

Northeast Regional Office CLEAN WATER PROGRAM

Application Type
Facility Type
Major / Minor

Minor

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

Application No. PA0060135

APS ID 760074

Authorization ID 1395466

		Applicant and	Facility Information	
Applicant Name		ary Sewer Authority of the ugh of Shickshinny (SSABS)	Facility Name	SSABS Wastewater Treatment Plant
Applicant Address	908 L	oop Trail Road	Facility Address	Loop Trail Road
	Shick	shinny, PA 18655-5502		Mocanaqua, PA 18655-1505
Applicant Contact	Barry	Noss, Board Chairman	Facility Contact	Jeff Slabinski, Operator
Applicant Phone	(570)	760-5886	Facility Phone	(570) 412-0182
Client ID	44152	2	Site ID	450173
Ch 94 Load Status	Not O	verloaded	Municipality	Shickshinny Borough
Connection Status	No Li	mitations	County	Luzerne
Date Application Rece	eived	May 3, 2022	EPA Waived?	No
Date Application Acce	pted	May 9, 2022	If No, Reason	Significant CB Discharge
Purpose of Application	า	Renewal of NPDES permit for dis	charge of treated sewag	e.

Summary of Review

The applicant is requesting the renewal of an NPDES permit to discharge up to 0.45 MGD of treated sewage into the Susquehanna River, a Warm-Water Fishery, (WWF) receiving stream in State Water Plan Basin 5-B (Wapwallopen Creeks). As per the Department's current existing use list, the receiving stream does not have an existing use classification that is more protective than its designated use. This stream segment is not designated as a naturally reproducing trout stream as per PA Fish & Boat Commission. This discharge is not expected to affect public water supplies.

This is a significant Chesapeake Bay Discharger (Phase 3) Minor Facility with existing cap loads.

Limitations for pH, CBOD₅, Total Suspended Solids (TSS), and Fecal Coliform are technology-based and carried over from the previous permit.

A BPJ-based limitation of 5.0 mg/L for Dissolved Oxygen (DO) has been added to the permit. This is an increase from the existing 4.0 mg/l DO limitation. The updated limitation will come into effect three years after the permit effective date.

The 1.0 mg/L monthly average and 2.0 mg/L IMAX limitations for Total Residual Chlorine (TRC) in the previously issued permit were water quality-based limitations. As per PA Code 92a.47(a)(8) (which refers to PA Code 92a.48(b)(2)), a monthly average TRC facility-specific BAT effluent limit of 0.5 mg/L and an IMAX limit of 1.6 mg/L has been applied to this permit renewal. The TRC Calculation Spreadsheet did not recommend more stringent water quality-based limitations. eDMR data from June 2022 to May 2023 (seen on page 4 of this Fact Sheet) indicates that the facility is consistently under 0.5 mg/L monthly average for TRC. Therefore, the new TRC technology-based limit will be applied at the permit effective date.

The 2/week monitoring and reporting for Ammonia-Nitrogen and Total Phosphorus has been carried over from the previous permit. WQM 7.0 modeling did not recommend stricter limits.

Approve	Deny	Signatures	Date
Х		/s/ Allison Seyfried / Project Manager	September 19, 2023
X		/s/ Amy M. Bellanca, P.E. / Program Manager	9-22-23

Summary of Review

The Chesapeake Bay monitoring/reporting requirements for Total Nitrogen (TN), Total Phosphorus (TP), Total Kjeldahl Nitrogen (TKN), and Nitrate-Nitrite as N has been maintained in this permit.

Per current Standard Operating Procedures for Publicly Owned Treatment Plants, the raw sewage influent monitoring/reporting for TSS and BOD₅ has been maintained in the permit.

Sewage discharges now require monitoring and reporting for E. Coli. A monitoring frequency of 1/month for design flows >= 1 MGD, 1/quarter for design flows >= 0.05 and < 1 MGD, 1/year for design flows of 0.002 – 0.05 MGD will be utilized.

Pollutant sampling results submitted with the permit application were entered into the Toxic Management Spreadsheet (TMS). The TMS did not recommend any additional limitations or reporting/monitoring.

Two final Total Maximum Daily Load (TMDLs) exist for the Susquehanna River. The first TMDL address PCBs and is treated as a non-point source contaminant because there are no known sources of PCB to this segment of the Susquehanna River. There are no approved Waste Load Allocations (WLA) for this facility. Since this is a sewage discharge with no industrial contributors and the use of PCB in the United States has been banned since July of 1979, no PCBs are expected to be present in the effluent.

The second TMDL for the Susquehanna River addresses metals (iron, manganese, and aluminum) and pH associated with acid mine drainage (AMD). There are no approved Waste Load Allocations (WLA) for this facility under either TMDL.

The 1/month monitoring and reporting for Total Aluminum due to Alum being used in the treatment plant and the Acid Mine Drainage TMDL has been carried over from the previous permit.

The annual monitoring and reporting for Total Iron and Total Manganese due to the Acid Mine Drainage TMDL has been carried over from the previous permit.

For this permit renewal, all monitoring frequencies for parameters with limitations are consistent with the Department's *Technical Guidance for the Development and Specification of Effluent Limitations and Other Permit Conditions in NPDES Permits* (document no. 362-0400-001).

The existing permit expired on October 31, 2022 and the application for renewal was received on time.

A Water Management System Inspection guery indicated that on July 1, 2020 a Compliance Evaluation was performed.

There are currently no open violations for this client that warrant withholding issuance of this permit.

Sludge use and disposal description and location(s): Sewage sludge is disposed at on-site reed beds.

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Discharge, Receiving	Waters and Water Supply Information	1	
Outfall No. 001		Design Flow (MGD)	0.45
Latitude 41° 9	' 1.82"	Longitude	-76° 8' 45.52"
Quad Name Shi	ckshinny	Quad Code	0936
Wastewater Descrip	otion: Sewage Effluent		
Receiving Waters	Susquehanna River (WWF)	Stream Code	6685
NHD Com ID	65636383	RMI	156.55
Drainage Area	10,200 mi ²	Yield (cfs/mi ²)	0.1
Q ₇₋₁₀ Flow (cfs)	948	Q ₇₋₁₀ Basis	USGS Stream Stats
Elevation (ft)	497.91	Slope (ft/ft)	-
Watershed No.	5-B	Chapter 93 Class.	WWF
Existing Use	-	Existing Use Qualifier	-
Exceptions to Use	-	Exceptions to Criteria	-
Assessment Status	Impaired		
Cause(s) of Impairn	nent MERCURY, METALS, POLYCH	ILORINATED BIPHENYLS	S (PCBS),
Source(s) of Impair	ment ACID MINE DRAINAGE, SOUR	CE UNKNOWN	
TMDL Status	Final	Name Susquehann	na River Metals
Nearest Downstread	m Public Water Supply Intake <u>Dan</u>	ville Municipal Authority	
PWS Waters S	Susquehanna River F	low at Intake (cfs)	
PWS RMI <u>1</u>	22.58	Distance from Outfall (mi)	> 30 miles

Treatment Facility Summary								
Treatment Facility Name: Shickshinny Sewer Authority WWTP								
WQM Permit No.	Issuance Date	Sc	ope					
4012402	3/23/2012		ilizing two SBRs and g three treatment tanks					
4095405	11/27/1995	0.45 MGD Expansion (including upgrades) and connection to SCI Retreat						
4076409	8/30/1976	Original						
Waste Type	Degree of Treatment	Process Type	Disinfection	Avg Annual Flow (MGD)				
Sewage	Secondary	Activated Sludge	Chlorination	0.247 (2019-2021)				
		•		,				
Hydraulic Capacity	Organic Capacity			Biosolids				
(MGD)	(lbs/day)	Load Status	Biosolids Treatment	Use/Disposal				
0.46 (old units) 0.900 (upgrade)	991 (old units) 1,126 (upgrade)	Not Overloaded	Aerobic Digestion/ Onsite reed drying beds	-				

Compliance History

DMR Data for Outfall 001 (from June 1, 2022 to May 31, 2023)

Parameter	MAY-23	APR-23	MAR-23	FEB-23	JAN-23	DEC-22	NOV-22	OCT-22	SEP-22	AUG-22	JUL-22	JUN-22
Flow (MGD)												
Average Monthly	0.2322	0.12977	0.18745	0.12647	0.24308	0.19349	0.12305	0.09403	0.08462	0.06656	0.06851	0.10962
Flow (MGD)												
Daily Maximum	0.88865	0.32054	0.26692	0.17748	0.34346	0.38142	0.19953	0.18998	0.1534	0.10909	0.09157	0.16463
pH (S.U.)												
Minimum	6.1	6.0	6.1	6.2	6.1	6.0	6.1	6.2	6.3	6.1	6.3	6.2
pH (S.U.)												
Maximum	6.6	6.6	7.0	6.8	6.7	6.8	6.6	6.6	6.7	6.8	6.8	6.7
DO (mg/L)												
Minimum	5.16	5.55	6.59	5.41	6.47	5.9	5.62	5.36	4.49	4.27	4.32	4.55
TRC (mg/L)												
Average Monthly	0.2	0.2	0.2	0.3	0.2	< 0.3	0.3	0.4	0.3	0.2	0.2	0.3
TRC (mg/L)												
Instantaneous												
Maximum	0.4	1.0	0.3	1.0	0.4	1.0	1.0	1.0	1.0	0.3	0.5	1.0
CBOD5 (lbs/day)												
Average Monthly	< 9	< 3	< 10	< 3	< 6	< 6.0	< 5	< 4	< 2	< 3	< 2	< 3
CBOD5 (lbs/day)												
Weekly Average	35	< 4	27	< 4	< 7	7.0	8	6	< 3	6	< 2	< 3
CBOD5 (mg/L)												
Average Monthly	< 3.4	< 3.0	< 5.5	< 3.0	< 3.0	< 3.9	< 4.7	< 4.9	< 3.0	< 4.8	< 3.0	< 3.0
CBOD5 (mg/L)												
Weekly Average	4.7	< 3.0	12.8	< 3.0	< 3.0	6.4	8.9	7.7	< 3.0	11.1	< 3.0	< 3.0
BOD5 (lbs/day)												
Influent br/> Average												
Monthly	167	154	278	218	201	140	120	148	97	89	180	200
BOD5 (mg/L)												
Influent Average												
Monthly	125	163	155	204	109	89	126	189	132	176	316	240
TSS (lbs/day)												
Average Monthly	< 14	< 3	23	< 4	< 5	< 6	< 3	< 3	< 2	< 2	< 2	< 2
TSS (lbs/day)												
Influent Average												
Monthly	62	88	111	129	126	132	74	82	61	67	173	208
TSS (lbs/day)												
Weekly Average	62	< 4	80	8	8	9	5	4	3	4	3	2
TSS (mg/L)												
Average Monthly	< 3.5	< 2.8	12.5	< 4.2	< 2.5	< 3.7	< 2.8	< 3.5	< 1.9	< 3.4	< 2.8	< 1.9

NPDES Permit Fact Sheet SSABS Wastewater Treatment Plant

TSS (mg/L)												
Influent br/> Average												
Monthly	59	91	66	119	68	91	86	107	66	136	302	248
TSS (mg/L)												
Weekly Average	8.4	< 4.0	42.8	8.0	4.8	6.4	3.6	5.6	2.0	8.4	4.4	2.8
Fecal Coliform												
(No./100 ml)												
Geometric Mean	< 7	< 1	< 1	< 7	< 3	< 2	< 1	< 1	< 1	< 2	< 1	< 1
Fecal Coliform												
(No./100 ml)												
Instantaneous							_					
Maximum	2419.6	< 1	2	2419.6	12.1	3.1	< 1	1	1	3.1	1	1
Nitrate-Nitrite (mg/L)	4 =====		0.4==	4 = 40	4.040	0.704	0.400					
Average Monthly	< 1.7767	< 3.944	< 2.155	< 1.748	< 1.918	< 2.561	< 3.108	< 3.577	< 3.977	< 3.7257	< 4.9645	< 3.0399
Nitrate-Nitrite (lbs)	.400.0	.404.0	.440.7	. 40. 4	.440.0	400.4	.00.5	.00.7	.00.5		.04	.00.0
Total Monthly	< 128.8	< 124.3	< 118.7	< 48.4	< 116.2	< 130.1	< 98.5	< 82.7	< 92.5	< 66	< 94	< 83.3
Total Nitrogen (mg/L)	. 0.0577	4.007	. 0. 777	0.040	0.404	. 0.007	. 4 74	4.500	4 4004	4 4004	. 5 7404	2 7405
Average Monthly	< 3.0577	< 4.687	< 2.777	< 2.819	< 2.431	< 3.207	< 4.74	< 4.523	< 4.4864	< 4.4984	< 5.7401	< 3.7105
Total Nitrogen (lbs)												
Effluent Net Total Monthly	. 250.2	. 4 4 5 0	. 450.4	. 70 F	. 4 47 4	162.6	. 150.2	. 1016	. 101 5	. 70.6	. 100.0	. 100 7
Total Monthly	< 259.3	< 145.8	< 153.1	< 78.5	< 147.4	102.0	< 150.3	< 104.6	< 104.5	< 79.6	< 108.9	< 102.7
Total Nitrogen (lbs) Total Monthly	< 259.3	< 145.8	< 153.1	< 78.5	< 147.4	< 162.6	< 150.3	< 104.6	< 104.5	< 79.6	< 108.9	< 102.7
Total Nitrogen (lbs)	< 239.3	< 145.0	< 133.1	Z 70.5	< 147.4	< 102.0	Z 130.3	< 104.0	< 104.5	< 79.0	< 100.9	< 102.7
Effluent Net 												
Total Annual									< 1783			
Total Nitrogen (lbs)									1700			
Total Annual									< 1783			
Ammonia (mg/L)									11.00			
Average Monthly	< 0.457	< 0.131	< 0.112	0.558	< 0.126	< 0.106	< 0.166	< 0.247	< 0.172	0.325	0.374	0.164
Ammonia (lbs)								-	-			
Total Monthly	< 68.3	< 4.1	< 6.1	15.4	< 7.9	< 5.4	< 5.1	< 5.5	< 3.9	5.7	7	4.3
TKN (mg/L)												
Average Monthly	< 1.281	< 0.744	< 0.623	1.1	< 0.514	< 0.646	< 1.632	< 0.946	< 0.509	< 0.761	< 0.776	< 0.671
TKN (lbs)												
Total Monthly	< 130.4	< 21.5	< 34.4	30.1	< 31.2	< 32.5	< 51.8	< 21.9	< 11.9	< 13.3	< 14.9	< 18.9
Total Phosphorus												
(mg/L)												
Average Monthly	0.973	1.3	0.5	0.8	0.7	0.445	0.4	0.5	1.0	1.228	0.8	1.1
Total Phosphorus (lbs)												
Effluent Net 												
Total Monthly	60.2	37.4	27.4	23.5	39.4	< 23.4	11.3	11.6	23.7	21.1	14.9	31.6
Total Phosphorus (lbs)												
Total Monthly	60.2	37.4	27.4	23.5	39.4	23.4	11.3	11.6	23.7	21.1	14.9	31.6

NPDES Permit Fact Sheet SSABS Wastewater Treatment Plant

NPDES Permit No. PA0060135

Total Phosphorus (lbs) Effluent Net 												
Total Annual									387			
Total Phosphorus (lbs) Total Annual									342			
Total Aluminum (lbs/day) Average Monthly	2.0	< 0.1	< 0.2	< 0.1	< 0.2	< 0.2	0.1	0.1	< 0.1	0.1	< 0.1	< 0.1
Total Aluminum	2.0	<u> </u>	₹ 0.2	<u> </u>	₹ 0.2	₹ 0.2	0.1	0.1	7 0.1	0.1	<u> </u>	<u> </u>
(mg/L) Average Monthly	0.31	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	0.1	0.16	< 0.1	0.19	< 0.1	< 0.1
Total Iron (lbs/day) Annual Average						< 0.1						
Total Iron (mg/L) Annual Average						< 0.2						
Total Manganese (lbs/day) Annual Average						0.02						
Total Manganese (mg/L) Annual Average						0.0359						

Compliance History

Effluent Violations for Outfall 001, from: July 1, 2022 To: May 31, 2023

Parameter	Date	SBC	DMR Value	Units	Limit Value	Units
Fecal Coliform	05/31/23	IMAX	2419.6	No./100 ml	1000	No./100 ml

Development of Effluent Limitations							
Outfall No.	001	Design Flow (MGD)	0.45				
Latitude	41° 8' 59.28"	Longitude	-76° 8' 38.79"				
Wastewater D	Nastewater Description: Sewage Effluent						

Technology-Based Limitations

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Pollutant	Limit (mg/l)	SBC	Federal Regulation	State Regulation
	25.0	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
CBOD₅	40.0	Average Weekly	122 102(a)(4)(ii)	020 47(0)(2)
	50.0	IMAX	133.102(a)(4)(ii)	92a.47(a)(2)
	30.0	Average Monthly	133.102(b)(1)	92a.47(a)(1)
Total Suspended	45.0	Average Weekly	133.102(b)(2)	92a.47(a)(2)
Solids	60.0	IMAX	133.102(b)(2)	92a.47 (a)(2)
рН	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform (5/1 – 9/30)	200 / 100 ml	Geo Mean	<u> </u>	92a.47(a)(4)
Fecal Coliform (5/1 – 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform (10/1 – 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
Fecal Coliform (10/1 – 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)
	0.5	Average Monthly		02a 49(b)(2)
Total Residual Chlorine	1.6	IMAX		92a.48(b)(2)
E. Coli	Report	IMAX	-	92a.61
Dissolved Oxygen	5.0	Minimum	-	BPJ

Water Quality-Based Limitations

The following limitations were determined through water quality modeling:

Parameter	Limit (mg/l)	SBC	Model
Ammonia-Nitrogen	Report	Average Monthly	BPJ
Total Phosphorus	Report	Average Monthly	Chesapeake Bay Monitoring
Aluminum, Total	Report	Average Monthly	Use of alum for TP treatment and TMDL for Acid Mine Drainage (AMD)
Iron, Total	Report	Annual Average	
Manganese, Total	Report	Annual Average	TMDL
Biochemical Oxygen Demand (BOD5) Raw Sewage Influent	Report	Average Monthly	POTW Requirement
Total Suspended Solids Raw Sewage Influent	Report	Average Monthly	

Anti-Backsliding

No limitations were made less stringent.

Modeling Using StreamStats:

At Outfall 001 on Susquehanna River:

RMI	Elevation (ft)	Drainage Area (mi ²)	Q ₇₋₁₀ Flow (cfs)
156.547	497.91	10,200	948

Low Flow Yield using StreamStats =
$$\frac{948 \ ft^3/sec}{10,200 \ mi^2}$$
 = $\mathbf{0.093} \ \frac{\mathbf{ft^3/sec}}{\mathbf{mi^2}}$

StreamStats Report

CAT THE PARTY OF T	Altoona ////.	Reading	Edison		Learlet Esti
Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	10200	square miles	4.93	1280
Low-Flow Statis	tics Flow Report [6.4 Pero	cent (651 square	miles) Low Flow F	Region 2]	
Statistic				Value	Unit
7 Day 2 Year Low	/ Flow			1720	ft^3/s
30 Day 2 Year Lo	w Flow			2090	ft^3/s
7 Day 10 Year Lo	w Flow			1220	ft^3/s
Low-Flow Statist	tics Flow Report [93.1 Pe	rcent (9480 squa	are miles) Low Flo	w Region 5]	
Statistic				Value	Unit
7 Day 2 Year Low	Flow			1410	ft^3/s
30 Day 2 Year Lov	w Flow			1710	ft^3/s
7 Day 10 Year Lov	w Flow			934	ft^3/s

Low-Flow Statistics Flow Report [Area-Averaged]				
Statistic	Value	Unit		
7 Day 2 Year Low Flow	1420	ft^3/s		
30 Day 2 Year Low Flow	1730	ft^3/s		
7 Day 10 Year Low Flow	948	ft^3/s		

At confluence with Unnamed Tributary 28288 to Susquehanna River:

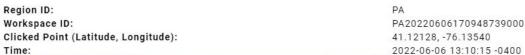
RMI	Elevation (ft)	Drainage Area (mi ²)
156.328	497.85	10,200.1

StreamStats Report

 Region ID:
 PA

 Workspace ID:
 PA20220606165919554000

Clicked Point (Latitude, Longitude): 41.14628, -76.14648



Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	10200	square miles	4.93	1280

At confluence with Unnamed Tributary 28283 to Susquehanna River:

RMI	Elevation (ft)	Drainage Area (mi ²)
154.44	495.67	10,200.3

StreamStats Report

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	10200	square miles	4.93	1280

Modeling with State-Wide default LFY of 0.1 cfs/mi²:

$$\frac{0.1\,ft^3/sec}{mi^2}\times 10{,}200\,mi^2=\frac{1{,}020\,ft^3}{sec}$$

WQM 7.0 Effluent Limits

	SWP Basin Str	eam Code		Stream Name	2			
	07 K	6685		SUSQUEHANNA F	RIVER			
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)	
156.547	Shickshinny	PA0080135	0.450	CBOD5	25			
				NH3-N	25	50		
				Dissolved Oxygen			3	

TRC EVALUA						
Input appropriate values in A3:A9 and D3:D9						
	= Q stream (cfs)			= CV Daily		
	= Q discharg			= CV Hourly		
	= no. sample			= AFC_Partial Mix Factor		
		emand of Stream		= CFC_Partial Mix Factor		
		emand of Discharge		= AFC_Criteria Compliance Time (min)		
	= BAT/BPJ V				Compliance Time (min)	
0		of Safety (FOS)		=Decay Coeffici	` '	
Source	Reference	AFC Calculations		Reference	CFC Calculations	
TRC	1.3.2.iii	WLA afc =		1.3.2.iii	WLA cfc = 423.523	
PENTOXSD TRG	5.1a	LTAMULT afc =		5.1c	LTAMULT cfc = 0.581	
PENTOXSD TRG	5.1b	LTA_afc=	161.877	5.1d	LTA_cfc = 246.217	
Source PENTOXSD TRG	5.1f	Effluer	nt Limit Calcul			
PENTOXSD TRG	5.11 5.1g	AVC MONU	= AML MULT = (IMIT (mg/l)		BAT/BPJ	
PENTOASD ING	5. Ig		LIMIT (mg/l) = LIMIT (mg/l) =		BAT/BP3	
		INST WAX	LIMIT (IIIg/I) =	1.000		
WLA afc	(.019/e(-k*Af	FC_tc)) + [(AFC_Yc*Qs*.019/	Qd*e(-k*AFC	tc))		
		C_Yc*Qs*Xs/Qd)]*(1-FOS/100		- "		
LTAMULT afc	EXP((0.5*LN)	(cvh^2+1))-2.326*LN(cvh^2+	1)^0.5)			
LTA_afc	wla_afc*LTA	MULT_afc				
WLA_cfc		FC_tc) + [(CFC_Yc*Qs*.011/0		tc))		
	+ Xd + (CFC_Yc*Qs*Xs/Qd)]*(1-FOS/100)					
LTAMULT_cfc	**	(cvd^2/no_samples+1))-2.326	6*LN(cvd^2/n	o_samples+1)^0	.5)	
LTA_cfc	wla_cfc*LTA	MULT_cfc				
AMI MILIT	EVD(0.200*I	N//	5) O E*I N/	۸۵/ا	4))	
AML MULT	•	N((cvd^2/no_samples+1)^0.5		··z/no_samples+	'))	
INST MAX LIMIT	AVG MON LIMIT MIN(BAT_BPJ,MIN(LTA_afc,LTA_cfc)*AML_MULT) INST MAX LIMIT 1.5*((av_mon_limit/AML_MULT)/LTAMULT_afc)					
MAX LIMIT	((av_iiioi		·_aic)			

WQM 7.0.pdf

TMS PA0080135.pdf

Approve	Deny	Signatures	Date
X		/s/ Allison Seyfried / Project Manager	September 19, 2023
Х		/s/ Amy M. Bellanca, P.E. / Program Manager	9-22-23