

Application Type	Renewal
Facility Type	Non- Municipal
Major / Minor	Minor

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

 Application No.
 PA0041220

 APS ID
 967533

 Authorization ID
 1438669

Applicant and Facility Information

Applicant Name	Hershey Rv Park & Lodging LLC		Facility Name	Hershey RV Park & Lodging
Applicant Address	PO Box 544	Box 544		1688 Hershey Road
	Glenmoore, PA 193	43		Elizabethtown, PA 17022-8919
Applicant Contact	Gary Ott	Gary Ott		Gary Ott
Applicant Phone	(610) 506-1121		Facility Phone	(610) 506-1121
Client ID	342854		Site ID	2101
Ch 94 Load Status	Not Overloaded		Municipality	Conewago Township
Connection Status			County	Dauphin
Date Application Recei	ved <u>May 4, 202</u>	23	EPA Waived?	Yes
Date Application Accept	oted May 17, 20	23	If No, Reason	
Purpose of Application	NPDES pe	rmit renewal		

Summary of Review

1.0 General Discussion

This fact sheet supports the renewal of an existing NPDES permit for the discharge of treated sewage from Hershey RV Park formerly known as Hershey Conewago Recreational (HRC) wastewater treatment facility. The facility was purchased by Hershey RV Park & Lodging LLC and owns and operates the facility. The facility treats sewage from the Conewago Valley Motor Inn, the Oak Knoll Estates Mobile Home Park, and the KOA Campground. A new wastewater treatment plant has been built to replace the old malfunctioning wastewater treatment during last permit cycle. The facility has a design capacity of 0.048MGD and discharges to an UNT to Conewago Creek which is classified for trout stocking (TSF). The facility owner and the other contributors to the wastewater treatment plant have addressed excessive infiltration and inflow to the wastewater treatment. The existing NPDES permit was issued on October 29, 2018 with effective date of November 1, 2018 and expiration date of October 31, 2023. The applicant submitted an administratively complete NPDES renewal application to the Department and is currently operating under the terms and conditions in the existing permit under administrative extension provisions pending Department action on the renewal application. A topographic map showing the discharge location is presented in attachment A.

1.1 Sludge use and disposal description and location(s):

Sludge is hold up in an aerobic digester and hauled out by a licensed hauler periodically

Approve	Deny	Signatures	Date
х		<i>J. Pascal Kwedza</i> J. Pascal Kwedza, P.E. / Environmental Engineer	May 15, 2024
х		Maria D. Bebenek for Daniel W. Martin, P.E. / Environmental Engineer Manager	May 15, 2024
х		Maria D. Bebenek Maria D. Bebenek, P.E. / Program Manager	May 15, 2024

Summary of Review

1.2 Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

1.3 Changes to the existing Permit

Annual E. Coli monitoring has been added.

1.4 Discharge, Receiving Waters and Water Supply In	formation				
Outfall No. 001	Design Flow (MGD)	.048			
Latitude 40° 11' 52.98"	Longitude	<u>-76º 36' 36.67"</u>			
Quad Name	Quad Code				
Wastewater Description: Sewage Effluent					
Unnamed Tributary to Conewago					
Receiving Waters Creek	Stream Code	09625			
NHD Com ID 56404075	RMI	0.70			
Drainage Area 1.9	Yield (cfs/mi ²)	0.11			
Q ₇₋₁₀ Flow (cfs)0.21	Q7-10 Basis				
Elevation (ft)	Slope (ft/ft)				
Watershed No. 7-G	Chapter 93 Class.	TSF			
Existing Use	Existing Use Qualifier				
Exceptions to Use	Exceptions to Criteria				
Assessment Status Impaired					
Cause(s) of Impairment Nutrients, Siltation					
Source(s) of Impairment <u>Agriculture, Agriculture</u>					
TMDL Status Final	Name Conewago (Creek Watershed			
Pookaround/Ambient Data	Data Source				
pH (SU)	Data Source				
Temperature (°F)	<u> </u>				
Hardness (mg/L)					
Other:					
Nearest Downstream Public Water Supply Intake	Columbia Borough				
PWS Waters Susquehanna River	Flow at Intake (cfs)				
PWS RMI	Distance from Outfall (mi)	25			

Changes Since Last Permit Issuance: None

1.4.1 Water Supply Intake:

The nearest water supply intake is approximately 25 miles downstream at Columbia Borough, Lancaster County located on the Susquehanna River by the Columbia Water Company. No adverse impact is expected from this discharge.

2.1 Treatment Facility Summary										
Treatment Facility Na	me: Hershey Rv Park & Lo	dging								
WQM Permit No.	Issuance Date									
2218404	10/3/2019									
2294412	12/28/1994									
	Degree of			Avg Annual						
Waste Type	Treatment	Process Type	Disinfection	Flow (MGD)						
	Secondary With Ammonia And									
Sewage	Phosphorus	Activated Sludge	Hypochlorite	0.048						
Hydraulic Capacity	Organic Capacity			Biosolids						
(MGD)	(lbs/day)	Load Status	Biosolids Treatment	Use/Disposal						
0.048		Not Overloaded								

Changes Since Last Permit Issuance: A new treatment plant was built to replace the old treatment plant.

2.1 Treatment facility

The treatment facility consists of:

- Raw influent screening and grinding (existing)
- Influent Pumping Station (250 gpm @ 20' TDH, duplex submersibles)
- EQ Tank (20,600-gal effective volume)
- EQ Pumping Station (90 gpm @ 15' TDH, duplex submersibles)
- Extended Aeration Reactors (52,442-gal capacity over two trains)
- Secondary Clarifiers (168 ft²) over two clarifiers
- Tablet Chlorinator (1,042 gal)
- Tablet De-Chlorinator (0.050 mgd capacity)
- Sludge Holding Tank (11,600 gal)
- Effluent Flow Metering
- Chemical Feed Systems (Alum)

3.0 Existing Effluent Limitations and Monitoring Requirements

		Monitoring Requirements						
Baramatar	Mass Uni	ts (Ibs/day)		Concentrat	ions (mg/L)		Minimum	Required
Falameter	Average	Average		Average		Instant.	Measurement	Sample
	Monthly	Weekly	Minimum	Monthly	Maximum	Maximum	Frequency	Туре
		Report						
Flow (MGD)	Report	Daily Max	XXX	XXX	XXX	XXX	Continuous	Measured
			6.0		9.0			
pH (S.U.)	XXX	XXX	Daily Min	XXX	Daily Max	XXX	1/day	Grab
			5.0					
DO	XXX	XXX	Daily Min	XXX	XXX	XXX	1/day	Grab
TPC	XXX	XXX	XXX	0.4	XXX	1.4	1/day	Grah
	~~~	~~~	~~~	0.4	~~~~	1.4	1/uay	
CBOD5	XXX	XXX	XXX	25	XXX	50	2/month	Composite
	7000	7007	7000	20	7007	00	2/110/101	24-Hr
TSS	XXX	XXX	XXX	30	XXX	60	2/month	Composite
Fecal Coliform (No./100 ml)				2000				
Oct 1 - Apr 30	XXX	XXX	XXX	Geo Mean	XXX	10000	2/month	Grab
Fecal Coliform (No./100 ml)				200				
May 1 - Sep 30	XXX	XXX	XXX	Geo Mean	XXX	1000	2/month	Grab
	2004							
E. Coli (No./100 ml)	XXX	XXX	XXX	XXX	XXX	Report	1/year	Grab
Nitroto Nitrito	VVV	VVV	VVV	Denert	VVV	VVV	Q/magneth	24-Hr
Nitrate-Mitrite	^^^	^^^	~~~	Кероп	~~~	~~~	Z/monun	Composite
Total Nitrogen	XXX	XXX	XXX	Report	XXX	XXX	2/month	Calculation
Ammonia								24-Hr
Nov 1 - Apr 30	XXX	XXX	XXX	15.0	XXX	30	2/month	Composite
Ammonia								24-Hr
May 1 - Oct 31	XXX	XXX	XXX	5.0	XXX	10	2/month	Composite
								24-Hr
TKN	XXX	XXX	XXX	Report	XXX	XXX	2/month	Composite
								24-Hr
Total Phosphorus	XXX	XXX	XXX	2.0	XXX	4	2/month	Composite
		292.1						
Total Phosphorus (lbs/year)	XXX	Total Annual	XXX	XXX	XXX	XXX	1/year	Calculation

## 3.1 Compliance History

## 3.1.1 DMR Data for Outfall 001 (from April 1, 2023 to March 31, 2024)

Parameter	MAR-24	FEB-24	JAN-24	DEC-23	NOV-23	OCT-23	SEP-23	AUG-23	JUL-23	JUN-23	MAY-23	APR-23
Flow (MGD)												
Average Monthly	0.02	0.018	0.022	0.0019	0.016	0.017	0.016	0.015	0.015	0.011	0.011	0.013
Flow (MGD)												
Daily Maximum	0.026	0.022	0.032	0.0038	0.024	0.024	0.025	0.02	0.021	0.018	0.017	0.018
pH (S.U.)												
Daily Minimum	6.8	6.9	7.0	6.8	6.6	6.6	6.7	6.5	6.6	6.5	6.7	6.7
pH (S.U.)												
Daily Maximum	7.2	7.2	7.3	7.2	7.2	7.5	7.7	7.1	7.1	7.1	7.5	7.3
DO (mg/L)												
Daily Minimum	8.3	8.1	7.3	7.3	7.5	6.9	6.4	6.5	6.1	6.1	6.0	6.5
TRC (mg/L)												
Average Monthly	0.2	< 0.17	< 0.19	0.18	0.25	0.23	0.2	0.12	0.11	< 0.19	< 0.11	0.12
TRC (mg/L)												
Instantaneous												
Maximum	0.34	0.36	0.36	0.38	0.38	0.39	0.38	0.38	0.37	0.38	0.38	0.38
CBOD5 (mg/L)												
Average Monthly	< 7.5	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2.2
TSS (mg/L)												
Average Monthly	< 5	< 5	< 5	< 5	< 6	< 5	< 6	< 6	6	< 7	< 6	7
Fecal Coliform												
(No./100 ml)												
Geometric Mean	< 1	< 1	< 1	1	< 1	3	< 2	4	4	< 2	< 20	3
Fecal Coliform												
(No./100 ml)												
Instant. Maximum	< 1	< 1	< 1	2	< 1	9	6	8	6	5	411	5
Nitrate-Nitrite (mg/L)												
Average Monthly	26.8	16.6	10.62	27.2	22.9	30.2	31.8	29.5	28.8	28.2	17.1	26.3
Total Nitrogen (mg/L)												
Average Monthly	< 27.8	< 17.6	< 11.6	< 28.2	< 23.9	< 31.2	< 32.8	< 30.5	< 29.8	< 29.2	< 18.1	< 27.9
Ammonia (mg/L)							/ -					
Average Monthly	< 0.167	< 0.1	< 0.1	0.548	0.289	< 0.186	0.348	< 0.1	< 0.187	1.349	1.317	1.039
TKN (mg/L)		_										
Average Monthly	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1.6
Total Phosphorus												
(lbs/year) Total Annual				< 12.4								
Total Phosphorus												
(mg/L) Average												
Monthly	0.16	< 0.12	0.15	0.24	0.51	0.31	0.53	0.78	< 0.1	0.31	0.37	0.26

#### NPDES Permit Fact Sheet Hershey Rv Park & Lodging

#### NPDES Permit No. PA0041220

## 3.1.2 Summary of Discharge Monitoring Reports (DMRs):

DMRs reviewed for the facility for the last 12 months of operation, presented on the table above in section 3.1.1 indicate permit limits have been met consistently. No effluent violations were noted on DMRs for the period reviewed.

### 3.1.3 Summary of Inspections:

The facility has been inspected a couple times during last permit cycle. No effluent violations were found during plant inspections. The facility is operated and maintained well.

#### 4.0 Development of Effluent Limitations

Outfall No.	001	Design Flow (MGD)	.048
Latitude	40º 11' 52.97"	Longitude	-76º 36' 36.96"
Wastewater De	escription: Sewage Effluent		

#### 4.1 Basis for Effluent Limitations

In general, the Clean Water Act (CWA) requires that the effluent limits for a particular pollutant be the more stringent of either technology-based limits or water quality-based limits. Technology-based limits are set according to the level of treatment that is achievable using available technology. A water quality-based effluent limit is designed to ensure that the water quality standards applicable to a waterbody are being met and may be more stringent than technology-based effluent limits.

#### **4.2 Technology-Based Limitations**

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Pollutant	Limit (mg/l)	SBC	Federal Regulation	State Regulation
CROD-	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
CBOD5	40	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)
Total Suspended	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
Solids	45	Average Weekly	133.102(b)(2)	92a.47(a)(2)
рН	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform				
(5/1 – 9/30)	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
Fecal Coliform				
(5/1 – 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform				
(10/1 – 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
Fecal Coliform				
(10/1 – 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)
Total Residual Chlorine	0.5	Average Monthly	-	92a.48(b)(2)

Comments: Weekly averages are not applicable to this discharge.

#### 4.3 Water Quality-Based Limitations

### 4.3.1 WQM 7.0 Stream Model

WQM 7.0 is a water quality model DEP utilizes to establish appropriate effluent limits for CBOD₅, NH₃-N and DO in permits. The model simulates mixing and degradation of NH₃-N in the stream and compares calculated instream NH₃-N concentrations to NH₃-N water quality criteria and also simulates mixing and consumption of D.O. in the stream due to the degradation of CBOD₅ and NH₃N and compares calculated instream D.O. concentrations to D.O. water quality criteria and recommends effluent limits.

#### 4.3.2 Receiving Stream

The receiving stream is an unnamed tributary of Conewago Creek. According to 25 PA § 93.90, this stream is protected for Trout Stocking (TSF) and Migratory Fishes (MF). It is located in Drainage List O and State Watershed 7-G. It has been assigned stream code 09265. According to the Department's *Integrated Water Quality Monitoring and Assessment Report*, this segment of the stream is not attaining its designated uses. A TMDL was developed for Conewago Watershed for Total phosphorus and was approved by EPA in 2001. See further discussion under Total Phosphorus section for waste load allocation to this discharge.

## 4.3.3 Stream flows

Streamflows flows were determined by correlating with the yield of USGS gage station No. 01571500 on Susquehanna River at Harrisburg. The  $Q_{7-10}$  and drainage area at the gage is 2610ft³/s and 24100mi² respectively. The resulting yields are as follows:

- Q₇₋₁₀ = (2610ft³/s)/24100 mi² = 0.11 ft³/s/ mi²

- Q₇₋₁₀ (winter) / Q₇₋₁₀ =1.18

The drainage area at discharge taken from the previous permit= 1.9 mi²

The  $Q_{7-10}$  at discharge = 1.9 mi² x 0.110 ft³/s/mi² = 0.21 ft³/s.

## 4.3.4 NH₃N Calculations

NH₃N calculations will be based on the Department's Implementation Guidance of Section 93.7 Ammonia Criteria, dated 11/4/97 (ID No. 391-2000-013). The following data is necessary to determine the instream NH₃N criteria used in the attached computer model of the stream:

STP pH	=	6.6 (DMR median July-September.)
STP Temp	=	25°C (Default)
Stream pH	=	7.8 (Taken from the Chickies Creek and also compared with Swatara Creek)
Stream Temp	=	22°C (Average between Chickies Creek and Swatara Creek)

#### 4.3.5 CBOD₅

The results of the WQM 7.0 stream model presented in attachment B indicates an average monthly limit (AML) of 25mg/L CBOD₅ is required to protect the water quality of the stream. This limit is consistent with the existing permit and past DMRs and inspection reports show that the facility has been consistently complying the limitation. Therefore, a limit of 25mg/L AML and 50 mg/L IMAX is recommended again for this permit cycle.

#### 4.3.6 NH₃-N

The results of the WQM 7.0 stream model (attachment B) also indicates that a summer limitation of 6.27 mg/L NH₃-N as a monthly average is necessary to protect the aquatic life from toxicity effects. This limit is less stringent than the existing limit and will not be written in the permit due to anti-backsliding restrictions. The existing summer limitation of 5.0 mg/L with the existing the winter limit of 15 mg/L which is 3 times the summer limit will remain in the permit for the current cycle. The facility is complying with the limitation.

#### 4.3.7 Dissolved Oxygen

The existing permit contains a limit of 5 mg/l for Dissolved Oxygen (DO). DEP's Technical Guidance for the Development and Specification of Effluent Limitations (362-0400-001, 10/97) suggests that either the adopted minimum stream D.O. criteria for the receiving stream or the effluent level determined through water quality modeling be used for the limit. Since the WQM 7.0 model was run using a minimum D.O. of 5.0 mg/l, this limit will be continued in the renewed permit with a daily monitoring requirement.

## 4.3.8 Phosphorus

An average monthly limit of 2 mg/L was established in the previous permits prior to TMDL development. A TMDL for the Conewago Creek basin was completed and approved on March 2, 2001. The TMDL allocates Phosphorus annual load of 292.1 lbs/yr based on the design flow of 0.048 MGD and a concentration of 2 mg/l. This allocation has been incorporated and will remain permit. Due to anti-backsliding restrictions, the existing average monthly phosphorus limitation of 2 mg/L will remain in the permit. This STP was designed to remove phosphorus and has been complying with the limits.

## 4.3.9 Total Residual Chlorine

TRC analysis was based on the equations and calculations presented in the Department's May 1, 2003 Implementation Guidance for Total Residual Chlorine (TRC) (ID No. 391-2000-015) for developing chlorine limitations. The Guidance references Chapter 92a, Section 92a.48 (b) which establishes a standard BAT limit of 0.5 mg/L unless a facility-specific BAT has been developed. The attached results presented in attachment C indicates a water quality limit of 0.40 mg/L AML and IMAX of 1.4 mg/L would be needed to prevent toxicity concerns. This recommendation is consistent with the existing permit and will remain in the permit for the current permit cycle. DMRs and inspection reports indicate the facility has been complying with the limitation.

## 4.3.10 Total Suspended Solids:

There are no water quality criteria for TSS. A limit of 30 mg/l is the required minimum level of effluent quality attainable by secondary treatment as defined in EPA's 40 CFR Chapter 1, Part 133, Section 133.102(b). in the existing permit will remain.

## 4.3.11 Toxics

The facility treats mainly domestic sewage, there are no parameters of concern associated with this discharge.

## 4.3.12 Chesapeake Bay Strategy

The Department formulated a strategy to comply with the EPA and Chesapeake Bay Foundation requirements by reducing point source loadings of Total Nitrogen (TN) and Total Phosphorus (TP). Sewage discharges have been prioritized based on their delivered TN and TP loadings to the Bay. The highest priority (Phases 1, 2, and 3) dischargers will receive annual loading caps based on their design flow on August 29, 2005 and concentrations of 6 mg/l TN and 0.8 mg/l TP. These limits may be achieved through a combination of treatment technology, credits, or offsets if approved by DEP. Phase 4 (0.2 -0.4mgd) and Phase 5(below 0.2mdg) will be required to monitor and report TN and TP during permit renewal. Any facility in Phases 4 and 5 that undergoes expansion is subjected to cap load right away. This facility is a 0.048 mgd plant, classified as a phase 5, has been monitoring and reporting Nitrate-Nitrite as N, Total Kjeldahl Nitrogen and Total Nitrogen 2/month and will continue during the current permit cycle. Total Phosphorus monitoring is not required since a Total phosphorus limitation is in the permit.

## 4.3.13 Fecal Coliform and E. Coli

The existing Fecal Coliform limit is consistent with the technology limits recommended in 92a.47(a)(4) and (a)(5) and will remain in the permit. In March of 2021, EPA approved DEP's Triennial Review of Water Quality Standards, which included a new swimming season criterion for E. coli. As a result, DEP is including monitoring requirements for E. Coli in new and renewed sewage permits above 2000gpd. Monitoring frequency is based on annual average flow as follows: 1/month for design flows >= 1 MGD, 1/quarter for design flows >= 0.05 and < 1 MGD and 1/year for design flows of 0.002 - 0.05 MGD. Your discharge of 0.048 MGD requires 1/year monitoring as included in the permit

## 5.0 Other Considerations and Requirements

### 5.1 Anti-backsliding

Not applicable to this permit

## 5.2 Stormwater:

No storm water outfall is associated with this facility

## 5.3 Antidegradation (93.4):

The effluent limits for this discharge have been developed to ensure that existing instream water uses and the level of water quality necessary to protect the existing uses are maintained and protected. No High-Quality Waters are impacted by this discharge. No Exceptional Value Waters are impacted by this discharge.

## 5.4 Class A Wild Trout Fisheries:

No Class A Wild Trout Fisheries are impacted by this discharge.

## 5.5 303d Listed Streams:

The discharge is not located on a 303d listed stream segment. However, the main stem of the Conewago Creek downstream was listed as impaired due to excessive nutrient and sediment loads from agriculture. A TMDL for the Conewago Watershed (Watershed B) basin was completed and approved on March 2, 2001. The TMDL allocates a Phosphorus annual load of 292.1 lbs/yr based on the design flow of 0.048 MGD and a concentration of 2 mg/l. This allocation has been added to the NPDES permit during the past permit cycle and will remain in the current permit. The facility has been complying with the TMDL limitation.

#### 5.6 Special Permit Conditions

The permit will contain the following special conditions:

Stormwater Prohibition, Approval Contingencies, Management of collected screenings, slurries, sludges and other solids, Requirement to connect if a public sewer becomes available in the area, Chlorine minimization and Solids Management.

## 5.7 Basis for Effluent and Surface Water Monitoring

Section 308 of the CWA and federal regulation 40 CFR 122.44(i) require monitoring in permits to determine compliance with effluent limitations. Monitoring may also be required to gather effluent and surface water data to determine if additional effluent limitations are required and/or to monitor effluent impacts on receiving water quality. The permittee is responsible for conducting the monitoring and for reporting results on Discharge Monitoring Reports (DMRs).

## 5.8 Effluent Monitoring frequency

Monitoring frequencies are based on the nature and effect of the pollutant, as well as a determination of the minimum sampling necessary to adequately monitor the facility's performance. Permittees have the option of taking more frequent samples than are required under the permit. These samples can be used for averaging if they are conducted using EPA-approved test methods (generally found in 40 CFR 136) and if the Method Detection limits are less than the effluent limits. The sampling location must be after the last treatment unit and

prior to discharge to the receiving water. If no discharge occurs during the reporting period, "no discharge" shall be reported on the DMR.

## 6.0 Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (386-0400-001), SOPs and/or BPJ.

#### Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

		Monitoring Requirements						
Deremeter	Mass Units	; (lbs/day) ⁽¹⁾		Concentrat	tions (mg/L)		Minimum ⁽²⁾	Required
Parameter	Average	Average		Average		Instant.	Measurement	Sample
	Monthly	Weekly	Minimum	Monthly	Maximum	Maximum	Frequency	Туре
		Report						
Flow (MGD)	Report	Daily Max	XXX	XXX	XXX	XXX	Continuous	Measured
			6.0		9.0			
pH (S.U.)	XXX	XXX	Daily Min	XXX	Daily Max	XXX	1/day	Grab
			5.0					
DO	XXX	XXX	Daily Min	XXX	XXX	XXX	1/day	Grab
TRC	XXX	XXX	XXX	0.4	XXX	1.4	1/day	Grab
								24-Hr
CBOD5	XXX	XXX	XXX	25	XXX	50	2/month	Composite
								24-Hr
TSS	XXX	XXX	XXX	30	XXX	60	2/month	Composite
Fecal Coliform (No./100 ml)				2000				
Oct 1 - Apr 30	XXX	XXX	XXX	Geo Mean	XXX	10000	2/month	Grab
Fecal Coliform (No./100 ml)				200				
May 1 - Sep 30	XXX	XXX	XXX	Geo Mean	XXX	1000	2/month	Grab
	2004	2007	2004	2007	2007			
E. Coli (No./100 ml)	XXX	XXX	XXX	XXX	XXX	Report	1/year	Grab
			2000		2004	2004		24-Hr
Nitrate-Nitrite	XXX	XXX	XXX	Report	XXX	XXX	2/month	Composite
Total Nitrogen	XXX	xxx	xxx	Report	xxx	xxx	2/month	Calculation
Ammonia								24-Hr
Nov 1 - Apr 30	XXX	XXX	XXX	15.0	XXX	30	2/month	Composite
Ammonia	1	ľ			ľ			24-Hr
May 1 - Oct 31	XXX	XXX	XXX	5.0	XXX	10	2/month	Composite

#### NPDES Permit Fact Sheet Hershey Rv Park & Lodging

## Outfall 001, Continued (from Permit Effective Date through Permit Expiration Date)

		Monitoring Requirements						
Parameter	Mass Units	(lbs/day) ⁽¹⁾		Concentrat	Minimum ⁽²⁾	Required		
Falameter	Average Monthly	Average Weekly	Minimum	Average Monthly	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
								24-Hr
TKN	XXX	XXX	XXX	Report	XXX	XXX	2/month	Composite
								24-Hr
Total Phosphorus	XXX	XXX	XXX	2.0	XXX	4	2/month	Composite
		292.1						
Total Phosphorus (lbs/year)	XXX	Total Annual	XXX	XXX	XXX	XXX	1/year	Calculation

Compliance Sampling Location: At outfall 001

	7.0 Tools and References Used to Develop Permit
$\boxtimes$	WQM for Windows Model (see Attachment B)
	Toxics Management Spreadsheet (see Attachment )
$\boxtimes$	TRC Model Spreadsheet (see Attachment C)
	Temperature Model Spreadsheet (see Attachment
$\boxtimes$	Water Quality Toxics Management Strategy, 361-0100-003, 4/06.
$\boxtimes$	Technical Guidance for the Development and Specification of Effluent Limitations, 386-0400-001, 10/97.
	Policy for Permitting Surface Water Diversions, 386-2000-019, 3/98.
$\boxtimes$	Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 386-2000-018, 11/96.
	Technology-Based Control Requirements for Water Treatment Plant Wastes, 386-2183-001, 10/97.
	Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 386-2183-002, 12/97.
	Pennsylvania CSO Policy, 386-2000-002, 9/08.
$\square$	Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03.
	Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 386-2000-008, 4/97.
$\square$	Determining Water Quality-Based Effluent Limits, 386-2000-004, 12/97.
	Implementation Guidance Design Conditions, 386-2000-007, 9/97.
$\boxtimes$	Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen, Version 1.0, 386-2000-016, 6/2004.
	Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 386-2000-012, 10/1997.
	Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments, 386-2000-009, 3/99.
	Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 386-2000-015, 5/2004.
$\square$	Implementation Guidance for Section 93.7 Ammonia Criteria, 386-2000-022, 11/97.
$\boxtimes$	Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 386-2000-013, 4/2008.
$\square$	Implementation Guidance Total Residual Chlorine (TRC) Regulation, 386-2000-011, 11/1994.
	Implementation Guidance for Temperature Criteria, 386-2000-001, 4/09.
$\square$	Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 386-2000-021, 10/97.
	Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 386-2000-020, 10/97.
	Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 386-2000-005, 3/99.
	Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 386-2000-010, 3/1999.
	Design Stream Flows, 386-2000-003, 9/98.
	Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 386-2000-006, 10/98.
	Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 386-3200-001, 6/97.
$\square$	Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07.
$\square$	SOP: Establishing effluent limitation for individual sewage permit
	Other:

## 8. Attachments

A. Topographical Map



## **B. WQM Model Results**

	<u>SWP Basin</u> <u>Stream</u> 075 90	n Codle NG	т	Stream Name The 09205 to Convers	e Igo Creek		
RMI	Nation	Permit Namber	Disc Flow (mgd)	Pagemeter	DYL Lin B 30-day Ave. (ng/L)	Pft Linit Maximum (ngL)	Eff. Lin k Minimum (mgiL)
0.700	Henthey RV Park	PA0041220	0.048	CBODS NHO-N Discoled Oxygen	25 6.37	12.74	5

07G         5205         Trib 05205 to Conswago Casek         0.700         100         0.0000         0.00           Stream Data           Design Cond.         LFY         Trib         Stream         Rch         Rch         WD Ratio         Rch         Depth         Tributary         Stream         Flow	0
Stream Data           Design Cond.         LFY Flow         Trib Flow         Rch Traw Traw (ch)         Rch (ch)         WD Ratio (ch)         Rch Width         Depth Depth         Tributory Tamp         Stream Flow         Stream Tamp         PH           Q7-10         (ch)         (ch)         (ch)         (ch)         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00	
Design Cond.         LFY Flow         Trib Flow         Rch Traw         WD Ratio Velocity         Rch With         Rch Depth Depth         Tributary Tamp         Steam PH         Tamp         PH           Cond.         (cfu)         (cfu)         (cfu)         (cfu)         (cfu)         (fu)         f	
prime         (ch)         phi         phi         (t)         (t)         (C)         (C)           pr-10         0.110         0.00         0.000         0.000         0.00         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000	
Q30-10 C.CC C.CC C.CCC C.CCC	
Discharoe Data Educing Permitted Design Disc Disc Disc Disc Disc Reserve Temp pH Name Permit Number Flow Flow Flow Factor (mgd) (mgd) (mgd) (*C)	
Heathey RV Pask PA0011220 0.0160 0.0160 0.0160 0.000 25.00 6.00	
Parameter Data	
Conc. Conc. Conc. Conf. Parameter Name	
(mgL) (mgL) (ingL) (i/deys)	
08-005 25.00 2.00 0.00 1.50	
Exacted Oxygen 5.00 6.24 0.00 0.00	

	ii anii Banii	Code		Sty	sam Name		HM	0	t)	Area (ng mi	ра : 0	(triti)	Withd (mg	a . awai d)	FC
	07G	900	S TIBOS	265 to Ci	onewago (	2mak	0.0	10 -	19.00	2	0 00.	.00000		0.00	Ø
					5	Stream Da	fa								
Deeign Cond.	LFY	Trib S Flow	itean Flov	Rch Trav Time	Rch Velocity	WD Ratio	Rch Widh	Rich Depth	Tem	Tributar P	y pHI	Tem	<u>Steam</u> P	pH	
	(cfam)	(cħ.)	8: <b>8</b> .)	(daya)	fpiù		(11)	(*)	(12)			(2)			
07-10 01-10 036-10	0.110	000	0.00	0.000	0000	0.0	0.00	0.00	20	200	7.00	1	00.00	-0.00	
					ſ	Sischarce	Ceta								
			Nan e	Pe	mit Nanb	Existing Disc er Flow (mgd)	Ferniti Disc Filos (mgd	nd Desig Disc Flow ) (mgd	n Rata Fas	tor	Disc Temp (**)	Di pi	•		
						0.000	0 0.00	0.00	00 O	.000	0.	00	7.00		
		Parameter Data Disc. Tab. Stream Fate													
			÷	larameter	Name	0 0	iona ( Igil.) ()	lonc ng/L) (	Con: ingL)	Coef (I'day)	•				
		0	8006				25.00	2.00	0.00	1.5	0				
		c	a subject (	Oxygen			5.00	0.24	0.00	00	0				
			940-N				25.00	0.00	0.00	-07	0				

Fidday, May 10, 2024

Venim 1.1

Page 2 of 2

		WQM 7.	0 Wast	eload A	llocatio	ns		
	SWP Basin Stre 076	an Code 9265		<u>9</u> Trib 09205	tream Name to Conewago	Creek		
NHS-N RM	Acute Allocation Discharge Name	a Raseline Ottation in ol.)	Bandim WLA ing[])	Multple Criterion (mol.)	Multiple WLA (molt)	Cifical Reach	Percent Reduction	
0.70	O Heathey RV Park	12.11	44.5	12.11	44.5	٥	٥	-
NH3-N	Chronic Allocati Discharge Name	ona Esseine Critelon	Baneline WLA	Multiple	Multiple WLA	Cifical Reach	Percent Reduction	
0.70	O Heathey RV Park	(ngL) 1.40	ingl.) 6.37	(ngt.) 146	(ngL) 6.37	1	0	-
Dissidy	ed Oxygen Alloc	ationa						-
RM	Discharge Na	e Baselir (ng/l)	BODS w Mutiple ) ingl.)	NHO-N Bateline Mi (mgL) (n	i <u>Disadi</u> utipin Bansir ngL) ingL	ed Oxygen e Multiple ) (ngL)	Ciffical Reach	Percent Reduction
63	O Heathey RV Park	2	5 25	6.37	6.37 5	5	0	٥
Filday, May 10,	2024		v	ension 1.1				Page 1 of 1

676	9265		Trib 06	<u>Streem Name</u> 165 to Con evig o Creek	
RM 0.700 Reach Width (f) 7.566 Reach CRODS (mgL) 0.02 Reach DO (mg/L) 7.260	Tital Discharge 0.04 Reach De 0.42 Reach Kc 1.40 Reach Kr 21.40	Flow (mgd 6 p <u>th ft)</u> 7 1 (dayt.) 9 <u>1 (dayt.)</u> 6	) Acal	yılı. Temperature (*C) 22.766 Reach WDRatio 16.726 each NH3-N (mgL) 1.67 <u>Kr Equation</u> Owens	Analysis pH 7.110 Reach Velocity (fps) 0.080 Reach Kn (1/days) 0.0607 Reach DO Goal (mg/L) 6
aach Travel Time (days) 0.507	T ov Time (days.)	Subreact CRODS (mg/L)	Results NH3-N (mgL)	0.0. (ngl.)	
	0. 654 0. 104 0. 552 0. 200 0. 254 0. 255 0. 456 0. 456 0. 557	7.53 7.07 6.63 6.22 5.80 5.47 5.13 4.81 4.52 4.24	160 153 146 140 134 129 123 147 142 108	7.60 7.71 7.60 7.60 7.60 7.60 7.60 7.60 7.60 7.60	

# WQM 7.0 Modeling Specifications

Parameters	Both	Use inputed 01-10 and 030-10 Flows	Ð
WLA Method	EMPR	Use inputed W/D Ratio	
01-10/07-10 Ratio	0.95	Use inputed Reach Towel Times	
Q0040/Q740 Ratio	1.17	Temperature Adjust Kr	Ø
D.O. Saturation	80.00%	Use Balanced Technology	Ð
D.O. Goal	6		

Fidday, May 10, 2024

Version 1.1

Page 1 of 1

RMI	Stream	PWS	Net	Disc.	Reach	Depth	With	WD	Velocity	Reach	Amiyala	Analysis
	Flow (cfis.)	With (dig	Steam Flow (cfig	Analysis Flav (cit)	Silope (117)	m	m	Ratio	fee	Tav Time (days)	Temp (°Q)	pH
Q7-10	Flow											
0.700	0.24	0.00	0.24	0743	0.00192	.427	7.99	10.70	0.00	0507	22.79	7.11
21-10	Flow											
0.700	0.20	0.00	0.30	£743	0.00192	NA.	NA	NA.	0.00	0518	22.62	7.10
<b>0,30-1</b> 0,700	0 Flow 0.24	0.00	0.24	<b>D</b> 743	0.00192	NA	NA	NA	0.09	0475	22,70	7.45

Fildsy, May 10, 2024

Version 1.1

Page 1 d 1

# C. TRC Calculations

	<u> </u>			<u> </u>		
TRC EVAL	UATION					
Input appropria	ate values in	A3:A9 and D3:D9				
0.2	1 = Q strear	n (cfs)	0.5	= CV Daily		
0.048	= Q discha	arge (MGD)	0.5	= CV Hourly		
30	🛯 = no. sam	ples	1	= AFC_Part	ial Miz Factor 👘	
0.3	= Chlorine	Demand of Stream	1	= CFC_Part	ial Miz Factor 👘	
(	= Chlorine	Demand of Discharge	15	= AFC_Crite	eria Compliance 🕯	Time (min
0.5	= BAT/BF	9J Value	720	= CFC_Crite	eria Compliance 🕯	Time (min)
(	) = 🗶 Facto	or of Safety (FOS)	0	=Decay Coe	fficient (K)	
Source	Reference	AFC Calculations		Reference	CFC Calculations	
TRC	1.3.2.iii	WLA afo =	0.921	1.3.2.iii	WLA of c =	0.891
PENTOXSD TR	( 5.1a	LTAMULT afc =	0.373	5.1c	LTAMULT of c =	0.581
PENTOXSD TR	( 5.1b	LTA_afc=	0.343	5.1d	LTA_ofe =	0.518
Source		Effluer	nt Limit Calcu	lations		
PENTOXSD TR	( 5.1f	1	AME MULT #	1.231		
PENTOXSD TR	( 5.1g	AVG MON L	.IMIT (mg/l) =	0.422	AFC	
		INST MAX L	.IMIT (mg/l) =	1.382		
WLA afc	(.019/e(-k	'AFC_tc]] + [[AFC_Yc'	Qs ⁻ .019/Qd	Te[-kTAFC_to	¢]]	-
	+ X0 + [A	\FC_YC'\\$'X\$/\djj"(1)	FUSTIOU			
LTAMULT are	EXP((0.5°LN	U(OVN "Z+1))-Z.326 LIN(OVN "Z+ Vralu T K-	1)*0.5)			
LI A_arc	wia_arc LTA	WIDET_arc				
VIA efe	( 011/e(-+*	CEC. tel • IICEC. Ye'G	s" 011/04"4		1	
	+ Xd + ((	CFC_Ye'Qs'Xs/Q401(1	EOS/100	.( . 0. 0_(0)	J	
LTAMULT de	EXP((0.51)	l(cvd^2/no_samples+1)-2.3	26 LNfovd [*] 2/	no samples+1)*	0.5)	
LTA cfc	wla_cfc*LTA	MULT ofc			,	
		-				
AML MULT	EXP(2.326*L	.N((ovd^2/no_samples+1)^0	5)-0.5°LN(cvd	d^2/no_samples	:+1))	
AVG MON LIMIT	MIN(BAT_B	BPJ,MIN(LTA_afo,LTA_ofo	TAME_MULT	r) – i		
INST MAX LIMIT	1.5"((av_m	on_limit/AML_MULT)	LTAMULT	_afc)		
	1			1		