

Application Type	Renewal
	Non-
Facility Type	Municipal
Major / Minor	Minor

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

PA0044598
14187
1308221

Applicant and Facility Information

Applicant Name	Susquehanna Area Region Airport Authority	Facility Name	Harrisburg International Airport
Applicant Address	1 Terminal Drive Suite 300	Facility Address	1 Terminal Drive Suite 300
	Middletown, PA 17057-5048		Middletown, PA 17057-5048
Applicant Contact	Scott Snoke	Facility Contact	Scott Snoke
Applicant Phone	(717) 948-3900	Facility Phone	(717) 948-3900
Client ID	206361	Site ID	452258
Ch 94 Load Status	Not Overloaded	Municipality	Lower Swatara Township
Connection Status	No Limitations	County	Dauphin
Date Application Receiv	vedMarch 3, 2020	EPA Waived?	Yes
Date Application Accep	ted March 16, 2020	If No, Reason	
Purpose of Application	NPDES permit renewal for dischar	ge of treated sewage	

Summary of Review

1.0 General Discussion

This fact sheet supports the renewal of an existing NPDES permit for discharge of treated sewage from Susquehanna Area Region Airport Authority (SARAA) sewage treatment plant that serves Harrisburg International Airport and some neighboring facilities. SARAA owns, operates, and maintains the wastewater treatment plant located in Lower Swatara Township, Dauphin County. SARAA is a municipality as defined in section 502(4) of the act 33US.C §1362(4), and thus its treatment works is a POTW as defined in 40 CFR section 403.3(g). The facility has been treated as a non-municipal treatment works in the past permits in error. The treatment plant is designed to provide biological nutrient removal using Sequencing Batch Reactors. The facility discharges to the downstream of a flood dike on Post Run, a tributary of Susquehanna River. A POFU done in February 2005 confirmed an earlier determination that the Susquehanna River was the POFU. However, because the discharge is located within the flood zone of Susquehanna River, dry stream limits were not considered for this discharge. Susquehanna River has been used historically for water quality analysis and will continue to be used for the current permit renewal. Post Run and Susquehanna River are classified for warm water fishes and migratory fishes. The facility has a hydraulic design capacity of 0.35 MGD and organic design capacity of the facility is 875lbs BOD5/day. The existing NPDES permit was issued on August 18, 2015 with an effective date of September 1, 2015 and expiration date of August 31, 2020. The applicant submitted a timely NPDES renewal application to the Department and is currently operating under the terms and conditions in the existing permit under administrative extension provisions pending Department action on the renewal application. A topographic map showing the discharge location is presented in attachment A.

Approve	Deny	Signatures	Date
х		J. Pascal Kwedza J. Pascal Kwedza, P.E. / Environmental Engineer	October 14, 2021
х		Maria D. Bebenek for Daniel W. Martin Daniel W. Martin, P.E. / Environmental Engineer Manager	October 15, 2021
х		Maria D. Bebenek Maria D. Bebenek, P.E./ Program Manager	October 15, 2021

Summary of Review

1.1 Sludge use and disposal description and location(s):

The biosolids treatment system comprises of 2 aerobic digesters. Digested and thickened sludge is hauled out by a license hauler (Klines Services) for further processing.

1.2 Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

1.3.0 Changes to the existing permit

• E. Coli monitoring has been added

1.3.1 Existing Limitations and Monitoring Requirements

		Monitoring	Monitoring Requirements					
Discharge Parameter	Mass Units	s (lbs/day)		Concentr	ations (mg/L)	Minimum	
	Monthly	Daily Maximum	Minimum	Monthly Weekly		Instantaneou	Measurement	Required
Flow (mgd)	Report	Report	XXX	XXX	XXX	XXX	Continuous	Measured
pH (S.U.)	XXX	XXX	6.0	XXX	XXX	9.0	1/day	Grab
Dissolved Oxygen	XXX	XXX	5.0	XXX	XXX	XXX	1/day	Grab
TSS	XXX	XXX	XXX	30	XXX	60	1/week	24-hr comp
CBOD ₅	XXX	XXX	XXX	25	XXX	50	1/week	24-hr comp
Total Phosphorus	XXX	XXX	XXX	2.0	XXX	4.0	1/week	24-hr comp
Fecal Coliform (5/1 to 9/30) ⁽⁵⁾	XXX	XXX	XXX	200	XXX	1,000	1/week	Grab
Fecal Coliform (10/1 to 4/30)	XXX	XXX	XXX	2,000	XXX	10,000	1/week	Grab
UV Transmittance (%)	xxx	xxx	Report	xxx	xxx	XXX	1/day	Metered

Summary of Review

1.3.2 Chesapeake Bay Permit Requirements

			Monitoring Requirements				
Dischargo	Mass L	oad(lbs)	Con	centrations (ng/l)	Mississer	
Parameter	Monthly	thly Annual Minimum Monthly M		Maximum	Minimum Measurement Frequency	Required Sample Type	
AmmoniaN	Report	Report	xxx	Report	xxx	1/week	24-hr Comp
KjeldahlN	Report	XXX	xxx	Report	XXX	1/week	8-hr Comp
Nitrate-Nitrite as N	Report	xxx	XXX	Report	XXX	1/week	8-hr Comp
Total Nitrogen	Report	Report	XXX	Report	XXX	1/month	Calculate
Total Phosphorus	Report	Report	XXX	Report	XXX	1/week	24-hr Comp
Net Total Nitrogen	Report	7306	XXX	xxx	XXX	1/month	Calculate
Net Total Phos.	Report	974	xxx	xxx	xxx	1/month	Calculate

	1.4	.0 Discharge, Receiving \	Waters and Water Supply Inforr	nation
Outfall No.001 DischargeLatitude40° 11' 17.00"Quad NameMiddletownWastewater Description:Treated sewage			Design Flow (MGD) Longitude Quad Code	0.35 76° 44' 44.00" 1732
Receiving Waters NHD Com ID Drainage Area Q ₇₋₁₀ Flow (cfs) Elevation (ft) Watershed No. Existing Use Exceptions to Use	Unnat Susqu 13378 1.5 0.20 7-C	med Tributary to uehanna River (Post Run) 33838	Stream Code RMI Yield (cfs/mi²) Q7-10 Basis Slope (ft/ft) Chapter 93 Class. Existing Use Qualifier Exceptions to Criteria	10088 0.15 0.133 USGS 01570500 WWF, MF
Assessment Status Cause(s) of Impairr Source(s) of Impairr	nent ment	Impaired Siltation, Other Habitat A Urban Runoff/Storm Sew	Iterations vers	
TMDL StatusPendingBackground/Ambient DatapH (SU)8.2Temperature (°F)23.50Hardness (mg/L)115Other:		Data Source WQN202 July-Sept median WQN202 July-Sept median WQN202 July-Oct average		
Nearest Downstrea PWS Waters PWS RMI	m Publi Susquel	c Water Supply Intake nanna River	Colombia Water Company Flow at Intake (cfs) Distance from Outfall (mi)	<u>32.71</u> 18

Changes Since Last Permit Issuance: None

1.4.1 Discharge, Se	econda	ry Receiving Waters and	d Water Supply Information	
Outfall No. <u>001</u> Latitude <u>40°</u> Quad Name <u>Mi</u> Wastewater	POFU 11' 8" ddletow	<u>/n</u>	Design Flow (MGD) Longitude Quad Code	0.35 76° 44' 46" 1732
Description: Secondary Receiving Waters NHD Com ID Drainage Area Q ₇₋₁₀ Flow (cfs) Elevation (ft) Watershed No. Existing Use Exceptions to Use Assessment Statu	Susq 24,28 3229. 275.1 7-C	Sewage uehanna River 1.5 mi 4 0	Stream Code RMI Yield (cfs/mi²) Q7-10 Basis Slope (ft/ft) Chapter 93 Class. Existing Use Qualifier Exceptions to Criteria	06685 62.88 0.133 USGS Gage Station WWF, MF
Cause(s) of Impai Source(s) of Impa TMDL Status	rment irment	pH, PCB unknown Pending	Name	
Background/Ambi pH (SU) Temperature (°F) Hardness (mg/L) Other:	ent Dat	a 	Data Source	
Nearest Downstre PWS Waters PWS RMI	am Put Susque	blic Water Supply Intake hanna river	Colombia Water Company Flow at Intake (cfs) Distance from Outfall (mi)	<18

1.4.2 Water Supply Intake

The nearest downstream water supply intake is approximately 18 miles downstream by Colombia Water Company on Susquehanna River in York County. Due to the distance and dilution, no impact is expected from this discharge.

2.0 Treatment Facility Summary									
Treatment Facility Na	me: Harrisburg Airport STI	p							
WQM Permit No.	Issuance Date								
2207403	02/28/2008								
	Degree of								
Waste Type	Treatment	Process Type	Disinfection	Flow (MGD)					
Sewage	Tertiary	Sequencing Batch Reactor W/Sol Removal	Ultraviolet	0.35					
Hydraulic Capacity	Organic Capacity			Biosolids					
(MGD)	(Ibs/day)	Load Status	Biosolids Treatment	Use/Disposal					
0.35	875	Not Overloaded		Other WWTP					

Changes Since Last Permit Issuance: None

2.1 Treatment Facility Description

The facility consists of main pump station, mechanical fine screen, grit removal unit, 2 SBR reactors, 2 UV units, 2 aerobic digesters, and a post aeration tank with pumps to pump to UV.

2.2 Chemicals

Delpac for phosphorus precipitation. Micro C and Sugar as carbon source for biological nutrient removal

3.0 Compliance History

3.1 DMR Data for Outfall 001 (from September 1, 2020 to August 31, 2021)

Parameter	AUG-21	JUL-21	JUN-21	MAY-21	APR-21	MAR-21	FEB-21	JAN-21	DEC-20	NOV-20	OCT-20	SEP-20
Flow (MGD)												
Average Monthly	0.099	0.084	0.077	0.072	0.073	0.079	0.057	0.049	0.043	0.039	0.045	0.045
Flow (MGD)												
Daily Maximum	0.145	0.143	0.144	0.133	0.115	0.125	0.106	0.114	0.091	0.068	0.086	0.092
pH (S.U.)												
Minimum	7.5	7.6	7.5	7.2	7.2	7.1	7.2	6.9	7.1	7.1	7.3	7.6
pH (S.U.)												
Maximum	8.2	8.4	8.2	7.6	7.4	7.5	7.7	7.3	7.3	7.4	8.1	8.0
DO (mg/L)												
Minimum	6.5	6.4	6.1	5.8	7.4	6.6	8.3	7.9	8.7	7.5	6.5	7.3
CBOD5 (mg/L)												
Average Monthly	2.9	2.6	3.5	< 2.4	< 2.9	< 2.8	< 3.9	< 2.3	< 2.3	< 2.0	< 2.0	< 2.4
TSS (mg/L)												
Average Monthly	6.3	8.8	6.7	6.3	7.5	5.8	10.0	9.8	11.0	8.8	9.0	5.2
Fecal Coliform												
(CFU/100 ml)												
Geometric Mean	< 1	< 1	< 1	< 1	< 1	< 3	< 8	< 6	138	5	< 1	< 1
Fecal Coliform												
(CFU/100 ml)												
Instant. Maximum	1	< 1	< 1	< 1	< 1	250	360	47	280	132	1	< 1
UV Transmittance (%)												
Minimum	100	100	100	100	100	100	100	100	100	100	100	100
Nitrate-Nitrite (mg/L)												
Average Monthly	17.4	16.9	15.84	12.2	7.87	< 1.93	< 4.7	24.6	24.8	21.1	19.4	22.0
Nitrate-Nitrite (lbs)												
Total Monthly	491.8	459.6	295.2	294.2	159	< 44.5	< 70.5	364.5	214	211	273.3	353
Total Nitrogen (mg/L)												<i>i</i>
Average Monthly	< 18.37	< 17.98	< 16.84	< 13.3	9.55	< 3.65	< 8.4	< 27.4	< 25.8	< 22.1	< 20.6	< 23.1
Total Nitrogen (lbs)												
Effluent Net 	= 1 0 0	400.0			100.1		400.0	100.0				070 (
Total Monthly	< 519.6	< 488.6	< 313.7	< 320.4	192.1	< 83.3	< 128.2	< 420.8	< 222.6	< 221.4	< 292.3	< 370.4
Total Nitrogen (lbs)	540.0	400.0	0407	000 4	100.4		400.0	400.0	000.0	004.4		070 4
Total Monthly	< 519.6	< 488.6	< 313.7	< 320.4	192.1	< 83.3	< 128.2	< 420.8	< 222.6	< 221.4	< 292.3	< 370.4
Total Nitrogen (lbs)												
Effluent Net 												0500
												< 2580
Total Nitrogen (lbs)												0500
Total Annual												< 2580

NPDES Permit Fact Sheet Harrisburg International Airport

Ammonia (mg/L)												
Average Monthly	< 0.119	< 0.1	< 0.1	< 0.2	< 0.231	< 1.00	2.96	< 2.4	< 0.164	< 0.1	< 0.177	< 0.1
Ammonia (lbs)												
Total Monthly	< 3.6	< 2.7	< 1.9	< 4.6	< 4.4	< 21.9	45.1	< 51.9	< 1.5	< 1	< 3	< 1.6
Ammonia (lbs)												
Total Annual												< 59
TKN (mg/L)												
Average Monthly	< 0.97	< 1.1	< 1.0	< 1.1	1.7	< 1.7	3.2	< 2.4	< 1	< 1	< 1.2	< 1.1
TKN (lbs)												
Total Monthly	< 27.8	< 28.9	< 18.6	< 26.2	33.2	< 38.8	50.9	< 48	< 8.6	< 9.9	< 19	< 17.4
Total Phosphorus												
(mg/L)												
Average Monthly	0.86	0.90	0.58	0.35	0.24	< 0.13	0.22	0.61	1.9	0.51	0.53	0.66
Total Phosphorus (lbs)												
Effluent Net 												
Total Monthly	24.3	24.4	10.5	8.1	4.8	< 3	3.8	< 27.4	17.9	5.1	7.8	10.7
Total Phosphorus (lbs)												
Total Monthly	24.3	24.4	10.5	8.1	4.8	< 3	3.8	9.2	17.9	5.1	< 7.8	10.7
Total Phosphorus (lbs)												
Effluent Net 												
Total Annual												< 66
Total Phosphorus (lbs)												
Total Annual												66

3.2 Summary of Discharge Monitoring Reports (DMRs):

DMRs review for the facility for the last 12 months of operation, presented on the table above in section 3.1 indicate permit limits have been met consistently. No effluent violations noted on DMRs during the period reviewed.

3.3 Summary of Inspections:

The facility has been inspected a couple times during last permit cycle. A notice of violation (NOV) was sent on February 16, 2018 for TSS and CBOD5 violations noted during plant inspection on January 25, 2018. Response to the NOV indicates the violation was due to plant upset from illicit discharge from an industrial user. The violation and delay in reporting and correcting the violation led to a consent assessment of civil penalty on September 15, 2020. As a corrective action, SARAA proposed implementing a sampling program for industrial users.

4.0 Development of Effluent Limitations									
Outfall No. Latitude	 40º 11' 17 00"	Design Flow (MGD) Longitude	.35 -76º 44' 44 00"						
Wastewater D	Description: Sewage Effluent								

4.1 Basis for Effluent Limitations

In general, the Clean Water Act(AWA) requires that the effluent limits for a particular pollutant be the more stringent of either technology-based limits or water quality-based limits. Technology-based limits are set according to the level of treatment that is achievable using available technology. A water quality-based effluent limit is designed to ensure that the water quality standards applicable to a waterbody are being met and may be more stringent than technology-based effluent limits.

4.2 Technology-Based Limitations

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Pollutant	Limit (mg/l)	SBC	Federal Regulation	State Regulation
CROD-	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
CBOD5	40	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)
Total Suspended	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
Solids	45	Average Weekly	133.102(b)(2)	92a.47(a)(2)
рН	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform				
(5/1 – 9/30)	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
Fecal Coliform				
(5/1 – 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform				
(10/1 – 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
Fecal Coliform				
(10/1 - 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)
Total Residual Chlorine	0.5	Average Monthly	-	92a.48(b)(2)

Comments: TRC limitation not applicable.

4.3 Mass-Based Limits

The federal regulation at 40 CFR 122.45(f) requires that effluent limits be expressed in terms of mass, if possible. The regulation at 40 CFR 122.45(b) requires that effluent limitations for POTWs be calculated based on the design flow of the facility. The mass-based limits are expressed in pounds per day and are calculated as follows:

Mass based limit (lb/day) = concentration limit (mg/L) × design flow (mgd) × 8.34

4.4.0 Water Quality-Based Limitations

4.4.1 Streamflow:

Streamflows for the water quality analysis were determined by correlating with the yield of USGS gauging station No. 01570500 on Susquehanna River in Harrisburg. The Q_{7-10} and drainage area at the gage is 3200 ft³/s and 24100mi² respectively. The resulting yields are as follows:

- $Q_{7-10} = (3200 \text{ ft}^3/\text{s})/ 24100 \text{ mi}^2 = 0.133 \text{ ft}^3/\text{s}/ \text{mi}^2$
- $Q_{30-10} / Q_{7-10} = 1.15$
- $Q_{1-10} / Q_{7-10} = 0.94$

The drainage area at POFU = 24281.5 mi^2

The Q_{7-10} at POFU = 24281.5 mi² x 0.133 ft³/s/mi² = 3229.4ft³/s.

For WQM 7.0 modelling purposes, 25% of the flow will be used

 Q_{7-10} model = 3229.4 ft³/s. x 0.25 = 807.35 ft³/s

4.4.2 NH₃N Calculations

NH₃N calculations will be based on the Department's Implementation Guidance of Section 93.7 Ammonia Criteria, dated 11/4/97 (ID No. 391-2000-013). The following data is necessary to determine the instream NH₃N criteria used in the attached computer model of the stream:

- Discharge pH = 7.5 (July -Sept DMR median) Discharge Temperature = 25 ° C (Default)
- * Stream pH

- = 8.2 (Taken from WQN station at Harrisburg)
- Stream Temperature $= 23.5^{\circ}$ C (Taken from WQN station at Harrisburg)
- Background NH₃-N = 0.0 (default)

4.4.3 CBOD₅

Due to the proximity of this discharge and the Airports IW discharge and Middletown Borough's discharge, they were modeled together. The attached results of the WQM 7.0 stream model indicate that an average monthly limit (AML) of 25 mg/I CBOD₅ is adequate to protect the water quality of the stream for the Airport's STP discharge. The results did not reveal any apparent interaction between the discharges. The recommended average monthly limit of 25 mg/l and instantaneous maximum limit of 50 mg/l are consistent with the existing permits and will remain in the permit. In addition, average weekly limit (AWL) of 40mg/l will be added to the permit as in done for municipal facilities with monitoring frequency of at least 1/week. Past DMRs and inspection reports show the facility can meet the limits. Mass-based limits are calculated based on the equation presented in section 4.3.

4.4.4 NH₃-N

The attached results of the WQM 7.0 stream model indicates also that no limitation on NH₃-N as a monthly average is necessary to protect the aquatic life from toxicity effects. However, existing weekly monitoring of NH₃-N will remain in the permit to ensure treatment efficiency.

4.4.5 Dissolved Oxygen

The existing permit contains a limit of 5 mg/l for Dissolved Oxygen (DO). DEP's Technical Guidance for the Development and Specification of Effluent Limitations (362-0400-001, 10/97) suggests that either the adopted minimum stream D.O. criteria for the receiving stream or the effluent level determined through water quality modeling be used for the limit. Since the WQM 7.0 model was run using a minimum D.O. of 5.0 mg/l, this limit will be continued in the renewed permit with a daily monitoring requirement per DEP guidance.

4.4.6 Total Residual Chlorine:

The discharge does not have any reasonable potential to cause or contribute to a water quality standards violation for total residual chlorine since the permittee utilizes UV instead of chlorine for wastewater disinfection. Therefore, the proposed permit does not contain effluent limits for total residual chlorine. The permittee may use chlorine-based chemicals for cleaning and is required to optimize chlorine usage to prevent negative impacts on receiving stream. Daily UV transmittance monitoring in (%) is required in the permit to ensure efficiency of the UV unit.

4.4.7 Total Suspended Solids (TSS):

There is no water quality criterion for TSS. A limit of 30 mg/l AML in the existing permit which was based on the minimum level of effluent guality attainable by secondary treatment as defined in 40 CFR 133.102b(1) and 25 PA § 92a.47(a)(1) will remain in the permit. In addition, an AWL of 45mg/l per 40CFR 133.102(b)(2) and 25 PA § 92a.47(a)(2) is added to the permit. Mass-based limits are calculated based on the equation presented in section 4.3.

4.4.8 Toxics

A reasonable potential (RP) was done for pollutants sampled in support of the permit renewal application. All pollutants that were presented in the application sampling data were entered into DEP's Toxics Management Spreadsheet (TMS) which combines the logic in the previous Toxics Screening Analysis Spreadsheet and PENTOXSD Model to calculate WQBELs. The results of the TMS are presented in attachment C. The discharge levels for all parameters analyzed were well below DEP's target quantitation limits (TQL) and calculated WQBELs, therefore no limitation or monitoring is required in the permit.

The recommended limitations follow the logic presented in DEPs SOP, to establish limits in the permit where the maximum reported concentration exceeds 50% of the WQBEL, or for non-conservative pollutants to establish monitoring requirements where the maximum reported concentration is between 25% - 50% of the WQBEL, or to establish monitoring requirements for conservative pollutants where the maximum reported concentration is between 10% - 50% of the WQBEL.

4.4.9 Chesapeake Bay Strategy

The Department formulated a strategy in April 2007, to comply with the EPA and Chesapeake Bay Foundation requirements to reduce point source loadings of Total Nitrogen (TN) and Total Phosphorus (TP) to Chesapeake Bay(Bay). In the Strategy, sewage dischargers have been prioritized by Central Office based on their delivered TN loadings to the Bay. The highest priority (Phases 1, 2, and 3) dischargers received annual loading caps based on their design flow of August 29, 2005 and concentrations of 6 mg/l TN and 0.8 mg/l TP. These limits may be achieved through a combination of treatment technology, credits, or offsets. Phase 4 (0.2 -0.4mgd) and Phase 5(below 0.2mdg) will be required to monitor and report TN and TP during permit renewals. Any facility in Phases 4 and 5 that undergoes expansion is subjected to cap load at the time of expansion.

EPA published the Chesapeake Bay TMDL in December of 2010. In order to address the TMDL, Pennsylvania developed Chesapeake Watershed Implementation Plan (WIP) Phase 1, Phase 2 and currently Phase 3 WIP and a supplement to the WIPs in addition to the original Chesapeake Bay Strategy. As outlined in the current Phase 3 WIP and supplement to the WIP, re-issuing permits for significant dischargers would follow the same phased approach formulated in the original Bay strategy. This facility expanded from 0.15MGD to 0.35MGD and received Bay cap loads based on the strategy at that time of using the lesser of the ceiling cap of TN of 6 mg/l (7,306 lbs) and TP of 0.8 mg/l (974 lbs.) at 0.50 MGD or existing performance (22 mg/l TN and 4 mg/l TP at design flow of 0.15 MGD) resulting in a cap of 10,045 lbs. TN and 1,461 lbs. TP. The permit was issued with the ceiling caps for TN of 7,306 lbs and TP of 974 lbs. which remain applicable. The permittee is in compliance with the Bay Capload.

4.4.10 Phosphorus:

The limit of 2 mg/l established in the existing permit was for the protection of the Lower Susquehanna River basin. This approach has been superseded by the Chesapeake Bay Strategy but will remain in the permit due to anti-backsliding. This STP was designed to remove phosphorus and contains phosphorus limits in all previous permits. Past DMRs and inspection reports show that the STP is in compliance with the phosphorus effluent limits.

4.3.11 Influent BOD and TSS Monitoring

The permit will require influent BOD5 and TSS monitoring at the same frequency as is done for effluent in order to implement Chapter 94.12 and assess percent removal requirements effectively.

4.4.12 Industrial Users

SARAA's treatment works receives industrial wastewater from Librandi metal fishing facility. The facility is a significant industrial user.

NPDES Permit Fact Sheet Harrisburg International Airport

4.4.13 Pretreatment Requirements

The design annual average flow of the treatment plant is 0.35MGD but receives flow from an industrial user subject to new source pretreatment standards for metal finishing facilities. Per 40 CFR section 403.8(a), development and implementation of pretreatment program is required for POTWs that receives industrial wastewater from industrial users subject to pretreatment standards. SARAA currently has no EPA-approved pretreatment program. The permit will include condition in Part C.II of the permit requiring SARAA to develop a pretreatment program for approval by EPA and to implement the approved pretreatment program.

4.3.14 Stormwater

No stormwater outfall is associated with this facility.

4.4.15 Fecal Coliform and E. Coli

The existing Fecal Coliform limit is consistent with the technology limits recommended in 92a.47(a)(4) and (a)(5) and will remain in the permit. Quarterly monitoring of E. Coli is required in the permit following DEP recommendation of 1/quarter monitoring of E. Coli at a minimum for this type of facility.

5.0 Other Requirements

5.1 Anti-backsliding

Not applicable to this permit

5.2 Anti-Degradation (93.4)

The effluent limits for this discharge have been developed to ensure that existing instream water uses and the level of water quality necessary to protect the existing uses are maintained and protected. No High-Quality Waters are impacted by this discharge. No Exceptional Value Waters are impacted by this discharge.

5.3 Class A Wild Trout Fisheries

No Class A Wild Trout Fisheries are impacted by this discharge.

5.4 303d Listed Streams

The discharge is located on a 303d listed stream segment. Susquehanna River is impaired for fish consumption by PCB and aquatic life by pH. The sources of the impairments are unknown. Post Run is supporting uses according to eMapPA. This discharge does not contribute to these impairments; therefore, no action is warranted at this time.

5.5 Special Permit Conditions

The permit contains the following special conditions:

• Stormwater Prohibition, Approval Contingencies, Solids Management, Restriction on receipt of hauled in waste under certain conditions, and requirement for pretreatment program development and implementation.

5.6 Basis for Effluent and Surface Water Monitoring

Section 308 of the CWA and federal regulation 40 CFR 122.44(i) require monitoring in permits to determine compliance with effluent limitations. Monitoring may also be required to gather effluent and surface water data to determine if additional effluent limitations are required and/or to monitor effluent impacts on receiving water quality. The permittee is responsible for conducting the monitoring and for reporting results on Discharge Monitoring Reports (DMRs).

5.7 Effluent Monitoring Frequency

Monitoring frequencies are based on the nature and effect of the pollutant, as well as a determination of the minimum sampling necessary to adequately monitor the facility's performance. Permittees have the option of taking more frequent samples than are required under the permit. These samples can be used for averaging if they are conducted using EPA-approved test methods (generally found in 40 CFR 136) and if the Method Detection Limits are less than the effluent limits. The sampling location must be after the last treatment unit and prior to discharge to the receiving water. If no discharge occurs during the reporting period, "no discharge" shall be reported on the DMR.

6.0 Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

			Effluent L	imitations.			Monitoring Requirements		
Baramotor	Mass Units	(lbs/day) ⁽¹⁾		Concentrat	ions (mg/L)		Minimum ⁽²⁾	Required	
Falameter	Average	Average	Daily	Average		Instant.	Measurement	Sample	
	Monthly	Weekly	Minimum	Monthly	Maximum	Maximum	Frequency	Туре	
		Report							
Flow (MGD)	Report	Daily Max	XXX	XXX	XXX	XXX	Continuous	Measured	
			6.0						
_pH (S.U.)	XXX	XXX	Inst Min	XXX	XXX	9.0	1/day	Grab	
	VVV	VVV	5.0	XXX	VVV	XXX	1/day	Grah	
80	~~~~	~~~~	5.0		~~~~		1/udy	24-Hr	
CBOD5	73.0	117	XXX	25.0	40.00	50	1/week	Composite	
Biochemical Oxygen								•	
Demand (BOD5)		Report						24-Hr	
Raw Sewage Influent	Report	Daily Max	XXX	Report	XXX	XXX	1/week	Composite	
								24-Hr	
Total Suspended Solids	88.0	131	XXX	30.0	45.0	60	1/week	Composite	
Total Suspended Solids		Report						24-Hr	
Raw Sewage Influent	Report	Daily Max	XXX	Report	XXX	XXX	1/week	Composite	
Fecal Coliform (No./100 ml)				2000					
Oct 1 - Apr 30	XXX	XXX	XXX	Geo Mean	XXX	10000	1/week	Grab	
Fecal Coliform (No./100 ml)				200		1000			
May 1 - Sep 30	XXX	XXX	XXX	Geo Mean	XXX	1000	1/week	Grab	
E. Coli (No./100 ml)	XXX	XXX	XXX	XXX	XXX	Report	1/quarter	Grab	
		2004							
UV Transmittance (%)	XXX	XXX	Report	XXX	XXX	XXX	1/day	Metered	
Nitrate-Nitrite	XXX	XXX	XXX	Report	XXX	XXX	1/wook	24-Hr Composite	
	Report			Кероп			I/WEEK	Composite	
Nitrate-Nitrite (lbs)	Total Mo	XXX	XXX	XXX	XXX	XXX	1/month	Calculation	
Total Nitrogen	XXX	XXX	XXX	Report	XXX	XXX	1/month	Calculation	
rotarivitiogen	~~~	~~~	~~~	Report		~~~	1/110/101	Calculation	

				Monitoring Requirement				
Baramotor	Mass Units	(lbs/day) ⁽¹⁾		Concentrat	tions (mg/L)		Minimum ⁽²⁾	Required
Falameter	Average	Average	Daily	Average		Instant.	Measurement	Sample
	Monthly	Weekly	Minimum	Monthly	Maximum	Maximum	Frequency	Туре
Total Nitrogen (lbs)	Report							
Effluent Net	Total Mo	XXX	XXX	XXX	XXX	XXX	1/month	Calculation
	Report							
Total Nitrogen (lbs)	Total Mo	XXX	XXX	XXX	XXX	XXX	1/month	Calculation
 , <i>i</i>								24-Hr
Ammonia	XXX	XXX	XXX	Report	XXX	XXX	1/week	Composite
	Report							
Ammonia (lbs)	Total Mo	XXX	XXX	XXX	XXX	XXX	1/month	Calculation
								24-Hr
TKN	XXX	XXX	XXX	Report	XXX	XXX	1/week	Composite
	Report							
TKN (lbs)	Total Mo	XXX	XXX	XXX	XXX	XXX	1/month	Calculation
								24-Hr
Total Phosphorus	6.0	XXX	XXX	2.0	XXX	4	1/week	Composite
	Report							
Total Phosphorus (lbs)	Total Mo	XXX	XXX	XXX	XXX	XXX	1/month	Calculation
Total Phosphorus (lbs)	Report							
Effluent Net	Total Mo	XXX	XXX	XXX	XXX	XXX	1/month	Calculation

Compliance Sampling Location: outfall 001

6.1 Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, to comply with Pennsylvania's Chesapeake Bay Tributary Strategy.

				Monitoring Requirements				
Paramotor	Mass Unit	s (lbs/day) ⁽¹⁾		Concentrat	tions (mg/L)		Minimum ⁽²⁾	Required
Falameter	Monthly	Annual	Monthly	Monthly Average	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Total Nitrogen (lbs)		7306						
Effluent Net	XXX	Total Annual	XXX	XXX	XXX	XXX	1/year	Calculation
		Report						
Total Nitrogen (lbs)	XXX	Total Annual	XXX	XXX	XXX	XXX	1/year	Calculation
		Report						
Ammonia (lbs)	XXX	Total Annual	XXX	XXX	XXX	XXX	1/year	Calculation
Total Phosphorus (lbs)		974						
Effluent Net	XXX	Total Annual	XXX	XXX	XXX	XXX	1/year	Calculation
		Report						
Total Phosphorus (lbs)	XXX	Total Annual	XXX	XXX	XXX	XXX	1/year	Calculation

Compliance Sampling Location: 001

	7.0 Tools and References Used to Develop Permit
	WON for Windows Model (one Attackment D)
	Toxics Management Spreadsheet (see Attachment B)
	TOXICS Management Spreadsheet (see Attachment C)
	Temperature Madel Spreadsheet (see Attachment
	Water Quality Taxies Management Strategy 261 0100 002 4/06
	Technical Quality Toxics Management Strategy, 301-0100-003, 4/06.
	Deliver for Development and Specification of Effluent Limitations, 362-0400-001, 10/97.
	Policy for Permitting Surface water Diversions, 362-2000-003, 3/98.
	Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 362-2000-008, 11/96.
	Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 362-2183-004, 12/97.
	Pennsylvania CSO Policy, 385-2000-011, 9/08.
	Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03.
	Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 391-2000-002, 4/97.
	Determining Water Quality-Based Effluent Limits, 391-2000-003, 12/97.
	Implementation Guidance Design Conditions, 391-2000-006, 9/97.
\square	Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen, Version 1.0, 391-2000-007, 6/2004.
	Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 391-2000-008, 10/1997.
	Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments, 391-2000-010, 3/99.
	Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 391-2000-011, 5/2004.
	Implementation Guidance for Section 93.7 Ammonia Criteria, 391-2000-013, 11/97.
	Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 391-2000-014, 4/2008.
	Implementation Guidance Total Residual Chlorine (TRC) Regulation, 391-2000-015, 11/1994.
	Implementation Guidance for Temperature Criteria, 391-2000-017, 4/09.
	Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 391-2000-018, 10/97.
	Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 391-2000-019, 10/97.
	Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 391-2000-021, 3/99.
	Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 391-2000-022, 3/1999.
	Design Stream Flows, 391-2000-023, 9/98.
	Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 391-2000-024, 10/98.
	Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 391-3200-013, 6/97.
	Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07.
	SOP: Establishing effluent limitations for individual NPDES sewage permit
	Other:

8.0 Attachments

A. Topographical Map

B. WQM Model Results

	SWP Basin	<u>Stream C</u>	ode		Stream Name	2		
	07K	6685			SUSQUEHANNA R	RIVER		
RMI	Name		Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave, (mg/L)	Effl. Limit Maximum (mg/L)	Effi. Limi Minimum (mg/L)
63.180	Hbg Aiport	IW	PA0082244	0.046	CBOD5	25		
					NH3-N	25	50	
					Dissolved Oxygen			5
RMI	Name	•	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limi Minimum (mg/L)
62.880	Hbg Airport	STP	PA0044598	0.350	CBOD5	25		
					NH3-N	25	50	
					Dissolved Oxygen			5
RMI	Name		Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effi. Limi Minimum (mg/i.)
61.400	Middletown	Boro	PA0020660	2.200	CBOD5	25		
					NH3-N	25	50	

WQM 7.0 Effluent Limits

Version 1.1

Page 1 of 1

	SWF Basi	e Strea n Coo	im le	Stre	eam Name	,	RMI	Elevatio	on Drain Ar (sq	age ea mi)	Slope (ft/ft)	PWS Withdra (mgo	S awal d)	Apply FC
	07K	66	585 SUSQ	UEHANN	A RIVER		63.18	0 276	6.00 242	81.00	0.00000		0.00	\checkmark
				9481 .	Sti	eam Data	<u>،</u>							
Design	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	<u>Tribu</u> Temp	tary pH	Ten	<u>Stream</u> 1p	рН	
Cona.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C)		
Q7-10	0.133	0.00	807.34	0.000	0.000	0.0	0.00	0.00	23.50	8.20)	0.00	0.00	
Q1-10		0.00	0.00	0.000	0.000									
Q30-10		0.00	0.00	0.000	0,000									
	[Di	scharge D	Data							
			Name	Per	rmit Nuṁber	Existing Disc Flow (mgd)	Permitte Disc Flow (mgd)	d Design Disc Flow (mgd)	Reserve Factor	Disc Temj (°C)	D P	isc oH		
		Hbg	Aiport IW	PA	0082244	0.0460	0.0460	0.0460	0.000	20	0.00	7.00		

Parameter Data Disc

Parameter Name

CBOD5

NH3-N

Dissolved Oxygen

Conc

(mg/L)

25.00

5.00

25.00

Trib

Conc

(mg/L)

2.00

8.24

0.00

Stream

Conc

Fate

Coef

1.50

0.00

0.70

(mg/L) (1/days)

0.00

0.00

0.00

Input Data WQM 7.0

Wednesday, October 13, 2021

Version 1.1

	SWP Basir	Strea Coo	am le	Str	eam Name		RMI	Eleva (ft	ition)	Drainag Area (sq mi	ie S) (Slope (ft/ft)	PWS Withdrawal (mgd)	Apply FC
	07K	60	385 SUSQ	UEHANN	IA RIVER		62.8	80 2	75.10	24281	.50 0.	.00000	0.00	
					St	ream Dat	a							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Ten	<u>Tributar</u> ıp	У pH	<u>S</u> Temp	<u>tream</u> pH	
	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C)		
Q7-10 Q1-10 Q30-10	0.133	0.00 0.00 0.00	807.35 0.00 0.00	0.000 0.000 0.000	0.000 0.000 0.000	0.0	0.00	0.00	2	3.50 .	8.20	0.1	00 0.00)
					Di	scharge	Data					· · · · · · · · ·		
			Name	Per	mit Number	Existing Disc Flow (mgd)	Permitte Disc Flow (mgd)	ed Design Disc Flow (mgd)	Res Fa	erve ctor	Disc Temp (°C)	Disc pH		••••
		Hbg /	Airport STF	PA	0044598	0.350	0.350	0 0.350	0	0.000	25.0	00 7	.50	
					Pa	arameter l	Data							
			f	Paramete	r Name	Di Ci	sc T onc C	Frib St Conc C	ream Conc	Fate Coef				
						(m	g/L) (n	ng/L.) (n	ng/L)	(1/days)			
			CBOD5			:	25.00	2.00	0.00	1.5	0			
			Dissolved	Oxygen			5.00	8.24	0.00	0.0	0			•

25.00

0.00

0.00

0.70

Input Data WQM 7.0

Wednesday, October 13, 2021

NH3-N

Version 1.1

Page 2 of 4

	SWP Basir	Strea Cod	im le	Stre	am Name		RMI	Elev (ration ft)	Drainag Area (sq mi	e)	Slope (ft/ft)	PWS Withdraw (mgd)	/al	Apply FC
	07K	66	385 SUSQ	UEHANN	A RIVER		61.40	0	274.40	24282	.00	0.00000	Ċ).00	V
					S	tream Da	ta								
Design Cond	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Ten	<u>Tributan</u> np	ℓ pH	Tem	<u>Stream</u> p p	H į	
oonu	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C	;)		(°C)) .		
Q7-10	0.133	0.00	807.38	0.000	0.000	0.0	0.00	0.0) 2	3.50	8.20) (0,00	0.00	
Q1-10		0.00	0.00	0.000	0.000										
Q30-10		0.00	0.00	0.000	0.000										

Input Data WQM 7.0

	Dis	charge D	ata					
Name	' Permit Number	Existing Disc Flow (mgd)	Permitted Disc Flow (mgd)	l Desigr Disc Flow (mgd)	Res Fa	erve . ctor	Disc Temp (°C)	Disc pH
Middletown Boro	PA0020660	2.2000	2.2000	0.00)0 (D.000	25.00	7.40
	Pai	rameter D	ata					
		Dis Co	ic Tr nc Co	ib Si nc (ream Conc	Fate Coef		
F		(mg	//L) (mg	g/L) (r	ng/L)	(1/days)	
CBOD5		2	5.00	2.00	0.00	1.5	0	
Dissolved C	xygen		5.00	8.24	0.00	0.0	0	
NH3-N		2	5.00	0.00	0.00	0.7	0	

	SWF Basi	P Strea n Coo	am Ie	Stre	eam Name		RMI	Elevati (ft)	on Drain An (sq	nage ea mi)	Slope (ft/ft)	PWS Withdrawa (mgd)	Apply II FC
	07K	66	685 SUSQ	UEHANN	A RIVER		59.00	0 27	0.00 249	66.00	0.00000	0.	00 🔽
					St	ream Data	a						
Design Cond	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	<u>Tribul</u> Temp	tary pH	S Temp	<u>Stream</u> p⊢	I
eenar	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C)		
Q7-10	0.133	0.00	830,12	0.000	0.000	0.0	0.00	0.00	23.50	8.20) 0.	00 0.	00
Q1-10		0.00	0.00	0.000	0.000								
Q30-10		0.00	0.00	0.000	0.000								
		·····			Di	scharge D)ata						
			Name	Per	mit Number	Existing Disc Flow (mgd)	Permitte Disc Flow (mgd)	d Design Disc Flow (mgd)	Reserve Factor	Disc Temp (°C)	Disc pH		
		Exelo	n TMI	PA	00992	0.0000	43.000	0.0000	0.000		.00 7	.00	
					Pa	arameter D	Data						

Disc

Parameter Name

CBOD5

NH3-N

Dissolved Oxygen

Conc

(mg/L)

25.00

3.00

25.00

Trib

Conc

(mg/L)

2.00

8.24

0.00

Fate

Coef

1.50

0.00

0.70

(mg/L) (1/days)

0.00

0.00

0.00

Stream

Conc

Input Data WQM 7.0

Wednesday,	October	13,	2021
------------	---------	-----	------

∠ວ

	<u>sw</u>	<u>P Basin</u>	<u>Strea</u>	<u>ım Code</u>				<u>Stream</u>	<u>Name</u>			
		07K	6	685			SUS	QUEHAN	INA RIVE	R		
RMI	Stream Flow	PWS With	Net Stream Flow	Disc Analysis Flow	Reach Slope	Depth	Width	W/D Ratio	Velocity	Reach Trav Time	Analysis Temp	Analysis pH
	(cfs)	(cfs)	(cfs)	(cfs)	(ft/ft)	(ft)	(ft)		(fps)	(days)	(°C)	
Q7-10) Flow											
63.180	807.34	0.00	807.34	.0712	0.00057	1.224	663.64	542.2	0.99	0.018	23.50	8.20
62.880	807.35	0.00	807.35	.6126	0.00009	1.266	710.24	560.85	0.90	0.101	23.50	8.20
61.400	807.38	0.00	807,38	4.016	0.00035	1.23	680.03	552.9	0.97	0.151	23.51	8.19
Q1-1() Flow											
63.180	758.90	0.00	758.90	.0712	0.00057	NA	NA	NA	0.96	0.019	23.50	8.20
62.880	758.91	0.00	758.91	.6126	0.00009	NA	NA	NA	0.87	0.104	23.50	8.20
61.400	758.94	0.00	758.94	4.016	0.00035	NA	NA	NA	0.94	0.156	23.51	8.19
Q30-'	10 Flow	, I										
63.180	928,44	0.00	928.44	.0712	0.00057	NA	NA	NA	1.07	0.017	23,50	8.20
62.880	928.45	0.00	928.45	.6126	0.00009	NA	NA	NA	0.97	0.093	23.50	8.20
61.400	928.49	0.00	928.49	4.016	0.00035	NA	NA	NA	1.05	0.140	23.51	8.19

WQM 7.0 Hydrodynamic Outputs

Wednesday, October 13, 2021

Version 1.1

Page 1 of 1

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	\checkmark
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.94	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.15	Temperature Adjust Kr	\checkmark
D.O. Saturation	90.00%	Use Balanced Technology	
D.O. Goal	5		

Wednesday, October 13, 2021

Version 1.1

:	<u>SWP Basin</u> SI 07K	<u>ream Code</u> 6685		<u>Sti</u> SUSQU	<u>eam Name</u> EHANNA RIV	ER	
NH3-N /	Acute Allocati	ons	·				
RMI	Discharge Nar	Baseline ne Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
63.18	0 Hbg Aiport IW	1.99	50	1.99	50	0	0
62.88	0 Hbg Airport STF	1.99	50	2	50	0	0
61.40	0 Middletown Bord	2.03	50	2.04	50	0	0
NH3-N (Chronic Alloc	ations					
RMI	Discharge Nam	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
63.18	0 Hbg Aiport IW	.46	25	.46	- 25	0	0
62.88	0 Hbg Airport STF	.46	25	.46	25	0	0
61.40	0 Middletown Bor	.46	25	.46	. 25	0	0

WQM 7.0 Wasteload Allocations

Dissolved Oxygen Allocations

		<u>CBC</u>	<u>)D5</u>	<u>NH</u>	<u>3-N</u>	Dissolved	<u>i Oxygen</u>	Critical	Dercent
RMI	Discharge Name	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple (mg/L)	Reach	Reduction
63.18 H	Ibg Aiport IW	25	25	25	25	5	5	0	0
62.88 H	Ibg Airport STP	25	25	25	25	5	5	0	0
61.40 N	Aiddietown Boro	25	25	25	25	5	5	0	0 ·

Wednesday, October 13, 2021

SWP Basin Str	eam Code			Stream Name	
07K	6685		SUS	QUEHANNA RIVER	
<u>RMI</u> 63.180	Total Discharge	Flow (mgd)	Analy	vsis Temperature (°C)	Analysis pH 8 199
Reach Width (ft)	Reach Der	oth (ft)		Reach WDRatio	Reach Velocity (fps)
663.639	1.224	1		542.199	0.994
Reach CBOD5 (mg/L)	Reach Kc (1/days)	Re	each NH3-N (mg/L)	Reach Kn (1/days)
2.00	0.002	2		0.00	0.916
Reach DO (mg/L)	<u>Reach Kr (</u>	1/days)		Kr Equation	Reach DO Goal (mg/L)
8.243	2,862	2		Tsivoglou	5
each Travel Time (days)		Subreach	Reculte		
0.018	TravTime (days)	CBOD5 (mg/L)	NH3-N (mg/L)	D,O, (mg/L)	
	0.002	2.00	0.00	.7.74	
	0.004	2.00	0.00	7.74	
	0.006	2.00	0.00	7.74	
	0.007	2.00	0.00	7.74	
	0.009	2.00	0.00	7.74	
	0.011	2.00	0.00	7.74	,
	0.013	2.00	0.00	7.74	
	0.015	2.00	0.00	7,74	
	0.017	2.00	0.00	7.74	
	0.018	2.00	0.00	7.74	
DħAi	Total Discharge	Flow (mad	Angl	veis Temperature (%C)	Analysis nH
62 880	10tal Discharge 0.39	6		23 501	8.198
Reach Width (ft)	Reach De	oth (ft)		Reach WDRatio	Reach Velocity (fps)
710 236	1.26	6		560.846	0.898
Reach CBOD5 (mg/L)	Reach Kc ((1/davs)	R	each NH3-N (mg/L)	Reach Kn (1/days)
2.02	0.01	3		0.02	0.916
Reach DO (mo/l.)	<u>Reach Kr (</u>	1/days)		Kr Equation	Reach DO Goal (mg/L)
7.735	0.40	8		Tsivoglou	5
Reach Travel Time (days)		Cubracab	Beaulte		
0.101	TravTime (davs)	CBOD5 (mg/L)	NH3-N (ma/L)	D.O. (mg/L)	
	0.010	2 02	0.02	774	
	0.010	2.02	0.02	7.74	
	0.020	2,02	0.02	774	
	0.030	2.02	0.02	7.74	
	0.040	2.02	0.02	771	
	0,050	2.02	0.02	1.14	
	0.060	2.02	0.02	1.14	
	0.070	2.02	0.02	1.14	
	0.081	2.01	0.02	1.14	
	0.001	2.01	0.02	1.14	
	0.091				

WQM 7.0 D.O.Simulation

Wednesday, October 13, 2021

Version 1.1

Page 1 of 2

SWP Basin St	ream Code			Stream I	<u>Vame</u>		
07K	6685		sus	SQUEHAN	NA RIVER		
RMI	Total Discharge	Flow (mgd) <u>Ana</u>	lysis Temp	erature (°C)	Analysis pH	,
61.400	2.59	6		23.5	07	8.189	
Reach Width (ft)	<u>Reach De</u>	pth (ft)		Reach W	DRatio	Reach Velocity (fps)	
680.032	1.23	0		552.9	900	0.970	
Reach CBOD5 (mg/L)	<u>Reach Kc (</u>	1/days)	<u>R</u>	each NH3	-N (mg/L)	Reach Kn (1/days)	
2.11	0.07	6		0.13	2	0.917	
Reach DO (mg/L)	<u>Reach Kr (</u>	<u>1/days)</u>		<u>Kr Equ</u>	ation	Reach DO Goal (mg/L)	
7.725	1.70	7		Tsivog	Jlou	5	•
<u>Reach Travel Time (days)</u>		Subreach	Resulte				
0.151	TravTime	CBOD5	NH3-N	D.O.	6		
	(days)	(mg/L)	(mg/L)	(mg/L.)			
	0.015	2.11	0.12	7.74		· .	
	0.030	2.11	0.12	7.74			
	0.045	2.10	0.12	7.74			
	0.060	2.10	0.12	7.74			
	0.076	2.10	0.11	7.74			
	0.091	2.09	0.11	7.74	•		
	0.106	2.09	0.11	7.74	- '	,	
	0.121	2.09	0.11	7.74			
	0,136	2.09	0.11	7.74			
	0.151	2.08	0.11	7 74			

WQM 7.0 D.O.Simulation

Page 2 of 2

,

C. Toxic Management Spreadsheet (TMS)

Toxics Management Spreadsheet Version 1.3, March 2021

Discharge Information

Instructions C	Discharge Stream			
Facility: Har	rrisburg Airport STP		NPDES Permit No.: PA0044598	Outfall No.: 001
Evaluation Type	Major Sewage / Inc	ustrial Waste	Wastewater Description: Sewage	

	Discharge Characteristics												
Design Flow	Hardness (mg/l)*	pH (SU)*	P	artial Mix Fa	Complete Mix Times (min)								
(MGD)*			AFC	CFC	THH	CRL	Q ₇₋₁₀	Qh					
0.35 100 7.5													

					0 if lef	t blank	0.5 if le	eft blank	0) if left blan	k	1 if lef	t blank
	Discharge Pollutant	Units	Ma	x Discharge Conc	Trib Conc	Stream Conc	Daily CV	Hourly CV	Strea m CV	Fate Coeff	FOS	Criteri a Mod	Chem Transl
	Total Dissolved Solids (PWS)	mg/L		1510									
5	Chloride (PWS)	mg/L		289									
6	Bromide	mg/L		0.6									
ō	Sulfate (PWS)	mg/L		487									
	Fluoride (PWS)	mg/L											
	Total Aluminum	µg/L											
I 1	Total Antimony	µg/L											
I 1	Total Arsenic	µg/L											
I 1	Total Barium	µg/L											
I 1	Total Beryllium	µg/L											
	Total Boron	µg/L											
I 1	Total Cadmium	µg/L											
I 1	Total Chromium (III)	µg/L		380									
I 1	Hexavalent Chromium	µg/L											
I 1	Total Cobalt	µg/L											
I 1	Total Copper	µg/L		14									
5	Free Cyanide	µg/L											
l a	Total Cyanide	µg/L											
5	Dissolved Iron	µg/L											
	Total Iron	µg/L											
I 1	Total Lead	µg/L		1									
I 1	Total Manganese	µg/L											
I 1	Total Mercury	µg/L											
I 1	Total Nickel	µg/L		370									
I 1	Total Phenols (Phenolics) (PWS)	µg/L											
	Total Selenium	µg/L											
I 1	Total Silver	µg/L											
I 1	Total Thallium	µg/L											
I 1	Total Zinc	µg/L		62									
	Total Molybdenum	µg/L											
	Acrolein	µg/L	<										
	Acrylamide	µg/L	<										
	Acrylonitrile	µg/L	<										
	Benzene	µg/L	<										
	Bromoform	µg/L	<										

Toxics Management Spreadsheet Version 1.3, March 2021

Stream / Surface Water Information

Harrisburg Airport STP, NPDES Permit No. PA0044598, Outfall 001

Instructions	Discharge	Stream
--------------	-----------	--------

Receiving Surface Water Name: Susquehanna River

No. Reaches to Model: 1

- Statewide Criteria
- O Great Lakes Criteria
- ORSANCO Criteria

Location	Stream Code*	RMI*	Elevation (ft)*	DA (mi²)*	Slope (ft/ft)	PWS Withdrawal (MGD)	Apply Fish Criteria*
Point of Discharge	006685	62.88	275.1	24281.5			Yes
End of Reach 1	006685	61.4	274.4	242842			Yes

Q 7-10

Location	RMI	LFY	Flow	(cfs)	W/D	Width	Depth	Velocit	Time -	Tributa	iry	Stream	n	Analys	sis
Location	EVIALI	(cfs/mi ²)*	Stream	Tributary	Ratio	(ft)	(ft)	y (fps)	(dave)	Hardness	pН	Hardness*	pH*	Hardness	рН
Point of Discharge	62.88	0.133	807.35									100	8.2		
End of Reach 1	61.4	0.133	807.38												

Q,

Location	DMI	LFY	Flow (cfs)		W/D	Width Depth	Velocit	Time	Tributary		Stream		Analysis		
Location	EVIALI	(cfs/mi ²)	Stream	Tributary	Ratio	(ft)	(ft)	y (fps)	(dave)	Hardness	pН	Hardness	рН	Hardness	pН
Point of Discharge	62.88														
End of Reach 1	61.4														

Toxics Management Spreadsheet Version 1.3, March 2021

Model Results

Harrisburg Airport STP, NPDES Permit No. PA0044598, Outfall 001

Instructions	Results	RETURN TO INPUTS	SAVE AS PDF	PRINT) All) Inputs	O Results) Limits	

✓ Hydrodynamics

Q 7-10											
RMI	Stream Flow (cfs)	PWS Withdrawal (cfs)	Net Stream Flow (cfs)	Discharge Analysis Flow (cfs)	Slope (ft/ft)	Depth (ft)	Width (ft)	W/D Ratio	Velocity (fps)	Time (dave)	Complete Mix Time (min)
62.88	807.35		807.35	0.541	0.00009	1.266	710.198	560.807	0.898	0.101	51186.373
61.4	807.38		807.38								

Q_h

RMI	Stream Flow (cfs)	PWS Withdrawal (cfs)	Net Stream Flow (cfs)	Discharge Analysis Flow (cfs)	Slope (ft/ft)	Depth (ft)	Width (ft)	W/D Ratio	Velocity (fps)	Time (dave)	Complete Mix Time (min)
62.88	2580.84		2580.84	0.541	0.00009	2.111	710.198	336.383	1.722	0.053	23800.449
61.4	2580.923		2580.92								

✓ Wasteload Allocations

AFC CC	T (min):	15	PMF:	0.017	Ana	lysis Hardne	ss (mg/l):	100 Analysis pH: 8.14
Pollutants	Conc	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A	
Chloride (PWS)	0	0		0	N/A	N/A	N/A	
Sulfate (PWS)	0	0		0	N/A	N/A	N/A	
Total Chromium (III)	0	0		0	569.763	1,803	47,827	Chem Translator of 0.316 applied
Total Copper	0	0		0	13.439	14.0	371	Chem Translator of 0.96 applied
Total Lead	0	0		0	64.581	81.6	2,166	Chem Translator of 0.791 applied
Total Nickel	0	0		0	468.236	469	12,445	Chem Translator of 0.998 applied
Total Zinc	0	0		0	117.180	120	3,178	Chem Translator of 0.978 applied
∠ CFC CC	T (min):	720	PMF:	0.119	Ana	ilysis Hardne	ess (mg/l):	100 Analysis pH: 8.19
Pollutants	Conc	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments

NPDES Permit Fact Sheet Harrisburg International Airport

Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A			
Chloride (PWS)	0	0		0	N/A	N/A	N/A			
Sulfate (PWS)	0	0		0	N/A	N/A	N/A			
Total Chromium (III)	0	0		0	74.115	86.2	15,327	Chem Translator of 0.86 applied		
Total Copper	0	0		0	8.956	9.33	1,659	Chem Translator of 0.96 applied		
Total Lead	0	0		0	2.517	3.18	566	Chem Translator of 0.791 applied		
Total Nickel	0	0		0	52.007	52.2	9,277	Chem Translator of 0.997 applied		
Total Zinc	0	0		0	118.139	120	21,309	Chem Translator of 0.986 applied		
✓ THH CC1	「 (min): 7	20	PMF:	0.119	Ana	alysis Hardne	ess (mg/l):	N/A Analysis pH: N/A		
Pollutants	Conc (ug/L)	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments		
Total Dissolved Solids (PWS)	0	0		0	500,000	500,000	N/A			
Chloride (PWS)	0	0		0	250,000	250,000	N/A			
Sulfate (PWS)	0	0		0	250,000	250,000	N/A			
Total Chromium (III)	0	0		0	N/A	N/A	N/A			
Total Copper	0	0		0	N/A	N/A	N/A			
Total Lead	0	0		0	N/A	N/A	N/A			
Total Nickel	0	0		0	610	610	108,485			
Total Zinc	0	0		0	N/A	N/A	N/A			
CRL CCT	" (min): 7	20	PMF:	0.174	Ana	alysis Hardne	ess (mg/l):	N/A Analysis pH: N/A		
Pollutants	Conc (ugl)	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments		
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A			
Chloride (PWS)	0	0		0	N/A	N/A	N/A			
Sulfate (PWS)	0	0		0	N/A	N/A	N/A			
Total Chromium (III)	0	0		0	N/A	N/A	N/A			
Total Copper	0	0		0	N/A	N/A	N/A			
Total Lead	0	0		0	N/A	N/A	N/A			
Total Nickel	0	0		0	N/A	N/A	N/A			
Total Taxa	â									

Recommended WQBELs & Monitoring Requirements

No. Samples/Month: 4

	Mass	Limits		Concentra	tion Limits				
Pollutants	Pollutants AML MDL (lbs/day) (lbs/day)		AML MDL IMAX Units				Governing WQBEL	WQBEL Basis	Comments