total Arsenic	0	0		0	N/A	N/A	N/A	
Total Barium	0	0		0	N/A	N/A	N/A	
Total Boron	0	0		0	N/A	N/A	N/A	
Total Cadmium	0	0		0	N/A	N/A	N/A	
Total Chromium (III)	0	0		0	N/A	N/A	N/A	
Hexavalent Chromium	0	0		0	N/A	N/A	N/A	
Total Cobalt	0	0		0	N/A	N/A	N/A	
Total Copper	0	0		0	N/A	N/A	N/A	
Free Cyanide	0	0		0	N/A	N/A	N/A	
Dissolved Iron	0	0		0	N/A	N/A	N/A	
Total Iron	0	0		0	N/A	N/A	N/A	
Total Lead	0	0		0	N/A	N/A	N/A	
Total Manganese	0	0		0	N/A	N/A	N/A	
Total Mercury	0	0		0	N/A	N/A	N/A	
Total Nickel	0	0		0	N/A	N/A	N/A	
Total Phenols (Phenolics) (PWS	0	0		0	N/A	N/A	N/A	
Total Selenium	0	0		0	N/A	N/A	N/A	

Total Silver	0	0	0	N/A	N/A	N/A	
Total Thallium	0	0	0	N/A	N/A	N/A	
Total Zinc	0	0	0	N/A	N/A	N/A	
Acrolein	0	0	0	N/A	N/A	N/A	
Acrylonitrile	0	0	0	0.06	0.06	2.95	
Benzene	0	0	0	0.58	0.58	28.6	
Bromoform	0	0	0	7	7.0	345	
Carbon Tetrachloride	0	0	0	0.4	0.4	19.7	
Chlorobenzene	0	0	0	N/A	N/A	N/A	
Chlorodibromomethane	0	0	0	0.8	0.8	39.4	
2-Chloroethyl Vinyl Ether	0	0	0	N/A	N/A	N/A	
Chloroform	0	0	0	5.7	5.7	281	
Dichlorobromomethane	0	0	0	0.95	0.95	46.8	
1,2-Dichloroethane	0	0	0	9.9	9.9	487	
1,1-Dichloroethylene	0	0	0	N/A	N/A	N/A	
1,2-Dichloropropane	0	0	0	0.9	0.9	44.3	
1,3-Dichloropropylene	0	0	0	0.27	0.27	13.3	
Ethylbenzene	0	0	0	N/A	N/A	N/A	
Methyl Bromide	0	0	0	N/A	N/A	N/A	
Methyl Chloride	0	0	0	N/A	N/A	N/A	
Methylene Chloride	0	0	0	20	20.0	985	
1,1,2,2-Tetrachloroethane	0	0	0	0.2	0.2	9.85	
Tetrachloroethylene	0	0	0	10	10.0	492	
Toluene	0	0	0	N/A	N/A	N/A	
1,2-trans-Dichloroethylene	0	0	0	N/A	N/A	N/A	
1,1,1-Trichloroethane	0	0	0	N/A	N/A	N/A	
1,1,2-Trichloroethane	0	0	0	0.55	0.55	27.1	
Trichloroethylene	0	0	0	0.6	0.6	29.5	
Vinyl Chloride	0	0	0	0.02	0.02	0.98	
2-Chlorophenol	0	0	0	N/A	N/A	N/A	
2,4-Dichlorophenol	0	0	0	N/A	N/A	N/A	
2,4-Dimethylphenol	0	0	0	N/A	N/A	N/A	
4,6-Dinitro-o-Cresol	0	0	0	N/A	N/A	N/A	
2,4-Dinitrophenol	0	0	0	N/A	N/A	N/A	
2-Nitrophenol	0	0	0	N/A	N/A	N/A	
4-Nitrophenol	0	0	0	N/A	N/A	N/A	
p-Chloro-m-Cresol	0	0	0	N/A	N/A	N/A	
Pentachlorophenol	0	0	0	0.030	0.03	1.48	
Phenol	0	0	0	N/A	N/A	N/A	
2,4,6-Trichlorophenol	0	0	0	1.5	1.5	73.9	
Acenaphthene	0	0	0	N/A	N/A	N/A	
Anthracene	0	0	0	N/A	N/A	N/A	
Benzidine	0	0	0	0.0001	0.0001	0.005	
Benzo(a)Anthracene	0	0	0	0.001	0.001	0.049	

3,4-Benzofluoranthene	0	0	0	0.001	0.001	0.049	
Benzo(k)Fluoranthene	0	0	0	0.01	0.01	0.49	
Bis(2-Chloroethyl)Ether	0	0	0	0.03	0.03	1.48	
Bis(2-Chloroisopropyl)Ether	0	0	0	N/A	N/A	N/A	
Bis(2-Ethylhexyl)Phthalate	0	0	0	0.32	0.32	15.8	
4-Bromophenyl Phenyl Ether	0	0	0	N/A	N/A	N/A	
Butyl Benzyl Phthalate	0	0	0	N/A	N/A	N/A	
2-Chloronaphthalene	0	0	0	N/A	N/A	N/A	
Chrysene	0	0	0	0.12	0.12	5.91	
Dibenzo(a,h)Anthrancene	0	0	0	0.0001	0.0001	0.005	
1,2-Dichlorobenzene	0	0	0	N/A	N/A	N/A	
1,3-Dichlorobenzene	0	0	- 0	N/A	N/A	N/A	
1,4-Dichlorobenzene	0	0	0	N/A	N/A	N/A	
3,3-Dichlorobenzidine	0	0	0	0.05	0.05	2.46	
Diethyl Phthalate	0	0	0	N/A	N/A	N/A	
Dimethyl Phthalate	0	0	0	N/A	N/A	N/A	
Di-n-Butyl Phthalate	0	0	0	N/A	N/A	N/A	
2,4-Dinitrotoluene	0	0	0	0.05	0.05	2.46	
2,6-Dinitrotoluene	0	0	0	0.05	0.05	2.46	
1,2-Diphenylhydrazine	0	0	0	0.03	0.03	1.48	
Fluoranthene	0	0	0	N/A	N/A	N/A	
Fluorene	0	0	0	N/A	N/A	N/A	
Hexachlorobenzene	0	0	0	0.00008	0.00008	0.004	
Hexachlorobutadiene	0	0	0	0.01	0.01	0.49	
Hexachlorocyclopentadiene	0	0	0	N/A	N/A	N/A	
Hexachloroethane	0	0	0	0.1	0.1	4.92	
Indeno(1,2,3-cd)Pyrene	0	0	- 0	0.001	0.001	0.049	
Isophorone	0	0	0	N/A	N/A	N/A	
Naphthalene	0	0	0	N/A	N/A	N/A	
Nitrobenzene	0	0	0	N/A	N/A	N/A	
n-Nitrosodimethylamine	0	0	0	0.0007	0.0007	0.034	
n-Nitrosodi-n-Propylamine	0	0	0	0.005	0.005	0.25	
n-Nitrosodiphenylamine	0	0	0	3.3	3.3	162	
Phenanthrene	0	0	0	N/A	N/A	N/A	
Pyrene	0	0	- 0	N/A	N/A	N/A	
1,2,4-Trichlorobenzene	0	0	0	N/A	N/A	N/A	

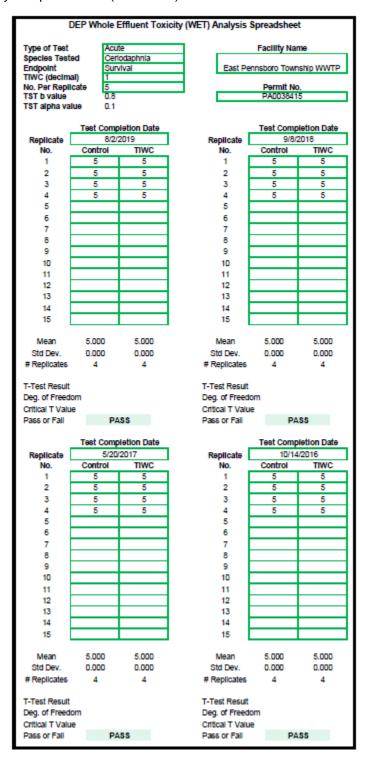
☑ Recommended WQBELs & Monitoring Requirements

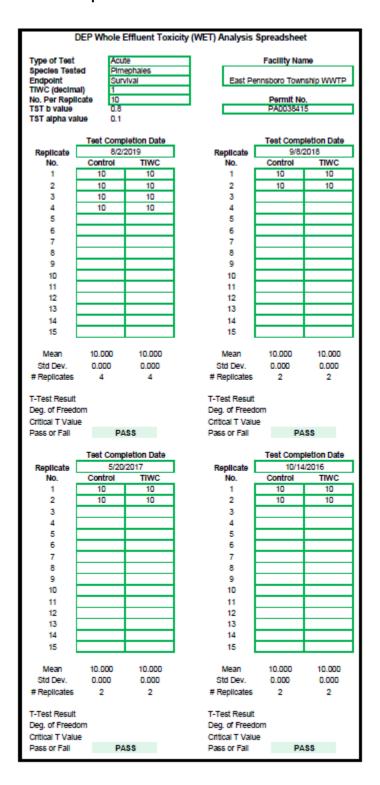
No. Samples/Month: 4

	Mass	Limits		Concentra	ation Limits				
Pollutants	AML (lbs/day)	MDL (lbs/day)	AML	MDL	IMAX	Units	Governing WQBEL	WQBEL Basis	Comments
Total Aluminum	Report	Report	Report	Report	Report	μg/L	1,201	AFC	Discharge Conc > 10% WQBEL (no RP)

Total Copper	1.48	2.31	40.4	63.0	101	μg/L	40.4	AFC	Discharge Conc ≥ 50% WQBEL (RP)
Total Zinc	12.0	18.6	326	508	814	μg/L	326	AFC	Discharge Conc ≥ 50% WQBEL (RP)

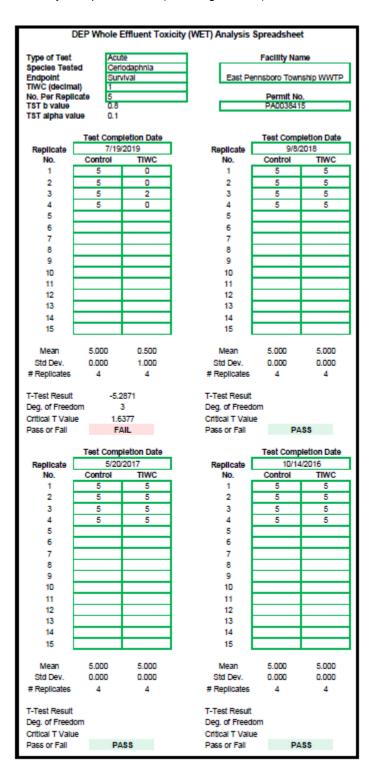
Other Pollutants without Limits or Monitoring

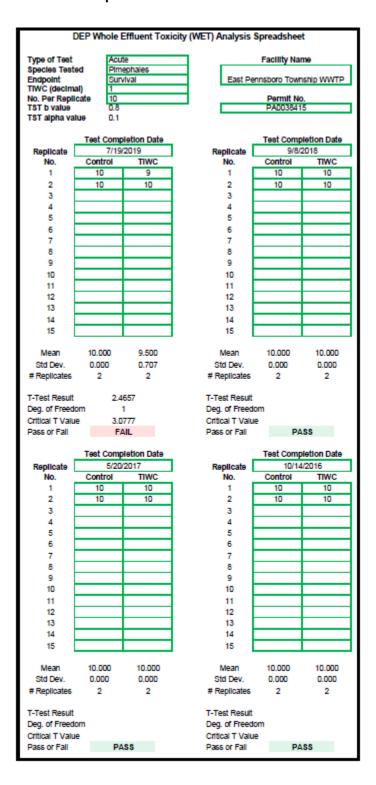

The following pollutants do not require effluent limits or monitoring based on water quality because reasonable potential to exceed water quality criteria was not determined and the discharge concentration was less than thresholds for monitoring, or the pollutant was not detected and a sufficiently sensitive analytical method was used (e.g., <= Target QL).


Pollutants	Governing WQBEL	Units	Comments
Total Dissolved Solids (PWS)	N/A	N/A	PWS Not Applicable
Chloride (PWS)	N/A	N/A	PWS Not Applicable
Bromide	N/A	N/A	No WQS
Sulfate (PWS)	N/A	N/A	PWS Not Applicable
Total Antimony	N/A	N/A	Discharge Conc < TQL
Total Arsenic	N/A	N/A	Discharge Conc < TQL
Total Barium	27,298	μg/L	Discharge Conc ≤ 10% WQBEL
Total Beryllium	N/A	N/A	No WQS
Total Boron	12,966	μg/L	Discharge Conc ≤ 10% WQBEL
Total Cadmium	4.79	μg/L	Discharge Conc < TQL
Total Chromium (III)	1,597	μg/L	Discharge Conc < TQL
Hexavalent Chromium	26.1	μg/L	Discharge Conc < TQL
Total Cobalt	152	μg/L	Discharge Conc < TQL
Free Cyanide	35.2	μg/L	Discharge Conc ≤ 25% WQBEL
Total Cyanide	N/A	N/A	No WQS
Dissolved Iron	3,412	μg/L	Discharge Conc < TQL
Total Iron	18,314	μg/L	Discharge Conc ≤ 10% WQBEL
Total Lead	77.3	μg/L	Discharge Conc < TQL
Total Manganese	11,374	μg/L	Discharge Conc ≤ 10% WQBEL
Total Mercury	0.57	μg/L	Discharge Conc ≤ 10% WQBEL
Total Nickel	982	μg/L	Discharge Conc < TQL
Total Phenols (Phenolics) (PWS)		μg/L	Discharge Conc < TQL
Total Selenium	56.7	μg/L	Discharge Conc < TQL
Total Silver	17.7	μg/L	Discharge Conc < TQL
Total Thallium	2.73	μg/L	Discharge Conc < TQL
Total Molybdenum	N/A	N/A	No WQS
Acrolein	4.8	μg/L	Discharge Conc < TQL
Acrylonitrile	2.95	μg/L	Discharge Conc < TQL
Benzene	28.6	μg/L	Discharge Conc < TQL
Bromoform	345	μg/L	Discharge Conc < TQL
Carbon Tetrachloride	19.7	μg/L	Discharge Conc < TQL
Chlorobenzene	1,137	μg/L	Discharge Conc ≤ 25% WQBEL
Chlorodibromomethane	39.4	μg/L	Discharge Conc < TQL
Chloroethane	N/A	N/A	No WQS
2-Chloroethyl Vinyl Ether	28,813	μg/L	Discharge Conc < TQL

Chloroform	281	μg/L	Discharge Conc ≤ 25% WQBEL
Dichlorobromomethane	46.8	μg/L	Discharge Conc ≤ 25% WQBEL
1,1-Dichloroethane	N/A	N/A	No WQS
1,2-Dichloroethane	487	μg/L	Discharge Conc < TQL
1,1-Dichloroethylene	375	μg/L	Discharge Conc < TQL
1,2-Dichloropropane	44.3	μg/L	Discharge Conc < TQL
1,3-Dichloropropylene	13.3	μg/L	Discharge Conc < TQL
1,4-Dioxane	N/A	N/A	No WQS
Ethylbenzene	773	μg/L	Discharge Conc < TQL
Methyl Bromide	880	μg/L	Discharge Conc < TQL
Methyl Chloride	44,821	μg/L	Discharge Conc < TQL
Methylene Chloride	985	μg/L	Discharge Conc < TQL
1,1,2,2-Tetrachloroethane	9.85	μg/L	Discharge Conc < TQL
Tetrachloroethylene	492	μg/L	Discharge Conc < TQL
Toluene	648	μg/L	Discharge Conc < TQL
1,2-trans-Dichloroethylene	1,137	μg/L	Discharge Conc < TQL
1,1,1-Trichloroethane	4,802	μg/L	Discharge Conc < TQL
1,1,2-Trichloroethane	27.1	μg/L	Discharge Conc < TQL
Trichloroethylene	29.5	μg/L	Discharge Conc < TQL
Vinyl Chloride	0.98	μg/L	Discharge Conc < TQL
2-Chlorophenol	341	μg/L	Discharge Conc < TQL
2,4-Dichlorophenol	114	μg/L	Discharge Conc < TQL
2,4-Dimethylphenol	1,056	μg/L	Discharge Conc < TQL
4,6-Dinitro-o-Cresol	22.7	μg/L	Discharge Conc < TQL
2,4-Dinitrophenol	114	μg/L	Discharge Conc < TQL
2-Nitrophenol	12,806	μg/L	Discharge Conc < TQL
4-Nitrophenol	3,682	μg/L	Discharge Conc < TQL
p-Chloro-m-Cresol	256	μg/L	Discharge Conc < TQL
Pentachlorophenol	1.48	μg/L	Discharge Conc < TQL
Phenol	45,497	μg/L	Discharge Conc < TQL
2,4,6-Trichlorophenol	73.9	μg/L	Discharge Conc < TQL
Acenaphthene	133	μg/L	Discharge Conc < TQL
Acenaphthylene	N/A	N/A	No WQS
Anthracene	3,412	μg/L	Discharge Conc < TQL
Benzidine	0.005	μg/L	Discharge Conc < TQL
Benzo(a)Anthracene	0.049	μg/L	Discharge Conc < TQL
Benzo(a)Pyrene	0.005	μg/L	Discharge Conc < TQL
3,4-Benzofluoranthene	0.049	μg/L	Discharge Conc < TQL
Benzo(ghi)Perylene	N/A	N/A	No WQS
Benzo(k)Fluoranthene	0.49	μg/L	Discharge Conc < TQL
Bis(2-Chloroethoxy)Methane	N/A	N/A	No WQS
Bis(2-Chloroethyl)Ether	1.48	μg/L	Discharge Conc < TQL
Bis(2-Chloroisopropyl)Ether	2,275	μg/L	Discharge Conc < TQL
Bis(2-Ethylhexyl)Phthalate	15.8	μg/L	Discharge Conc < TQL
4-Bromophenyl Phenyl Ether	432	μg/L	Discharge Conc < TQL

Butyl Benzyl Phthalate	1.14	μg/L	Discharge Conc < TQL
2-Chloronaphthalene	9,099	μg/L	Discharge Conc < TQL
4-Chlorophenyl Phenyl Ether	N/A	N/A	No WQS
Chrysene	5.91	μg/L	Discharge Conc < TQL
Dibenzo(a,h)Anthrancene	0.005	μg/L	Discharge Conc < TQL
1,2-Dichlorobenzene	1,313	μg/L	Discharge Conc < TQL
1,3-Dichlorobenzene	79.6	μg/L	Discharge Conc < TQL
1,4-Dichlorobenzene	1,169	μg/L	Discharge Conc < TQL
3,3-Dichlorobenzidine	2.46	μg/L	Discharge Conc < TQL
Diethyl Phthalate	6,403	μg/L	Discharge Conc < TQL
Dimethyl Phthalate	4,002	μg/L	Discharge Conc < TQL
Di-n-Butyl Phthalate	176	μg/L	Discharge Conc < TQL
2,4-Dinitrotoluene	2.46	μg/L	Discharge Conc < TQL
2,6-Dinitrotoluene	2.46	μg/L	Discharge Conc < TQL
Di-n-Octyl Phthalate	N/A	N/A	No WQS
1,2-Diphenylhydrazine	1.48	μg/L	Discharge Conc < TQL
Fluoranthene	227	μg/L	Discharge Conc < TQL
Fluorene	569	μg/L	Discharge Conc < TQL
Hexachlorobenzene	0.004	μg/L	Discharge Conc < TQL
Hexachlorobutadiene	0.49	μg/L	Discharge Conc < TQL
Hexachlorocyclopentadiene	8.0	μg/L	Discharge Conc < TQL
Hexachloroethane	4.92	μg/L	Discharge Conc < TQL
Indeno(1,2,3-cd)Pyrene	0.049	μg/L	Discharge Conc < TQL
Isophorone	387	μg/L	Discharge Conc < TQL
Naphthalene	224	μg/L	Discharge Conc < TQL
Nitrobenzene	114	μg/L	Discharge Conc < TQL
n-Nitrosodimethylamine	0.034	μg/L	Discharge Conc < TQL
n-Nitrosodi-n-Propylamine	0.25	μg/L	Discharge Conc < TQL
n-Nitrosodiphenylamine	162	μg/L	Discharge Conc < TQL
Phenanthrene	8.0	μg/L	Discharge Conc < TQL
Pyrene	227	μg/L	Discharge Conc < TQL
1,2,4-Trichlorobenzene	0.8	μg/L	Discharge Conc < TQL


5. WET Analysis Spreadsheet (with retest)



WET Summary and Evaluation								
Facility Name	East Pennsboro Township WWTP							
Permit No. Design Flow (MGD)	PA0038415 4.4	——						
Q ₇₋₁₀ Flow (cfs)	76.3	——						
PMF _a	0.134	——						
PMF _e	0.134							
LIMIL ^C	0.920							
			Test Results	s (Pass/Fail)				
		Test Date	Test Date	Test Date	Test Date			
Species	Endpoint	8/2/19	9/8/18	5/20/17	10/14/16			
Ceriodaphnia	Survival	PASS	PASS	PASS	PASS			
	-	-						
		Toot Date		s (Pass/Fail)	Test Date			
Species	Endpoint	Test Date 8/2/19	Test Date 9/8/18	Test Date 5/20/17	Test Date 10/14/16			
Species Pimephales	Endpoint Survival	PASS	PASS	PASS	PASS			
ППОрнасо	Ourviva	IACC	1700	1700	TAGO			
	T		Test Results	s (Pass/Fail)				
		Test Date	Test Date	Test Date	Test Date			
Species	Endpoint							
		Т	Toet Doeult	s (Pass/Fail)				
i		Test Date	Test Date	Test Date	Test Date			
Species	Endpoint	1000 0000	1000 2000	1000 2000	1601 2413			
	Late way							
Reasonable Potentia	il? NO	I control of the cont						
Permit Recommenda Test Type TIWC Dilution Series Permit Limit	ntions Chronic 9 4, 9, None	% Effluent	% Effluent					
Permit Limit Species								

6. WET Analysis Spreadsheet (with original test)

WET Summary and Evaluation								
Facility Name	East Pennsboro Township WWTP							
Permit No.	PA0038415							
Design Flow (MGD)	4.4 76.3							
Q ₇₋₁₀ Flow (cfs) PMF。	0.134							
PMF _e	0.134							
r wir c	0.320							
	Test Results (Pass/Fail)							
		Test Date	Test Date	Test Date	Test Date			
Species	Endpoint	7/19/19	9/8/18	5/20/17	10/14/16			
Ceriodaphnia	Survival	FAIL	PASS	PASS	PASS			
	1	ı	T . D . I	/D /E !!\				
		Test Results (Pass/Fail) Test Date Test Date Test Date						
Species	Endpoint	7/19/19	9/8/18	5/20/17	10/14/16			
Pimephales	Survival	FAIL	PASS	PASS	PASS			
	!							
		Test Results (Pass/Fail)						
		Test Date	Test Date	Test Date	Test Date			
Species	Endpoint							
		Test Results (Pass/Fail)						
		Test Date	Test Date	Test Date	Test Date			
Species	Endpoint							
Reasonable Potential? YES								
Reasonable Potentia	i: iLo	,						
Permit Recommendations								
Test Type	Acute							
TIWC	100	% Effluent						
Dilution Series		70, 90, 100	% Effluent					
Permit Limit Permit Limit Species	1.0 TUa Ceridaphnia dubia, Pimephales promelas							
Tomic Emic Opedies Certalprina advia, Finiepriales prometas								