

Application Type
Facility Type
Major / Minor

Renewal
Industrial
Minor

**NPDES PERMIT FACT SHEET
INDIVIDUAL INDUSTRIAL WASTE (IW)
AND IW STORMWATER**

Application No. PA0081850
APS ID 1084
Authorization ID 1511142

Applicant and Facility Information

Applicant Name	<u>Gettysburg Borough Municipal Authority Adams County</u>	Facility Name	<u>Gettysburg Municipal Authority Water System</u>
Applicant Address	<u>601 E Middle Street PO Box 3307</u>	Facility Address	<u>Water Works Road</u>
	<u>Gettysburg, PA 17325-1951</u>		<u>Gettysburg, PA 17325</u>
Applicant Contact	<u>Mark Guise</u>	Facility Contact	<u>Mark Guise</u>
Applicant Phone	<u>(717) 334-6738</u>	Facility Phone	<u>(717) 334-6738</u>
Client ID	<u>78262</u>	Site ID	<u>239068</u>
SIC Code	<u>4941</u>	Municipality	<u>Cumberland Township</u>
SIC Description	<u>Trans. & Utilities - Water Supply</u>	County	<u>Adams</u>
Date Application Received	<u>December 30, 2024</u>	EPA Waived?	<u>Yes</u>
Date Application Accepted	<u>January 3, 2025</u>	If No, Reason	
Purpose of Application	<u>NPDES permit renewal.</u>		

Summary of Review

Buchart Horn, Inc., on behalf of the Gettysburg Borough Municipal Authority Adams County (IW) (Authority/Permittee), applied to the Pennsylvania Department of Environmental Protection (DEP) for issuance of the NPDES permit. The permit was reissued on May 13, 2020, and became effective on June 1, 2020. The permit expires on May 31, 2025.

The Gettysburg Municipal Authority Water System NPDES PA0081850 A-1 amendment was issued on 4/8/2021 to add approximately 60,000 gallons (0.06 MGD) discharge of filter-to-waste to existing NPDES Outfall 001 during WTP start up. The modification will install the new filter-to-waste piping and automatic valves to discharge the filter-to-waste water through the existing Outfall 001.

The treatment plant is designed for 100% recycle of filter backwash water and treatment plant overflow. However, in the event that 100% recycle is not possible, the authority has chosen to continue to renew the NPDES permit for the discharge. Outfall 001 discharges to a dry swale which flows to Marsh Creek. The point of first use is the confluence with Marsh Creek approximately 8.14 miles.

Marsh Creek is classified as Cold-Water Fishes (CWF) according to chapter 93. The design flow is 0.215 MGD. According to previous protection reports, inspection reports, and DMR data, there has been only one discharge from this facility (in December 2018) since June 01, 2014.

Sludge use and disposal description and location(s): N/A because sludge is hauled by facility's contractor.

Changes from the previous permit: N/A

Based on the review outline in this fact sheet, it is recommended that the permit be drafted and published in the Pennsylvania Bulletin for public comments for 30 days.

Approve	Deny	Signatures	Date
X		<i>Hilaryle</i> Hilary H. Le / Environmental Engineering Specialist	March 21, 2025
X		<i>Maria D. Bebenek for</i> Daniel W. Martin, P.E. / Environmental Engineer Manager	March 28, 2025

Discharge, Receiving Waters and Water Supply Information			
Outfall No.	001	Design Flow (MGD)	0.215
Latitude	39° 47' 53.64"	Longitude	-77° 16' 30.93"
Quad Name	Fairfield	Quad Code	
Wastewater Description:	Water Treatment Effluent		
Receiving Waters	Marsh Creek (CWF)	Stream Code	NA (dry swale) (58903)
NHD Com ID	53320624	RMI	8.14 miles
Drainage Area	56.3 mi. ²	Yield (cfs/mi ²)	0.05
Q ₇₋₁₀ Flow (cfs)	3.04	Q ₇₋₁₀ Basis	USGS StreamStats
Elevation (ft)	460.67	Slope (ft/ft)	
Watershed No.	13-D	Chapter 93 Class.	CWF
Existing Use		Existing Use Qualifier	
Exceptions to Use		Exceptions to Criteria	
Assessment Status	Not Assessed		
Cause(s) of Impairment			
Source(s) of Impairment			
TMDL Status	Name		
Nearest Downstream Public Water Supply Intake	City of Frederick, MD		
PWS Waters	Monocacy River	Flow at Intake (cfs)	
PWS RMI		Distance from Outfall (mi)	Approximate 40.0 miles

Changes Since Last Permit Issuance:

Drainage Area

The discharge is to Marsh Creek at RMI 8.14 miles. A drainage area upstream of the discharge is estimated to be 56.3 mi.², according to USGS PA StreamStats available at <https://streamstats.usgs.gov/ss/>.

Stream Flow

According to the previous protection report, the discharge is to a dry swale to Marsh Creek (58903). According to USGS StreamStats available at <https://streamstats.usgs.gov/ss/>, the discharge point has a Q₇₋₁₀ of 3.04 cfs and a drainage area of 56.3 mi.², which results in a theoretical low flow yield of 0.05 cfs/mi.² (3.04 cfs / 56.3 mi.²).

The resulting Q₇₋₁₀ dilution ratio is: Q_{stream} / Q_{discharge} = 3.04 cfs / [0.215 MGD * (1.55 cfs/MGD)] = 9.12:1

Public Water Supply

The nearest downstream public water supply intake is for the City of Frederick, Maryland on the Monocacy River, approximately 40 miles downstream of this discharge. Considering distance and dilution, the discharge is not expected to impact the water supply.

Treatment Facility Summary				
Treatment Facility Name: Gettysburg Water Treatment Plant				
WQM Permit No.	Issuance Date			
Waste Type	Degree of Treatment	Process Type	Disinfection	Avg Annual Flow (MGD)
Industrial	Primary	Sedimentation Tanks	No Disinfection	0.215
Hydraulic Capacity (MGD)	Organic Capacity (lbs/day)	Load Status	Biosolids Treatment	Biosolids Use/Disposal
0.215		Not Overloaded		

Changes Since Last Permit Issuance: Permit amendment to add approximately 60,000 gallons (0.06 MGD) discharge as filter-to-waste to existing NPDES Outfall 001 during WTP start up.

Other Comments: The treatment facility consists only of a gravity sludge thickener (used to treat filter backwash). Supernatant from the sludge thickener is designed to be recycled back through the water treatment plant with a discharge only occurring in emergency situations. Sludge is hauled out periodically.

Compliance History	
Summary of DMRs:	DMRs reported last 12 months are summarized in the next page.
Summary of Inspections:	12/21/2022: Mr. Hoy, DEP Environmental Trainee, conducted compliance evaluation inspection. There were no violations noted during inspection. NPDES permitted outfall receives flow from a gravity overflow standpipe on the water treatment plant backwash gravity thickener. Filters are generally backwashed once per three days. Sludge is removed from the thickener approximately every few months and hauled to Maryland for land application. Outfall 001 was observed.
Other Comments:	There are no open violations associated with this facility or permittee.

Other Comments:

NPDES Permit Fact Sheet
Gettysburg Municipal Authority Water System

NPDES Permit No. PA0081850

Compliance History

DMR Data for Outfall 001 (from February 1, 2024 to January 31, 2025)

Parameter	JAN-25	DEC-24	NOV-24	OCT-24	SEP-24	AUG-24	JUL-24	JUN-24	MAY-24	APR-24	MAR-24	FEB-24
Flow (MGD)	0.02891	0.02795	0.01721	0.01818	0.02033	0.02282			0.01817	0.01941	0.02150	
Average Monthly	1	9	4	0.0193	9	4	0.021	2	5	5	2	0.00423
Flow (MGD)	0.08016	0.10273	0.03753	0.05512	0.02753	0.05256	0.07017	0.053	0.03504	0.05301	0.07513	0.01752
Daily Maximum	9	5	2	5	5	5	6	4	4	3	7	8
pH (S.U.)												
Daily Minimum	6.28	6.23	6.57	6.6	6.83	6.34	6.6	6.64	6.43	6.36	6.42	6.74
pH (S.U.)												
Instantaneous Maximum												
Maximum	7.5	7.33	8.5	7.35	7.51	7.3	7.02	7.04	7.26	7.2	7.56	7.08
TRC (mg/L)												
Average Monthly	0.04	0.03	0.04	0.02	0.03	< 0.04	< 0.03	0.03	0.02	0.04	0.03	0.1
TRC (mg/L)												
Instantaneous Maximum												
Maximum	0.09	0.09	0.3	0.04	0.06	0.27	0.05	0.05	0.06	0.06	0.04	0.4
TSS (mg/L)												
Average Monthly	1	2	2	2	2	1	4	1	2	1	1	1
TSS (mg/L)												
Daily Maximum	1	2	2	2	2	1	8	1	2	1	2	1
Total Aluminum (mg/L)												
Average Monthly	0.02	0.02	0.02	0.01	0.02	< 0.02	0.2	0.02	0.02	0.02	0.02	0.02
Total Aluminum (mg/L)												
Daily Maximum	0.024	0.019	0.021	0.013	0.018	< 0.02	0.49	0.017	0.02	0.019	0.03	0.023
Total Iron (mg/L)												
Average Monthly	< 0.1	0.1	< 0.1	< 0.1	< 0.1	< 0.04	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Total Iron (mg/L)												
Daily Maximum	< 0.05	0.05	< 0.05	< 0.05	0.05	< 0.05	< 0.05	< 0.05	0.07	< 0.05	< 0.05	< 0.05
Total Manganese (mg/L)												
Average Monthly	< 0.005	0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 2.9	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
Total Manganese (mg/L)												
Daily Maximum	< 0.005	0.005	< 0.005	< 0.005	< 0.005	< 0.005	8.7	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005

Existing Effluent Limitations and Monitoring Requirements

Outfall 001.

Parameter	Effluent Limitations						Monitoring Requirements	
	Mass Units (lbs/day) ⁽¹⁾		Concentrations (mg/L)				Minimum ⁽²⁾ Measurement Frequency	Required Sample Type
	Average Monthly	Daily Maximum	Minimum	Average Monthly	Daily Maximum	Instant. Maximum		
Flow (MGD)	Report	Report	XXX	XXX	XXX	XXX	Daily when Discharging	Estimate
pH (S.U.)	XXX	XXX	6.0	XXX	XXX	9.0	Daily when Discharging	Grab
TRC	XXX	XXX	XXX	0.5	XXX	1.0	Daily when Discharging	Grab
TSS	XXX	XXX	XXX	30	60	75	2/month	8-Hr Composite
Total Aluminum	XXX	XXX	XXX	4.0	8.0	10	2/month	8-Hr Composite
Total Iron	XXX	XXX	XXX	2.0	4.0	5.0	2/month	8-Hr Composite
Total Manganese	XXX	XXX	XXX	1.0	2.0	2.5	2/month	8-Hr Composite

Development of Effluent Limitations

Outfall No. 001
Latitude 39° 47' 53.64"
Wastewater Description: Water Treatment Effluent

Design Flow (MGD) 0.215
Longitude -77° 16' 30.93"

Technology-Based Limitations

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Parameter	Limit (mg/l)	SBC	Federal Regulation	State Regulation
pH	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Total Residual Chlorine	0.5	Average Monthly	-	92a.48(b)(2)

Comments: [REDACTED]

Water Quality-Based Limitations

Effluent Limitations Evaluation:

The previous protection report developed limitations based on Best Practicable Control Technology Currently Available (BPT), according to guidance document 362-2183-003 (*Technology-Based Control Requirements for Water Treatment Plant Wastes*).

The attached Total Residual Chlorine (TRC) Excel spreadsheet calculator, which uses the equations and calculations from guidance document 391-2000-015, was also used (Pages # 7). However, the limits from the existing permit will remain in the proposed permit since they are more stringent.

The Department's guidance document for discharges to "dry streams" (391-2000-014) states that "for wastewater discharges other than discharges of treated sewage and similar oxygen-consuming wastes, no additional treatment requirements are applicable under this guidance. However, federal Effluent Limitation Guidelines (ELGs) are still applicable, and other technology-based requirements may be applied consistent with regional requirements."

As noted in the previous protection report, document 362-2183-003 states that due to the cost of finished water quality concern, Best Available Technology Economically Achievable (BAT) options may not be feasible. Therefore, it may not be appropriate to require further effluent reduction to controls beyond BPT options. Except where the recycle of wastewater is feasible, BAT and Best Conventional Pollutant Control Technology (BCT) should be equivalent to BPT.

This facility has chosen to recycle as the first option for disposal of the backwash water and overflow. Therefore, BPT-based limitations are appropriate for this facility.

The guidance document defines BPT technology-based effluent control requirements as follows:

Parameter	Monthly Average (mg/L)	Daily Maximum (mg/L)
Total Suspended Solids	30	60
Total Iron	2	4
Total Aluminum	4	8
Total Manganese	1	2
Flow	Monitor	
pH	6 to 9 at all times	
Total Residual Chlorine	0.5	1.0

The limits in the above table are equivalent to the existing permit limits. It is recommended that all existing effluent limitations remain in effect.

Toxics:

DEP conducted a reasonable potential analysis using Toxics Management Spreadsheet (TMS). The TMS output shows no WQBELs are required for all pollutants.

Recommended WQBELs & Monitoring Requirements

No. Samples/Month: 4

Pollutants	Mass Limits		Concentration Limits				Governing WQBEL	WQBEL Basis	Comments
	AML (lbs/day)	MDL (lbs/day)	AML	MDL	IMAX	Units			

The Supplement to Phase II Watershed Implementation Plan states the following (Pages # 19): "For non-significant Industrial Waste (IW) facilities, monitoring and reporting of Total Nitrogen (TN) and Total Phosphorus (TP) will be required throughout the permit term in renewed or amended permits anytime the facility has the potential to introduce a net TN or TP increase to the load contained within the intake water used in processing. In general, facilities that discharge groundwater and cooling water with no addition of chemicals containing N or P do not require monitoring."

This is a non-significant industrial discharge facility that will not need a phosphorus or nitrogen loading cap. TN and TP "Monitor & Report" requirement will not be necessary since this facility discharges groundwater without any chemical additives containing nitrogen or phosphorus.

WQM 7.0:

CBOD5 and NH3-N are not pollutants of concern for the water treatment waste as the discharge of these pollutants is not resulting from the water treatment process. Therefore, WQM 7.0 modeling is not necessary and permit requirements for these pollutants are not recommended.

Antidegradation (93.4)

The effluent limits for this discharge have been developed to ensure that existing in-stream water uses and the level of water quality necessary to protect the existing uses are maintained and protected. No High-Quality Waters are impacted by this discharge. No Exceptional Value Waters are impacted by this discharge.

303d Listed Streams

The discharge is not located on a 303d listed stream segment.

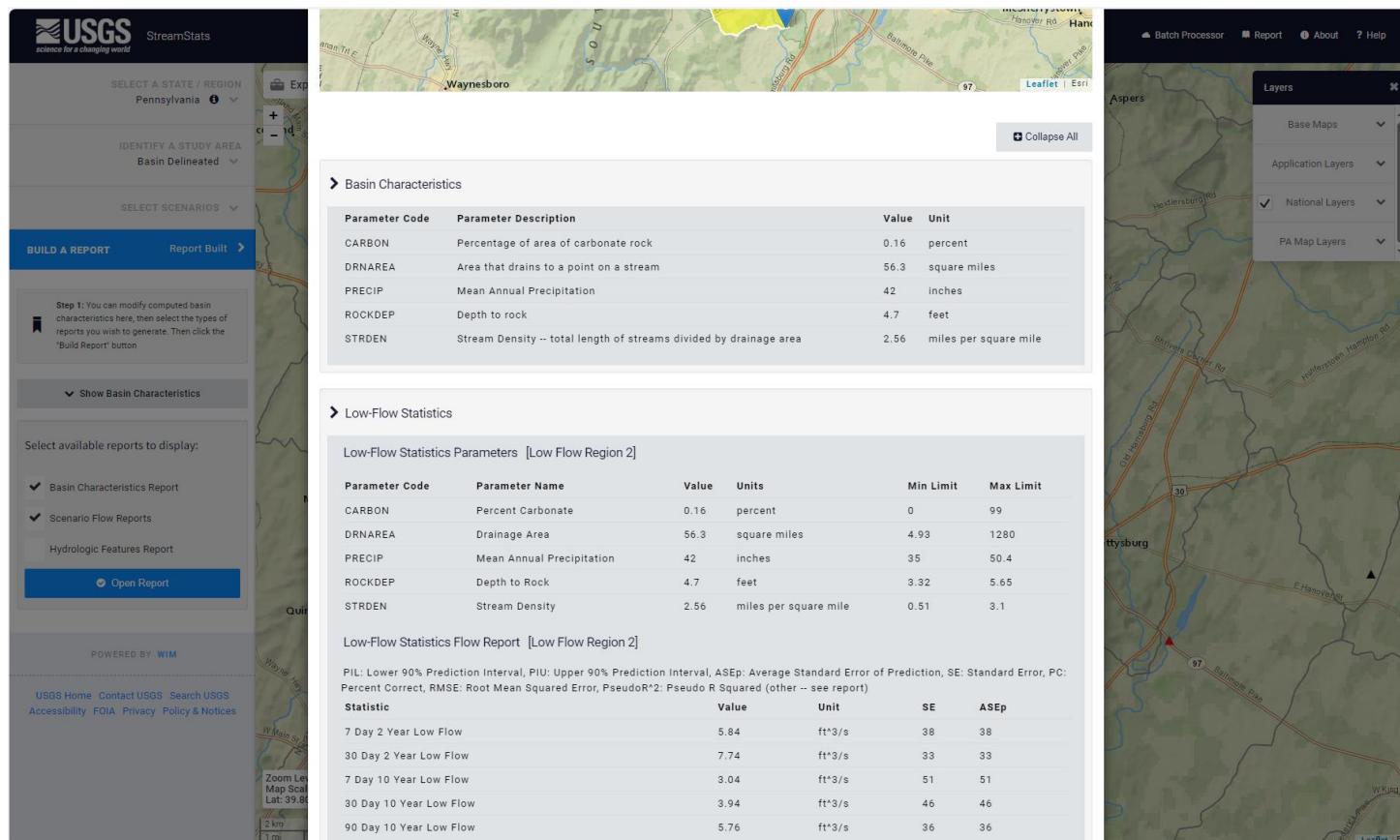
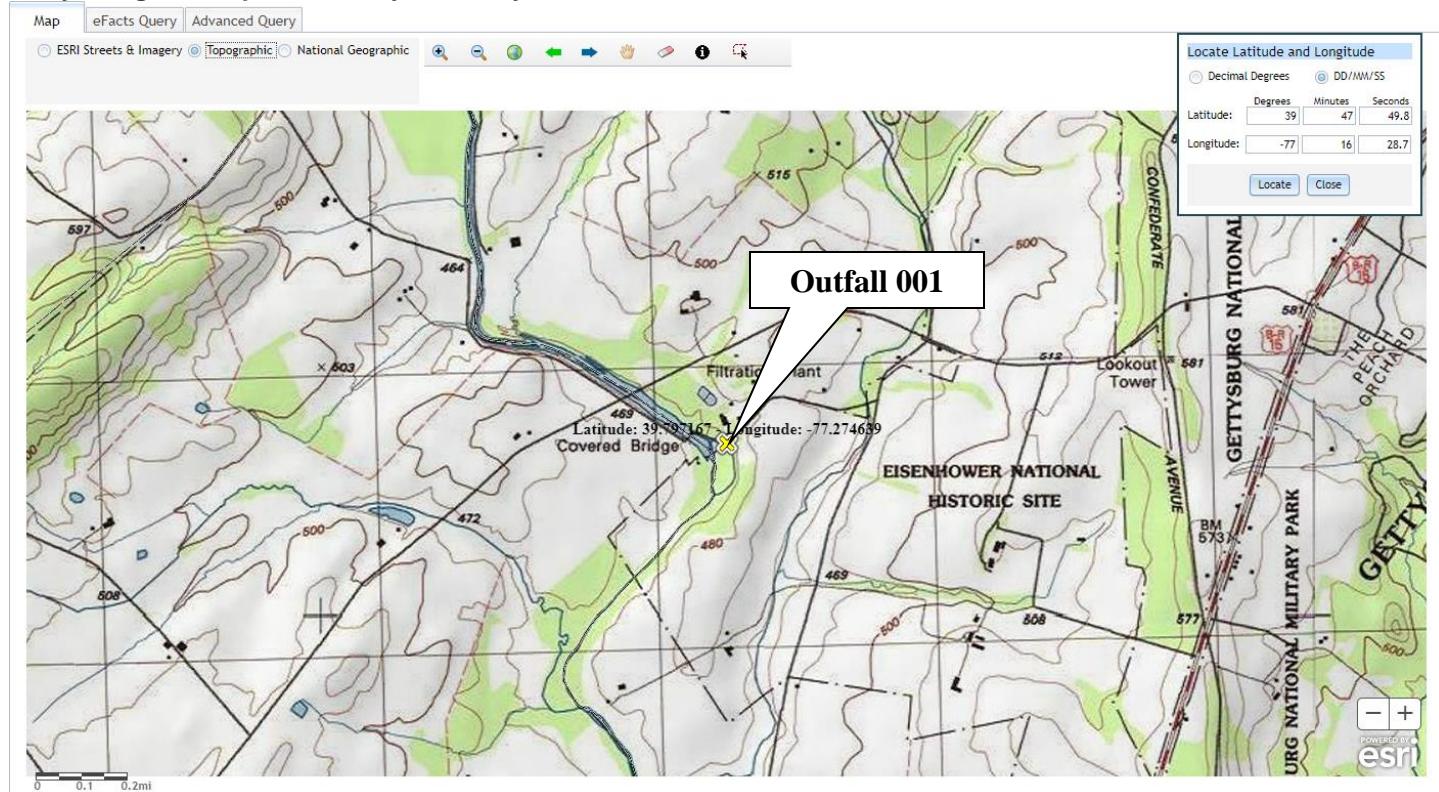
Class A Wild Trout Fisheries

No Class A Wild Trout Fisheries are impacted by this discharge.

TRC Spreadsheet:

TRC EVALUATION							
Input appropriate values in A3:A9 and D3:D9							
Source	Reference	AFC Calculations		Reference	CFC Calculations		
TRC	1.3.2.iii	WLA_afc = 2.935		1.3.2.iii	WLA_cfc = 2.854		
PENTOXSD TRG	5.1a	LTAMULT_afc = 0.373		5.1c	LTAMULT_cfc = 0.581		
PENTOXSD TRG	5.1b	LTA_afc = 1.094		5.1d	LTA_cfc = 1.659		
Effluent Limit Calculations							
PENTOXSD TRG	5.1f	AML MULT = 1.231					
PENTOXSD TRG	5.1g	AVG MON LIMIT (mg/l) = 0.500		BAT/BPJ			
		INST MAX LIMIT (mg/l) = 1.635					
WLA_afc		$(.019/e(-k*afc_tc)) + [(afc_yc*qs*.019/qd*e(-k*afc_tc))... + xd + (afc_yc*qs*xs/qd)]*(1-FOS/100)$					
LTAMULT_afc		$\exp((0.5*ln(cvh^2+1))-2.326*ln(cvh^2+1)^0.5)$					
LTA_afc		wla_afc*LTAMULT_afc					
WLA_cfc		$(.011/e(-k*cfc_tc)) + [(cfc_yc*qs*.011/qd*e(-k*cfc_tc))... + xd + (cfc_yc*qs*xs/qd)]*(1-FOS/100)$					
LTAMULT_cfc		$\exp((0.5*ln(cvd^2/no_samples+1))-2.326*ln(cvd^2/no_samples+1)^0.5)$					
LTA_cfc		wla_cfc*LTAMULT_cfc					
AML MULT		$\exp(2.326*ln((cvd^2/no_samples+1)^0.5)-0.5*ln(cvd^2/no_samples+1))$					
AVG MON LIMIT		MIN(BAT_BPJ,MIN(LTA_afc,LTA_cfc)*AML_MULT)					
INST MAX LIMIT		$1.5*((av_mon_limit/AML_MULT)/LTAMULT_afc)$					

Proposed Effluent Limitations and Monitoring Requirements



The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (386-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

Parameter	Effluent Limitations						Monitoring Requirements	
	Mass Units (lbs/day) ⁽¹⁾		Concentrations (mg/L)				Minimum ⁽²⁾ Measurement Frequency	Required Sample Type
	Average Monthly	Average Weekly	Minimum	Average Monthly	Daily Maximum	Instant. Maximum		
Flow (MGD)	Report	Report Daily Max	XXX	XXX	XXX	XXX	Daily when Discharging	Estimate
pH (S.U.)	XXX	XXX	6.0 Daily Min	XXX	XXX	9.0	Daily when Discharging	Grab
TRC	XXX	XXX	XXX	0.5	XXX	1.0	Daily when Discharging	Grab
TSS	XXX	XXX	XXX	30.0	60.0	75.0	2/month	8-Hr Composite
Total Aluminum	XXX	XXX	XXX	4.0	8.0	10.0	2/month	8-Hr Composite
Total Iron	XXX	XXX	XXX	2.0	4.0	5.0	2/month	8-Hr Composite
Total Manganese	XXX	XXX	XXX	1.0	2.0	2.5	2/month	8-Hr Composite

Compliance Sampling Location:

Other Comments:

NPDES Permit Fact Sheet

Gettysburg Municipal Authority Water System

NPDES Permit No. PA0081850

Step 1: You can modify computed basin characteristics here, then select the types of reports you wish to generate. Then click the 'Build Report' button.

SELECT A STATE / REGION: Pennsylvania

IDENTIFY A STUDY AREA: Basin Delineated

BUILD A REPORT: Report Built

Step 1: You can modify computed basin characteristics here, then select the types of reports you wish to generate. Then click the 'Build Report' button.

Show Basin Characteristics

Select available reports to display:

- ✓ Basin Characteristics Report
- ✓ Scenario Flow Reports
- Hydrologic Features Report

Open Report

POWERED BY WIM

USGS Home Contact USGS Search USGS Accessibility FOIA Privacy Policy & Notices

Zoom Level: Map Scale: Lat: 39.8183 Long: -77.0250

Basin Characteristics

Parameter Code	Parameter Description	Value	Unit
CARBON	Percentage of area of carbonate rock	0.15	percent
DRNAREA	Area that drains to a point on a stream	57.8	square miles
PRECIP	Mean Annual Precipitation	42	inches
ROCKDEP	Depth to rock	4.6	feet
STRDEN	Stream Density -- total length of streams divided by drainage area	2.58	miles per square mile

Low-Flow Statistics

Low-Flow Statistics Parameters [Low Flow Region 2]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
CARBON	Percent Carbonate	0.15	percent	0	99
DRNAREA	Drainage Area	57.8	square miles	4.93	1280
PRECIP	Mean Annual Precipitation	42	inches	35	50.4
ROCKDEP	Depth to Rock	4.6	feet	3.32	5.65
STRDEN	Stream Density	2.58	miles per square mile	0.51	3.1

Low-Flow Statistics Flow Report [Low Flow Region 2]

PIL: Lower 90% Prediction Interval, PIU: Upper 90% Prediction Interval, ASEp: Average Standard Error of Prediction, SE: Standard Error, PC: Percent Correct, RMSE: Root Mean Squared Error, PseudoR²: Pseudo R Squared (other -- see report)

Statistic	Value	Unit	SE	ASEp
7 Day 2 Year Low Flow	5.73	ft ³ /s	38	38
30 Day 2 Year Low Flow	7.66	ft ³ /s	33	33
7 Day 10 Year Low Flow	2.9	ft ³ /s	51	51
30 Day 10 Year Low Flow	3.82	ft ³ /s	46	46
90 Day 10 Year Low Flow	5.66	ft ³ /s	36	36

Batch Processor Report About ? Help

Layers

Base Maps

Application Layers

National Layers

PA Map Layers

Aspers

Gettysburg

Old Hanover Rd

Hampton Rd

97

W King

Old Hanover Rd

Hampton Rd

97

W King

Toxic:

- Discharge pH = 7.1 (2024 renewal application average)
- Discharge Hardness = 106 mg/L (2024 renewal application)
- Stream pH = 7.0 (Default)
- Stream Hardness = 100 mg/L (Default)
- Background NH₃-N = 0 mg/L (Default)

The following two nodes were used in modeling:

Node 1: Outfall 001 on Marsh Creek (58903)

Elevation:	460.67 ft (USGS National Map Viewer)
Drainage Area:	56.3 mi. ² (USGS PA StreamStats)
River Mile Index:	8.14 (PA DEP eMapPA)
Low Flow Yield:	0.05 cfs/mi. ²
Discharge Flow:	0.215 MGD

Node 2: At the confluence before conjunction of Plum Run to Marsh Creek

Elevation:	451.8 ft (USGS National Map Viewer)
Drainage Area:	57.8 mi. ² (USGS PA StreamStats)
River Mile Index:	7.52 (PA DEP eMapPA)
Low Flow Yield:	0.05 cfs/mi. ²
Discharge Flow:	0.0 MGD

Discharge Information

Instructions	Discharge	Stream
Facility: <u>Gettysburg MA Outfall 001</u>	NPDES Permit No.: <u>PA0081850</u>	Outfall No.: <u>001</u>
Evaluation Type: <u>Major Sewage / Industrial Waste</u>	Wastewater Description: <u>Marsh Creek</u>	

Discharge Characteristics													
Design Flow (MGD)*	Hardness (mg/l)*	pH (SU)*	Partial Mix Factors (PMFs)				Complete Mix Times (min)						
			AFC	CFC	THH	CRL	Q _{T-10}	Q _h					
0.215	106	7.1											
Discharge Pollutant			Units	Max Discharge Conc	Trib Conc	Stream Conc	Daily CV	Hourly CV	Stream CV	Fate Coeff	FOS	Criteria Mod	Chem Transl
Group 1	Total Dissolved Solids (PWS)	mg/L		270									
	Chloride (PWS)	mg/L		18									
	Bromide	mg/L	<	0.5									
	Sulfate (PWS)	mg/L		42									
	Fluoride (PWS)	mg/L	<	0.2									
Group 2	Total Aluminum	µg/L		140									
	Total Antimony	µg/L	<	0.3									
	Total Arsenic	µg/L	<	1									
	Total Barium	µg/L		25									
	Total Beryllium	µg/L	<	1									
	Total Boron	µg/L	<	200									
	Total Cadmium	µg/L	<	0.2									
	Total Chromium (III)	µg/L	<	1									
	Hexavalent Chromium	µg/L	<	0.25									
	Total Cobalt	µg/L	<	0.3									
	Total Copper	µg/L	<	1									
	Free Cyanide	µg/L											
	Total Cyanide	µg/L	<	10									
	Dissolved Iron	µg/L	<	20									
	Total Iron	µg/L		140									
	Total Lead	µg/L	<	1									
	Total Manganese	µg/L		5									
	Total Mercury	µg/L	<	0.2									
	Total Nickel	µg/L	<	1									
	Total Phenols (Phenolics) (PWS)	µg/L		2									
	Total Selenium	µg/L	<	1									
	Total Silver	µg/L	<	0.4									
	Total Thallium	µg/L	<	0.3									
	Total Zinc	µg/L	<	5									
	Total Molybdenum	µg/L	<	3									
	Acrolein	µg/L	<										
	Acrylamide	µg/L	<										
	Acrylonitrile	µg/L	<										
	Benzene	µg/L	<										
	Bromoform	µg/L	<										

Carbon Tetrachloride	µg/L	<									
Chlorobenzene	µg/L	<									
Chlorodibromomethane	µg/L	<									
Chloroethane	µg/L	<									
2-Chloroethyl Vinyl Ether	µg/L	<									
Chloroform	µg/L	<									
Dichlorobromomethane	µg/L	<									
1,1-Dichloroethane	µg/L	<									
1,2-Dichloroethane	µg/L	<									
1,1-Dichloroethylene	µg/L	<									
1,2-Dichloropropane	µg/L	<									
1,3-Dichloropropylene	µg/L	<									
1,4-Dioxane	µg/L	<									
Ethylbenzene	µg/L	<									
Methyl Bromide	µg/L	<									
Methyl Chloride	µg/L	<									
Methylene Chloride	µg/L	<									
1,1,2,2-Tetrachloroethane	µg/L	<									
Tetrachloroethylene	µg/L	<									
Toluene	µg/L	<									
1,2-trans-Dichloroethylene	µg/L	<									
1,1,1-Trichloroethane	µg/L	<									
1,1,2-Trichloroethane	µg/L	<									
Trichloroethylene	µg/L	<									
Vinyl Chloride	µg/L	<									
2-Chlorophenol	µg/L	<									
2,4-Dichlorophenol	µg/L	<									
2,4-Dimethylphenol	µg/L	<									
4,6-Dinitro-o-Cresol	µg/L	<									
2,4-Dinitrophenol	µg/L	<									
2-Nitrophenol	µg/L	<									
4-Nitrophenol	µg/L	<									
p-Chloro-m-Cresol	µg/L	<									
Pentachlorophenol	µg/L	<									
Phenol	µg/L	<									
2,4,6-Trichlorophenol	µg/L	<									
Acenaphthene	µg/L	<									
Acenaphthylene	µg/L	<									
Anthracene	µg/L	<									
Benzidine	µg/L	<									
Benzo(a)Anthracene	µg/L	<									
Benzo(a)Pyrene	µg/L	<									
3,4-Benzofluoranthene	µg/L	<									
Benzo(ghi)Perylene	µg/L	<									
Benzo(k)Fluoranthene	µg/L	<									
Bis(2-Chloroethoxy)Methane	µg/L	<									
Bis(2-Chloroethyl)Ether	µg/L	<									
Bis(2-Chloroisopropyl)Ether	µg/L	<									
Bis(2-Ethylhexyl)Phthalate	µg/L	<									
4-Bromophenyl Phenyl Ether	µg/L	<									
Butyl Benzyl Phthalate	µg/L	<									
2-Chloronaphthalene	µg/L	<									
4-Chlorophenyl Phenyl Ether	µg/L	<									
Chrysene	µg/L	<									
Dibenzo(a,h)Anthracene	µg/L	<									
1,2-Dichlorobenzene	µg/L	<									
1,3-Dichlorobenzene	µg/L	<									
1,4-Dichlorobenzene	µg/L	<									
3,3-Dichlorobenzidine	µg/L	<									
Diethyl Phthalate	µg/L	<									
Dimethyl Phthalate	µg/L	<									
Di-n-Butyl Phthalate	µg/L	<									
2,4-Dinitrotoluene	µg/L	<									

Stream / Surface Water Information

Gettysburg MA Outfall 001, NPDES Permit No. PA0081850, Outfall 001

Instructions Discharge Stream

Receiving Surface Water Name: **Marsh Creek**

No. Reaches to Model: **1**

Statewide Criteria
 Great Lakes Criteria
 ORSANCO Criteria

Location	Stream Code*	RMI*	Elevation (ft)*	DA (mi ²)*	Slope (ft/ft)	PWS Withdrawal (MGD)	Apply Fish Criteria*
Point of Discharge	058903	8.14	460.67	56.3			Yes
End of Reach 1	058903	7.52	451.8	57.8			Yes

Q₇₋₁₀

Location	RMI	LFY (cfs/mi ²)*	Flow (cfs)		W/D Ratio	Width (ft)	Depth (ft)	Velocity (fps)	Travel Time (days)	Tributary		Stream		Analysis	
			Stream	Tributary						Hardness	pH	Hardness*	pH*	Hardness	pH
Point of Discharge	8.14	0.05										100	7		
End of Reach 1	7.52	0.05													

Q_h

Location	RMI	LFY (cfs/mi ²)*	Flow (cfs)		W/D Ratio	Width (ft)	Depth (ft)	Velocity (fps)	Travel Time (days)	Tributary		Stream		Analysis	
			Stream	Tributary						Hardness	pH	Hardness*	pH*	Hardness	pH
Point of Discharge	8.14														
End of Reach 1	7.52														

Model Results

Gettysburg MA Outfall 001, NPDES Permit No. PA0081850, Outfall 001

Instructions		Results		RETURN TO INPUTS		SAVE AS PDF		PRINT		<input checked="" type="radio"/> All	<input type="radio"/> Inputs	<input type="radio"/> Results	<input type="radio"/> Limits
<input type="checkbox"/> Hydrodynamics													
<input checked="" type="checkbox"/> Wasteload Allocations													
<input checked="" type="checkbox"/> AFC		CCT (min): 15		PMF: 0.634		Analysis Hardness (mg/l): 100.94		Analysis pH: 7.01					
Pollutants	Stream Conc (mg/L)	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)			Comments			
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A						
Chloride (PWS)	0	0		0	N/A	N/A	N/A						
Sulfate (PWS)	0	0		0	N/A	N/A	N/A						
Fluoride (PWS)	0	0		0	N/A	N/A	N/A						
Total Aluminum	0	0		0	750	750	4,774						
Total Antimony	0	0		0	1,100	1,100	7,001						
Total Arsenic	0	0		0	340	340	2,164			Chem Translator of 1 applied			
Total Barium	0	0		0	21,000	21,000	133,685						
Total Boron	0	0		0	8,100	8,100	51,556						
Total Cadmium	0	0		0	2,032	2.15	13.7			Chem Translator of 0.944 applied			
Total Chromium (III)	0	0		0	574,159	1,817	11,585			Chem Translator of 0.316 applied			
Hexavalent Chromium	0	0		0	16	16.3	104			Chem Translator of 0.982 applied			
Total Cobalt	0	0		0	95	95.0	605						
Total Copper	0	0		0	13.558	14.1	89.9			Chem Translator of 0.96 applied			
Dissolved Iron	0	0		0	N/A	N/A	N/A						
Total Iron	0	0		0	N/A	N/A	N/A						
Total Lead	0	0		0	65.244	82.6	526			Chem Translator of 0.79 applied			
Total Manganese	0	0		0	N/A	N/A	N/A						
Total Mercury	0	0		0	1.400	1.85	10.5			Chem Translator of 0.85 applied			
Total Nickel	0	0		0	471.967	473	3,010			Chem Translator of 0.998 applied			
Total Phenols (Phenolics) (PWS)	0	0		0	N/A	N/A	N/A						
Total Selenium	0	0		0	N/A	N/A	N/A			Chem Translator of 0.922 applied			
Total Silver	0	0		0	3.289	3.85	24.5			Chem Translator of 0.85 applied			
Total Thallium	0	0		0	65	85.0	414						
Total Zinc	0	0		0	118.116	121	769			Chem Translator of 0.978 applied			

Model Results

3/20/2025

Page 5

CFC

CCT (min): 37.330

PMF: 1

Analysis Hardness (mg/l): 100.63

Analysis pH: 7.01

Pollutants	Stream Conc (µg/L)	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A	
Chloride (PWS)	0	0		0	N/A	N/A	N/A	
Sulfate (PWS)	0	0		0	N/A	N/A	N/A	
Fluoride (PWS)	0	0		0	N/A	N/A	N/A	
Total Aluminum	0	0		0	N/A	N/A	N/A	
Total Antimony	0	0		0	220	220	2,082	
Total Arsenic	0	0		0	150	150	1,420	Chem Translator of 1 applied
Total Barium	0	0		0	4,100	4,100	38,800	
Total Boron	0	0		0	1,600	1,600	15,142	
Total Cadmium	0	0		0	0.247	0.27	2.57	Chem Translator of 0.909 applied
Total Chromium (III)	0	0		0	74.499	86.6	820	Chem Translator of 0.86 applied
Hexavalent Chromium	0	0		0	10	10.4	98.4	Chem Translator of 0.962 applied
Total Cobalt	0	0		0	19	19.0	180	
Total Copper	0	0		0	9.004	9.38	88.8	Chem Translator of 0.96 applied
Dissolved Iron	0	0		0	N/A	N/A	N/A	
Total Iron	0	0		0	1,500	1,500	14,195	WQC = 30 day average; PMF = 1
Total Lead	0	0		0	2.534	3.21	30.4	Chem Translator of 0.79 applied
Total Manganese	0	0		0	N/A	N/A	N/A	
Total Mercury	0	0		0	0.770	0.91	8.57	Chem Translator of 0.85 applied
Total Nickel	0	0		0	52.285	52.4	498	Chem Translator of 0.997 applied
Total Phenols (Phenolics) (PWS)	0	0		0	N/A	N/A	N/A	
Total Selenium	0	0		0	4.600	4.99	47.2	Chem Translator of 0.922 applied
Total Silver	0	0		0	N/A	N/A	N/A	Chem Translator of 1 applied
Total Thallium	0	0		0	13	13.0	123	
Total Zinc	0	0		0	118.773	120	1,140	Chem Translator of 0.986 applied

 THH

CCT (min): 37.330

PMF: 1

Analysis Hardness (mg/l): N/A

Analysis pH: N/A

Pollutants	Stream Conc (µg/L)	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0		0	500,000	500,000	N/A	
Chloride (PWS)	0	0		0	250,000	250,000	N/A	
Sulfate (PWS)	0	0		0	250,000	250,000	N/A	
Fluoride (PWS)	0	0		0	2,000	2,000	N/A	
Total Aluminum	0	0		0	N/A	N/A	N/A	
Total Antimony	0	0		0	5.6	5.6	53.0	
Total Arsenic	0	0		0	10	10.0	94.6	
Total Barium	0	0		0	2,400	2,400	22,712	
Total Boron	0	0		0	3,100	3,100	29,337	
Total Cadmium	0	0		0	N/A	N/A	N/A	
Total Chromium (III)	0	0		0	N/A	N/A	N/A	

Gettysburg Municipal Authority Water System

Hexavalent Chromium	0	0		0	N/A	N/A	N/A	
Total Cobalt	0	0		0	N/A	N/A	N/A	
Total Copper	0	0		0	N/A	N/A	N/A	
Dissolved Iron	0	0		0	300	300	2,839	
Total Iron	0	0		0	N/A	N/A	N/A	
Total Lead	0	0		0	N/A	N/A	N/A	
Total Manganese	0	0		0	1,000	1,000	9,463	
Total Mercury	0	0		0	0.050	0.05	0.47	
Total Nickel	0	0		0	610	610	5,773	
Total Phenols (Phenolics) (PWS)	0	0		0	5	5.0	N/A	
Total Selenium	0	0		0	N/A	N/A	N/A	
Total Silver	0	0		0	N/A	N/A	N/A	
Total Thallium	0	0		0	0.24	0.24	2.27	
Total Zinc	0	0		0	N/A	N/A	N/A	

 CRL

CCT (min): 13.895

PMF: 1

Analysis Hardness (mg/l): N/A

Analysis pH: N/A

Pollutants	Stream Conc (µg/L)	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A	
Chloride (PWS)	0	0		0	N/A	N/A	N/A	
Sulfate (PWS)	0	0		0	N/A	N/A	N/A	
Fluoride (PWS)	0	0		0	N/A	N/A	N/A	
Total Aluminum	0	0		0	N/A	N/A	N/A	
Total Antimony	0	0		0	N/A	N/A	N/A	
Total Arsenic	0	0		0	N/A	N/A	N/A	
Total Barium	0	0		0	N/A	N/A	N/A	
Total Boron	0	0		0	N/A	N/A	N/A	
Total Cadmium	0	0		0	N/A	N/A	N/A	
Total Chromium (III)	0	0		0	N/A	N/A	N/A	
Hexavalent Chromium	0	0		0	N/A	N/A	N/A	
Total Cobalt	0	0		0	N/A	N/A	N/A	
Total Copper	0	0		0	N/A	N/A	N/A	
Dissolved Iron	0	0		0	N/A	N/A	N/A	
Total Iron	0	0		0	N/A	N/A	N/A	
Total Lead	0	0		0	N/A	N/A	N/A	
Total Manganese	0	0		0	N/A	N/A	N/A	
Total Mercury	0	0		0	N/A	N/A	N/A	
Total Nickel	0	0		0	N/A	N/A	N/A	
Total Phenols (Phenolics) (PWS)	0	0		0	N/A	N/A	N/A	
Total Selenium	0	0		0	N/A	N/A	N/A	
Total Silver	0	0		0	N/A	N/A	N/A	
Total Thallium	0	0		0	N/A	N/A	N/A	
Total Zinc	0	0		0	N/A	N/A	N/A	

Model Results

3/20/2025

Page 7

NPDES Permit Fact Sheet
Gettysburg Municipal Authority Water System

NPDES Permit No. PA0081850

Recommended WQBELs & Monitoring Requirements

No. Samples/Month: 4

Pollutants	Mass Limits		Concentration Limits				Governing WQBEL	WQBEL Basis	Comments
	AML (lbs/day)	MDL (lbs/day)	AML	MDL	IMAX	Units			

Other Pollutants without Limits or Monitoring

The following pollutants do not require effluent limits or monitoring based on water quality because reasonable potential to exceed water quality criteria was not determined and the discharge concentration was less than thresholds for monitoring, or the pollutant was not detected and a sufficiently sensitive analytical method was used (e.g., <= Target QL).

Pollutants	Governing WQBEL	Units	Comments
Total Dissolved Solids (PWS)	N/A	N/A	PWS Not Applicable
Chloride (PWS)	N/A	N/A	PWS Not Applicable
Bromide	N/A	N/A	No WQS
Sulfate (PWS)	N/A	N/A	PWS Not Applicable
Fluoride (PWS)	N/A	N/A	Discharge Conc < TQL
Total Aluminum	3,060	µg/L	Discharge Conc ≤ 10% WQBEL
Total Antimony	N/A	N/A	Discharge Conc < TQL
Total Arsenic	N/A	N/A	Discharge Conc < TQL
Total Barium	22,712	µg/L	Discharge Conc ≤ 10% WQBEL
Total Beryllium	N/A	N/A	No WQS
Total Boron	15,142	µg/L	Discharge Conc < TQL
Total Cadmium	2.57	µg/L	Discharge Conc < TQL
Total Chromium (III)	820	µg/L	Discharge Conc < TQL
Hexavalent Chromium	66.5	µg/L	Discharge Conc < TQL
Total Cobalt	180	µg/L	Discharge Conc < TQL
Total Copper	57.6	µg/L	Discharge Conc < TQL
Total Cyanide	N/A	N/A	No WQS
Dissolved Iron	2,839	µg/L	Discharge Conc < TQL
Total Iron	14,195	µg/L	Discharge Conc ≤ 10% WQBEL
Total Lead	30.4	µg/L	Discharge Conc < TQL
Total Manganese	9,463	µg/L	Discharge Conc ≤ 10% WQBEL
Total Mercury	0.47	µg/L	Discharge Conc < TQL
Total Nickel	496	µg/L	Discharge Conc < TQL
Total Phenols (Phenolics) (PWS)		µg/L	PWS Not Applicable
Total Selenium	47.2	µg/L	Discharge Conc < TQL
Total Silver	15.7	µg/L	Discharge Conc < TQL
Total Thallium	2.27	µg/L	Discharge Conc < TQL
Total Zinc	493	µg/L	Discharge Conc < TQL
Total Molybdenum	N/A	N/A	No WQS

Model Results

3/20/2025

Page 8

Tools and References Used to Develop Permit	
<input type="checkbox"/>	WQM for Windows Model (see Attachment [REDACTED])
<input checked="" type="checkbox"/>	Toxics Management Spreadsheet (see Attachment [REDACTED])
<input checked="" type="checkbox"/>	TRC Model Spreadsheet (see Attachment [REDACTED])
<input type="checkbox"/>	Temperature Model Spreadsheet (see Attachment [REDACTED])
<input type="checkbox"/>	Water Quality Toxics Management Strategy, 361-0100-003, 4/06.
<input type="checkbox"/>	Technical Guidance for the Development and Specification of Effluent Limitations, 386-0400-001, 10/97.
<input type="checkbox"/>	Policy for Permitting Surface Water Diversions, 386-2000-019, 3/98.
<input type="checkbox"/>	Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 386-2000-018, 11/96.
<input type="checkbox"/>	Technology-Based Control Requirements for Water Treatment Plant Wastes, 386-2183-001, 10/97.
<input type="checkbox"/>	Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 386-2183-002, 12/97.
<input type="checkbox"/>	Pennsylvania CSO Policy, 386-2000-002, 9/08.
<input checked="" type="checkbox"/>	Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03.
<input type="checkbox"/>	Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 386-2000-008, 4/97.
<input type="checkbox"/>	Determining Water Quality-Based Effluent Limits, 386-2000-004, 12/97.
<input type="checkbox"/>	Implementation Guidance Design Conditions, 386-2000-007, 9/97.
<input type="checkbox"/>	Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen, Version 1.0, 386-2000-016, 6/2004.
<input type="checkbox"/>	Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 386-2000-012, 10/1997.
<input type="checkbox"/>	Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments, 386-2000-009, 3/99.
<input type="checkbox"/>	Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 386-2000-015, 5/2004.
<input type="checkbox"/>	Implementation Guidance for Section 93.7 Ammonia Criteria, 386-2000-022, 11/97.
<input type="checkbox"/>	Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 386-2000-013, 4/2008.
<input checked="" type="checkbox"/>	Implementation Guidance Total Residual Chlorine (TRC) Regulation, 386-2000-011, 11/1994.
<input type="checkbox"/>	Implementation Guidance for Temperature Criteria, 386-2000-001, 4/09.
<input type="checkbox"/>	Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 386-2000-021, 10/97.
<input type="checkbox"/>	Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 386-2000-020, 10/97.
<input type="checkbox"/>	Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 386-2000-005, 3/99.
<input type="checkbox"/>	Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 386-2000-010, 3/1999.
<input type="checkbox"/>	Design Stream Flows, 386-2000-003, 9/98.
<input type="checkbox"/>	Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 386-2000-006, 10/98.
<input type="checkbox"/>	Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 386-3200-001, 6/97.
<input checked="" type="checkbox"/>	Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07.
<input type="checkbox"/>	SOP: [REDACTED]
<input type="checkbox"/>	Other: [REDACTED]