

Southcentral Regional Office CLEAN WATER PROGRAM

Application Type
Renewal
NonMunicipal
Major / Minor
Minor
Minor

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

Application No. **PA0082511**APS ID **337669**

Authorization ID 1437628

	Applicant a	nd Facility Information	
Applicant Name	Roxbury Holiness Camp Inc.	Facility Name	Roxbury Holiness Camp
Applicant Address	13763 Cumberland Highway	Facility Address	13763 Cumberland Highway
	Orrstown, PA 17244-9640		Orrstown, PA 17244-9640
Applicant Contact	Jeremy Spear	Facility Contact	Dale Winger
Applicant Phone	(717) 532-2208	Facility Phone	(717) 532-2208
Client ID	147576	Site ID	837
Ch 94 Load Status	Not Overloaded	Municipality	Letterkenny Township
Connection Status		County	Franklin
Date Application Rece	ivedApril 25, 2023	EPA Waived?	Yes
Date Application Accep	pted June 1, 2023	If No, Reason	

Summary of Review

Roxbury Holiness Camp Inc., has applied to the Pennsylvania Department of Environmental Protection (DEP) for reissuance of its NPDES permit. The permit was reissued on October 29, 2018 and became effective on November 1, 2018. The permit expired on October 31, 2023 but the terms and conditions of the permit have been extended since that time.

Based on the review, it is recommended that the permit be drafted.

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Approve	Deny	Signatures	Date
Х		Jinsu Kim Jinsu Kim / Environmental Engineering Specialist	April 4, 2024
Х		Maria D. Bebenek Daniel W. Martin, P.E. / Environmental Engineer Manager	April 17, 2024
Х		Maria D. Bebenek Maria D. Bebenek, P.E. / Program Manager	April 17, 2024

Outfall No. 001		Design Flow (MGD)	.03		
_atitude 40° 6	3' 29.47"	Longitude	-77° 39' 51.44"		
Quad Name		Quad Code			
Wastewater Descri	ption: Sewage Effluent				
Receiving Waters	Conodoguinet Creek	Stream Code	10194		
NHD Com ID	56409227	RMI	82.83		
Drainage Area	42.2 sq.mi.	Yield (cfs/mi²)	0.0755		
Q ₇₋₁₀ Flow (cfs)	3.19	Q ₇₋₁₀ Basis	USGS StreamStats		
Elevation (ft)		Slope (ft/ft)			
Watershed No.	7-B	Chapter 93 Class.	CWF		
Existing Use	None	Existing Use Qualifier	None		
Exceptions to Use	None	Exceptions to Criteria	None		
Assessment Status	Attaining Use(s)				
Cause(s) of Impair	ment N/A				
Source(s) of Impair	ment N/A				
TMDL Status	N/A	Name N/A			
Nearest Downstrea	m Public Water Supply Intake	Carlisle Borough			
PWS Waters	Conodoguinet Creek	Flow at Intake (cfs)	48		
PWS RMI	35.95	Distance from Outfall (mi)	46.88		

Drainage Area

The discharge is to Conodoguinet Creek at RMI 82.83. A drainage area upstream of the point of discharge is estimated to be 42.2 cfs according to USGS StreamStats available at https://streamstats.usgs.gov/ss/.

Stream Flow

USGS StreamStats produced a Q7-10 flow of 3.19 cfs at the point of discharge.

Conodoguinet Creek

Under Pa Code §93.9o, Conodoguinet Creek from Letterkenny Reservoir Dam to Trout Run is designated as Cold Water and Migratory fishes. No special protection water(s) is therefore impacted by this discharge. DEP's latest integrated water quality report finalized in 2024 indicates that the discharge is located in a stream segment listed as attaining use(s). No Class A Wild Trout Fishery is impacted by the discharge.

Public Water Supply Intake

The fact sheet prepared for the last permit renewal indicates that the nearest downstream public water supply intake is Carlisle Borough in North Middleton Township, located on Conodoguinet Creek approximately 47 miles from the discharge point. Given the distance, the discharge is not expected to significantly impact the water supply intake.

	Tr	eatment Facility Summar	у	
Treatment Facility Na	me: Brethren In Christ - Ro	oxbury Camp Sewer System		
WQM Permit No.	Issuance Date			
2891404	March 18, 1992			
Wasta Tana	Degree of	B	Pinin for all an	Avg Annual
Waste Type	Treatment	Process Type	Disinfection	Flow (MGD)
Sewage	Secondary	Septic Tank Sand Filter	Hypochlorite	0.03
-	·			
Hydraulic Capacity	Organic Capacity			Biosolids
(MGD)	(lbs/day)	Load Status	Biosolids Treatment	Use/Disposal
0.03	-	Not Overloaded	N/A	Other WWTP

Roxbury Holiness Camp is a seasonal camp site but also includes a year-round residence and conference center. The permittee operates an on-site wastewater treatment facility consisting of septic tank, dosing tank, sand filters (4), chlorine contact tank and outfall to Conodoguinet Creek. Any solids/sludge generated from this treatment facility is hauled off site via a local septage hauler for disposal at a local WWTP.

Calcium hypochlorite tablets are used for chlorination.

	Compliance History
Summary of DMRs:	A summary of 12-month DMR is presented on the next page.
Summary of Inspections:	01/25/2023: DEP conducted a routine inspection and indicated that no significant violations have been identified at the time of inspection.
Other Comments:	DEP identified several permit violations since the last permit reissuance that are associated with last DMR submission. DEP's database shows there is no open violation associated with this permittee or facility.

Effluent Data

DMR Data for Outfall 001 (from March 1, 2023 to February 29, 2024)

Parameter	FEB-24	JAN-24	DEC-23	NOV-23	OCT-23	SEP-23	AUG-23	JUL-23	JUN-23	MAY-23	APR-23	MAR-23
Flow (MGD)												
Average Monthly	0.01674	0.02974	0.0173	0.00716	0.00795	0.00576	0.01206	0.01371	0.00891	0.00172	0.01076	0.01531
Flow (MGD)												
Daily Maximum	0.07166	0.10262	0.07178	0.04236	0.0427	0.03687	0.03134	0.03709	0.01988	0.00541	0.05971	0.08319
pH (S.U.)												
Daily Minimum	6.8	7.0	6.7	6.5	6.6	6.7	7.2	6.7	6.9	6.8	6.9	6.9
pH (S.U.)												
Daily Maximum	7.6	7.6	7.4	7.6	7.5	7.9	8.1	7.8	10.1	7.9	7.7	7.7
DO (mg/L)												
Daily Minimum	7.2	7.8	8.7	2.8	4	4.6	6.3	4.4	5.1	6.0	6.5	9.1
TRC (mg/L)												
Average Monthly	0.1	< 0.3	0.2	0.11	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
TRC (mg/L)												
Instantaneous												
Maximum	0.55	1.41	0.86	0.22	0.26	0.2	0.6	0.56	0.6	0.25	0.47	0.25
CBOD5 (mg/L)							0.1.0					
Average Monthly	< 2.0	< 2.0	< 2.0	< 2.0	6.0	3.1	24.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
TSS (mg/L)	4.0	4.0	4.0	4.0	4.0	0.0		0.5	0.5	0.0	4.0	4.5
Average Monthly	< 1.0	< 1.0	< 1.0	< 1.0	1.3	2.8	5.5	2.5	2.5	3.0	1.3	< 1.5
Fecal Coliform												
(No./100 ml)	. 0	< 1			< 2	< 2	41	22	. 7	< 1		
Geometric Mean	< 8	< 1	< 1	< 1	< 2	< 2	41	22	< 7	< 1	< 1	< 1
Fecal Coliform (No./100 ml)												
Instantaneous												
Maximum	67	< 1	< 1	< 1	4	4	246	29	53	< 1	< 1	< 1
Nitrate-Nitrite (mg/L)	07				7	7	240	20	33		_ ` '	
Annual Average						< 57.9						
Total Nitrogen (mg/L)						10110						
Annual Average						< 58.6						
Ammonia (mg/L)												
Average Monthly	< 0.5	< 0.5	< 0.5	< 0.5	< 0.661	2.407	5.99	3.17	< 0.5	< 0.5	< 0.5	< 0.5
TKN (mg/L)												
Annual Average						< 0.5						
Total Phosphorus												
(mg/L)												
Annual Average						2.37						

Existing Effluent Limits and Monitoring Requirements

The table below summarizes effluent limits and monitoring requirements specified in the existing permit.

			Effluent L	imitations			Monitoring Re	quirements
Parameter	Mass Units	(lbs/day) (1)		Concentrat	ions (mg/L)		Minimum ⁽²⁾	Required
Faranietei	Average Monthly	Average Weekly	Minimum	Average Monthly	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
(110D)		Report	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	2007	\0.07		
Flow (MGD)	Report	Daily Max	XXX	XXX	XXX	XXX	Continuous	Measured
pH (S.U.)	XXX	XXX	6.0 Daily Min	XXX	9.0 Daily Max	XXX	1/day	Grab
Dissolved Oxygen	XXX	XXX	Report Daily Min	XXX	XXX	XXX	1/day	Grab
Total Residual Chlorine (TRC)	XXX	XXX	XXX	0.5	XXX	1.6	1/day	Grab
Carbonaceous Biochemical Oxygen Demand (CBOD5)	XXX	XXX	XXX	25.0	XXX	50	2/month	24-Hr Composite
Total Suspended Solids	XXX	XXX	XXX	30.0	XXX	60	2/month	24-Hr Composite
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	XXX	XXX	XXX	2000 Geo Mean	XXX	10000	2/month	Grab
Fecal Coliform (No./100 ml) May 1 - Sep 30	XXX	XXX	XXX	200 Geo Mean	XXX	1000	2/month	Grab
Ammonia-Nitrogen	XXX	XXX	XXX	Report	XXX	XXX	2/month	24-Hr Composite
7 tililloriid Tuttogeri	7000	7000	7000	report	7000	7007	Z/IIIOIIIII	24-Hr
KjeldahlN	XXX	XXX	XXX	Report	XXX	XXX	1/year	Composite
Nitrate-Nitrite as N	XXX	XXX	XXX	Report	XXX	XXX	1/year	24-Hr Composite
Total Nitrogen	XXX	XXX	XXX	Report	XXX	XXX	1/year	Calculation
Total Phosphorus	XXX	xxx	XXX	Report	XXX	XXX	1/year	24-Hr Composite

	Development of I	Effluent Limitations and Monitoring	g Re	
Outfall No.	001	Design Flow (MGD)	.03	
Latitude	40° 6' 30.00"	Longitude	-77° 39' 52.00"	
Wastewater D	Pescription: Sewage Effluent	-		

Technology-Based Limitations

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Pollutant	Limit (mg/l)	SBC	Federal Regulation	State Regulation
CPOD-	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
CBOD₅ 25 Average Mole Total Suspended 30 Average We Solids 45 Average We DH 6.0 − 9.0 S.U. Min − Ma Fecal Coliform 200 / 100 ml Geo Mea (5/1 − 9/30) 200 / 100 ml IMAX Fecal Coliform 1,000 / 100 ml IMAX Fecal Coliform 2,000 / 100 ml Geo Mea	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)	
Total Suspended	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
Solids	45	Average Weekly	133.102(b)(2)	92a.47(a)(2)
pН	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform				
(5/1 – 9/30)	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
Fecal Coliform				
(5/1 – 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform				
(10/1 - 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
Fecal Coliform				
(10/1 – 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)
Total Residual Chlorine	0.5	Average Monthly	-	92a.48(b)(2)

Water Quality-Based Limitations

CBOD5, NH3-N and Dissolved Oxygen (DO)

WQM 7.0 version 1.0b is a water quality model designed to assist DEP to determine appropriate permit requirements for CBOD5, NH3-N and DO. DEP's guidance no. 391-2000-007 provides the technical methods contained in WQM 7.0 for conducting wasteload allocation and for determining recommended NPDES effluent limits for point source discharges. A multi-discharge analysis is necessary as Letterkenny Township WWTP is located less than a mile downstream from this facility. The model was utilized and the model output indicated that existing TBEL of 25 mg/L for CBOD5 is still appropriate. The output also indicated that no WQBEL is need for NH3-N.

Total Residual Chlorine

Since chlorine is used for disinfection, Total Residual Chlorine (TRC) effluent levels must be regulated in accordance with 25 Pa Code §92a.48(b). DEP's TRC_CALC worksheet indicates that existing limits of 0.5 mg/L (average monthly) and 1.6 mg/L (IMAX) are still protective of water quality.

Toxics

DEP's NPDES permit application for minor sewages less than 0.1 MGD does not require sampling of toxics pollutants. As a result, no reasonable potential analysis for toxics pollutants has been performed for the upcoming permit renewal.

Additional Considerations

Flow Monitorina

The requirement to monitor the volume of effluent will remain in the draft permit per 40 CFR § 122.44(i)(1)(ii).

Dissolved Oxygen and Ammonia-Nitrogen Monitoring

The previous permit renewals prior to 2006 contained effluent limits of NH3-N (15 mg/L summer average monthly; 30 mg/L winter average monthly) and DO (3.0 mg/L instantaneous maximum). When the permit was reissued in 2006, these effluent limits were no longer included in the permit. The basis is unclear; however, it is presumably because of treatment technology of the existing on-site treatment facility (i.e. septic tank and sand filters). Such treatment technology typically involves no

NPDES Permit Fact Sheet Roxbury Holiness Camp

aeration; thus, no effective nitrification can be expected throughout the treatment process. However, all sewage discharges greater than 0.002 MGD require monitoring of DO and NH3-N. This approach is consistent with DEP's SOP no. BPNPSM-PMT-033. Samples previously collected by the permittee showed Total Nitrogen of 60.6 m/L (sample dated 09/15/2015), 6.06 mg/L (sample dated 02/07/2017), 4.93 mg/L (in 2017). At this time, there are no known impairments associated with DO or nutrients in Conodoguinet Creek at the point of discharge. DEP's SOP no. BPNPSM-PMT-033 recommends a minimum DO water quality criterion of 5.0 mg/L and average monthly NH3-N technology-based effluent limit of 25 mg/L be applied in the permit. Based on the review, monitoring of these parameters is recommended for further evaluation.

Chesapeake Bay TMDL

DEP's Phase II Watershed Implementation Plan (WIP) categorizes this facility as a phase 5 non-significant sewage facility that has a design flow less than 0.2 MGD but greater than 0.002 MGD. The WIP recommends monitoring and reporting for Total Nitrogen and Total Phosphorus throughout the permit term at a frequency no less than annually. The requirement to monitor for these parameters is also recommended by DEP's SOP no. BPNPSM-PMT-033. As part of DEP's Chesapeake Bay TMDL implementation strategy, DEP requires actual long-term datasets to accurately evaluate the water quality impacts of the streams as a result of nutrients discharges from point sources. Consequently, the existing annual monitoring of Total Nitrogen and Total Phosphorus will still be maintained in the permit. Since the receiving stream is not impaired for nutrients, annual data will still be sufficient for further evaluation.

E. Coli Monitoring Requirement

DEP's SOP No. BCW-PMT-033 recommends under 25 Pa Code §92a.61 a routine monitoring for E. Coli in all new and reissued permits. Since the facility has now the annual average design flow of 0.0372 MGD, an annual monitoring will be included in the permit.

Monitoring Frequency and Sample Type

Unless otherwise specified throughout this fact sheet, existing monitoring frequencies and sample types will remain unchanged in the permit.

Antidegradation Requirements

All effluent limitations and monitoring requirements have been developed to ensure that existing instream water uses and the level of water quality necessary to protect the existing uses are maintained and protected.

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (386-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

			Effluent L	imitations			Monitoring Re	quirements
Parameter	Mass Units	(lbs/day) (1)		Concentrat	ions (mg/L)		Minimum (2)	Required
raiametei	Average Monthly	Average Weekly	Minimum	Average Monthly	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
		Report						
Flow (MGD)	Report	Daily Max	XXX	XXX	XXX	XXX	Continuous	Measured
pH (S.U.)	XXX	XXX	6.0 Daily Min	XXX	9.0 Daily Max	XXX	1/day	Grab
Dissolved Oxygen	XXX	XXX	Report Daily Min	XXX	XXX	XXX	1/day	Grab
Total Residual Chlorine (TRC)	XXX	XXX	XXX	0.5	XXX	1.6	1/day	Grab
Carbonaceous Biochemical								24-Hr
Oxygen Demand (CBOD5)	XXX	XXX	XXX	25.0	XXX	50	2/month	Composite
Total Suspended Solids	XXX	XXX	XXX	30.0	XXX	60	2/month	24-Hr Composite
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	XXX	XXX	XXX	2000 Geo Mean	XXX	10000	2/month	Grab
Fecal Coliform (No./100 ml) May 1 - Sep 30	XXX	XXX	XXX	200 Geo Mean	XXX	1000	2/month	Grab
Ammonia-Nitrogen	XXX	XXX	XXX	Report	XXX	XXX	2/month	24-Hr Composite
KjeldahlN	XXX	XXX	XXX	Report	XXX	XXX	1/year	24-Hr Composite
Nitrate-Nitrite as N	XXX	XXX	XXX	Report	XXX	XXX	1/year	24-Hr Composite
Total Nitrogen	XXX	XXX	XXX	Report	XXX	XXX	1/year	Calculation
Total Phosphorus	XXX	XXX	XXX	Report	XXX	XXX	1/year	24-Hr Composite
E. Coli (no./ 100mL)	XXX	XXX	XXX	XXX	XXX	Report	1/year	Grab

Other Comments: None

Approve	Deny	Signatures	Date
Х		Jinsu Kim Jinsu Kim / Environmental Engineering Specialist	April 4, 2024
Х		Maria D. Bebenek Daniel W. Martin, P.E. / Environmental Engineer Manager	April 17, 2024
Х		Maria D. Bebenek Maria D. Bebenek, P.E. / Program Manager	April 17, 2024

Input Data WQM 7.0

	SWP Basin	Stres Cod		Stre	am Name		RMI	Ele	evation (ft)	Drainage Area (sq mi)	Slop (ft/fi	Withdi	rawal	Apply FC
	07B	10	194 CONO	DOGUIN	ET CREEK		82.83	30	725.00	42.2	0.00	000	0.00	•
					St	ream Dat	a							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth		<u>Tributary</u> ip pł	4	<u>Stream</u> Temp	pH	
	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C)		
Q7-10	0.100	0.00	3.19	0.000	0.000	0.0	0.00	0.0	00 2	0.00	7.00	0.00	0.00	
21-10 230-10		0.00		0.000	0.000									
200-10		0.00	0.00	0.000										
					Di	ischarge (
			Name	Per	mit Numbe	Disc	Permitto Disc Flow (mgd)	Dis Flo	c Res	erve To ctor)isc emp °C)	Disc pH		
		Roxb	ury Camp	PAG	0082511	0.0300				0.000	25.00	7.00		
				Parameter Data										
				Di Co		Trib Conc	Stream Conc	Fate Coef						
			'	Paramete	Ivallie	(m	g/L) (n	ng/L)	(mg/L)	(1/days)				
			CBOD5				25.00	2.00	0.00	1.50				
			Dissolved	Oxygen			5.00	8.24	0.00	0.00				
			NH3-N				25.00	0.00	0.00	0.70				

Input Data WQM 7.0

	SWP Basin	Stres Cod		Stre	am Name		RMI	Ele	evation (ft)	Drainage Area (sq mi)	Slop (ft/fi	Withd	rawal	Apply FC
	07B	10	194 CONO	DOGUIN	ET CREEK		82.1	50	695.00	42.9	0.00	000	0.00	•
					St	ream Dat	a							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth		<u>Tributary</u> p pł	4	<u>Strean</u> Temp	pH	
	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C)		
Q7-10	0.100	0.00	2.99	0.000	0.000	0.0	0.00	0.0	00 2	0.00	7.00	0.00	0.00	
21-10 230-10		0.00		0.000	0.000									
200-10		0.00	0.00	0.000										
					Di	ischarge (
			Name	Per	mit Numbe	Disc	Permitto Disc Flow (mgd)	Dis Flo	c Res	erve Te	isc emp °C)	Disc pH		
		Lette	rkenny STF	PAC	0082201	0.0420	0.042	20 0.0	0420	0.000	25.00	7.00		
					Pa	arameter (Data							
		Parameter Name				Di Co		Trib Conc	Stream Conc	Fate Coef				
			'	aramete	Ivallie	(m	g/L) (n	ng/L)	(mg/L)	(1/days)				
		CBOD5			2	25.00	2.00	0.00	1.50					
			Dissolved	Oxygen			3.00	8.24	0.00	0.00				
			NH3-N				25.00	0.00	0.00	0.70				

Input Data WQM 7.0

	SWP Basin	Stres Cod		Stre	eam Name		RMI		vation (ft)	Drainage Area (sq mi)	Slo (ft		PWS Vithdrawal (mgd)	Apply FC
	07B	10	194 CONO	DOGUIN	ET CREEK		80.13	30	642.00	45.	BO 0.0	0000	0.00	•
					St	ream Data	1							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth		Tributary p p	н	<u>S</u> Temp	tream pH	
Conu.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C)		
27-10 21-10 230-10	0.100	0.00 0.00 0.00	0.00	0.000 0.000 0.000	0.000 0.000 0.000	0.0	0.00	0.0	00 2	0.00	7.00	0.0	0.00	
		Discharge Data												
			Name	Per	mit Number	Existing Disc r Flow (mgd)	Permitto Disc Flow (mgd)	Dis Flo	c Res	erve T ctor	Disc emp (°C)	Disc pH		
						0.0000		0.0	0000	0.000	25.00	7.	.00	
					Pa	arameter D								
				Paramete	r Name	Dis Co		Trib Conc	Stream Conc	Fate Coef				
				aramete	· riume	(mg	g/L) (n	ng/L)	(mg/L)	(1/days)				
			CBOD5			2	25.00	2.00	0.00	1.50				
			Dissolved	Oxygen			3.00	8.24	0.00	0.00)			
			NH3-N			2	25.00	0.00	0.00	0.70)			

WQM 7.0 Hydrodynamic Outputs

		P Basin		m Code				Stream				
		07B	1	0194			CONC	DOGUI	NET CRE	EK		
RMI	Stream Flow	PWS With	Net Stream Flow	Disc Analysis Flow	Reach Slope	Depth	Width	W/D Ratio	Velocity	Reach Trav Time	Analysis Temp	Analysis pH
	(cfs)	(cfs)	(cfs)	(cfs)	(ft/ft)	(ft)	(ft)		(fps)	(days)	(°C)	
Q7-10	Flow											
82.830	3.19	0.00	3.19	.0464	0.00836	.643	27.08	42.09	0.19	0.224	20.07	7.00
82.150	2.99	0.00	2.99	.1114	0.00497	.639	28.06	43.94	0.17	0.713	20.18	7.00
Q1-10	Flow											
82.830	2.04	0.00	2.04	.0464	0.00836	NA	NA	NA	0.15	0.286	20.11	7.00
82.150	1.91	0.00	1.91	.1114	0.00497	NA	NA	NA	0.14	0.905	20.28	7.00
Q30-1	10 Flow	,										
82.830	4.34	0.00	4.34	.0464	0.00836	NA	NA	NA	0.22	0.189	20.05	7.00
82.150	4.07	0.00	4.07	.1114	0.00497	NA	NA	NA	0.20	0.604	20.13	7.00

Sunday, April 7, 2024 Version 1.1 Page 1 of 1

Page 1 of 1

WQM 7.0 D.O.Simulation

SWP Basin St	ream Code			Stream Na	me	
07B	10194		CON	ODOGUINET	CREEK	
RMI	Total Discharge	Flow (mgd) Ana	lysis Temper	ature (°C)	Analysis pH
82.830	82.830 0.030			20.072		7.000
Reach Width (ft)	Reach Width (ft) Reach Depth (Reach WDF	Ratio	Reach Velocity (fps)
27.078	0.64	-		42.089		0.186
Reach CBOD5 (mg/L)	Reach Ko		B	each NH3-N	(mg/L)	Reach Kn (1/days)
2.33	0.20 Reach Kr (0.36 Kr Equatio	on	0.704 Reach DO Goal (mg/L)
Reach DO (mg/L) 8.196	14.7			Tsivoglo	_	5
Reach Travel Time (days)		Subreach	D			
0.224	TravTime (days)		NH3-N (mg/L)	D.O. (mg/L)		
	0.022	2.32	0.35	8.23		
	0.045	2.31	0.35	8.23		
	0.067	2.30	0.34	8.23		
	0.089	2.29	0.34	8.23		
	0.112	2.28	0.33	8.23		
	0.134	2.27	0.33	8.23		
	0.157	2.26	0.32	8.23		
	0.179	2.25	0.32	8.23		
	0.201	2.24	0.31	8.23		
	0.224	2.23	0.31	8.23		
RMI	Total Discharge) Ana	lysis Temper		Analysis pH
82.150 Reach Width (ft)	0.07 Reach De			20.180 Reach WDF		7.000 Reach Velocity (fps)
28.058	0.63			43.942		0.173
Reach CBOD5 (mg/L)	Reach Ko	_	В	each NH3-N		Reach Kn (1/days)
2.72	0.29	6		0.84		0.710
Reach DO (mg/L)	Reach Kr	1/days)		Kr Equation	<u>on</u>	Reach DO Goal (mg/L)
8.122	8.20	9		Tsivoglo	u	5
Reach Travel Time (days) 0.713	TravTime	Subreach CBOD5	Results NH3-N	D.O.		
0.710	(days)	(mg/L)	(mg/L)	(mg/L)		
	0.071	2.66	0.80	8.22		
	0.143		0.76	8.22		
	0.214	2.55	0.72	8.22		
		2.50	0.69	8.22		
	0.285			-		
	0.285 0.357	2.44	0.65	8.22		
			0.65 0.62	8.22 8.22		
	0.357	2.44 2.39				
	0.357 0.428	2.44 2.39	0.62	8.22		
	0.357 0.428 0.499	2.44 2.39 2.34 2.29	0.62 0.59	8.22 8.22		
	0.357 0.428 0.499 0.570	2.44 2.39 2.34 2.29 2.24	0.62 0.59 0.56	8.22 8.22 8.22		
	0.357 0.428 0.499 0.570 0.642	2.44 2.39 2.34 2.29 2.24	0.62 0.59 0.56 0.53	8.22 8.22 8.22 8.22		

Version 1.1

Sunday, April 7, 2024

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	•
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.64	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.38	Temperature Adjust Kr	•
D.O. Saturation	90.00%	Use Balanced Technology	•
D.O. Goal	5		

Sunday, April 7, 2024 Version 1.1 Page 1 of 1

WQM 7.0 Wasteload Allocations

	SWP Basin	Stream Code		St	ream Name		
	07B	10194		CONOD	OGUINET CR	EEK	
NH3-N	Acute Alloca	tions					
RMI	Discharge N	Baseline ame Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
82.83	30 Roxbury Camp	16.61	50	16.61	50	0	0
82.15	50 Letterkenny S	TP 16.53	50	16.38	50	0	0
NH3-N	Chronic Allo	cations					
RMI	Discharge Nar	Baseline me Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction

Dissolved Oxygen Allocations

1.88

1.88

82.830 Roxbury Camp

82.150 Letterkenny STP

		CBC	DD5	NH	3-N	Dissolve	d Oxygen	Critical	Percent	
RMI	Discharge Name	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)		Baseline (mg/L)	Multiple (mg/L)	Reach	Reduction	
82.83	Roxbury Camp	25	25	25	25	5	5	0	0	
82.15	Letterkenny STP	25	25	25	25	3	3	0	0	

1.88

1.87

25

25

0

0

0

0

25

25

WQM 7.0 Effluent Limits

		eam Code 10194		Stream Name			
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
82.830	Roxbury Camp	PA0082511	0.030	CBOD5	25		
				NH3-N	25	50	
				Dissolved Oxygen			5
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
32.150	Letterkenny STP	PA0082201	0.042	CBOD5	25		
				NH3-N	25	50	
				Dissolved Oxygen			3

Sunday, April 7, 2024 Version 1.1 Page 1 of 1

TRC_CALC

TRC EVALUATION Input appropriate values in B4:B8 and E4:E7	
1	
Source Effluent Limit Calculations	
The content of the	
CFC Partial Mix Factor	
15	
9	
10 Source Reference AFC Calculations Reference CFC Calculations TRC	
Source	min)
11 TRC 1.3.2.iii WLA afc = 21.946 1.3.2.iii WLA cfc PENTOXSD TRG 5.1a LTAMULT afc = 0.373 5.1c LTAMULT cfc PENTOXSD TRG 5.1b LTA_afc= 8.177 5.1d LTA_cfc Source Effluent Limit Calculations PENTOXSD TRG 5.1f AML MULT = 1.231 PENTOXSD TRG 5.1g AVG MON LIMIT (mg/l) = 0.500 BAT/BPJ INST MAX LIMIT (mg/l) = 1.635 WLA afc (.019/e(-k*AFC_tc)) + [(AFC_Yc*Qs*.019/Qd*e(-k*AFC_tc))+ Xd + (AFC_Yc*Qs*Xs/Qd)]*(1-FOS/100) LTAMULT afc EXP((0.5*LN(cvh^2+1))-2.326*LN(cvh^2+1)^0.5) LTA_afc wla_afc*LTAMULT_afc	
12 PENTOXSD TRG	
13 PENTOXSD TRG	
14 15	
15	= 12.434
17 PENTOXSD TRG 5.1g AVG MON LIMIT (mg/l) = 0.500 BAT/BPJ INST MAX LIMIT (mg/l) = 1.635 WLA afc (.019/e(-k*AFC_tc)) + [(AFC_Yc*Qs*.019/Qd*e(-k*AFC_tc))+ Xd + (AFC_Yc*Qs*Xs/Qd)]*(1-FOS/100) LTAMULT afc EXP((0.5*LN(cvh^2+1))-2.326*LN(cvh^2+1)^0.5) LTA_afc wla_afc*LTAMULT_afc	
17 PENTOXSD TRG 5.1g AVG MON LIMIT (mg/l) = 0.500 BAT/BPJ INST MAX LIMIT (mg/l) = 1.635 WLA afc (.019/e(-k*AFC_tc)) + [(AFC_Yc*Qs*.019/Qd*e(-k*AFC_tc))+ Xd + (AFC_Yc*Qs*Xs/Qd)]*(1-FOS/100) LTAMULT afc EXP((0.5*LN(cvh^2+1))-2.326*LN(cvh^2+1)^0.5) LTA_afc wla_afc*LTAMULT_afc	
WLA afc (.019/e(-k*AFC_tc)) + [(AFC_Yc*Qs*.019/Qd*e(-k*AFC_tc))+ Xd + (AFC_Yc*Qs*Xs/Qd)]*(1-FOS/100) LTAMULT afc EXP((0.5*LN(cvh^2+1))-2.326*LN(cvh^2+1)^0.5) LTA_afc wla_afc*LTAMULT_afc	
+ Xd + (AFC_Yc*Qs*Xs/Qd)]*(1-FOS/100) LTAMULT afc EXP((0.5*LN(cvh^2+1))-2.326*LN(cvh^2+1)^0.5) LTA_afc wla_afc*LTAMULT_afc	
+ Xd + (AFC_Yc*Qs*Xs/Qd)]*(1-FOS/100) LTAMULT afc EXP((0.5*LN(cvh^2+1))-2.326*LN(cvh^2+1)^0.5) LTA_afc wla_afc*LTAMULT_afc	
+ Xd + (AFC_Yc*Qs*Xs/Qd)]*(1-FOS/100) LTAMULT afc EXP((0.5*LN(cvh^2+1))-2.326*LN(cvh^2+1)^0.5) LTA_afc wla_afc*LTAMULT_afc	
LTAMULT afc EXP((0.5*LN(cvh^2+1))-2.326*LN(cvh^2+1)^0.5) LTA_afc wla_afc*LTAMULT_afc	
LTA_afc wla_afc*LTAMULT_afc	
I	
WLA_cfc (.011/e(-k*CFC_tc)+[(CFC_Yc*Qs*.011/Qd*e(-k*CFC_tc))	
+ Xd + (CFC_Yc*Qs*Xs/Qd)]*(1-FOS/100)	
LTAMULT_cfc EXP((0.5*LN(cvd^2/no_samples+1))-2.326*LN(cvd^2/no_samples+1)^0.5)	
LTA_cfc wla_cfc*LTAMULT_cfc	
AML MULT EXP(2.326*LN((cvd^2/no samples+1)^0.5)-0.5*LN(cvd^2/no samples+1))	
AVG MON LIMIT MIN(BAT_BPJ, MIN(LTA_afc, LTA_cfc)*AML_MULT)	
INST MAX LIMIT 1.5*((av mon limit/AML MULT)/LTAMULT afc)	