

Southcentral Regional Office CLEAN WATER PROGRAM

Application Type

Renewal

Non
Facility Type

Major / Minor

Minor

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

 Application No.
 PA0081388

 APS ID
 726627

Authorization ID 1434669

Applicant Name	Barkas Inc.	Facility Name	Windy Brae MHP		
Applicant Address	14971 Mount Olivet Road	Facility Address	14971 Mount Olivet Road		
	Stewartstown, PA 17363-8506		Stewartstown, PA 17363-8506		
Applicant Contact	Robert Barclay	Facility Contact	Robert Barclay		
Applicant Phone	(717) 235-3361	Facility Phone	(717) 231-3361		
Client ID	74463	Site ID	444067		
Ch 94 Load Status	Not Overloaded	Municipality	North Hopewell Township		
Connection Status		County	York		
Date Application Rece	eived March 31, 2023	EPA Waived?	Yes		
Date Application Acce	pted April 10, 2023	If No, Reason			

Summary of Review

Barkas Inc. has applied to the Pennsylvania Department of Environmental Protection (DEP) for reissuance of its NPDES permit for the Windy Brae MHP STP. The permit was last reissued to Barkas on September 28, 2018. The permit expired on September 30, 2023 but the terms and conditions of the permit have been administratively extended since that time.

Based on the review outlined in this fact sheet, it is recommended that the permit be drafted, and a notice of the draft permit be published in the *Pennsylvania Bulletin* for public comments for 30 days. A file review of documents associated with the discharge or permittee may be available at the PA DEP southcentral regional office (SCRO), 909 Elmerton Avenue, Harrisburg, PA 17110. To make an appointment for file reviews, contact the SCRO file review coordinator at 717.705.4700.

Sludge use and disposal description and location(s): Hauled offsite to Springettsbury Township STP

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Approve	Deny	Signatures	Date
х		Aaron Baar Aaron Baar / Project Manager	April 28, 2024
х		Maria D. Bebenek for Daniel W. Martin, P.E. / Environmental Engineer Manager	May 22, 2024

Discharge, Receiving	Discharge, Receiving Waters and Water Supply Information								
Outfall No. 001		Design Flow (MGD)	.0337						
Latitude 39° 47	7' 35.11"	Longitude	-76° 37' 55.72"						
Quad Name Gle	n Rock	Quad Code	2032						
Wastewater Descrip	otion: Sewage Effluent								
Receiving Waters	Unnamed Tributary of East Branch Codorus Creek (HQ-CWF)	ı Stream Code	08133						
NHD Com ID	57473799	RMI	4.35						
Drainage Area	0.31 sq. mi.	Yield (cfs/mi²)	0.102						
Q ₇₋₁₀ Flow (cfs)	0.0316	Q ₇₋₁₀ Basis	USGS StreamStats						
Elevation (ft)	896.56	Slope (ft/ft)							
Watershed No.	7-H	Chapter 93 Class.	HQ-CWF						
Existing Use		Existing Use Qualifier							
Exceptions to Use		Exceptions to Criteria							
Assessment Status	Attaining Use(s)								
Cause(s) of Impairm	nent								
Source(s) of Impairr	ment								
TMDL Status		Name							
Nearest Downstrear	m Public Water Supply Intake	The York Water Company							
PWS Waters S	South Branch Codorus Creek	Flow at Intake (cfs)							
PWS RMI 0	0.30	Distance from Outfall (mi)	18.31						

Changes Since Last Permit Issuance: No changes since the last issuance of the Windy Brae MHP's NPDES permit.

Drainage Area

The discharge is to UNT of East Branch Codorus Creek at RMI 4.35. A drainage area upstream of the discharge is determined to be 0.31 sq. mi. according to USGS PA StreamStats available at https://streamstats.usgs.gov/ss/.

Stream Flow

According to StreamStats, the watershed has a Q_{7-10} of 0.0316 cfs. This information was used to obtain a LFY, a chronic 30-day (Q_{30-10}) and acute (Q_{1-10}) exposure stream flows for the discharge point as follows (Guidance No. 391-2000-023).

 $Q_{7-10} = 0.0316 \text{ cfs}$ $Q_{30-10} = 1.36 * 0.0316 \text{ cfs} = 0.043 \text{ cfs}$ $Q_{1-10} = 0.64 * 0.0316 \text{ cfs} = 0.020 \text{ cfs}$ LFY = 0.0316 cfs/0.31 mi² = 0.102 cfs/mi²

UNT of East Branch Codorus Creek

25 Pa Code §93.9 classifies the receiving water, UNT of East Branch Codorus Creek, with a HQ-CWF Existing Use designation. The discharge is in a stream segment listed as not attaining use (impaired recreation) in the 2024 Integrated Report; the source of the impairment has been identified as pathogens (source unknown). Effluent limits for this discharge have been developed to ensure that existing in-stream water uses and the level of water quality necessary to protect the existing uses are maintained and protected.

Local Watershed Total Maximum Daily Loads (TMDLs)

According to PA's 2024 Integrated Water Quality Monitoring and Assessment Report, UNT of East Branch Codorus Creek in the vicinity of the point of discharge is impaired for recreation (pathogens). The impairment is listed as Category 5 in the 2024 integrated report, indicating that UNT of East Branch Codorus Creek is impaired for one or more uses by a pollutant that require the development of a TMDL. A TMDL for this waterway has not been developed to date.

Public Water Supply Intake

The nearest downstream public water supply intake is The York Water Company intake located on the South Branch Codorus Creek approximately 18 miles from the discharge. Considering the distance and nature, the discharge is not expected to significantly affect the water supply.

Class A Wild Trout Streams

The receiving stream is not a Class A Wild Trout stream; therefore, no Class A Wild Trout Fishery is impacted by this discharge.

	Tre	eatment Facility Summa	ry	
Treatment Facility Na	me: Windy Brae MHP			
WQM Permit No.	Issuance Date			
UNK	UNK			
	Degree of			Avg Annual
Waste Type	Treatment	Process Type	Disinfection	Flow (MGD)
Sewage	Secondary	Extended Aeration	Hypochlorite	0.0337
Hydraulic Capacity	Organic Capacity			Biosolids
(MGD)	(lbs/day)	Load Status	Biosolids Treatment	Use/Disposal
0.0337	UNK	Not Overloaded	UNK	UNK

Barkas, Inc. owns and operates the sanitary wastewater treatment facility located in North Hopewell Township, York County. This NPDES permit covers discharges of sewage treated by the Windy Brae MHP STP. The facility serves the Windy Brae MHP; all sewer systems are 100% separated. With an annual average design flow 0.0337 MGD, this facility utilizes an extended aeration system consisting of:

Comminutor / Bar Screen (1) \Rightarrow Aeration Tank (1) \Rightarrow Clarifier (1) \Rightarrow Sand Filter (1) \Rightarrow Chlorine Contact Tank (1) \Rightarrow Dechlorination Tank (1) \Rightarrow Discharge

The system incorporates chemical additions in the form of sodium hypochlorite (for disinfection), alum (for phosphorus removal), sodium bicarbonate and lime (for pH control), and sodium sulfite (for dechlorination). A sludge holding tank is used for solids storage. There are no industrial/commercial user contributing industrial wastewater to the sewer system.

	Compliance History
Summary of DMRs:	DMR results for the past year are presented below.
Summary of Inspections:	Since the last renewal of the facility's NPDES permit, the following inspections have been logged: May 3, 2019: Am Incident Inspection was conducted by Austen Randecker. An unidentified milky white substance was observed entering the plant. No violations were noted. November 1, 2019: A CEI was conducted by Austen Randecker. Operational recommendations were made, but no violations were noted. November 26, 2019: A NOV was issued for a number of discharge violations that occurred between 2017-2019. May 4, 2020: An Administrative Inspection was conducted via phone by Austen Randecker. No violations were noted. June 11, 2021: A CEI was conducted by Heather Dock. Operational recommendations were made, but no violations were noted. January 26, 2022: A CEI was conducted by Heather Dock. Operational recommendations were made. A violation was issued for failure to properly maintain treatment units - left wall of aeration tank was deteriorated and sand filter media needed to be added/replaced. October 4, 2023: A Consent Assessment of Civil Penalty was executed for outstanding violations.

Other Comments: As of April 27, 2024, there are no open violations associated with this facility.

Existing Effluent Limitations and Monitoring Requirements

		Monitoring Requirements						
Parameter	Mass Units	(lbs/day) (1)		Concentrat	ions (mg/L)		Minimum (2)	Required
Parameter	Average	Average		Average		Instant.	Measurement	Sample
	Monthly	Weekly	Minimum	Monthly	Maximum	Maximum	Frequency	Туре
		Report					_	
Flow (MGD)	Report	Daily Max	XXX	XXX	XXX	XXX	Continuous	Measured
11.60.11.	2007	2007	6.0	2007	2007	0.0	4/1	
pH (S.U.)	XXX	XXX	Inst Min 7.0	XXX	XXX	9.0	1/day	Grab
DO		VVV	_	VVV	VVV	VVV	1/dov	Crob
DO	XXX	XXX	Inst Min	XXX	XXX	XXX	1/day	Grab
TRC	XXX	XXX	XXX	0.13	XXX	0.43	1/day	Grab
CBOD5								24-Hr
Nov 1 - Apr 30	XXX	XXX	XXX	7.5	XXX	15	2/month	Composite
CBOD5								24-Hr
May 1 - Oct 31	XXX	XXX	XXX	6.0	XXX	12	2/month	Composite
							_ ,	24-Hr
TSS	XXX	XXX	XXX	10.0	XXX	20	2/month	Composite
Fecal Coliform (No./100 ml)	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	V0/0/	2007	2000	2007	40000	0/ 11	
Oct 1 - Apr 30	XXX	XXX	XXX	Geo Mean	XXX	10000	2/month	Grab
Fecal Coliform (No./100 ml)	XXX	XXX	xxx	200 Geo Mean	XXX	1000	2/month	Grab
May 1 - Sep 30	^^^	^^^	^^^	Geo Mean	^^^	1000	2/month	24-Hr
Nitrate-Nitrite	XXX	XXX	xxx	Report	xxx	xxx	2/month	Composite
	Report	7000	7000	1100011	7000	7001		- Composito
Nitrate-Nitrite (lbs)	Total Mo	XXX	XXX	XXX	XXX	XXX	1/month	Calculation
Total Nitrogen	XXX	XXX	XXX	Donort	XXX	XXX	1/month	Calculation
Total Nitrogen	Report	^^^	^^^	Report	^^^	^^^	1/111011111	Calculation
Total Nitrogen (lbs)	Total Mo	XXX	xxx	xxx	xxx	xxx	1/month	Calculation
Ammonia	Total Wo	7000	7000	7000	7001	7000	1/11101101	24-Hr
Nov 1 - Apr 30	XXX	XXX	XXX	2.0	XXX	4.5	2/month	Composite
Ammonia	1							24-Hr
May 1 - Oct 31	XXX	XXX	XXX	1.5	XXX	3.5	2/month	Composite
j	Report							•
Ammonia (lbs)	Total Mo	XXX	XXX	XXX	XXX	XXX	1/month	Calculation
				_				24-Hr
TKN	XXX	XXX	XXX	Report	XXX	XXX	2/month	Composite

		Effluent Limitations								
Parameter	Mass Units	(lbs/day) (1)		Concentrat	Minimum ⁽²⁾	Required				
Faranietei	Average Monthly	Average Weekly	Minimum	Average Monthly	Maximum	Instant. Maximum	Measurement Frequency	Sample Type		
	Report						.,			
TKN (lbs)	Total Mo	XXX	XXX	XXX	XXX	XXX	1/month	Calculation		
								24-Hr		
Total Phosphorus	XXX	XXX	XXX	2.0	XXX	4	2/month	Composite		
	Report									
Total Phosphorus (lbs)	Total Mo	XXX	XXX	XXX	XXX	XXX	1/month	Calculation		

Compliance Sampling Location: Outfall 001

		Effluent Limitations									
Parameter	Mass Units	s (lbs/day) ⁽¹⁾		Concentrat	Minimum (2)	Required					
Farameter	Monthly	Annual	Monthly	Monthly Average	Maximum	Instant. Maximum	Measurement Frequency	Sample Type			
		Report									
Total Nitrogen (lbs)	XXX	Total Annual	XXX	XXX	XXX	XXX	1/year	Calculation			
		Report									
Ammonia (lbs)	XXX	Total Annual	XXX	XXX	XXX	XXX	1/year	Calculation			
		Report									
Total Phosphorus (lbs)	XXX	Total Annual	XXX	XXX	XXX	XXX	1/year	Calculation			

Compliance Sampling Location: Outfall 001

Compliance History

DMR Data for Outfall 001 (from March 1, 2023 to February 29, 2024)

Parameter	FEB-24	JAN-24	DEC-23	NOV-23	OCT-23	SEP-23	AUG-23	JUL-23	JUN-23	MAY-23	APR-23	MAR-23
Flow (MGD)												
Average Monthly	0.0072	0.01252	0.00897	0.00738	0.00619	0.00646	0.0047	0.0048	0.00576	0.00527	0.0067	0.00734
Flow (MGD)												
Daily Maximum	0.01062	0.0460	0.01503	0.01476	0.00976	0.0124	0.00838	0.00741	0.01417	0.00896	0.0124	0.01131
pH (S.U.)												
Instantaneous												
Minimum	6.84	7.03	6.46	6.55	7.02	6.86	6.5	7.27	7.05	6.94	6.92	6.48
pH (S.U.)												
Instantaneous												
Maximum	8.63	8.84	8.7	8.22	8.3	8.69	8.43	8.27	8.32	7.85	8.16	8.15
DO (mg/L)												
Instantaneous												
Minimum	9.08	9.14	9.43	8.64	7.7	7.47	7.24	7.0	7.0	7.32	7.52	7.55
TRC (mg/L)												
Average Monthly	0.02	0.02	0.01	0.02	0.0009	0.01	< 0.07	0.01	0.02	< 0.02	0.03	0.03
TRC (mg/L)												
Instantaneous												
Maximum	0.05	0.04	0.02	0.04	0.03	0.01	< 0.09	0.03	0.03	0.07	0.05	0.11
CBOD5 (mg/L)												
Average Monthly	< 2.0	< 2.4	< 2.4	< 3.0	< 3.0	< 3.0	< 2.4	< 2.0	< 2.4	< 2.0	< 3.0	< 2.0
CBOD5 (mg/L)												
Instantaneous												
Maximum	< 2.4	< 2.4	< 2.4	2.7	2.6	2.9	< 2.4	< 2.4	< 2.4	< 2.4	2.8	2.5
TSS (mg/L)												
Average Monthly	2.0	4.5	4.0	1.5	2.5	1.0	3.0	2.5	6.0	2.0	< 2.0	1.0
TSS (mg/L)												
Instantaneous												
Maximum	3.0	5.0	6.0	2.0	3.0	1.0	3.0	3.0	8.0	2.0	3.0	1.0
Fecal Coliform												
(No./100 ml)	4.0					4.0	_					
Geometric Mean	< 18	< 7.0	< 13	< 9	24	< 1.0	< 1	3.0	< 2.0	< 1.0	< 1.0	< 1
Fecal Coliform												
(No./100 ml)												
Instantaneous	000	4.0	4=0	0.0	0.1	4.0	4.0	0.0	4.0	4.0	0.0	
Maximum	326	48	172	83	31	1.0	< 1.0	8.0	4.0	< 1.0	2.0	< 1.0
Nitrate-Nitrite (mg/L)				40.45	40.							
Average Monthly	33.4	< 32.22	< 28.4	< 46.49	< 42.4	< 22.4	< 20.7	< 17.4	< 0.04	< 2.5	< 2.8	20.4

NPDES Permit Fact Sheet Windy Brae MHP

NPDES Permit No. PA0081388

Nitrate-Nitrite (lbs)												
Total Monthly	< 54.7	< 9.08	< 2.03	< 54.6	< 2.02	< 1.1	< 23	< 0.82	< 0.6	< 0.12	< 4.6	32.7
Total Nitrogen (mg/L)	V 0 1.1	1 0.00	\ <u>Z.</u> 00	V 0 1.0	\ Z.0Z	· · · · ·	\ 20	\ 0.02	1 0.0	V 0.12	V 1.0	02.7
Average Monthly	< 2.0	< 33.9	< 28.4	< 46.49	< 42.4	< 22.9	< 17.6	< 17.4	7.1	< 4.0	< 2.9	20.9
Total Nitrogen (lbs)												
Total Monthly	< 56	< 9.0	< 2	< 56	< 2.0	< 22	< 20.0	< 26	10.0	< 0.2	< 4.8	33.4
Total Nitrogen (lbs)												
Total Annual						< 202						
Ammonia (mg/L)												
Average Monthly	< 0.1	< 0.1	< 0.2	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	0.01	< 0.6	< 0.1	< 0.1
Ammonia (mg/L)												
Instantaneous												
Maximum	< 0.1	< 0.1	0.22	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	0.24	< 1.0	< 0.1	< 0.1
Ammonia (lbs)												
Total Monthly	< 0.2	< 0.03	< 2	< 0.004	< 0.2	< 0.003	< 0.1	< 0.2	0.3	< 0.03	< 0.2	< 0.2
Ammonia (lbs)												
Total Annual						< 4.0						
TKN (mg/L)												
Average Monthly	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.02	< 1.3	< 0.05	0.09	0.05	1.2	< 0.5
TKN (lbs)												
Total Monthly	< 0.8	< 0.1	< 0.04	< 0.02	< 0.8	< 0.02	< 1.0	< 0.8	3.0	2.0	2.0	< 0.8
Total Phosphorus												
(mg/L)	2.4	0.0	0.5	0.4	0.4	0.5	0.5	0.0	0.0		0.0	0.0
Average Monthly	0.4	0.2	0.5	< 0.4	0.4	0.5	0.5	< 0.2	0.3	< 0.3	0.3	0.2
Total Phosphorus												
(mg/L)												
Instantaneous	0.40	0.22	0.50	. 0.20	0.46	0.50	0.55	. 0.00	0.24	.04	0.4	0.05
Maximum Total Dhaanharus (lba)	0.48	0.32	0.56	< 0.39	0.46	0.52	0.55	< 0.23	0.34	< 0.4	0.4	0.25
Total Phosphorus (lbs)	.07	0.03	0.03	< 0.02	0.7	0.5	0.6	.03	0.5	104	0.5	0.4
Total Monthly	< 0.7	0.03	0.03	< 0.02	0.7	0.5	0.6	< 0.3	0.5	< 0.4	0.5	0.4
Total Phosphorus (lbs)						- 20.0						
Total Annual						< 20.0						

Development of Effluent Limitations							
Outfall No.	001	Design Flow (MGD)	.0337				
Latitude	39° 47' 35.57"	Longitude	-76° 37' 55.97"				
Wastewater Description: Sewage Effluent							

Technology-Based Limitations

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Pollutant	Limit (mg/l)	SBC	Federal Regulation	State Regulation
CBOD ₅	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
CBOD5	40	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)
Total Suspended	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
Solids	45	Average Weekly	133.102(b)(2)	92a.47(a)(2)
pН	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform				
(5/1 – 9/30)	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
Fecal Coliform				
(5/1 – 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform				
(10/1 - 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
Fecal Coliform				
(10/1 - 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)
Total Residual Chlorine	0.5	Average Monthly	-	92a.48(b)(2)

Comments: These standards apply, subject to water quality analysis and BPJ where applicable.

Water Quality-Based Limitations

CBOD5. NH3-N and Dissolved Oxygen (DO)

WQM 7.0 version 1.0b is a water quality model designed to assist DEP to determine appropriate permit requirements for CBOD5, NH3-N and DO. DEP's guidance no. 391-2000-007 provides the technical methods contained in WQM 7.0 for conducting wasteload allocation and for determining recommended NPDES effluent limits for point source discharges. The model was utilized, and the model output indicated that existing WQBEL of 7.5 mg/L (AVG) and 15.0 (Peak Instant) for CBOD5 during cold weather months and that the existing WQBEL of 6.0 mg/L (AVG) and 10.0 (Peak Instant) for CBOD5 during warm weather months are still appropriate. Likewise, the model output indicated that the existing WQBELs for NH3-N are still protective of water quality during both warm and cold weather months. No changes are proposed.

The model indicates that the existing DO limit of 7.0 mg/L is still protective of water quality.

Toxics

DEP's NPDES permit application for minor sewage facilities (less than 0.1 MGD) does not require sampling for heavy metals including Total Copper, Total Lead, and Total Zinc unless the facility receives commercial or industrial wastewater.

Best Professional Judgment (BPJ) Limitations

Total Phosphorus & Total Nitrogen

DÉP's SOP no. BPNPSM-PMT-033 (Establishing Effluent Limitations for Individual Sewage Permits) recommends monitoring requirements for Total Phosphorus and Total Nitrogen for all sewage facilities. Therefore, a routine monitoring for TKN, Nitrate-Nitrite, and TN are recommended to be continued in this permit. Sampling frequency for TKN, Nitrate-Nitrite, TN, and TP are currently required 1/month. No change is proposed in this renewal.

NPDES Permit Fact Sheet Windy Brae MHP

Total Residual Chlorine

Since chlorine is used for disinfection, Total Residual Chlorine (TRC) effluent levels must be regulated in accordance with 25 Pa Code §92a.48(b). DEP's TRC_CALC worksheet was utilized to determine if the existing limits are still appropriate. The worksheet indicated that existing limits for TRC (0.13 mg/L AVG/0.43 mg/L Peak Instant) are no longer protective of water quality. Updated TRC limits (0.10 mg/L AVG/0.32 mg/L Peak Instant) are proposed in this permit. A review of the facility's DMR records indicate that the existing facility is already meeting the proposed limits on a consistent basis.

Additional Considerations

Flow Monitoring

The requirement to monitor the volume of effluent will remain in the permit per 40 CFR § 122.44(i)(1)(ii).

E. Coli Monitoring

In conformity with the Department's *Establishing Effluent Limitations for Individual Sewage Permits* (SOP No. BCW-PMT-033) and as authorized by § 92a.61 of the PA Code, annual E. Coli monitoring has been proposed in this permit. The collection method will be via grab sample.

Chesapeake Bay TMDL

The Department formulated a strategy in April 2007, to comply with the EPA's and Chesapeake Bay Foundation's requirements to reduce point source loadings of Total Nitrogen (TN) and Total Phosphorus (TP) to the Bay. In the Strategy, sewage dischargers have been prioritized by Central Office based on their delivered TN loadings to the Bay. The highest priority (Phases 1, 2, and 3) dischargers received annual loading caps based on their design flow on August 29, 2005 and concentrations of 6 mg/l TN and 0.8 mg/l TP. Phase 4 (0.2 -0.4mgd) and Phase 5 (below 0.2mdg) facilities were required to monitor and report TN and TP during permit renewal at a monitoring frequency following Table 6-3 of DEP's Technical Guidance for Development and Specification of effluent Limitations (No. 362-0400-001).

EPA published the Chesapeake Bay Total Maximum Daily Load (TMDL) in December of 2010. Despite extensive restoration efforts during the past 25 years, the TMDL was prompted by insufficient progress and continued poor water quality in the Chesapeake Bay and its tidal tributaries.

In order to address the TMDL, Pennsylvania developed, in addition to the Bay Strategy, a Chesapeake Watershed Implementation Plan (WIP) Phase 1 in January 2011, Phase 2 in March 2012 and Phase 3 in December 2019. In accordance with the Phase 3 WIP, re-issuing permits for significant dischargers follow the same phased approach formulated in the original Bay strategy, whilst Phase 4 and Phase 5 will be required to monitor and report TN and TP during permit renewal.

The Phase 3 WIP categorizes this facility as a phase 5 non-significant sewage facility that has a design flow less than 0.2 MGD but greater than 0.002 MGD. The WIP recommends monitoring and reporting for Total Nitrogen and Total Phosphorus throughout the permit term at a frequency no less than annual. As discussed previously, monthly testing of these pollutants is proposed in this permit.

Monitoring Frequency and Sample Type

Unless discussed otherwise above, the permit's monitoring frequency and sample type for all parameters will remain unchanged from the last permit renewal.

Antidegradation Requirements

All effluent limitations and monitoring requirements have been developed to ensure that existing instream water uses and the level of water quality necessary to protect the existing uses are maintained and protected.

Anti-backsliding Requirement

All effluent limits proposed in this fact sheet are as stringent as effluent limits specified in the existing permit renewal. This approach is in accordance with 40 CFR §122.44(I(1).

Annual Fees

An annual fee clause was added to the permit in accordance with 25 Pa. Code § 92a.62. The facility covered by the permit is classified in the Minor Sewage Facility <0.05 MGD fee category, which has an annual fee of \$500.

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (386-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

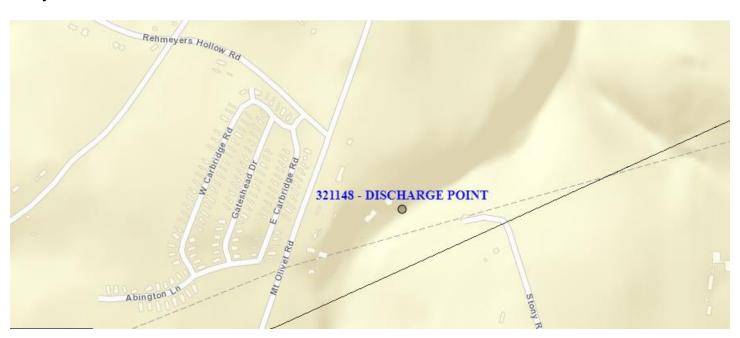
			Effluent L	imitations			Monitoring Re	quirements
Parameter	Mass Units	(lbs/day) (1)		Concentrat	ions (mg/L)		Minimum ⁽²⁾	Required
i arameter	Average Monthly	Average Weekly	Minimum	Average Monthly	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report Daily Max	XXX	XXX	XXX	XXX	Continuous	Measured
pH (S.U.)	XXX	XXX	6.0 Inst Min	XXX	XXX	9.0	1/day	Grab
DO	XXX	XXX	7.0 Inst Min	XXX	XXX	XXX	1/day	Grab
TRC	XXX	XXX	XXX	0.10	XXX	0.32	1/day	Grab
CBOD5 Nov 1 - Apr 30	XXX	XXX	XXX	7.5	XXX	15	2/month	24-Hr Composite
CBOD5 May 1 - Oct 31	XXX	XXX	XXX	6.0	XXX	12	2/month	24-Hr Composite
TSS	XXX	XXX	XXX	10.0	XXX	20	2/month	24-Hr Composite
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	XXX	XXX	XXX	2000 Geo Mean	XXX	10000	2/month	Grab
Fecal Coliform (No./100 ml) May 1 - Sep 30	XXX	XXX	XXX	200 Geo Mean	XXX	1000	2/month	Grab
E. Coli (No./100 ml)	XXX	XXX	XXX	XXX	XXX	Report	1/year	Grab
Nitrate-Nitrite	XXX	XXX	XXX	Report	XXX	XXX	2/month	24-Hr Composite
Nitrate-Nitrite (lbs)	Report Total Mo	XXX	XXX	XXX	XXX	XXX	1/month	Calculation
Total Nitrogen	XXX	XXX	XXX	Report	XXX	XXX	1/month	Calculation
Total Nitrogen (lbs)	Report Total Mo	XXX	XXX	XXX	XXX	XXX	1/month	Calculation

Outfall 001, Continued (from Permit Effective Date through Permit Expiration Date)

		Effluent Limitations						
Parameter	Mass Units	Mass Units (lbs/day) (1)		Concentrations (mg/L)				Required
	Average Monthly	Average Weekly	Minimum	Average Monthly	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Ammonia								24-Hr
Nov 1 - Apr 30	XXX	XXX	XXX	2.0	XXX	4.5	2/month	Composite
Ammonia May 1 - Oct 31	XXX	XXX	XXX	1.5	XXX	3.5	2/month	24-Hr Composite
Ammonia (lbs)	Report Total Mo	XXX	XXX	XXX	XXX	XXX	1/month	Calculation
TKN	XXX	XXX	XXX	Report	XXX	XXX	2/month	24-Hr Composite
TKN (lbs)	Report Total Mo	XXX	XXX	XXX	XXX	XXX	1/month	Calculation
Total Phosphorus	XXX	XXX	XXX	2.0	XXX	4	2/month	24-Hr Composite
Total Phosphorus (lbs)	Report Total Mo	XXX	XXX	XXX	XXX	XXX	1/month	Calculation

Compliance Sampling Location: Outfall 001

Proposed Effluent Limitations and Monitoring Requirements


The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (386-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

			Effluent L	imitations			Monitoring Requirements		
Parameter	Mass Units	Mass Units (lbs/day) (1)		Concentrations (mg/L)				Required	
Faranietei	Monthly	Annual	Monthly	Monthly Average	Maximum	Instant. Maximum	Measurement Frequency	Sample Type	
		Report							
Total Nitrogen (lbs)	XXX	Total Annual	XXX	XXX	XXX	XXX	1/year	Calculation	
		Report							
Ammonia (lbs)	XXX	Total Annual	XXX	XXX	XXX	XXX	1/year	Calculation	
		Report							
Total Phosphorus (lbs)	XXX	Total Annual	XXX	XXX	XXX	XXX	1/year	Calculation	

Compliance Sampling Location: Outfall 001

	Tools and References Used to Develop Permit
	WQM for Windows Model (see Attachment)
	Toxics Management Spreadsheet (see Attachment)
	TRC Model Spreadsheet (see Attachment)
<u> </u>	Temperature Model Spreadsheet (see Attachment)
	Water Quality Toxics Management Strategy, 361-0100-003, 4/06.
	Technical Guidance for the Development and Specification of Effluent Limitations, 386-0400-001, 10/97.
	Policy for Permitting Surface Water Diversions, 386-2000-019, 3/98.
	Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 386-2000-018, 11/96.
	Technology-Based Control Requirements for Water Treatment Plant Wastes, 386-2183-001, 10/97.
	Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 386-2183-002, 12/97.
	Pennsylvania CSO Policy, 386-2000-002, 9/08.
	Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03.
	Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 386-2000-008, 4/97.
\boxtimes	Determining Water Quality-Based Effluent Limits, 386-2000-004, 12/97.
	Implementation Guidance Design Conditions, 386-2000-007, 9/97.
	Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen, Version 1.0, 386-2000-016, 6/2004.
	Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 386-2000-012, 10/1997.
	Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments, 386-2000-009, 3/99.
	Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 386-2000-015, 5/2004.
	Implementation Guidance for Section 93.7 Ammonia Criteria, 386-2000-022, 11/97.
	Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 386-2000-013, 4/2008.
	Implementation Guidance Total Residual Chlorine (TRC) Regulation, 386-2000-011, 11/1994.
	Implementation Guidance for Temperature Criteria, 386-2000-001, 4/09.
	Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 386-2000-021, 10/97.
	Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 386-2000-020, 10/97.
	Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 386-2000-005, 3/99.
	Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 386-2000-010, 3/1999.
	Design Stream Flows, 386-2000-003, 9/98.
	Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 386-2000-006, 10/98.
	Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 386-3200-001, 6/97.
	Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07.
	SOP:
	Other:

0.0316 = Q str 0.0337 = Q dis 30 = no. s 0.3 = Chlor 0 = Chlor 0.5 = BAT// 0 = % Fa Source Referent TRC 1.3.2. NTOXSD TRC 5.1a NTOXSD TRC 5.1b Source STOXSD TRC 5.1f NTOXSD TRC 5.1g A afc (.019/e + Xd MULT afc EXP((0.5 wla_afc) MULT_cfc (.011/e + Xd MULT_cfc EXP((0.5 wla_afc) MULT_cfc MULT EXP(2.33 wla_afc)	es in B4:B8 and E4:E7 eam (cfs) charge (MGD) amples rine Demand of Strea rine Demand of Disch BPJ Value ctor of Safety (FOS) CC AFC Calculations IIII WLA afc = LTAMULT afc = LTA_afc = Effluent AVG MON LIMI INST MAX LIMI	0.5 0.5 1 1 1 1 1 1 720 0 0 = 0.212 = 0.373 = 0.079 t Limit Calc	= CFC_Criter =Decay Coef Reference 1.3.2.iii 5.1c 5.1d culations 1.231 0.097	al Mix Factor ria Compliance Time (ria Compliance Time (
0.0316 = Q str 0.0337 = Q dis 30 = no. s 0.3 = Chlor 0 = Chlor 0.5 = BAT// 0 = % Fa Source Referent TRC 1.3.2. NTOXSD TRC 5.1a NTOXSD TRC 5.1b Source STOXSD TRC 5.1f NTOXSD TRC 5.1g A afc (.019/e + Xd MULT afc EXP((0.5 wla_afc) MULT_cfc (.011/e + Xd MULT_cfc EXP((0.5 wla_afc) MULT_cfc MULT EXP(2.33 wla_afc)	eam (cfs) charge (MGD) amples rine Demand of Streatine Demand of Disch BPJ Value ctor of Safety (FOS) CE AFC Calculations LTAMULT afc = LTA_afc= Effluent AM AVG MON LIMI	0.5 0.5 1 1 1 1 1 1 720 0 0 = 0.212 = 0.373 = 0.079 t Limit Calc	= CV Hourly = AFC_Partia = CFC_Partia = AFC_Criter = CFC_Criter = Decay Coef Reference 1.3.2.iii 5.1c 5.1d culations 1.231 0.097	al Mix Factor ria Compliance Time (ria Compliance Time (fficient (K) CFC Calculations WLA cfc = 0.20 LTAMULT cfc = 0.58 LTA_cfc = 0.11
0.0337 = Q dis 30 = no. si 0.3 = Chlor 0 = Chlor 0.5 = BAT// 0 = % Fa Source Referen TRC 1.3.2. NTOXSD TRC 5.1a NTOXSD TRC 5.1b Source NTOXSD TRC 5.1f NTOXSD TRC 5.1g A afc (.019/e+ Xd MULT afc EXP((0.5 afc wla_afc* A_cfc (.011/e+ Xd MULT_cfc EXP((0.5 A_cfc wla_cfc* MULT EXP(2.33 BMON LIMIT EXP(2.33	charge (MGD) amples rine Demand of Streatine Demand of Disch BPJ Value ctor of Safety (FOS) CC AFC Calculations WLA afc = LTAMULT afc = LTA_afc = Effluent AM AVG MON LIMI INST MAX LIMI	0.5 1 1 1 1 15 720 0 0 = 0.212 = 0.373 = 0.079 t Limit Calc	= CV Hourly = AFC_Partia = CFC_Partia = AFC_Criter = CFC_Criter = Decay Coef Reference 1.3.2.iii 5.1c 5.1d culations 1.231 0.097	al Mix Factor ria Compliance Time (ria Compliance Time (fficient (K) CFC Calculations WLA cfc = 0.20 LTAMULT cfc = 0.58 LTA_cfc = 0.11
30 = no. se 0.3 = Chlor 0 = Chlor 0.5 = BAT/ 0 = % Fa Source Referen TRC 1.3.2. NTOXSD TRC 5.1a NTOXSD TRC 5.1b Source NTOXSD TRC 5.1f NTOX	amples rine Demand of Streatine Demand of Disch BPJ Value actor of Safety (FOS) CC AFC Calculations CE LTAMULT afc = LTA_afc = Effluent AM AVG MON LIMI INST MAX LIMI	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	= AFC_Partia = CFC_Partia = AFC_Criter = CFC_Criter = Decay Coef Reference 1.3.2.iii 5.1c 5.1d culations 1.231 0.097	al Mix Factor ria Compliance Time (ria Compliance Time (fficient (K) CFC Calculations WLA cfc = 0.20 LTAMULT cfc = 0.58 LTA_cfc = 0.11
0.3 = Chlor 0 = Chlor 0.5 = BAT// 0 = % Fa Source Referen TRC 1.3.2. NTOXSD TRC 5.1a NTOXSD TRC 5.1b Source NTOXSD TRC 5.1f NTOX 5.1f NTOX 5.1	rine Demand of Streamine Demand of Discherine Demand of Discherine Demand of Discherine Demand of Safety (FOS) INST MAX LIMI	1 15 720 0 0 = 0.212 = 0.373 = 0.079 t Limit Calc	= CFC_Partia = AFC_Criter = CFC_Criter = Decay Coef Reference 1.3.2.iii 5.1c 5.1d culations 1.231 0.097	al Mix Factor ria Compliance Time (ria Compliance Time (fficient (K) CFC Calculations WLA cfc = 0.20 LTAMULT cfc = 0.58 LTA_cfc = 0.11
Chlor	rine Demand of Disch BPJ Value Ictor of Safety (FOS) ICE AFC Calculations IIII WLA afc = LTAMULT afc = LTA_afc = Effluent AM AVG MON LIMI INST MAX LIMI	15 720 0 = 0.212 = 0.373 = 0.079 t Limit Calc IL MULT = IT (mg/l) =	= AFC_Criter = CFC_Criter =Decay Coef Reference 1.3.2.iii 5.1c 5.1d culations 1.231 0.097	ria Compliance Time (ria Compliance Time (fficient (K) CFC Calculations WLA cfc = 0.20 LTAMULT cfc = 0.58 LTA_cfc = 0.11
O.5	BPJ Value ctor of Safety (FOS) CCE AFC Calculations WLA afc = LTAMULT afc = LTA_afc = Effluent AM AVG MON LIMI	720 0 = 0.212 = 0.373 = 0.079 t Limit Calc IL MULT = IT (mg/l) =	= CFC_Criter =Decay Coef Reference 1.3.2.iii 5.1c 5.1d culations 1.231 0.097	ria Compliance Time (fficient (K) CFC Calculations WLA cfc = 0.20 LTAMULT cfc = 0.58 LTA_cfc = 0.11
Source	ctor of Safety (FOS) CE AFC Calculations WLA afc = LTAMULT afc = LTA_afc = Effluent AM AVG MON LIMI	0 = 0.212 = 0.373 = 0.079 t Limit Calc IL MULT = IT (mg/l) =	=Decay Coef Reference 1.3.2.iii 5.1c 5.1d culations 1.231 0.097	Fficient (K) CFC Calculations WLA cfc = 0.20 LTAMULT cfc = 0.58 LTA_cfc = 0.11
Source Referent TRC 1.3.2. ITOXSD TRC 5.1a ITOXSD TRC 5.1b Source ITOXSD TRC 5.1f ITOXSD TRC 5.1f ITOXSD TRC 5.1g A afc (.019/e+ Xd MULT afc EXP((0.5 wla_afc) A_cfc (.011/e+ Xd MULT_cfc EXP((0.5 wla_cfc) MULT_cfc EXP((0.5 wla_cfc) MULT EXP(2.33) MULT EXP(2.33)	AFC Calculations WLA afc = LTAMULT afc = LTA_afc = Effluent AWG MON LIMI INST MAX LIMI	= 0.212 = 0.373 = 0.079 t Limit Calc IL MULT = IT (mg/l) =	Reference 1.3.2.iii 5.1c 5.1d culations 1.231 0.097	CFC Calculations WLA cfc = 0.20 LTAMULT cfc = 0.58 LTA_cfc = 0.11
TRC 1.3.2. NTOXSD TRC 5.1a NTOXSD TRC 5.1b Source NTOXSD TRC 5.1f NTOXSD TRC 5.1g A afc (.019/e+ Xd MULT afc EXP((0.5 wla_afc* A_cfc (.011/e+ Xd MULT_cfc EXP((0.5 wla_cfc* MULT_cfc EXP((0.5 wla_cfc* MULT EXP(2.33) MULT EXP(2.33)	WLA afc = LTAMULT afc = LTA_afc = Effluent AM AVG MON LIMI	= 0.373 = 0.079 <u>t Limit Calc</u> IL MULT = IT (mg/l) =	1.3.2.iii 5.1c 5.1d culations 1.231 0.097	WLA cfc = 0.20 LTAMULT cfc = 0.58 LTA_cfc = 0.11
Source NTOXSD TR(5.1a NTOXSD TR(5.1b Source NTOXSD TR(5.1f NTOXSD	Effluent AM AVG MON LIMI INST MAX LIMI	= 0.373 = 0.079 <u>t Limit Calc</u> IL MULT = IT (mg/l) =	5.1c 5.1d culations 1.231 0.097	LTAMULT cfc = 0.58 LTA_cfc = 0.11
Source ITOXSD TR(5.1b Source ITOXSD TR(5.1f ITOXSD TR(5.1f ITOXSD TR(5.1g A afc (.019/e+ Xd MULT afc EXP((0.5 _afc wla_afc* A_cfc (.011/e+ Xd MULT_cfc EXP((0.5 A_cfc wla_cfc* MULT EXP(2.33 EMON LIMIT MIN(BA	Effluent AM AVG MON LIMI INST MAX LIMI	= 0.079 t Limit Calc IL MULT = IT (mg/l) =	culations 1.231 0.097	
A afc (.019/e+ Xd MULT afc EXP((0.5 _afc wla_afc' A_cfc (.011/e+ Xd MULT_cfc EXP((0.5 A_cfc wla_cfc' MULT_cfc EXP((0.5 A_cfc wla_cfc' MULT EXP(2.33 EMON LIMIT MIN(BA)	AM J AVG MON LIMI INST MAX LIMI	1L MULT = IT (mg/l) =	1.231 0.097	AFC
A afc (.019/e+ Xd MULT afc EXP((0.5 _afc wla_afc' A_cfc (.011/e+ Xd MULT_cfc EXP((0.5 A_cfc wla_cfc' MULT_cfc EXP((0.5 A_cfc wla_cfc' MULT EXP(2.33 EMON LIMIT MIN(BA)	AM J AVG MON LIMI INST MAX LIMI	1L MULT = IT (mg/l) =	1.231 0.097	AFC
A afc (.019/e+ Xd MULT afc EXP((0.5+ Xd+ X	AVG MON LIMI INST MAX LIMI	IT (mg/l) =	0.097	AFC
A afc (.019/e+ Xd MULT afc EXP((0.5 _afc wla_afc* A_cfc (.011/e+ Xd MULT_cfc EXP((0.5 A_cfc wla_cfc*	INST MAX LIMI			AFC
+ Xd MULT afc EXP((0.5 _afc wla_afc* A_cfc (.011/e+ Xd MULT_cfc EXP((0.5 A_cfc wla_cfc* MULT EXP(2.33 EMON LIMIT MIN(BA		IT (mg/l) =	0.319	
+ Xd MULT afc EXP((0.5 _afc wla_afc* A_cfc (.011/e+ Xd MULT_cfc EXP((0.5 A_cfc wla_cfc* MULT EXP(2.33 EMON LIMIT MIN(BA				
MAX LIMIT 1.5*((a)	5*LN(cvh^2+1))-2.326*LN *LTAMULT_afc (-k*CFC_tc) + [(CFC_ + (CFC_Yc*Qs*Xs/Qc 5*LN(cvd^2/no_samples *LTAMULT_cfc 26*LN((cvd^2/no_sampl T_BPJ,MIN(LTA_afc,LT/	_Yc*Qs*.(d)]*(1-FO s+1))-2.326 les+1)^0.5	011/Qd*e(-k*(S/100) *LN(cvd^2/no_ -0.5*LN(cvd^2	samples+1)^0.5)
	v_mon_limit/AML_MU	JLT)/LTAI	MULT_afc)	
D11/EXP(-K*CFC_to				

StreamStats Report

 Region ID:
 PA

 Workspace ID:
 PA20240421151014177000

 Clicked Point (Latitude, Longitude):
 39.79317, -76.63204

 Time:
 2024-04-21 11:10:39 -0400

Collapse All

> Basin Characteristics

Parameter Code	Parameter Description	Value	Unit
BSLOPD	Mean basin slope measured in degrees	4.7011	degrees
DRNAREA	Area that drains to a point on a stream	0.31	square miles
ROCKDEP	Depth to rock	5	feet
URBAN	Percentage of basin with urban development	0.2216	percent

> Low-Flow Statistics

Low-Flow Statistics Parameters [Low Flow Region 1]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	0.31	square miles	4.78	1150
BSLOPD	Mean Basin Slope degrees	4.7011	degrees	1.7	6.4
ROCKDEP	Depth to Rock	5	feet	4.13	5.21
URBAN	Percent Urban	0.2216	percent	0	89

Low-Flow Statistics Disclaimers [Low Flow Region 1]

One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors.

Low-Flow Statistics Flow Report [Low Flow Region 1]

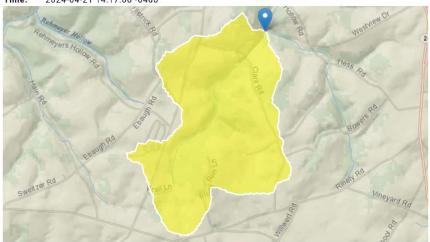
Statistic	Value	Unit
7 Day 2 Year Low Flow	0.076	ft^3/s
30 Day 2 Year Low Flow	0.0977	ft^3/s
7 Day 10 Year Low Flow	0.0316	ft^3/s
30 Day 10 Year Low Flow	0.043	ft^3/s
90 Day 10 Year Low Flow	0.0681	ft^3/s

Low-Flow Statistics Citations

Stuckey, M.H., 2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006-5130, 84 p. (http://pubs.usgs.gov/sir/2006/5130/)

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the functionality of the software and related material nor shall the fact of release constitute any such warranty. Furthermore, the software is released on condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized use.


USGS Product Names Disclaimer: Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

StreamStats Report

 Region ID:
 PA

 Workspace ID:
 PA20240421181642262000

Clicked Point (Latitude, Longitude): 39.80527, -76.62041
Time: 2024-04-21 14:17:06 -0400

Collapse All

> Basin Characteristics

Parameter Code	Parameter Description	Value	Unit
BSLOPD	Mean basin slope measured in degrees	5.3037	degrees
DRNAREA	Area that drains to a point on a stream	1.25	square miles
ROCKDEP	Depth to rock	5	feet
URBAN	Percentage of basin with urban development	0.1112	percent

> Low-Flow Statistics

Low-Flow Statistics Parameters [Low Flow Region 1]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	1.25	square miles	4.78	1150
BSLOPD	Mean Basin Slope degrees	5.3037	degrees	1.7	6.4
ROCKDEP	Depth to Rock	5	feet	4.13	5.21
URBAN	Percent Urban	0.1112	percent	0	89

Low-Flow Statistics Disclaimers [Low Flow Region 1]

One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors.

Low-Flow Statistics Flow Report [Low Flow Region 1]

Statistic	Value	Unit
7 Day 2 Year Low Flow	0.36	ft^3/s
30 Day 2 Year Low Flow	0.445	ft^3/s
7 Day 10 Year Low Flow	0.167	ft^3/s
30 Day 10 Year Low Flow	0.215	ft^3/s
90 Day 10 Year Low Flow	0.313	ft^3/s

Low-Flow Statistics Citations

Stuckey, M.H., 2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006-5130, 84 p. (http://pubs.usgs.gov/sir/2006/5130/)

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the functionality of the software and related material nor shall the fact of release constitute any such warranty. Furthermore, the software is released on condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized use.

USGS Product Names Disclaimer: Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

WQM 7.0 Effluent Limits

	SWP Basin Stream	n Code		Stream Name	<u>e</u>		
	07H 81	133	Tril	o 08133 to E Branch	Codorus Cr		
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
4.350	Windy Brae MHP	PA0081388	0.034	CBOD5	25		
				NH3-N	3.44	6.88	
				Dissolved Oxygen			5

WQM 7.0 Wasteload Allocations

SWP Basin	Stream Code	Stream Name
07H	8133	Trib 08133 to E Branch Codorus Cr

RMI	Discharge Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
4.35) Windy Brae MHP	16.76	23.26	16.76	23.26	0	0
H3-N (Chronic Allocat	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction

		CBC	<u>DD5</u>	<u>NH</u>	<u>3-N</u>	Dissolved	l Oxygen	Critical	Percent	
RMI	Discharge Name	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple (mg/L)	Reach	Reduction	
4.35	Windy Brae MHP	25	25	3.44	3.44	5	5	0	0	

WQM 7.0 D.O.Simulation

SWP Basin	Stream Code			Stream Name	
07H	8133		dorus Cr		
RMI	Total Discharge	Flow (mgd)	Anal	ysis Temperature	(°C) Analysis pH
4.350	0.03	4		20.000	7.000
Reach Width (ft)	Reach De	pth (ft)		Reach WDRatio	Reach Velocity (fps)
3.118	0.34	9		8.931	0.077
Reach CBOD5 (mg/L)	Reach Kc (1/days)	<u>R</u>	each NH3-N (mg/l	_) Reach Kn (1/days)
16.32	1.35	-		2.14	0.700
Reach DO (mg/L)	Reach Kr (Kr Equation	Reach DO Goal (mg/L)
6.224	27.26	64		Owens	6
Reach Travel Time (days)		Subreach	Results		
0.930	TravTime	CBOD5	NH3-N	D.O.	
	(days)	(mg/L)	(mg/L)	(mg/L)	
	0.093	14.38	2.01	7.67	
	0.186	12.68	1.88	7.93	
	0.279	11.17	1.76	8.07	
	0.372	9.85	1.65	8.19	
	0.465	8.68	1.55	8.24	
	0.558	7.65	1.45	8.24	
	0.651	6.74	1.36	8.24	
	0.744	5.94	1.27	8.24	
	0.837	5.24	1.19	8.24	
	0.930	4.61	1.12	8.24	

Sunday, April 28, 2024 Version 1.1 Page 1 of 1

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	✓
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.64	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.36	Temperature Adjust Kr	✓
D.O. Saturation	90.00%	Use Balanced Technology	✓
D.O. Goal	6		

Sunday, April 28, 2024 Version 1.1 Page 1 of 1

Input Data WQM 7.0

	SWP Basin	Strea Cod		Stre	eam Name	•	RMI		evation (ft)	Drainag Area (sq mi	,	Slope (ft/ft)	PW: Withdr (mg	awal	Apply FC
	07H	8	133 Trib 08	3133 to E	Branch Co	odorus Cr	4.3	50	896.56	(0.31 0	.00000		0.00	✓
					;	Stream Dat	a								
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	<u>Tributar</u> np	⊻ pH	Ten	<u>Stream</u> np	рН	
	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C	;)		(°C	C)		
Q7-10 Q1-10 Q30-10	0.100	0.00 0.00 0.00	0.00	0.000 0.000 0.000	0.000		0.00	0.0	00 2	0.00	7.00		0.00	0.00	
		Discharge Data													
			Name	Pei	rmit Numb	Existing Disc er Flow (mgd)	Permitte Disc Flow (mgd)	Dis Flo	sc Res	serve actor	Disc Temp (°C)		isc pH		
		Wind	ly Brae MHI	P PA	0081388	0.0337	7 0.033	37 0.0	0337	0.000	20.0	00	7.00		
						Parameter [Data								
				Parametei	r Name			Trib Conc	Stream Conc	Fate Coef					
				a. a. motor		(m	g/L) (r	mg/L)	(mg/L)	(1/days	s)				
			CBOD5				25.00	2.00	0.00	1.5	50				
			Dissolved	Oxygen			5.00	8.24	0.00	0.0	00				
			NH3-N			:	25.00	0.00	0.00	0.7	70				

Input Data WQM 7.0

	SWP Basir	Strea Cod		Stre	eam Name	•	RMI		evation (ft)	Drainage Area (sq mi)		lope ft/ft)	PW: Withdra (mga	awal	Apply FC
	07H	8	133 Trib 08	3133 to E	Branch Co	odorus Cr	3.1	80	754.96	1.	25 0.0	00000		0.00	✓
					;	Stream Dat	a								
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	<u>Tributary</u> ip p	Н	Tem	<u>Stream</u> np	рН	
	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C	;)		
Q7-10 Q1-10 Q30-10	0.100	0.00 0.00 0.00	0.00	0.000 0.000 0.000	0.000 0.000 0.000		0.00	0.0	00 2	0.00	7.00		0.00	0.00	
						Discharge [Data								
			Name	Pei	rmit Numb	Existing Disc		Dis Flo	sc Res		Disc Temp (°C)		isc bH		
						0.0000	0.000	0.0	0000	0.000	0.0	0	7.00		
						Parameter [Data								
				Parametei	r Name			Trib Conc	Stream Conc	Fate Coef					
						(m	g/L) (r	mg/L)	(mg/L)	(1/days)					
			CBOD5				25.00	2.00	0.00	1.50)				
			Dissolved	Oxygen			3.00	8.24	0.00	0.00)				
			NH3-N			:	25.00	0.00	0.00	0.70)				