

Application Type

Renewal

Facility Type

Non-Municipal

Major / Minor

Minor

Application No.

PA0080446

APS ID

1005218

Authorization ID

1503375

**NPDES PERMIT FACT SHEET
INDIVIDUAL SEWAGE**

Applicant and Facility Information

Applicant Name	T&J Valley View MHP LLC	Facility Name	T & J Valley View MHP
Applicant Address	1 West King Street Suite 2a	Facility Address	Kuhn Road
	Shippensburg, PA 17257		Greencastle, PA 17225-9803
Applicant Contact	Joseph Elhajj	Facility Contact	Joseph Elhajj
Applicant Phone	(717) 530-8701	Facility Phone	(717) 530-8701
Client ID	353390	Site ID	3944
Ch 94 Load Status	Not Overloaded	Municipality	Antrim Township
Connection Status	No Limitations	County	Franklin
Date Application Received	October 15, 2024	EPA Waived?	Yes
Date Application Accepted	October 23, 2024	If No, Reason	
Purpose of Application	NPDES Permit Renewal.		

Summary of Review

The permittee has applied for reissuance of its NPDES permit for the existing discharge of treated sewage from T&J Valley View MHP. The permit was last reissued on February 24, 2020 and became effective on March 1, 2020. The permit expired on February 28, 2025 but the terms and conditions of the permit have been administratively extended since that time.

Based on the review, it is recommended that the permit be drafted.

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Approve	Deny	Signatures	Date
X		<i>Jinsu Kim</i> Jinsu Kim / Environmental Engineering Specialist	July 30, 2025
X		<i>Daniel W. Martin</i> Daniel W. Martin, P.E. / Environmental Engineer Manager	August 11, 2025

Discharge, Receiving Waters and Water Supply Information			
Outfall No.	001	Design Flow (MGD)	.01
Latitude	39° 49' 48.56"	Longitude	-77° 46' 39.33"
Quad Name	Williamson	Quad Code	2023
Wastewater Description: Sewage Effluent			
Receiving Waters	UNT of Conococheague Creek	Stream Code	59893
NHD Com ID	134368428	RMI	0.23
Drainage Area	0.14	Yield (cfs/mi ²)	0.111
Q ₇₋₁₀ Flow (cfs)	0.015	Q ₇₋₁₀ Basis	USGS gage no. 01614500
Elevation (ft)	502	Slope (ft/ft)	
Watershed No.	13-C	Chapter 93 Class.	WWF, MF
Existing Use		Existing Use Qualifier	
Exceptions to Use		Exceptions to Criteria	
Assessment Status	Attaining Use(s)		
Cause(s) of Impairment			
Source(s) of Impairment			
TMDL Status		Name	
Nearest Downstream Public Water Supply Intake		Hagerstown, MD	
PWS Waters	Potomac River	Flow at Intake (cfs)	
PWS RMI		Distance from Outfall (mi)	

Drainage Area

The discharge is ultimately to Unnamed Tributary 59893 of Conococheague Creek at RMI 0.23. A drainage area upstream of the point of discharge is estimated to be 0.14 sq.mi., according to USGS StreamStats available at <https://streamstats.usgs.gov/ss/>.

Streamflow

USGS StreamStats produced a Q₇₋₁₀ flow of 0.000585 cfs at the point of discharge. However, the estimated drainage area is lower than the minimum required value to be used in regression equations to accurately calculate the Q₇₋₁₀ flow. Therefore, streamflow has been correlated with the nearby USGS gage station (no. 01614500) near Fairview, MD.

$$\begin{aligned}
 \text{Low Flow Yield} &= Q_{7-10\text{gage}} / \text{Drainage Area}_{\text{gage}} = 55 \text{ cfs} / 494 \text{ sq. mi} = 0.111 \text{ cfs} / \text{sq.mi} \\
 Q_{7-10\text{site}} &= \text{Low Flow Yield} * \text{Drainage Area}_{\text{site}} = 0.111 \text{ cfs} / \text{sq.mi} * 0.14 \text{ sq.mi} = 0.015 \text{ cfs} \\
 Q_{1-10}/Q_{7-10} &= 48.1 \text{ cfs} / 55 \text{ cfs} = 0.87:1 \\
 Q_{30-10}/Q_{7-10} &= 65.3 \text{ cfs} / 55 \text{ cfs} = 1.18:1
 \end{aligned}$$

Unnamed Tributary of Conococheague Creek

Under 25 Pa Code §93.9z, all unnamed tributaries of Conococheague Creek from LR 28017 to PA-MD State Border are designated as warm water and migratory fishes. The main stem, Conococheague Creek is also designated as warm water and migratory fishes at this segment. Therefore, no special protection water is impacted by this discharge. The discharge is located in a stream segment listed as an attaining use(s). The fact sheet prepared during the last permit renewal documented that the discharge is to a dry swale. A Point of First Use survey conducted on April 3, 1986 is attached to this fact sheet. The most recent inspection report also noted that the discharge is to an intermittent stream that flows via culvert to an unnamed tributary of Conococheague Creek.

Public Water Supply Intake

The nearest downstream public water supply intake is located on Potomac River near Hagerstown, MD. Given the distance, the discharge is not expected to impact the water supply.

Treatment Facility Summary																																																																																																						
Treatment Facility Name: Valley View Manor MHP																																																																																																						
Waste Type	Degree of Treatment	Process Type	Disinfection	Avg Annual Flow (MGD)																																																																																																		
Sewage	Secondary With Ammonia Reduction	Sequencing Batch Reactor	Hypochlorite	0.01																																																																																																		
Hydraulic Capacity (MGD)	Organic Capacity (lbs/day)	Load Status	Biosolids Treatment	Biosolids Use/Disposal																																																																																																		
0.01	N/A	Not Overloaded	Aerobic Digestion	Other WWTP																																																																																																		
<p>Valley View owns and operates an onsite sanitary wastewater treatment plant utilizing a sequencing batch reactor (SBR) activated sludge treatment process. The plant has both annual average design flow and hydraulic design capacity of 0.01 MGD. The treatment process is SBR followed by a chlorine contact tank and then stream discharge. A sludge holding tank is available. From this tank, sludge is then hauled off site via a local septage hauler to another WWTP for ultimate treatment/disposal. Sodium hypochlorite is used for disinfection. Soda ash is used for pH control and aluminum sulfate is used for phosphorous removal.</p>																																																																																																						
Compliance History																																																																																																						
Summary of DMRs:	A summary of 12 month DMR is presented on the next page.																																																																																																					
Summary of Inspections:	July 26, 2023: DEP conducted a routine inspection and noted that there is no violation identified at the time of inspection.																																																																																																					
Other Comments:	The facility had a number of permit violations since the last permit reissuance, mostly associated with effluent violations (see below).																																																																																																					
<table border="1"> <thead> <tr> <th>Date</th><th>Description</th><th>Parameters</th><th>Results</th><th>Limits</th><th>Units</th><th>SBC</th></tr> </thead> <tbody> <tr> <td>Feb-20</td><td>Violation of permit condition</td><td>Carbonaceous Biochemical Oxygen Demand (CBOD5)</td><td>11</td><td>10 mg/L</td><td>Average Monthly</td><td></td></tr> <tr> <td>Apr-20</td><td>Violation of permit condition</td><td>Ammonia-Nitrogen</td><td>32.4</td><td>9 mg/L</td><td>Average Monthly</td><td></td></tr> <tr> <td>Apr-20</td><td>Violation of permit condition</td><td>Dissolved Oxygen</td><td>4.9</td><td>5 mg/L</td><td>Daily Minimum</td><td></td></tr> <tr> <td>May-20</td><td>Violation of permit condition</td><td>Ammonia-Nitrogen</td><td>4.5</td><td>3 mg/L</td><td>Average Monthly</td><td></td></tr> <tr> <td>Dec-20</td><td>Violation of permit condition</td><td>Total Residual Chlorine (TRC)</td><td>0.6</td><td>0.5 mg/L</td><td>Average Monthly</td><td></td></tr> <tr> <td>Jun-21</td><td>Violation of permit condition</td><td>Total Suspended Solids</td><td>16</td><td>10 mg/L</td><td>Average Monthly</td><td></td></tr> <tr> <td>Dec-21</td><td>Violation of permit condition</td><td>Carbonaceous Biochemical Oxygen Demand (CBOD5)</td><td>13</td><td>10 mg/L</td><td>Average Monthly</td><td></td></tr> <tr> <td>Mar-23</td><td>Violation of permit condition</td><td>Carbonaceous Biochemical Oxygen Demand (CBOD5)</td><td>29</td><td>10 mg/L</td><td>Average Monthly</td><td></td></tr> <tr> <td>Apr-23</td><td>Violation of permit condition</td><td>Carbonaceous Biochemical Oxygen Demand (CBOD5)</td><td>15</td><td>10 mg/L</td><td>Average Monthly</td><td></td></tr> <tr> <td>Jun-24</td><td>Violation of permit condition</td><td>Dissolved Oxygen</td><td>3</td><td>5 mg/L</td><td>Daily Minimum</td><td></td></tr> <tr> <td>Feb-25</td><td>Violation of permit condition</td><td>Carbonaceous Biochemical Oxygen Demand (CBOD5)</td><td>< 20.0</td><td>10 mg/L</td><td>Average Monthly</td><td></td></tr> <tr> <td>Mar-25</td><td>Violation of permit condition</td><td>Total Residual Chlorine (TRC)</td><td>2.2</td><td>1.6 mg/L</td><td>Instantaneous Maximum</td><td></td></tr> <tr> <td>May-25</td><td>Violation of permit condition</td><td>Total Residual Chlorine (TRC)</td><td>2.2</td><td>1.6 mg/L</td><td>Instantaneous Maximum</td><td></td></tr> </tbody> </table> <p>DEP's database shows there is no open violation associated with this facility or permittee that is identified by DEP Clean Water Program.</p>					Date	Description	Parameters	Results	Limits	Units	SBC	Feb-20	Violation of permit condition	Carbonaceous Biochemical Oxygen Demand (CBOD5)	11	10 mg/L	Average Monthly		Apr-20	Violation of permit condition	Ammonia-Nitrogen	32.4	9 mg/L	Average Monthly		Apr-20	Violation of permit condition	Dissolved Oxygen	4.9	5 mg/L	Daily Minimum		May-20	Violation of permit condition	Ammonia-Nitrogen	4.5	3 mg/L	Average Monthly		Dec-20	Violation of permit condition	Total Residual Chlorine (TRC)	0.6	0.5 mg/L	Average Monthly		Jun-21	Violation of permit condition	Total Suspended Solids	16	10 mg/L	Average Monthly		Dec-21	Violation of permit condition	Carbonaceous Biochemical Oxygen Demand (CBOD5)	13	10 mg/L	Average Monthly		Mar-23	Violation of permit condition	Carbonaceous Biochemical Oxygen Demand (CBOD5)	29	10 mg/L	Average Monthly		Apr-23	Violation of permit condition	Carbonaceous Biochemical Oxygen Demand (CBOD5)	15	10 mg/L	Average Monthly		Jun-24	Violation of permit condition	Dissolved Oxygen	3	5 mg/L	Daily Minimum		Feb-25	Violation of permit condition	Carbonaceous Biochemical Oxygen Demand (CBOD5)	< 20.0	10 mg/L	Average Monthly		Mar-25	Violation of permit condition	Total Residual Chlorine (TRC)	2.2	1.6 mg/L	Instantaneous Maximum		May-25	Violation of permit condition	Total Residual Chlorine (TRC)	2.2	1.6 mg/L	Instantaneous Maximum	
Date	Description	Parameters	Results	Limits	Units	SBC																																																																																																
Feb-20	Violation of permit condition	Carbonaceous Biochemical Oxygen Demand (CBOD5)	11	10 mg/L	Average Monthly																																																																																																	
Apr-20	Violation of permit condition	Ammonia-Nitrogen	32.4	9 mg/L	Average Monthly																																																																																																	
Apr-20	Violation of permit condition	Dissolved Oxygen	4.9	5 mg/L	Daily Minimum																																																																																																	
May-20	Violation of permit condition	Ammonia-Nitrogen	4.5	3 mg/L	Average Monthly																																																																																																	
Dec-20	Violation of permit condition	Total Residual Chlorine (TRC)	0.6	0.5 mg/L	Average Monthly																																																																																																	
Jun-21	Violation of permit condition	Total Suspended Solids	16	10 mg/L	Average Monthly																																																																																																	
Dec-21	Violation of permit condition	Carbonaceous Biochemical Oxygen Demand (CBOD5)	13	10 mg/L	Average Monthly																																																																																																	
Mar-23	Violation of permit condition	Carbonaceous Biochemical Oxygen Demand (CBOD5)	29	10 mg/L	Average Monthly																																																																																																	
Apr-23	Violation of permit condition	Carbonaceous Biochemical Oxygen Demand (CBOD5)	15	10 mg/L	Average Monthly																																																																																																	
Jun-24	Violation of permit condition	Dissolved Oxygen	3	5 mg/L	Daily Minimum																																																																																																	
Feb-25	Violation of permit condition	Carbonaceous Biochemical Oxygen Demand (CBOD5)	< 20.0	10 mg/L	Average Monthly																																																																																																	
Mar-25	Violation of permit condition	Total Residual Chlorine (TRC)	2.2	1.6 mg/L	Instantaneous Maximum																																																																																																	
May-25	Violation of permit condition	Total Residual Chlorine (TRC)	2.2	1.6 mg/L	Instantaneous Maximum																																																																																																	

Effluent Data

DMR Data for Outfall 001 (from June 1, 2024 to May 31, 2025)

Parameter	MAY-25	APR-25	MAR-25	FEB-25	JAN-25	DEC-24	NOV-24	OCT-24	SEP-24	AUG-24	JUL-24	JUN-24
Flow (MGD) Average Monthly	0.00372	0.00283	0.00291	0.00269	0.00343	0.00316	0.00291	0.00241	0.00285	0.004055	0.00265	0.00255
Flow (MGD) Daily Maximum	0.01822	0.00475	0.016	0.00428	0.00523	0.00532	0.00448	0.00393	0.00597	0.05292	0.00451	0.00475
pH (S.U.) Daily Minimum	7.3	7.5	7.0	7.4	7.0	7.5	7.5	7.5	7.5	7.2	7.5	7.5
pH (S.U.) Daily Maximum	8.0	8.0	8.1	8.0	8.2	8.0	8.0	8.1	8.3	8.1	8.1	8.1
DO (mg/L) Daily Minimum	8.0	8.3	7.6	8.8	8.8	7.7	7.4	7.1	6.5	7.4	7.7	3.0
TRC (mg/L) Average Monthly	0.3	0.2	0.32	0.2	0.3	0.3	0.3	0.2	0.2	0.26	0.3	0.2
TRC (mg/L) Instantaneous Maximum	2.2	0.4	2.2	0.9	0.7	0.9	0.6	0.7	0.6	0.5	0.9	0.9
CBOD5 (mg/L) Average Monthly	4.0	7.0	< 5.0	< 20.0	5.0	9.0	< 5.0	< 2.0	10.0	4.0	< 2.0	3.0
TSS (mg/L) Average Monthly	3.0	3.0	3.0	2.0	< 2.0	4.0	3.0	3.0	3.0	3.0	2.0	2.0
Fecal Coliform (No./100 ml) Geometric Mean	< 1	< 6	18	21	< 3	< 1	241	31	< 1	< 1	13	< 1
Fecal Coliform (No./100 ml) Instantaneous Maximum	< 1	34	27	39	7	< 1	263	45	< 1	< 1	21	< 1
Nitrate-Nitrite (lbs/day) Daily Maximum			0.5			0.4			0.4			< 0.4
Nitrate-Nitrite (mg/L) Daily Maximum			25.62			22.1			13.28			< 25.1
Total Nitrogen (lbs/day) Daily Maximum			0.6			0.5			0.4			< 0.4
Total Nitrogen (mg/L) Daily Maximum			27.27			23.51			14.5			< 26.88
Ammonia (mg/L) Average Monthly	< 1.2	< 0.8	< 0.5	0.8	< 0.5	< 0.4	< 0.5	< 0.6	0.7	< 0.5	< 0.6	< 0.6
TKN (lbs/day) Daily Maximum			0.03			0.03			0.03			0.03

NPDES Permit Fact Sheet
T & J Valley View MHP

NPDES Permit No. PA0080446

Parameter	MAY-25	APR-25	MAR-25	FEB-25	JAN-25	DEC-24	NOV-24	OCT-24	SEP-24	AUG-24	JUL-24	JUN-24
TKN (mg/L) Daily Maximum			1.65			1.41			1.22			1.78
Total Phosphorus (lbs/day) Daily Maximum			0.07			0.02			0.02			0.01
Total Phosphorus (mg/L) Daily Maximum			3.32			0.827			0.746			0.816

Existing Effluent Limits and Monitoring Requirements

The table below summarizes effluent limits and monitoring requirements specified in the existing permit renewal.

Parameter	Effluent Limitations						Monitoring Requirements	
	Mass Units (lbs/day) ⁽¹⁾		Concentrations (mg/L)				Minimum ⁽²⁾ Measurement Frequency	Required Sample Type
	Average Monthly	Average Weekly	Minimum	Average Monthly	Maximum	Instant. Maximum		
Flow (MGD)	Report	Report Daily Max	XXX	XXX	XXX	XXX	Continuous	Measured
pH (S.U.)	XXX	XXX	6.0 Daily Min	XXX	9.0 Daily Max	XXX	1/day	Grab
Dissolved Oxygen	XXX	XXX	5.0 Daily Min	XXX	XXX	XXX	1/day	Grab
Total Residual Chlorine (TRC)	XXX	XXX	XXX	0.5	XXX	1.6	1/day	Grab
Carbonaceous Biochemical Oxygen Demand (CBOD5)	XXX	XXX	XXX	10.0	XXX	20	2/month	8-Hr Composite
Total Suspended Solids	XXX	XXX	XXX	10.0	XXX	20	2/month	8-Hr Composite
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	XXX	XXX	XXX	2000 Geo Mean	XXX	10000	2/month	Grab
Fecal Coliform (No./100 ml) May 1 - Sep 30	XXX	XXX	XXX	200 Geo Mean	XXX	1000	2/month	Grab
Nitrate-Nitrite as N	XXX	Report Daily Max	XXX	XXX	Report Daily Max	XXX	1/quarter	8-Hr Composite
Total Nitrogen	XXX	Report Daily Max	XXX	XXX	Report Daily Max	XXX	1/quarter	Calculation
Ammonia-Nitrogen Nov 1 - Apr 30	XXX	XXX	XXX	9.0	XXX	18	2/month	8-Hr Composite
Ammonia-Nitrogen May 1 - Oct 31	XXX	XXX	XXX	3.0	XXX	6	2/month	8-Hr Composite
Total Kjeldahl Nitrogen	XXX	Report Daily Max	XXX	XXX	Report Daily Max	XXX	1/quarter	8-Hr Composite
Total Phosphorus	XXX	Report Daily Max	XXX	XXX	Report Daily Max	XXX	1/quarter	8-Hr Composite

Development of Effluent Limitations				
Outfall No.	001	Design Flow (MGD)	.01	
Latitude	39° 49' 48.57"	Longitude	-77° 46' 39.33"	
Wastewater Description:	Sewage Effluent			

Technology-Based Limitations

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Pollutant	Limit (mg/l)	SBC	Federal Regulation	State Regulation
CBOD ₅	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
	40	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)
Total Suspended Solids	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
	45	Average Weekly	133.102(b)(2)	92a.47(a)(2)
pH	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform (5/1 – 9/30)	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
Fecal Coliform (5/1 – 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform (10/1 – 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
Fecal Coliform (10/1 – 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)
Total Residual Chlorine	0.5	Average Monthly	-	92a.48(b)(2)

Water Quality-Based Limitations

CBOD₅, NH₃-N and Dissolved Oxygen (DO)

WQM 7.0 version 1.0b is a water quality model designed to assist DEP to determine appropriate permit requirements for CBOD₅, NH₃-N and DO. DEP's guidance no. 391-2000-007 provides the technical methods contained in WQM 7.0 for conducting wasteload allocation and for determining recommended NPDES effluent limits for point source discharges. The model indicated that no more stringent WQBELs are needed. See Best Professional Judgement (BPJ) limitations section of this fact sheet for more details on the existing effluent limits.

Total Residual Chlorine

Since sodium hypochlorite is used for disinfection, TRC effluent levels must be regulated in accordance with 25 Pa Code §92a.48(b)(2). TRC_CALC worksheet recommends WQBELs of 0.151 mg/L (average monthly) and 0.492 mg/L (IMAX) for TRC. See Best Professional Judgement (BPJ) limitations section of this fact sheet for more details on the existing effluent limits.

Toxics

This is a minor sewage facility receiving domestic wastewater only and the current application does not require sampling of toxic pollutants (or heavy metals) for those facilities with design flows less than 0.1 MGD. Therefore, no reasonable potential analysis for toxic pollutants has been performed for this permit renewal.

Best Professional Judgment (BPJ) Limitations

Existing CBOD₅, TSS, and NH₃-N effluent limits

Given that the discharge is to a dry swale prior to discharges into Unnamed Tributary of Conococheague Creek, it appears effluent limits for CBOD₅, TSS, and NH₃-N have been consistently developed using the requirements specified in DEP's technical guidance no. 391-2000-014 to protect the groundwater and public health. It is noteworthy that the current version of this guidance does not require effluent limits for NH₃-N, but the older version which was finalized in 1997 required effluent limits for NH₃-N. As WQM model does not recommend WQBELs, these existing effluent limits are the most stringent effluent limits available to prevent any adverse environmental impact. DEP finds no rationale for relaxing (or removing)

these existing effluent limits. Therefore, existing effluent limits for CBOD5, TSS, and NH3-N will remain unchanged in the permit in accordance with 40 CFR §122.44(l)(1).

Existing Total Residual Chlorine

The previous fact sheet contains the following statement:

“...The attached printout indicates that a water quality limit of 0.16 mg/L monthly average and 0.52 mg/L instantaneous maximum are needed to prevent toxicity concerns using a Discharge Chlorine Demand of 0. The existing permit limit is 1.0 mg/L continued from previous renewal although the TRC spreadsheet during last renewal indicated a limit of 0.32 mg/L was necessary. The previous limit of 1.0 mg/L was retained because discharge is to a dry swale and chlorine will be dissipated by the time it reaches the UNT (point of first use). Chapter 92a.47(a)(8) establishes a standard BAT limit of 0.5 mg/L unless a facility-specific BAT has been developed. The facility met the 0.5 mg/L limit during the past 4 years with few exceptions. Recommend writing the 0.5 mg/L BAT limit on the basis of chlorine being dissipated/volatized before reaching the UNT”.

The same approach will be applied to the upcoming permit renewal as no public concerns or adverse environmental impacts have been identified as a result of the discharge. The existing BAT effluent limit of 0.5 mg/L will be written in the permit.

Dissolved Oxygen

A minimum of 5.0 mg/L for DO is an existing effluent limit and is a water quality criterion for warm water fishery waters taken directly from 25 Pa. Code § 93.7(a). The effluent limit will remain unchanged in the draft permit to ensure that the discharge does not violate the water quality standards. This approach is consistent with DEP's SOP and the similar requirement has also been assigned to other sewage facilities throughout the state.

Additional Considerations

Flow Monitoring

The requirement to monitor the volume of effluent will remain in the draft permit per 40 CFR § 122.44(i)(1)(ii).

Chesapeake Bay Strategy

According to DEP's Chesapeake Bay Phase III Watershed Implementation Plan (WIP) Wastewater Supplement, this facility is considered a phase 5 non-significant sewage discharger with design flow less than 0.2 MGD but greater than 0.002 MGD. In general, DEP will issue permits for all phase 5 facilities with monitoring and reporting for Total Nitrogen (TN) and Total Phosphorus (TP). It is recommended that the monitoring frequency be remained as 1/quarter. Since the receiving stream is not impaired for nutrients at this time and the actual discharge has been consistently less than 0.010 MGD, the collection of monthly data is not necessary.

E. Coli Monitoring

DEP's SOP no. BCW-PMT-033 recommends a routine monitoring for E. Coli in all new and reissued sewage permits. As a result, an annual monitoring requirement for E. Coli will be included in the permit given the facility's design flow is less than 0.05 MGD.

Monitoring Frequencies and Sample Types

All minimum monitoring frequencies and sample types remain unchanged in the draft permit.

Anti-Degradation Requirements

All effluent limitations and monitoring requirements have been developed to ensure that existing instream water uses and the level of water quality necessary to protect the existing uses are maintained and protected.

Anti-Backsliding Requirements

Unless stated otherwise in this fact sheet, all permit requirements proposed in this fact sheet are at least as stringent as existing permit requirements in accordance with 40 CFR §122.44(l)(1).

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (386-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

Parameter	Effluent Limitations						Monitoring Requirements	
	Mass Units (lbs/day) ⁽¹⁾		Concentrations (mg/L)				Minimum ⁽²⁾ Measurement	Required Sample Type
	Average Monthly	Average Weekly	Minimum	Average Monthly	Maximum	Instant. Maximum		
Flow (MGD)	Report	Daily Max	XXX	XXX	XXX	XXX	Continuous	Measured
pH (S.U.)	XXX	XXX	6.0 Daily Min	XXX	9.0 Daily Max	XXX	1/day	Grab
DO	XXX	XXX	5.0 Daily Min	XXX	XXX	XXX	1/day	Grab
TRC	XXX	XXX	XXX	0.5	XXX	1.6	1/day	Grab
CBOD5	XXX	XXX	XXX	10.0	XXX	20	2/month	8-Hr Composite
TSS	XXX	XXX	XXX	10.0	XXX	20	2/month	8-Hr Composite
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	XXX	XXX	XXX Geo Mean	2000 Geo Mean	XXX	10000	2/month	Grab
Fecal Coliform (No./100 ml) May 1 - Sep 30	XXX	XXX	XXX Geo Mean	200 Geo Mean	XXX	1000	2/month	Grab
Nitrate-Nitrite	XXX	Report Daily Max	XXX	XXX	Report Daily Max	XXX	1/quarter	8-Hr Composite
Total Nitrogen	XXX	Report Daily Max	XXX	XXX	Report Daily Max	XXX	1/quarter	Calculation
Ammonia Nov 1 - Apr 30	XXX	XXX	XXX	9.0	XXX	18	2/month	8-Hr Composite
Ammonia May 1 - Oct 31	XXX	XXX	XXX	3.0	XXX	6	2/month	8-Hr Composite
TKN	XXX	Report Daily Max	XXX	XXX	Report Daily Max	XXX	1/quarter	8-Hr Composite
Total Phosphorus	XXX	Report Daily Max	XXX	XXX	Report Daily Max	XXX	1/quarter	8-Hr Composite
E. Coli (No. 100 mL)	XXX	XXX	XXX	XXX	XXX	Report	1/year	Grab

Tools and References Used to Develop Permit	
<input type="checkbox"/>	WQM for Windows Model (see Attachment [REDACTED])
<input type="checkbox"/>	Toxics Management Spreadsheet (see Attachment [REDACTED])
<input type="checkbox"/>	TRC Model Spreadsheet (see Attachment [REDACTED])
<input type="checkbox"/>	Temperature Model Spreadsheet (see Attachment [REDACTED])
<input type="checkbox"/>	Water Quality Toxics Management Strategy, 361-0100-003, 4/06.
<input type="checkbox"/>	Technical Guidance for the Development and Specification of Effluent Limitations, 386-0400-001, 10/97.
<input type="checkbox"/>	Policy for Permitting Surface Water Diversions, 386-2000-019, 3/98.
<input type="checkbox"/>	Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 386-2000-018, 11/96.
<input type="checkbox"/>	Technology-Based Control Requirements for Water Treatment Plant Wastes, 386-2183-001, 10/97.
<input type="checkbox"/>	Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 386-2183-002, 12/97.
<input type="checkbox"/>	Pennsylvania CSO Policy, 386-2000-002, 9/08.
<input type="checkbox"/>	Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03.
<input type="checkbox"/>	Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 386-2000-008, 4/97.
<input type="checkbox"/>	Determining Water Quality-Based Effluent Limits, 386-2000-004, 12/97.
<input type="checkbox"/>	Implementation Guidance Design Conditions, 386-2000-007, 9/97.
<input type="checkbox"/>	Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen, Version 1.0, 386-2000-016, 6/2004.
<input type="checkbox"/>	Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 386-2000-012, 10/1997.
<input type="checkbox"/>	Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments, 386-2000-009, 3/99.
<input type="checkbox"/>	Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 386-2000-015, 5/2004.
<input type="checkbox"/>	Implementation Guidance for Section 93.7 Ammonia Criteria, 386-2000-022, 11/97.
<input type="checkbox"/>	Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 386-2000-013, 4/2008.
<input type="checkbox"/>	Implementation Guidance Total Residual Chlorine (TRC) Regulation, 386-2000-011, 11/1994.
<input type="checkbox"/>	Implementation Guidance for Temperature Criteria, 386-2000-001, 4/09.
<input type="checkbox"/>	Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 386-2000-021, 10/97.
<input type="checkbox"/>	Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 386-2000-020, 10/97.
<input type="checkbox"/>	Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 386-2000-005, 3/99.
<input type="checkbox"/>	Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 386-2000-010, 3/1999.
<input type="checkbox"/>	Design Stream Flows, 386-2000-003, 9/98.
<input type="checkbox"/>	Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 386-2000-006, 10/98.
<input type="checkbox"/>	Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 386-3200-001, 6/97.
<input type="checkbox"/>	Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07.
<input type="checkbox"/>	SOP: [REDACTED]
<input type="checkbox"/>	Other: [REDACTED]

Subject: Point of first use determination

Unnamed tributary to Conococheague Creek

Re: Valley View Manor MHP

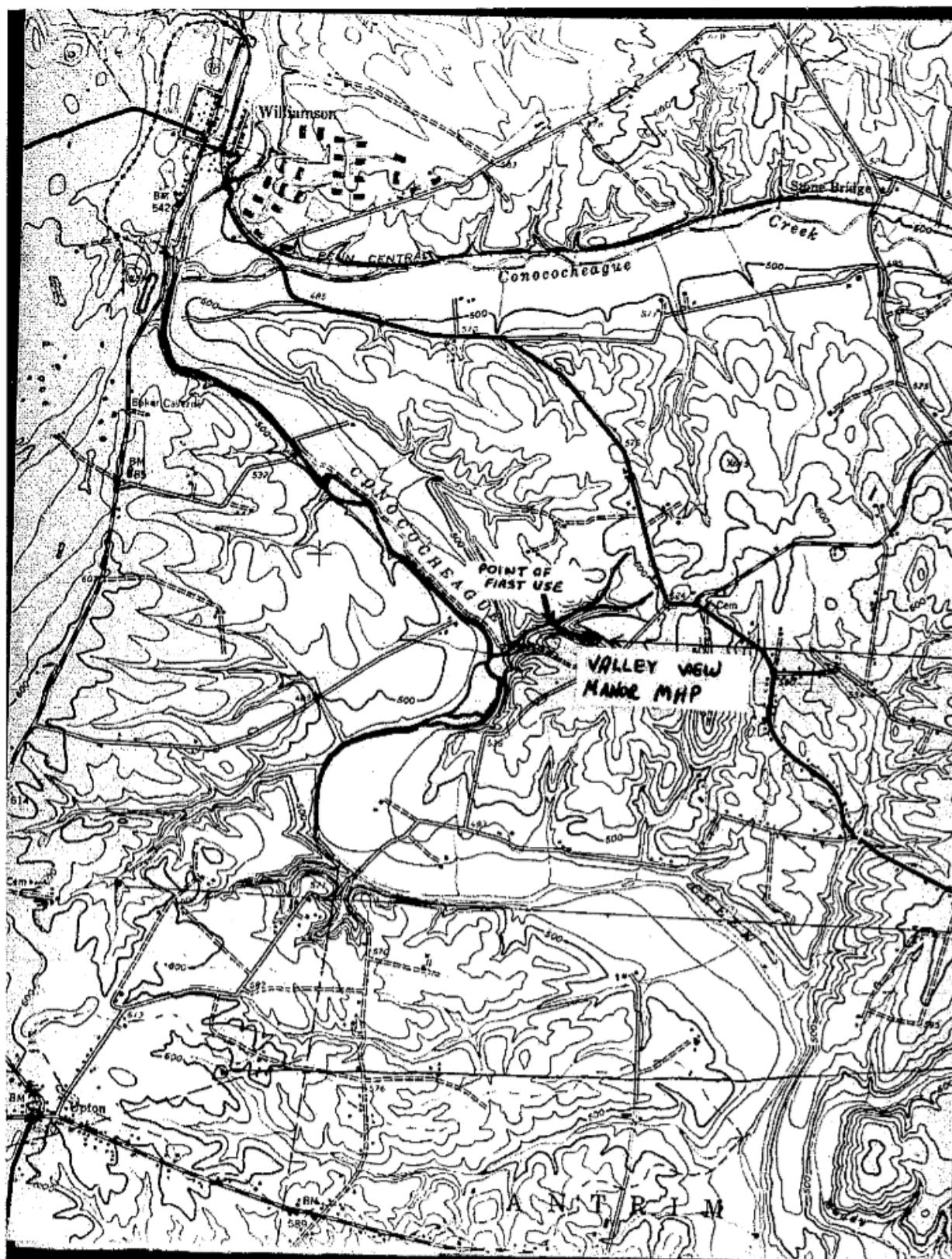
Franklin County

April 3, 1986

To: Marty Ferry
Planning Section
Harrisburg Regional Office

From: Robert J. Schett RJS
Water Pollution Biologist
Harrisburg Regional Office

At your request I conducted an aquatic biological investigation of an unnamed tributary to Conococheague Creek on April 3, 1986. The reason for the survey was to determine at the point where the tributary is perennial and contains a viable aquatic community. This particular tributary receives treated wastewater from the Valley View Manor Mobil Home Park (MHP).


A determination of this type can best be accomplished by sampling the macroinvertebrate community. A perennial stream will contain those species that need year-round (more less) flows to complete their life cycles.

The discharge from the MHP enters a drainage swale and flows for approximately 1000 feet before entering the

unnamed tributary. A sampling of the tributary above the confluence with the treated discharge flow revealed a low diversity, macroinvertebrate community, but a community nonetheless. Mayflies (Ephemerella, Ameletus), stoneflies (Paracapnia), and cranefly larvae (Tipula) were present. Field pH was 7.0.

The point of first use therefore lies at the point of confluence between the waste flow and the unnamed tributary.

cc: Stream file 5.13.0 (Conococheague Cr.)
t

StreamStats Report

Region ID: PA
Workspace ID: PA20250730114515741000
Clicked Point (Latitude, Longitude): 39.83006, -77.77786
Time: 2025-07-30 07:45:36 -0400

[Collapse All](#)

► Basin Characteristics

Parameter Code	Parameter Description	Value	Unit
CARBON	Percentage of area of carbonate rock	0	percent
DRNAREA	Area that drains to a point on a stream	0.14	square miles
PRECIP	Mean Annual Precipitation	39	inches
ROCKDEP	Depth to rock	3	feet
STRDEN	Stream Density -- total length of streams divided by drainage area	2.89	miles per square mile

General Disclaimers

Parameter values have been edited, computed flows may not apply.

► Low-Flow Statistics

Low-Flow Statistics Parameters [Low Flow Region 2]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
CARBON	Percent Carbonate	0	percent	0	99
DRNAREA	Drainage Area	0.14	square miles	4.93	1280
PRECIP	Mean Annual Precipitation	39	inches	35	50.4
ROCKDEP	Depth to Rock	3	feet	3.32	5.65
STRDEN	Stream Density	2.89	miles per square mile	0.51	3.1

Low-Flow Statistics Disclaimers [Low Flow Region 2]

One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors.

Low-Flow Statistics Flow Report [Low Flow Region 2]

Statistic	Value	Unit
7 Day 2 Year Low Flow	0.00231	ft^3/s
30 Day 2 Year Low Flow	0.00418	ft^3/s
7 Day 10 Year Low Flow	0.000461	ft^3/s
30 Day 10 Year Low Flow	0.000908	ft^3/s
90 Day 10 Year Low Flow	0.00226	ft^3/s

Low-Flow Statistics Citations

Stuckey, M.H., 2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006-5130, 84 p. (<http://pubs.usgs.gov/sir/2006/5130/>)

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the functionality of the software and related material nor shall the fact of release constitute any such warranty. Furthermore, the software is released on condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized use.

USGS Product Names Disclaimer: Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Application Version: 4.29.2

StreamStats Services Version: 1.2.22

NSS Services Version: 2.2.1

Input Data WQM 7.0

SWP Basin	Stream Code	Stream Name			RMI	Elevation (ft)	Drainage Area (sq mi)	Slope (ft/ft)	PWS Withdrawal (mgd)	Apply FC
13C	59893	Trib 59893 to Conococheague Creek			0.230	502.00	0.14	0.00000	0.00	<input checked="" type="checkbox"/>
Stream Data										
Design Cond.	LFY (cfsm)	Trib Flow (cfs)	Stream Flow (cfs)	Rch Trav Time (days)	Rch Velocity (fps)	WD Ratio	Rch Width (ft)	Rch Depth (ft)	Tributary Temp (°C)	Stream pH (°C)
Q7-10	0.111	0.00	0.00	0.000	0.000	0.0	0.00	0.00	20.00	7.00
Q1-10		0.00	0.00	0.000	0.000					
Q30-10		0.00	0.00	0.000	0.000					
Discharge Data										
	Name	Permit Number	Existing Disc Flow (mgd)	Permitted Disc Flow (mgd)	Design Disc Flow (mgd)	Reserve Factor	Disc Temp (°C)	Disc pH		
	TJ Valley View	PA0080446	0.0100	0.0100	0.0100	0.000	25.00	7.00		
Parameter Data										
	Parameter Name		Disc Conc (mg/L)	Trib Conc (mg/L)	Stream Conc (mg/L)	Fate Coef (1/days)				
	CBOD5		10.00	2.00	0.00	1.50				
	Dissolved Oxygen		5.00	8.24	0.00	0.00				
	NH3-N		3.00	0.00	0.00	0.70				

Input Data WQM 7.0

SWP Basin	Stream Code	Stream Name		RMI	Elevation	Drainage Area	Slope	PWS Withdrawal	Apply FC			
				(ft)	(sq mi)	(ft/ft)	(mgd)					
13C	59893	Trib 59893 to Conococheague Creek		0.000	467.00	0.18	0.00000	0.00	<input checked="" type="checkbox"/>			
Stream Data												
Design Cond.	LFY (cfsm)	Trib Flow (cfs)	Stream Flow (cfs)	Rch Trav Time (days)	Rch Velocity (fps)	WD Ratio	Rch Width (ft)	Rch Depth (ft)	Tributary Temp (°C)	Stream pH	Temp (°C)	Stream pH
Q7-10	0.111	0.00	0.00	0.000	0.000	0.0	0.00	0.00	20.00	7.00	0.00	0.00
Q1-10		0.00	0.00	0.000	0.000							
Q30-10		0.00	0.00	0.000	0.000							
Discharge Data												
	Name	Permit Number	Existing Disc Flow (mgd)	Permitted Disc Flow (mgd)	Design Disc Flow (mgd)	Reserve Factor	Disc Temp (°C)	Disc pH				
			0.0000	0.0000	0.0000	0.000	25.00	7.00				
Parameter Data												
	Parameter Name		Disc Conc (mg/L)	Trib Conc (mg/L)	Stream Conc (mg/L)	Fate Coef (1/days)						
	CBOD5		25.00	2.00	0.00	1.50						
	Dissolved Oxygen		3.00	8.24	0.00	0.00						
	NH3-N		25.00	0.00	0.00	0.70						

