

Application Type Renewal
Facility Type Municipal
Major / Minor Minor

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

 Application No.
 PA0045004

 APS ID
 274816

 Authorization ID
 1434584

Applicant and Facility Information

Applicant Name	Lake Meade Municipal Authority	Facility Name	Lake Meade STP
Applicant Address	59 Curtis Drive	Facility Address	59 Curtis Drive
	East Berlin, PA 17316-9220		East Berlin, PA 17316-9220
Applicant Contact	Adam Ebersole	Facility Contact	Adam Ebersole
Applicant Phone	(717) 259-9998	Facility Phone	(717) 259-9998
Client ID	6163	Site ID	452153
Ch 94 Load Status	Not Overloaded	Municipality	Reading Township
Connection Status	No Limitations	County	Adams
Date Application Recei	ved <u>March 28, 2023</u>	EPA Waived?	Yes
Date Application Accept	oted April 6, 2023	If No, Reason	
Purpose of Application	NPDES permit renewal.		

Summary of Review

William F. Hill & Associates, on behalf of the Lake Meade Municipal Authority (Authority/Permittee), applied to the Pennsylvania Department of Environmental Protection (DEP) for issuance of the NPDES permit. The permit was reissued on September 24, 2018 and became effective on October 1, 2018. The permit expires on September 30, 2023.

The average annual design flow and hydraulic design capacity is 0.35 MGD and the organic loading capacity is 847 lbs BOD₅/day. The treated effluent is discharged to Mud Run. This facility receives 75.0% of its flow from Reading Township, and 25.0% from Latimore Township. The 2023 application states that there are no industrial users.

WQM Part II Permit No. 0105402 was issued on 6/7/2006, and 0105402 A-1 amendment was issued on 8/23/2011. WQG02010602 was issued on 10/24/2006. WQM Part II Permit No. 0115402 was issued on 1/6/2016. WQM Part II Permit for pump station NO. 0117402 was issued on 9/15/2017. WQM Part II Permit No. 0119401 was issued on 10/24/2019.

Sludge use and disposal description and location(s): N/A because sludge is hauling by Pecks Septic contractor.

<u>Changes from the previous permit</u>: The E. Coli. monitoring and report requirements will add to the proposed permit. Changed the Total Copper limit to 0.022 mg/L average monthly, & 0.035 mg/L daily maximum, and average monthly mass limit to 0.06 lbs/day.

Based on the review outlined in this fact sheet, it is recommended that the permit be drafted. A public notice of the draft permit will be published in the *Pennsylvania Bulletin* for public comments for 30 days.

Approve	Deny	Signatures	Date
х		<i>Hilaryle</i> Hilary H. Le / Environmental Engineering Specialist	August 18, 2023
x		<i>Maria D. Bebenek for</i> Daniel W. Martin, P.E. / Environmental Engineer Manager	September 19, 2023

Scharge, Receiv	ing water	rs and Water Supply Info	rmation		
	9 59' 46.37" Hampton	Sewage Effluent	Design Flow (MGD) Longitude Quad Code	0.35 -77º 1' 58.08"	
Receiving Waters	s <u>Mud I</u>	Run (WWF)	Stream Code	08622	
NHD Com ID	57468	3725	RMI	3.84 miles	
Drainage Area	<u>10.3 ı</u>	mi. ²	Yield (cfs/mi ²)	See Comments below	
Q ₇₋₁₀ Flow (cfs)	See c	comments below	Q7-10 Basis	See comments below	
Elevation (ft)	453.55		Slope (ft/ft)		
Watershed No.	7-F		Chapter 93 Class.	WWF	
Existing Use			Existing Use Qualifier		
Exceptions to Us	e		Exceptions to Criteria		
Assessment Stat	us	Impaired			
Cause(s) of Impa	airment	Algae, Siltation			
Source(s) of Impa	airment	Agriculture, Urban Runo	ff/Storm Sewers		
TMDL Status		None proposed	Name		
Nearest Downstr PWS Waters		ic Water Supply Intake hanna River	Wrightsville Boro Water Syste Flow at Intake (cfs)	m, York County	
PWS RMI 28.51 miles			Distance from Outfall (mi)	Approximate 50.0 miles	

Changes Since Last Permit Issuance:

Drainage Area

The discharge is to Mud Run at RMI 3.84 miles. A drainage area upstream of the discharge is estimated to be 10.3 mi.², according to USGS PA StreamStats available at <u>https://streamstats.usgs.gov/ss/</u>.

Streamflow

There is a category B-1 High Hazard Dam, 01-081, located approximately 0.9 mile upstream of the discharge point. The minimum release of the Dam will be taken into consideration to calculate the stream flow. There are also some tributaries between the Dam and discharge point. USGS StreamStats, was utilized to calculate the drainage area at both points. The previous protection report calculated the yield of the entire Bermudian Creek and it was 0.08 cfs/mi² (7.74 cfs/93.4 mi.²). The Dam Inspection Report submitted by Lake Meade Property Owner's Association for 2017 indicated an average minimum release rate to be 102,034 GPD or 0.158 cfs. The default (per 391-2000-007) Q₁₋₁₀ : Q₇₋₁₀ and Q₃₀₋₁₀ : Q₇₋₁₀ ratios are 0.64 and 1.36. The effective drainage area at discharge point is calculated as below:

Effective Drainage area at discharge point = Drainage area at discharge point – drainage area at dam = 10.3 mi² – 8.86 mi² = 1.44 mi² Q₇₋₁₀ at discharge point = minimum release from dam + tributary contribution between dam and discharge = 0.158 cfs + (1.44 mi² * 0.08 cfs/mi²) = 0.273 cfs Q₃₀₋₁₀ = 0.158 cfs + (1.36 * 1.44 mi² * 0.08 cfs/mi²) = 0.315 cfs Q₁₋₁₀ = 0.158 cfs + (0.64 * 1.44 mi² * 0.08 cfs/mi²) = 0.273 cfs

The previous fact sheet indicated the minimum discharge from the Dam was 70,000 GPD, and flows were calculated accordingly. During the current renewal, the submitted Dam inspection report was taken into consideration which showed minimum release requirement of 100,000 GPD was met. The updated flow numbers will be used in water quality modeling. The Dam calculation from the previous review dated 6/7/2018 is in this factsheet, pages 19 & 20.

Public Water Supply

The nearest downstream public water supply intake is for Wrightsville Boro Water System in York County on Susquehanna River, approximately 50.0 miles downstream of this discharge. Considering distance and dilution, the discharge is not expected to impact the water supply.

303d Listed Streams

The discharge from this facility is in Mud Run at 3.84 RMI which is impaired for Aquatic Life use due to siltation (agricultural) and excessive algal growth (agricultural and hydromodification). It is also impaired for Recreation use due to pathogens from unknown source. The discharge from this facility is expected not to contribute to the existing impairment.

	Tr	eatment Facility Summar	у	
reatment Facility Na	me: Lake Meade STP			
WQM Permit No.	Issuance Date			
0119401	10/24/2019			
0117402	9/15/2017			
0105402 11-1	8/23/2011			
Waste Type	Degree of Treatment	Process Type	Disinfection	Avg Annual Flow (MGD)
Sewage	Tertiary	Sequencing Batch Reactor W/Sol Removal	Ultraviolet	0.35
Hydraulic Capacity	Organic Capacity			Biosolids
(MGD)	(lbs/day)	Load Status	Biosolids Treatment	Use/Disposa
0.35	847	Not Overloaded	Aerobic Digestion	

Changes Since Last Permit Issuance: none

Other Comments:

Per DEP's recent visit to the WWTP on May 12, 2021, the treatment facility consists of the following units:

- One grit chamber
- One pump station
- One mechanical screen
- Two Sequencing Batch Reactors (SBRs)
- One UV
- One digester

Chemical used:

Aluminium Sulphate is used for phosphorus control at rate of 20 gpd.

Industrial/Commercial Users:

The permit application indicated there are no commercial or industrial contributors to the treatment plant.

Biosolids:

The total sewage sludge/biosolids production within the facility for the previous year was 53.24 dry tons.

Industrial/Commercial Users:

The permit application indicated there is no industrial/commercial contributor to the treatment plant.

Compliance History							
Summary of DMRs:	A summary of past 12-month DMRs is presented on pages 6, 7, & 8.						
Summary of Inspections:	 5/12/2021: Mr. Bettinger, DEP's WQS, conducted a compliance evaluation inspection. Recommendations were investigating and bringing continuous effluent pH and D.O. monitoring probes back into service, increasing the frequency of process control analysis (MLSS and Settleability), and locating effluent composite sampler after UV disinfection. The facility reported Ammonia-Nitrogen exceedances in December 2020 and January 2021. 4/27/2020: Mr. Bettinger, DEP's WQ Environmental Trainee, conducted an administrative inspection. There were no violations identified during inspection. 						
Other Comments:	There were four open violations for Safe Drinking Water - Failure to follow approved methods for sampling and analysis (Violation IDs 983380, 983381, 983382, & 983383) on 1/31/2023						

The table below summarizes the influent/effluent testing results submitted along with the application.

In	fluent Testing Resu	lts	Ef Ef	fluent Testing Resu	lts
Parameter	Min/Max Value	Average Value	Parameter	Min/Max Value	Average Value
BOD₅ (mg/L)	540 mg/L	229 mg/L	pH (minimum)	6.5 S.U.	
BOD₅ (lbs/day)	599 lbs/day	240 lbs/day	pH (maximum)	7.0 S.U.	
TSS (mg/L)	608 mg/L	629 mg/L	D.O (minimum)	6.7 mg/L	mg/L
TSS (lbs/day)	629 lbs/day	170 lbs/day	TRC	mg/L	mg/L
TN (mg/L)	64.01 mg/L	64.01 mg/L	Fecal Coliform	2420	75.9 No./100 mL
TN (lbs/day)	61.9 lbs/day	61.9 lbs/day	CBOD ₅	No./100mL 4.0mg/L	< 2.5 mg/L
TP (mg/L)	6.0 mg/L	6.0 mg/L	TSS	10.0 mg/L	2.2 mg/L
TP (lbs/day)	5.8 lbs/day	5.8 lbs/day	NH3-N	26.0 mg/L	< 0.65 mg/L
NH₃-N (mg/L)	40.0 mg/L	40.0 mg/L	TN	< 23.1 mg/L	< 9.28 mg/L
NH₃-N (lbs/day)	38.7 lbs/day	38.7 lbs/day	ТР	3.3 mg/L	< 1.29 mg/L
TDS (mg/L)	578 mg/L	578 mg/L	Temp	54 F	54 F
TDS (lbs/day)	559.2 lbs/day	559.2 lbs/day	TKN	11 mg/L	< 1.14 mg/L
TKN	60.0 mg/L	60.0 mg/L	NO2-N + NO3-N	< 19.4 mg/L	< 7.68 mg/L
NO ₂ -N + NO ₃ -N	4.01 mg/L	4.01 mg/L	TDS	530 mg/L	530 mg/L
			Chloride	130 mg/L	130 mg/L
			Bromide	0.15 mg/L	0.15 mg/L

Sulfate

Oil and Grease

Total Copper

Total Lead

Total Zinc

120 mg/L

< 5.0 mg/L

0.032 mg/L

< 0.001 mg/L

0.038 mg/L

120 mg/L

< 5.0 mg/L

0.0163 mg/L

< 0.001 mg/L

0.038 mg/L

.

Compliance History

DMR Data for Outfall 001 (from July 1, 2022 to June 30, 2023)

Parameter	JUN-23	MAY-23	APR-23	MAR-23	FEB-23	JAN-23	DEC-22	NOV-22	OCT-22	SEP-22	AUG-22	JUL-22
Flow (MGD)												
Average Monthly	0.121	0.137	0.128	0.134	0.119	0.134	0.151	0.119	0.119	0.118	0.126	0.133
Flow (MGD)												
Daily Maximum	0.148	0.420	0.163	0.333	0.140	0.184	0.395	0.147	0.147	0.158	0.146	0.176
pH (S.U.)												
Daily Minimum	7.0	6.7	6.5	6.7	6.7	6.7	6.6	6.6	6.7	6.5	6.7	6.7
pH (S.U.)												
Daily Maximum	7.2	7.2	7.0	6.9	6.9	6.9	6.8	6.9	6.9	6.9	6.9	6.9
DO (mg/L)												
Daily Minimum	6.7	6.6	7.1	7.3	7.9	7.9	8.1	8.0	7.7	7.1	6.9	6.7
CBOD5 (lbs/day)												
Average Monthly	< 2.3	< 2.5	< 2.5	< 2.4	< 2.4	< 3.5	< 2.4	< 2.4	< 2.4	< 2.4	< 2.4	< 2.5
CBOD5 (lbs/day)												
Weekly Average	< 2.3	< 2.8	< 2.7	< 2.6	3.0	6.1	< 2.6	< 2.9	< 2.9	< 2.7	< 2.7	< 2.6
CBOD5 (mg/L)												
Average Monthly	< 2.4	< 2.4	< 2.4	< 2.4	< 2.6	< 3.5	< 2.5	< 2.4	< 2.4	< 2.4	< 2.4	< 2.4
CBOD5 (mg/L)												
Weekly Average	< 2.4	< 2.4	< 2.4	< 2.4	3.0	6.6	2.6	< 2.4	< 2.4	< 2.4	< 2.4	< 2.4
BOD5 (lbs/day)												
Raw Sewage Influent												
Average Monthly	213	251	286	255	264	287	251	212	212	242	210	289
BOD5 (lbs/day)												
Raw Sewage Influent												
 br/> Daily Maximum	283	329	315	309	326	343	345	266	264	295	243	439
BOD5 (mg/L)												
Raw Sewage Influent												
Average Monthly	223	243	176	256	279	277	254	218	209	245	208	278
TSS (lbs/day)												
Average Monthly	2.0	3.0	2.0	2.0	2.0	1.0	1.0	2.0	2.0	2.0	1.0	2.0
TSS (lbs/day)												
Raw Sewage Influent			001	170	4.07			101			100	A 4 A
Average Monthly	118	181	224	172	167	283	207	124	146	316	128	248
TSS (lbs/day)												
Raw Sewage Influent	400	000	001	001	000	070	005	010	000	400	000	000
 	192	306	301	281	289	373	295	213	269	432	233	386
TSS (lbs/day)	10								1.0	4.0	1.0	
Weekly Average	4.0	6.0	2.0	3.0	3.0	2.0	2.0	3.0	4.0	4.0	1.0	2.0
TSS (mg/L)						4.0	4.0		0.0	0.0	4.0	0.0
Average Monthly	2.0	3.0	2.0	2.0	2.0	1.0	1.0	2.0	2.0	3.0	1.0	2.0

NPDES Permit No. PA0045004

Lake Meaue SIF	-									-	-	
TSS (mg/L)												
Raw Sewage Influent												
Average Monthly	123	177	218	174	174	270	208	129	145	321	129	240
TSS (mg/L)												
Weekly Average	4.0	5.0	2.0	3.0	3.0	2.0	2.0	3.0	3.0	4.0	1.0	2.0
Fecal Coliform												
(No./100 ml)												
Geometric Mean	< 4	< 1	< 80	< 5	35	16	126	8	90	< 47	< 2	11
Fecal Coliform												
(No./100 ml)												
IMAX	173	1	> 2420	61	219	82	1120	204	> 2420	99	49	613
UV Intensity (mW/cm ²)												
Daily Minimum	93.20	87.41	87.43	88.16	88.91	89.58	90.33	91.10	91.81	92.57	93.29	87.48
Nitrate-Nitrite (mg/L)												
Average Monthly	< 7.2	< 5.0	< 2.1	< 11.4	< 7.3	< 12.4	< 14.4	14	< 7.7	< 4.3	2.45	< 2.9
Nitrate-Nitrite (lbs)												
Total Monthly	< 209	< 145	< 62	< 330	< 194	< 353	< 424	392	< 223	< 116	85	< 94
Total Nitrogen (mg/L)												
Average Monthly	< 7.8	< 6.1	< 3.9	< 11.9	< 8.03	< 12.9	< 14.9	< 14.5	< 8.2	< 4.8	3.1	< 3.4
Total Nitrogen (lbs)												
Total Monthly	< 226	< 177	< 115	< 345	< 214	< 367	< 424	< 406	< 237	< 130	107	< 111
Total Nitrogen (lbs)												
Total Annual										< 3786		
Ammonia (lbs/day)												
Average Monthly	< 0.1	< 0.1	< 0.1	< 0.1	< 0.09	< 0.1	< 0.1	< 0.1	< 0.8	< 0.1	< 0.1	< 0.1
Ammonia (mg/L)												
Average Monthly	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.8	< 0.1	< 0.1	< 0.1
Ammonia (lbs)												
Total Monthly	< 2.9	< 3.3	< 3.1	< 3.1	< 2.7	< 3.2	< 3.0	< 2.9	< 23.5	< 3.0	< 3.1	< 3.2
Ammonia (lbs)												
Total Annual										< 37		
TKN (mg/L)			1.0	0.50	0.74	0.5	0.5	0.5	0.5	0.5	0.05	0.5
Average Monthly	0.6	1.1	1.8	< 0.50	0.74	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.65	< 0.5
TKN (lbs)	17.0		50	44.0		44.0	0.5				00	10
Total Monthly	17.0	32	53	< 14.0	20	< 14.0	< 0.5	< 14	< 14	< 14	23	< 16
Total Phosphorus												
(lbs/day)	1.0	4 7	1.0	1.0	4.0	0.5		4 7	0.5		4.0	4.0
Average Monthly	1.2	1.7	1.0	1.2	1.8	2.5	0.9	1.7	0.5	1.4	1.2	1.0
Total Phosphorus												
(mg/L) Average Monthly	1.0	1.7	1.0	1.2	1.9	2.5	0.9	17	0.5	1.4	1.2	1.0
	1.2	1.7	1.0	1.2	1.9	2.5	0.9	1.7	0.5	1.4	1.2	1.0
Total Phosphorus (lbs)	24.0	52.8	31	27.0	40.4	76.7	27.0	40.7	15.0	40.4	26.4	32.1
Total Monthly	34.8	52.8	31	37.6	49.4	76.7	27.8	49.7	15.2	42.4	36.4	32.1
Total Phosphorus (lbs)										500		
Total Annual										502		

NPDES Permit No. PA0045004

Total Copper (lbs/day)												
Average Monthly	0.008	0.01	0.008	0.009	0.01	0.01	0.01	0.02	0.01	0.008	0.009	0.01
Total Copper (mg/L)												
Average Monthly	0.009	0.010	0.008	0.009	0.011	0.012	0.014	0.016	0.010	0.009	0.009	0.013
Total Copper (mg/L)												
Daily Maximum	0.011	0.012	0.009	0.011	0.013	0.015	0.015	0.018	0.024	0.013	0.01	0.016

Development of Effluent Limitations

Outfall No.	001		Design Flow (MGD)	0.35
Latitude	39º 59' 46.37	*11	Longitude	-77º 1' 58.08"
Wastewater De	escription:	Sewage Effluent	-	

Technology-Based Limitations

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Pollutant	Limit (mg/l)	SBC	Federal Regulation	State Regulation
CBOD ₅	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
CBOD5	40	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)
Total Suspended	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
Solids	45	Average Weekly	133.102(b)(2)	92a.47(a)(2)
рН	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform (5/1 – 9/30)	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
Fecal Coliform (5/1 – 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform (10/1 – 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
Fecal Coliform (10/1 – 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)
Total Residual Chlorine	0.5	Average Monthly	-	92a.48(b)(2)

Comments: Total Residual Chlorine is not applied.

Water Quality-Based Limitations

Ammonia (NH₃-N):

NH₃N calculations are based on the Department's Implementation Guidance of Section 93.7 Ammonia Criteria, dated 11/4/97 (ID No. 391-2000-013). The following data is necessary to determine the in-stream NH₃-N criteria used in the attached WQM 7.0 computer model of the stream:

*	Discharge pH	=	7.0	(Default)
*	Discharge Temperature	=	25°C	(Default)
*	Stream pH	=	7.0	(Default)
*	Stream Temperature	=	20°C	(Default)
*	Background NH ₃ -N	=	0 mg/L	(Default)

Regarding NH₃-N limits, the attached computer printout of the WQM 7.0 stream model (version 1.1) indicates that a limit of 2.22 mg/L as a monthly average and 4.44 mg/L instantaneous maximum (IMAX) are necessary to protect the aquatic life from toxicity effects at the point of discharge. However, the existing limits of 1.5 mg/L monthly average & 3.0 mg/L IMAX are more stringent and will remain in the proposed permit. Per anti-backsliding policy, the existing winter average monthly limit of 4.5 mg/L & IMAX limit of 9.0 mg/L will remain in place. Recent DMRs and inspection reports show that the facility has been consistently achieving these limits. Mass limits are calculated as follows:

Summer average monthly mass limit: $1.5 \text{ mg/L} \times 0.35 \text{ MGD} \times 8.34 = 4.38 (4.3) \text{ lbs/day}$ Winter average monthly mass limit: $4.5 \text{ mg/L} \times 0.35 \text{ MGD} \times 8.34 = 13.14 (13.0) \text{ lbs/day}$

Dissolved Oxygen (D.O.):

A minimum of 5.0 mg/L for D.O. is an existing effluent limit and will remain unchanged in the draft permit as recommended by DEP's SOP. 5.0 mg/L is taken directly from 25 Pa. Code § 93.7(a) (i.e., water quality criteria for WWF waters) and it is also determined to be appropriate per water quality modeling.

pH:

The effluent discharge pH should remain above 6.0 and below 9.0 standard units according to 25 Pa. Code § 95.2(1).

Carbonaceous Biochemical Oxygen Demand (CBOD₅):

The attached computer printout of the WQM 7.0 stream model (ver. 1.1) indicates that a monthly average limit of 25.0 mg/L, or secondary treatment, is adequate to protect the water quality of the stream. However, the existing permit 10.0 mg/L as AML, 15.0 mg/L as weekly average limit (AWL), & 20.0 mg/L as IMAX are more stringent and will remain in the proposed permit. Recent DMRs and inspection reports show that the facility has typically been achieving concentrations below this limit. Mass limits are calculated as follows:

Summer Average monthly mass limit: 10.0 mg/L x 0.35 MGD x 8.34 = 29.19 (29.0) lbs/daySummer Average weekly mass limit: 15.0 mg/L x 0.35 MGD x 8.34 = 43.79 (43.0) lbs/day

These values are rounded down to 29.0 lbs/day and 43.0 lbs/day, respectively. The minimum monitoring frequency will remain the same as 1/week.

Total Suspended Solids (TSS):

The existing technology-based limits of 10.0 mg/L average monthly, 15.0 mg/L weekly average, and 20.0 mg/L IMAX will remain in the proposed permit based on the minimum level of effluent quality attainable by secondary treatment based on 25 Pa. Code § 92a.47. Recent DMRs and inspection reports show that the facility has been consistently achieving these limits. Mass limits are calculated as follows:

Average monthly mass limit: 10.0 mg/L x 0.35 MGD x 8.34 = 29.19 (29.0) lbs/dayAverage weekly mass limit: 15.0 mg/L x 0.35 MGD x 8.34 = 43.79 (43.0) lbs/day

The average monthly and weekly average mass loadings will be rounded down to 29 lbs/day and 43 lbs/day, respectively.

Fecal Coliform:

The recent coliform guidance in 25 Pa. Code § 92a.47.(a)(4) requires a summer technology limit of 200/100 ml as a geometric mean and an instantaneous maximum not greater than 1,000/100ml and § 92a.47.(a)(5) requires a winter limit of 2,000/100ml as a geometric mean and an instantaneous maximum not greater than 10,000/100ml.

E. Coli:

As recommended by DEP's SOP No. BCW-PMT-033, version 1.9 revised March 22, 2021, a routine monitoring for E. Coli will be included in the proposed permit under 25 Pa. Code § 92a.61. This requirement applies to all sewage dischargers greater than 0.002 MGD in their new and reissued permits. A monitoring frequency of 1/quarter will be included in the permit to be consistent with the recommendation from this SOP.

UV:

The UV system daily monitor and report the UV light intensity (mW/cm²) will remain in the proposed permit.

Raw Sewage Influent Monitoring:

As a result of negotiation with EPA, influent monitoring of TSS and BOD₅ are required for any POTWs; therefore, influent sampling of BOD₅ and TSS will remain in the proposed permit. A 24-hr composite sample type will be required to be consistent with the proposed sampling frequency for TSS and BOD₅ in the effluent.

Total Phosphorus:

The existing permit average monthly TP concentration of 2.0 mg/L, and 4.0 mg/L IMAX will remain in the proposed permit. Mass average monthly of 5.8 lbs/day is also in the proposed permit.

Chesapeake Bay Strategy:

Phase 2 WIP identifies Cassville WWTP as a non-significant Phase 4 facility. DEP's SOP mentioned that for facilities with design flows ≥0.2 MGD and <0.4 MGD will include monitoring, at a minimum, for Total Nitrogen and Total Phosphorus, with a monitoring frequency specified in DEP's technical guidance. Therefore, 1/month TN species (such as Ammonia-Nitrogen, Nitrate-Nitrite as N, Total Kjeldahl Nitrogen, and Total Nitrogen) and TP monitoring requirements will remain in the proposed permit. The yearly calculation "report" for TP & TN will remain in the proposed permit.

Stormwater:

There is no known stormwater outfall associated with this facility.

Toxics:

The data was analyzed based on the guidelines found in DEP's Water Quality Toxics Management Strategy (Document No. 361-0100-003, version 1.4, revised 5/2023) and DEP's SOP No. BPNPSM-PMT-033. Spreadsheet results are attached to this fact sheet. The Toxics Management Spreadsheet uses the following logic:

NPDES Permit Fact Sheet

Lake Meade STP

- a. Establish average monthly and IMAX limits in the draft permit where the maximum reported concentration exceeds 50% of the WQBEL.
- b. For non-conservative pollutants, establish monitoring requirements where the maximum reported concentration is between 25% 50% of the WQBEL.
- c. For conservative pollutants, establish monitoring requirements where the maximum reported concentration is between 10%-50% of the WQBEL.

Therefore, the results are as follows.

- The TMS analysis results indicated Total Copper limit of 0.022 mg/L average monthly, & 0.035 mg/L daily maximum which are slightly more stringent and will replace in the proposed permit. Recent DMRs and inspection reports show that the facility has typically been achieving concentrations below this limit. Mass limits are calculated as follows:

Average monthly mass limit: 0.022 mg/L x 0.35 MGD x 8.34 = 0.064 (0.06) lbs/day

- Total Zinc pollutant has no reasonable potential (no-RP) discharge concentration greater than 10% WQBEL, per DEP's SOP No. BPNPSM-PMT-033, therefore, the monitoring and reporting requirements of this pollutant is not necessary to add to the proposed permit.

WETT:

Minor facilities and facilities without a formal EPA approved pretreatment program are exempted from WETT.

Anti-Backsliding:

The proposed limits are at least as stringent as are in existing permit; therefore, anti-backsliding is not applicable

Antidegradation (93.4):

The effluent limits for this discharge have been developed to ensure that existing in-stream water uses and the level of water quality necessary to protect the existing uses are maintained and protected. No High-Quality Waters are impacted by this discharge. No Exceptional Value Waters are impacted by this discharge.

Class A Wild Trout Fisheries:

No Class A Wild Trout Fisheries are impacted by this discharge.

WQM 7.0:

The following data were used in the attached computer model (WQM 7.0) of the stream:

*	Discharge pH	7.0	(Default)
*	Discharge Temperature	25°C	(Default per 391-2000-013)
*	Stream pH	7.0	(Default per 391-2000-013)
	· · · · · · · · · · · · · · · · · · ·		

* Stream Temperature 20°C (Default per 391-2000-013)

The following two nodes were used in modeling:

Node 1:	Outfall 001 at Mud Run	(08622)
	Elevation:	453.65 ft (USGS National Map)
	Drainage Area:	10.3 mi ² (USGS StreamStats)
	River Mile Index:	3.84 (PA DEP eMapPA)
	Low Flow Yield:	0.018 cfs/mi ² (calculated, see below)
	Discharge Flow:	0.35 MGD
Node 2:	At the confluence UNT	to 08626
	Elevation:	440.23 ft (USGS National Map)
	Drainage Area:	10.8 mi ² (USGS StreamStats)
	River Mile Index:	3.47 (PA DEP eMapPA)
	Low Flow Yield:	0.029 cfs/mi ² (calculated, see below)
	Discharge Flow:	0.00 MGD

LFY at discharge point: 0.189 cfs/10.3 mi² = 0.018 cfs/mi² Q₇₋₁₀ at node 2 = 0.158 cfs + 0.075*(10.8 - 8.86) = 0.31 cfs LFY at node 2 = 0.31 cfs/10.8 mi² = 0.029 cfs/mi²

NPDES Permit No. PA0045004

Basin Characterist	ics				Leafle Collaps
	iics				Collap:
	tics				
Parameter Code	Parameter Description			Value	Unit
BSLOPD	Mean basin slope measured i	n degrees		1.7175	degrees
DRNAREA	Area that drains to a point on	a stream		10.3	square miles
ROCKDEP	Depth to rock			4.6	feet
URBAN	Percentage of basin with urba	an developm	ent	7.059	percent
> Low-Flow Statistic	2S				
Low-Flow Statistic	s Parameters [Low Flow Region	on 1]			
Parameter Code	Parameter Name	Value	Units	Min Limi	it Max Limit
DRNAREA	Drainage Area	10.3	square miles	4.78	1150
BSLOPD	Mean Basin Slope degrees	1.7175	degrees	1.7	6.4
ROCKDEP	Depth to Rock	4.6	feet	4.13	5.21
URBAN	Percent Urban	7.059	percent	0	89
Low-Flow Statistic	s Flow Report [Low Flow Region	on 1]			
		I-Upper, ASE	p: Average Star	ndard Error (of Prediction, S
Statistic		Value	Unit	SE	ASEp
7 Day 2 Year Low F	low	0.579	ft^3/s	46	46
30 Day 2 Year Low	Flow	0.952	ft^3/s	38	38
7 Day 10 Year Low	Flow	0.189	ft^3/s	51	51
30 Day 10 Year Low	v Flow	0.324	ft^3/s	46	46
90 Day 10 Year Low	v Flow	0.827	ft^3/s	41	41
	ROCKDEP URBAN Low-Flow Statistic Parameter Code DRNAREA BSLOPD ROCKDEP URBAN Low-Flow Statistic PII: Prediction Inter Standard Error (othe Statistic 7 Day 2 Year Low F 30 Day 2 Year Low 7 Day 10 Year Low 30 Day 10 Year Low	ROCKDEP Depth to rock URBAN Percentage of basin with urba > Low-Flow Statistics Low-Flow Statistics Parameters [Low-Flow Statistics Parameters Parameter Code Parameter Name DRNAREA Drainage Area BSLOPD Mean Basin Slope degrees ROCKDEP Depth to Rock URBAN Percent Urban Low-Flow Statistics Flow Report [Low Flow Regic PII: Prediction Interval-Lower, PIu: Prediction Intervas Standard Error (other see report)	ROCKDEP Depth to rock URBAN Percentage of basin with urban developm Low-Flow Statistics Low-Flow Statistics Parameters [Low Flow Region 1] Parameter Code Parameter Name Value DRNAREA Drainage Area 10.3 BSLOPD Mean Basin Slope degrees 1.7175 ROCKDEP Depth to Rock 4.6 URBAN Percent Urban 7.059 Low-Flow Statistics Flow Report [Low Flow Region 1] PII: Prediction Interval-Lower, PIU: Prediction Interval-Upper, ASE Standard Error (other see report) 9.579 Statistic Value 0.579 30 Day 2 Year Low Flow 0.324 30 Day 10 Year Low Flow 0.324	ROCKDEP Depth to rock URBAN Percentage of basin with urban development Low-Flow Statistics Parameter of basin with urban development Low-Flow Statistics Parameters [Low Flow Region 1] Parameter Code Parameter Name Value Units DRNAREA Drainage Area 10.3 square miles BSLOPD Mean Basin Slope degrees 1.7175 degrees ROCKDEP Depth to Rock 4.6 feet URBAN Percent Urban 7.059 percent Low-Flow Statistics Flow Regort [Low Flow Regort 1] Phi: Prediction Interval-Lower, Plu: Prediction Interval-Upper, ASEp: Average Statistica Statistic Value Unit 7 Day 2 Year Low Flow 0.579 ft*3/s 30 Day 2 Year Low Flow 0.952 ft*3/s 30 Day 10 Year Low Flow 0.324 ft*3/s	ROCKDEP Depth to rock 4.6 URBAN Percentage of basin with urban development 7.059 Low-Flow Statistics Parameter of basin with urban development 7.059 Low-Flow Statistics Parameters [Low Flow Region 1] Min Limit Parameter Code Parameter Name Value Units Min Limit DRNAREA Drainage Area 10.3 square miles 4.78 BSLOPD Mean Basin Slope degrees 1.7175 degrees 1.7 ROCKDEP Depth to Rock 4.6 feet 4.13 URBAN Percent Urban 7.059 percent or the statistics Low-Flow Statistics Flow Report [Low Flow Region 1] Pli: Prediction Interval-Lower, Plu: Prediction Interval-Upper, ASEp: Average Standard Error or standard Error (other see report) statistic Value Unit SE 7 Day 2 Year Low Flow 0.579 ft^3/s 46 30 Day 2 Year Low Flow 0.324 ft^3/s 51 30 Day 10 Year Low Flow 0.324 ft^3/s 51

SELECT A STATE / REGION Pennsylvania 🇿 🗸	
IDENTIFY A STUDY AREA Basin Delineated 🗸	
SELECT SCENARIOS 🐱	
BUILD A REPORT Report Built >	
Step 1: You can modify computed basin characteristics here, then select the types of reports you wish to generate. Then click the 'Build Report' button	the second
Select available reports to display:	
✓ Basin Characteristics Report	
 Scenario Flow Reports 	
Open Report	- Bar
POWERED BY WIM	1
USGS Home Contact USGS Search USGS Accessibility FOIA Privacy Policy & Notices	-

\sim		1. 199	10 million	A-	~
• Desile Obs					
> Basin Cha	racteristics				-

Parameter Code	Parameter Description	Value	Unit
BSLOPD	Mean basin slope measured in degrees	1.7789	degrees
DRNAREA	Area that drains to a point on a stream	10.8	square miles
ROCKDEP	Depth to rock	4.6	feet
URBAN	Percentage of basin with urban development	6.7497	percent

> Low-Flow Statistics

Low-Flow Statistics Parameters [Low Flow Region 1]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	10.8	square miles	4.78	1150
BSLOPD	Mean Basin Slope degrees	1.7789	degrees	1.7	6.4
ROCKDEP	Depth to Rock	4.6	feet	4.13	5.21
URBAN	Percent Urban	6.7497	percent	0	89

Low-Flow Statistics Flow Report [Low Flow Region 1]

PII: Prediction Interval-Lower, PIu: Prediction Interval-Upper, ASEp: Average Standard Error of Prediction, SE: Standard Error (other -- see report)

Statistic	Value	Unit	SE	ASEp
7 Day 2 Year Low Flow	0.631	ft^3/s	46	46
30 Day 2 Year Low Flow	1.03	ft^3/s	38	38
7 Day 10 Year Low Flow	0.209	ft^3/s	51	51
30 Day 10 Year Low Flow	0.355	ft^3/s	46	46
90 Day 10 Year Low Flow	0.89	ft^3/s	41	41

NPDES Permit No. PA0045004

StreamStats SELECT A STATE / REGION Pennsylvania 🗿 🗸	Bigle	percentaria Rd	94		East Berlin	E Borin Ra Leaflet Esri	Report	About ? He ers Base Maps
IDENTIFY A STUDY AREA Basin Delineated 🗸						Collapse All	Ар	plication Layers
SELECT SCENARIOS 🗸	> Basin Characteris	tics					Old York Bo	National Layers
BUILD A REPORT Report Built 🗲	Parameter Code	Parameter Description			Value L	Init	F	A Map Layers
UILD A REPORT Report Built >	BSLOPD	Mean basin slope measured	in degrees		4.098 d	legrees		Ra
	DRNAREA	Area that drains to a point or	n a stream		93.4 s	quare miles		
Step 1: You can modify computed basin characteristics here, then select the types of	ROCKDEP	Depth to rock			4.7 f	eet		
reports you wish to generate. Then click the "Build Report" button	URBAN	Percentage of basin with urb	an developn	nent	1.6396 p	ercent		
✓ Show Basin Characteristics	N Laur Elaur Otatiati							Wellsville
	Low-Flow Statistic		(02.2 aguar	n mileo) Louy El	Degion 1		5 6	
elect available reports to display:		s Parameters [100.0 Percent			-		m 2	
Basin Characteristics Report	Parameter Code	Parameter Name	Value	Units	Min Limit		~2100	
Scenario Flow Reports	DRNAREA	Drainage Area	93.4	square miles	4.78	1150	× 5-9-1	
	BSLOPD	Mean Basin Slope degrees	4.098	degrees	1.7	6.4		
Open Report	ROCKDEP	Depth to Rock	4.7	feet	4.13	5.21	1	
	URBAN	Percent Urban	1.6396	percent	0	89		
POWERED BY WIM	Low-Flow Statistic	s Flow Report [100.0 Percent	(93.3 squar	e miles) Low Fl	ow Region 1]		
		val-Lower, Plu: Prediction Interv	al-Upper, AS	Ep: Average Star	ndard Error of	Prediction, SE:		
USGS Home Contact USGS Search USGS ccessibility FOIA Privacy Policy & Notices	Standard Error (othe Statistic	er see report)	Value	Unit	SE	ASEp	WKIR-	
ccessibility FOIA Filvacy Folicy & Notices	7 Day 2 Year Low F	low	15.8	ft^3/s	46	46	East Berlin	
8	30 Day 2 Year Low		20.8	ft^3/s	38	38	The	
	7 Day 10 Year Low		7.74	ft^3/s	51	51		
	30 Day 10 Year Low		10.3	ft^3/s	46	46	∧ Displaying sim	nlified Basin
	90 Day 10 Year Lov		16.4	ft^3/s	40	41	See FAQ for mo	pre information.
SELECT A STATE / REGION Pennsylvania C 🗸	B PRIME			- Autor	1600 R.	Leaflet Ear	ting Lay	rers
IDENTIFY A STUDY AREA Basin Delineated 🐱	> Basin Characteris	tics					alle Rd R	Base Maps
basin Deimeateu 🗸	Parameter Code	Parameter Description			Value	Unit	A	pplication Layers
	BSLOPD	Mean basin slope measured	in degrees		1.5936	degrees	Ref. No.	National Layers
CTTTTT SUCHARDS	DRNAREA	Area that drains to a point o	n a stream		8.86	square miles	OF	
	ROCKDEP	Depth to rock			4.6	feet	priming of Lake	PA Map Layers
	URBAN	Percentage of basin with urb	an developr	nent	8.1281	percent	12/12 Mesan	
Step 1: You can modify computed basin characteristics here, then select the types of reports you wish to generate. Then click the "Build Report" button	> Low-Flow Statistic						East	
✓ Show Basin Characteristics		s Parameters [Low Flow Regi					E astron	
	Parameter Code	Parameter Name	Value	Units		Max Limit	Teel Dr	
lect available reports to display:	DRNAREA	Drainage Area	8.86	square miles	4.78	1150		
	BSLOPD	Mean Basin Slope degrees	1.5936	degrees	1.7	6.4	WA CO	
Basin Characteristics Report	ROCKDEP	Depth to Rock	4.6	feet	4.13	5.21		
Scenario Flow Reports	URBAN	Percent Urban	8.1281	percent	0	89		

- Basin Characteristics Report
- ✓ Scenario Flow Reports

13

Value

0.461

0.772

0.146

0.256

0.679

Low-Flow Statistics Disclaimers [Low Flow Region 1]

Low-Flow Statistics Flow Report [Low Flow Region 1]

Statistic

7 Day 2 Year Low Flow

30 Day 2 Year Low Flow

7 Day 10 Year Low Flow

30 Day 10 Year Low Flow

90 Day 10 Year Low Flow

Unit

ft^3/s

ft^3/s

ft^3/s

ft^3/s

ft^3/s

Analysis Results V	NQM 7.0				_	
Hydrodynamics	NH3-N Allocations	D.O. Allocations	D.O. Simulation	Effluent l	imitations	
Γ	RMI Discharge		lumberDisc Flow (mgd)		_	
	3.84 Lake Meade MA	V PA004	5004 0.3500		_	
	Parameter	Effluent Limit 30 Day Averag (mg/L)		nt Limit imum g/L)		
	CBOD5 NH3-N	25 2.22	4.44			
	Dissolved Oxygen	2.22	4.44	6		
ļ	Record: I4	▶ ▶ ▶	Search			
Print	< <u>B</u> ack	<u>N</u> ext >	Archive		Cancel	
rptEffLimits		- 🗆 🗙 🛽	rpt WLA			- 0
rptEffLimits		×	rpt_WLA			- 🗆
rptEffLimits				WQM 7.0 Wasteloar	d Allocations Etnem Nerre MUD FRM	- 0

	<u>SWP Saain</u> 07+ 35	Code	Effluent Limits Stream Name MUDRUN			SWP Easer Stream Code Stream Ners 07* 9522 MUD RUN
FM	Name	Dia Permit Flo Number (mg	w Parameter		Eff. Limit Eff. Lim Medmum Minimus (mg/L) (mgL)	NH3-N Aoute Allocation s General Bandrae Martipe Multiple Autopation Percent FM Distingue Nerw Ontextus WAA Celution WIA Paulut Reduction
3.840	Lake Meade MA	FR0045004 0	250 CBOD5	25 222	4.44	(mpL) (mpL) (mpL) (mpL) 3.840Leke/Meade/MA 11.93 14.54 11.93 14.54 0 0
			Discived Organ	222		NH3-N Chronic Allocations
						Resetine Basetine Multiple Multiple Orlical Percent Rot DischargeName Orlintan WLA Orlintan WLA Reach Reduction (mgL) (mgL) (mgL)
						3.840 Lake Meede MA 1.51 2.22 1.51 2.22 0 0
						Dissolved Oxygen Allocations <u>CRODS</u> <u>18154</u> <u>Devices Crops</u> Fox Discharge Name Multiple Disease Multiple Disease Multiple Disease Multiple (mg4) (mg4) (
						3.84LakeMeeteMA 25 25 222 2.22 6 6 0 0
Transfer	. August 17, 2023	v	Version 1.1		Page1	Thursday, August 17, 2023 Vandan 1.1 Page 1 of 1
s i∢ ∢ 1		* 🔨 No				H 🔺 📔 🕨 🕨 🎉 No Filter

NPDES Permit No. PA0045004

F	rptDOSim —	\times	🔚 rptModelSpecs — 🗆	\times
	WQM 7.0 D.O. Simulation 507 Stars Mark Stars Mark 677 952 Stars Mark 1980 1045 Charty Chart (100 Rel) Andrea (110 Rel) 1980 1045 Charty Chart (100 Rel) Andrea (110 Rel) 1980 1045 Charty Chart (100 Rel) Andrea (110 Rel) 1980 1045 Charty Chart (100 Rel) Bart (100 Rel) 1980 1045 Charty Chart (110 Rel) Bart (100 Rel) 1980 1045 Charty Chart (110 Rel) Bart (100 Rel) 1980 1045 Charty (100 Rel) 1046 Rel 1980 1045 Charty (100 Rel) 1046 Rel 1980 1045 Charty (100 Rel) 1046 Rel 1980 1046 Rel 1046 Rel 1980 1046 Rel 1046 Rel 1980 1048 Rel 1048 Rel 0.209 Test (100 Rel) 1046 Rel 1980 1048 Rel 1048 Rel 0.209 Test (100 Rel) 1049 Rel 1980 1048 Rel 104 Rel 0.209 Test (104 Rel) 1048 Rel		WQM 7.0 Modeling Specifications Perensiers Bah Line Equilation (0-10 end (20-10 From)) WLA Mahad EMTR Line Equilation (WD) Res 1 Q-1-1020-10 Res 0.84 Line Equilation (Resch) 1 Q-30-1020-10 Res 0.84 Line Equilation (Resch) 1 Q-30-1020-10 Res 0.84 Line Equilation (Resch) 1 Q-30-1020-10 Res 0.95% Line Enterpretarion (Resch) 1 Q-30-2020-10 Res 0.07% Line Enterpretarion (Resch) 1 Q-30-2020-10 Res 0.07% Line Enterpretarion (Resch) 1 Q-30-2020-10 Res 8 1 1 1	
Pag	Iterativy August 17, 2023 Ventors 1.3 Page 1 of 1 I: I I I I I I I I I I I I I I I I I I	×	Truester, August 17, 2023 Version 1.3 Pages 10f 1 Pages: I4 < 1 >>> >>> >> >>>> Image: I4 < 1 >>>>>>>>> >>>>>>>>	×
	<section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header>		<section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header>	

F	rptGenera	al						—		\times
		SWP Beetn	Stream Code	Sream Name	ut Data WQN	Elevation D	naimaga Stop Ansa	e Pvé Wilher	S Apply avail FC	
		075	8622 MUD R		3.47		(sqmi) (tri 10.80 0.00) (ma		
					ream Data					
	Design Cond. (cfm	F	fnb Sineann Now Plow (cfs)	Rich Rich Teav Velocity Time (days) (fps)	VID Reh Ratio Vitelh (1.)	Rich <u>Tr</u> Depth Temp (1) (*C)	<u>tadary</u> pH	Ethern Temp (°C)	рН	
	Q7-10 0 Q1-10 Q30-10	1.029	0.00 0.00 0.00 0.00	0.000 0.000 0.000 0.000	0.00	0.00 20.0	00.5 00	00.0	0.00	
				D	scharge Data Existing Parmila	d Distan	Dec	Dec		
			Name	Permi Number	Flow Flow (mgd) (mgd)	Flow Facto		pH		
			Lake Meade MA	PA0045-004	0.0000 0.000 rameter Data	0.0000 0.0	00 25.00	200		
			P	arameter Name	Cone C	ane Cane	Falle Coef			
		-	C8005		(mg/L) (m 2500	2.00 0.00	1/days) 1.50	-		
			Disactived 0 NHG-N	Dayspin	5.00	8.24 0.00	0.00			
			THE CHAN		2500	4.00 4.00	0.10			-
	Thursday, Augus	al 17, 20	23		Version 1.1				Page 2 of 2	
-	14 4 5									
ige:	I4 4 2		▶ ▶1	•* T	NO Filter					

Toxics Data:

The following input data were used for Toxic Management Spreadsheet (TMS) Analysis:

* * *	Discharge pH Stream pH Discharge Hardness Stream Hardness	= 7.0 (Application) = 7.0 (Default) = 232.0 mg/L (media 4/11 & 4/18/2018) = 100 mg/L (Default)
Node 1:	Outfall 001 at Mud Run	i (08622)
	Elevation:	453.65 ft (USGS National Map)
	Drainage Area:	10.3 mi ² (USGS StreamStats)
	River Mile Index:	3.84 (PA DEP eMapPA)
	Low Flow Yield:	0.018 cfs/mi ² (calculated, see below)
	Discharge Flow:	0.35 MGD
Node 2:	At the confluence UNT	to 08626
	Elevation:	440.23 ft (USGS National Map)
	Drainage Area:	10.8 mi ² (USGS StreamStats)
	River Mile Index:	3.47 (PA DEP eMapPA)
	Low Flow Yield:	0.029 cfs/mi ² (calculated, see below)
	Discharge Flow:	0.00 MGD

LFY at discharge point: 0.189 cfs/10.3 mi² = 0.018 cfs/mi² Q_{7-10} at node 2 = 0.158 cfs + 0.075*(10.8 - 8.86) = 0.31 cfs LFY at node 2 = 0.31 cfs/10.8 mi² = 0.029 cfs/mi²

Note: Based on the previous factsheet dated 6/7/2018, DEP indicated the stream hardness, pH, and discharge hardness as the Table below.

Date	Total Lead, µg/l	Stream Hardness, (mg/l)	Stream pH	Discharge Hardness (mg/l)
4/11/18	<5	88	8.7	227
4/18/18	<5	78		237
4/25/18	<5	77	8.7	

NPDES Permit No. PA0045004

 Elevation (ft)*
 DA (ml²)*

 453.65
 10.3

 440.23
 10.8
 LEY Flo W/D Ratio Location RMI (11) (cts/mi²)* 0.018 0.029 (11) Stream Tributary Point of Discharge 3.84 3.47 End of Reach 1

RMI*

3.84 3.47

Q,															
Location	RMI	LFY	Flow	(cfs)	W/D	Width	Depth	Velocit	Time	Tributa	ny	Strea	m	Analys	ds -
Location	POVI	(cfs/m ²)	Stream	Tributary	Ratio	(11)	(11)	y (fps)	(dave)	Hardness	pH	Hardness	pH	Hardness	pH
Point of Discharge	3.84														
End of Reach 1	3.47														

Slope (ft/ft)

Stream / Surface Water Information

Discharg	e Informati	on											
Instructions [_											
Instructions 1	ischarge Stream												
	ke Meade Municipal		y						5004		Outfall	No.: 001	1
Evaluation Type	Custom / Addit	lvec			-	stewater		tion: <u>Mu</u>	d Run				
Design Flow					_	racteric al Mix Fi		PMF6)		Com	plete Mi	x Times	(min)
(MGD)*	Hardness (mg/l)*	pH (AF		CFC	THE		CRL		7-10		a,
0.35	232		7										
		Units	Ma	x Discharge	0 Field	Stream	0.5 Pk	Hourty		Fate	FOS		Chem
Total Copper	harge Pollutant			Conc 0.032	Conc	Cone	cv	cv	m CV	Coeff	FOS	a Mod	Trans
Total Lead Total Zinc		mgL mgL	<	0.001									
Total Zinc		mgL		0.038									
												-	

ons Discharge Stream

Stream Code*

008622

Receiving Surface Water Name: Mud Run

Location

Q7-10

Point of Discharge End of Reach 1

Stream / Surface Water Information

NPDES Permit Fact Sheet

Lake Meade STP

Lake Meade Municipal Authority, NPDES Permit No. PA0045004, Outfall 001

Toxics Management Spreadsheet Version 1.4, May 2023

pН

pH Hardness' pH Hardness 100 7

Hardness

Time

y (fps)

NPDES Permit No. PA0045004

pennsylvania

DEPARTMENT OF ENVIRONMENTAL PROTECTION

Toxics Management Spreadcheet Version 1.4, May 2028

Model Results

Lake Meade Municipal Authority, NPDES Permit No. PA0045004, Outfall 001

Instructions Results	RETURN	TO INPUT	s) [:	SAVE AS	PDF	PRINT		VI O Inputs	O Results) Limits
Hydrodynamics										
Westeload Allocations										
AFC	CCT (min): 0.	585	PMF:	1	Ana	lysis Hardnes	ss (mg/l):	198.33	Analysis pH:	7.00
Pollutants	Conc	Stream CV	Trib Conc (µg/L)	Fate Coef	(ugL)	WQ Obj (µg/L)	WLA (µg/L)		Con	nments
Total Copper	0	0		0	25.620	26.7	35.8		Chem Translat	or of 0.96 applied
Total Lead	0	0		0	134.935	195	262		Chem Translate	or of 0.691 applied
Total Zinc	0			0	209.331	214	287			or of 0.978 applied

CFC	CCT (min): 0.9	585	PMF:	1	Ana	iysis Hardne	ss (mgil):	198.33 Analysis pH: 7.00
Pollutants	Conc (up1)	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µgL)	WQ Obj (µg/L)	WLA (µg/L)) Comments
Total Copper	0	0		0	16.078	16.7	22.5	Chem Translator of 0.96 applied
Total Lead	0	0		0	5.258	7.61	10.2	Chem Translator of 0.691 applied
Total Zinc	0	0		0	211.043	214	287	Chem Translator of 0.986 applied
I THH	CCT (min): 0.9	85	PMF:	1	[Ana	lysis Hardne	ss (mgil):	N/A Analysis pH: N/A
Pollutants		Stream CV	PMF: Trib Conc (µg/L)	1 Fate Coef	WQC (ugL)	WQ Obj (µg/L)	ss (mgil): WLA (µgiL)	
	Conc	Stream	Trib Conc		WQC	WQ Obj		
Pollutants	Conc (up1)	Stream CV	Trib Conc	Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	
Pollutants Total Copper	Conc (upl)	Stream CV 0	Trib Conc	Coef	WQC (µgL) N/A	WQ Obj (µg/L) N/A	WLA (µgL) N(A	

CRL CCT (min): 2.458 PMF: 1 Analysis Hardness (mg/l): N/A Analysis pH: N/A Stream CV Trib Conc (µg/L) Fate Coef WQC (µgL) WQ Obj (µg/L) WLA (upL) Pollutants Conc Comments Total Copper n 0 0 NIA N/A NA Model Results 8/15/2023

Total Lead 0 0 0 NIA NA N/A Total Zinc 0 N/A N/A NA

Recommended WQBELs & Monitoring Requirements

No. Samples/Month: 4

		Limits		Concentra	tion Limits]		
Pollutants	AML (Ibs/day)	MDL (Ibs/day)	AML	MDL	IMAX	Units	Governing WQBEL	WQBEL Basis	Comments
Total Copper	0.066	0.1	0.022	0.035	0.056	mg/L	0.022	CFC	Discharge Conc ≥ 50% WQBEL (RP)
Total Zinc	Report	Report	Report	Report	Report	mg/L	0.21	AFC	Discharge Conc > 10% WQBEL (no RP)

Other Pollutants without Limits or Monitoring

The following pollutants do not require effluent limits or monitoring based on water quality because reasonable potential to exceed water quality criteria was not determined and the discharge concentration was less than thresholds for monitoring, or the pollutant was not detected and a sufficiently sensitive analytical method was used (e.g., <= Target QL).

Pollutants	Governing WQBEL	Units	Comments
Total Lead	NA	N/A	Discharge Conc < TQL

Page 3

Dam calculation from the previous review factsheet dated 6/7/2018 is as screen prints below.

1 cfs = 646190.44 gpd; 102034 gpd x 1 cfs / 646190.44 gpd = 0.1579 cfs

Measurement Taken By:	Terry Leiby	
Meaurements Taken On:	1/17/2017	
Data Input		
Diameter of pipe =	23.00	inches, or 1.9167 feet
Slope of pipe =	0.0174	feet / foot
Manning's "n" value =	0.012	
Depth of flow = (maximum value = 1/2 of pipe of	1.2830 liameter, if grea	inches, or 0.1069 feet (input variable ater than 1/2 pipe diameter contact Engineer)
Calculation Results		
		square feet
Cross Sectional Area of Flow =	0.0634	square leve
Cross Sectional Area of Flow = Central Angle =	0.0634 54.65	degrees, or 0.9537 radians
-	54,65	degrees, or 0.9537 radians

Common Fraction - Decimal Conversions

1/8	=	0.125
1/4	SE	0.250
3/8	=	0.375
1/2	-	0.500
5/8	=	0.625
3/4	=	0.750
7/8	-	0.875

Example: 1 - 5/8 inches is the same as 1.625 inches

Measurement Taken By: Meaurements Taken On:	Terry Leiby 4/3/2017				
Data Input					
Diameter of pipe =	23.00	inches, or	1.9167	feet	
Slope of pipe =	0.0174	feet / foot			
Manning's "n" value =	0.012				
Depth of flow = (maximum value = 1/2 of pipe di	1.2830 ameter, if grea	inches, or iter than 1/2 p	0.1069 ipe diame		(input variable Engineer)
Calculation Results					
Cross Sectional Area of Flow =	0.0634	square feet			
Central Angle ≖	54.65	degrees, or	0.9537	radians	
Wetted Perimeter =	1.0713	feet			
Hydraulic Radius =	0.0592	feet			
a rysanadano i kolonia o					
Flowrate = OR	0.1579	cubic feet p gallons per			-

Common Fraction - Decimal Conversions

1/8	-	0.125	
1/4		0.250	
3/8	-	0.375	
1/2	=	0.500	
5/8	=	0.625	
3/4		0.750	
7/8		0.875	

Example: 1 - 5/8 inches is the same as 1.625 inches

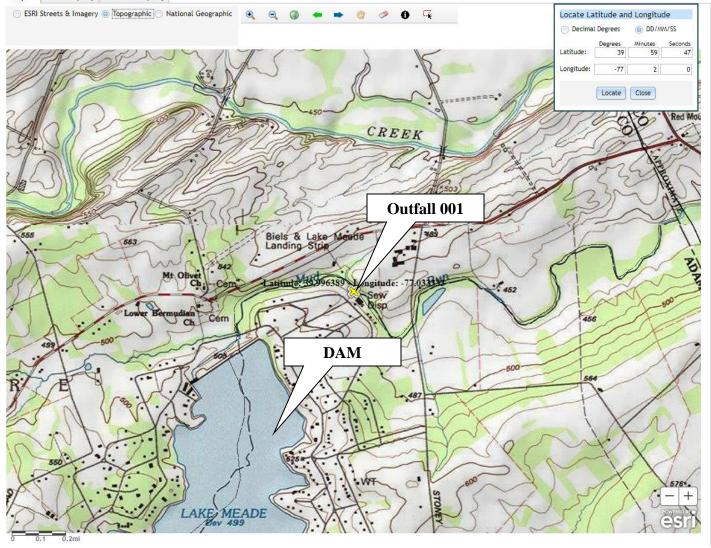
Measurement Taken By:	Terry Leiby	Terry Leiby and Keith Lentz						
Meaurements Taken On:	8/3/2017	1			-			
Data Input								
Diameter of pipe ≕	23.00	inches, or	1.9167	feet				
Slope of pipe *	0.0174	feet / foot						
Manning's "n" value =	0.012							
					General controls [6]			
Depth of flow = (maximum value = 1/2 of pipe d	1.2830 iameter, if gree	inches, or ater than 1/2 p	0.1069 sipe diam	feet eter contact	(input variable Engineer)			
(maximum value = 1/2 of pipe d	1.2830 iameter, lf gree	Inches, or ater than 1/2 p	0.1069 sipe diam	fest eter contact	(input variable ; Engineer)			
(maximum value = 1/2 of pipe d Calculation Results	iameter, lif gre	inches, or ater than 1/2 p square feet	sipe diam	feet eter contact	(input variable Engineer)			
(maximum value = 1/2 of pipe d Calculation Results Cross Sectional Area of Flow =	iameter, lif gre	ater than 1/2 p	olpe diam	eter contact	(input variable Engineer)			
(maximum value = 1/2 of pipe d Calculation Results Cross Sectional Area of Flow = Central Angle =	lameter, if gree 0.0634	ater than 1/2 p square feet	olpe diam	eter contact	(input vanable			
Depth of flow = (maximum value = 1/2 of pipe d Cross Sectional Area of Flow = Central Angle = Wettod Perimeter = Hydraulic Radius =	iameter, if gre 0.0634 54.65	ater than 1/2 p square feet degrees, 0i	olpe diam	eter contact	(input vanistie			

٦

Common Fraction - Decimal Conversions

1/8		0.125
1/4	=	0.250
3/8	=	0.375
1/2	-	0.500
5/8	-	0.625
3/4	 -	0.750
7/8	=	0.875

Example: 1 - 5/8 inches is the same as 1.625 inches


Measurement Taken By:		y and Keith Lentz
Meaurements Taken On:	10/6/201	17
Data Input		
Diameter of pipe =	23.00	inches, or 1.9167 feet
Slope of pipe ≃	0.0174	feet / foot
Manning's 'n" value =	0.012	
Depth of flow = (maximum value = 1/2 of pipe dia	1.2830 ameter, if gree	inches, or 0.1069 feet (input variable ater than 1/2 pipe diameter contact Engineer)
Calculation Results		
Cross Sectional Area of Flow =	0.0634	square feet
	54.65	degrees, or 0.9537 radians
Central Angle =		
•	1.0713	feet
Central Angle = Wetted Perimeter = Hydraulic Radius =	1.0713 0.0592	feet feet

Common Fraction - Decimal Conversions

1/8	=	0.125
1/4		0.250
3/8	=	0.375
1/2	-	0.500
5/8	-	0.625
3/4	-	0.750
7/8	-	0.875

5/8 = 0.525 3/4 = 0.750 7/8 = 0.675 Example: 1 - 5/8 inches is the same as 1.625 inches

Map eFacts Query Advanced Query

Existing Effluent Limitations and Monitoring Requirements

			Efflue	nt Limitations			Monitoring Re	quirements
Parameter	Mass Un	its (lbs/day)		Concentrat	ions (mg/L)		Minimum	Required Sample Type
Parameter	Average Monthly	Weekly Average	Daily Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	
		Report						
Flow (MGD)	Report	Daily Max	XXX	XXX	XXX	XXX	Continuous	Measured
рН (S.U.)	xxx	xxx	6.0	XXX	9.0 Daily Max	xxx	1/day	Grab
Dissolved Oxygen	XXX	XXX	5.0	XXX	XXX	XXX	1/day	Grab
Carbonaceous Biochemical Oxygen Demand (CBOD5)	29.0	43.0	XXX	10.0	15.0	20	1/week	24-Hr Composite
Biochemical Oxygen Demand (BOD5) Raw Sewage Influent	Report	Report Daily Max	XXX	Report	xxx	xxx	1/week	24-Hr Composite
Total Suspended Solids	29.0	43.0	XXX	10.0	15.0	20	1/week	24-Hr Composite
Total Suspended Solids Raw Sewage Influent	Report	Report Daily Max	XXX	Report	XXX	XXX	1/week	24-Hr Composite
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	XXX	XXX	XXX	2000 Geo Mean	XXX	10000	1/week	Grab
Fecal Coliform (No./100 ml) May 1 - Sep 30	XXX	ххх	XXX	200 Geo Mean	XXX	1000	1/week	Grab
Ultraviolet light intensity (mW/cm ²)	XXX	XXX	Report	XXX	XXX	XXX	1/day	Recorded
Ammonia-Nitrogen Nov 1 - Apr 30	13.0	ххх	XXX	4.5	XXX	9	1/week	24-Hr Composite
Ammonia-Nitrogen May 1 - Oct 31	4.3	xxx	XXX	1.5	XXX	3	1/week	24-Hr Composite
Total Phosphorus	5.8	ХХХ	XXX	2.0	XXX	4	1/week	24-Hr Composite
Copper, Total Interim	Report	ххх	XXX	Report	XXX	Report Daily Max	1/week	24-Hr Composite
Copper, Total Final	0.07	XXX	XXX	0.024	XXX	0.04 Daily Max	1/week	24-Hr Composite

Existing Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, to comply with Pennsylvania's Chesapeake Bay Tributary Strategy.

			Effluent L	imitations			Monitoring Re	quirements
Parameter	Mass Ur	Mass Units (lbs) Concentrations (mg/L)				Minimum	Required	
Farameter	Monthly	Annual	Monthly	Monthly Average	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
								24-Hr
AmmoniaN	Report	Report	XXX	Report	XXX	XXX	1/month	Composite
								24-Hr
KjeldahlN	Report	XXX	XXX	Report	XXX	XXX	1/month	Composite
								24-Hr
Nitrate-Nitrite as N	Report	XXX	XXX	Report	XXX	XXX	1/month	Composite
Total Nitrogen	Report	Report	XXX	Report	XXX	XXX	1/month	Calculation
								24-Hr
Total Phosphorus	Report	Report	XXX	Report	XXX	XXX	1/month	Composite

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (386-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

			Effluent L	imitations			Monitoring Requirements	
Parameter	Mass Units	s (lbs/day) ⁽¹⁾		Concentrat	ions (mg/L)		Minimum ⁽²⁾	Required Sample Type
Parameter	Average Monthly	Weekly Average	Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	
Flow (MGD)	Report	Report Daily Max	xxx	xxx	xxx	xxx	Continuous	Measured
	Кероп				9.0		Continuous	Measureu
pH (S.U.)	XXX	XXX	6.0	XXX	Daily Max	ХХХ	1/day	Grab
DO	xxx	XXX	5.0	xxx	xxx	XXX	1/day	Grab
UV Intensity (mW/cm ²)	XXX	XXX	Report	XXX	XXX	XXX	1/day	Recorded
								24-Hr
CBOD5	29.0	43.0	XXX	10.0	15.0	20.0	1/week	Composite
BOD5	_	Report		_				24-Hr
Raw Sewage Influent	Report	Daily Max	XXX	Report	XXX	XXX	1/week	Composite
TSS	29.0	43.0	XXX	10.0	15.0	20.0	1/week	24-Hr Composite
TSS		Report						24-Hr
Raw Sewage Influent	Report	Daily Max	XXX	Report	XXX	XXX	1/week	Composite
Fecal Coliform (No./100 ml)				200				•
May 1 - Sep 30	XXX	XXX	XXX	Geo Mean	XXX	1,000	1/week	Grab
Fecal Coliform (No./100 ml)				2,000				
Oct 1 - Apr 30	XXX	XXX	XXX	Geo Mean	XXX	10,000	1/week	Grab
E. Coli (No./100 ml)	xxx	xxx	XXX	XXX	XXX	Report	1/quarter	Grab
Ammonia							•	24-Hr
May 1 - Oct 31	4.3	XXX	XXX	1.5	XXX	3	1/week	Composite
Ammonia								24-Hr
Nov 1 - Apr 30	13.0	XXX	XXX	4.5	XXX	9	1/week	Composite
								24-Hr
Total Phosphorus	5.8	XXX	XXX	2.0	XXX	4	1/week	Composite
					0.035			24-Hr
Total Copper	0.06	XXX	XXX	0.022	Daily Max	XXX	1/week	Composite

Compliance Sampling Location:

Other Comments:

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (386-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

			Effluent L	imitations			Monitoring Re	quirements
Parameter	Mass Units	s (Ibs/day) ⁽¹⁾ Concentrations (mg/L)						Required
Farameter	Monthly	Annual	Monthly	Monthly Average	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
								24-Hr
AmmoniaN	Report	Report	XXX	Report	XXX	XXX	1/month	Composite
								24-Hr
KjeldahlN	Report	XXX	XXX	Report	XXX	XXX	1/month	Composite
								24-Hr
Nitrate-Nitrite as N	Report	XXX	XXX	Report	XXX	XXX	1/month	Composite
Total Nitrogen	Report	Report	XXX	Report	XXX	XXX	1/month	Calculation
								24-Hr
Total Phosphorus	Report	Report	XXX	Report	XXX	XXX	1/month	Composite

Compliance Sampling Location:

Other Comments:

	Tools and References Used to Develop Permit
	WQM for Windows Model (see Attachment)
	Toxics Management Spreadsheet (see Attachment)
	TRC Model Spreadsheet (see Attachment)
	Temperature Model Spreadsheet (see Attachment)
	Water Quality Toxics Management Strategy, 361-0100-003, 4/06.
	Technical Guidance for the Development and Specification of Effluent Limitations, 386-0400-001, 10/97.
	Policy for Permitting Surface Water Diversions, 386-2000-019, 3/98.
	Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 386-2000-018, 11/96.
	Technology-Based Control Requirements for Water Treatment Plant Wastes, 386-2183-001, 10/97.
	Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 386-2183-002, 12/97.
	Pennsylvania CSO Policy, 386-2000-002, 9/08.
	Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03.
	Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 386-2000-008, 4/97.
	Determining Water Quality-Based Effluent Limits, 386-2000-004, 12/97.
	Implementation Guidance Design Conditions, 386-2000-007, 9/97.
\square	Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen, Version 1.0, 386-2000-016, 6/2004.
	Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 386-2000-012, 10/1997.
\square	Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments, 386-2000-009, 3/99.
\square	Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 386-2000-015, 5/2004.
	Implementation Guidance for Section 93.7 Ammonia Criteria, 386-2000-022, 11/97.
	Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 386-2000-013, 4/2008.
	Implementation Guidance Total Residual Chlorine (TRC) Regulation, 386-2000-011, 11/1994.
	Implementation Guidance for Temperature Criteria, 386-2000-001, 4/09.
	Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 386-2000-021, 10/97.
	Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 386-2000-020, 10/97.
	Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 386-2000-005, 3/99.
	Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 386-2000-010, 3/1999.
	Design Stream Flows, 386-2000-003, 9/98.
	Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 386-2000-006, 10/98.
	Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 386-3200-001, 6/97.
	Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07.
	SOP: BCW-PMT-033
	Other: