

 Application Type
 Renewal

 Facility Type
 Municipal

 Major / Minor
 Minor

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

 Application No.
 PA0045993

 APS ID
 992590

 Authorization ID
 1272227

Applicant and Facility Information

Applicant Name	Ulysses Municipal Authority Potter County	Facility Name	Ulysses Municipal STP
Applicant Address	522 Main Street	Facility Address	508 West Street
	Ulysses, PA 16948-9602	_	Ulysses, PA 16948
Applicant Contact	Kirsten Williams, Auth. Secretary	Facility Contact	Caleb Geist, Operator
Applicant Phone	(814) 848-7551	Facility Phone	(814) 848-7551
Client ID	73593	Site ID	485068
Ch 94 Load Status	Not Overloaded	Municipality	Ulysses Borough
Connection Status	No Limitations	County	Potter
Date Application Receive	ved May 2, 2019	EPA Waived?	Yes
Date Application Accep	ted <u>May 13, 2019</u>	If No, Reason	
Purpose of Application	Renewal of a NPDES permit for the	ne discharge of treated s	ewage

Summary of Review

The Ulysses Municipal Authority wastewater treatment plant serves Ulysses Borough and a portion of Bingham Township. A map of the discharge location is attached.

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Approve	Deny	Signatures	Date
(
\checkmark		Keith C. Allison / Project Manager	October 30, 2019
		Nicholas W. Hartranft, P.E. / Environmental Engineer Manager	

Discharge, Receiving	Waters and Water Supply Informat	ion	
Outfall No. 001		Design Flow (MGD)	0.15
Latitude 41° 54'	27.94"	Longitude	-77º 46' 21.00"
Quad Name Ulyss	ses, PA	Quad Code	0323
Wastewater Descripti	on: Sewage Effluent		
Receiving Waters	Genesee River (CWF)	Stream Code	62954
NHD Com ID	84197857	RMI	2.1
Drainage Area	2.77 mi ²	Yield (cfs/mi ²)	0.0597
_		-	USGS Gage 04221000,
Q ₇₋₁₀ Flow (cfs)	0.165	Q7-10 Basis	Genesee River @ Wellsville, NY (1957-2008)
	2010	-	0.00631
· · · · · · · · · · · · · · · · · · ·		Slope (ft/ft)	
—	14-A	Chapter 93 Class.	CWF
5 _	N/A	Existing Use Qualifier	<u>N/A</u>
· -	None	Exceptions to Criteria	None
Assessment Status	Impaired		
Cause(s) of Impairme			
Source(s) of Impairm	ent AGRICULTURE, MUNICIPAL	POINT SOURCE DISCHAR	GES
TMDL Status		Name	
Nearest Downstream	Public Water Supply Intake	A/NY State Line	
PWS Waters Ge	enesee River	Distance from Outfall (mi)	Approx. 9

Changes Since Last Permit Issuance: None. The stream flow and characteristics were determined for the previous renewal and remain adequate.

Other Comments: No downstream water supply is expected to be affected by this discharge at this time with the limitations and monitoring proposed.

As a result of the limited dilution and impairment in the Genesee River, the discharge received more stringent limitations for CBOD5, TSS, DO, and TRC in the previous renewal.

Treatment Facility Summary Treatment Facility Name: Ulysses Municipal Authority STP WQM Permit No. Issuance Date Permit Covers: 5377402 Sewer extension 6/27/77 5377403 6/27/77 Waste stabilization lagoon Treatment Plant 5388403 5/24/88 Sewer extension Current Extended Aeration Treatment Plant 5399401 Original - 1/11/00 A-1 - 5/22/19 Alteration of dechlorination system 5306401 12/29/06 Upgrade to Route 49 Pump Station Avg Annual Degree of Waste Type Treatment **Process Type** Disinfection Flow (MGD) Sewage Secondary Extended Aeration Hypochlorite 0.15 **Hydraulic Capacity Organic Capacity Biosolids** (lbs/day) Use/Disposal (MGD) Load Status **Biosolids Treatment** 0.15 300 Not Overloaded Drying

Changes Since Last Permit Issuance: The modifications under WQM Permit No. 5399401 Amendment No. 1 for modifying the dechlorination method from a sulfur dioxide feed system to sodium sulfite tablets are new. Per the received Post Construction Certification form, the installation of dechlorination was completed on July 11, 2019.

Other Comments: The treatment consists of a bar screen, equalization lagoon, two extended aeration tanks, two clarifiers, chlorination with contact tank, dechlorination, two aerobic digesters and two reed beds.

Hauled in Waste

Per the application, the permittee has not accepted any trucked-in waste in the past three years and does not anticipate receiving any over the next permit term.

Biosolids/Sludge Disposal

The facility's digested sludge is pumped to two onsite reed beds. The facility has not recently disposed of any sludge offsite, but it anticipated that it ultimately will be either transferred to another POTW for further processing or disposed at a permitted landfill.

Compliance History

DMR Data for Outfall 001 (from October 1, 2018 to September 30, 2019)

Parameter	SEPT-19	AUG-19	JUL-19	JUN-19	MAY-19	APR-19	MAR-19	FEB-19	JAN-19	DEC-18	NOV-18	OCT-18
Flow (MGD)												
Average Monthly	0.0625	0.0602	0.0662	0.0775	0.0856	0.1024	0.1028	0.1116	0.0987	0.1443	0.1324	0.125
Flow (MGD)												
Daily Maximum	0.117	0.088	0.1159	0.163	0.1591	0.1908	0.2698	0.4214	0.2126	0.5058	0.4482	0.2568
pH (S.U.)												
Minimum	6.48	6.16	6.38	6.89	6.97	6.49	6.25	6.67	6.43	6.88	6.9	6.76
pH (S.U.)												
Maximum	7.41	7.19	7.36	7.36	7.32	7.41	7.45	7.35	7.32	7.38	7.63	7.48
DO (mg/L)												
Minimum	6.05	6.25	5.87	5.12	5.84	6.74	7.06	6.13	5.17	5.19	6.56	5.17
TRC (mg/L)												
Average Monthly	< 0.06	< 0.06	0.06	< 0.05	0.05	< 0.05	< 0.06	< 0.05	< 0.05	0.07	0.07	< 0.06
TRC (mg/L)												
Instantaneous												
Maximum	0.10	0.09	0.11	0.12	0.15	0.11	0.13	0.14	0.11	0.11	0.15	0.11
CBOD5 (lbs/day)												
Average Monthly	< 1	1	< 1	< 1	< 2	2	< 2	4	4	< 3	< 4	< 5
CBOD5 (lbs/day)												
Weekly Average	< 1	1	2	< 2	2	2	3	6	5	3	5	< 6
CBOD5 (mg/L)												
Average Monthly	< 2	3	< 3	< 2	< 2	3	< 3	4	3	< 3	< 4	< 3
CBOD5 (mg/L)												
Weekly Average	< 2	3	3	< 2	2	3	3	4	3	3	5	< 3
BOD5 (lbs/day)												
Raw Sewage Influent			= 1		70	50			400			100
Average Monthly	58	81	51	81	73	59	88	144	109	101	77	133
BOD5 (lbs/day)												
Raw Sewage Influent		100	= 4		110		110	004	4.07	440	400	000
Daily Maximum	61	120	54	94	113	64	110	201	167	119	108	223
BOD5 (mg/L)												
Raw Sewage Influent	100	104	04.0	100 7	00	00.0	100	100	05	105	00	77
Average Monthly	122	181	94.9	129.7	86	83.8	120	138	85	125	89	77
TSS (lbs/day)		. 2		. 2	. 2	. 2		- F		- 1	- 1	10
Average Monthly	< 2	< 2	< 2	< 3	< 3	< 3	< 3	< 5	< 6	< 4	< 4	< 8
TSS (lbs/day)												
Raw Sewage Influent	22	26	26	10	1.24	11	45	40	70	36	59	100
Average Monthly	33	26	26	48	< 24	41	45	40	73	30	58	109

NPDES Permit Fact Sheet Ulysses Municipal STP

NPDES Permit No. PA0045993

TSS (lbs/day)												
Raw Sewage Influent												
Daily Maximum	35	34	35	49	45	60	58	41	112	47	90	188
TSS (lbs/day)												
Weekly Average	< 2	< 2	< 3	< 3	< 3	< 3	< 3	< 6	< 9	6	< 5	< 11
TSS (mg/L)												
Average Monthly	< 4	< 4	< 4	< 4	< 4	< 4	< 4	< 5	< 5	< 5	< 5	< 5
TSS (mg/L)												
Raw Sewage Influent												
Average Monthly	69	58	51	76	< 29	59	61	46	56.5	40	58	60
TSS (mg/L)												
Weekly Average	4	< 4	< 4	4	< 4	< 4	< 4	6	< 5	5	< 5	< 5
Fecal Coliform												
(CFU/100 ml)												
Geometric Mean	> 187	3	78	2	10	< 23	< 1	> 49	> 110	45	> 2420	> 2420
Fecal Coliform												
(CFU/100 ml)												
Instantaneous								- /	- /		- /	
Maximum	> 2419.6	4.1	1950	4.1	22.6	547.5	< 1	> 2420	> 2420	1986	> 2420	> 2420
Total Nitrogen												
(lbs/day)										_		
Average Monthly										7		
Total Nitrogen (mg/L)												
Average Monthly										8.99		
Ammonia (lbs/day)												
Average Monthly	1.0	< 0.05	< 0.06	< 0.3	4.0	< 0.07	< 0.07	< 0.9	< 0.7	< 0.5	< 2	7.0
Ammonia (lbs/day)												
Weekly Average	2.0	0.06	0.07	0.6	5.0	< 0.07	< 0.09	2	< 1	< 0.6	4	10.0
Ammonia (mg/L)					= 0			4.0	1.0			
Average Monthly	3.0	< 0.001	< 0.01	< 0.1	5.0	< 0.01	< 0.01	< 1.0	< 1.0	< 1.00	< 2.0	4.0
Ammonia (mg/L)		0.001		4.0		0.01		4.0		4.00		
Weekly Average	4.0	0.001	0.01	1.0	6.0	< 0.01	< 0.01	1.0	1.0	< 1.00	4.0	4.0
Total Phosphorus												
(lbs/day)												
Average Monthly										0.6		
Total Phosphorus												
(mg/L)										0 705		
Average Monthly										0.765		

Compliance History

Effluent Violations for Outfall 001, from: October 1, 2018 To: September 30, 2019

Parameter	Date	SBC	DMR Value	Units	Limit Value	Units
Fecal Coliform	11/30/18	Geo Mean	> 2420	CFU/100 ml	2000	CFU/100 ml
Fecal Coliform	10/31/18	Geo Mean	> 2420	CFU/100 ml	2000	CFU/100 ml
Fecal Coliform	07/31/19	IMAX	1950	CFU/100 ml	1000	CFU/100 ml
Fecal Coliform	09/31/19	IMAX	> 2419.6	CFU/100 ml	1000	CFU/100 ml
Ammonia	05/31/19	Avg Mo	4.0	lbs/day	3.8	lbs/day
Ammonia	10/31/18	Avg Mo	7.0	lbs/day	3.8	lbs/day
Ammonia	10/31/18	Wkly Avg	10.0	lbs/day	5.6	lbs/day
Ammonia	10/31/18	Avg Mo	4.0	mg/L	3.0	mg/L
Ammonia	05/31/19	Avg Mo	5.0	mg/L	3.0	mg/L
Ammonia	05/31/19	Wkly Avg	6.0	mg/L	4.5	mg/L

	Compliance History
Summary of Inspections:	The facility has been inspected at least annually over the past permit term, most recently on February 26, 2019 by Brandon Shihinski, WQS. This inspection identified no operational violations during the inspection but noted effluent violations from the September through November 2018 DMRs.

Other Comments: A WMS query found no open violations in eFACTS for Ulysses Municipal Authority

Existing Effluent Limitations and Monitoring Requirements – Outfall 001

			Effluent L	imitations			Monitoring Re	quirements
Parameter	Mass Unif	ts (lbs/day)		Concentrat	ions (mg/L)		Minimum	Required
Parameter	Average Monthly	Weekly Average	Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report Daily Max	xxx	xxx	XXX	xxx	Continuous	Metered
pH (S.U.)	ХХХ	XXX	6.0	XXX	XXX	9.0	1/day	Grab
Dissolved Oxygen	ХХХ	xxx	5.0	XXX	XXX	ХХХ	1/day	Grab
Total Residual Chlorine	XXX	XXX	XXX	0.11	XXX	0.36	1/day	Grab
CBOD5	12	18	xxx	10	15	20	2/month	8-Hr Composite
BOD5 Raw Sewage Influent	Report	Report Daily Max	xxx	Report	XXX	xxx	2/month	8-Hr Composite
Total Suspended Solids Raw Sewage Influent	Report	Report Daily Max	XXX	Report	XXX	xxx	2/month	8-Hr Composite
Total Suspended Solids	12	18	XXX	10	15	20	2/month	8-Hr Composite
Fecal Coliform (CFU/100 ml) May 1 - Sep 30	XXX	xxx	XXX	200 Geo Mean	XXX	1,000	2/month	Grab
Fecal Coliform (CFU/100 ml) Oct 1 - Apr 30	XXX	XXX	XXX	2,000 Geo Mean	XXX	10,000	2/month	Grab
Total Nitrogen	Report	XXX	XXX	Report	XXX	XXX	1/year	8-Hr Composite
Ammonia-Nitrogen May 1 - Oct 31	3.8	5.6	XXX	3.0	4.5	6.0	2/month	8-Hr Composite
Ammonia-Nitrogen Nov 1 - Apr 30	11	16	xxx	9.0	13	18	2/month	8-Hr Composite
Total Phosphorus	Report	XXX	XXX	Report	XXX	XXX	1/year	8-Hr Composite

Development of Effluent Limitations

Outfall No.	001		Design Flow (MGD)	0.15
Latitude	41º 54' 28.50	,"	Longitude	-77º 46' 20.30"
Wastewater De	escription:	Sewage Effluent		

Technology-Based Limitations

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Pollutant	Limit (mg/l)	SBC	Federal Regulation	State Regulation
CBOD ₅	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
CBOD5	40	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)
Total Suspended	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
Solids	45	Average Weekly	133.102(b)(2)	92a.47(a)(2)
рН	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform				
(5/1 – 9/30)	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
Fecal Coliform				
(5/1 – 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform				
(10/1 – 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
Fecal Coliform				
(10/1 – 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)
Total Residual Chlorine	0.5	Average Monthly	-	92a.48(b)(2)

Comments: The above technology limits for TRC, CBOD₅, and TSS are applicable but are superseded by the more stringent water quality-based and Best Professional Judgment limits.

Water Quality-Based Limitations

CBOD5, NH3-N and DO

The WQM7.0 model allows the Department to evaluate point source discharges of dissolved oxygen (DO), carbonaceous BOD (CBOD₅), and ammonia nitrogen (NH₃-N) into free-flowing streams and rivers. The modeling from the previous review showing that the existing limits are adequate to protect the receiving stream is attached.

Total Residual Chlorine

The modeling results from the previous review are attached showing that the existing limits are adequate.

Toxics Management

No further "Reasonable Potential Analysis" was performed to determine additional parameters as candidates for limitations or monitoring for this minor POTW with no industrial contributors.

Nutrient Management

The permittee has performed annual monitoring over the past permit term. The average TN over the past two years was 5.48 mg/L and the average TP was 0.72 mg/L. Because the effluent nutrient levels have been adequately characterized at this time, the existing annual monitoring for both Total Nitrogen and Total Phosphorus will be removed from the draft NPDES permit.

Best Professional Judgment (BPJ) Limitations

Comments: Due to the impairment to the Genesee River for Organic Enrichment, Low DO, and Siltation as well as the limited available instream dilution, a BPJ limit of 10 mg/l for both CBOD₅ and TSS was included in the previous permit review and these will remain. No other BPJ limits are needed at this time beyond the water quality and technology-based limitations noted above.

Anti-Backsliding

No limitations were made less stringent in the proposed draft permit consistent with the anti-degradation requirements of the Clean Water Act and 40 CFR 122.44(I).

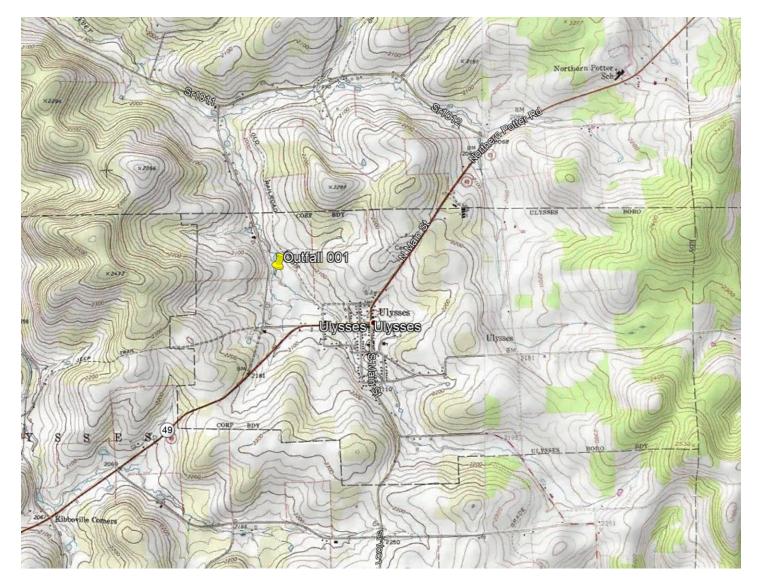
Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

			Monitoring Requirements					
Parameter	Mass Units	ass Units (lbs/day) ⁽¹⁾ Concentrations (mg/L)					Minimum ⁽²⁾	Required
Falameter	Average Monthly	Weekly Average	Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report Daily Max	xxx	xxx	XXX	ххх	Continuous	Metered
pH (S.U.)	XXX	xxx	6.0 Inst Min	xxx	XXX	9.0	1/day	Grab
DO	xxx	xxx	5.0 Inst Min	xxx	XXX	xxx	1/day	Grab
TRC	XXX	XXX	XXX	0.11	XXX	0.36	1/day	Grab
CBOD5	12	18	XXX	10	15	20	2/month	8-Hr Composite
BOD5 Raw Sewage Influent	Report	Report Daily Max	XXX	Report	XXX	xxx	2/month	8-Hr Composite
TSS	12	18	XXX	10	15	20	2/month	8-Hr Composite
TSS Raw Sewage Influent	Report	Report Daily Max	xxx	Report	XXX	XXX	2/month	8-Hr Composite
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	XXX	xxx	xxx	2000 Geo Mean	XXX	10000	2/month	Grab
Fecal Coliform (No./100 ml) May 1 - Sep 30	XXX	xxx	XXX	200 Geo Mean	XXX	1000	2/month	Grab
Ammonia-Nitrogen Nov 1 - Apr 30	11	16	xxx	9.0	13	18	2/month	8-Hr Composite
Ammonia-Nitrogen May 1 - Oct 31	3.8	5.6	XXX	3.0	4.5	6	2/month	8-Hr Composite

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

Compliance Sampling Location: Outfall 001


Other Comments: The above limits and monitoring are unchanged from the existing permit with the exception of the removal of Total Nitrogen and Total Phosphorus monitoring.

	Tools and References Used to Develop Permit
\square	
	WQM for Windows Model (see Attachment) PENTOXSD for Windows Model (see Attachment
	TRC Model Spreadsheet (see Attachment)
	Temperature Model Spreadsheet (see Attachment)
	Toxics Screening Analysis Spreadsheet (see Attachment)
	Water Quality Toxics Management Strategy, 361-0100-003, 4/06.
	Technical Guidance for the Development and Specification of Effluent Limitations, 362-0400-001, 10/97.
	Policy for Permitting Surface Water Diversions, 362-2000-003, 3/98.
	Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 362-2000-008, 11/96.
	Technology-Based Control Requirements for Water Treatment Plant Wastes, 362-2183-003, 10/97.
	Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 362-2183-004, 12/97.
	Pennsylvania CSO Policy, 385-2000-011, 9/08.
	Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03.
	Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 391-2000-002, 4/97.
\square	Determining Water Quality-Based Effluent Limits, 391-2000-003, 12/97.
\boxtimes	Implementation Guidance Design Conditions, 391-2000-006, 9/97.
\boxtimes	Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen
	and Ammonia Nitrogen, Version 1.0, 391-2000-007, 6/2004.
	Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 391-2000-008, 10/1997.
	Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments, 391-2000-010, 3/99.
	Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 391-2000-011, 5/2004.
\boxtimes	Implementation Guidance for Section 93.7 Ammonia Criteria, 391-2000-013, 11/97.
	Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 391-2000-014, 4/2008.
\boxtimes	Implementation Guidance Total Residual Chlorine (TRC) Regulation, 391-2000-015, 11/1994.
	Implementation Guidance for Temperature Criteria, 391-2000-017, 4/09.
	Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 391-2000-018, 10/97.
	Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 391-2000-019, 10/97.
	Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 391-2000-021, 3/99.
	Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 391-2000-022, 3/1999.
\boxtimes	Design Stream Flows, 391-2000-023, 9/98.
	Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 391-2000-024, 10/98.
	Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 391-3200-013, 6/97.
$\overline{\boxtimes}$	Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07.
	SOP: Establishing Effluent Limitations for Individual Sewage Permits, 9/10/13.
	Other:
	Tother hts: Discharge Location Map, TRC Modeling, WQM7.0 Modeling.

Attachments: Discharge Location Map, TRC Modeling, WQM7.0 Modeling.

3800-PM-BPNPSM0011 Rev. 10/2014 Permit

Permit No. PA0045993

÷

		TRC E	VALUATION							
Client		na na si mana na sa	Date	, , , , , , , , , , , , , , , , , , ,						
0.165	= Q stream (cfs)	0.5	= CV Daily						
0.15	= Q discharge (MGD)		= CV Hourly						
	= no. samples			= AFC_Partial Mix Factor						
	= Chlorine Dem			= CFC_Partial Mix Factor						
		and of Discharge		15 = AFC_Criteria Compliance Time (m						
. 0.5	= BAT/BPJ Valu				Compliance Tim	e (min)				
	= % Factor of S		0	=Decay Coeffi						
Source		AFC Calculations		Reference	CFC Calculations					
TRC	1.3.2.iii	WLA afc =		1.3.2.iii	WLA cfc = 0					
PENTOXSD TRG	5.1a	LTAMULT afc =		<u>5.1c</u>	LTAMULT cfc = 0					
PENTOXSD TRG	5.1b	LTA_afc=		5.1d	$LTA_cfc = 0$					
		WQBEL_afc=			WQBEL_cfc= (J.166				
Source	••••••••••••••••••••••••••••••••••••••		Effluent Limit Ca		<u></u>					
PENTOXSD TRG	5.1f		AML MULT =							
PENTOXSD TRG	5.1g		N LIMIT (mg/l) =		AFC					
		INST MA	X LIMIT (mg/l) =	0.369						
· E tite average and a second			<u></u>	an		an an ta an				
WLA afc	(.019/e(-k*AFC_	tc)) + [(AFC_Yc*Qs*	.019/Qd*e(-k*AF	C_tc))						
	+ Xd + (AFC_	Yc*Qs*Xs/Qd)]*(1-FC	DS/100)	•						
LTAMULT afc	EXP((0.5*LN(cv	h^2+1))-2.326*LN(cvł	1^2+1)^0.5)							
LTA_afc	wla_afc*LTAMU	LT_afc								
						-				
WLA_cfc		_tc) + [(CFC_Yc*Qs*.		C_tc))						
		Yc*Qs*Xs/Qd)]*(1-F0								
LTAMULT_cfc		d^2/no_samples+1))-	2.326*LN(cvd^2/r	no_samples+1)^	0.5)					
LTA_cfc	wla_cfc*LTAMU	LT_cfc								
AML MULT	EXP(2.326*I N(/	cvd^2/no_samples+1)^0 5)-0 5*! N(cv	1^2/no_samples	+1))					
AVG MON LIMIT		AIN(LTA afc,LTA_cfc			• //					
INST MAX LIMIT		imit/AML_MULT)/LT								
	no ([av_mon_]	interne_neer/er	,							

	SWF Basi			Stre	eam Name		RMI	Eleva (ft		Drainage Area (sq mi)	Slope (ft/ft)	PWS Withdrawal (mgd)	Apply FC
	14	629	954 Trib 6:	2954 to G	enesee Riv	rer	2.10	0 20	10.00	2.77	0.00000	0.00	
					S	tream Da	ta						
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	<u>Tributary</u> p pH	Tem	<u>Stream</u> p pH	
	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C)		
Q7-10	0.060	0.00	0.00	0.000	0.000	0.0	0.00	0.00	20	0.00 7.0	00 C	0.00 0.00	1
Q1-10		0.00	0.00	0.000	0.000								
Q30-10		0.00	0.00	0.000	0.000								

	Dis	scharge D	ata						
Name	Permit Number	Existing Disc Flow (mgd)	Permi Dis Flor (mg	SC W	Design Disc Flow (mgd)	Res Fa	erve ctor	Disc Temp (°C)	Disc pH
Ulysses M A	PA0045993	0.1500	0.00	000	0.0000) (0.000	25.00	6.8
	Pai	rameter D	ata						
D		Dis Co	-	Trib Cond		eam onc	Fate Coef		
Pa	arameter Name	(mg	/L)	(mg/L	_) (m	g/L)	(1/days)	
CBOD5		1	0.00	2.	00	0.00	1.5	o [.]	
Dissolved C	bxygen		3.00	8.	24	0.00	0.0	D	
NH3-N			3.00	0.	00	0.00	0.7	0	

Input Data WQM 7.0

Thursday, August 21, 2014

Input Data WQM 7.0 SWP Stream Apply FC RMI PWS Elevation Drainage Slope Basin Code Stream Name Withdrawal Area (ft) (ft/ft) (sq mi) (mgd) \checkmark 14 62954 Trib 62954 to Genesee River 0.000 1940.00 3.76 0.00000 0.00 Stream Data LFY Rch WD Trib Stream Rch Rch Rch Tributary Stream Temp Temp pН Design Flow Flow Trav Velocity Ratio Width Depth pН Cond. Time (cfsm) (cfs) (cfs) (days) (fps) (ft) (ft) (°C) (°C) Q7-10 0.060 0.00 0.00 0.000 0.000 0.0 0.00 0.00 20.00 7.00 0.00 0.00 Q1-10 0.00 0.00 0.000 0.000 0.000 Q30-10 0.00 0.00 0.000 Discharge Data · 28.14 Existing Permitted Design Disc Disc Disc Disc Disc Reserve pН Temp Permit Number Name Flow Flow Flow Factor (mgd) (mgd) (mgď) (°C) 0.0000 0.000 7.00 0.0000 0.0000 25.00 Parameter Data Fate Disc Trib Stream Conc Conc Conc Coef Parameter Name (mg/L) (mg/L) (mg/L) (1/days) CBOD5 25.00 2.00 0.00 1.50

3.00

25.00

8.24

0.00

0.00

0.00

0.00

0.70

Dissolved Oxygen

NH3-N

Thursday, August 21, 2014

Version 1.0b

	<u>sw</u>	P Basin	Strea	m Code				Stream	Name			
		14	62954			Trib 62954 to Genesee River						
RMI	Stream Flow	PWS With	Net Stream Flow	Disc Analysis Flow	Reach Slope	Depth	Width	W/D Ratio	Velocity	Reach Trav Time	Analysis Temp	Analysis pH
	(cfs)	(cfs)	(cfs)	(cfs)	(ft/ft)	(ft)	(ft)		(fps)	(days)	(°C)	
Q7-1	0 Flow											
2.100	0.17	0.00	0.17	.2321	0.00631	.436	8.93	20,49	0.10	1.257	22.92	6.91
Q1-1	0 Flow											
2.100	0.11	0.00	0.11	.2321	0.00631	NA	NA	NA	0.09	1.376	23.43	6.89
Q30-	10 Flow	,										
2.100	0.22	0.00	0.22	.2321	0.00631	NA	NA	NA	0.11	1.162	22.54	6.92

WQM 7.0 Hydrodynamic Outputs

Thursday, August 21, 2014

Version 1.0b

3800-PM-BPNPSM0011 Rev. 10/2014 Permit

Permit No. PA0045993

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	\checkmark
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.64	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.36	Temperature Adjust Kr	
D.O. Saturation	90.00%	Use Balanced Technology	
D.O. Goal	6		

. جي:

Thursday, August 21, 2014

Version 1.0b

Page 1 of 1

	SWP Basin Str	eam Code		<u>St</u>	<u>ream Name</u>			
	14	62954		Trib 62954	4 to Genesee	River		
NH3-N	Acute Allocatio	ns						
RMI	Discharge Nam	Baseline e Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction	I
2.10	00 Ulysses M A	8.07	6	. 8.07	6	0	0	-
NH3-N RMI	Chronic Alloca Discharge Name	t ions Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction	
2 10	00 Ulysses M A	1.68	3	1.68	3	0	0	_
2.10								
	ed Oxygen Allo	cations						
	ed Oxygen Allo		:BOD5	<u>NH3-N</u>	Dissol	ved Oxygen	Oritical	Descent
	ed Oxygen Allo Discharge Na	<u>c</u>	ne Multiple	Baseline Mu		ne Multiple	Critical	Percent Reduction

WQM 7.0 Wasteload Allocations

.

Version 1.0b

RMI Total Discharge 2.100 0.150 Reach Width (ft) Reach Deg 8.930 0.433 Reach CBOD5 (mg/L) Reach KC (6.67 0.833 Reach DO (mg/L) Reach KC (6.349 23.43 Reach Travel Time (days) TravTime (days) 1.257 TravTime (days) 0.126 0.251 0.377 0.503 0.628 0.628) <u>oth (ft)</u> 5 1 <u>/days)</u> 3 1 <u>/days)</u>	<u>R</u> esults NH3-N	Ilysis Temperature (°C) 22,919 <u>Reach WDRatio</u> 20.487 Reach NH3-N (mg/L) 1.75 <u>Kr Equation</u> Owens D.O.	<u>Analysis pH</u> 6.906 <u>Reach Velocity (fps)</u> 0.102 <u>Reach Kn (1/days)</u> 0.876 <u>Reach DO Goal (mg/L)</u> 6
Reach Width (ft) Reach Deg 8.930 0.436 Reach CBOD5 (mg/L) Reach Kc (6.67 0.836 Reach DO (mg/L) Reach Kc (6.349 23.43 Reach Travel Time (days) 1.257 1.257 TravTime (days) 0.126 0.251 0.377 0.503	oth (ft) 3 1/days) 3 1/days) 1 1 Subreacl CBOD5	ı Results NH3-N	Reach WDRatio 20.487 Reach NH3-N (mg/L) 1.75 <u>Kr Equation</u> Owens	<u>Reach Velocity (fps)</u> 0.102 <u>Reach Kn (1/days)</u> 0.876 <u>Reach DO Goal (mg/L)</u>
8.930 0.430 Reach CBOD5 (mg/L) Reach Kc (6.67 0.836 Reach DO (mg/L) Reach Kr (* 6.349 23.43 Reach Travel Time (days) 1.257 1.257 TravTime (days) 0.126 0.251 0.377 0.503	3 1/days) 3 1/days) 1 Subreacl CBOD5	ı Results NH3-N	20.487 Reach NH3-N (mg/L) 1.75 <u>Kr Equation</u> Owens	0.102 <u>Reach Kn (1/days)</u> 0.876 <u>Reach DO Goal (mg/L)</u>
Reach CBOD5 (mg/L) Reach Kc (6.67 0.836 Reach DO (mg/L) Reach Kr (' 6.349 23.43 Reach Travel Time (days) 1.257 1.257 TravTime (days) 0.126 0.251 0.377 0.503	<u>1/days)</u> 3 1 <u>/days)</u> 1 Subreach CBOD5	ı Results NH3-N	Reach NH3-N (mg/L) 1.75 <u>Kr Equation</u> Owens	<u>Reach Kn (1/days)</u> 0.876 <u>Reach DO Goal (mg/L)</u>
6.67 0.838 Reach DO (mg/L) Reach Kr (* 6.349 23.43 Reach Travel Time (days) 1.257 1.257 TravTime (days) 0.126 0.251 0.377 0.503	3 1/days) 1 Subreacl CBOD5	ı Results NH3-N	1.75 <u>Kr Equation</u> Owens	0.876 Reach DO Goal (mg/L)
Reach DO (mg/L) Reach Kr (* 6.349 23.43 Reach Travel Time (days) 1.257 1.257 TravTime (days) 0.126 0.251 0.377 0.503	1 <u>/days)</u> 1 Subreacl CBOD5	NH3-N	<u>Kr Equation</u> Owens	Reach DO Goal (mg/L)
Iteach Do (Ingr.) 23.43 6.349 23.43 Reach Travel Time (days) 1.257 1.257 TravTime (days) 0.126 0.251 0.377 0.503	1 Subreacl CBOD5	NH3-N	Owens	
0.349 Reach Travel Time (days) 1.257 TravTime (days) 0.126 0.251 0.377 0.503	Subreach CBOD5	NH3-N		6
1.257 TravTime (days) 0.126 0.251 0.377 0.503	CBOD5	NH3-N	D.O.	
0.251 0.377 0.503		(mg/L.)	(mg/L)	
0.377 0.503	5.91	1.57	7.82	
0.503	5.24	1.41	7.82	
	4.65	1.26	7.82	
0.628	4.12	1.13	7.82	
0.020	3.65	1.01	7.82	
0.754	3.24	0.90	7.82	
0.880	2.87	0.81	7.82	
1.005	2.54	0.73	7.82	
1.131	2.26	0.65	7.82	
1.257	2.20	0.58	7.82	

WQM 7.0 D.O.Simulation

Thursday, August 21, 2014

Version 1.0b

Page 1 of 1

		11 64.111			-		
	SWP Basin	Stream Code	Stream Name				
	14	62954		Trib 62954 to Genes	ee River		
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limil Minimum (mg/L)
2.100	Ulysses M A	PA0045993	0.150	CBOD5	10		
				NH3-N	3	6	
				Dissolved Oxygen			5

WQM 7.0 Effluent Limits

Thursday, August 21, 2014

Version 1.0b

.