

Southcentral Regional Office CLEAN WATER PROGRAM

Renewal Application Type Non-Municipal Facility Type Major / Minor Minor

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

PA0083194 Application No. APS ID 1070599

Authorization ID

1439068

		•	acility Information			
Applicant Name	Apple	egreen PA Welcome Center LLC	Facility Name	Blue Mt Turnpike Plaza		
Applicant Address	208 F	arristown Road	Facility Address	Pa Turnpike Between Exits 201 And 226		
	Glen	Rock, NJ 07452-3308		Newburg, PA 17240		
Applicant Contact	Shaw	n Leslie	Facility Contact	Damien Corle		
Applicant Phone	(443)	206-6899	Facility Phone	(445) 448-0716		
Client ID	37038	35	Site ID	2084		
Ch 94 Load Status	Not O	verloaded	Municipality	Hopewell Township		
Connection Status	No Li	mitations	County	Cumberland		
Date Application Rece	eived	May 8, 2023	EPA Waived?	Yes		
Date Application Accepted		June 1, 2023	If No, Reason			

Summary of Review

Applegreen PA Welcome Center LLC (Applegreen) has applied to the Pennsylvania Department of Environmental Protection (DEP) for reissuance of its NPDES permit. The permit was last reissued on November 26, 2018 and became effective on December 1, 2018. The permit expired on November 30, 2023 but the terms and conditions of the permit have been extended since that time.

Based on the review, it is recommended that the permit be drafted.

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the Pennsylvania Bulletin in accordance with 25 Pa. Code § 92a.82. Upon publication in the Pennsylvania Bulletin, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the Pennsylvania Bulletin at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Approve	Deny	Signatures	Date
Х		ງ່ແລນ Kim Jinsu Kim / Environmental Engineering Specialist	April 9, 2024
Х		Maria D. Bebenek Daniel W. Martin, P.E. / Environmental Engineer Manager	April 17, 2024
Х		Maria D. Bebenek Maria D. Bebenek, P.E. / Program Manager	April 17, 2024

Outfall No. 001			Design Flow (MGD)	.05
Latitude 40°	9' 58.85"		Longitude	-77° 35' 43.14"
Quad Name N	ewburg		Quad Code	1725
Wastewater Desc	ription:	Sewage Effluent		
Receiving Waters	Newb	urg Run	Stream Code	10531
NHD Com ID	56408	225	RMI	4.78
Drainage Area	0.47 s	q.mi.	Yield (cfs/mi²)	0.147
Q ₇₋₁₀ Flow (cfs)	0.0609	9	Q ₇₋₁₀ Basis	USGS gage no. 0157000
Elevation (ft)			Slope (ft/ft)	
Watershed No.	7-B		Chapter 93 Class.	WWF, MF
Existing Use			Existing Use Qualifier	
Exceptions to Use			Exceptions to Criteria	
Assessment Statu	S	Attaining Use(s)		
Cause(s) of Impai	rment			
Source(s) of Impa	irment			
TMDL Status		Final	Name Conodoguin	et Creek Watershed
Nearest Downstre	am Public	Water Supply Intake	Carlisle Borough	
PWS Waters	Conodog	guinet Creek	Flow at Intake (cfs)	48
PWS RMI	35.95		Distance from Outfall (mi)	36.8

Drainage Area

The discharge is to Newburg Run at RMI 4.78. A point of first use stream survey was conducted by DEP biologist on September 29, 1992. The survey concluded the stream was perennial. A drainage area upstream of the point of discharge is estimated to be 0.47 sq.mi. according to USGS StreamStats available at https://streamstats.usgs.gov/ss/.

Streamflow

USGS StreamStats produced a Q7-10 flow of 0.0108 cfs; however, this value may not be accurate. The drainage area estimated by USGS StreamStats at the point of discharge is below the minimum value required to be used in regression equations to calculate the Q7-10. Thus, technical errors may be made during the stream flow calculation. The flow data from the nearest downstream USGS gage station (i.e., USGS gage no. 0157000) is then used to calculate the Q7-10 using a low-flow yield method as follows:

Low Flow Yield = Q7- 10_{gage} / Drainage Area_{gage} =69.3 cfs / 470 sq.mi. = 0.147 cfs/sq.mi. Q7- 10_{site} = Low Flow Yield * Drainage Area_{site} = 0.147 cfs/sq.mi. * 0.47 sq.mi = 0.0609 cfs

Newburg Run

Under Pa Code §93.90, Newburg Run is designated as warm water and migratory fishes. Newburg Run is a tributary of Conodoguinet Creek which is also designated as warm water and migratory fishes from PA 997 at Roxbury to Mouth. As a result, no special protection water(s) is impacted by this discharge. Further, no Class A Wild Trout Fishery is impacted by this discharge. DEP's 2024 integrated water quality report indicated that the discharge is located in a stream segment listed as attaining use(s). However, further downstream of the point of discharge is impaired for nutrients and siltation as a result of agricultural activities. A Total Maximum Daily Load for the majority part of the Conodoguinet Creek watershed was developed in December 2000 to address impairments associated with nutrients and sediments associated with agriculture, construction, urban runoff and storm sewers. This TDML addressed load allocations for non-point sources on Newburg Run; yet, does not address wasteload allocations for point sources on Newburg Run. Therefore, no TMDL has been taken into consideration during this review. DEP may reopen this permit in case the TMDL is revised to include the wasteload allocation for this facility in the future.

NPDES Permit Fact Sheet Blue Mt Turnpike Plaza

Public Water Supply

The fact sheet prepared for the last permit renewal indicates that the nearest downstream public water supply intake is Carlisle Borough located on the Conodoguinet Creek approximately 37 miles from the discharge. Given the distance, the discharge is not expected to significantly impact the water supply.

	Treatment Facility Summary								
Treatment Facility Name: Blue Mt. Turnpike WWTP									
WQM Permit No.	Issuance Date								
2193403	09/12/1995								
Waste Type	Degree of Treatment	Process Type	Disinfection	Avg Annual Flow (MGD)					
Sewage	Secondary	Oxidation Ditch	Chlorine	0.05					
Hydraulic	Organic Capacity								
Capacity (MGD)	(lbs/day)	Load Status	Biosolids Treatment	Biosolids Use/Disposal					
0.05	-	Not Overloaded	Digestion	Other WWTP					

Applegreen operates a sanitary wastewater treatment facility serving I-76/PA Turnpike travel plaza near Newburg, Pa. With having both annual average design flow and hydraulic design capacity of 0.05 MGD, the facility utilizes an oxidation ditch activated sludge process consisting of a bar screen, equalization tank, oxidation ditches (2), clarifiers (2), chlorine contact tank, sand filters, and outfall 001 to Newburg Run.

Sodium hypochlorite is used for chlorination, sodium bisulfite is used as needed for dechlorination, ferric chloride is used as needed for phosphorus removal and soda ash is used for pH control.

Sludge is sent to a sludge holding tank prior to hauled off site via a local septage hauler to another WWTP for ultimate treatment and disposal.

	Compliance History
Summary of DMRs:	A summary of past 12-month DMR data is presented on the next page.
Summary of Inspections:	02/23/2023: DEP conducted an incident inspection regarding a reported Sanitary Sewer Overflow occurred on 02/22/2023. The inspection report indicates that no streams/waterways were impacted by the SSO. 11/10/2021: DEP conducted a routine inspection and discussed with the permittee regarding some effluent violations during the July-August monitoring periods.
Other Comments:	Since the last permit reissuance, there are a number of effluent violations reported to DEP. These violations are shown on the next pages. DEP's database shows that there are a number of open violations associated with this facility or permittee. The draft permit letter will indicate that the permit may not be finalized until all open violations are resolved.

Effluent Data

DMR Data for Outfall 001 (from March 1, 2023 to February 29, 2024)

Parameter	FEB-24	JAN-24	DEC-23	NOV-23	OCT-23	SEP-23	AUG-23	JUL-23	JUN-23	MAY-23	APR-23	MAR-23
Flow (MGD)							0.00878					
Average Monthly	0.00307	0.00282	0.00372	0.00426	0.00447	0.0483	6	0.0083	0.0068	0.0089	0.0067	0.0051
Flow (MGD)							0.03640					
Daily Maximum	0.00874	0.00594	0.00658	0.0098	0.00795	0.1445	4	0.0213	0.0143	0.0166	0.02	0.0114
pH (S.U.)												
Daily Minimum	6.15	6.24	6.08	6.1	6.58	6.61	6.54	6.2	6.2	6.2	6.1	6.2
pH (S.U.)												
Daily Maximum	8.17	8.3	8.3	8.32	8.3	8.36	7.75	7.9	7.9	7.9	7.8	7.9
DO (mg/L)												
Daily Minimum	9.72	9.48	9.78	8.43	7.91	7.0	5.72	6.4	6.2	7.8	8.8	10.1
TRC (mg/L)												
Average Monthly	0.06	0.06	0.08	0.15	0.10	0.07	< 0.04	< 0.06	< 0.05	< 0.05	< 0.09	< 0.08
TRC (mg/L)												
Instantaneous												
Maximum	0.13	0.30	0.31	0.38	0.28	0.27	0.20	0.20	0.14	0.21	0.31	0.24
CBOD5 (mg/L)												
Average Monthly	< 3.0	< 4.7	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 16.5	4.2	< 3.0	< 4.2	5.7
TSS (mg/L)												
Average Monthly	14.2	7.2	5.2	5.6	4.6	1.6	< 1.6	< 1.8	6.4	7.2	11.0	18.6
Fecal Coliform												
(No./100 ml)												
Geometric Mean	28	< 17	< 5	< 7	14	< 14	2123	< 46	< 18	< 10	< 34	< 10
Fecal Coliform												
(No./100 ml)												
Instantaneous												
Maximum	42.5	54.5	5	10	20	1296	4106	213	31	10	115.2	< 10
Nitrate-Nitrite (lbs/day)			_									_
Daily Maximum			3			24			< 13			< 8
Nitrate-Nitrite (mg/L)												
Daily Maximum			101.6			83.12			< 112.4			< 103.7
Total Nitrogen												
(lbs/day)						0.4			40			
Daily Maximum			3			24			< 13			8
Total Nitrogen (mg/L)			400.4			00.00			440.0			4040
Daily Maximum			103.1			83.62			< 112.9			104.2
Ammonia (mg/L)		6.4	6.4	0.0	0.0	6.4	0.4		0.0	6.4	4.0	6.4
Average Monthly	< 0.1	< 0.1	< 0.1	0.2	< 0.2	< 0.1	< 0.1	1.1	< 0.6	< 0.4	< 1.9	< 2.4
TKN (lbs/day)			. 0. 04			. 0.04			. 0. 00			.004
Daily Maximum			< 0.01			< 0.01			< 0.06			< 0.04

NPDES Permit Fact Sheet Blue Mt Turnpike Plaza

NPDES Permit No. PA0083194

Parameter	FEB-24	JAN-24	DEC-23	NOV-23	OCT-23	SEP-23	AUG-23	JUL-23	JUN-23	MAY-23	APR-23	MAR-23
TKN (mg/L)												
Daily Maximum			< 0.5			< 0.5			< 0.5			< 0.05
Total Phosphorus												
(lbs/day)												
Average Monthly	0.009	0.007	0.005	0.020	0.020	0.200	< 0.100	0.004	0.009	0.008	0.030	0.030
Total Phosphorus												
(mg/L)												
Average Monthly	0.3	0.3	0.2	0.6	0.6	0.9	< 1.6	0.2	0.2	0.1	0.2	0.6

Effluent Violations

Effluent Violations since the last permit reissuance

Date 💌	Parameter •	Results 💌	Limits •	Units ▼	SBC ▼
11/1/2018	Total Phosphorus	2.3	2	mg/L	Average Monthly
1/1/2019	Total Residual Chlorine (TRC)	0.51	0.4	mg/L	Instantaneous Maximum
5/1/2019	Ammonia-Nitrogen	3	2.5	mg/L	Average Monthly
8/1/2019	Fecal Coliform	280	200	No./100 ml	Geometric Mean
9/1/2019	Fecal Coliform	1110	200	No./100 ml	Geometric Mean
9/1/2019	Fecal Coliform	3654	1000	No./100 ml	Instantaneous Maximum
12/1/2019	Total Suspended Solids	32.5	30	mg/L	Average Monthly
5/1/2020	Ammonia-Nitrogen	8.3	2.5	mg/L	Average Monthly
7/1/2020	Fecal Coliform	1296	1000	No./100 ml	Instantaneous Maximum
8/1/2020	Fecal Coliform	6867	1000	No./100 ml	Instantaneous Maximum
9/1/2020	Fecal Coliform	7701	1000	No./100 ml	Instantaneous Maximum
9/1/2020	Total Residual Chlorine (TRC)	0.42	0.4	mg/L	Instantaneous Maximum
3/1/2021	Ammonia-Nitrogen	9.8	7.5	mg/L	Average Monthly
7/1/2021	Ammonia-Nitrogen	< 5.1	2.5	mg/L	Average Monthly
7/1/2021	Total Phosphorus	2.6	2	mg/L	Average Monthly
8/1/2021	Ammonia-Nitrogen	< 3.4	2.5	mg/L	Average Monthly
12/1/2021	Total Residual Chlorine (TRC)	0.6	0.4	mg/L	Instantaneous Maximum
6/1/2022	Total Residual Chlorine (TRC)	0.45	0.4	mg/L	Instantaneous Maximum
9/1/2022	Fecal Coliform	< 215	200	No./100 ml	Geometric Mean
9/1/2022	Fecal Coliform	< 4611	1000	No./100 ml	Instantaneous Maximum
8/1/2023	Fecal Coliform	2123	200	No./100 ml	Geometric Mean
8/1/2023	Fecal Coliform	4106	1000	No./100 ml	Instantaneous Maximum
9/1/2023	Fecal Coliform	1296	1000	No./100 ml	Instantaneous Maximum
11/1/2023	Total Residual Chlorine (TRC)	0.15	0.12	mg/L	Average Monthly

Existing Effluent Limits and Monitoring Requirements

Effluent Limits and Monitoring Requirements in the existing permit.

			Effluent L	imitations			Monitoring Re	quirements
Parameter	Mass Units	(lbs/day) (1)		Concentrat	ions (mg/L)		Minimum (2)	Required
Parameter	Average	Average		Average		Instant.	Measurement	Sample
	Monthly	Weekly	Minimum	Monthly	Maximum	Maximum	Frequency	Type
		Report						
Flow (MGD)	Report	Daily Max	XXX	XXX	XXX	XXX	Continuous	Measured
			6.0		9.0			
pH (S.U.)	XXX	XXX	Daily Min	XXX	Daily Max	XXX	1/day	Grab
			5.0					
Dissolved Oxygen	XXX	XXX	Daily Min	XXX	XXX	XXX	1/day	Grab
Total Residual Chlorine (TRC)	XXX	XXX	xxx	0.12	xxx	0.40	1/day	Grab
Carbonaceous Biochemical				-				24-Hr
Oxygen Demand (CBOD5)	XXX	XXX	XXX	25.0	XXX	50	2/month	Composite
1 7 3 1 1 (1 1 1 7)								24-Hr
Total Suspended Solids	XXX	XXX	XXX	30.0	XXX	60	2/month	Composite
Fecal Coliform (No./100 ml)				2000				
Oct 1 - Apr 30	XXX	XXX	XXX	Geo Mean	XXX	10000	2/month	Grab
Fecal Coliform (No./100 ml)				200				
May 1 - Sep 30	XXX	XXX	XXX	Geo Mean	XXX	1000	2/month	Grab
		Report			Report			24-Hr
Nitrate-Nitrite as N	XXX	Daily Max	XXX	XXX	Daily Max	XXX	1/quarter	Composite
		Report			Report			
Total Nitrogen	XXX	Daily Max	XXX	XXX	Daily Max	XXX	1/quarter	Calculation
Ammonia-Nitrogen								24-Hr
Nov 1 - Apr 30	XXX	XXX	XXX	7.5	XXX	15	2/month	Composite
Ammonia-Nitrogen								24-Hr
May 1 - Oct 31	XXX	XXX	XXX	2.5	XXX	5	2/month	Composite
		Report			Report			24-Hr
Total Kjeldahl Nitrogen	XXX	Daily Max	XXX	XXX	Daily Max	XXX	1/quarter	Composite
								24-Hr
Total Phosphorus	0.417	XXX	XXX	2.0	XXX	4	2/month	Composite

	Development of Effluent Limitations and Monitoring Requirements								
Outfall No.	001		Design Flow (MGD)	.05					
Latitude	40° 9' 58.00'	_	Longitude	-77° 35' 43.00"					
Wastewater [Description:	Sewage Effluent							

Technology-Based Limitations

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Pollutant	Limit (mg/l)	SBC	Federal Regulation	State Regulation
CBOD₅	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
CBOD5	40	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)
Total Suspended	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
Solids	45	Average Weekly	133.102(b)(2)	92a.47(a)(2)
pН	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform				
(5/1 – 9/30)	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
Fecal Coliform				
(5/1 – 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform				
(10/1 - 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
Fecal Coliform				
(10/1 – 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)
Total Residual Chlorine	0.5	Average Monthly	-	92a.48(b)(2)

Water Quality-Based Limitations

CBOD5, NH3-N and Dissolved Oxygen (DO)

WQM 7.0 version 1.0b is a water quality model designed to assist DEP to determine appropriate permit requirements for CBOD5, NH3-N and DO. DEP's guidance no. 391-2000-007 provides the technical methods contained in WQM 7.0 for conducting wasteload allocation and for determining recommended NPDES effluent limits for point source discharges. The model was utilized and the model output indicated that existing limits are still appropriate and protective of water quality.

Total Residual Chlorine

Since sodium hypochlorite is used for disinfection, Total Residual Chlorine (TRC) effluent levels must be regulated in accordance with 25 Pa Code §92a.48(b). DEP's TRC_CALC worksheet indicates that existing effluent limits are protective of water quality. No change is recommended.

Toxics

DEP's NPDES permit application for minor sewages less than 0.1 MGD does not require sampling of toxics pollutants. As a result, no reasonable potential analysis for toxics pollutants has been performed for the upcoming permit renewal.

Best Professional Judgment (BPJ) Limitations

Dissolved Oxygen

A minimum of 5.0 mg/L for DO is an existing effluent limit and will remain unchanged in the draft permit as recommended by DEP's SOP. This requirement has also been assigned to other sewage facilities in the region. 5.0 mg/L is taken directly from 25 Pa. Code § 93.7(a) and it is also determined to be appropriate according to water quality modeling.

Total Phosphorus

The existing permit renewal contains average monthly concentration effluent limit of 2.0 mg/L, IMAX of 4.0 mg/L and average monthly mass load effluent limit of 0.417 lbs/day for Total Phosphorus. The fact sheet prepared for the last permit renewal contained the following basis for these effluent limits:

"A limit of 2 mg/l was written to control phosphorus loading to the lower Susquehanna River. Reevaluating phosphorus limits using the Implementation Guidance for Section 96.5 Phosphorus Discharges to Free Flowing Streams dated 10/27/97 (ID No. 391-2000-018) determined the discharge contributed less than 0.25% of the phosphorus loading and limits were not necessary. However, antibacksliding requirements prevent relaxing limits.

Following D.O. violations at Orr's Bridge Dam resulting in fish kills with a diurnal swing from 3 to 17 mg/l, a joint survey with SRBC documented excessive nutrients. Central office and the region agreed that Conodoguinet Creek needed addition protection and that Conodoguinet Creek did not the standard categories of free flowing, impoundment or estuary. It was agreed that maintaining the loading at existing levels was consistent with phosphorus regulations and guidance. Expanding facilities would be permitted at existing mass limits. While not discussed at that time, existing mass load would only be applied up to point where concentration level became 1 mg/l. New facilities would be permitted at 1 mg/l.

Write the existing mass load of 0.417 lbs/day and a concentration limit of 2 mg/l."

DEP finds no reasonable rationale to relax or remove these effluent limits; consequently, existing effluent limits for Total Phosphorus will remain unchanged in the draft permit in accordance with 40 CFR 122.44(L)(1) and (2).

Additional Considerations

Flow Monitoring

The requirement to monitor the volume of effluent will remain in the draft permit per 40 CFR § 122.44(i)(1)(ii).

Nutrient Monitoring Requirement

DEP's Standard Operating Procedure no. BCW-PMT-033 recommends nutrient monitoring for all sewage facilities. Therefore, the existing quarterly monitoring requirements will remain unchanged in the permit.

E. Coli Monitoring Requirement

DEP's Standard Operating Procedure no. BCW-PMT-033 recommends a quarterly monitoring of E. Coli for all sewage facilities with design flows >=0.05 MGD and < 1 MGD. Therefore, a new quarterly monitoring requirement will be included in the permit.

Monitoring Frequency and Sample Type

Unless otherwise specified throughout this fact sheet, existing monitoring frequencies and sample types will remain unchanged in the permit.

Mass Loading Limitations

All effluent mass loading limits will be based on the formula: design flow x concentration limit x conversion factor of 8.34.

Antidegradation Requirements

All effluent limitations and monitoring requirements have been developed to ensure that existing instream water uses and the level of water quality necessary to protect the existing uses are maintained and protected.

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (386-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

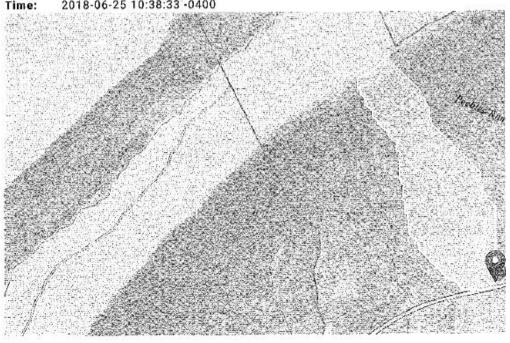
		Effluent Limitations							
Parameter	Mass Units	(lbs/day) (1)		Concentrat	ions (mg/L)		Minimum (2)	Required	
raiailletei	Average Monthly	Average Weekly	Minimum	Average Monthly	Maximum	Instant. Maximum	Measurement Frequency	Sample Type	
		Report		_				<u>, </u>	
Flow (MGD)	Report	Daily Max	XXX	XXX	XXX	XXX	Continuous	Measured	
			6.0		9.0				
pH (S.U.)	XXX	XXX	Daily Min	XXX	Daily Max	XXX	1/day	Grab	
DO	XXX	XXX	5.0 Daily Min	XXX	XXX	XXX	1/day	Grab	
TRC	XXX	XXX	XXX	0.12	XXX	0.40	1/day	Grab	
	1			511=		0110	.,,	24-Hr	
CBOD5	XXX	XXX	XXX	25.0	XXX	50	2/month	Composite	
								24-Hr	
TSS	XXX	XXX	XXX	30.0	XXX	60	2/month	Composite	
Fecal Coliform (No./100 ml)				2000					
Oct 1 - Apr 30	XXX	XXX	XXX	Geo Mean	XXX	10000	2/month	Grab	
Fecal Coliform (No./100 ml)				200					
May 1 - Sep 30	XXX	XXX	XXX	Geo Mean	XXX	1000	2/month	Grab	
		Report			Report			24-Hr	
Nitrate-Nitrite	XXX	Daily Max	XXX	XXX	Daily Max	XXX	1/quarter	Composite	
Total Nitrogen	XXX	Report Daily Max	XXX	XXX	Report Daily Max	XXX	1/quarter	Calculation	
Ammonia	7000	Daily Wax	7000	7001	Daily Wax	7000	179001101	24-Hr	
Nov 1 - Apr 30	XXX	XXX	XXX	7.5	XXX	15	2/month	Composite	
Ammonia	700	7000	7000		7001			24-Hr	
May 1 - Oct 31	XXX	XXX	XXX	2.5	XXX	5	2/month	Composite	
		Report			Report	-		24-Hr	
TKN	XXX	Daily Max	XXX	XXX	Daily Max	XXX	1/quarter	Composite	
								24-Hr	
Total Phosphorus	0.417	XXX	XXX	2.0	XXX	4	2/month	Composite	
E. Coli (no / 100 mL)	XXX	XXX	XXX	XXX	XXX	Report	1/quarter	Grab	

Tools and References Used to Develop Permit
MOM for Mindows Model (occ Attochment
WQM for Windows Model (see Attachment)
Toxics Management Spreadsheet (see Attachment)
TRC Model Spreadsheet (see Attachment)
Temperature Model Spreadsheet (see Attachment)
Water Quality Toxics Management Strategy, 361-0100-003, 4/06.
Technical Guidance for the Development and Specification of Effluent Limitations, 386-0400-001, 10/97.
Policy for Permitting Surface Water Diversions, 386-2000-019, 3/98.
Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 386-2000-018, 11/96.
Technology-Based Control Requirements for Water Treatment Plant Wastes, 386-2183-001, 10/97.
Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 386-2183-002, 12/97.
Pennsylvania CSO Policy, 386-2000-002, 9/08.
Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03.
Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 386-2000-008, 4/97.
Determining Water Quality-Based Effluent Limits, 386-2000-004, 12/97.
Implementation Guidance Design Conditions, 386-2000-007, 9/97.
Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen, Version 1.0, 386-2000-016, 6/2004.
Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 386-2000-012, 10/1997.
Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments, 386-2000-009, 3/99.
Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 386-2000-015, 5/2004.
Implementation Guidance for Section 93.7 Ammonia Criteria, 386-2000-022, 11/97.
Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 386-2000-013, 4/2008.
Implementation Guidance Total Residual Chlorine (TRC) Regulation, 386-2000-011, 11/1994.
Implementation Guidance for Temperature Criteria, 386-2000-001, 4/09.
Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 386-2000-021, 10/97.
Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 386-2000-020, 10/97.
Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 386-2000-005, 3/99.
Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 386-2000-010, 3/1999.
Design Stream Flows, 386-2000-003, 9/98.
Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 386-2000-006, 10/98.
Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 386-3200-001, 6/97.
Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07.
SOP:
Other:

Page 2 of 4

StreamStats Report

Region ID:


Workspace ID:

PA20180625143814973000

Clicked Point (Latitude, Longitude):

40.16617, -77.59506

2018-06-25 10:38:33 -0400

Basin Characteristics

Parameter Code	Parameter Description	Value	Unit
DRNAREA	Area that drains to a point on a stream	0.47	square miles
PRECIP	Mean Annual Precipitation	40	inches
STRDEN	Stream Density total length of streams divided by drainage area	2.29	miles per square mile
ROCKDEP	Depth to rock	4.7	feet
CARBON	Percentage of area of carbonate rock	0	percent

https://streamstats.usgs.gov/ss/

Page 3 of 4

Low-Flow Statistics Parameters (Low Flow Region 2)

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	0.47	square miles	4.93	1280
PRECIP	Mean Annual Precipitation	40	inches	35	50.4
STRDEN	Stream Density	2.29	miles per square mile	0.51	3.1
ROCKDEP	Depth to Rock	4.7	feet	3.32	5.65
CARBON	Percent Carbonate	0	percent	0	99

Low-Flow Statistics Disclaimers (Low Flow Region 2)

One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors

Low-Flow Statistics Flow Report [Low Flow Region 2]

Statistic	Value	Unit
7 Day 2 Year Low Flow	0.0275	ft^3/s
30 Day 2 Year Low Flow	0.0397	ft^3/s
7 Day 10 Year Low Flow	0.0108	ft^3/s
30 Day 10 Year Low Flow	0.0153	ft^3/s
90 Day 10 Year Low Flow	0.0265	ft^3/s

Low-Flow Statistics Citations

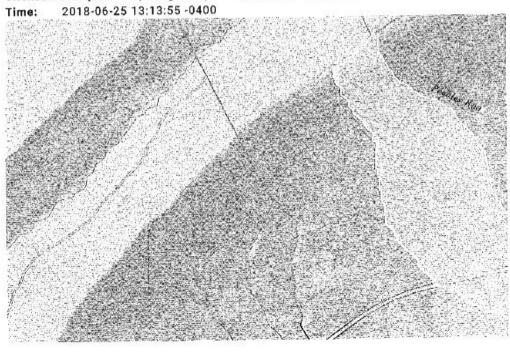
Stuckey, M.H.,2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006-5130, 84 p. (http://pubs.usgs.gov/sir/2006/5130/)

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and

https://streamstats.usgs.gov/ss/

Page 2 of 4

StreamStats Report


Region ID:

Workspace ID:

PA20180625171339851000

Clicked Point (Latitude, Longitude):

40.16251, -77.59004

Docin	Charac	teristics
Dasili	Charac	(Chianica

	Parameter Code	Parameter Description	Value	Unit
	DRNAREA	Area that drains to a point on a stream	0.78	square miles
	PRECIP	Mean Annual Precipitation	40	inches
10	STRDEN	Stream Density total length of streams divided by drainage area	3.32	miles per square mile
	ROCKDEP	Depth to rock	4.5	feet
	CARBON	Percentage of area of carbonate rock	0	percent

https://streamstats.usgs.gov/ss/

Page 3 of 4

Low-Flow Statistics Parameters (Low Flow Region 2)

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit	
DRNAREA	Drainage Area	0.78	square miles	4.93	1280	
PRECIP	Mean Annual Precipitation	40	inches	35	50.4	
STRDEN	Stream Density	3.32	miles per square mile	0.51	3.1	
ROCKDEP	Depth to Rock	4.5	feet	3.32	5.65	
CARBON	Percent Carbonate	0	percent	0	99	

Low-Flow Statistics Disclaimers |Low Flow Region 2|

One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors

Low-Flow Statistics Flow Report |Low Flow Region 2]

Value	Unit	
0.0315	ft^3/s	
0.047	ft^3/s	
0.0116	ft^3/s	
0.0171	ft^3/s	
0.0301	ft^3/s	
	0.0315 0.047 0.0116 0.0171	0.0315 ft^3/s 0.047 ft^3/s 0.0116 ft^3/s 0.0171 ft^3/s

Low-Flow Statistics Citations

Stuckey, M.H.,2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006-5130, 84 p. (http://pubs.usgs.gov/sir/2006/5130/)

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and

https://streamstats.usgs.gov/ss/

Input Data WQM 7.0

	SWP Basin	Stres Cod		Stre	eam Name		RMI		vation (ft)	Drainage Area (sq mi)		ope V /ft)	PWS Vithdrawal (mgd)	Apply FC
	07B	105	31 NEWE	URG RU	N		4.7	80	800.00	0.	47 0.0	0000	0.00	•
					St	ream Data	1							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth		<u>Tributary</u> ip p	Н	<u>St</u> Temp	t <u>ream</u> pH	
Conu.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C)		
Q7-10 Q1-10 Q30-10	0.147	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000 0.000 0.000	0.0	0.00	0.0	00 2	5.00	7.00	0.0	0.00	
			Discharge Data											
			Name	Per	mit Number	Existing Disc r Flow (mgd)	Permitt Disc Flow (mgd	Dis Flo	c Res	erve T ctor	Disc emp (°C)	Disc pH		
		Blue	Mt. Plaza	PAG	0083194	0.0500	0.05	0.0	500	0.000	25.00	7.	00	
					Pa	arameter [
			,	Paramete	r Name	Dis Co		Trib Conc	Stream Conc	Fate Coef				
						(m	g/L) (r	ng/L)	(mg/L)	(1/days)				
			CBOD5			2	25.00	2.00	0.00	1.50)			
			Dissolved	Oxygen			5.00	8.24	0.00	0.00)			
			NH3-N				2.50	0.00	0.00	0.70)			

Input Data WQM 7.0

	SWP Basin	Stres Cod		Stre	eam Name		RMI		vation (ft)	Drainage Area (sq mi)			PWS Withdrawal (mgd)	Apply FC
	07B	105	31 NEWE	BURG RU	N		4.39	91	718.00	0.	78 0.0	0000	0.00	•
					St	ream Data	1							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth		Tributary p p	Н	Temp	<u>îtream</u> pH	
cona.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C)		
27-10 21-10 230-10	0.147	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000		0.0	0.00	0.0	00 2	5.00	7.00	0.	00 0.00)
			Discharge Data											
			Name	Per	mit Number	Existing Disc Flow (mgd)	Permitt Disc Flow (mgd)	Dis Flo	c Res	erve T	Disc emp (°C)	Disc pH		
						0.0000		0.0	0000	0.000	25.00	7	.00	
					Pa	rameter D								
				Paramete	r Name	Dis Co		Trib Conc	Stream Conc	Fate Coef				
				aramete	. Hume	(mg	g/L) (r	ng/L)	(mg/L)	(1/days)				
			CBOD5			2	25.00	2.00	0.00	1.50)			
			Dissolved	Oxygen			3.00	8.24	0.00	0.00)			
			NH3-N			2	25.00	0.00	0.00	0.70)			

WQM 7.0 D.O.Simulation

SWP Basin	Stream Code			Stream Na	me	
07B	10531		1	NEWBURG	RUN	
RMI	Total Discharge) Ana	lysis Temper		Analysis pH
4.780	0.05			25.000		7.000
Reach Width (ft)	Reach De			Reach WDI		Reach Velocity (fps)
3.733	0.39	_		9.565		0.101
Reach CBOD5 (mg/L)	Reach Ko		B	each NH3-N	(mg/L)	Reach Kn (1/days)
14.15	1.37			1.32		1.029
Reach DO (mg/L)	Reach Kr (Kr Equati		Reach DO Goal (mg/L)
6.530	29.88	31		Owens	1	5
Reach Travel Time (days	<u>s)</u>	Subreach	Results			
0.237	TravTime		NH3-N	D.O.		
	(days)	(mg/L)	(mg/L)	(mg/L)		
	0.024	13.58	1.29	6.75		
	0.047	13.04	1.26	6.89		
	0.071	12.51	1.23	6.98		
	0.095	12.01	1.20	7.05		
	0.118	11.53	1.17	7.11		
	0.142	11.07	1.14	7.16		
	0.166	10.62	1.11	7.21		
	0.189	10.20	1.09	7.26		
	0.213	9.79	1.06	7.30		
	0.237	9.39	1.04	7.34		

WQM 7.0 Hydrodynamic Outputs

	SWP Basin Stream											
	07B		10531				N					
RMI	Stream Flow	PWS With	Net Stream Flow	Disc Analysis Flow		Depth	Width	W/D Ratio	Velocity	Trav Time	Analysis Temp	Analysis pH
	(cfs)	(cfs)	(cfs)	(cfs)	(ft/ft)	(ft)	(ft)		(fps)	(days)	(°C)	
Q7-1	0 Flow											
4.780	0.07	0.00	0.07	.0773	0.03992	.39	3.73	9.57	0.10	0.237	25.00	7.00
Q1-1	0 Flow											
4.780	0.08	0.00	0.08	.0773	0.03992	NA	NA	NA	0.10	0.242	25.00	7.00
Q30-	10 Flow	,										
4.780	0.08	0.00	0.08	.0773	0.03992	NA	NA	NA	0.10	0.229	25.00	7.00

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	•
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.91	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.13	Temperature Adjust Kr	•
D.O. Saturation	90.00%	Use Balanced Technology	•
D.O. Goal	5		

Discharge Name

4.78 Blue Mt. Plaza

WQM 7.0 Wasteload Allocations

	SWP Basin 07B		<u>ım Code</u> 0531		_	ream Name VBURG RUN		
NH3-N	Acute Allo	cation	s					
RMI	Discharg	e Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
				-	44.07	5	0	
4.7	80 Blue Mt. P	aza	11.07	5	11.07	5	Ü	0
	80 Blue Mt. Pl Chronic A Discharge	llocatio		Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction

Baseline Multiple Baseline Multiple Baseline Multiple Grindsi Percent Reduction (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L)

25 25 2.5 2.5 5 5 0

WQM 7.0 Effluent Limits

		<u>n Code</u> 531		Stream Name NEWBURG RU	-		
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
1.780	Blue Mt. Plaza	PA0083194	0.050	CBOD5	25		
				NH3-N	2.5	5	
				Dissolved Oxygen			5

TRC_CALC

		D		F	G	
TRC EVALU	JATION					
Input appropr	iate values in	B4:B8 and E4:E7				
0.060	9 = Qstream (cfs)	0.5	=CV Daily		
	5 = Qdischarg			=CV Hourly		
	= no. sample			= AFC_Partial N		
		emand of Stream		=CFC_Partial N		
0 = Chlorine Demand of Discharge				= AFC_Criteria Compliance Time (min)		
_	5 = BAT/BPJV		720	=CFC_Criteria Compliance Time (min)		
	0 = % Factor o			=Decay Coeffic		
Source	Reference	AFC Calculations		Reference	CFC Calculations	
TRC	1.3.2.iii	WLA afc =		1.3.2.iii	WLA cfc = 0.256	
PENTOXSD TR		LTAMULT afc =		5.1c	LTAMULT cfc = 0.581	
PENTOXSD TR	G 5.1b	LTA_afc=	0.101	5.1d	LTA_cfc = 0.149	
Source		Effluent	Limit Cald	culations		
PENTOXSD TR	G 5.1f	AM	L MULT =	1.231		
PENTOXSD TR	G 5.1g	AVG MON LIMI	T (mg/l) =	0.124	AFC	
		INST MAX LIMI	T (mg/l) =	0.405		
WLA afc	(.019/e/-k*A)	FC tc))+ ((AFC Yc*Qs	*.019/Qd	*e(-k*AFC tc))		
WLA afc		FC_tc)) + [(AFC_Yc*Qs C_Yc*Qs*Xs/Qd)]*(1-F		*e(-k*AFC_tc))		
WLA afc	+ Xd + (AF		OS/100)	,		
	+ Xd + (AF	C_Yc*Qs*Xs/Qd)]*(1-F (cvh^2+1))-2.326*LN(c	OS/100)	,		
LTAMULT afc	+ Xd + (AF EXP((0.5*LN wla_afc*LTA (.011/e(-k*C	C_Yc*Qs*Xs/Qd)]*(1-F (cvh^2+1))-2.326*LN(c	OS/100) :vh^2+1)^ *.011/Qd*	0.5)		
LTAMULT afc LTA_afc	+ Xd + (AFI EXP((0.5*LN wla_afc*LTA (.011/e(-k*CI + Xd + (CFI	C_Yc*Qs*Xs/Qd)]*(1-F0 (cvh^2+1)}-2.326*LN(c MULT_afc FC_tc)+[(CFC_Yc*Qs*	OS/100) :vh^2+1)^ *.011/Qd* OS/100)	0.5) e(-k*CFC_tc))		
LTAMULT afc LTA_afc WLA_cfc	+ Xd + (AFI EXP((0.5*LN wla_afc*LTA (.011/e(-k*CI + Xd + (CFI	C_Ye*Qs*Xs/Qd)]*(1-Fi (cvh^2+1)}-2.326*LN(c MULT_afc FC_tc)+[(CFC_Ye*Qs C_Ye*Qs*Xs/Qd)]*(1-Fi (cvd^2/no_samples+1)	OS/100) :vh^2+1)^ *.011/Qd* OS/100)	0.5) e(-k*CFC_tc))		
LTAMULT afc LTA_afc WLA_cfc LTAMULT_cfc	+ Xd + (AFI EXP((0.5*LN wla_afc*LTA (.011/e(-k*C) + Xd + (CFI EXP((0.5*LN) wla_cfc*LTA	C_Ye*Qs*Xs/Qd)]*(1-Fi (cvh^2+1))-2.326*LN(c MULT_afc FC_tc)+[(CFC_Ye*Qs* C_Ye*Qs*Xs/Qd)]*(1-Fi (cvd^2/no_samples+1) MULT_cfc	OS/100) evh^2+1)^ *.011/Qd* OS/100)))-2.326*L	0.5) (e(-k*CFC_tc)) N(cvd^2/no_sam	ples+1)^0.5)	
LTAMULT afc LTA_afc WLA_cfc LTAMULT_cfc LTA_cfc	+ Xd + (AFI EXP((0.5*LN wla_afc*LTA (.011/e(-k*CI + Xd + (CFI EXP((0.5*LN) wla_cfc*LTA EXP(2.326*L	C_Ye*Qs*Xs/Qd)]*(1-Fi (cvh^2+1)}-2.326*LN(c MULT_afc FC_tc)+[(CFC_Ye*Qs C_Ye*Qs*Xs/Qd)]*(1-Fi (cvd^2/no_samples+1)	OS/100) *.011/Qd* OS/100))-2.326*L +1)^0.5)-0	0.5) (e(-k*CFC_tc)) N(cvd^2/no_sam	ples+1)^0.5)	

Page 1