

Application Type <u>Renewal</u> Facility Type <u>Municipal</u> Major / Minor <u>Minor</u>

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

 Application No.
 PA0041441

 APS ID
 836286

 Authorization ID
 1275524

Applicant and Facility Information								
Applicant Name	Somer Author	set Township Municipal rity Somerset County	Facility Name	Wells Creek STP				
Applicant Address	PO Bo	x 247	Facility Address	356 Coleman Station Road				
	Somer	set, PA 15501-0247		Friedens, PA 15541-8205				
Applicant Contact	Carolyn Zambanini; zamc@comcast.net		Facility Contact	***same as applicant***				
Applicant Phone	(814) 445-5842		Facility Phone	***same as applicant***				
Client ID	25312		Site ID	238899				
Ch 94 Load Status	Not Ov	erloaded	Municipality	Somerset Township				
Connection Status			County	Somerset				
Date Application Rece	ived	_June 3, 2019	EPA Waived?	Yes				
Date Application Accept	pted	June 5, 2019	If No, Reason					
Purpose of Application	I	NPDES permit renewal for treated	sewage discharges fro	m a POTW.				

Summary of Review

On June 3, 2019, the Somerset Township Municipal Authority (STMA) submitted an application to renew the NPDES permit for STMA's Wells Creek Sewage Treatment Plant (Wells Creek STP). The permit currently in effect was issued on November 24, 2014 with a December 1, 2014 effective date and a November 30, 2019 expiration date. The renewal application was received 180 days before the permit expired, so the terms and conditions of the 2014 permit were automatically continued and remain in effect.

The treatment process at the Wells Creek STP was described by STMA in the permit renewal application as follows:

Influent is collected to the Wells Creek Wastewater Sewage Treatment Plant control building wet well. One of three pumps transfer the wastewater through a flow meter to the Influent Control Structure comminutor and normally onward into Lagoon No. 1 as a manageable liquid. Lagoon No. 1 is separated in two by a baffle to provide extended retention time and permit differing levels of aeration before the wastewater decants through Control Structure No. 1 and a diversion box into Lagoon No. 2. Lagoon No. 2 provides additional biological treatment before decanting through Control Structure No. 2 and into Lagoon No. 3. Control Structure No. 2 contains a Poly-Aluminum Chloride Compound (PAC) injection system to precipitation phosphorus out into Lagoon No. 3. Lagoon No. 3 decants through Control Structure No. 3, the Control Manhole, and into the Bio-Tower Pump Station Wet Well. Wastewater in the wet well receives Sodium Bi-Carbonate by injection to raise alkalinity before being pumped into, or recirculated through the Bio-Towers No. 1 and/or No. 2. The processed wastewater then flows through Control Structure No. 4 and into the Chlorine Contact Tank is then automatically measured for flow, residual chlorine, and pH level before release through Outfall 001 and into Wells Creek.

Approve	Deny	Signatures	Date
х		<i>Ryan C. Decker</i> Ryan C. Decker, P.E. / Environmental Engineer	April 30, 2021
х		Donald Leone Donald J. Leone, P.E. / Environmental Engineer Manager	May 3, 2021
х		Christopher Kriley Christopher Kriley, P.E. / Program Manager	May 3, 2021

Summary of Review

Each part of the treatment plant, prior to reaching the Chlorine Contact Tank, is interconnected by by-pass and recycle lines to provide isolation for maintenance or continued treatment back to any separate structure. The Lagoon Recycle Line from Lagoon No. 3 back to the Control Building Wet Well is integrated with an elevated 500-gallon dump tank to allow hauled-in wastes to be accepted with the normal influent.

Wells Creek's designated aquatic life use is impaired by nutrients from agriculture. A nutrient Total Maximum Daily Load (TMDL) was finalized for Wells Creek in December 2006 to address the nutrient impairment of the stream. In addition, Wells Creek is part of the Kiskiminetas-Conemaugh River Watershed, which has a final TMDL from January 2010. Outfall 001 from Wells Creek was assigned waste load allocations in both TMDLs, but only the Wells Creek TMDL's waste load allocations have been imposed in the NPDES permit to date.

The renewed permit includes the following changes:

- New, more stringent seasonal water quality-based effluent limits for ammonia-nitrogen and CBOD-5 resulting from updated water quality modeling to implement recent revisions to ammonia-nitrogen water quality criteria in 25 Pa. Code Chapter 93 (promulgated in October 2020 and approved by U.S. EPA in March 2021).
- New, more stringent water quality-based effluent limits for Total Residual Chlorine based on updated stream and discharge chlorine demands consistent with DEP's permitting policies. A two-year compliance schedule is provided for the new TRC limits.
- New water quality-based effluent limits for aluminum, iron, and manganese imposed pursuant to the Total Maximum Daily Load for Streams Impaired by Acid Mine Drainage in the Kiskiminetas-Conemaugh River Watershed.
- A new quarterly monitoring requirement for *E.Coli* resulting from revised Chapter 93 water quality criteria and updated DEP permitting policies.
- Removal of weekly average limits for ammonia-nitrogen and total phosphorus consistent with DEP's permitting policies.

Sludge use and disposal description and location(s): No sludge was removed from the facility in the previous year.

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

	Discharge, Receiving Waters	s and Water Supply Informat	tion		
Outfall No. 001		Design Flow (MGD)	0.8		
Latitude 40° 3' 11.5	58"	Longitude	-78° 58' 11.93"		
Quad Name Stovstov	wn	Quad Code	1814		
Wastewater Description:	Sewage effluent				
· · · · · · · · · · · · · · · · · · ·					
Receiving Waters We	lls Creek (CWF)	Stream Code	45675		
NHD Com ID 123	3723739	River Mile Index (RMI)	2.57		
Drainage Area 13.	9	Yield (cfs/mi ²)	0.0643		
Q ₇₋₁₀ Flow (cfs) 0.8	94	Q7-10 Basis	USGS StreamStats		
Elevation (ft) 2,0	09	Slope (ft/ft)	0.0022		
Watershed No. 18-	E	Chapter 93 Class.	CWF		
Existing Use		Existing Use Qualifier			
Exceptions to Use		Exceptions to Criteria			
Assessment Status	Impaired				
Cause(s) of Impairment	Metals; Nutrients				
Source(s) of Impairment	Acid mine drainage; agricult	ure			
	Final (January 29, 2010);	Kiskiminetas	S-Conemaugh River		
TMDL Status	Final (December 2006)	Name Watersheds	TMDL; Wells Creek		
Nearest Downstream Pu	blic Water Supply Intake	Hooversville Municipal Author	ity		
PWS Waters Stony	creek River	Flow at Intake (cfs)			
PWS RMI 24.9		Distance from Outfall (mi)	9.22 (river miles)		

Changes Since Last Permit Issuance: No changes

Other Comments: RMI for Outfall 001 updated from 2.27 to 2.57 (there was no physical change to the outfall location, just an updated RMI measurement).

3/5/2021

StreamStats

StreamStats Report

 Region ID:
 PA

 Workspace ID:
 PA20210305192706255000

 Clicked Point (Latitude, Longitude):
 40.05321, -78.97003

 Time:
 2021-03-05 14:27:23 -0500

Basin Characteristics			
Parameter Code	Parameter Description	Value	Unit
DRNAREA	Area that drains to a point on a stream	13.9	square miles
ELEV	Mean Basin Elevation	2250	feet
PRECIP	Mean Annual Precipitation	43	inches

Low-Flow Statistics P	arameters(100 Percent (13.9 square mi	es) Low Flow Region 3]			
Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit

https://streamstats.usgs.gov/ss/

3/5/2021	1 StreamStats								
	Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit			
	DRNAREA	Drainage Area	13.9	square miles	2.33	1720			
	ELEV	Mean Basin Elevation	2250	feet	898	2700			
	PRECIP	Mean Annual Precipitation	43	inches	38.7	47.9			

Low-Flow Statistics Flow Report [100 Percent (13.9 square miles) Low How Region 3]

PII: Prediction Interval-Lower, Plu: Prediction Interval-Upper, SEp: Standard Error of Prediction, SE: Standard Error (other -- see report)

Statistic	Value	Unit	SE	SEp
7 Day 2 Year Low Flow	1.95	ft^3/s	43	43
30 Day 2 Year Low Flow	2.69	ft^3/s	38	38
7 Day 10 Year Low Flow	0.894	ft^3/s	54	54
30 Day 10 Year Low Flow	1.16	ft^3/s	49	49
90 Day 10 Year Low Flow	1.7	ft^3/s	41	41

Low-Flow Statistics Citations

Stuckey, M.H., 2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006-5130, 84 p. (http://pubs.usgs.gov/sir/2006/5130/)

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the functionality of the software and related material nor shall the fact of release constitute any such warranty. Furthermore, the software is released on condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized use.

USGS Product Names Disclaimer: Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Application Version: 4.4.0

No solids disposed in previous year

Treatment Facility Summary

Treatment Facility: Wells Creek Sewage Treatment Plant – The STP consists of a comminutor, a bar screen, three continuously aerated lagoons (Lagoon #1 has two cells, A and B, separated by a baffle), a wet well, two bio-towers, and an aerated chlorine contact tank with baffles.

WQM Permit	No.	Issuance Date		Purpos	e		
5672408		April 28, 1972	Permit issued to Somerset MGD sewage treatment pla two partial mix aerated lag million gallons and Lagoon chlorination, and an outfall	Township M ant consisting oons (Lagoor No. 2 with a sewer.	unicipal Autho g of grit chann n No. 1 with a capacity of 3.	ority els, cap 5 m	for a 0.305 a comminutor, acity of 5.6 illion gallons),
5672408 A-1April 25, 1995Permit issued to Some and expansion of the S MGD (peak 2.0 MGD) new grit channels, com lagoon (in addition to million gallons with a s underdrain groundwa station; two new 25-ft three new air blowers alkalinity control. The power from the seco addition, the upgrades the installation of a groundwater monitorin				Township M The average ogrades inclu utor, and bar two existing netic liner, he monitoring s neter bio-tow 1,000 scfm; sting effluent y electrical uded the rem synthetic lin ells for Lagoo	unicipal Autho design flow v ided a new inf screen; a new lagoons) with lixor static tub system; a ne ers; a new ch new chemica flow meter an substation we oval of sludge ner in Lagoon n Nos. 1 and 2	prity vas i fluer v pai h a boe a w b lorir al fe d sta ere i fron n N 2.	for upgrades to increased to 0.8 it pump station; rtial mix aerated capacity of 4.2 erators, and an bio-tower pump he contact tank; ed systems for andby electrical maintained. In n Lagoon No. 1; o. 2; and new
Waste Type	Deg	ree of Treatment	Process Type		Disinfectio	n	Avg Annual Flow (MGD)
Sewage	Phos	Secondary with sphorus Reduction	Aerated lagoons		Gas Chlorin	e	0.662
Hydraulic Capa (MGD)	acity	Organic Capacity (Ibs/day)	Load Status	Biosolids	Treatment	ι	Biosolids Jse/Disposal

Not Overloaded

Changes Since Last Permit Issuance: None

1,360

0.8

Compliance History

DMR Data for Outfall 001 (from February 1, 2020 to January 31, 2021)

Parameter	JAN-21	DEC-20	NOV-20	OCT-20	SEP-20	AUG-20	JUL-20	JUN-20	MAY-20	APR-20	MAR-20	FEB-20
Flow (MGD)												
Average Monthly	0.507	0.468	0.391	0.237	0.338	0.272	0.243	0.248	0.509	0.797	0.708	0.732
Flow (MGD)												
Daily Maximum	1.224	1.148	0.794	0.779	0.680	0.929	0.530	0.547	1.000	1.319	1.454	1.465
pH (S.U.)												
Minimum	6.3	6.8	6.7	6.6	7.1	7.6	6.3	6.3	6.1	6.3	6.4	6.7
pH (S.U.)												
Maximum	8.0	7.7	7.8	7.4	7.7	8.1	7.1	7.4	7.4	7.8	7.6	7.6
DO (mg/L)												
Minimum	6.2	6.2	6.4	6.7	7.1	6.9	6.2	6.6	6.5	5.5	6.4	6.4
TRC (mg/L)												
Average Monthly	0.19	0.15	0.08	0.18	0.16	0.10	0.10	0.12	0.10	0.12	0.14	0.18
TRC (mg/L)												
Instantaneous												
Maximum	0.55	0.35	0.41	0.47	0.48	0.42	0.30	0.37	0.34	0.27	0.26	0.35
CBOD5 (lbs/day)												
Average Monthly	15	19	7	3	6	6	8	9	11	40	18	33
CBOD5 (lbs/day)												
Weekly Average	45	46	12	5	10	8	12	28	19	66	35	68
CBOD5 (mg/L)							_			_		_
Average Monthly	3	4	2	2	2	4	5	4	3	5	4	4
CBOD5 (mg/L)	_			_	-		_			_	_	_
Weekly Average	5	6	3	3	2	4	8	8	4	9	5	6
TSS (lbs/day)				_			~-	10	10	107		
Average Monthly	28	36	30	5	20	26	25	16	40	137	39	44
TSS (lbs/day)			= 0	_						. – .	- 1	
Weekly Average	89	11	58	1	66	36	47	21	57	154	/1	91
ISS (mg/L)	_						10			10		•
Average Monthly	5	8	9	4	6	14	12	9	11	18	8	6
TSS (mg/L)	10	10	10	4	10	0.4	10	10	10	00	10	0
Weekly Average	10	10	10	4	13	24	16	12	12	23	10	8
Fecal Coliform												
(CFU/100 ml)	4	10	00	4	2	10	0		0	40	04	00
	4	40	23	1	3	13	3	<u>с</u>	0	48	21	90
Maximum	201	2/91	102	2	19	47	4	36	12	636	355	2/81
IVIAXIIIIUIII	201	24ŏ I	192		IŎ	4/	4	30	13	030	300	24ŏ I

NPDES Permit No. PA0041441

NPDES Permit Fact Sheet Wells Creek STP

Total Nitrogen (mg/L)												
Daily Maximum		22.5										
Ammonia (lbs/day)		ļ										
Average Monthly	22	51	59	11	4	1	10	26	11	35	28	39
Ammonia (lbs/day)												
Weekly Average	54	69	154	16	14	2	15	89	17	58	54	93
Ammonia (mg/L)												
Average Monthly	4.9	11.7	14.9	7.5	1.7	0.3	4.5	8.9	2.6	4.3	5.6	4.9
Ammonia (mg/L)												
Weekly Average	7.7	15.1	26.4	10.3	6.5	1.0	6.6	25.2	3.5	5.9	7.6	8.1
Total Phosphorus												
(lbs/day)												
Average Monthly	4.1	9.5	16.1	5.1	4.3	2.1	3.9	2.5	3.0	10.3	6.9	7.6
Total Phosphorus												
(lbs/day)												
Weekly Average	12	15	33	6	9	3	7	5	4	15	12	14
Total Phosphorus												
(mg/L)												
Average Monthly	0.7	2.2	4.6	3.4	1.4	1.2	1.8	1.2	0.8	1.3	1.4	1.0
Total Phosphorus												
(mg/L)												
Weekly Average	1.3	4.1	5.6	3.8	1.9	1.8	2.3	1.5	1.0	1.6	1.7	1.2

Compliance History

Effluent Violations for Outfall 001, from: March 1, 2020 To: January 31, 2021

Parameter	Date	SBC	DMR Value	Units	Limit Value	Units
Ammonia	06/30/20	Wkly Avg	89	lbs/day	45	lbs/day
Ammonia	11/30/20	Wkly Avg	154	lbs/day	134	lbs/day
Ammonia	11/30/20	Avg Mo	14.9	mg/L	13.5	mg/L
Ammonia	06/30/20	Avg Mo	8.9	mg/L	4.5	mg/L
Ammonia	10/31/20	Avg Mo	7.5	mg/L	4.5	mg/L
Ammonia	11/30/20	Wkly Avg	26.4	mg/L	20.0	mg/L
Ammonia	10/31/20	Wkly Avg	10.3	mg/L	6.8	mg/L
Ammonia	06/30/20	Wkly Avg	25.2	mg/L	6.8	mg/L
Total Phosphorus	11/30/20	Avg Mo	16.1	lbs/day	13.4	lbs/day
Total Phosphorus	11/30/20	Wkly Avg	33	lbs/day	20	lbs/day
Total Phosphorus	11/30/20	Avg Mo	4.6	mg/L	2.0	mg/L
Total Phosphorus	12/31/20	Avg Mo	2.2	mg/L	2.0	mg/L
Total Phosphorus	10/31/20	Avg Mo	3.4	mg/L	2.0	mg/L
Total Phosphorus	12/31/20	Wkly Avg	4.1	mg/L	3.0	mg/L
Total Phosphorus	10/31/20	Wkly Avg	3.8	mg/L	3.0	mg/L
Total Phosphorus	11/30/20	Wkly Avg	5.6	mg/L	3.0	mg/L

Summary of Inspections:

Other Comments:

Development of Effluent Limitations

Outfall No.	001		Design Flow (MGD)	0.8
Latitude	40° 3' 8.00"		Longitude	-78° 58' 11.00"
Wastewater De	escription:	Sewage effluent		

The STP consists of a comminutor, bar screen, three continuously aerated lagoons (Lagoon No. 1 with baffles and two cells: Cell A and Cell B), a wet well, two bio-towers, and an aerated and baffled chlorine contact tank.

Technology-Based Effluent Limitations (TBELs)

25 Pa. Code § 92a.47 - Sewage Permits

Regulations at 25 Pa. Code § 92a.47 specify TBELs and effluent standards that apply to sewage discharges. Section 92a.47(a) requires that sewage be given a minimum of secondary treatment with significant biological treatment that achieves the following:

Table 1. Regulatory TBELs for Sanitary Wastewaters

Parameter	Average Monthly (mg/L)	Weekly Average (mg/L)	Instant. Max (mg/L)	Basis
CBOD5	25	40	50 [†]	25 Pa. Code § 92a.47(a)(1), (a)(2) & 40 CFR § 133.102(a)(4)(i)
Total Suspended Solids	30	45	60†	25 Pa. Code § 92a.47(a)(1), (a)(2) & 40 CFR § 133.102(b)(1)
Fecal Coliform (No./100 mL) May 1 – September 30	200 (Geometric Mean)	N/A	1,000	25 Pa. Code § 92a.47(a)(4)
Fecal Coliform (No./100 mL) October 1 – April 30	2,000 (Geometric Mean)	N/A	10,000	25 Pa. Code § 92a.47(a)(5)
Total Residual Chlorine	0.5 (or facility-specific)	N/A	1.00 (or facility-specific)	25 Pa. Code § 92a.47(a)(8) & § 92a.48(b)(2)
pH (s.u.)	not less th	an 6.0 and not great	25 Pa. Code § 92a.47(a)(7) & § 95.2(1), & 40 CFR § 133.102(c)	

[†]Value is calculated as two times the monthly average in accordance with Chapter 2 of DEP's "Technical Guidance for the Development and Specification of Effluent Limitations. and Other Permit Conditions in NPDES Permits" [Doc. No. 362-0400-001].

The CBOD₅, TSS, and pH limits are the same as those in EPA's secondary treatment regulation (40 CFR § 133.102).

Flow must be reported pursuant to 25 Pa. Code § 92a.61(d)(1). The average annual design flow of the STP, 0.8 MGD, will be imposed as the average monthly limit for flow per Table 5-3 of DEP's "Technical Guidance for the Development and Specification of Effluent Limitations. and Other Permit Conditions in NPDES Permits". Also, the existing minimum dissolved oxygen limit of 5.0 mg/L and the annual reporting requirement for Total Nitrogen will be maintained at Outfall 001 pursuant to 25 Pa. Code § 92a.61(b) (regarding reasonable monitoring requirements) and 40 CFR § 122.44(I) (regarding anti-backsliding).

In accordance with Section I of DEP's "Standard Operating Procedure for Clean Water Program Establishing Effluent Limitations for Individual Sewage Permits" [SOP No. BCW-PMT-033, Version 1.9, March 22, 2021] and under the authority of 25 Pa. Code § 92a.61(b), Total Nitrogen and Total Phosphorus reporting is required for sewage discharges with design flows greater than 2,000 gpd to help evaluate treatment effectiveness and to monitor nutrient loading to the receiving watershed. Pursuant to that same SOP and under the authority of § 92a.61(b), a quarterly reporting requirement for *E.coli* will be added to Outfall 001.

Mass Limits

In accordance with Table 5-3 of DEP's "Technical Guidance for the Development and Specification of Effluent Limitations. and Other Permit Conditions in NPDES Permits" and Section IV of DEP's "Standard Operating Procedure for Clean Water Program Establishing Effluent Limitations for Individual Sewage Permits", mass limits are calculated for CBOD5 and TSS. Average monthly and average weekly mass limits (in units of pounds per day) are calculated using the following formula with the concentration limits in Table 1 and the Wells Creek STP's 0.8 MGD design flow: Design flow (average annual) (MGD) × concentration limit (mg/L) at design flow × conversion factor (8.34) = mass limit (lb/day)

Parameter	Average Monthly (mg/L)	Average Weekly (mg/L)		
CBOD5	165.0	265.0		
Total Suspended Solids	200.0	300.0		

Table 2. Mass TBELs for Sanitary Wastewaters

Pursuant to Chapter 5, Section C.2 of DEP's "Technical Guidance for the Development and Specification of Effluent Limitations and Other Permit Conditions in NPDES Permits" mass limits for conventional pollutants with a magnitude greater than 60.0 are rounded down to the nearest 5.0 mg/L (the mass limits in Table 2 account for this rounding convention).

Water Quality-Based Effluent Limitations (WQBELs)

Pursuant to EPA's approval of Pennsylvania's 2017 Triennial Review of Water Quality Standards and corresponding regulatory changes published in the *Pennsylvania Bulletin* on July 11, 2020, new water quality criteria for ammonia-nitrogen apply to waters of the Commonwealth. Therefore, WQBELs are re-evaluated even though there have been no changes to the STP.

WQM 7.0 Water Quality Modeling Program

WQM 7.0 is a water quality modeling program for Windows that determines Waste Load Allocations ("WLAs") and effluent limitations for carbonaceous biochemical oxygen demand ("CBOD5"), ammonia nitrogen ("NH3-N"), and dissolved oxygen ("DO") for single and multiple point-source discharge scenarios. To accomplish this, the model simulates two basic processes. In the NH3-N module, the model simulates the mixing and degradation of NH3-N in the stream and compares calculated instream NH3-N concentrations to NH3-N water quality criteria. In the DO module, the model simulates the mixing and consumption of DO in the stream due to the degradation of CBOD5 and NH3-N, and compares calculated instream DO concentrations to DO water quality criteria. WQM 7.0 then determines the highest pollutant loadings that the stream can assimilate while still meeting water quality criteria under design conditions.

Water Quality Modeling with WQM 7.0

Table 3. 001 WQM 7.0 Inputs

Discharge Characteristics						
Parameter	Value					
River Mile Index	2.57					
Discharge Flow (MGD)	0.8					
Discharge Temp. (°C) (Summer)	20.0					
Discharge Temp. (°C) (Winter)	15.0					
Basin/Stream Characteristics						
Parameter	Value					
Area in Square Miles	13.9					
Q ₇₋₁₀ (cfs)	0.894					
Low-flow yield (cfs/mi ²)	0.0643					
Elevation (ft)	2,009					
Slope	0.0022					
Stream Temp. (°C) (Summer)	20.0					
Stream Temp. (°C) (Winter)	5.0					
Stream pH (s.u.)	6.5					

The WQM 7.0 model is run for Outfall 001 to determine whether WQBELs are necessary for $CBOD_5$, ammonia-nitrogen, and/or dissolved oxygen. Input values for the WQM 7.0 model are shown in Table 3.

DEP's modeling for sewage discharges is a two-step process. First, a discharge is modeled for the summer period (May through October) using warm temperatures for the discharge and the receiving stream. Modeling for the summer period is done first because allowable ammonia concentrations in a discharge are lower at higher temperatures (i.e., warm temperatures are more likely to result in critical loading conditions). Reduced dissolved oxygen levels also appear to increase ammonia toxicity and the maximum concentration of dissolved oxygen in water is lower at higher temperatures.

The second step is to evaluate WQBELs for the winter period, but only if modeling shows that WQBELs are needed for the summer period. For the summer period, pursuant to DEP's "Implementation Guidance of Section 93.7 Ammonia Criteria" [Doc. No. 391-2000-013] (Ammonia Guidance) and in the absence of site-specific data, the discharge temperature is assumed to be 20°C and the design stream temperature and pH are assumed to be 20°C and 6.5 s.u., respectively, based on the recommendations for free stone cold water streams in DEP's Ammonia Guidance (Wells Creek is designated for cold water fishes). The flow used for modeling is the average design flow (0.8 MGD).

The results of the WQM 7.0 modeling (see Attachment A) indicate that new WQBELs are needed for CBOD5 and ammonianitrogen. Consistent with Section IV.D of DEP's Ammonia Guidance, limits from WQM 7.0 greater than 10 mg/L are rounded down to the nearest whole number and limits less than 10 mg/L and greater than 1 mg/L are rounded down to the nearest

0.5 mg/L. Limits less than 1 mg/L are around down to the nearest 0.1 mg/L. Limits greater than 60.0 are rounded down to the nearest 5 mg/L.

The average monthly and instantaneous maximum ammonia-nitrogen WQBELs calculated by WQM 7.0 for the summer period are 3.5 mg/L and 7.0 mg/L, respectively (rounded down from 3.52 and 7.04 to the nearest 0.5 mg/L), and the average monthly WQBEL for CBOD5 is 11.0 mg/L (rounded down from 11.7 to the nearest 1.0 mg/L).

Pursuant to Section IV.C.2 of DEP's Ammonia Guidance, average weekly and instantaneous maximum limits for CBOD5 are calculated using average monthly limit multipliers of 1.5 and 2.0, which results in average weekly and instantaneous maximum CBOD5 WQBELs of 16.0 mg/L (rounded down from 16.5 to the nearest 1.0 mg/L) and 22.0 mg/L, respectively.

DEP generally does not impose average weekly limits for ammonia-nitrogen under current policy—only CBOD5 and TSS are subject to average weekly limits. STMA reported intermittent violations of the average weekly ammonia-nitrogen limits with four violations reported in the last twelve months (March 2020 through February 2021). Even though violating an effluent limit generally does not support the elimination of that limit, removing the average weekly ammonia-nitrogen limits, which are based on waste load allocations from WQM 7.0, is consistent with Section 303(d)(4) of the Clean Water Act.¹ Average monthly limits for ammonia-nitrogen will control the average concentrations of ammonia-nitrogen in the STP's effluent and those average monthly limits will be more stringent than those in the current permit. Therefore, the permit will be more protective overall even with average weekly ammonia-nitrogen limits removed. DEP notes that STMA reported average monthly violations on the same DMRs as it reported average weekly violations, so non-compliance over longer durations (represented by 'average' values) still will be reflected in the STP's average monthly results.

DEP mistakenly omitted instantaneous maximum limits for ammonia-nitrogen from the previous permit. Therefore, IMAX limits for ammonia-nitrogen will be imposed in this renewal, but do not need to be reported on DMRs.

Since WQBELs are calculated for the summer period, winter limits also are evaluated. Pursuant to DEP's Ammonia Guidance, WQBELs for the winter period are set by multiplying the summer limits by three, unless modeling indicates that more stringent WQBELs are needed for winter.

For winter period modeling, the low-flow yield (representing Q_{7-10} flow) is doubled to 0.1286 cfs/mi² consistent with DEP's Ammonia Guidance. Default stream and discharge temperatures of 5°C and 15°C, respectively, also are assumed based on the Ammonia Guidance. The results of the modeling (see Attachment A) indicate that winter limits for ammonia-nitrogen (10.0 mg/L and 20.0 mg/L after rounding) calculated using a summer limit multiplier of three are more stringent than the winter modeling results (13.12 mg/L and 26.24 mg/L). Therefore, WQBELs calculated for ammonia-nitrogen using the summer limit multiplier of 3 will apply from November through April. Standard secondary limits are recommended by WQM 7.0 for CBOD5 (see Table 1) during the winter period. The WQBELs are summarized in the table below (after rounding). For comparison, the existing limits also are shown.

Parameter	Permit	Average Monthly (mg/L)	Average Weekly (mg/L)	Instant. Maximum (mg/L)
CBOD5	Old	25.0	40.0	50.0
May 1 – October 31	New	11.0 (rounded)	11.0 × 1.5 = 16.0 (rounded)	11.0 × 2.0 = 22.0
CBOD5	Old	25.0	40.0	50.0
November 1 – April 30	New	25.0	40.0	50.0
Ammonia-Nitrogen	Old	4.5	6.8	N/A
May 1 – October 31	New	3.5 (rounded)	N/A	7.0 (rounded)
Ammonia-Nitrogen	Old	13.5	20.0	N/A
November 1 – April 30	New	3.5 × 3.0 = 10.0 (rounded)	N/A	10.0 × 2 = 20.0

Table 4. WQBELs for Outfall 001 versus Existing Limits

[&]quot;Nonattainment water: CWA section 303(d)(4)(A) allows the establishment of a less stringent effluent limitation when the receiving water has been identified as not meeting applicable water quality standards (i.e., a nonattainment water) if the permittee meets two conditions. First, the existing effluent limitation must have been based on a total maximum daily load (TMDL) or other wasteload allocation (WLA) established under CWA section 303. Second, relaxation of the effluent limitation is only allowed if attainment of water quality standards will be ensured or the designated use not being attained is removed in accordance with the water quality standards regulations. This subsection does not provide an exception for establishing less stringent limitations where the original limitation was based on state permitting standards (e.g., state treatment standards) and was not based on a TMDL or WLA."

Mass Limits

Since CBOD5 limits during the summer period are more stringent than the TBELs in Table 1, mass limits for CBOD5 are recalculated. In accordance with Section IV of DEP's "Standard Operating Procedure for Clean Water Program Establishing Effluent Limitations for Individual Sewage Permits", only average monthly mass limits are calculated for ammonia-nitrogen (no average weekly mass limits).

Average monthly and average weekly mass limits (in units of pounds per day) are calculated using the concentration limits in Table 4 and the Wells Creek STP's 0.80 MGD design flow based on the following formula:

Design flow (average annual) (MGD) \times concentration limit (mg/L) at design flow \times conversion factor (8.34) = mass limit (lb/day)

The calculated mass WQBELs are summarized in Table 5 (after rounding).

•								
Parameter	Average Monthly (Ib/day)	Average Weekly (Ib/day)						
CBOD5 May 1 – October 31	70.0 (rounded)	105.0 (rounded)						
Ammonia-Nitrogen May 1 – October 31	23.0 (rounded)	—						
Ammonia-Nitrogen November 1 – April 30	65.0 (rounded)	—						

Table 5. Mass WQBELs for Sanitary Wastewaters

Nutrient Total Maximum Daily Load for Wells Creek

A section of Wells Creek was identified on the 1996 Section 303(d) list as being impaired by nutrients stemming from agriculture and the Wells Creek STP discharge. In December 2006, DEP finalized a nutrient TMDL for Wells Creek. The TMDL report states the following:

Pennsylvania's 1996 303(d) list indicates that the nutrient impairment stems from agricultural practices. Field visits conducted from August to December 2006 verified this. Runoff from fertilized cropland appears to be carrying high concentrations of nutrients into the stream. In addition, Wells Creek Sewage Treatment Plant (PA0041441) is currently discharging into this impaired section. Its permitted discharge currently has no limit for nutrients, specifically for phosphorus. As a result of these two sources, periphyton (attached algae) has covered much of the available substrate within the impaired reach. According to Title 25 PA Code Chapter 96.5(c), "When it is determined that the discharge of phosphorus, alone or in combination with the discharge of other pollutants, contributes or threatens to impair existing or designated uses in a free flowing surface water, phosphorus discharges from point source discharges shall be limited to an average monthly concentration of 2 mg/l. More stringent controls on point source discharges may be imposed, or may be otherwise adjusted as a result of a TMDL which has been developed". No other point sources of pollution, including MS4s (municipal separate storm sewer systems) and CSOs (Combined Sewer Overflows) currently exist within the watershed.

Pursuant to 40 CFR § 122.44(d)(1)(vii)(B)², WQBELs must be consistent with available waste load allocations (WLAs) from a final TMDL. Therefore, the following phosphorus limitations will be re-imposed in STMA's permit:

Effluent Characteristic	Average Monthly	Instant. Maximum		
Concentration (mg/L)	2.0	4.0		
Mass (lb/day)	13.4	_		

Table 6.	Phosphorus	TMDL	WLAs for	Outfall 001
----------	------------	------	----------	-------------

 [&]quot;(vii) When developing water quality-based effluent limits under this paragraph the permitting authority shall ensure that: [cont'd...]
 (B) Effluent limits developed to protect a narrative water quality criterion, a numeric water quality criterion, or both, are consistent with the assumptions and requirements of any available wasteload allocation for the discharge prepared by the State and approved by EPA pursuant to 40 CFR 130.7."

Instantaneous maximum limits for phosphorus are calculated using the 2.0 average monthly limit multipliers discussed previously in this fact sheet. Mass limits also are calculated for phosphorus using the formula described above. Consistent with DEP's "Standard Operating Procedure for Clean Water Program Establishing Effluent Limitations for Individual Sewage Permits", average weekly limits for total phosphorus are not imposed, so the 3.0 mg/L average weekly limit will be removed from the final permit. The removal of the average weekly limit is consistent with Section 303(d)(4)(A) of the Clean Water Act (regarding limits on effluent limit revisions) because the cumulative effect of the revised TMDL WQBELs for phosphorus still will ensure that water quality standards are attained.

Kiskiminetas-Conemaugh River Watershed TMDL

A TMDL for the Kiskiminetas-Conemaugh River Watershed ("Kiski-Conemaugh TMDL")—of which Wells Creek (via the Stonycreek River) is a part—was completed on January 29, 2010 for the control of acid mine drainage pollutants: aluminum, iron, manganese, sediment and pH. In accordance with 40 CFR § 122.44(d)(1)(vii)(B), when developing WQBELs, the permitting authority shall ensure that effluent limits developed to protect a narrative water quality criterion, a numeric water quality criterion, or both, are consistent with the assumptions and requirements of any available wasteload allocation (WLA) for the discharge prepared by the State and approved by EPA pursuant to 40 CFR § 130.7. The Wells Creek STP was assigned wasteload allocations (WLAs) for aluminum, iron, and manganese by the Kiski-Conemaugh TMDL (see Attachment B). Therefore, pursuant to § 122.44(d)(1)(vii)(B), WQBELs will be imposed at Outfall 001. Only aluminum, iron, and manganese WQBELs are imposed because the TMDL does not establish wasteload allocations for sediment or pH. The TMDL used a surrogate approach for both of those constituents by which reductions of in-stream concentrations of aluminum, iron, and manganese would result in acceptable reductions of sediment and mitigation of acidic pH.

The TMDL's allocated concentrations for aluminum, iron, and manganese are equivalent to the most stringent water quality criteria for those pollutants and those criteria will be imposed as end-of-pipe limits at Outfall 001. The methods used to implement water quality criteria are described in 25 Pa. Code §§ 96.3 and 96.4. Also, DEP's "Water Quality Toxics Management Strategy" [Doc. No. 361-2000-003] addresses design conditions in detail (Table 1 in that document), including the appropriate durations to assign to water quality criteria. The design duration for Criteria Maximum Concentration (CMC) criteria is 1 hour (acute). The design duration for Criteria Continuous Concentration (CCC) criteria is 4 days (chronic). The design duration for Threshold Human Health (THH) criteria is 30 days (chronic). The design duration for Cancer Risk Level (CRL) criteria is 70 years (chronic).

The 750 µg/L aluminum criterion in 25 Pa. Code § 93.8c is a CMC (acute) criterion. Therefore, 750 µg/L is imposed as a maximum daily limit. There is no CCC criterion for aluminum necessitating the imposition of a more stringent average monthly limit. Imposing 750 µg/L as both a maximum daily and average monthly limit is protective of water quality uses.

The 1.5 mg/L iron criterion is given as a 30-day average in 25 Pa. Code § 93.7(a). Therefore, 1.5 mg/L is imposed as an average monthly limit and the maximum daily effluent limit is calculated using a multiplier of two times the average monthly limit based on DEP's "Technical Guidance for the Development and Specification of Effluent Limitations and Other Permit Conditions in NPDES Permits" [Doc. No. 362-0400-001, Chapter 3, pp. 15, 16].

The 1 mg/L potable water supply criterion for manganese in 25 Pa. Code § 93.7(a) is a human health criterion (chronic). Per Table 1 of DEP's "Water Quality Toxics Management Strategy", the duration for a THH criterion is 30 days. Therefore, an average monthly effluent limit of 1 mg/L is imposed, and the maximum daily effluent limit is calculated using a multiplier of two times the average monthly limit consistent with the technical guidance cited above for iron.

Since the allocated concentrations are equivalent to water quality criteria, the Wells Creek STP's compliance with concentration limits for aluminum, iron, and manganese will not result in excursions above water quality criteria and the permit will be consistent with the TMDL's WLAs. Consequently, the TMDL's load limits are not required. The TMDL's wasteload allocations and the applicable WQBELs are summarized in the table below.

Parameter	Average Monthly (mg/L)	Maximum Daily (mg/L)		
Aluminum, Total	0.75	0.75		
Iron, Total	1.5	3.0		
Manganese, Total	1.0	2.0		

Table 7. TMDL WQBELs for Outfall 001

STMA did not report aluminum, iron, and manganese concentrations on the NPDES permit renewal application, but DEP does not expect concentrations in the STP's effluent to be significant. Therefore, the new TMDL WQBELs will take effect on the permit effective date.

Total Residual Chlorine

To determine if WQBELs are required for discharges containing total residual chlorine (TRC), a discharge evaluation is performed using a DEP program called TRC_CALC created with Microsoft Excel for Windows. TRC_CALC calculates TRC Waste Load Allocations (WLAs) through the application of a mass balance model which considers TRC losses due to stream and discharge chlorine demands and first-order chlorine decay. Input values for the program include flow rates and chlorine demands for the receiving stream and the discharge, the number of samples taken per month, coefficients of TRC variability, partial mix factors, and an optional factor of safety. The mass balance model calculates WLAs for acute and chronic criteria that are then converted to long term averages using calculated multipliers. The multipliers are functions of the number of samples taken per month and the TRC variability coefficients (normally kept at default values unless site-specific information is available). The most stringent limitation between the acute and chronic long-term averages is converted to an average monthly limit for comparison to the BAT average monthly limit of 0.5 mg/L from 25 Pa. Code § 92a.48(b)(2). The more stringent of these average monthly TRC limitations is imposed in the permit.

The results of the modeling, included in Attachment C, indicate that more stringent WQBELs are necessary for TRC as summarized in the table below.

Table 8. WQBELs for TRC at Outfall 001

Parameter	Average Monthly (mg/L)	Instant. Maximum (mg/L)
Total Residual Chlorine	0.114	0.374

Water quality criteria for chlorine have not changed. However, pursuant to DEP's "Standard Operating Procedure for Clean Water Program Establishing Effluent Limitations for Individual Sewage Permits", the in-stream and discharge chlorine demands used for modeling are 0.3 mg/L and 0 mg/L in the absence of site-specific data (compared to 0.8 mg/L and 0 mg/L used to develop the previous TRC limits). The Q_{7-10} of Wells Creek is also slightly lower (0.894 cfs versus 0.915 cfs).

Discharge Monitoring Report data for TRC indicate that STMA will be unable to comply with the new limits—the average of the average monthly and instantaneous maximum TRC concentrations over the last two years are 0.184 mg/L and 0.436 mg/L. Therefore, a two-year schedule of compliance will be imposed pursuant to 25 Pa. Code § 92a.51(a). The existing TRC limits of 0.30 mg/L average monthly and 0.90 mg/L instantaneous maximum will be in effect for the interim two-year period.

In accordance with 25 Pa. Code §§ 92a.12 and 92a.61, effluent limits applicable at Outfall 001 are the more stringent of TBELs, WQBELs, regulatory effluent standards, and monitoring requirements as summarized in the tables on the following pages.

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through two years after the Permit Effective Date.

		Monitoring Requirements						
Baramatar	Mass Units	; (lbs/day) ⁽¹⁾		Concentrations (mg/L)				Required
Falameter	Average	Weekly	Instant.	Average	Weekly	Instant.	Measurement	Sample
	Monthly	Average	Minimum	Monthly	Average	Maximum	Frequency	Туре
		Report						
Flow (MGD)	0.80	Daily Max	XXX	XXX	XXX	XXX	Continuous	Recorded
рН (S.U.)	XXX	XXX	6.0	XXX	xxx	9.0	1/day	Grab
DO	XXX	XXX	5.0	XXX	xxx	XXX	1/day	Grab
TRC	ххх	XXX	XXX	0.30	XXX	0.90	1/day	Grab
CBOD5								8-Hr
Nov 1 - Apr 30	165.0	265.0	XXX	25.0	40.0	50.0	1/week	Composite
CBOD5								8-Hr
May 1 - Oct 30	70.0	105.0	XXX	11.0	16.0	22.0	1/week	Composite
TSS	200.0	300.0	XXX	30.0	45.0	60.0	1/week	8-Hr Composite
Fecal Coliform (No./100 ml)				2000				
Oct 1 - Apr 30	XXX	XXX	XXX	Geo Mean	XXX	10000	1/week	Grab
Fecal Coliform (No./100 ml)				200		4000		
May 1 - Sep 30	XXX	XXX	XXX	Geo Mean	XXX	1000	1/week	Grab
(No./100 ml)	xxx	xxx	xxx	xxx	xxx	Report	1/quarter	Grab
Ammonia-Nitrogen								8-Hr
May 1 - Oct 31	23.0	XXX	XXX	3.5	XXX	7.0	1/week	Composite
Ammonia-Nitrogen								8-Hr
Nov 1 - Apr 30	65.0	XXX	XXX	10.0	XXX	20.0	1/week	Composite
								8-Hr
Total Phosphorus	13.4	XXX	XXX	2.0	XXX	4.0	1/week	Composite
Total Nitrogen	XXX	xxx	XXX	XXX	Report Daily Max	xxx	1/year	Grab
					0.75			24-Hr
Aluminum, Total	XXX	XXX	XXX	0.75	Daily Max	XXX	1/week	Composite

Outfall 001 (continued), Effective Period: Permit Effective Date through two years after the Permit Effective Date.

		Monitoring Requirements						
Paramotor	Mass Units (Ibs/day) ⁽¹⁾		Concentrations (mg/L)				Minimum ⁽²⁾	Required
Farameter	Average Weekly Instant. Average Monthly Average Minimum Monthly		Weekly Average	Instant. Maximum	Measurement Frequency	Sample		
	Monthly	Average		Montiny	3.0	maximum	requeity	24-Hr
Iron, Total	XXX	XXX	XXX	1.5	Daily Max	XXX	1/week	Composite
					2.0			24-Hr
Manganese, Total	XXX	XXX	XXX	1.0	Daily Max	XXX	1/week	Composite

Requirements shown in red in the table above are more stringent than the previous permit. Requirements shown in green are less stringent than the previous permit.

Compliance Sampling Location: Outfall 001

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: two years after the Permit Effective Date through Permit Expiration Date.

		Monitoring Requirements						
Parameter	Mass Units	; (lbs/day) ⁽¹⁾		Concentrations (mg/L)				Required
Falameter	Average	Weekly	Instant.	Average	Weekly	Instant.	Measurement	Sample
	Monthly	Average	Minimum	Monthly	Average	Maximum	Frequency	Туре
		Report						
Flow (MGD)	0.80	Daily Max	XXX	XXX	XXX	XXX	Continuous	Recorded
рН (S.U.)	XXX	XXX	6.0	XXX	XXX	9.0	1/day	Grab
DO	ххх	ххх	5.0	XXX	XXX	XXX	1/day	Grab
TRC	XXX	XXX	XXX	0.114	xxx	0.374	1/day	Grab
CBOD5								8-Hr
Nov 1 - Apr 30	165.0	265.0	XXX	25.0	40.0	50.0	1/week	Composite
CBOD5								8-Hr
May 1 - Oct 30	70.0	105.0	XXX	11.0	16.0	22.0	1/week	Composite
								8-Hr
TSS	200.0	300.0	XXX	30.0	45.0	60.0	1/week	Composite
Fecal Coliform (No./100 ml)	XXXX	XXXX	XXXX	2000		40000	1 /	Orah
Oct 1 - Apr 30	***	***	***	Geo Mean	***	10000	1/week	Grab
Fecal Colliorm (No./100 ml)	VVV	XXX	XXX	200 Geo Mean	VVV	1000	1/wook	Grah
F Coli	~~~~			Geo Mean		1000	1/WEEK	Glab
(No./100 ml)	XXX	XXX	XXX	XXX	XXX	Report	1/quarter	Grab
Ammonia-Nitrogen								8-Hr
May 1 - Oct 31	23.0	XXX	XXX	3.5	XXX	7.0	1/week	Composite
Ammonia-Nitrogen								8-Hr
Nov 1 - Apr 30	65.0	XXX	XXX	10.0	XXX	20.0	1/week	Composite
								8-Hr
Total Phosphorus	13.4	XXX	XXX	2.0	XXX	4.0	1/week	Composite
Total Nitrogen	ххх	xxx	ххх	xxx	Report Daily Max	XXX	1/year	Grab
					0.75			24-Hr
Aluminum, Total	XXX	XXX	XXX	0.75	Daily Max	XXX	1/week	Composite

Outfall 001, Effective Period: two years after the Permit Effective Date through Permit Expiration Date.

			Effluent L	imitations			Monitoring Re	quirements
Paramotor	Mass Units	(lbs/day) ⁽¹⁾		Concentrat	ions (mg/L)		Minimum ⁽²⁾	Required
Falameter	Average Monthly	Weekly Average	Instant. Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type
		U			3.0			24-Hr
Iron, Total	XXX	XXX	XXX	1.5	Daily Max	XXX	1/week	Composite
					2.0			24-Hr
Manganese, Total	XXX	XXX	XXX	1.0	Daily Max	XXX	1/week	Composite

Requirements shown in red in the table above are more stringent than the previous permit. Requirements shown in green are less stringent than the previous permit.

Compliance Sampling Location: Outfall 001

	Tools and References Used to Develop Permit
	WQM for Windows Model (see Attachment A)
	Toxics Management Spreadsheet (see Attachment)
	IRC Model Spreadsheet (see Attachment C)
	Temperature Model Spreadsheet (see Attachment)
	Water Quality Toxics Management Strategy, 361-0100-003, 4/06.
	Technical Guidance for the Development and Specification of Effluent Limitations, 362-0400-001, 10/97.
	Policy for Permitting Surface Water Diversions, 362-2000-003, 3/98.
	Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 362-2000-008, 11/96.
	Technology-Based Control Requirements for Water Treatment Plant Wastes, 362-2183-003, 10/97.
	Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 362-2183-004, 12/97.
	Pennsylvania CSO Policy, 385-2000-011, 9/08.
	Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03.
	Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 391-2000-002, 4/97.
	Determining Water Quality-Based Effluent Limits, 391-2000-003, 12/97.
	Implementation Guidance Design Conditions, 391-2000-006, 9/97.
	Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen, Version 1.0, 391-2000-007, 6/2004.
	Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 391-2000-008, 10/1997.
	Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments, 391-2000-010, 3/99.
	Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 391-2000-011, 5/2004.
\square	Implementation Guidance for Section 93.7 Ammonia Criteria, 391-2000-013, 11/97.
	Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 391-2000-014, 4/2008.
	Implementation Guidance Total Residual Chlorine (TRC) Regulation, 391-2000-015, 11/1994.
	Implementation Guidance for Temperature Criteria, 391-2000-017, 4/09.
	Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 391-2000-018, 10/97.
	Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 391-2000-019, 10/97.
	Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 391-2000-021, 3/99.
	Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 391-2000-022, 3/1999.
	Design Stream Flows, 391-2000-023, 9/98.
	Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 391-2000-024, 10/98.
	Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 391-3200-013, 6/97.
	Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07.
	SOP: Standard Operating Procedure for Clean Water Program Establishing Effluent Limitations for Individual
	Other:

ATTACHMENT A

WQM 7.0 Modeling Results

Input Data WQM 7.0

	SWF Basi	n Coo	am Je	Stre	am Name		RMI	Elevatio (ft)	on Dra A (S	inage Area q mi)	Slope (ft/ft)	PWS Withdra (mgd) I)	Apply FC
	18E	45	675 WELL	S CREEK	1		2.57	70 200	9.00	13.90	0.00220		0.00	~
					St	ream Dat	a							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	<u>Trib</u> Temp	<u>utary</u> pH	Ten	<u>Stream</u> 1p	pН	
Contai	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C)		
Q7-10	0.064	0.00	0.00	0.000	0.000	0.0	0.00	0.00	20.00	6.5	0	0.00	0.00	
Q1-10		0.00	0.00	0.000	0.000									
230-10		0.00	0.00	0.000	0.000									
					D	ischarge [Data							
			Name	Per	mit Numbe	Existing Disc Flow	Permitte Disc Flow	ed Design Disc Flow	Reserve Factor	Diso Tem	p p	isc H		
						(mgd)	(mgd)	(mgd)		(°C))			
		Outfa	all 001	PA	0041441	0.800	0.000	0.0000	0.00	0 20	0.00	7.00		
					Pa	arameter l	Data							
						Di	sc T	Trib Stre	am F	ate				

Conc

(mg/L)

25.00

5.00

4.50

Parameter Name

CBOD5

NH3-N

Dissolved Oxygen

Conc

(mg/L)

2.00

9.17

0.00

Conc

Coef

1.50

0.00

0.70

(mg/L) (1/days)

0.00

0.00

0.00

Input Data WQM 7.0

	SWF Basi	o Strea n Coo	am Je	Stre	eam Name		RMI	Ele	vation (ft)	Drainage Area (sq mi)	,	Slope (ft/ft)	PWS Withdraw (mgd)	val	Apply FC
	18E	456	675 WELL	S CREEK	:		0.27	70	1927.00	17.	00 (0.00220	C	0.00	~
					S	tream Dat	a								
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Ten	<u>Tributary</u> np p	н	Tem	<u>Stream</u> p p	н	
condi	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C	;)		(°C))		
Q7-10 Q1-10 Q30-10	0.064	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000 0.000 0.000	0.0	0.00	0.0)0 2	0.00	6.50) (0.00	0.00	
					D	ischarge I	Data								
						Existing	Permitte	ed Desi	ian	1	Disc	Die	an l		

Name	Permit Number	Existing Disc Flow (mgd)	Permitte Disc Flow (mgd)	d Desi Dis Flo (mg	ign ic Res iw Fa jd)	erve T ctor	Disc 'emp (°C)	Disc pH
		0.0000	0.000	0.0	0000	0.000	25.00	7.00
	Pa	rameter D	ata					
	Parameter Name	Dis Co	nc Co	rib onc	Stream Conc	Fate Coef		
	r arameter Hame	(mg	√L) (m	g/L)	(mg/L)	(1/days)		
CBOD5		2	5.00	2.00	0.00	1.50)	
Dissolved	d Oxygen		3.00	8.24	0.00	0.00		
NH3-N		2	5.00	0.00	0.00	0.70		

Summer Analysis

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	✓
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.64	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.36	Temperature Adjust Kr	~
D.O. Saturation	90.00%	Use Balanced Technology	~
D.O. Goal	6		

Monday, March 22, 2021

Version 1.1

Page 1 of 1

			A A CKI	11.0	nyu	ouyn	anne	Out	Juis			
	<u>sw</u>	<u>P Basin</u> 18E	<u>Strea</u> 4	<u>m Code</u> 5675			v	<u>Stream</u> VELLS (<u>Name</u> CREEK			
RMI	Stream Flow	PWS With (cfs)	Net Stream Flow (cfs)	Disc Analysis Flow (cfs)	Reach Slope	Depth	Width (ft)	W/D Ratio	Velocity (fps)	Reach Trav Time (days)	Analysis Temp (°C)	Analysis pH
Q7-10	0 Flow 0.89	0.00	0.89	1.2376	0.00220	.586	21.64	36.93	0.17	0.836	20.00	6.72
Q1-10 2.570	0 Flow 0.57	0.00	0.57	1.2376	0.00220	NA	NA	NA	0.15	0.917	20.00	6.77
Q30- 1 2.570	10 Flow 1.22	0.00	1.22	1.2376	0.00220	NA	NA	NA	0.18	0.773	20.00	6.68

WQM 7.0 Hydrodynamic Outputs

Version 1.1

	SWD Basin Stre	am Code		51	ream Name		
	SWP Dasin Suc	am Code		51	ream Name		
	18E	45675		WE	LLS CREEK		
H3-N	Acute Allocatio	ns					
RMI	Discharge Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
2.57	0 Outfall 001	19.83	9	19.83	9	0	0
1H3-N (Chronic Allocat	ions					
RMI	Discharge Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
	0 Outfall 001	2.06	4.09	2.06	4.09	0	0

			000	,05	191.1	2-14	DISSUIVE	a Oxygen	Critical	Deceent
_	RMI	Discharge Name	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple (mg/L)	Reach	Reduction
	2.57	Outfall 001	11.72	11.72	3.52	3.52	5	5	0	0

Monday, March 22, 2021

Version 1.1

SWP Basin	Stream Code			Stream Name	
18E	45675			WELLS CREEK	
RMI	Total Discharge	Flow (mgd) <u>Anal</u>	lysis Temperature (°C	Analysis pH
2.570	0.80	D		20.000	6.720
Reach Width (ft)	Reach De	pth (ft)		Reach WDRatio	Reach Velocity (fps)
21.643	0.58	6		36.929	0.168
Reach CBOD5 (mq/L)	Reach Kc (1/days)	R	each NH3-N (mg/L)	Reach Kn (1/days)
7.64	0.60	3		2.04	0.700
Reach DO (mg/L)	Reach Kr (1/days)		Kr Equation	Reach DO Goal (mg/L)
6.749	3.51	3		Tsivoglou	6
Reach Travel Time (days)	Subreach	Results		
0.836	TravTime	CBOD5	NH3-N	D.O.	
	(days)	(mg/L)	(mg/L)	(mg/L)	
	0.084	7.27	1.93	6.42	
	0.167	6.91	1.82	6.22	
	0.251	6.57	1.71	6.12	
	0.335	6.25	1.62	6.09	
	0.418	5.94	1.52	6.11	
	0.502	5.65	1.44	6.16	
	0.586	5.37	1.36	6.24	
	0.669	5.11	1.28	6.34	
	0.753	4.86	1.21	6.44	
	0.836	4.62	1 14	6 55	
	0.000	7.04			

WQM 7.0 D.O.Simulation

Version 1.1

Page 1 of 1

105	45675			WELLS CREEK	ĸ		
Name	ľ	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
Outfall 001	PA	0041441	0.800	CBOD5	11.72		
				NH3-N	3.52	7.04	
				Dissolved Oxygen			5
	Name Outfall 001	Name Mame	Name Permit Number Outfall 001 PA0041441	Name Permit Permit Flow Number (mgd) Outfall 001 PA0041441 0.800	Name Permit Number Disc Flow (mgd) Parameter Outfall 001 PA0041441 0.800 CBOD5 NH3-N Dissolved Oxygen	Name Permit Number Disc Flow (mgd) Parameter Effl. Limit 30-day Ave. (mg/L) Outfall 001 PA0041441 0.800 CBOD5 11.72 NH3-N 3.52 Dissolved Oxygen	Name Permit Number Disc Flow (mgd) Parameter Effl. Limit 30-day Ave. (mg/L) Effl. Limit Maximum (mg/L) Outfall 001 PA0041441 0.800 CBOD5 11.72 NH3-N 3.52 7.04 Dissolved Oxygen

WQM 7.0 Effluent Limits

Version 1.1

Input Data WQM 7.0

	SWP Basi	o Strea n Coo	am de	Stre	eam Name		RM	Elev	vation (ft)	Drainage Area (sq mi)	e Slo (ft/	ope PV Witho /ft) (m	VS drawal igd)	Apply FC
	18E	45	675 WELL	S CREEK	:		2.5	70 2	2009.00	13.9	90 0.0	0220	0.00	¥
					St	ream Dat	a							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Ten	<u>Tributary</u> 1p p	н	<u>Strear</u> Temp	m pH	
	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C)		
Q7-10 Q1-10 Q30-10	0.129	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000 0.000 0.000	0.0	0.00	0.0	0	5.00	6.50	0.00	0.00	
					D	ischarge	Data						1	
			Name	Per	mit Numbe	Existing Disc r Flow (mgd)	Permit Disc Flow (mgo	ted Desig Disc Flov (mg	gn c Res w Fa d)	ierve T ictor	Disc Temp (°C)	Disc pH		
		Outfa	all 001	PA	0041441	0.800	0 0.00	00 0.0	000	0.000	15.00	7.00		
					Pa	arameter	Data							
				Daramete	r Name	D	isc onc	Trib : Conc	Stream Conc	Fate Coef				
				raramete	Manie	(m	ng/L) (mg/L)	(mg/L)	(1/days)				
	-		CBOD5				25.00	2.00	0.00	1.50)			
			Dissolved	Oxygen			5.00	12.80	0.00	0.00)			
			NH3-N				13.50	0.00	0.00	0.70)			

Input	Data	WQM	7.0
-------	------	-----	-----

	SWP Basir	Stream Coo	am ie	Stre	eam Name		RM	l Ele	evation (ft)	Drainage Area (sq mi)	Slope (ft/ft)	PV Withd (mj	/S Irawal gd)	Apply FC
	18E	45	675 WELL	S CREEK	t		0.2	70	1927.00	17.00	0.0022	0	0.00	✓
					St	ream Dat	a							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	n Tem	<u>Tributary</u> 1p pH	Те	<u>Strear</u> emp	n pH	
	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)	C	°C)		
Q7-10 Q1-10 Q30-10	0.129	0.00	0.00	0.000	0.000	0.0	0.00	0.0	00	5.00 6.	50	0.00	0.00	
0,00-10		0.00	0.00	0.000	0.000								T	
					Di	ischarge	Data					-		
			Name	Per	mit Number	Existing Disc r Flow (mgd)	Permit Disc Flow (mgc	ted Des : Dis v Flo I) (mg	ign sc Res ow Fa gd)	erve Ter ctor (%	sc np C)	Disc pH		
						0.000	0.00	00 0.0	0000	0.000	25.00	7.00		
					Pa	arameter	Data							
				Paramete	r Name	Di C	isc onc	Trib Conc	Stream Conc	Fate Coef				
				ururrote	- Hunne	(m	ig/L) (mg/L)	(mg/L)	(1/days)				
	-		CBOD5				25.00	2.00	0.00	1.50				
			Dissolved	Oxygen			3.00	8.24	0.00	0.00				
			NH3-N				25.00	0.00	0.00	0.70				

Winter Analysis

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	¥
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.64	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.36	Temperature Adjust Kr	✓
D.O. Saturation	90.00%	Use Balanced Technology	V
D.O. Goal	6		

Monday, March 22, 2021

Version 1.1

Page 1 of 1

			A A COL	11.0	nyui	ouyn	anne	Out	Juis			
	SWP Basin Stream Code Stream Name				Name							
		18E	4	5675			v	VELLS	REEK			
RMI	Stream Flow	PWS With	Net Stream Flow	Disc Analysis Flow	Reach Slope	Depth	Width	W/D Ratio	Velocity	Reach Trav Time	Analysis Temp	Analysis pH
	(cfs)	(cfs)	(cfs)	(cfs)	(ft/ft)	(ft)	(ft)		(fps)	(days)	(°C)	
Q7-1() Flow											
2.570	1.79	0.00	1.79	1.2376	0.00220	.613	24.14	39.4	0.20	0.687	9.09	6.64
Q1-1(Flow											
2.570	1.14	0.00	1.14	1.2376	0.00220	NA	NA	NA	0.18	0.786	10.20	6.69
Q30-1	10 Flow	/										
2.570	2.43	0.00	2.43	1.2376	0.00220	NA	NA	NA	0.23	0.617	8.37	6.61

WQM 7.0 Hydrodynamic Outputs

Version 1.1

		<u>WQM 7</u>	<u>.0 Wast</u>	<u>teload</u>	Allo	catio	<u>ns</u>		
	SWP Basin S	tream Code			Stream	Name			
	18E	45675		V	WELLS (REEK			
NH3-N	Acute Allocati	ions							
RMI	Discharge Na	Baseline me Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterior (mg/L)	Mu h W (m	ltiple /LA ng/L)	Critical Reach	Percent Reductio	n
2.5	70 Outfall 001	29.91	27	29.9	91	27	0	0	_
NH3-N	Chronic Alloc	ations							-
RMI	Discharge Nam	Baseline e Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multi WL (mg	ple "A /L)	Critical Reach	Percent Reduction	
2.5	70 Outfall 001	4.43	13.12	4.4	43	13.12	0	0	-
Dissolv	ed Oxygen All	ocations							_
			CBOD5	NH3	-N	Dissolve	ed Oxygen	Critical	Percent
RMI	Discharge I	Name Basel (mg/	ine Multiple L) (mg/L)	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple (mg/L)	Reach	Reduction
2.	57 Outfall 001		25 25	13.12	13.12	5	5	0	0

Version 1.1

SWP Basin St	ream Code			Stream Nam	e	
18E	45675			WELLS CREE	K	
RMI	Total Discharge	Flow (mgd) <u>Ana</u>	lysis Temperat	ure (°C)	Analysis pH
2.570	0.80	0		9.091		6.643
Reach Width (ft)	Reach De	pth (ft)		Reach WDRa	itio	Reach Velocity (fps)
24.144	0.61	3		39.395		0.204
Reach CBOD5 (mg/L)	Reach Kc	1/days)	R	each NH3-N (r	ng/L)	Reach Kn (1/days)
11.41	1.29	3		5.37		0.302
Reach DO (mg/L)	Reach Kr (1/days)		Kr Equation	1	Reach DO Goal (mg/L)
9.609	3.29	.299		Tsivoglou		6
Reach Travel Time (days) 0.687	TravTime (days)	Subreact CBOD5 (mg/L)	Results NH3-N (mg/L)	D.O. (mg/L)		
	0.069	10.81	5.26	8.74		
	0.137	10.24	5.15	8.10		
	0.206	9.71	5.04	7.64		
	0.275	9.20	4.94	7.32		
	0.344	8.72	4.84	7.10		
	0.412	8.26	4.74	6.98		
	0.481	7.82	4.64	6.92		
	0.550	7.41	4.54	6.91		
	0.619	7.03	4.45	6.94		
	0.687	6.66	4.36	7.00		

WQM 7.0 D.O.Simulation

Version 1.1

Page 1 of 1

	SWP Basin 18E	Stream Code 45675		Stream Name WELLS CREE	<u>в</u> К		
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
2.570	Outfall 001	1 PA0041441	0.800	CBOD5	25		
				NH3-N	13.12	26.24	
				Dissolved Oxygen			5

WQM 7.0 Effluent Limits

ATTACHMENT B

TMDL Waste Load Allocations

	Reclamation of the trade of the theory and the trade of t											
Region	SWS	PERMIT	PIPE	Metal	Baseline Load (lbs/yr)	Baseline Concentration (mg/L)	Allocated Load (lbs/yr)	Allocated Concentration (mg/L)	% Reduction	Comments		
6	4223	PA0041441	1	Aluminum	1,828	0.75	1,828	0.75	0			
6	4223	PA0041441	1	Iron	3,656	1.50	3,656	1.50	0			
6	4223	PA0041441	1	Manganese	2,437	1.00	2,437	1.00	0			

Kiskiminetas River Watershed Minor Non-Mining Wasteload Allocations

ATTACHMENT C

TRC Modeling Results

TRC EVALUATION – Outfall 001

0.894 = Q	stream (cfs)			0.5	= CV Daily				
0.8 = Q	discharge (MGD)			0.5	= CV Hou	rly			
30 = nc	. samples			1	= AFC_Pa	rtial Mix Factor			
0.3 = Cł	lorine Demand of St	ream		1	= CFC_Pa	rtial Mix Factor			
0 = Cł	lorine Demand of Di	scharge		15	= AFC_Criteria Compliance Time (min)				
0.5 = B/	T/BPJ Value			720	= CFC_Cr	= CFC_Criteria Compliance Time (min)			
= %	Factor of Safety (FC	DS)			=Decay C	oefficient (K)			
Source	Reference	AFC Calculations		Ref	erence	CFC Calculations			
TRC	1.3.2.iii	WLA afc = 0.249		1.	3.2.iii	WLA cfc = 0.236			
PENTOXSD TRG	5.1a	LTAMULT afc = 0.373		!	5.1c	LTAMULT cfc = 0.581			
PENTOXSD TRG	5.1b	LTA_afc= 0.093		ę	5.1d	$LTA_cfc = 0.137$			
	_								
Source	Source Reference				t Calculation	IS			
PENTOXSD TRG	5.1f	AML MULT = 1.231							
PENTOXSD TRG	5.1g	AVG MON	LIMIT (mg/l) =	0.114	AFC			
		INST MAX	LIMIT (_mg/l) =	0.374				
WLA afc (.019/e(-k*AFC_tc)) + [(AFC_Yc*Qs*.019/Qd*e(-k*AFC_tc)) + Xd + (AFC_Yc*Qs*Xs/Qd)]*(1-FOS/100) LTAMULT afc EXP((0.5*LN(cvh^2+1))-2.326*LN(cvh^2+1)^0.5) LTA_afc wla_afc*LTAMULT_afc WLA_cfc (.011/e(-k*CFC_tc) + [(CFC_Yc*Qs*.011/Qd*e(-k*CFC_tc)) + Xd + (CFC_Yc*Qs*Xs/Qd)]*(1-FOS/100) LTAMULT_cfc EXP((0.5*LN(cvd^2/no_samples+1))-2.326*LN(cvd^2/no_samples+1)^0.5) LTA_cfc wla_cfc*LTAMULT_cfc									
AML MULT AVG MON LIMIT INST MAX LIMIT	ML MULTEXP(2.326*LN((cvd^2/no_samples+1)^0.5)-0.5*LN(cvd^2/no_samples+1)).VG MON LIMITMIN(BAT_BPJ,MIN(LTA_afc,LTA_cfc)*AML_MULT)NST MAX LIMIT 1.5*((av_mon_limit/AML_MULT)/LTAMULT_afc)								