

Northeast Regional Office CLEAN WATER PROGRAM

Application Type

Application Type

Facility Type

Renewal &
Transfer

NonMunicipal

Minor

Major / Minor

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

Application No. PA0062031 A-2

APS ID 1103529

Authorization ID 1466856

	Applicant	and Facility Information	
Applicant Name	Twin Cedars Senior Living	Facility Name	Twin Cedars Senior Living
Applicant Address	364 Little Walker Road	Facility Address	364 Little Walker Road
	Shohola, PA 18458-2805		Shohola, PA 18458-2805
Applicant Contact	Michael P. Grim, Facility Director	Facility Contact	Michael P. Grim, Facility Director
Applicant Phone	_(570) 296-7471	Facility Phone	(570) 296-7471
Client ID	381765	Site ID	4344
Ch 94 Load Status	Not Overloaded	Municipality	Shohola Township
Connection Status		County	Pike
Date Application Rece	eived December 3, 2021	EPA Waived?	Yes
Date Application Acce	epted January 8, 2024	If No, Reason	-
Purpose of Application	n Renewal and transfer of NF	PDES permit for discharge of tree	ated sewage.

Summary of Review

The applicant is requesting the renewal and transfer of an NPDES permit to discharge up to 0.00784 MGD of treated sewage into an Unnamed Tributary to Walker Lake Creek, a High Quality, Cold-Water Fishery, Migratory Fish (HQ, CWF, MF) receiving stream in State Water Plan Basin 1-D (Shohola – Bushkill Creeks). As per the Department's current existing use list, the receiving stream does not have an existing use classification that is more protective than its designated use. This stream segment is not designated as a naturally reproducing trout stream as per PA Fish & Boat Commission. This discharge is not expected to affect public water supplies.

Limitations for pH, Total Suspended Solids (TSS), and Fecal Coliform are technology-based and carried over from the previous permit.

Limitations for CBOD₅, Dissolved Oxygen (DO), Total Phosphorous, and Nitrate-Nitrite as N are water quality-based and carried over from the previous permit.

The annual monitoring and reporting for Total Nitrogen and Total Kjeldahl Nitrogen has also been maintained in this permit.

WQM modeling recommended stricter summertime limitations for Ammonia-Nitrogen (2.34 mg/L monthly average, 4.68 mg/L IMAX). These limitations will come into effect three (3) years after the permit effective date. Wintertime monitoring/reporting for Ammonia-Nitrogen has also been updated to three times the new summertime limitations (7.0 mg/L monthly average, 14.0 mg/L IMAX). The limitations for Ammonia-Nitrogen from the previously issued permit will be in effect the first three (3) years of the permit. eDMR data from the past year confirms the facility should be able to meet these new limits.

The previously issued permit did not contain Total Residual Chlorine (TRC) limitations since the WWTP utilizes ultraviolet light for disinfection. In the event the facility uses chlorine for cleaning purposes or as a back-up disinfection option, Total

Approve	Deny	Signatures	Date
Х		/s/ Allison Seyfried / Project Manager	March 26, 2024
Х		/s/ Amy M. Bellanca, P.E. / Program Manager	4-10-24

Summary of Review

Residual Chlorine (TRC) should be sampled "daily when discharging" (see requirements under Part C.I.E). The TRC Calculation Spreadsheet recommends a stricter IMAX limitation than the state-wide technology limitation.

Sewage discharges now require monitoring and reporting for E. Coli. A monitoring frequency of 1/month for design flows >= 1 MGD, 1/quarter for design flows >= 0.05 and < 1 MGD, 1/year for design flows of 0.002 – 0.05 MGD will be utilized.

Monitoring frequencies for all parameters with limitations have been updated to the recommended frequencies found in Table 6-3 of DEP's Technical Guidance for the Development and Specification of Effluent Limitations (Document No. 362-0400-001). The "Daily when Discharging" frequency has been maintained from the previous permit for pH and DO.

There are no representative stream gages in the vicinity of the outfall and the drainage area at Outfall 001 is too small for USGS StreamStats to estimate accurate low flow values. The previous permit utilized a LFY of 0.022 cfs/mi² which was based off of the 2011 WPC report. This LFY was carried over for this permit renewal. For modeling inputs, RMI values were obtained using the "PA Historic Streams" feature of eMapPA, drainage areas were delineated using USGS's StreamStats Interactive Map, and elevations were obtained using the elevation profile feature of StreamStats.

The existing permit expired on September 30, 2022 and the application for renewal was received on time on December 3, 2021. The application was deficient. An Administrative Deficiencies email was sent on December 17, 2021. The application was not able to be marked as administratively complete until April 26, 2022. During the technical review it was discovered the EIN form the previous permit did not match the EIN submitted on the renewal application. The permittee was emailed regarding the discrepancy on February 24, 2023. A complete transfer application was not received until January 8, 2024. The permittee has informed the Department that there has been no change in physical ownership, but that a change in EIN has occurred.

The permit is being transferred from Twin Cedars Senior Living LLC (EIN 45-1145477, Client ID # 326109) to Twin Cedars Senior Living (EIN 84-2787021, Client ID # 381765).

An "A-2" notation has been added after the NPDES permit to represent the number of transfers since the original permit was issued.

WQM Permit 5275409 will be transferred concurrently with the final NPDES Permit.

A Water Management System Inspection guery indicated that on March 11, 2022 a Compliance Evaluation was performed.

There are currently no open violations for either client that warrant withholding issuance of this permit.

Sludge use and disposal description and location(s): As per the permittee's Sewage Sludge and Biosolids Supplemental Report form, sludge is hauled to the Pike County Environmental in Westfall Township, Pike County, PA by M&S.

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

NPDES Permit Fact Sheet Twin Cedars Senior Living

Discharge, Receiving	g Waters and Water Supply Informa	ation	
Outfall No. 001		Design Flow (MGD)	0.00784
Latitude 41° 2	23' 37.00"	Longitude	-74° 55' 27.00"
Quad Name Sh	ohola	Quad Code	0746
Wastewater Descrip	ption: Sewage Effluent		
Receiving Waters	Unnamed Tributary to Walker Lake Creek (HQ-CWF)	Stream Code	5326
NHD Com ID	26172792	_ RMI	0.885
Drainage Area	0.22 mi ²	Yield (cfs/mi²)	0.022
Q ₇₋₁₀ Flow (cfs)	0.005	Q ₇₋₁₀ Basis	2011 WPC Report and previous permit renewal
Elevation (ft)	1,369.5	Slope (ft/ft)	
Watershed No.	1-D	Chapter 93 Class.	HQ-CWF
Existing Use	-	Existing Use Qualifier	-
Exceptions to Use	-	Exceptions to Criteria	-
Assessment Status	Attaining Use(s)		
Cause(s) of Impairr	ment -		
Source(s) of Impair	ment -		
TMDL Status	-	Name -	
ĺ	m Public Water Supply Intake	Easton Area Water System	
<u> </u>	Delaware River	Flow at Intake (cfs)	_=
PWS RMI	110.4	Distance from Outfall (mi)	~ 90.35

Treatment	E Facility	y Summary

Treatment Facility Name: Twin Cedars Senior Living

WQM Permit No.	Issuance Date	Scope
5275409-T2	TBD	Permit transfer to current owner/operator
5275409-T1	9/07/2017	Permit transfer to previous owner/operator
5275409	8/6/1975	Original STP consisting to two stage extended aeration system, settling, sand filtration, chemical feeders, sludge holding, and post-aeration

Waste Type	Degree of Treatment	Process Type	Disinfection	Avg Annual Flow (MGD)
Sewage	Secondary	Extended aeration	UV	0.00147 (2018-2020)

Hydraulic Capacity (MGD)	Organic Capacity (Ibs/day)	Load Status	Biosolids Treatment	Biosolids Use/Disposal
0.00784	11.73	Not Overloaded	Holding Tank	Hauled

Compliance History

DMR Data for Outfall 001 (from February 1, 2023 to January 31, 2024)

Flow (MGD)	Parameter	JAN-24	DEC-23	NOV-23	OCT-23	SEP-23	AUG-23	JUL-23	JUN-23	MAY-23	APR-23	MAR-23	FEB-23
Flow (MGD)	Flow (MGD)				0.00093								
Daily Maximum 0.00472 0.0239 0.0048 0.00369 0.0065 0.0058 47 0.00344 0.004 0.0009 0.00670 0.00356 pH (S.U.) pH (S.U.) Minimum 7.0 7.0 6.75 6.9 7.1 7.24 7.04 6.78 6.61 6.78 6.83 6.22 pH (S.U.) minimum 7.61 7.8 7.8 7.8 7.77 7.8 7.9 7.71 7.9 7.71 7.6 7.84 6.78 DO (mg/L) Minimum 8.4 7.1 8.1 7.8 7.44 7.4 7.3 7.3 7.15 7.2 8.22 8.1 CBOD5 (mg/L) Average Monthly < 3.0 12.0 3.0 3.0 3.0 3.0 <3.0 4.0 5.0 7.0 3.0 3.0 3.0 <3.0 Average Monthly 10.0 12.0 5.0 4.0 5.0 4.0 <5.0 ×4.0 4.0 7.0 <4.0 4.0 Fecal Coliform (No./100 mi) Geometric Mean < 4.0 18 < 2.0 2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0	Average Monthly	0.00249	0.00366	0.00178	7	0.0014	0.00159	0.00169	0.00145	0.0015	0.0004	0.00245	0.00148
PH (S.U.) Minimum 7.0 7.0 6.75 6.9 7.1 7.24 7.04 6.78 6.61 6.78 6.83 6.22 PH (S.U.) Maximum 7.61 7.8 7.8 7.8 7.77 7.8 7.9 7.71 7.9 7.71 7.6 7.84 6.78 DO (mg/L.) Minimum 8.4 7.1 8.1 7.8 7.44 7.4 7.3 7.3 7.15 7.2 8.22 8.1 CBODS (mg/L.) Minimum 8.4 7.1 8.1 7.8 7.44 7.4 7.3 7.3 7.15 7.2 8.22 8.1 CBODS (mg/L.) Minimum 8.4 7.1 8.1 7.8 7.44 7.4 7.3 7.3 7.15 7.2 8.22 8.1 CBODS (mg/L.) Minimum 8.4 7.1 8.1 7.8 7.44 7.4 7.3 7.3 7.15 7.2 8.22 8.1 CBODS (mg/L.) Minimum 8.4 7.1 8.1 7.8 7.44 7.4 7.3 7.3 7.15 7.2 8.22 8.1 CBODS (mg/L.) Minimum 8.4 7.1 8.1 7.8 7.44 7.4 7.3 7.3 7.15 7.2 8.22 8.1 CBODS (mg/L.) Minimum 8.4 7.1 8.1 7.8 7.44 7.4 7.3 7.3 7.15 7.2 8.22 8.1 CBODS (mg/L.) Minimum 8.4 7.1 8.1 7.8 7.44 7.4 7.3 7.3 7.15 7.2 8.22 8.1 CBODS (mg/L.) Minimum 8.4 7.1 8.1 7.8 7.44 7.4 7.3 7.3 7.15 7.2 8.22 8.1 CBODS (mg/L.) Minimum 8.4 7.1 8.1 7.8 7.44 7.4 7.3 7.3 7.15 7.2 8.22 8.1 CBODS (mg/L.) Minimum 8.4 7.1 8.1 7.8 7.44 7.4 7.3 7.3 7.15 7.2 8.22 8.1 CBODS (mg/L.) Minimum 8.4 7.1 8.1 7.8 7.44 7.4 7.3 7.3 7.15 7.2 8.22 8.1 CBODS (mg/L.) Minimum 7.0	Flow (MGD)												
Minimum	Daily Maximum	0.00472	0.0239	0.0048	0.00369	0.0065	0.0058	47	0.00344	0.004	0.0009	0.00670	0.00356
PH (S.U.) Maximum 7.61 7.8 7.8 7.77 7.8 7.9 7.71 7.9 7.71 7.6 7.84 6.78 DO (mg/L) Minimum 8.4 7.1 8.1 7.8 7.44 7.4 7.3 7.3 7.15 7.2 8.22 8.1 CBOD5 (mg/L) Average Monthly <3.0 12.0 3.0 3.0 3.0 3.0 4.0 5.0 7.0 3.0 3.0 3.0 <3.0 TSS (mg/L) Average Monthly 10.0 12.0 5.0 4.0 5.0 4.0 <5.0 <4.0 4.0 7.0 <4.0 4.0 Fecal Coliform (No./100 ml) Geometric Mean <4.0 18 <2.0 2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0	pH (S.U.)												
Maximum		7.0	7.0	6.75	6.9	7.1	7.24	7.04	6.78	6.61	6.78	6.83	6.22
DO (mg/L) Minimum 8.4 7.1 8.1 7.8 7.44 7.4 7.3 7.3 7.15 7.2 8.22 8.1	pH (S.U.)												
Minimum 8.4 7.1 8.1 7.8 7.44 7.4 7.3 7.3 7.15 7.2 8.22 8.1		7.61	7.8	7.8	7.77	7.8	7.9	7.71	7.9	7.71	7.6	7.84	6.78
CBOD5 (mg/L)													
Average Monthly <3.0 12.0 3.		8.4	7.1	8.1	7.8	7.44	7.4	7.3	7.3	7.15	7.2	8.22	8.1
TSS (mg/L) Average Monthly 10.0 12.0 5.0 4.0 5.0 4.0 <5.0 <4.0 4.0 7.0 <4.0 4.0 7.0 <4.0 4.0 Fecal Coliform (No./100 ml) Geometric Mean <4.0 18 <2.0 2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \												
Average Monthly 10.0 12.0 5.0 4.0 5.0 4.0 < 5.0 < 4.0 4.0 7.0 < 4.0 4.0		< 3.0	12.0	3.0	3.0	3.0	< 3.0	4.0	5.0	7.0	3.0	3.0	< 3.0
Fecal Coliform (No/100 ml) Geometric Mean < 4.0 18 < 2.0 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2													
No./100 ml) Seometric Mean < 4.0 18 < 2.0 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 <		10.0	12.0	5.0	4.0	5.0	4.0	< 5.0	< 4.0	4.0	7.0	< 4.0	4.0
Geometric Mean Carlo Car													
Fecal Coliform (No./100 ml) Instantaneous Maximum													
No./100 ml Instantaneous Maximum		< 4.0	18	< 2.0	2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	2.0
Instantaneous Maximum													
Maximum < 4.0 18 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0	,												
Nitrate-Nitrite (lbs/day) Average Monthly 0.074 0.023 0.024 0.007 0.006 0.0299 0.025 0.0087 0.0049 0.0049 0.00218 0.00517 0.0170			10										
Average Monthly 0.074 0.023 0.024 0.007 0.006 0.0299 0.025 0.0087 0.0049 0.00218 0.0517 0.0170 Nitrate-Nitrite (mg/L) Average Monthly 4.87 2.32 < 1.05 < 1.43 1.05 1.06 1.07 1.13 < 1.05 2.3 2.3 Total Nitrogen (lbs/day) Annual Average 0.052 Total Nitrogen (mg/L) Annual Average 1.84 Ammonia (mg/L) Average Monthly < 1.0 1.29 < 1.0 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 TKN (lbs/day) Annual Average 0.022 TKN (mg/L)		< 4.0	18	< 2.0	2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	2.0
Nitrate-Nitrite (mg/L) Average Monthly 4.87 2.32		0.074	0.000	0.004	0.007	0.000	0.0000	0.005	0.0007	0.0040	0.00040	0.0547	0.0470
Average Monthly 4.87 2.32 < 1.05 < 1.43 1.05 1.06 1.07 1.13 < 1.05 2.3 2.3 Total Nitrogen (lbs/day) Annual Average 0.052 Total Nitrogen (mg/L) Annual Average 1.84 Ammonia (mg/L) Average Monthly < 1.0 1.29 < 1.0 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 TKN (lbs/day) Annual Average 0.022		0.074	0.023	0.024	0.007	0.006	0.0299	0.025	0.0087	0.0049	0.00218	0.0517	0.0170
Total Nitrogen (lbs/day) Annual Average		4.07	0.00	1 05	. 1 12	1.05	1.05	4.00	4.07	4.40	. 1.05	0.0	0.0
Control Nitrogen (mg/L)		4.87	2.32	< 1.05	< 1.43	1.05	1.05	1.06	1.07	1.13	< 1.05	2.3	2.3
Annual Average 0.052 Image: Control of the property o													
Total Nitrogen (mg/L) Annual Average Ammonia (mg/L) Average Monthly Average Monthly TKN (lbs/day) Annual Average TKN (mg/L) TKN (mg/L) 1.84 1.8			0.052										
Annual Average 1.84 Ammonia (mg/L) Average Monthly < 1.0			0.032										
Ammonia (mg/L) Average Monthly < 1.0			1.84										
Average Monthly < 1.0 1.29 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0			1.04										
TKN (lbs/day) Annual Average TKN (mg/L)		< 1.0	1 29	< 10	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 10	< 10
Annual Average 0.022 Control C		V 1.0	1.25	× 1.0	1.0	V 1.0	\ 1.0	\ 1.0	V 1.0	\ 1.0	\ 1.0	V 1.0	V 1.0
TKN (mg/L)			0.022										
			0.522										
	Annual Average		0.79										

NPDES Permit Fact Sheet Twin Cedars Senior Living

NPDES Permit No. PA0062031 A-2

Total Phosphorus (lbs/day)												
Average Monthly	0.0024	0.0048	0.0044	0.0018	0.0028	0.0031	0.0081	0.00238	0.0039	0.00213	0.0036	0.0011
Total Phosphorus (mg/L)												
Average Monthly	0.16	0.49	1.6	0.35	0.47	0.11	0.34	0.29	0.9	0.59	0.16	0.16

Development of Effluent Limitations							
Outfall No.	001	Design Flow (MGD)	0.00784				
Latitude	41° 23′ 36.00″	Longitude	-74º 55' 28.00"				
Wastewater D	Description: Sewage Effluent	_					

Technology-Based Limitations

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Pollutant	Limit (mg/l)	SBC	Federal Regulation	State Regulation
Total Suspended	30.0	Average Monthly	133.102(b)(1)	92a.47(a)(1)
Solids	60.0	IMAX	133.102(b)(2)	92a.47(a)(2)
pH	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform				
(5/1 - 9/30)	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
Fecal Coliform				
(5/1 - 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform				
(10/1 - 4/30)	2,000 / 100 ml	Geo Mean		92a.47(a)(5)
Fecal Coliform				
(10/1 - 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)
E. Coli (No./100 ml)	Report	IMAX	-	92a.61

Water Quality-Based Limitations

The following limitations were determined through water quality modeling:

Parameter	Limit (mg/l)	SBC	Model
CBOD5	10.0	Average Monthly	
(May 1 - Oct 31)	20.0	IMAX	Previous Modeling – 2011 WPC Report
CBOD5	25.0	Average Monthly	Previous Modelling – 2011 WPC Report
(Nov 1 - Apr 30)	50.0	IMAX	
Total Residual Chlorine	0.23	IMAX	TRC Calculation Spreadsheet
Ammonia-Nitrogen	2.34	Average Monthly	
(May 1 - Oct 31)	4.68	IMAX	WQM 7.0
Ammonia-Nitrogen	7.0	Average Monthly	VVQIVI 7.0
(Nov 1 - Apr 30)	14.0	IMAX	
	2.0	Monthly Average	
Total Phosphorus	4.0	IMAX	Previous Modeling – 2011 WPC Report
	Report (lb/day)	Monthly Average	
	14.0	Monthly Average	
Nitrate-Nitrite as N	28.0	IMAX	Previous Modeling – 2011 WPC Report
	Report (lb/day)	Monthly Average	
Dissolved Oxygen (DO)	7.0	Minimum	Previous Modeling – 2011 WPC Report
Total Kjehldahl Nitrogen	Report	Monthly Average	Previous Permit
(TKN)	Report (lb/day)	Monthly Average	Flevious Fermit
Total Nitrogon	Report	Monthly Average	Previous Permit
Total Nitrogen	Report (lb/day)	Monthly Average	Fievious Feiffill

Anti-Backsliding

No limitations were made less stringent.

$$Q_{7-10}$$
 at Outfall 001 using 2011 WPC Report = 0.022 $ft^3/sec \times 0.22 mi^2 = 0.00484 \frac{ft^3/sec}{mi^2}$

Modeling with State-Wide default LFY of 0.1 cfs/mi²:

$$\frac{0.1 \, ft^3/sec}{mi^2} \times 0.22 \, mi^2 = \frac{\mathbf{0.022} \, ft^3}{sec}$$

Modeling Using StreamStats:

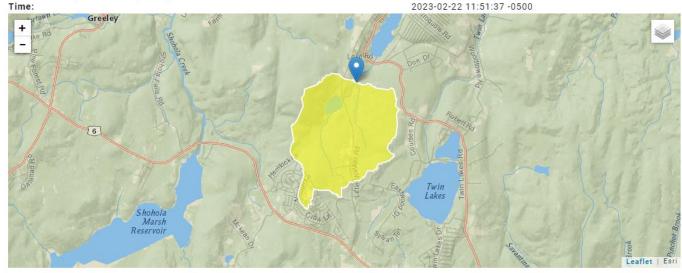
At Outfall 001 to Unknown Tributary to Walker Lake Creek:

RMI	Elevation (ft)	Drainage Area (mi²)	Q ₇₋₁₀ Flow (cfs)
0.8845	1,369.50	0.22	0.00324

Low Flow Yield using StreamStats =
$$\frac{0.00324 \, ft^3/sec}{0.22 \, mi^2} = \mathbf{0.0147} \, \frac{ft^3/sec}{mi^2}$$

StreamStats Report

Region ID: Workspace ID: Clicked Point (Latitude, Longitude): Time: PA PA20230222164500973000 41.39370, -74.92416 2023-02-22 11:45:21 -0500



Low-Flow Statistics P	Parameters [Low Flow Region 5]				
Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	0.22	square miles	4.84	982
One or more of the parame			unknown errors. Value		Unit
					Unit ft^3/s
Statistic	W		Value		

At confluence with Walker Lake Creek:

StreamStats Report

Region ID: Workspace ID: Clicked Point (Latitude, Longitude): PA PA20230222165117671000 41.40556, -74.92633 2023-02-22 11:51:37 -0500

Parameter Code	Parameter Description	Value	Unit
DRNAREA	Area that drains to a point on a stream	1.89	square miles

WQM 7.0 Effluent Limits

SWP Basin Stream Code Stream Name 01D 5326 Trib 05326 to Walker Lake Creek

RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	
0.885	Twin Cedars	PA0062031	0.008	CBOD5	25		
				NH3-N	2.34	4.68	
				Dissolved Oxygen			4

Description								
0.005	TRC EVALUATION							
0.00784	Input appropriate values in A3:A9 and D3:D9							
Source Stram Str	0.005 = Q stream (cfs) 0.5 = CV Daily							
Chlorine Demand of Stream	0.00784	= Q discharg	e (MGD)	0.5	= CV Hourly			
Chlorine Demand of Discharge	30	= no. sample	8	= AFC_Partial Mix Factor				
Source Reference AFC Calculations Reference CFC Calculations	0.3	0.3 = Chlorine Demand of Stream 1				= CFC_Partial Mix Factor		
Source Reference AFC Calculations Reference CFC Calculations	0	= Chlorine D	emand of Discharge	15	= AFC_Criteria Compliance Time (min)			
Source Reference AFC Calculations Reference CFC Calculations	0.5	= BAT/BPJ V	alue	720	= CFC_Criteria	Compliance Time (min)		
TRC 1.3.2.iii WLA afc = 0.151 1.3.2.iii WLA cfc = 0.139 PENTOXSD TRG 5.1a LTAMULT afc = 0.373 5.1c LTAMULT cfc = 0.581 PENTOXSD TRG 5.1b LTA_afc= 0.056 5.1d LTA_cfc = 0.081 Source Effluent Limit Calculations PENTOXSD TRG 5.1f AML MULT = 1.231 PENTOXSD TRG 5.1g AVG MON LIMIT (mg/l) = 0.069 AFC INST MAX LIMIT (mg/l) = 0.226 NLA afc (.019/e(-k*AFC_tc)) + [(AFC_Yc*Qs*.019/Qd*e(-k*AFC_tc))+ Xd + (AFC_Yc*Qs*Xs/Qd)]*(1-FOS/100) LTAMULT afc EXP((0.5*LN(cvh^2+1))-2.326*LN(cvh^2+1)^0.5)+ Xd + (GFC_Yc*Qs*Xs/Qd)]*(1-FOS/100) LTA_afc (.011/e(-k*CFC_tc) + [(CFC_Yc*Qs*.011/Qd*e(-k*CFC_tc))+ Xd + (GFC_Yc*Qs*Xs/Qd)]*(1-FOS/100) LTAMULT_cfc (.011/e(-k*CFC_tc) + [(CFC_Yc*Qs*.011/Qd*e(-k*CFC_tc))+ Xd + (GFC_Yc*Qs*Xs/Qd)]*(1-FOS/100) EXP((0.5*LN(cvd^2/no_samples+1))-2.326*LN(cvd^2/no_samples+1)^0.5) LTAMULT_cfc Value (Cvd^2/no_samples+1)^0.5)-0.5*LN(cvd^2/no_samples+1) MULT EXP(2.326*LN((cvd^2/no_samples+1)^0.5)-0.5*LN(cvd^2/no_samples+1)) MIN(BAT_BPJ,MIN(LTA_afc,LTA_cfc)*AML_MULT)	0	= % Factor o	of Safety (FOS)		=Decay Coeffici	ent (K)		
PENTOXSD TRG	Source	Reference	AFC Calculations		Reference	CFC Calculations		
Source Effluent Limit Calculations								
Source Effluent Limit Calculations								
PENTOXSD TRG 5.1f AML MULT = 1.231 AVG MON LIMIT (mg/l) = 0.069 AFC INST MAX LIMIT (mg/l) = 0.226 NLA afc (.019/e(-k*AFC_tc)) + [(AFC_Yc*Qs*.019/Qd*e(-k*AFC_tc))+Xd + (AFC_Yc*Qs*Xs/Qd)]*(1-FOS/100) LTAMULT afc EXP((0.5*LN(cvh^2+1))-2.326*LN(cvh^2+1)^0.5) LTA_afc wla_afc*LTAMULT_afc NLA_cfc (.011/e(-k*CFC_tc) + [(CFC_Yc*Qs*.011/Qd*e(-k*CFC_tc))+Xd + (CFC_Yc*Qs*Xs/Qd)]*(1-FOS/100) LTAMULT_cfc EXP((0.5*LN(cvd^2/no_samples+1))-2.326*LN(cvd^2/no_samples+1)^0.5) LTA_cfc wla_cfc*LTAMULT_cfc AML MULT EXP(2.326*LN((cvd^2/no_samples+1)^0.5)-0.5*LN(cvd^2/no_samples+1)) AVG MON LIMIT MIN(BAT_BPJ,MIN(LTA_afc,LTA_cfc)*AML_MULT)	PENTOXSD TRG	5.1b	LTA_afc=	0.056	5.1d	LTA_cfc = 0.081		
PENTOXSD TRG 5.1f AML MULT = 1.231 AVG MON LIMIT (mg/l) = 0.069 AFC INST MAX LIMIT (mg/l) = 0.226 NLA afc (.019/e(-k*AFC_tc)) + [(AFC_Yc*Qs*.019/Qd*e(-k*AFC_tc))+Xd + (AFC_Yc*Qs*Xs/Qd)]*(1-FOS/100) LTAMULT afc EXP((0.5*LN(cvh^2+1))-2.326*LN(cvh^2+1)^0.5) LTA_afc wla_afc*LTAMULT_afc NLA_cfc (.011/e(-k*CFC_tc) + [(CFC_Yc*Qs*.011/Qd*e(-k*CFC_tc))+Xd + (CFC_Yc*Qs*Xs/Qd)]*(1-FOS/100) LTAMULT_cfc EXP((0.5*LN(cvd^2/no_samples+1))-2.326*LN(cvd^2/no_samples+1)^0.5) LTA_cfc wla_cfc*LTAMULT_cfc AML MULT EXP(2.326*LN((cvd^2/no_samples+1)^0.5)-0.5*LN(cvd^2/no_samples+1)) AVG MON LIMIT MIN(BAT_BPJ,MIN(LTA_afc,LTA_cfc)*AML_MULT)			5/0					
PENTOXSD TRG 5.1g AVG MON LIMIT (mg/l) = 0.069 AFC INST MAX LIMIT (mg/l) = 0.026 NLA afc (.019/e(-k*AFC_tc)) + [(AFC_Yc*Qs*.019/Qd*e(-k*AFC_tc))+ Xd + (AFC_Yc*Qs*Xs/Qd)]*(1-FOS/100) LTAMULT afc EXP((0.5*LN(cvh^2+1))-2.326*LN(cvh^2+1)^0.5) LTA_afc wla_afc*LTAMULT_afc NLA_cfc (.011/e(-k*CFC_tc) + [(CFC_Yc*Qs*.011/Qd*e(-k*CFC_tc))+ Xd + (CFC_Yc*Qs*Xs/Qd)]*(1-FOS/100) LTAMULT_cfc EXP((0.5*LN(cvd^2/no_samples+1))-2.326*LN(cvd^2/no_samples+1)^0.5) LTA_cfc wla_cfc*LTAMULT_cfc AML MULT EXP(2.326*LN((cvd^2/no_samples+1)) -0.5*LN(cvd^2/no_samples+1)) AVG MON LIMIT MIN(BAT_BPJ,MIN(LTA_afc,LTA_cfc)*AML_MULT)		F 45	Effluer					
INST MAX LIMIT (mg/l) = 0.226 NLA afc			AVO NOV			450		
NLA afc (.019/e(-k*AFC_tc)) + [(AFC_Yc*Qs*.019/Qd*e(-k*AFC_tc))+ Xd + (AFC_Yc*Qs*Xs/Qd)]*(1-FOS/100) LTAMULT afc EXP((0.5*LN(cvh^2+1))-2.326*LN(cvh^2+1)^0.5) LTA_afc Wla_afc*LTAMULT_afc NLA_cfc (.011/e(-k*CFC_tc) + [(CFC_Yc*Qs*.011/Qd*e(-k*CFC_tc))+ Xd + (CFC_Yc*Qs*Xs/Qd)]*(1-FOS/100) LTAMULT_cfc EXP((0.5*LN(cvd^2/no_samples+1))-2.326*LN(cvd^2/no_samples+1)^0.5) LTA_cfc Wla_cfc*LTAMULT_cfc EXP(2.326*LN((cvd^2/no_samples+1)^0.5)-0.5*LN(cvd^2/no_samples+1)) MIN MULT EXP(2.326*LN((cvd^2/no_samples+1)^0.5)-0.5*LN(cvd^2/no_samples+1)) MIN MIN MIN MIN MIN MIN (LTA_afc, LTA_cfc)*AML_MULT)	PENTOXSD ING				AFC			
+ Xd + (AFC_Yc*Qs*Xs/Qd)]*(1-FOS/100) LTAMULT afc	l		INST MAX	LIMIT (mg/l) =	0.220			
+ Xd + (AFC_Yc*Qs*Xs/Qd)]*(1-FOS/100) LTAMULT afc								
+ Xd + (AFC_Yc*Qs*Xs/Qd)]*(1-FOS/100) LTAMULT afc	l							
### EXP((0.5*LN(cvh^2+1))-2.326*LN(cvh^2+1)^0.5) ###################################	WLA afc	WLA afc (.019/e(-k*AFC tc)) + [(AFC Yc*Qs*.019/Qd*e(-k*AFC tc))						
\text{NLA_afc} \text{wla_afc*LTAMULT_afc} \text{Wla_afc*LTAMULT_afc} \text{(.011/e(-k*CFC_tc) + [(CFC_Yc*Qs*.011/Qd*e(-k*CFC_tc))} \text{ + Xd + (CFC_Yc*Qs*Xs/Qd)]*(1-FOS/100)} \text{LTAMULT_cfc} \text{EXP((0.5*LN(cvd^2/no_samples+1))-2.326*LN(cvd^2/no_samples+1)^0.5)} \text{wla_cfc*LTAMULT_cfc} \text{Wla_cfc*LTAMULT_cfc} \text{EXP(2.326*LN((cvd^2/no_samples+1)^0.5)-0.5*LN(cvd^2/no_samples+1))} \text{MIN (MIN (BAT_BPJ,MIN(LTA_afc,LTA_cfc)*AML_MULT)} \text{MIN (BAT_BPJ,MIN(LTA_afc,LTA_cfc)*AML_MULT)}	(
WLA_cfc (.011/e(-k*CFC_tc) + [(CFC_Yc*Qs*.011/Qd*e(-k*CFC_tc)) + Xd + (CFC_Yc*Qs*Xs/Qd)]*(1-FOS/100) .TAMULT_cfc EXP((0.5*LN(cvd^2/no_samples+1))-2.326*LN(cvd^2/no_samples+1)^0.5) .TA_cfc wla_cfc*LTAMULT_cfc AML MULT EXP(2.326*LN((cvd^2/no_samples+1)^0.5)-0.5*LN(cvd^2/no_samples+1)) AVG MON LIMIT MIN(BAT_BPJ,MIN(LTA_afc,LTA_cfc)*AML_MULT)	LTAMULT afc	, -						
+ Xd + (CFC_Yc*Qs*Xs/Qd)]*(1-FOS/100) LTAMULT_cfc EXP((0.5*LN(cvd^2/no_samples+1))-2.326*LN(cvd^2/no_samples+1)^0.5) LTA_cfc wla_cfc*LTAMULT_cfc AML MULT EXP(2.326*LN((cvd^2/no_samples+1)^0.5)-0.5*LN(cvd^2/no_samples+1)) AVG MON LIMIT MIN(BAT_BPJ,MIN(LTA_afc,LTA_cfc)*AML_MULT)	LTA_afc							
+ Xd + (CFC_Yc*Qs*Xs/Qd)]*(1-FOS/100) LTAMULT_cfc EXP((0.5*LN(cvd^2/no_samples+1))-2.326*LN(cvd^2/no_samples+1)^0.5) LTA_cfc wla_cfc*LTAMULT_cfc AML MULT EXP(2.326*LN((cvd^2/no_samples+1)^0.5)-0.5*LN(cvd^2/no_samples+1)) AVG MON LIMIT MIN(BAT_BPJ,MIN(LTA_afc,LTA_cfc)*AML_MULT)								
LTAMULT_cfc EXP((0.5*LN(cvd^2/no_samples+1))-2.326*LN(cvd^2/no_samples+1)^0.5) LTA_cfc wla_cfc*LTAMULT_cfc AML MULT EXP(2.326*LN((cvd^2/no_samples+1)^0.5)-0.5*LN(cvd^2/no_samples+1)) AVG MON LIMIT MIN(BAT_BPJ,MIN(LTA_afc,LTA_cfc)*AML_MULT)	WLA_cfc	- , , - , - , - , - , - , - , - , - , -						
AML MULT EXP(2.326*LN((cvd^2/no_samples+1)^0.5)-0.5*LN(cvd^2/no_samples+1)) AVG MON LIMIT MIN(BAT_BPJ,MIN(LTA_afc,LTA_cfc)*AML_MULT)	l	, - , , , , , , , , , , , , , , , , , ,						
AML MULT EXP(2.326*LN((cvd^2/no_samples+1)^0.5)-0.5*LN(cvd^2/no_samples+1)) AVG MON LIMIT MIN(BAT_BPJ,MIN(LTA_afc,LTA_cfc)*AML_MULT)	_							
AVG MON LIMIT MIN(BAT_BPJ,MIN(LTA_afc,LTA_cfc)*AML_MULT)	LIA_cfc	wia_cfc*LTA	MULI_cfc					
AVG MON LIMIT MIN(BAT_BPJ,MIN(LTA_afc,LTA_cfc)*AML_MULT)	AMI MILIT	EXP(2 326*I	N//cvd42/no samples±4\40 F	S)-0 5*I N/cyd/	12/no samples±	m.		
		•			Zno_samples+	•#		
!!	INST MAX LIMIT							
		1.5 ((41_1151_11115111151),217111521_2115)						

2011 WPC Report.pdf

WQM 7.0.pdf

Approve	Deny	Signatures	Date
Х		/s/ Allison Seyfried / Project Manager	March 26, 2024
Х		/s/ Amy M. Bellanca, P.E. / Program Manager	4-10-24