

 Application Type
 Renewal

 Facility Type
 Industrial

 Major / Minor
 Minor

NPDES PERMIT FACT SHEET INDIVIDUAL INDUSTRIAL WASTE (IW) AND IW STORMWATER

 Application No.
 PA0044911

 APS ID
 6511

 Authorization ID
 1405726

Applicant and Facility Information

Applicant Name	Land	O Lakes Inc.	Facility Name	Land O Lakes – Carlisle Facility
Applicant Address	405 P	ark Drive	Facility Address	405 Park Drive
	Carlis	le, PA 17015-9270		Carlisle, PA 17015-9270
Applicant Contact	Jarroo	d Mohr	Facility Contact	Jarrod Mohr
Applicant Phone	(717)	486-2209	Facility Phone	(717) 486-2209
Client ID	94058	3	Site ID	443007
SIC Code	2023		Municipality	South Middleton Township
SIC Description	Manu Exapo	facturing - Dry, Condensed, prated Products	County	Cumberland
Date Application Rec	eived	August 4, 2022	EPA Waived?	Yes
Date Application Acc	epted	August 10, 2022	If No, Reason	
Purpose of Application NPDES Permit Renewal				

Summary of Review

Land O Lakes Inc. (LOL) has applied to the Pennsylvania Department of Environmental Protection (DEP) for reissuance of the NPDES permit. The permit was last reissued on January 12, 2018 and expired on January 31, 2023.

Based on the review, it is recommended that the permit be drafted.

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Approve	Deny	Signatures	Date
х		Jinsu Kim Jinsu Kim / Environmental Engineering Specialist	May 10, 2024
х		Maria D. Bebenek for Daniel W. Martin, P.E. / Environmental Engineer Manager	May 24, 2024
х		Maria D. Bebenek Maria D. Bebenek, P.E. / Program Manager	May 24, 2024

	Discharge, Receiving Waters and Water Supply Information								
Outfall No. <u>001</u> Latitude <u>400</u> Quad Name <u>0</u> Wastewater Desc	1 ? 7' 53.81" Carlisle cription: IW Process Effluent with F	Design Flow (MGD) Longitude Quad Code LG	0.95 -77º 11' 5.76" 1728						
Receiving Waters	Mountain Creek	Stream Code	63167						
NHD Com ID	56407977	RMI	0.75						
Drainage Area	46.2 mi ²	Yield (cfs/mi²)	0.314						
Q ₇₋₁₀ Flow (cfs)	14.5	Q ₇₋₁₀ Basis	See below comments						
Elevation (ft)	514.3	Slope (ft/ft)							
Watershed No.	7-E	Chapter 93 Class.	TSF, MF						
Existing Use	None	Existing Use Qualifier	N/A						
Exceptions to Use	e N/A	Exceptions to Criteria	N/A						
Assessment State	us Attaining Use(s)								
TMDL Status	N/A	Name N/A							
Nearest Downstre	eam Public Water Supply Intake	United Water Co.							
PWS Waters	Yellow Breeches Creek	Flow at Intake (cfs)							
PWS RMI	7.42	Distance from Outfall (mi)	24.5						

Drainage Area

The discharge is to Mountain Creek at RMI 0.75. A drainage area upstream of the discharge point is estimated to be 46.2 sq.mi, according to the USGS StreamStats (<u>https://streamstats.usgs.gov/ss/</u>).

Streamflow

USGS gauging station no. 01571500 located on Yellow Breeches Creek approximately 3.1 miles above mouth also measures the hatchery flow and springs at Huntsdale resulting in a greater yield rate in the basin than actually exists. The proposed monthly hatchery discharge is 12.384 MGD during September when a monthly analysis of streamflows for Yellow Breeches Creek indicates Q7-10 flow is most likely to occur and the gage flow should be adjusted by subtracting the hatchery discharge as follows:

Gage flow = 87 - 12.384(1.547) = 67.842 cfs Q7-10 runoff rate = (67.842)/ 216 = 0.314 cfs/sq.mi Q30-10:Q7-10 = 94.3/87 = 1.084:1 Q1-10:Q7-10 = 81.7/87 = 0.939:1 Q7-10 = 46.2(.314) = 14.5 cfs

Mountain Creek

25 PA Code § 93.90 lists designated water use(s) for Mountain Creek (basin, Mt. Holly Springs to Mouth) as trout stocking & migratory fishes (TSF, MF). There is no existing use assigned to Mountain Creek. Mountain Creek is a tributary of Yellow Breeches Creek. Both Mountain Creek and Yellow Breeches Creek are not Class A Wild Trout streams¹; no Class A Wild Trout Fishery is therefore impacted by the discharge. The discharge is located in a stream segment listed as attaining uses. Yellow Breeches Creek is special protection surface water (High Quality-Cold Water Fishes). Permit requirements will be developed to ensure that existing instream water uses and the level of water quality necessary to protect the existing instream uses for both Mountain Creek and Yellow Breeches Creek are maintained and protected.

Public Water Supply Intake

The nearest downstream public water supply intake is the United Water Co. located on Yellow Breeches Creek at RMI 7.42 in Fairview Township, York County, located about 24.5 miles downstream of the discharge. Considering the distance and dilution, the discharge is not expected to affect this water supply.

¹ Both Mountain Creek and Yellow Breeches Creek are trout stocked streams and protected for trout natural reproduction but these streams are not considered as Class A Wild Trout waters according to PA Fish and Boat Commission.

Treatment Facility Summary

Treatment Facility Na	me: Land O Lakes								
WQM Permit No).	Issuance Date							
2177203 & 21802	02	1980s							
2196201		1996							
2196201 99-1, 10-1,	12-1 05/21/	012							
2196201									
	Degree of			Avg Annual Flow					
Waste Type	Degree of Treatment	Process Type	Disinfection	Avg Annual Flow (MGD)					
Waste Type Industrial	Degree of Treatment Tertiary	Process Type Activated Sludge	Disinfection No Disinfection	Avg Annual Flow (MGD) 0.95					
Waste Type Industrial	Degree of Treatment Tertiary	Process Type Activated Sludge	Disinfection No Disinfection	Avg Annual Flow (MGD) 0.95					
Waste Type Industrial	Degree of Treatment Tertiary	Process Type Activated Sludge	Disinfection No Disinfection	Avg Annual Flow (MGD) 0.95					
Waste Type Industrial Hydraulic Capacity	Degree of Treatment Tertiary Organic Capacity	Process Type Activated Sludge	Disinfection No Disinfection	Avg Annual Flow (MGD) 0.95 Biosolids					
Waste Type Industrial Hydraulic Capacity (MGD)	Degree of Treatment Tertiary Organic Capacity (Ibs/day)	Process Type Activated Sludge	Disinfection No Disinfection Biosolids Treatment	Avg Annual Flow (MGD) 0.95 Biosolids Use/Disposal					

General Description

LOL is an agricultural cooperative, focusing on manufacturing dairy products. The plant owned and operated by LOL is located at 405 Park Drive, Carlisle, PA 17015 and produces butters, milk powder and condensed milk products. These industrial activities are classified under the Standard Industrial Classification Codes of 2021 and 2023. The plant is designed to receive and process 6.0 million pounds of raw milk per day or about 180 million pounds of milk per month.

Source of Wastewater(s)

The major industrial processes used and associated with wastewater contributions include:

1. Raw Milk Processing

Once raw milk is delivered, it is stored in one of twelve (12) storage silos. Delivery trucks are washed and sanitized at the cleaned-in-place systems in the receiving area. Wastewater from this area is directed to the on-site wastewater treatment plant. Stored raw milk is then processed through separation, pasteurization and evaporation prior to final product making processes. LOL first separates the cream from milk and then pasteurizes the cream and skim milk (evaporation). The pasteurized cream is cooled and stored prior to butter making. Evaporation process of skim milk produces condensed milk solids. Condensate of whey (COW) water is generated from the evaporation process.

2. Product Making

Condensed milk solids from evaporation process are then converted to a dry form in the spray drying systems to produce condensed milk powder. Pasteurized cool cream as well as purchased cream is preheated and directed to the churning section to separate the fat and liquid (buttermilk). Processed buttermilk along with the purchased buttermilk is then processed further to produce buttermilk powder. Closed-loop cooling water system is utilized and blowdown of this system is generated occasionally and discharged to the onsite wastewater treatment facility. Wash water from cleaning equipment is also generated from these processes.

3. Product Packing and Warehousing

All final products are stored and cooled prior to packaging/final shipment. The warehouse area consists of packaging materials, finished product packaging, freezer area, powder staging, and shipping. No process wastewater is expected from this area.

LOL indicated that about 40~50% of all flows treated at the wastewater treatment facility are COW water. Historically, COW water was not treated and was combined with effluent from the wastewater treatment plant prior to discharging into Mountain Creek. Due to biological growth in its effluent discharge piping as a result of the addition of COW water, treatment of COW water was determined to be necessary and therefore the Phase II improvement was proposed in 2012². As a result, COW water is now combined with other wastewater at aeration stage for further treatment but it is still bypassing equalization tank, DAF units, and anoxic zone tank.

Treatment Technology

² Design Engineer's Report for Phase 2 Upgrades to the Industrial Wastewater Treatment Plant; T. Bachman, April, 2012

NPDES Permit Fact Sheet Land O Lakes Inc.

About 0.924 MGD (actual long-term average) of process wastewater is treated at the current on-site wastewater treatment facility. Except COW water, all wastewater from evaporator will be directed to the lift station and then pumped to the wastewater treatment facility. Sanitary wastewater is sent to the local municipal sewage treatment facility (i.e., South Middleton Township WWTP). The current treatment process, according to the permit renewal application, is as follows:

Equalization tanks (2) \rightarrow Dissolved Air Floatation (DAF) units (2) \rightarrow Anoxic zone tank \rightarrow Aeration Tank (2) \rightarrow Clarifiers (2) \rightarrow Sand filters \rightarrow Post-equalization tank \rightarrow discharge to Mountain Creek

The original treatment facility was constructed in 1980 (WQM Permit no. 2180202), consisting of an equalization tank, DAF unit, two (2) lagoons, and a clarifier. Four (4) aeration tanks, clarifier, and belt filter press were added in 1996 (WQM Permit no. 2196201) and a clarifier, aeration tank and two (2) aerobic digesters were additionally installed in 2000 (WQM Permit no. 2196201 99-1). As part of the Phase I improvements, the existing equalization tank was replaced with two (2) new equalization tanks and another DAF unit, post equalization tank and new chemical feed systems were added in 2010 (WQM Permit no. 2196201 10-1). The 2012 Phase II improvement consisted of replacing existing temporary sand filtration with four (4) new permanent continuous backwash sand filters, converting polishing clarifier to filter pump station and digester to aeration tank and finally installing additional chemical feed systems and back-up blower for the post equalization tank.

Aerobic digesters (2) and centrifuge are used for solids handling. Any solids generated from the wastewater treatment facility will be land applied. The wastewater treatment facility uses a number of chemical products for coagulation/flocculation/pH control/phosphorous removal. Sodium hypochlorite was previously used for filamentous control but is no longer being used.

A stormwater outfall collects stormwater drained from the existing retention basin. The discharge from this outfall occurs during extreme heavy rain event(s) into the surrounding farm fields.

NPDES Permit Fact Sheet Land O Lakes Inc.

Compliance History									
Summary of DMPs:	A summary of past 12 month DMPs is presented on the	a novt nogo							
	A summary of past 12-month Diviks is presented on the	e next page.							
Summary of Inspections:	01/28/2022: Brandon Bettinger conducted an incident i	inspection following a CO	W water conveyand	ce line break.					
Other Comments:	Since the last permit reissuance, the following effluent v	violations reported to DEP).						
	Date 💌 Description	▼ PARAMETER	💌 Resulta 💌 Limi	its 💌 Units 💌	SBC 💌				
	5/29/2018 Late DMR Submission								
	6/26/2018 Sample type not in accordance with perm	it							
	4/22/2020 Effluent Limits	Ammonia-Nitrogen	10.6	4.5 mg/L	Average Monthly				
	4/22/2020 Effluent Limits	Ammonia-Nitrogen	139	71 lbs/day	Daily Maximum				
	4/22/2020 Effluent Limits	Ammonia-Nitrogen	15.3	9 mg/L	Daily Maximum				
	4/22/2020 Effluent Limits	Ammonia-Nitrogen	89	35 lbs/day	Average Monthly				
	5/20/2020 Effluent Limits	Ammonia-Nitrogen	119	35 lbs/day	Average Monthly				
	5/20/2020 Effluent Limits	Ammonia-Nitrogen	14.8	4.5 mg/L	Average Monthly				
	5/20/2020 Effluent Limits	Ammonia-Nitrogen	155	71 lbs/day	Daily Maximum				
	5/20/2020 Effluent Limits	Ammonia-Nitrogen	19.7	9 mg/L	Daily Maximum				
	11/24/2020 Effluent Limits	Ammonia-Nitrogen	2.8	1.5 mg/L	Average Monthly				
	11/24/2020 Effluent Limits	Ammonia-Nitrogen	20	11 lbs/day	Average Monthly				
	11/24/2020 Effluent Limits	Ammonia-Nitrogen	61	23 lbs/day	Daily Maximum				
	11/24/2020 Effluent Limits	Ammonia-Nitrogen	8.81	3 mg/L	Daily Maximum				
	3/24/2022 Effluent Limits	Ammonia-Nitrogen	11	4.5 mg/L	Average Monthly				
	3/24/2022 Effluent Limits	Ammonia-Nitrogen	163	71 lbs/day	Daily Maximum				
	3/24/2022 Effluent Limits	Ammonia-Nitrogen	19.9	9 mg/L	Daily Maximum				
	3/24/2022 Effluent Limits	Ammonia-Nitrogen	85	35 lbs/day	Average Monthly				
	4/25/2022 Effluent Limits	Ammonia-Nitrogen	11.6	9 mg/L	Daily Maximum				
	4/25/2022 Effluent Limits	Ammonia-Nitrogen	97	71 lbs/day	Daily Maximum				
	DEP's database shows there is one pending violation a that the permit may not be finalized until all open violation	associated with this permit ons are resolved/closed.	tee or facility. A dr	aft permit cov	er letter will indicate				

Effluent Data

DMR Data for Outfall 001 (from July 1, 2022 to June 30, 2023)

Parameter	JUN-23	MAY-23	APR-23	MAR-23	FEB-23	JAN-23	DEC-22	NOV-22	OCT-22	SEP-22	AUG-22	JUL-22
Flow (MGD)												
Average Monthly	0.9875	1.00564	0.98131	0.94928	1.02508	0.98169	0.98026	0.9429	0.94079	0.96303	0.96813	0.98347
Flow (MGD)												
Daily Maximum	1.14192	1.10341	1.16377	1.11762	1.15598	1.18947	1.1948	1.17476	1.09604	1.11372	1.07613	1.17783
pH (S.U.)												
Instantaneous												
Minimum	7.69	7.4	7.73	7.63	7.82	7.74	7.66	7.47	7.50	7.74	7.88	7.97
pH (S.U.)												
Instantaneous												
Maximum	8.68	8.24	8.36	8.45	8.27	8.22	8.27	8.3	8.31	8.49	8.33	8.42
DO (mg/L)												
Daily Minimum	7.92	8.17	8.19	8.67	8.54	8.38	8.59	8.59	8.41	7.05	7.2	7.34
Temperature (°F)												
Average Monthly	79.5	76.8	74.3	69.94	69.9	70.3	69.3	71.5	74.5	80.6	83.8	83.1
Temperature (°F)												
Daily Maximum	82.2	80.2	77.3	73.3	74.1	74.7	74.1	76.8	77.4	85.3	86	86.5
CBOD5 (lbs/day)												
Average Monthly	< 16	< 16	< 15	< 14	< 17	< 21	< 20	< 16	< 21	< 15	< 16	< 15
CBOD5 (lbs/day)												
Daily Maximum	< 17	< 17	< 17	< 18	< 18	41	34	22	40	< 16	< 17	18
CBOD5 (mg/L)												
Average Monthly	< 2.0	< 2	< 2.0	< 2.0	< 2.0	< 3	< 3.0	< 2.0	< 3.0	< 2.0	< 2.0	< 2.0
CBOD5 (mg/L)												
Daily Maximum	< 2.0	< 2	2.4	< 2.0	< 2.0	4.7	4.6	2.5	5.7	< 2.0	< 2.0	2.3
BOD5 (lbs/day)												
Industrial Influent												
Average Monthly	7836	8348	8663	6003	7898	8227	8283	7909	5707	7346	9093	7067
BOD5 (lbs/day)												
Industrial Influent	40754	40440	45050	7000	40004	0007	0500	40050	7040		44470	0.475
Daily Maximum	10754	13148	15258	7928	10231	9237	9588	10250	7010	9230	11472	8175
BOD5 (mg/L)												
	000	1012	1100	054	000	1110	1077	1045	704	001	4477	000
	998	1013	8011	1.69	922	1148	1077	1045	791	981	11//	900
BOD5 (Mg/L)												
ndustrial influent	1200	1500	1040	004	1120	1200	1000	1110	050	1100	1540	1150
	1360	0001	1840	994	1130	1380	1260	1410	୨୦୪	1180	1540	1150
155 (IDS/day)	. 4 4	45	10	. 10	. 10	22	4.4	45	4.4	. 40		. 0
Average wonthly	< 14	15	13	< 12	< 18	32	14	15	14	< 13	< 8	< ୪

NPDES Permit Fact Sheet Land O Lakes Inc.

NPDES Permit No. PA0044911

Parameter	JUN-23	MAY-23	APR-23	MAR-23	FEB-23	JAN-23	DEC-22	NOV-22	OCT-22	SEP-22	AUG-22	JUL-22
TSS (lbs/day)												
Industrial Influent												
Average Monthly	2284	2271	1808	1792	1959	2779	2682	2373	1614	2229	2041	1840
TSS (lbs/day)												
Daily Maximum	25	20	15	22	32	48	19	28	17	24	< 9	9
TSS (lbs/day)												
Industrial Influent												
Daily Maximum	3954	2866	2150	2387	2897	3950	4374	3780	1887	3755	2980	2469
TSS (mg/L)												
Average Monthly	< 2.0	2	2.0	< 2.0	< 2.0	4	2.0	2.0	2.0	< 2.0	< 1.0	< 1.0
TSS (mg/L)												
Industrial Influent												
Average Monthly	291	275	256	262	228	398	337	316	225	295	266	250
TSS (mg/L)												
Daily Maximum	3.1	2.5	2.3	2.4	3.8	7.4	2.6	3.2	2.6	3.2	< 1.0	1.4
TSS (mg/L)												
Industrial Influent												
Daily Maximum	500	340	320	360	320	560	520	520	253	480	400	305
Nitrate-Nitrite (lbs/day)												
Daily Maximum	< 156	< 190	171	163	< 129	< 128	< 81	< 128	< 113	< 148	< 221	< 144
Nitrate-Nitrite (mg/L)												
Daily Maximum	< 18.6	23.6	24.69	24.61	< 15.6	< 19.1	< 10.4	< 19.8	< 16.10	< 18.9	< 27.3	< 17.8
Total Nitrogen												
(lbs/day)												
Daily Maximum	< 163	< 199	< 176	< 168	< 151	< 133	< 87	< 135	< 118	< 154	< 226	< 148
Total Nitrogen (mg/L)												
Daily Maximum	< 19.37	< 24.3	< 25.39	< 25.31	< 19.06	< 19.8	< 11.1	< 20.85	< 16.80	< 19.64	< 27.89	< 18.3
Ammonia (lbs/day)												
Average Monthly	< 0.8	< 0.8	< 0.7	< 0.7	< 0.9	< 0.7	< 0.8	< 0.8	< 0.7	< 0.7	< 0.8	< 0.7
Ammonia (Ibs/day)												
Daily Maximum	< 0.8	< 0.9	< 0.8	< 0.9	< 0.9	< 0.9	< 0.9	< 0.9	< 0.8	< 0.8	< 0.9	< 0.8
Ammonia (mg/L)												
Average Monthly	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.10	< 0.1	< 0.1	< 0.1
Ammonia (mg/L)												
Daily Maximum	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.10	< 0.1	< 0.1	< 0.1
TKN (lbs/day)		-	_							_	-	
Daily Maximum	8	8	9	< 6	27	< 31	14	14	13	6	8	12
TKN (mg/L)												
Daily Maximum	1.07	0.97	1.04	0.73	3.46	< 3.5	1.61	1.59	1.94	0.74	0.93	1.63
Total Phosphorus												
(lbs/day)			- -								. –	
Average Monthly	5.1	5.3	2.6	< 1.9	2.0	3.1	3.3	2.6	3.2	3.6	3.7	4.9

NPDES Permit Fact Sheet Land O Lakes Inc.

NPDES Permit No. PA0044911

Parameter	JUN-23	MAY-23	APR-23	MAR-23	FEB-23	JAN-23	DEC-22	NOV-22	OCT-22	SEP-22	AUG-22	JUL-22
Total Phosphorus												
(lbs/day)												
Daily Maximum	7.0	7	4	3	3	6	6	5	5.0	5	4	6
Total Phosphorus												
(mg/L)												
Average Monthly	0.7	0.6	0.4	< 0.3	0.2	0.4	0.4	0.4	0.4	0.5	0.5	0.7
Total Phosphorus												
(mg/L)												
Daily Maximum	0.88	0.88	0.6	0.39	0.43	0.65	0.77	0.63	0.67	0.63	0.64	0.74

Existing Effluent Limits and Monitoring Requirements

Tables below summarize effluent limits and monitoring requirements specified in the existing permit:

				Monitoring Re	quirements			
Outfall 001	Mass Units	(lbs/day) ⁽¹⁾		Concentrat	ions (mg/L)		Minimum ⁽²⁾	Required
Parameter	Average Monthly	Daily Maximum	Minimum	Average Monthly	Daily Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report	XXX	XXX	XXX	XXX	Continuous	Measured
pH (S.U.)	XXX	XXX	6.0	XXX	XXX	9.0	1/day	Grab
Dissolved Oxygen	XXX	XXX	5.0	XXX	XXX	XXX	1/day	Grab
Temperature (deg F) (°F) Aug 1 - Jun 30	xxx	xxx	xxx	Report	110	xxx	1/day	I-S
Temperature (deg F) (°F) Jul 1 - 31	ххх	xxx	xxx	Report	91	ххх	1/day	I-S
CBOD5	79	158	xxx	10.0	20.0	25	2/month	24-Hr Composite
BOD5 Influent ⁽³⁾	Report	Report	xxx	Report	Report	xxx	2/month	24-Hr Composite
Total Suspended Solids	79	158	xxx	10.0	20.0	25	2/month	24-Hr Composite
Total Suspended Solids Influent ⁽³⁾	Report	Report	xxx	Report	Report	xxx	2/month	24-Hr Composite
Ammonia-Nitrogen May 1 - Oct 31	11	23	xxx	1.5	3.0	3.7	2/month	24-Hr Composite
Ammonia-Nitrogen Nov 1 - Apr 30	35	71	xxx	4.5	9.0	11	2/month	24-Hr Composite
Total Phosphorus	7.5	15	xxx	1.0	2.0	2.5	2/month	24-Hr Composite
Total Kjeldahl Nitrogen	xxx	Report	xxx	xxx	Report	xxx	1/month	24-Hr Composite
Nitrate-Nitrite as N	xxx	Report	xxx	xxx	Report	xxx	1/month	24-Hr Composite
Total Nitrogen (4)	xxx	Report	xxx	xxx	Report	xxx	1/month	Calculation

NPDES Permit Fact Sheet Land O Lakes Inc.

				Monitoring Requirements				
Outrail 002	Mass Units	(lbs/day) ⁽¹⁾		Concentrat	tions (mg/L)		Minimum ⁽²⁾	Required
Parameter	Average Monthly	Average Weekly	Minimum	Average Monthly	Daily Maximum	Instant. Maximum	Measurement Frequency	Sample Type
pH (S.U.)	ххх	XXX	XXX	XXX	Report	XXX	1/month	Grab
Biochemical Oxygen Demand (BOD5)	XXX	XXX	xxx	XXX	Report	XXX	1/month	Grab
Chemical Oxygen Demand (COD)	XXX	XXX	xxx	XXX	Report	XXX	1/month	Grab
Total Suspended Solids	XXX	XXX	XXX	XXX	Report	XXX	1/month	Grab
Oil and Grease	ХХХ	XXX	XXX	XXX	Report	XXX	1/month	Grab
Nitrate-Nitrite as N	ХХХ	XXX	XXX	XXX	Report	XXX	1/month	Grab

	Development of Effluent Limitat	ions and Monitoring Req	uirements
Outfall No.	001	Design Flow (MGD)	.95
Latitude	40° 7' 54.00"	Longitude	-77º 11' 6.00"
Wastewater [Description: IW Process Effluent with FLG		

Technology-Based Effluent Limitations

In accordance with 40 CFR §125.3, technology-based treatment requirements represent the minimum level of control that must be imposed to meet the best practicable control technology currently available (BPT) for conventional and other pollutants (i.e., some metals), best conventional pollutant control technology (BCT) for conventional pollutants, and available technology economically achievable (BAT) for toxic and other non-conventional pollutants. Where no technology-based effluent guidelines are available, case-by-case effluent limitations must be established under Section 402(a)(1)(B) of the Clean Water Act.

1) BOD5, Total Suspended Solids & pH

Pursuant to 40 CFR §122.44(a)(1) and Subpart A of 40 CFR §125, the discharge from LOL must meet technology-based requirements established based on effluent limitations guidelines and standards (ELGs) found in 40 CFR §405 (Dairy Products Processing Point Source Category), other federal and state standards in 40 CFR §133.102 and 25 Pa. Code §§92a.48, and 95.2, and/or a case-by-case determination using Best Professional Judgment (BPJ). Each of LOL's industrial processes is currently regulated by the following ELGs:

a) Dry Milk (40 CFR §405.105)

	Effluent Limitations (pounds per 100lb of BOD5 input)								
Parameter	Daily Maximum	30-day Average							
BOD5	0.036	0.018							
TSS	0.045	0.023							
рН	6 to	6 to 9 SU							

b) Butter (40 CFR §405.45)

	Effluent Limitations (pounds per 100lb of BOD5 input)					
Parameter	Daily Maximum	30-day Average				
BOD5	0.016	0.008				
TSS	0.020	0.010				
рН	6 to	9 SU				

c) Condensed Milk (40 CFR §405.95)

	Effluent Limitations (pounds per 100lb of BOD5 input)					
Parameter	Daily Maximum	30-day Average				
BOD5	0.076	0.038				
TSS	0.095	0.048				
рН	6 to	9 SU				

The primary products are butter and powdered milk. Previously, DEP did not consider ELGs for condensed milk. This is because since both condensed milk and buttermilk are converted into dry milk products, only Subpart J of ELG 405 (40 CFR§405.100 through 107) were applied as opposed to Subpart I of ELG 405, which is applicable for condensed milk (i.e., 40 CFR§405.90 through 97). During a phone conversation with the permittee, the permittee has indicated that condensed milk is actually produced. As a result, DEP has determined to include ELGs for condensed milk. ELGs for dairy products express effluent limitations in terms of the "BOD5 input" which is defined as the biochemical oxygen demand of the materials entered into process. EPA's technical guidance indicated that the BOD5 content values of any given daily raw material can be determined by standard laboratory analysis and are reasonably consistent throughout most of the typical dairy and other raw materials.

As shown below, LOL provided the "raw material" data with BOD input for each of their products.

	Incoming Raw Milk (2017-2021)	BOD Input (2017-2021)
5-year Average Annual (lbs)	~147,382,950	~17,137,552
5-year Maximum Monthly (lbs)	172,173,814	20,020,211
5-year Maximum Total Annual (lbs)	1,859,365,364	216,205,275

It is noteworthy that EPA development document for EGLs for diary product processing finalized in 1974 has consistently provided examples of calculating technical-based effluent limits (TBELs) using the <u>average</u> volume of raw materials being processed. Both EPA Permit Writer's Manual as well as DEP technical guidance no. 362-0400-001 also recommend generally using average values to calculate TBELs. Based on this, average raw milk data will be considered. Consequently, the following TBELs have been calculated:

a) Dry Milk (40 CFR §405.105)

	Effluent L	Effluent Limitations					
Parameter	Daily Maximum	30-day Average					
BOD5	6169 (17,137,552*0.01*0.036)	3084 (17,137,552*0.01*0.018)					
TSS	7711 (17,137,552*0.01*0.045)	3941 (17,137,552*0.01*0.023)					
рН	6 to	6 to 9 SU					

b) Butter (40 CFR §405.45)

	Effluent Limitations					
Parameter	Daily Maximum	30-day Average				
BOD5	2742 (17,137,552*0.01*0.016)	1371 (17,137,552*0.01*0.008)				
TSS	3427 (17,137,552*0.01*0.020)	1713 (17,137,552*0.01*0.010)				
pН	6 to	9 SU				

c) Condensed Milk (40 CFR §405.95)

	Effluent Limitations (pounds per 100lb of BOD5 input)				
Parameter	Daily Maximum	30-day Average			
BOD5	13024 (17,137,552*0.01*0.076)	6212 (17,137,552*0.01*0.038)			
TSS	16280 (17,137,552*0.01*0.095)	8226 (17,137,552*0.01*0.048)			
рН	6 to	9 SU			

2) Total Residual Chlorine

Under 25 Pa Code §92a.48(b), DEP regulates discharge levels of Total Residual Chlorine (TRC) from **facilities or activities using chlorination**. The facility does not use chlorine to disinfect the wastewater; however, a number of chemical additives which will be discussed later in this report currently utilized by LOL throughout the plant for sanitizing and cleaning purpose(s) comprise chemical compounds such as sodium hypochlorite or chloride. Regardless of the magnitude of usage rates or dilution factor, TRC is a pollutant of concern for any facility using chlorinated products that are expected to be introduced into the wastewater which ultimately discharged into surface waters of the Commonwealth. Accordingly, a 30-day average Best Available Technology (BAT) effluent limit of 0.5 mg/L found in 25 Pa Code §92a.48(b)(2) has been taken into consideration.

All above-referenced technology-based effluent limits apply, subject to water quality analysis and BPJ where applicable.

Water Quality-Based Effluent Limitations

DEP generally develops water quality-based effluent limits (WQBELS) through the application of in-stream water quality models for those pollutants that are considered pollutants of concern.

1) CBOD5, NH3-N and Dissolved Oxygen (DO)

WQM 7.0 version 1.0b is a water quality model designed to assist DEP to determine appropriate permit requirements for CBOD5, NH3-N and DO. DEP's technical guidance no. 391-2000-007 describes the technical methods contained in the model for conducting wasteload allocation analyses and for determining recommended limits for point source discharges. A multiple discharge analysis is necessary as there are a number of facilities located in the close vicinity of the facility's discharge that have similar effluent characteristics. During the previous permit renewal review process, the analysis included Ahlstrom filtrations LLC (PA0008486; 0.75 MGD), Mt. Holly Springs Specialty Papers (PA0008150; 2.304 MGD); Mt. Holly Springs WWTP (PA0023183; 0.83 MGD). Except for the design flow of Mt. Holly Springs Specialty Papers, no changes have occurred since the last permit renewal. The design flow of Mt. Holly Springs Specialty Papers has decreased from 2.304 MGD to 1.5 MGD. WQM 7.0 model was utilized using this information as well as information obtained from the previous permit renewal and Ahlstrom's recent permit renewal. The model output shows that existing limits are still protective of water quality. See Appendix for model input and output.

2) Temperature

Thermal impact is expected as a result of COW water and other cooling water discharges from this facility. Accordingly, the level of thermal impact needs to be controlled. DEP's Thermal Discharge Analysis Excel Spreadsheet was utilized. the spreadsheet showed that effluent limits needed for July, August and September. Past DMR data shows that the facility should be able to meet these limits.

3) Total Residual Chlorine

DEP TRC_CALC worksheet is utilized to determine if a WQBEL is needed. The worksheet indicated that no WQBEL is necessary at this time. See Appendix for model input and output.

DEP's Toxic Management Spreadsheet was utilized to evaluate toxic pollutants of concern and develop permit requirements for such pollutants. The spreadsheet output recommends a routine monitoring for Total Selenium based on the effluent concentration of 12 ug/L which is the maximum value out of 6 datasets.

Best Professional Judgment (BPJ) Effluent Limitations

1) CBOD5, Total Suspended Solids, NH3-N and Total Phosphorus

Prior to 2010, LOL discharged treated wastewater into the portion of Mountain Creek that is split from the main branch starting at RMI 0.67 (i.e., this portion of the stream was repeatedly identified as the "mill race" in previous documentations). Historically, DEP assumed this portion receives about 26% of flow from the main branch and potentially considered an intermittent stream.

DEP Water Pollution Biologist has conducted an aquatic biological investigation in 2002 in response to compliant and inspection, particularly focusing on this stream segment. This investigation revealed that the macroinvertebrate community was negatively impacted by the discharge and the discharge has seriously degraded the receiving water. Following the investigation, the NPDES permit was renewed with assigning internal monitoring points to properly distinguish the water quality between process wastewater and COW water.

Another aquatic biological investigation performed by DEP Water Pollution Biologist in July 2008 also revealed that the discharge is having a dramatic impact on the receiving water and the stream is presently effluent dominated and the heavy organic load has severely impacted the creek. A meeting was held in September 2008 to discuss possible treatment and discharge options due to the conditions of the receiving water. At that time, the treatment plant upgrade as well as a new discharge to Mountain Creek just upstream of split was proposed. The original treatment plant built in 1980s was then upgraded to include new Dissolved Air Floatation (DAF) units and clarifiers to enhance solids removal as well as removal of organic materials. Phase I project was approved in 2010 and Phase II project was approved in 2012.

DEP previously determined that TBELs calculated based on federal ELGs or state technology standards are still not sufficient enough to prevent further stream degradation and more stringent limits than WQBELs produced by the instream model were also needed. Ultimately, BPJ effluent limits of 10 mg/L for CBOD5, 10 mg/L of TSS, 1.0 mg/L of Total Phosphorus and 1.5 mg/L of NH3-N were previously established in the permit renewal. While the basis of these limits was not clearly defined in previous documentations (other than previous fact sheets indicated these limits were "specified by Lee McDonnell, former Program Manager during April 6, 2009 meeting with LOL"), these limits are still appropriate, in the opinion of DEP, to protect existing water guality of Mountain Creek. The new treatment process and control techniques applied at the on-site treatment facility in 2010 and 2012 are adequate enough to achieve compliance with these limits (40 CFR §§§125.3(d)(3)(i), (ii), and (iii)) as the facility has not had any effluent violations associated with these parameters since 2010. Further, because there is no change in process or industrial activities, no additional cost or energy use is expected to operate the existing treatment facility in order to achieve compliance with these limits (40 CFR §§§125.3(d)(3)(iv), (v), and (vi)). Accordingly, continuation of BAT BPJ limits is still warranted. It is noteworthy that these limits are evidently equivalent to Anti-Degradation Best Available Combination of Technologies (ABACT) requirements described in DEP's guidance no. 391-0300-002 which are designed to regulate point source discharges located in the special protection watershed. These limits are therefore needed once again to protect and maintain existing uses of Yellow Breeches Creek, a main stem of Mountain Creek.

2) Dissolved Oxygen

A minimum of 5.0 mg/L for D.O. is an existing effluent limit and will remain unchanged in the draft permit as recommended by DEP's SOP. This requirement has also been assigned to other major sewage facilities in the region. 5.0 mg/L is taken directly from 25 Pa. Code § 93.7(a) (i.e., water quality criteria for TSF waters) and it is also determined to be appropriate according to water quality modeling. 3) Total Residual Chlorine

25 Pa Code §92a.48(b)(3) requires dechlorination or discontinuation of chlorination if the discharge is to an Exceptional Value water or to a High Quality water. The discharge is to Mountain Creek which is not classified as a special protection water. The discharge is however located about less than a mile from the mouth of Mountain Creek. Mountain Creek is a tributary of Yellow Breeches Creek that is classified as a High Quality water. Currently, none of upstream point source dischargers including Ahlstrom filtrations LLC (PA0008486), Mt. Holly Springs Specialty Papers (PA0008150) and Mt. Holly Springs WWTP (PA0023183) is required to monitor for TRC. These facilities however either do not utilize chemical additives that contain chlorine³ or utilize an ultraviolet disinfection system in lieu of chlorine to disinfect its wastewater. Therefore, no TRC is expected from any of these upstream dischargers. In order to prevent any potential adverse impact to existing quality of Yellow Breeches Creek, LOL must continuously demonstrate until the discontinuation of above-mentioned chemical additives that the facility does not contribute TRC to Mountain Creek. Accordingly, the existing Part C condition will continue to be included in the permit.

"Upon request by DEP, effluent samples shall be collected for Total Residual Chlorine (TRC). Samples shall be analyzed by a field instrument or analytical laboratory that uses the EPA-approved analytical method(s). The discharge shall not contain a TRC concentration level that is higher than the lowest minimum level measured by a field instrument or analytical laboratory."

Additional Considerations

1) Flow Monitoring

The requirement to monitor the volume of effluent will remain in the draft permit per 40 CFR § 122.44(i)(1)(ii).

2) Mass Load Limitations

Mass load effluent limitations are calculated using a formula: Design Flow (MGD) x Concentrations (mg/L) x Conversion Factor of 8.34. Calculated mass load limits based on BPJ concentrations limits are more stringent than TBELs calculated by federal ELGs.

3) Total Dissolved Solids (TDS)

TDS and its associated solids including Bromide, Chloride, and Sulfate have become statewide pollutants of concern. The need of monitoring requirement of these pollutants is considered based upon the criteria specified in 25 Pa. Code § 95.10 and the following January 23, 2014 DEP Central Office Directive:

For point source discharges and upon issuance or reissuance of an individual NPDES permit:

-Where the concentration of TDS in the discharge exceeds 1,000 mg/L, or the net TDS load from a discharge exceeds 20,000 lbs/day, and the discharge flow exceeds 0.1 MGD, Part A of the permit should include monitor and report for TDS, sulfate, chloride, and bromide. Discharges of 0.1 MGD or less should monitor and report for TDS, sulfate, chloride, and bromide if the concentration of TDS in the discharge exceeds 5,000 mg/L.

- Where the concentration of bromide in a discharge exceeds 1 mg/L and the discharge flow exceeds 0.1 MGD, Part A of the permit should include monitor and report for bromide. Discharges of 0.1 MGD or less should monitor and report for bromide if the concentration of bromide in the discharge exceeds 10 mg/L.

The sample result shows that effluent contains a TDS concentration level of 1150 mg/L. As a result, the requirement to monitor these parameters will be included in the permit.

4) Chesapeake Bay Tributary Strategy

When DEP first developed the state Chesapeake Bay Tributary Strategy for point source discharges, LOL was not considered a significant bay discharger. Based on the current sample results, LOL is still a non-significant bay discharger, discharging less than 75 lbs/day of Total Nitrogen (TN) or 25 lbs/day of Total Phosphorus (TP). Accordingly, there is no need to assign a wasteload allocation (WLAs) to this discharge. The supplement to WIP recommends monthly Total Nitrogen (TN) and Total Phosphorus (TP) monitoring for non-significant industrial facilities that are involved with food processing. Since LOL is currently monitoring TP and NH3-N on a weekly basis to meet effluent limits, no additional requirement is necessary for TP and NH3-N. A monthly monitoring requirement for TN as well as its constituents (i.e., TKN & Nitrate-Nitrite) will be included in the draft permit.

³ Due to chlorination in the polishing pond, monitoring for TRC was previously required for Mt. Holly Springs Specialty Papers but this requirement was removed during the 2014 NPDES permit renewal review process since the facility discontinued its use (Fact Sheet dated May 14, 2014).

5) Chemical Additives

The following chemical additives currently used at the plant are expected to be present in the effluent:

Chemical		Maximum	Predicted Effluent	Allowable Effluent
Additive	Purpose	Usage (GPD)	Concentration (mg/L)	Concentration (mg/L)
Vortexx	Sanitizing	65.0	0.01877	0.04
2171 Gen Cleaning	Cleaning	60.0	0.00384	0.01
XY-12	Sanitizing	3.0	0.00155	2.4
SC 205	Cleaning	20.0	0.01921	0.16
Defoamer S	Defoamer	15	0.080	0.3
Enforce LP	Cleaning	5.0	0.00474	0.02
Monacid NP	Cleaning	1.0	0.00002	0.29
Envirocid	Cleaning	425	0.00806	0.02
Quorum Clear IV	Sanitizing	35	0.05615	0.0037
Exelerate CIP	Cleaning	62	0.00158	0.09
AC 103	Cleaning	750	0.03674	0.3
Principal	Cleaning	95	0.03174	0.013
Synergex	Sanitizing	7.48	0.06484	0.21
Exelerate HS	Cleaning	62	0.00158	0.09
Ultrasil 76	Cleaning	34	0.00116	0.09
Accomplish	Passivization	20	0.00043	0.78
Ultrasil 91	Cleaning	4	0.01636	0.898
Ultrasil 02	Cleaning	2	0.0495	0.081
Oxonia Active	Sanitizing	2	0.00042	0.08
Nalco 7408	Scavanger	4	0.03321	0.703
Ultrasil 67	Cleaning	2.5	0.02581	0.023

These chemical additives have been added to DEP's Approved List of Chemical Additives. Predicted effluent concentrations of these chemical additives are calculated by mass balancing with the permitted discharge flow⁴. The results indicated that none of chemical additives.

6) Monitoring Frequency and Sample Types

Unless specified otherwise above, sample types for all existing parameters will remain unchanged and are consistent with DEP technical guidance no. 362-0400-001.

7) Influent BOD5 and Total Suspended Solids Monitoring

Previously, monitoring of influent BOD5 and Total Suspended Solids levels was determined to be necessary to determine wastewater characteristics and monitor plant loading. This is a reasonable approach and will remain unchanged in the permit.

7) Stormwater Monitoring

During extreme heavy rain event, stormwater will be discharged from the stormwater basin through Outfall 002. Based on a recent phone conversation with the permittee. There has not been any discharge from this basin. The existing requirements will continue to be included in the permit.

8) Anti-Degradation

Due to the fact that Yellow Breeches Creek is classified as a high-quality special protection water and the discharge is located at RMI 0.75 of Mountain Creek (a tributary of Yellow Breeches Creek), special protection water requirements should be considered. As mentioned above, BPJ limits for CBOD5, TSS, and NH3-N are consistent with Anti-Degradation Best Available Combination of Technologies (ABACT) requirements listed in DEP's guidance (391-0300-002). TP limit is also a BPJ limit that was included in the permit to reduce phosphorus contribution to the growth in the stream. Therefore, it is determined that effluent limits have been developed to ensure that existing instream water uses and the level of water quality necessary to protect the existing uses for both Mountain Creek and Yellow Breeches Creek are maintained and protected. No additional requirement is needed at this time.

⁴ Conservatively, effluent concentration of a chemical additive as a whole product was considered regardless of chemical reactions potentially occurring throughout the treatment process.

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (386-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

			Effluent L	imitations			Monitoring Re	quirements
Paramotor	Mass Units	; (lbs/day) ⁽¹⁾		Concentrations (mg/L)				Required
	Average Monthly	Daily Maximum	Minimum	Average Monthly	Daily Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report	XXX	XXX	xxx	ххх	Continuous	Measured
pH (S.U.)	XXX	xxx	6.0 Inst Min	xxx	xxx	9.0	1/day	Grab
DO	ххх	XXX	5.0 Daily Min	XXX	xxx	ххх	1/day	Grab
Temperature (ºF) Jan 1 - Jun 30	ххх	xxx	XXX	Report	110	xxx	1/day	I-S
Temperature (°F) Jul 1 - 31	XXX	xxx	xxx	Report	100	XXX	1/day	I-S
Temperature (ºF) August 1-15	ХХХ	xxx	xxx	Report	98.8	XXX	1/day	I-S
Temperature (°F) August 16-31	xxx	xxx	XXX	Report	110	xxx	1/day	I-S
Temperature (°F) September 1-15	xxx	xxx	XXX	Report	110	xxx	1/day	I-S
Temperature (°F) September 16-30	xxx	xxx	XXX	Report	108	xxx	1/day	I-S
Temperature (°F) Oct 1 – Dec 31	XXX	xxx	XXX	Report	110	xxx	1/day	I-S
CBOD5	79	158	xxx	10.0	20.0	25	2/month	24-Hr Composite
BOD5 Industrial Influent	Report	Report	xxx	Report	Report	xxx	2/month	24-Hr Composite
TSS Industrial Influent	Poport	Boport		Poport	Bonort	 	2/month	24-Hr
	Кероп	Кероп		Кероп	Кероп		2/111011111	24-Hr
TSS	79	158	XXX	10.0	20.0	25	2/month	Composite

NPDES Permit Fact Sheet Land O Lakes Inc.

Outfall 001, Continued (from Permit Effective Date through Permit Expiration Date)

			Effluent L	imitations			Monitoring Re	quirements
Parameter	Mass Units	(lbs/day) ⁽¹⁾	Concentrations (mg/L)				Minimum ⁽²⁾	Required
Farailleter	Average	Daily		Average	Daily	Instant.	Measurement	Sample
	Monthly	Maximum	Minimum	Monthly	Maximum	Maximum	Frequency	Туре
								24-Hr
Nitrate-Nitrite	XXX	Report	XXX	XXX	Report	XXX	1/month	Composite
Total Nitrogen	XXX	Report	XXX	XXX	Report	XXX	1/month	Calculation
Ammonia								24-Hr
Nov 1 - Apr 30	35	71	XXX	4.5	9.0	11	2/month	Composite
Ammonia								24-Hr
May 1 - Oct 31	11	23	XXX	1.5	3.0	3.7	2/month	Composite
								24-Hr
TKN	XXX	Report	XXX	XXX	Report	XXX	1/month	Composite
								24-Hr
Total Phosphorus	7.5	15	XXX	1.0	2.0	2.5	2/month	Composite
	_	_		_	_			24-Hr
Total Selenium	Report	Report	XXX	Report	Report	XXX	1/month	Composite
		_						24-Hr
Total Dissolved Solids	Report	Report	XXX	Report	Report	XXX	1/month	Composite
		_						24-Hr
Sulfate	Report	Report	XXX	Report	Report	XXX	1/month	Composite
	_			_				24-Hr
Chromide	Report	Report	XXX	Report	Report	XXX	1/month	Composite
								24-Hr
Bromide	Report	Report	XXX	Report	Report	XXX	1/month	Composite

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (386-0400-001), SOPs and/or BPJ.

Outfall 002, Effective Period: Permit Effective Date through Permit Expiration Date.

			Effluent L	imitations			Monitoring Red	quirements
Parameter	Mass Units (Ibs/day) ⁽¹⁾			Concentrat	Minimum ⁽²⁾	Required		
Faiametei	Average Monthly	Average Weekly	Minimum	Average Monthly	Daily Maximum	Instant. Maximum	Measurement Frequency	Sample Type
pH (S.U.)	XXX	XXX	XXX	XXX	Report	xxx	1/month	Grab
BOD5	ххх	XXX	XXX	XXX	Report	XXX	1/month	Grab
COD	ХХХ	XXX	XXX	XXX	Report	ххх	1/month	Grab
TSS	ХХХ	XXX	XXX	XXX	Report	XXX	1/month	Grab
Oil and Grease	XXX	XXX	xxx	XXX	Report	xxx	1/month	Grab
Nitrate-Nitrite	XXX	XXX	XXX	XXX	Report	XXX	1/month	Grab

Tools and References Used to Develop Permit
WQM for Windows Model (see Attachment)
Toxics Management Spreadsheet (see Attachment)
TRC Model Spreadsheet (see Attachment)
Temperature Model Spreadsheet (see Attachment)
Water Quality Toxics Management Strategy, 361-0100-003, 4/06.
Technical Guidance for the Development and Specification of Effluent Limitations, 386-0400-001, 10/97.
Policy for Permitting Surface Water Diversions, 386-2000-019, 3/98.
Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 386-2000-018, 11/96.
Technology-Based Control Requirements for Water Treatment Plant Wastes, 386-2183-001, 10/97.
Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 386-2183-002, 12/97.
Pennsylvania CSO Policy, 386-2000-002, 9/08.
Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03.
Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 386-2000-008, 4/97.
Determining Water Quality-Based Effluent Limits, 386-2000-004, 12/97.
Implementation Guidance Design Conditions, 386-2000-007, 9/97.
Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen, Version 1.0, 386-2000-016, 6/2004.
Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 386-2000-012, 10/1997.
Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments, 386-2000-009, 3/99.
Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 386-2000-015, 5/2004.
Implementation Guidance for Section 93.7 Ammonia Criteria, 386-2000-022, 11/97.
Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 386-2000-013, 4/2008.
Implementation Guidance Total Residual Chlorine (TRC) Regulation, 386-2000-011, 11/1994.
Implementation Guidance for Temperature Criteria, 386-2000-001, 4/09.
Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 386-2000-021, 10/97.
Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 386-2000-020, 10/97.
Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 386-2000-005, 3/99.
Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 386-2000-010, 3/1999.
Design Stream Flows, 386-2000-003, 9/98.
Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 386-2000-006, 10/98.
Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 386-3200-001, 6/97.
Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07.
SOP:
Other:

Attachments

<text><text><text><text><text><text><text>

Collapse All

Parameter Code	Parameter Description	Value	Unit
CARBON	Percentage of area of carbonate rock	14.47	percent
DRNAREA	Area that drains to a point on a stream	46	square miles
PRECIP	Mean Annual Precipitation	41	inches
ROCKDEP	Depth to rock	5	feet
STRDEN	Stream Density total length of streams divided by drainage area	1.21	miles per square mile

> Low-Flow Statistics

Low-Flow Statistics Parameters	[100.0 Percent (46 square miles	Low Flow Region 2
--------------------------------	---------------------------------	-------------------

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	46	square miles	4.93	1280
PRECIP	Mean Annual Precipitation	41	inches	35	50.4
STRDEN	Stream Density	1.21	miles per square mile	0.51	3.1
ROCKDEP	Depth to Rock	5	feet	3.32	5.65
CARBON	Percent Carbonate	14.47	percent	0	99

https://streamstats.usgs.gov/ss/

1/2

8/28/23, 8:44 AM

StreamStats

Low-Flow Statistics Flow Report [100.0 Percent (46 square miles) Low Flow Region 2]

PII: Prediction Interval-Lower, Plu: Prediction Interval-Upper, ASEp: Average Standard Error of Prediction, SE: Standard Error (other -- see report)

Statistic	Value	Unit	SE	ASEp
7 Day 2 Year Low Flow	11.5	ft^3/s	38	38
30 Day 2 Year Low Flow	13.9	ft^3/s	33	33
7 Day 10 Year Low Flow	7.15	ft^3/s	51	51
30 Day 10 Year Low Flow	8.49	ft^3/s	46	46
90 Day 10 Year Low Flow	11.3	ft^3/s	36	36

Low-Flow Statistics Citations

Stuckey, M.H.,2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006-5130, 84 p. (http://pubs.usgs.gov/sir/2006/5130/)

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the functionality of the software and related material nor shall the fact of release constitute any such warranty. Furthermore, the software is released on condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized use.

USGS Product Names Disclaimer: Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Application Version: 4.16.1 StreamStats Services Version: 1.2.22 NSS Services Version: 2.2.1

	SWP Basin	Strea Cod	im le	Str	eam Name		RMI	Elevat (ft)	ion Drair Ar (sq	nage S ea mi) (ilope PV With ft/ft) (m	VS drawal igd)	Apply FC
	07E	63	167 MOUN	ITAIN CR	EEK		3.18	0 58	5.00	44.40 0.	00000	0.00	•
					St	ream Dat	a						
Design	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	<u>Tribu</u> Temp	tary pH	<u>Strea</u> Temp	m pH	
Cond.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C)		
Q7-10 Q1-10 Q30-10	0.313	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000 0.000 0.000	0.0	0.00	0.00	20.00	7.00	0.00	0.00	
					D	ischarge	Data					7	
			Name	Pe	rmit Numbe	Existing Disc r Flow (mgd)	Permitte Disc Flow (mgd)	d Design Disc Flow (mgd)	Reserve Factor	Disc Temp (ºC)	Disc pH		
		Ahlst	rom	PA	0008486	0.569	0 0.569	0.569	0.000	26.0	0 7.30		
					Pa	arameter	Data						
			I	Paramete	r Name	Di C (m	isc T onc C ig/L) (m	rib Str onc C g/L) (m	eam Fat onc Co ıg/L) (1/da	te ef ays)			
	-		CBOD5				18.00	2.00	0.00	1.50			

5.00

25.00

8.24

0.00

0.00

0.00

0.00

0.70

Dissolved Oxygen

NH3-N

Monday, August 28, 2023

Version 1.1

	SWP Basir	9 Strea n Cod	m le	Str	eam Name		RMI	Eleva (ft)	tion Drains Are) (sq r	age Sk :a mi) (ft	ope PV Witho /ft) (m	VS drawal gd)	Apply FC
	07E	631	167 MOUN	ITAIN CR	EEK		2.14	0 5	47.00	45.60 0.0	0000	0.00	•
					St	ream Dat	a						
Design Cond.	LFY (cfsm)	Trib Flow (cfs)	Stream Flow (cfs)	Rch Trav Time (days)	Rch Velocity (fps)	WD Ratio	Rch Width	Rch Depth	<u>Tributs</u> Temp (%C)	ary pH	<u>Strear</u> Temp (ºC)	m pH	
Q7-10 Q1-10 Q30-10	0.313	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000 0.000 0.000	0.0	0.00	0.00	20.00	7.00	0.00	0.00	
			Name	Pe	Di mit Numbe	ischarge Existing Disc r Flow (mgd)	Data Permitte Disc Flow (mgd)	d Design Disc Flow (mgd)	Reserve Factor	Disc Temp (ºC)	Disc pH		
	-	Spec	ialty Paper	PA/ Paramete	0008150 Pa	1.500 arameter D C (m	0 1.500 Data isc T onc C ng/L) (m	0 1.500 irib Str onc C ıg/L) (n	0 0.000 ream Fate Conc Coe ng/L) (1/day	23.00 e ff ys)	7.00		
			CBOD5 Dissolved	Oxygen			23.90 5.00	2.00 8.24	0.00 1	.50			

25.00

0.00

0.00

0.70

Monday, August 28, 2023

NH3-N

Version 1.1

Page 2 of 5

	SWP Basir	Stres Cod	im le	Stre	eam Name		RMI	Elevs (ff	ation Drain An t) (sq	age Si ea mi) (f	iope PV Witho it/ft) (m	VS Irawal gd)	Apply FC
	07E	631	167 MOUN	ITAIN CR	EEK		1.78	50 S	540.00	48.00 0.0	00000	0.00	•
					St	tream Dat	ta						
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	<u>Tribut</u> Temp	tary pH	<u>Strear</u> Temp	n pH	
	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C)		
Q7-10 Q1-10 Q30-10	0.313	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000 0.000 0.000	0.0	0.00	0.00	20.00	7.00	0.00	0.00	
					D	ischarge	Data					1	
			Name	Per	rmit Numbe	Existing Disc r Flow (mgd)	Permitte Disc Flow (mgd)	ed Desigr Disc Flow (mgd)	Reserve Factor	Disc Temp (ºC)	Disc pH		
		Mt. H	olly	PA	0023183	0.700	0 0.700	0 0.70	00 0.000	20.0	0 7.00		
					Pa	arameter	Data						
			I	Paramete	r Name	Di C (m	isc T conc C ng/L) (n	frib St Xonc (ng/L) (i	tream Fat Conc Co mg/L) (1/da	e ef ays)			
	-		CBOD5				20.00	2.00	0.00	1.50			
			Dissolved	Oxygen			5.00	8.24	0.00	0.00			

2.50

0.00

0.00

0.70

Monday, August 28, 2023

NH3-N

Version 1.1

Page 3 of 5

	SWP Basir	Stres	im le	Stre	eam Name		RMI	Elevs (ft	ation Drain Ar) (sq	nage S rea mi) (ilope P\ With ft/ft) (m	NS drawal igd)	Apply FC
	07E	631	167 MOUN	ITAIN CR	EEK		0.75	50 5	14.30	48.20 0.	.00000	0.00	•
					St	tream Da	ta						
Design Cond	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	<u>Tribu</u> Temp	<u>tary</u> pH	<u>Strea</u> Temp	m pH	
Cond.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C)		
Q7-10 Q1-10 Q30-10	0.313	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000 0.000 0.000	0.0	0.00	0.00	20.00	7.00	0.00	0.00	
					D	ischarge	Data					٦	
			Name	Pei	rmit Numbe	Existing Disc r Flow (mgd)	Permitte Disc Flow (mgd)	ed Design Disc Flow (mgd)	Reserve Factor	Disc Temp (ºC)	Disc pH		
		Land	O'Lakes	PA	00449110	0.950	0 0.950	0 0.950	0.000	20.0	00 7.00		
					P	arameter	Data						
			I	Paramete	er Name		isc 1 Conc C	frib St Xonc (ream Fai Conc Co moll) (1/da	te vef			
	-		CBOD5			, , , , , , , , , , , , , , , , , , ,	10.00	2.00	0.00	1.50			
			Dissolved	Oxygen			5.00	8.24	0.00	0.00			

1.50

0.00

0.00

0.70

Monday, August 28, 2023

NH3-N

Version 1.1

Page 4 of 5

	SWP Basir	Stres Cod	am Je	Stre	eam Name		RMI	Elevati (ft)	ion Drain Are (sq	age S aa mi) (Slope P With (ft/ft) (n	WS idrawal ngd)	Apply FC
	07E	63	167 MOUN	ITAIN CR	EEK		0.00	D 49	0.50	47.60 0.	.00000	0.00	•
					St	ream Dat	a						
Design Cond	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	<u>Tribut</u> Temp	<u>ary</u> pH	<u>Stres</u> Temp	am pH	
cond.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C)		
Q7-10	0.313	0.00	0.00	0.000	0.000	0.0	0.00	0.00	20.00	7.00	0.00	0.00	
Q1-10		0.00	0.00	0.000	0.000								
Q30-10		0.00	0.00	0.000	0.000								
					Di	ischarge l	Data						
			Name	Per	mit Numbe	Existing Disc r Flow (mgd)	Permitter Disc Flow (mgd)	d Design Disc Flow (mgd)	Reserve Factor	Disc Temp (ºC)	Disc pH		
						0.000	0 0.0000	0.000	0.000	0.0	0 7.00		
					Pa	arameter l	Data						
				Paramete	r Nomo	Di C	isc Tr onc Co	rib Stre onc C	eam Fat onc Co	e ef			
				raiamete	rname	(m	ig/L) (m	g/L) (m	g/L) (1/da	ys)			

25.00

3.00

25.00

2.00

8.24

0.00

0.00

0.00

0.00

1.50

0.00

0.70

Monday, August 28, 2023

CBOD5

NH3-N

Dissolved Oxygen

Version 1.1

Page 5 of 5

07E RMI 3.180 <u>Reach Width (ft)</u> 45.480 <u>Reach CBOD5 (mg/L)</u> 2.95	63167 Total Discharge 0.58 Reach De	Elow (mgd	M). Ana	OUNTAIN CREEK	Analysis pH
EMI 3.180 <u>Reach Width (ft)</u> 45.480 <u>Reach CBOD5 (mg/L)</u> 2.95	<u>Total Discharge</u> 0.56 Reach De	Elow (mgd) Anal	lysis Temperature (°C)	Analysis pH
Reach Width (ft) 45.480 Reach CBOD5 (mg/L) 2.95	Reach De	Total Discharge Flow (mgd) 0.569 <u>Reach Depth (ft)</u>		20.357	7.013
45.480 <u>Reach CBOD5 (mg/L)</u> 2.95		pth (ft)		Reach WDRatio	Reach Velocity (fps)
Reach CBOD5 (mg/L) 2.95	0.76	8		59.256	0.423
2.95	Reach Kc	(1/days)	B	each NH3-N (mg/L)	<u>Reach Kn (1/days)</u>
	0.50	6		1.01	0.720
Reach DO (mg/L)	Reach Kr	1/days)		Kr Equation	Reach DO Goal (mg/L)
8.050	20.10	52		Isivoglou	5
Reach Travel Time (days	<u>i)</u>	Subreach	n Results		
0.150	TravTime (days)	CBOD5 (mg/L)	NH3-N (mg/L)	D.O. (mg/L)	
	0.015	2.93	1.00	8.19	
	0.030	2.91	0.99	8.19	
	0.045	2.89	0.98	8.19	
	0.060	2.86	0.97	8.19	
	0.075	2.84	0.96	8.19	
	0.090	2.82	0.95	8.19	
	0.105	2.80	0.94	8.19	
	0.120	2.78	0.93	8.19	
	0.135	2.75	0.92	8.19	
	0.150	2.73	0.91	8.19	
RMI	Total Discharge	E Flow (mgd) Anal	lysis Temperature (°C)	Analysis pH
2.140	2.08	9		20.701	7.011
Reach Width (ft)	Reach De	epth (ft)		Reach WDRatio	Reach Velocity (fps)
51.123	0.77	9	_	65.614	0.439
Reach CBOD5 (mg/L)	Reach Kc	(1/days)	R	each NH3-N (mg/L)	Reach Kn (1/days)
5.53 Basab DO (mail)	1.04 Reach Kr (o (1/days)		Z.34 Kr Equation	0.739 Reach DO Goal (mo/l.)
7 788	11.20	09		Tsivoglou	5
7.700 Deach Travel Time (dave					
0.050	ບ TravTime (davs)	Subreach CBOD5 (mg/L)	NH3-N (mg/L)	D.O. (mg/L)	
	0.005	5.50		7.75	
	0.005	5.50	2.33	7.75	
	0.010	5.47	2.32	7.79	
	0.010	5.41	2.31	7.72	
	0.025	5 38	2.00	7.71	
	0.020	5 35	2.20	7.71	
	0.035	5.32	2.28	7.70	
	0.040	5.29	2.27	7.69	
	0.045	5.27	2.26	7.69	
	0.050	5.24	2.25	7.68	

WQM 7.0 D.O.Simulation

	SW	<u>P Basin</u>	<u>Strea</u>	<u>m Code</u>				<u>Stream</u>	Name			
		07E	6	3167			MC	UNTAIN	CREEK			
RMI	Stream Flow	PWS With	Net Stream Flow	Disc Analysis Flow	Reach Slope	Depth	Width	W/D Ratio	Velocity	Reach Trav Time	Analysis Temp	Analysis pH
	(cfs)	(cfs)	(cfs)	(cfs)	(ft/ft)	(ft)	(ft)		(fps)	(days)	(°C)	
Q7-1	0 Flow											
3.180	13.90	0.00	13.90	.8802	0.00692	.768	45.48	59.28	0.42	0.150	20.36	7.01
2.140	14.27	0.00	14.27	3.2007	0.00368	.779	51.12	65.61	0.44	0.050	20.70	7.01
1.780	14.40	0.00	14.40	4.2836	0.00473	.785	51.31	65.4	0.46	0.136	20.66	7.01
0.750	14.46	0.00	14.46	5.7533	0.00601	.793	51.55	64.99	0.49	0.093	20.61	7.01
Q1-1	0 Flow											
3.180	8.89	0.00	8.89	.8802	0.00692	NA	NA	NA	0.34	0.189	20.54	7.02
2.140	9.13	0.00	9.13	3.2007	0.00368	NA	NA	NA	0.36	0.061	20.99	7.02
1.780	9.21	0.00	9.21	4.2836	0.00473	NA	NA	NA	0.39	0.163	20.91	7.01
0.750	9.25	0.00	9.25	5.7533	0.00601	NA	NA	NA	0.42	0.110	20.82	7.01
Q30-'	10 Flow											
3.180	18.90	0.00	18.90	.8802	0.00692	NA	NA	NA	0.50	0.128	20.27	7.01
2.140	19.41	0.00	19.41	3.2007	0.00368	NA	NA	NA	0.51	0.043	20.54	7.01
1.780	19.58	0.00	19.58	4.2836	0.00473	NA	NA	NA	0.53	0.118	20.51	7.01
0.750	19.67	0.00	19.67	5.7533	0.00601	NA	NA	NA	0.56	0.082	20.48	7.01

WQM 7.0 Hydrodynamic Outputs

Monday, August 28, 2023

Version 1.1

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	✓
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.64	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.38	Temperature Adjust Kr	✓
D.O. Saturation	90.00%	Use Balanced Technology	✓
D.O. Goal	5		

Monday, August 28, 2023

Version 1.1

WQM	7.0	<u>Wasteload</u>	Allocations
-----	-----	------------------	-------------

	SWP Basin	Strea	im Code		Str	eam Name			
	07E	6	3167		MOUN	ITAIN CREEK	1		
NH3-N	Acute Alloc	ation	s						
RMI	Discharge	Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction	
3.1	80 Ahlstrom		15.74	50	15.74	50	0	0	
2.1	40 Specialty Pa	per	15.94	50	15.22	50	0	0	
1.73	80 Mt. Holly		16.76	5	15.35	5	0	0	
0.7	50 Land O'Lake	25	16.76	3	15.49	3	0	0	
NH3-N	Chronic All	ocatio	ons						

RMI	Discharge Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
3.18	0 Ahlstrom	1.85	25	1.85	17.04	2	32
2.14	0 Specialty Paper	1.85	17.31	1.82	11.8	2	32
1.78	0 Mt. Holly	1.89	2.5	1.82	2.5	0	0
0.75	0 Land O'Lakes	1.89	1.5	1.82	1.5	0	0

Dissolved Oxygen Allocations

		<u>CBC</u>	DD5	NH	<u>3-N</u>	Dissolved	d Oxygen	Critical	Dereet
RMI	Discharge Name	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple (mg/L)	Reach	Reduction
3.18 Ah	Istrom	18	18	17.04	17.04	5	5	0	0
2.14 Sp	ecialty Paper	23.9	23.9	11.8	11.8	5	5	0	0
1.78 Mt	. Holly	20	20	2.5	2.5	5	5	0	0
0.75 La	nd O'Lakes	10	10	1.5	1.5	5	5	0	0

Version 1.1

	SWP Basin Stream	m Code		Stream Name	2		
	07E 63	167		MOUNTAIN CRE	EK		
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
3.180	Ahlstrom	PA0008486	0.569	CBOD5	18		
				NH3-N	17.04	34.08	
				Dissolved Oxygen			5
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
2.140	Specialty Paper	PA0008150	1.500	CBOD5	23.9		
				NH3-N	11.8	23.6	
				Dissolved Oxygen			5
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
1.780	Mt. Holly	PA0023183	0.700	CBOD5	20		
				NH3-N	2.5	5	
				Dissolved Oxygen			5
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
0.750	Land O'Lakes	PA00449110	0.950	CBOD5	10		
				NH3-N	1.5	3	
				Dissolved Oxygen			5

WQM 7.0 Effluent Limits

Monday, August 28, 2023

Version 1.1

Discharge Information

5/10/2024

1	Chlorobenzene	ua/L		111111						1999999
	Chlorodibromomethane	uo/L	<	~~~~		-				<1<5 1
	Chloroethane	µg/L	<	00000		+				00000
	2-Chloroethyl Vinyl Ether	uo/L	<				<u> </u>			0999999
	Chloroform	uo/L	<	00000		+				000000
	Dichlorobromomethane	ua/L	<	200000		+				200000
	1.1-Dichloroethane	uo/L	<	2212121212 2212121212		+				
1	1.2-Dichloroethane	uo/L	<							20000
a.	1.1-Dichloroethylene	uo/L	<			+	<u> </u>			666666
١Z	1.2-Dichloropropane	uo/L	<			<u> </u>				100000
ιõ	1.3-Dichloropropylene	uo/L	<	199999		+	<u> </u>	<u> </u>		22222
	1.4-Dioxane	uo/L	<	200000		+	<u> </u>	<u> </u>		255555
	Ethylbenzene	uo/L	<	22555			<u> </u>			55555
	Methyl Bromide	uo/1	<	100000						1000000
	Methyl Chloride	uo/1	1 Z	144444		+	<u> </u>			55555
	Methylene Chloride	uo/1	Ì	11111		+	<u> </u>	<u> </u>		199999
	1 1 2 2-Tetrachloroethane		1			+	<u> </u>	<u> </u>		000000
	Tetrachloroethylene	ug/L	E	77777		+	<u> </u>	<u> </u>	<u> </u>	222222
	Toluene	uo/1	Ì	000000		+	<u> </u>	<u> </u>		0000000
	1 2-trans-Dichloroethylene	ug/1	12	00000		+	<u> </u>	<u> </u>		000000
	1.1.1-Trichlomethane	1 ug/l	2				<u> </u>			
	1.1.2.Trichloroethane	1 49/L	2	20000			<u> </u>			000000
	Tripplerpathylana	ug/L	E			+	<u> </u>	<u> </u>		000000
	Vinyl Chloride	ug/L	È	000000		+	<u> </u>	<u> </u>	<u> </u>	200000
\vdash	2 Chlorophonol	ug/L	E	222222		+	<u> </u>	<u> </u>	<u> </u>	255555
	2 4 Disblorophenol	ug/l	E	000000		+	<u> </u>	<u> </u>	<u> </u>	000000
	2.4 Dimethylahonal	µg/L	E	55555		+	<u> </u>	<u> </u>	<u> </u>	555555
	4.8 Dinitro o Crocol	µg/L	E			+	<u> </u>	<u> </u>	<u> </u>	255555 255555
4	2.4 Dinitrochesel	µg/L	E	1000000 1000000		+	<u> </u>	<u> </u>		2005/00/ 2005/00/
18	2,4-Dinitrophenol	µg/L	Đ	66666			<u> </u>	<u> </u>		00000
1.	2-Introphenol	µg/L	È	111111 			<u> </u>	<u> </u>	<u> </u>	2727272727 272727272
10	4-INItrophenol	µg/L	È			+	<u> </u>		<u> </u>	
	P-chloro-m-cresol Restashlarashanal	µg/L	Ð	22222			<u> </u>	<u> </u>	<u> </u>	277272
	Pentachiorophenoi	µg/L	E	******			<u> </u>			*****
	Phenoi 2.4.8.Tricklassekaard	µg/L				+	<u> </u>	<u> </u>	<u> </u>	000000
\vdash	2,4,0-1 richlorophenol	µg/L	È	ะในกินกินกินไป เป็นกินกินกินกิน			<u> </u>			มในในทีมทีมไปไป มาในในทีมกับไปไป
	Acenaphthetee	µg/L		00000			<u> </u>		<u> </u>	1000000
	Acenaphthylene	µg/L	< <			+	<u> </u>	<u> </u>	<u> </u>	000000
	Anthracene	µg/L	1				<u> </u>		<u> </u>	
	Benzialne	µg/L		000000		+	<u> </u>	<u> </u>	<u> </u>	000000
	Benzo(a)Anthracene	µg/L	< <	00000		+	<u> </u>	<u> </u>	<u> </u>	200000
	Benzo(a)Pyrene	µg/L	<	555555		+	<u> </u>	<u> </u>	<u> </u>	555555
	3,4-Benzofluoranthene	µg/L	<	66669		+	<u> </u>	<u> </u>	<u> </u>	65555
	Benzo(ghi)Perylene	µg/L	<	(1)///			<u> </u>			099999
	Benzo(k)Fluoranthene	µg/L	-	///////			<u> </u>			10000
	Bis(2-Chloroethoxy)Methane	µg/L	<			-				e beste te te te
	Dis(2-Chioroethyi/Ether	µg/L	<	00000		-				100000
	Dis(2-Unioroisopropyi)Ether	µg/L	<				-			222222
	Dis(2-Ethylnexyl)Phthalate	µg/L	<	1111		-				66666
	9-bromopnenyi Phenyi Ether	µg/L	<	1000000						
	Dutyi Benzyi Prithalate	µg/L	<			-				11111
	2-Onloronaphtnaiene	µg/L	5							and a factor of the factor of
	Character	µg/L	<			-				000000
	Dibenzo(e b)Anthransee	ug/L	5	00000		-				222222
	1 2 Dioblorokaarsee	µg/L	S	00000		-				10000
	1,2-Dichlorobenzene	µg/L	<	199999		-				222222
	1,3-Dichlorobenzene	µg/L	5	00055						*5*5*5*5*5* *5*5*5*5*
0.5	1,4-Dichlorobenzene	µg/L	<	1999999						1999999 199999
1 M	3,3-Dichlorobenzidine	µg/L	<			-				er er er er er er
ō	Dietnyl Phthalate	µg/L	<			-				
1	Dimethyl Phthalate	µg/L	<	1000 C		-				
	2.4 Distratelyana	µg/L	5	20000		-				100000
	2.8 Distratelyana	µg/L	S I	00000		-				0000000
1	2,0-Dinitrotoluene	µg/L	<							00000
1	Di-n-Octyl Phthalate	hð/r	<	000000						9000000

Discharge Information

5/10/2024

	1,2-Diphenylhydrazine	µg/L	<	111111					eres and
	Fluoranthene	µg/L	<	22222	1				
	Fluorene	µg/L	<	00000	1				
	Hexachlorobenzene	µg/L	<	22222					222222
	Hexachlorobutadiene	µg/L	<	099999					000000
	Hexachlorocyclopentadiene	µg/L	<	200000 200000					111111
	Hexachloroethane	uo/L	<	1919191919 2019191919					
	Indeno(1.2.3-cd)Pyrene	uo/L	<	10000					cierco
	Isophorone	ug/L	<	200000					*****
	Naphthalene	ug/L	<	00000					
	Nitrobenzene	uo/L	<	19999		_			1799999
	n-Nitrosodimethylamine	uo/1	<	55555					200000
	n-Nitrosodi-n-Propylamine	uo/1	<	×××××					
	n-Nitrosodinhenvlemine	uo/l	<	00000					212121212121212 2121212121212
	Phononthrane	ug/1	~	66666		_			11111
	Pyrana	ug/l	2	200000 200000		_			199999999
	1 2 4 Trichlombenzene	ug/l	$\overline{}$	000000					200000000 20000000
⊢	Aldrin	ug/L	$\overline{}$	000000		_	<u> </u>		******
	alpha-BHC	ug/l	~	000000		_	<u> </u>		******
	hata BUC	µg/L	È	(7777)		_	<u> </u>		(//////
	Deta-Bric	µg/L	È	099222			<u> </u>		
	gamma-BHC	µg/L	-	COLLEG			<u> </u>		
	delta BHC	µg/L	<			_	<u> </u>		
	Chlordane	µg/L	<	000000		_	<u> </u>		
	4,4-001	µg/L	<			_	<u> </u>		<u>~~~</u>
	4,4-DDE	µg/L	<	000000			<u> </u>		*1*1*1*1*1*
	4,4-DDD	µg/L	<	00000		_			nnnn
	Dieldrin	µg/L	<	22222		_			11110
	alpha-Endosulfan	µg/L	<	212121212 212121212		_			*****
	beta-Endosulfan	µg/L	<	10000					11111
ă	Endosulfan Sulfate	µg/L	<	00000					creative.
3	Endrin	µg/L	<	00000		_			111111
σ	Endrin Aldehyde	µg/L	<	199999					******
	Heptachlor	µg/L	<	155555					สาราราราร
	Heptachlor Epoxide	µg/L	<	00000					00222
	PCB-1016	µg/L	<	1919-1919 1919-1919					199999999 199999999
	PCB-1221	µg/L	<	00000					CONTRACT OF
	PCB-1232	µg/L	<	14949494					1111111
	PCB-1242	µg/L	<						*****
	PCB-1248	µg/L	<	100050	1				******
	PCB-1254	µg/L	<	22222					
	PCB-1260	µg/L	<	000000					00000
	PCBs, Total	µg/L	<	22223					
	Toxaphene	µg/L	<	22222					17.77.6
	2,3,7,8-TCDD	ng/L	<	00000					111111
	Gross Alpha	pCi/L		1999999					
~	Total Beta	pCi/L	<						
9	Radium 226/228	pCi/L	<	222222					202222
1 g	Total Strontium	ug/L	<	46666					100000
0	Total Uranium	ug/L	<	00000					1999999
	Osmotic Pressure	mOs/ka		0000					
<u> </u>				000000					
						_			
				100000					
						_			
			-	2010/060 2010/060					
			-	00000					
				00000		_			
			-	00000					
				222222 22222					
				200500		_			
				PV9/999		_			
				00000					

Discharge Information

5/10/2024

Toxics Management Spreadsheet Version 1.4, May 2023	it No. PA0044911, Outfall 001		ria 1	teria				am Analysis	printes pri			am Analysis	pH Hardness pH			
	Land O Lakes, NPDES Permi		Statewide Crite	ish ORSANCO Cri				Tributary Stre				Tributary Stre	Hardness pH Hardness	11111111111111111111111111111111111111		
			No. Reaches to Model: 1) PWS Withdrawal Apply F (MGD) Criteria	PUTTING Yes	Yes		Depth Velocit Time	(anal) (cdare)			Depth Velocit Time	(ft) y (fps) (dave)			
	u			DA (mi ²)* Slope (ft/ft	46.2	47.6		W/D Width	CORTS TANK (II)	0000		W/D Width	butary Ratio (ft)	11111		
	ter Informati		ntain Creek	RMI* Elevation (ft)*	0.75 514.3	0 490.5		FY Flow (cfs	313 OUEGIII II	313		FY Flow (cfs	s/mi ²) Stream Tr	0000		
Sylvania NT OF ENVIRONMENTAL	Surface Wa	charge Stream	: Water Name: Mour	Stream Code*	e 063167	063167		RMI C	a 0.75 0	0			cfs (cfs	e 0.75	0	
реолести	Stream / 3	Instructions Dis	Receiving Surface	Location	Point of Discharg	End of Reach 1	Q 7-10	Location	Point of Dischard	End of Reach 1	Q,	notion	LOCATION	Point of Discharg	End of Reach 1	

Page 4

Stream / Surface Water Information

5/10/2024

	_				_		_	_	_	_	_	_				_	_								_			_													_	9 00
Comments							Chem Translator of 1 applied			Chem Translator of 0.908 applied	Chem Translator of 0.86 applied	Chem Translator of 0.962 applied		Chem Translator of 0.96 applied		WQC = 30 day average; PMF = 1	Chem Translator of 0.789 applied		Chem Translator of 0.85 applied	Chem Translator of 0.997 applied		Chem Translator of 0.922 applied	Chem Translator of 1 applied		Chem Translator of 0.986 applied	Analysis pH: N/A	Comments															ä
																										N/A																
WLA (µg/L)	N/A	N/A	N/A	N/A	N/A	2,385	1,626	44,442	17,343	2.97	945	113	206	102	N/A	16,259	35.1	N/A	9.82	572	N/A	54.1	N/A	141	1,315	:s (mg/l):	WLA (µg/L)	NA	N/A	N/A	N/A	N/A	60.7	108	26,015	33,602	A/A	N/A	N/A	N/A	N/A	3,252
WQ Obj (µg/L)	N/A	N/A	N/A	N/A	N/A	220	150	4,100	1,600	0.27	87.2	10.4	19.0	9.45	N/A	1,500	3.24	N/A	0.91	52.8	N/A	4.99	N/A	13.0	121	ysis Hardnes	WQ Obj (μg/L)	500,000	250,000	250,000	2,000	N/A	5,6	10.0	2,400	3,100	N/A	٨N	A/A	AVA	A/A	202300
WQC (µg/L)	N/A	N/A	N/A	N/A	N/A	220	150	4,100	1,600	0.249	75.009	10	19	9.069	N/A	1,500	2.557	N/A	0.770	52.655	N/A	4.600	N/A	13	119.615	Anal	WQC (µg/L)	500,000	250,000	250,000	2,000	N/A	5.6	9	2,400	3,100	N/A	AN	A/A	AN .	A/A	3005/10/
Fate Coef	0	0	0	0	0	0	•	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	Fate Coef	•	0	0	0	0	0	•	0	•	0	•	•	•	•	0
Trib Conc (µg/L)	anna	<i>anno</i>	m		in the second			and and a second		and		111112	and and a second	and a start of the					ann		and the	and	and	anno	aun	PMF:	Trib Conc (µg/L)	000000	anna		anna 1	aaaaa	<u>a</u>	anna	and a							currer
Stream CV	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	85	Stream CV	0	0	0	0	0	0	•	0	•	0	•	0	-	0	0
Stream Conc (µg/L)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	T (min): 48.5	Stream Conc (µg/L)	0	0	0	0	0	0	0	0	0	0	0	0	0		0
Pollutants	Total Dissolved Solids (PWS)	Chloride (PWS)	Sulfate (PWS)	Fluoride (PWS)	Total Aluminum	Total Antimony	Total Arsenic	Total Barium	Total Boron	Total Cadmium	Total Chromium (III)	Hexavalent Chromium	Total Cobalt	Total Copper	Dissolved Iron	Total Iron	Total Lead	Total Manganese	Total Mercury	Total Nickel	Total Phenols (Phenolics) (PWS)	Total Selenium	Total Silver	Total Thallium	Total Zinc	и тнн сст	Pollutants	Total Dissolved Solids (PWS)	Chloride (PWS)	Sulfate (PWS)	Fluoride (PWS)	Total Aluminum	Total Antimony	Total Arsenic	Total Barium	Total Boron	Total Cadmium	Total Chromium (III)	Hexavalent Chromium	Total Cobalt	Total Copper	del Results Dissolved Iron

37

Total Iron	_				M/M	Nira.	N/A		
Total Lead	0	0		, .	N/A	AN	A/A		
Total Managese	, c	• •	0000000		1 000	1 000	10.830		
Total Maximu				,	0000	and a	0.64		
T				,	0.000	0.0	0.04		
I OLAI NICKEI		-	Contraction of	-	01.0	010	21.0'0		
otal Phenols (Phenolics) (PWS)	0	0	en e	•	5	5.0	N/A		
Total Selenium	0	0	anna	0	N/A	N/A	N/A		
Total Silver	0	0	111111	0	N/A	A/A	N/A		
Total Thallium	0	0	111111	•	0.24	0.24	2.6		
Total Zinc	0	0		0	N/A	N/A	N/A		
SCRL CRL	,T (min): [19.	862	PMF:	-	Ana	alysis Hardne	:(I/gm) ss	N/A Analysis pH: N/A	
Pollutants	Stream Conc (µg/L)	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments	
Total Dissolved Solids (PWS)	0	0	Contractor	•	N/A	NN	N/A		
Chloride (PWS)	0	0		0	N/A	N/A	N/A		
Sulfate (PWS)	0	0		•	N/A	N/A	N/A		
Fluoride (PWS)	0	0		0	N/A	N/A	N/A		
Total Aluminum	0	0		0	N/A	N/A	N/A		
Total Antimony	0	0	ann	0	N/A	N/A	N/A		
Total Arsenic	0	0		0	N/A	N/A	N/A		
Total Barium	0	0	ann	0	N/A	N/A	N/A		
Total Boron	0	0	ann	0	N/A	N/A	N/A		
Total Cadmium	0	0	ann	0	N/A	N/A	N/A		
Total Chromium (III)	0	0	anne	0	N/A	N/A	N/A		
Hexavalent Chromium	0	0	auto	0	N/A	N/A	N/A		
Total Cobalt	0	0	and	0	N/A	N/A	N/A		
Total Copper	0	0	ann	0	N/A	N/A	N/A		
Dissolved Iron	0	0	and the second s	0	N/A	N/A	N/A		
Total Iron	0	0	and	0	N/A	N/A	N/A		
Total Lead	0	0	in the second	0	N/A	N/A	A/A		
Total Manganese	0	0		0	N/A	N/A	N/A		
Total Mercury	0	0		0	N/A	N/A	N/A		
Total Nickel	0	0	ann an	0	N/A	N/A	N/A		
ital Phenols (Phenolics) (PWS)	0	0	all all a	0	N/A	N/A	N/A		
Total Selenium	0	0	ann	•	N/A	NVA	N/A		
Total Silver	0	0		•	N/A	N/A	N/A		
Total Thallium	0	0		0	N/A	A/A	N/A		
Total Zinc	0	0	anne	0	N/A	N/A	N/A		
Recommended WQBELs & Mo	nitoring Req	uiremen	ş						
No. Samples/Month: 4	_								
	Mass	Limits		ပိ	ncentration	Limits	Γ		

1 01010110	All a del and	10 - 14 - 14	TIME	1011	VA.IMI	3110	100111		
	(Ibs/day)	(Ibs/day)					WQBEL	Hasis	
enium	Report	Report	Report	Report	Report	µg/L	54.1	CFC	Discharge Conc > 10% WQBEL (no RP)
is without Limits Mutants do not re ntration was less t	s or Monitori squire effluen han threshold	ing t limits or mo is for monitorir	mitoring base ng, or the poll	d on water q utant was not	uality becaus detected and	e reasonabl a sufficiently	e potential to / sensitive an	exceed wat	er quality criteria was not determined and the M was used (e.g., <= Target QL).
nts	Governing	Units		Comments					
Solids (PWS)	N/A	N/A	PWG	S Not Applica	ble				
(PWS)	A/A	N/A	PWG	S Not Applica	ble				
de	N/A	N/A		No WQS					

Total Dissolved Solids (PWS)N/AN/AN/AFTotal Dissolved Solids (PWS)N/AN/AN/AFBromideN/AN/AN/AFSulfate (PWS)N/AN/AN/AFFluoride (PWS)N/AN/AN/AFSulfate (PWS)N/AN/AN/AFFluoride (PWS)N/AN/AN/ADiTotal Ansenic108 $\mu g/L$ DischaTotal Ansenic108 $\mu g/L$ DischaTotal BerylliumN/AN/AN/ADiTotal BerylliumN/AN/ADiTotal Cadmium26,015 $\mu g/L$ DischaTotal Cadmium26,015 $\mu g/L$ DischaHexavalent Chromium (III)945 $\mu g/L$ DischaTotal Cobart206 $\mu g/L$ DischaTotal Cobart206 $\mu g/L$ DischaTotal Copper57.5 $\mu g/L$ DischaTotal Coper59.4 $\mu g/L$ DischaTotal Copper0.54 $\mu g/L$ DischaTotal Copper0.54 $\mu g/L$ DischaTotal Coper3.252 $\mu g/L$ DischaTotal Renor16.259 $\mu g/L$ DischaTotal Renor0.54 $\mu g/L$ DischaTotal Coper572 $\mu g/L$ DischaTotal Cobart572 $\mu g/L$ DischaTotal Renor0.54 $\mu g/L$ DischaTotal Renor572 $\mu g/L$ <t< th=""><th>- Comments</th></t<>	- Comments
Chloride (PWS)N/AN/AN/AFBromideN/AN/AN/AFBromideN/AN/AN/AFSulfate (PWS)N/AN/AN/AFFluoride (PWS)N/AN/AN/ADischaTotal Antimony3.109 $\mu g/L$ DischaTotal AntimonyN/AN/AN/ADiTotal Antenic108 $\mu g/L$ DischaTotal BerylliumN/AN/ADischaTotal BerylliumN/AN/ADischaTotal Cadmium2.6,015 $\mu g/L$ DischaTotal Chromium2.6,015 $\mu g/L$ DischaHexavalent Chromium2.97 $\mu g/L$ DischaTotal Chromium2.97 $\mu g/L$ DischaTotal Cobart206 $\mu g/L$ DischaTotal Copper59.4 $\mu g/L$ DischaTotal Coper59.4 $\mu g/L$ DischaTotal Copper0.54 $\mu g/L$ DischaTotal Copper0.54 $\mu g/L$ DischaTotal Coper3.252 $\mu g/L$ DischaTotal Copier3.252 $\mu g/L$ DischaTotal Rencury0.54 $\mu g/L$ Discha <t< td=""><td>N/A PWS Not Applicable</td></t<>	N/A PWS Not Applicable
BromideN/AN/AN/AFSulfate (PWS)N/AN/AN/AFFluoride (PWS)N/AN/AN/ADischaTotal Aluminum3.109 $\mu g/L$ DischaTotal AntimonyN/AN/AN/ADiTotal AntimonyN/AN/AN/ADiTotal Arsenic108 $\mu g/L$ DischaTotal BerylliumN/AN/AN/ADiTotal Beryllium26,015 $\mu g/L$ DischaTotal Beryllium17,343 $\mu g/L$ DischaTotal Chromium2.97 $\mu g/L$ DischaTotal Chromium2.97 $\mu g/L$ DischaTotal Chromium67.5 $\mu g/L$ DischaTotal Cobelit206 $\mu g/L$ DischaTotal Copper59.4 $\mu g/L$ DischaTotal Copper3,252 $\mu g/L$ DischaTotal Lead3.71 $\mu g/L$ DischaTotal Iron16,259 $\mu g/L$ DischaTotal Rencury0.54 $\mu g/L$ Dis	N/A PWS Not Applicable
Sulfate (PWS) N/A N/A N/A F Fluoride (PWS) N/A N/A N/A F Total Aluminum 3,109 µg/L Discha Di Total Antimony N/A N/A N/A Di Total Antimony N/A N/A Di Discha Total Arsenic 108 µg/L Discha Di Total Barum 26,015 µg/L Discha Di Total Boron 17,343 µg/L Discha Di Total Boron 17,343 µg/L Discha Discha Total Chromium 2.97 µg/L Discha Discha Total Chromium 67.5 µg/L Discha Discha Total Copher 59.4 µg/L Discha Discha Total Copher 57.5 µg/L Discha Discha Total Copher 3.2.52 µg/L Discha Discha Total Copher 3.2.52 µg/L Disch	N/A No WQS
Fluoride (PWS) N/A N/A N/A Discha Total Aluminum 3.109 µg/L Discha Di Total Antimony N/A N/A Di Discha Di Total Antenic 108 µg/L Discha Di	N/A PWS Not Applicable
Total Aluminum3,109 $\mu g/L$ DischaTotal AluminumN/AN/AN/ADiTotal Ansenic108 $\mu g/L$ DischaTotal Barium26,015 $\mu g/L$ DischaTotal Barium26,015 $\mu g/L$ DischaTotal Barium17,343 $\mu g/L$ DischaTotal Boron17,343 $\mu g/L$ DischaTotal Boron17,343 $\mu g/L$ DischaTotal Cadmium17,343 $\mu g/L$ DischaTotal Cadmium67.5 $\mu g/L$ DischaTotal Cobalt26,4 $\mu g/L$ DischaTotal Copper59,4 $\mu g/L$ DischaTotal Copper59,4 $\mu g/L$ DischaTotal CyanideN/AN/AN/ADissolved Iron3,252 $\mu g/L$ DischaTotal Lead3,252 $\mu g/L$ DischaTotal Iron16,259 $\mu g/L$ DischaTotal Iron16,339 $\mu g/L$ DischaTotal Iron16,34 $\mu g/L$ DischaTotal Iron16,34 $\mu g/L$ DischaTotal Iron16,44 $\mu g/L$ DischaTotal Iron16,34 $\mu g/L$ DischaTotal Iron16,44 $\mu g/L$ DischaTotal Iron16	N/A PWS Not Applicable
Total AntimonyN/AN/ADiTotal ArsenicTotal Arsenic108 $\mu g/L$ DischaTotal BariumTotal Barium26,015 $\mu g/L$ DischaTotal BoronTotal Boron17,343 $\mu g/L$ DischaTotal Boron17,343 $\mu g/L$ DischaTotal Cadmium17,343 $\mu g/L$ DischaTotal Cadmium845 $\mu g/L$ DischaTotal Chromium67.5 $\mu g/L$ DischaTotal Cobalt59.4 $\mu g/L$ DischaTotal Copalt59.4 $\mu g/L$ DischaTotal Copalt59.4 $\mu g/L$ DischaTotal CyanideN/AN/AN/ADissolved Iron3.252 $\mu g/L$ DischaTotal Lead3.252 $\mu g/L$ DischaTotal Iron16,259 $\mu g/L$ DischaTotal Iron16,259 $\mu g/L$ DischaTotal Iron16,259 $\mu g/L$ DischaTotal Nickel572 $\mu g/L$ DischaTotal Nickel572 $\mu g/L$ DischaTotal Phenols (Phenolics) (PWS)16,4 $\mu g/L$ DischaTotal Phenols (Phenolics) (PWS)572 $\mu g/L$ DischaTotal Phenols572 $\mu g/L$ DischaTotal Phenols572	µg/L Discharge Conc ≤ 10% WQBEL
Total Arsenic 108 µg/L Discha Total Barium 26,015 µg/L Discha Total Barium N/A N/A Discha Total Boron 17,343 µg/L Discha Total Boron 17,343 µg/L Discha Total Boron 17,343 µg/L Discha Total Chomium<(III)	N/A Discharge Conc < TQL
Total Barium Z6,015 µg/L Discha Total Baryllium N/A N/A N/A Discha Total Boron 17,343 µg/L Discha Discha Total Boron 17,343 µg/L Discha Discha Total Cadmium<(III)	µg/L Discharge Conc ≤ 10% WQBEL
Total Beryllium N/A N/A N/A Total Boron 17,343 µg/L Di Total Boron 17,343 µg/L Di Total Chromium (III) 945 µg/L Di Total Chromium (III) 945 µg/L Discha Hexavlaent Chromium 67.5 µg/L Discha Total Copper 59.4 µg/L Discha Total Copper 59.4 µg/L Discha Total Cyanide N/A N/A N/A Discha Dissolved Iron 3.252 µg/L Discha Discha Total Lead 3.253 µg/L Discha Discha Total Iron 16,259 µg/L Discha Discha Total Manganese 10.833 µg/L Discha Discha Total Mercury 0.54 µg/L Discha Discha Total Mercury 0.54 µg/L Discha Discha Total Mercury 0.54 µg/L Discha	µg/L Discharge Conc ≤ 10% WQBEL
Total Boron 17,343 µg/L Di Total Cadmium 2.97 µg/L Di Total Cadmium 2.97 µg/L Discha Total Chromium (III) 945 µg/L Discha Hexavalent Chromium 67.5 µg/L Discha Total Cobalt 206 µg/L Discha Total Copper 59.4 µg/L Di Total Copper 59.4 µg/L Di Dissolved Iron 3.252 µg/L Discha Total Lead 3.5.1 µg/L Discha Total Manganese 10,839 µg/L Discha Total Manganese 10,839 µg/L Discha Total Mercury 0.54 µg/L Discha Total Mercury 0.54 µg/L Discha Total Phenols (PWS) 0.54 µg/L Discha Total Phenols (PWS) 0.54 µg/L Discha Total Phenols (PWS) 572 µg/L Discha	N/A No WQS
Total Cadmium 2.97 µg/L Discha Total Chromium (III) 945 µg/L Discha Hexavalent Chromium 67.5 µg/L Discha Total Cobalt 67.5 µg/L Discha Total Cobalt 206 µg/L Discha Total Cobalt 206 µg/L Discha Total Copper 59.4 µg/L Di Total Copher 59.4 µg/L Di Total Copher 3.252 µg/L Di Total Condition 3.252 µg/L Discha Total Iton 3.252 µg/L Discha Total Manganese 16.259 µg/L Discha Total Manganese 10.839 µg/L Discha Total Mercury 0.54 µg/L Discha Total Mercury 0.54 µg/L Discha Total Phenols (Phenolics) (PWS) 0.54 µg/L Discha Total Phenols (Phenolics) (PWS) 16.4 µg/L Discha	µg/L Discharge Conc < TQL
Total Chromium (II) 945 µg/L Discha Hexavalent Chromium 67.5 µg/L Discha Total Cobalt 206 µg/L Discha Total Cobalt 206 µg/L Discha Total Cobalt 206 µg/L Discha Total Coper 59.4 µg/L Di Total Copalt 3.252 µg/L Discha Dissolved Iron 3.252 µg/L Discha Total Iron 16.259 µg/L Discha Total Manganese 10,839 µg/L Discha Total Manganese 0.54 µg/L Discha Total Mercury 0.54 µg/L Discha Total Mercury 0.54 µg/L Discha Total Nickel 572 µg/L Discha Total Phenols (Phenolics) (PWS) 0.54 µg/L Discha Total Phenols (Phenolics) (PWS) 16.4 µg/L Discha	µg/L Discharge Conc < TQL
Hexavalent Chromium 67.5 µg/L Discha Total Cobalt 206 µg/L Di Total Copper 59.4 µg/L Di Total Copher 3.252 µg/L Discha Total Con 3.252 µg/L Discha Total Iron 16.259 µg/L Discha Total Manganese 10,839 µg/L Discha Total Manganese 0.54 µg/L Discha Total Mercury 0.54 µg/L Discha Total Nickel 572 µg/L Discha Total Phenols (Phenolics) (PWS) 0.54 µg/L Discha Total Phenols (Phenolics) (PWS) 16.4 µg/L Discha	µg/L Discharge Conc ≤ 10% WQBEL
Total Cobalt 206 µg/L Di Total Copper 59.4 µg/L Di Total Copper 59.4 µg/L Di Total Copper 3.252 µg/L Discha Total Control 3.252 µg/L Discha Total Iron 3.5.1 µg/L Discha Total Iron 16.259 µg/L Discha Total Iron 16.259 µg/L Discha Total Manganese 10,839 µg/L Discha Total Mercury 0.54 µg/L Discha Total Nickel 572 µg/L Discha Total Nickel 572 µg/L Discha Total Phenols (Phenolics) (PWS) 0.54 µg/L Discha Total Phenols (Phenolics) (PWS) 16.4 µg/L Discha Total Total Silver 16.4 µg/L Discha	µg/L Discharge Conc ≤ 10% WQBEL
Total Copper 59.4 µg/L Di Total Cyanide N/A N/A N/A Discha Dissolved Iron 3.252 µg/L Discha Total Iron 3.252 µg/L Discha Total Iron 3.5.1 µg/L Discha Total Iron 16,259 µg/L Discha Total Manganese 10,839 µg/L Discha Total Manganese 0.54 µg/L Discha Total Mercury 0.54 µg/L Discha Total Silver 572 µg/L Discha Total Nickel 572 µg/L Discha Total Nickel 572 µg/L Discha Total Phenols (PWS) 16.4 µg/L Discha Total Phenols (Phenolics) (PWS) 26.4 µg/L Discha	µg/L Discharge Conc < TQL
Total Cyanide N/A N/A Dissolved Iron 3,252 µg/L Discha Total Iron 16,259 µg/L Discha Total Manganese 10,839 µg/L Discha Total Mercury 0.54 µg/L Discha Total Mercury 0.54 µg/L Discha Total Nickel 572 µg/L Discha Total Nickel 572 µg/L Discha Total Nickel 16.4 µg/L Discha Total Phenols (Phenolics) (PWS) 16.4 µg/L Discha Total Total Silver 26 µg/L Discha	µg/L Discharge Conc < TQL
Dissolved Iron 3,252 µg/L Discha Total Iron 16,259 µg/L Discha Total Iron 16,259 µg/L Discha Total Iron 35.1 µg/L Discha Total Mangarese 10,839 µg/L Discha Total Mangarese 10,839 µg/L Discha Total Mercury 0.54 µg/L Discha Total Mercury 0.54 µg/L Discha Total Silver 572 µg/L Discha Total Phenols (Phenolics) (PWS) 16.4 µg/L Discha Total Silver 16.4 µg/L Discha	N/A No WQS
Total Iron 16,259 µg/L Discha Total Iread 35.1 µg/L Discha Total Manganese 10,839 µg/L Discha Total Manganese 10,839 µg/L Discha Total Manganese 0.54 µg/L Discha Total Mercury 0.54 µg/L Discha Total Nickel 572 µg/L Discha Total Nickel 572 µg/L Discha Total Silver 16.4 µg/L Discha Total Phenols (Phenolics) (PWS) 16.4 µg/L Discha Total Phenols Silver 2.6 µg/L Discha	µg/L Discharge Conc ≤ 10% WQBEL
Total Lead 35.1 µg/L Di Total Manganese 10.839 µg/L Discha Total Marcury 0.54 µg/L Discha Total Mercury 0.54 µg/L Discha Total Mercury 0.54 µg/L Discha Total Nickel 572 µg/L Discha Total Nickel 572 µg/L Discha Total Phenols (Phenolics) (PWS) 16.4 µg/L F Total Silver 16.4 µg/L Discha Total Phenolic Silver 2.6 µg/L Discha	µg/L Discharge Conc ≤ 10% WQBEL
Total Manganese 10,839 µg/L Discha Total Mercury 0.54 µg/L Discha Total Mercury 0.54 µg/L Discha Total Nickel 572 µg/L Discha Total Phenols (Phenolics) (PWS) 16.4 µg/L F Total Silver 16.4 µg/L Discha Total Phenolics (PMS) 57.2 µg/L Discha	µg/L Discharge Conc < TQL
Total Mercury 0.54 µg/L Di Total Nickel 572 µg/L Discha Total Phenols (PWS) pg/L F Total Silver 16.4 µg/L Discha Total Thallium 2.6 µg/L Discha	µg/L Discharge Conc ≤ 10% WQBEL
Total Nickel 572 µg/L Discha Total Phenols (PWS) pg/L F Total Silver 16.4 µg/L Discha Total Thallium 2.6 µg/L Discha	µg/L Discharge Conc < TQL
Total Phenols (PWS) pg/L F Total Silver 16.4 pg/L Discha Total Thallium 2.6 p.0	µg/L Discharge Conc ≤ 10% WQBEL
Total Silver 16.4 µg/L Discha Total Thattime 2.6 well	µg/L PWS Not Applicable
Total Thallium 2.6 Lind Di	µg/L Discharge Conc ≤ 10% WQBEL
	µg/L Discharge Conc < TQL
Total Zinc 507 µg/L Discha	µg/L Discharge Conc ≤ 10% WQBEL
Total Molybdenum N/A N/A N/A	N/A No WQS

Model Results

Dennsylvania DEPARTMENT OF ENVIRONMENTAL PROTECTION

Inputs Instructions

Lakes
Land O'
Facility:

Stream Name: Mountain Creek

Stream Q7-10 (cfs)*: 14.5

Outfall No.: 001

	20	;	<u>j</u>																			
				_	_	_	_		_	_	_											
	Discharge	Flow	(MGD)	<u> 26'0</u>	26'0	0.95	0.95	26.0	0.95	26'0	0.95	0.95	26'0	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
	Consumptive	Loss	(MGD)*																			
ility Flows	Intake	(External)	(MGD)*	36.0	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Fac	Intake	(Stream)	(MGD)*																			
		Semi-Monthly	Increment	Jan 1-31	Feb 1-29	Mar 1-31	Apr 1-15	Apr 16-30	May 1-15	May 16-31	Jun 1-15	Jun 16-30	Jul 1-31	Aug 1-15	Aug 16-31	Sep 1-15	Sep 16-30	Oct 1-15	Oct 16-31	Nov 1-15	Nov 16-30	Dec 1-31

Jinsu Kim	TSF
Analyst/Engineer:	Analysis Type*:

Permit No.: PA0044911

	Downstream Stream Flow	(cfs)	47.87	52.22	102.97	136.32	136.32	75.42	75.42	44.97	44.97	26.12	21.77	21.77	17.42	17.42	18.87	18.87	24.67	24.67	36 37
WS.	Seasonal Stream Flow	(cfs)	46.40	50.75	101.50	134.85	134.85	73.95	73.95	43.50	43.50	24.65	20.30	20.30	15.95	15.95	17.40	17.40	23.20	23.20	24 BU
Stream Flo	PMF		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1 00
	Q7-10 Multipliers	(Default Shown)	3.2	3.5	7	9.3	9.3	5.1	5.1	3	3	1.7	1.4	1.4	1.1	1.1	1.2	1.2	1.6	1.6	10

Thermal Limits Spreadsheet Version 1.0, April 2024

TSF Results

Instructions

	Case 2	Daily	WLA	(oF)	110.0	110.0	110.0	110.0	110.0	110.0	110.0	110.0	110.0	100.1	98.8	110.0	110.0	108.4	110.0	110.0	110.0	110.0	110.0	
	Case 1	Daily	WLA	(Million BTUs/day)	N/A Case 2																			
for Case 1 or Case 2	TSF	Target Maximum	Stream Temp.	(°F)	40	40	46	52	58	64	68	83.3	80.7	83.3	85	87	84	78	72	66	58	50	42	
Recommended Limits		Semi-Monthly	Increment		Jan 1-31	Feb 1-29	Mar 1-31	Apr 1-15	Apr 16-30	May 1-15	May 16-31	Jun 1-15	Jun 16-30	Jul 1-31	Aug 1-15	Aug 16-31	Sep 1-15	Sep 16-30	Oct 1-15	Oct 16-31	Nov 1-15	Nov 16-30	Dec 1-31	

NPDES Permit Fact Sheet Land O Lakes Inc.

Date	Version
4/3/2024	1.0

hange(s)	
Priginal	

TRC_CALC

1A	В	С	D	Е	F	G									
2	TRC EVALU	ATION													
3	Input appropri	nput appropriate values in B4:B8 and E4:E7													
4	14.5	j = Qstream (cfs)	0.5	=CV Daily										
5	0.95	= Qdischarg	je (MGD)	0.5	= CV Hourty										
6	30) = no. sample	8	1	= AFC_Partial N	lix Factor									
7	0.3	3 = Chlorine D	emand of Stream	1	=CFC_Partial N	lix Factor									
8	0) = Chlorine D	emand of Discharge	15	=AFC_Criteria	Compliance Time (min)									
9	0.5	5 = BAT/BPJ V	alue	720	=CFC_Criteria	Compliance Time (min)									
	() = % Factor (of Safety (FOS)		=Decay Coeffic	ient (K)									
10	Source	Reference	AFC Calculations		Reference	CFC Calculations									
11	TRC	1.3.2.iii	WLA afc =	3.166	1.3.2.iii	WLA cfc = 3.079									
12	PENTOXSD TRG	5.1a	LTAMULT afc =	0.373	5.1c	LTAMULT cfc = 0.581									
13	PENTOXSD TRG	5.1b	LTA_afc=	1.180	5.1d	LTA_cfc = 1.790									
14	Several Still and Several														
10															
10	10 PENTOXSD TRG 5.1T AML MULT = 1.231														
10	PENTOASD ING	5.1g		T (mg/l) =	1.625	BAT/BFJ									
10			INST MAA LIMI	r (mg/r) -	1.055										
	WLA afc	(.019/e(-k*A	FC_tc)) + [(AFC_Yc*Qa	*.019/Qd	*e(-k*AFC_tc))										
		+ Xd + (AF	C_Yc*Qs*Xs/Qd)]*(1-F	OS/100)											
	LTAMULT afc	EXP((0.5*LN	(cvh^2+1))-2.326*LN(c	vh^2+1)^	0.5)										
	LTA_afc	wla_afc*LTA	MULT_afc												
	WLA_cfc	(.011/e(-k*C	FC_tc)+[(CFC_Yc*Ops	".011/Qd"	'e(-k*CFC_tc))										
	TAMULT of	+ Xd + (CH	U_TC*QB*X8/Qd)[*(1-H	05/100)	N/audA2/aa										
	LTA ofe	EAP((0.5°LN	(cvo~z/no_samples+1) MULT_cfc	1-2.320 L	N(CVG~2/no_san	ipies+1)~0.5)									
	LIN_GC	WA_CIC LIA													
	AML MULT	EXP(2.326*L	N((cvd^2/no samples+	+1)^0.5}-0	.5*LN(cvd^2/no	samples+1))									
	AVG MON LIMIT	MIN(BAT BE	J,MIN(LTA_afc,LTA_c	fc)*AML	MULT)										
	INST MAX LIMIT	1.5*((av_mo	n_limit/AML_MULT)/LT	AMULT_a	afc)										
			•	-											