

Southcentral Regional Office CLEAN WATER PROGRAM

Application Type Renewal
Facility Type Industrial
Major / Minor Minor

NPDES PERMIT FACT SHEET RE-DRAFT

 Application No.
 PA0083771

 APS ID
 275902

 Authorization ID
 1276892

Applicant Name	Turk	ey Hill LLC	Facility Name	Turkey Hill Dairy
Applicant Address	2601	River Road	Facility Address	2601 River Road
	Cone	stoga, PA 17516-9630	<u>.</u>	Conestoga, PA 17516-9630
Applicant Contact	Duan	e Himes	Facility Contact	Duane Himes
Applicant Phone	(717)	340-0470	Facility Phone	(717) 340-0470
Client ID	(717) 340-0470 36967		Site ID	448954
SIC Code	2024		Municipality	Manor Township
SIC Description	Manu Dess	facturing - Ice Cream And Frozen erts	County	Lancaster
Date Application Rec	eived	June 3, 2019	EPA Waived?	Yes
Date Application Acc	epted	June 18, 2019	If No, Reason	

Summary of Review

A draft NPDES permit was issued on April 13, 2022, and was published in the PA Bulletin on April 30, 2022. Comments were received from GHD on behalf of Turkey Hill LLC on June 14, 2022, and are attached below.

In response to the comments, an additional analysis of the toxics pollutants for Outfall 001 was performed. The analysis is shown below. As a result of the analysis, the re-draft permit will include a limit for Dissolved Iron, Total Iron, and Total Thallium, and a monitoring only requirement for Total Cobalt and Total Copper. The monitoring requirement for Total Manganese has been removed from the permit. No other changes have been made to the permit. The NPDES permit will be re-drafted with these updated requirements.

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Approve	Deny	Signatures	Date
Х		Benjamin R. Lockwood Benjamin R. Lockwood / Environmental Engineering Specialist	February 2, 2023
Х		Daniel W. Martin Daniel W. Martin, P.E. / Environmental Engineer Manager	February 15, 2023

Development of Effluent Limitations											
Outfall No.	001		Design Flow (MGD)	.15							
Latitude	39° 57' 22"		Longitude	76º 26' 42"							
Wastewater I	Description:	IW Process Effluent with ELG	_								

Water Quality-Based Limitations

Toxics

Effluent sample results for toxic pollutants reported on the renewal application were entered into DEP's Toxics Management Spreadsheet Version 1.3 to develop appropriate permit requirements for toxic pollutants of concern. As stated in GHD's comment letter, there was concern that construction wastewater discharge on 1/25/22 contributed to some higher results for parameters in question in the draft permit. Due to this, the median of the data for Total Cobalt, Total Copper, Dissolved Iron, Total Iron, Total Thallium, and Total Manganese was calculated to account for the possibility of outliers. The medians for these parameters were input into the TMS. The use of the median removed the monitoring requirement for Total Manganese, and changed the limit for Total Copper and Total Copper to a reporting requirement. Due to the high concentration of the sample results for Dissolved Iron, Total Iron, and Total Thallium, and the small assimilative capacity of the receiving stream, limits were still required for these three parameters. The NPDES permit has been updated to reflect these changes.

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through 3 Years from Permit Issuance.

Outfall 001, Continued (from Permit Effective Date through 3 Years from Permit Issuance)

			Effluent L	imitations			Monitoring Re	quirements
Parameter	Mass Units	(lbs/day) (1)		Concentrat	ions (mg/L)		Minimum ⁽²⁾	Required
Faranietei	Average Monthly	Daily Maximum	Daily Minimum	Average Monthly	Daily Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report	XXX	XXX	XXX	XXX	Continuous	Measured
pH (S.U.)	XXX	XXX	6.0 Inst Min	XXX	XXX	9.0	1/day	Grab
DO	XXX	XXX	5.0 Inst Min	XXX	XXX	XXX	1/day	Grab
UV Intensity (mW/cm²)	XXX	XXX	Report	XXX	XXX	XXX	1/day	Measured
CBOD5	31	63	XXX	25	50	62.5	1/week	Composite*
TSS	38	75	XXX	30	60	75	1/week	Composite*
Total Dissolved Solids	Report Annl Avg	XXX	XXX	Report Annl Avg	XXX	XXX	1/year	Composite*
Oil and Grease	XXX	XXX	XXX	15	XXX	30	1/week	Grab
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	XXX	XXX	XXX	2000 Geo Mean	XXX	10000	1/week	Grab
Fecal Coliform (No./100 ml) May 1 - Sep 30	XXX	XXX	XXX	200 Geo Mean	XXX	1000	1/week	Grab
E. Coli (No./100 ml)	XXX	XXX	XXX	XXX	XXX	Report	1/quarter	Grab
Ammonia Nov 1 - Apr 30	5.6	11.3	XXX	4.5	9.0	11.25	1/week	Composite*
Ammonia May 1 - Oct 31	1.9	3.8	XXX	1.5	3.0	3.75	1/week	Composite*
Total Phosphorus	1.25	2.5	XXX	2.0	4.0	5.0	1/week	Composite*
Nitrate-Nitrite	Report	XXX	XXX	Report	XXX	XXX	1/month	Composite*

Outfall 001, Continued (from Permit Effective Date through 3 Years from Permit Issuance)

			Effluent L	imitations			Monitoring Re	quirements
Parameter	Mass Units	(lbs/day) ⁽¹⁾		Concentra	tions (mg/L)		Minimum (2)	Required
raiametei	Average Monthly	Daily Maximum	Daily Minimum	Average Monthly	Daily Maximum	Instant. Maximum	Measurement Frequency	Sample Type
TKN	Report	XXX	XXX	Report	XXX	XXX	1/month	Composite*
Total Nitrogen	Report	XXX	XXX	Report	XXX	XXX	1/month	Calculation
Total Cobalt	Report	Report	XXX	Report	Report	XXX	1/week	Composite*
Total Copper	Report	Report	XXX	Report	Report	XXX	1/week	Composite*
Dissolved Iron	Report	Report	XXX	Report	Report	XXX	1/week	Composite*
Total Iron	Report	Report	XXX	Report	Report	XXX	1/week	Composite*
Total Thallium	Report	Report	XXX	Report	Report	XXX	1/week	Composite*

Compliance Sampling Location: At discharge from the treatment facility and before mixing with non-contact cooling water

^{*}Composite shall consist of one grab sample taken per each SBR batch discharge within a 24-hour period and composited into one sample for lab analysis.

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: 3 Years from Permit Issuance through Permit Expiration Date.

Outfall 001, Continued (from 3 Years from Permit Issuance through Permit Expiration Date)

			Effluent L	imitations			Monitoring Re	quirements
Parameter	Mass Units	(lbs/day) (1)		Concentrat	ions (mg/L)		Minimum (2)	Required
Parameter	Average Monthly	Daily Maximum	Daily Minimum	Average Monthly	Daily Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report	XXX	XXX	XXX	XXX	Continuous	Measured
pH (S.U.)	XXX	XXX	6.0 Inst Min	XXX	XXX	9.0	1/day	Grab
DO	XXX	XXX	5.0 Inst Min	XXX	XXX	XXX	1/day	Grab
UV Intensity (mW/cm²)	XXX	XXX	Report	XXX	XXX	XXX	1/day	Measured
CBOD5	31	63	XXX	25	50	62.5	1/week	Composite*
TSS	38	75	XXX	30	60	75	1/week	Composite*
Total Dissolved Solids	Report Annl Avg	XXX	XXX	Report Annl Avg	XXX	XXX	1/year	Composite*
Oil and Grease	XXX	XXX	XXX	15	XXX	30	1/week	Grab
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	XXX	XXX	XXX	2000 Geo Mean	XXX	10000	1/week	Grab
Fecal Coliform (No./100 ml) May 1 - Sep 30	XXX	XXX	XXX	200 Geo Mean	XXX	1000	1/week	Grab
E. Coli (No./100 ml)	XXX	XXX	XXX	XXX	XXX	Report	1/quarter	Grab
Ammonia Nov 1 - Apr 30	5.6	11.3	XXX	4.5	9.0	11.25	1/week	Composite*
Ammonia May 1 - Oct 31	1.9	3.8	XXX	1.5	3.0	3.75	1/week	Composite*
Total Phosphorus	1.25	2.5	XXX	2.0	4.0	5.0	1/week	Composite*
Nitrate-Nitrite	Report	XXX	XXX	Report	XXX	XXX	1/month	Composite*

Outfall 001, Continued (from 3 Years from Permit Issuance through Permit Expiration Date)

			Effluent L	imitations			Monitoring Re	quirements
Parameter	Mass Units	(lbs/day) ⁽¹⁾		Concentra	tions (mg/L)		Minimum (2)	Required
Farameter	Average Monthly	Daily Maximum	Daily Minimum	Average Monthly	Daily Maximum	Instant. Maximum	Measurement Frequency	Sample Type
TKN	Report	XXX	XXX	Report	XXX	XXX	1/month	Composite*
Total Nitrogen	Report	XXX	XXX	Report	XXX	XXX	1/month	Calculation
Total Cobalt	Report	Report	XXX	Report	Report	XXX	1/week	Composite*
Total Copper	Report	Report	XXX	Report	Report	XXX	1/week	Composite*
Dissolved Iron	.45	.7	XXX	.36	.56	.89	1/week	Composite*
Total Iron	2.25	3.5	XXX	1.79	2.8	4.4	1/week	Composite*
Total Thallium	.0004	.0006	XXX	.0003	.0004	.0007	1/week	Composite*

Compliance Sampling Location: At discharge from the treatment facility and before mixing with non-contact cooling water

^{*}Composite shall consist of one grab sample taken per each SBR batch discharge within a 24-hour period and composited into one sample for lab analysis.

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 100, Effective Period: Permit Effective Date through Permit Expiration Date.

			Effluent L	imitations			Monitoring Re	quirements
Parameter	Mass Units	(lbs/day) ⁽¹⁾		Concentrat	tions (mg/L)		Minimum (2)	Required
raiametei	Average Monthly	Average Weekly	Minimum	Average Monthly	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report Daily Max	XXX	XXX	XXX	XXX	Continuous	Measured
pH (S.U.)	XXX	XXX	6.0 Inst Min	XXX	XXX	9.0	1/day	Grab
Temperature (°F)	XXX	XXX	XXX	Report	Report Daily Max	XXX	1/day	I-S
Total Dissolved Solids	Report Annl Avg	XXX	XXX	Report Annl Avg	XXX	XXX	1/year	24-Hr Composite
Nitrate-Nitrite	Report	XXX	XXX	Report	XXX	XXX	1/month	24-Hr Composite
TKN	Report	XXX	XXX	Report	XXX	XXX	1/month	24-Hr Composite
Total Nitrogen	Report	XXX	XXX	Report	XXX	XXX	1/month	Calculation
Total Phosphorus	Report Annl Avg	XXX	XXX	Report Annl Avg	XXX	XXX	1/year	24-Hr Composite

Compliance Sampling Location: At Internal monitoring point 100 prior to mixing with treated process wastewater

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 002 Effective Period: Permit Effective Date through Permit Expiration Date.

			Effluent L	imitations			Monitoring Red	quirements
Parameter	Mass Units	(lbs/day) (1)		Concentrat	Minimum ⁽²⁾	Required		
Farameter	Average Monthly	Average Weekly	Minimum	Average Monthly	Daily Maximum	Instant. Maximum	Measurement Frequency	Sample Type
pH (S.U.)	XXX	XXX	XXX	XXX	Report	XXX	1/6 months	Grab
BOD ₅	XXX	XXX	XXX	XXX	Report	XXX	1/6 months	Grab
TSS	XXX	XXX	XXX	XXX	Report	XXX	1/6 months	Grab
COD	XXX	XXX	XXX	XXX	Report	XXX	1/6 months	Grab
Nitrate-Nitrite	XXX	XXX	XXX	XXX	Report	XXX	1/6 months	Grab
Oil and Grease	xxx	XXX	XXX	XXX	Report	XXX	1/6 months	Grab

Compliance Sampling Location: Outfall 002

Toxics Management Spreadsheet Version 1.3, March 2021

Discharge Information

Facility: Turkey Hill LLC NPDES Permit No.: PA0083771 Outfall No.: 001

Evaluation Type: Major Sewage / Industrial Waste Wastewater Description: Process Wastewater

	Discharge Characteristics											
Design Flow	Hardness (mg/l)*	pH (SU)*	Partial Mix Factors (PMFs)			Complete Mi	x Times (min)					
(MGD)*	nardness (mg/l)	рн (50)	AFC	CFC	THH	CRL	Q ₇₋₁₀	Q _h				
0.15	1470	7.4										

					0 if left	t blank	0.5 if le	eft blank	0) if left blan	k	1 if left	t blank
	Discharge Pollutant	Units	Ma	x Discharge Conc	Trib Conc	Stream Conc	Daily CV	Hourly CV	Strea m CV	Fate Coeff	FOS	Criteri a Mod	Chem Transl
	Total Dissolved Solids (PWS)	mg/L		4120									
12	Chloride (PWS)	mg/L		1790									
Group	Bromide	mg/L		0.26									
ື້	Sulfate (PWS)	mg/L		20.3									
	Fluoride (PWS)	mg/L		0.38									
	Total Aluminum	μg/L		6.05									
	Total Antimony	μg/L	<	1.7									
	Total Arsenic	μg/L		0.85									
	Total Barium	μg/L		1.6									
	Total Beryllium	µg/L	<	0.5									
	Total Boron	μg/L		190									
	Total Cadmium	μg/L	<	0.2									
	Total Chromium (III)	μg/L		0.93									
	Hexavalent Chromium	μg/L		0.12									
	Total Cobalt	μg/L		3.55									$\overline{}$
	Total Copper	µg/L		30									
2	Free Cyanide	μg/L											
₹	Total Cyanide	μg/L		2.8									
Group	Dissolved Iron	μg/L		710									
-	Total Iron	μg/L		1450									
	Total Lead	μg/L	<	1.7									
	Total Manganese	μg/L		32.5									
	Total Mercury	μg/L	<	0.00017									
	Total Nickel	μg/L		23									
	Total Phenols (Phenolics) (PWS)	μg/L		7									
	Total Selenium	μg/L	<	0.83									.,,,,,,,,,
	Total Silver	μg/L	<	0.41									$\overline{}$
	Total Thallium	µg/L		11.8									$\overline{}$
	Total Zinc	µg/L		5.9									$\overline{}$
	Total Molybdenum	µg/L		20									$\overline{}$
\vdash	Acrolein	µg/L	<		777777								9///////
	Acrylamide	µg/L	<										
	Acrylonitrile	µg/L	<										
	Benzene	µg/L	<										
	Bromoform	µg/L	<										
		Pare			minner.								

Discharge Information 2/2/2023 Page 1

1	Carbon Tetrachloride	μg/L	<						
1	Chlorobenzene	μg/L	-						
	Chlorodibromomethane	µg/L	<						
	Chloroethane	µg/L	<						
	2-Chloroethyl Vinyl Ether	µg/L	<					_	
	Chloroform	µg/L	~						
	Dichlorobromomethane		~				_	_	
		µg/L	<				_		
	1,1-Dichloroethane	μg/L	-						
	1,2-Dichloroethane	μg/L	<						
	1,1-Dichloroethylene	μg/L	<						
18	1,2-Dichloropropane	μg/L	<						
ľ	1,3-Dichloropropylene	μg/L	<						
	1,4-Dioxane	μg/L	<						
	Ethylbenzene	μg/L	<						
	Methyl Bromide	μg/L	<						
	Methyl Chloride	μg/L	<						
	Methylene Chloride	μg/L	<						
	1,1,2,2-Tetrachloroethane	μg/L	<						
	Tetrachloroethylene	μg/L	<						
	Toluene	μg/L	<						
	1,2-trans-Dichloroethylene	μg/L	<						
	1,1,1-Trichloroethane	μg/L	<						
	1.1.2-Trichloroethane	μg/L	<						
	Trichloroethylene	μg/L	<						
	Vinyl Chloride	µg/L	<						
\vdash	2-Chlorophenol	µg/L	<						
	2,4-Dichlorophenol	µg/L	<						
	2,4-Dimethylphenol	µg/L	<						
	4,6-Dinitro-o-Cresol		<						
4	2,4-Dinitrophenol	µg/L	~				_	_	
lα		μg/L	-				_	_	
Įē	2-Nitrophenol	µg/L	<				_	_	
او	4-Nitrophenol	μg/L	<				_	_	
	p-Chloro-m-Cresol	μg/L	<						
	Pentachlorophenol	μg/L	<						
	Phenol	μg/L	<						
\vdash	2,4,6-Trichlorophenol	μg/L	<						
	Acenaphthene	μg/L	<						
	Acenaphthylene	μg/L	<						
	Anthracene	μg/L	<						
	Benzidine	μg/L	<						
	Benzo(a)Anthracene	μg/L	<						
	Benzo(a)Pyrene	μg/L	<						
	3,4-Benzofluoranthene	μg/L	<						
	Benzo(ghi)Perylene	μg/L	<						
	Benzo(k)Fluoranthene	μg/L	<						
	Bis(2-Chloroethoxy)Methane	μg/L	<						
	Bis(2-Chloroethyl)Ether	μg/L	<						
	Bis(2-Chloroisopropyl)Ether	μg/L	<						
	Bis(2-Ethylhexyl)Phthalate	µg/L	<						
	4-Bromophenyl Phenyl Ether	µg/L	<						
	Butyl Benzyl Phthalate	µg/L	<						
	2-Chloronaphthalene	µg/L	<						
	4-Chlorophenyl Phenyl Ether	µg/L	<						
			<						
	Chrysene Dibenze(a h)Anthroncene	µg/L	-						
	Dibenzo(a,h)Anthrancene	µg/L	<						
	1,2-Dichlorobenzene	μg/L	<						
	1,3-Dichlorobenzene	μg/L	<						
	1,4-Dichlorobenzene	μg/L	<						
	3,3-Dichlorobenzidine	μg/L	<						
1 %	Diethyl Phthalate	μg/L	<						
١	Dimethyl Phthalate	μg/L	<						
	Di-n-Butyl Phthalate	μg/L	<						
	2,4-Dinitrotoluene	μg/L	<						

			_	 			 	 		
	2,6-Dinitrotoluene	μg/L	<							
	Di-n-Octyl Phthalate	μg/L	٧							
	1,2-Diphenylhydrazine	μg/L	<							
	Fluoranthene	μg/L	<							
-	Fluorene	μg/L	<							
1	Hexachlorobenzene	μg/L	<							
1	Hexachlorobutadiene	μg/L	<							
- 1	Hexachlorocyclopentadiene	μg/L	<							
- 1	Hexachloroethane	µg/L	<							
	Indeno(1,2,3-cd)Pyrene	µg/L	<		1					
			<		1	_		_	_	
- 1	Isophorone	μg/L	_		1				_	
- 1	Naphthalene	μg/L	<		1	_		_	_	
- 1	Nitrobenzene	μg/L	<		1					
- 1	n-Nitrosodimethylamine	μg/L	<		1					
1	n-Nitrosodi-n-Propylamine	μg/L	<							
-	n-Nitrosodiphenylamine	μg/L	<							
	Phenanthrene	μg/L	<							
	Pyrene	μg/L	<							
	1,2,4-Trichlorobenzene	μg/L	<							
1	Aldrin	µg/L	<							//////
- 1	alpha-BHC	µg/L	<							111111
- 1	beta-BHC	µg/L	<							111111
- 1	gamma-BHC	μg/L	<							
- 1	delta BHC		<							
- 1		μg/L	_		-	_		_	_	
- 1	Chlordane	μg/L	<		-	_		_	_	
- 1	4,4-DDT	μg/L	<		1					
- 1	4,4-DDE	μg/L	<							
- 1	4,4-DDD	μg/L	<							
-	Dieldrin	μg/L	<							
-	alpha-Endosulfan	μg/L	<							
	beta-Endosulfan	μg/L	<							
1	Endosulfan Sulfate	μg/L	<							
	Endrin	μg/L	<							
	Endrin Aldehyde	μg/L	<							777777
- 1	Heptachlor	μg/L	<							
	Heptachlor Epoxide	µg/L	<	iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii						77777
	PCB-1016	µg/L	<					_		
- 1	PCB-1221		<					_	_	
- 1		μg/L	<		-	_		_	_	
- 1	PCB-1232	μg/L	-		1			 _		
- 1	PCB-1242	μg/L	<			_		_	_	9999
- 1	PCB-1248	μg/L	<							
- 1	PCB-1254	μg/L	<							
١	PCB-1260	μg/L	<							
	PCBs, Total	μg/L	<							
	Toxaphene	μg/L	<							
	2,3,7,8-TCDD	ng/L	<							
	Gross Alpha	pCi/L								
- 1	Total Beta	pCi/L	<							111111
	Radium 226/228	pCi/L	<							111111
	Total Strontium	µg/L	<							
	Total Uranium	µg/L	<		1					
	Osmotic Pressure	mOs/kg	_		 	_		_	_	
+	OSHIOUG FIESSURE	mosikg			1					
					1					
					1					
Į										
- 1										
				1000000000	4					

Toxics Management Spreadsheet Version 1.3, March 2021

Page 4

pennsylvania
DEPARTMENT OF ENVIRONMENTAL
PROTECTION

Stream / Surface Water Information

Turkey Hill LLC, NPDES Permit No. PA0083771, Outfall 001

 Statewide Criteria
 Great Lakes Criteria
 ORSANCO Criteria Apply Fish Criteria* No. Reaches to Model: PWS Withdrawal (MGD) Slope (ft/ft) DA (mi²)* Elevation (ft)* Receiving Surface Water Name: Manns Run ₽M. Stream Stream Code* Discharge Location nstructions

		Stream
	1	Tributary
Yes		iavei
		John Velocit
		idth D
		W/D Width
1.56		
225		Flow (cfs)
0		I FY
007834		
End of Reach 1	Q 7-10	

Yes

4.0

427

98.0

007834

Point of Discharge

sis	ήd			
Analysis	Hardness			
n	pH*	7		
Stream	Hardness*	100		
ry	μd			
Tributary	Hardness			
Limo	(d			
Velocit	y (fps)			
Depth	Œ			
Width	(#)			
Q/M	Ratio			
Flow (cfs)	Tributary			
Flow	Stream	0.0456	0.162	
LFY	(cfs/mi²)*	0.1	0.1	
IWO	IMP.	0.86	0	
Location	Location	Point of Discharge	End of Reach 1	

F	_	Flow (cfs)		W/D	Width	Depth	Velocit	Time	Tributary		Stream		Analysis	S
(cfs/mi²) Stream		Ξ	Tributary	Ratio	(#)	(£)	y (fps)	(dave)	Hardness	Hd	Hardness	Hd	Hardness	ЬH
		1111												

2/2/2023

â

Page 5 Toxics Management Spreadsheet Version 1.3, March 2021 Turkey Hill LLC, NPDES Permit No. PA0083771, Outfall 001 Chem Translator of 0.838 applied Chem Translator of 0.316 applied Chem Translator of 0.982 applied Chem Translator of 0.424 applied Chem Translator of 0.85 applied Chem Translator of 0.998 applied Chem Translator of 0.922 applied Chem Translator of 0.85 applied Chem Translator of 0.978 applied Chem Translator of 0.96 applied Chem Translator of 1 applied O Limits 7.30 Comments Analysis pH: O Results O Inputs 1245 ₹ • WLA (µg/L) 9,692 33.1 17,016 1,316 25,127 4,740 1,214 Analysis Hardness (mg/l): 19.5 N/A N/A 2,421 346 77.8 N N N 180 Α× 1.97 ¥ 17 897 PRINT WQ Obj 27.7 21,000 8,100 2,023 1.015 1,100 95.0 16.3 1.65 X X X Ϋ́ 750 151 Α× 3,961 N/A 290 65.0 ž × N/A 2/2/2023 23.221 95 144.623 857.020 N/A 246.098 3953.457 992,639 8,100 750 1,100 340 21,000 ĕ ĕ 1.400 ₹ Ż ٤ Š ž 16 65 SAVE AS PDF Fate Coef Trib Conc PMF: (µg/L) RETURN TO INPUTS Stream ે 0 0 0 0 0 0 0 0 0 0 0 CCT (min): 0.010 Conc 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 pennsylvania DEPARTMENT OF ENVIRONMENTAL Fotal Phenols (Phenolics) (PWS) Total Dissolved Solids (PWS) Hexavalent Chromium Total Chromium (III) Wasteload Allocations Model Results Sulfate (PWS) Fluoride (PWS) Fotal Manganese Total Aluminum Total Selenium Chloride (PWS) Total Antimony Total Cadmium **Fotal Thallium** Total Arsenic Dissolved Iron Total Copper Total Barium Total Mercury Total Boron Total Cobalt Total Silver Total Lead Total Nickel Results Total Iron Total Zinc Pollutants Hydrodynamics AFC nstructions Model Results 5 5

Alaysis pri.	Comments							Chem Translator of 1 applied			Chem Translator of 0.803 applied	Chem Translator of 0.86 applied	Chem Translator of 0.962 applied		Chem Translator of 0.96 applied	MOC = 30 day average: DME = 4	to - 50 day avelage, r mr - 1	onem Translator of 0.424 applied	1 - 11	Chem Translator of 0.85 applied	Chem Translator of U.997 applied	Chem Translator of 0.922 applied	Chem Translator of 1 applied		Chem Translator of 0.986 applied	Analysis pH: N/A	Comments											
253	ig/L)								94																	N/A	(a/L)			-				0 5	2	60		
(infinite property of the control of	WLA (µg/L)	H	N/A	N/A	N/A	N/A	263	179	\dashv		+	813	12.4	+	+	1 705	+	+	N/A	1.08	770	+	\vdash	L	1,214	Analysis Hardness (mg/l):	WLA (µg/L)	0/8	0 N/A		Н	A/N	6.7	12.0	+	+	Z Z	
and and	WQ Obj	ΑN	N/A	N/A	N/A	N/A	220	150	4,100	1,600	4	\dashv	10.4	19:0	80.5	4 E	000,	0.0 V	¥ 2	0.91	440	4.99	N/A	L	1,015	nalysis Har	WQ Obj	500,000	Н	250,000	2,000	N/A	5.6	10.0	2,400	3,100	Y A	
	WQC (µg/L)	A/A	N/A	N/A	N/A	A/N	220	150	4,100	1,600	1.409	584.583	19	19	77.254	4 FOO	2000,1	25.537	Y/N	0.770	439.107	4.600	A/N	13	1000.759	Ā	WQC (µg/L)	500,000	250,000	250,000	2,000	A/N	9.6	10	2,400	3,100	Z/Z	
	Fate	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0			9	0	9	0 0	0	0	0	-	Fate	0	0	0	0	0	0	0	5 (0 0	0	
	Trib Conc (µg/L)																									PMF:	Trib Conc (µg/L)											
	Stream	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0			9	0		0	0	0	0	010	Stream	٥	0	0	0	0	0	0	٥ (0	0	
_	Conc	•	0	0	0	0	0	0	0	0	0	0	0	٥	0							0	0	0	0	CCT (min): 0.010	Conc	•	0	0	0	0	0	0	٥	0		
	Pollutants	Total Dissolved Solids (PWS)	Chloride (PWS)	Sulfate (PWS)	Fluoride (PWS)	Total Aluminum	Total Antimony	Total Arsenic	Total Barium	Total Boron	Total Cadmium	Total Chromium (III)	Hexavalent Chromium	Total Cobalt	Total Copper	Total less	Total load	Total Managage	Total Manganese	Total Mercury	Total Discussion (Discussion) (Discussion)	Total Selenium	Total Silver	Total Thallium	Total Zinc	CC1	Pollutants	Total Dissolved Solids (PWS)	Chloride (PWS)	Sulfate (PWS)	Fluoride (PWS)	Total Aluminum	Total Antimony	Total Arsenic	lotal Banum	Total Boron	Total Chromium (III)	

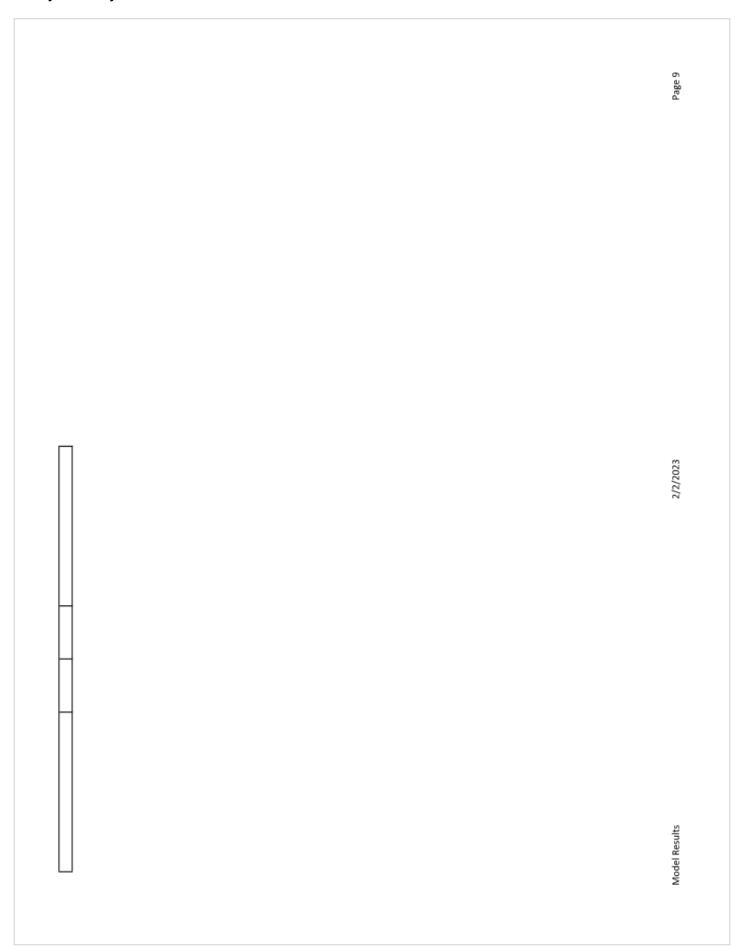
														Analysis pH: N/A	Comments																								7 45-0
N/A	N/A	N/A	359	N/A	N/A	1,197	90.0	730	N/A	N/A	N/A	0.29	N/A	s (mg/l): N/A	WLA (µg/L)	N/A	N/A	N/A	N/A	N/A	N/A	A/A	N/A	K K	N/A	N/A	N/A	N/A	N/A	N/A	A/N	K/N	N/A	N/A	N/A	N/A	N/A	N/A	
V/A	A/A	N/A	300	A/N	A/A	1,000	0.05	610	9.0	A/N	A/A	0.24	N/A	Analysis Hardness (mg/l):	WQ Obj	A/A	A/A	N/A	N/A	N/A	N/A	N/A	N/A	X X	N/A	N/A	N/A	N/A	N/A	A/N	AN N	V V	N/A	N/A	N/A	N/A	N/A	N/A	פרטר/ ר/ ר
∢ Ż	A/A	A/A	300	A/N	A/N	1,000	0.050	610	2	A/A	N/A	0.24	N/A	Ana	WQC (µg/L)	A/A	A/N	N/A	N/A	N/A	A/A	V/A	W/A	X X	A/N	N/A	N/A	N/A	N/A	V/A	A/A	Z Z	A/A	N/A	N/A	N/A	N/A	A/A	,0,0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	Fate	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
														PMF:	Trib Conc (µg/L)																								
0	0	0	0	0	0	0	0	0	0	0	0	0	0	194	Stream	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	0	0	0	0	CCT (min): 0.094	Conc	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Hexavalent Chromium	Total Cobalt	Total Copper	Dissolved Iron	Total Iron	Total Lead	Total Manganese	Total Mercury	Total Nickel	Total Phenols (Phenolics) (PWS)	Total Selenium	Total Silver	Total Thallium	Total Zinc	☑ CRL CCT	Pollutants	Total Dissolved Solids (PWS)	Chloride (PWS)	Sulfate (PWS)	Fluoride (PWS)	Total Aluminum	Total Antimony	Total Arsenic	Total Barium	Total Cadmium	Total Chromium (III)	Hexavalent Chromium	Total Cobalt	Total Copper	Dissolved Iron	Total Iron	Total Managanasa	Total Mercury	Total Nickel	Total Phenols (Phenolics) (PWS)	Total Selenium	Total Silver	Total Thallium	Total Zinc	ماميرة

Page 8

Recommended WQBELs & Monitoring Requirements

No. Samples/Month: 4

		(AB)	(no RP)	(RP)	(RP)	(RP)	
	Comments	Discharge Conc > 10% WQBEL (no RP)	Discharge Conc > 10% WQBEL (no	Discharge Conc≥50% WQBEL (R	Discharge Conc ≥ 50% WQBEL (R	Discharge Conc ≥ 50% WQBEL (R	
	WQBEL Basis	CFC	CFC	THH	CFC	THH	
	Governing WQBEL	22.7	6.36	698	1,795	0.29	
	Units	hg/L	⊓/Brl	hg/L	⊓/6rl	T/6rl	
Concentration Limits	IMAX	Report	Report	268	4,487	0.72	
Concentra	MDL	Report	Report	260	2,800	0.45	
	AML	Report	Report	329	1,795	0.29	
Limits	MDL (lbs/day)	Report	Report	0.7	3.5	0.0006	
Mass	AML (lbs/day)	Report	Report	0.45	2.25	0.0004	
	Pollutants	Total Cobalt	Total Copper	Dissolved Iron	Total Iron	Total Thallium	


Other Pollutants without Limits or Monitoring

The following pollutants do not require effluent limits or monitoring based on water quality because reasonable potential to exceed water quality criteria was not determined and the discharge concentration was less than thresholds for monitoring, or the pollutant was not detected and a sufficiently sensitive analytical method was used (e.g., <= Target QL).

	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_		_		_	_	_	_
Comments	PWS Not Applicable	PWS Not Applicable	No WQS	PWS Not Applicable	PWS Not Applicable	Discharge Conc ≤ 10% WQBEL	Discharge Conc < TQL	Discharge Conc ≤ 10% WQBEL	Discharge Conc ≤ 10% WQBEL	No WQS	Discharge Conc ≤ 10% WQBEL	Discharge Conc < TQL	Discharge Conc ≤ 10% WQBEL	Discharge Conc ≤ 10% WQBEL	No WQS	Discharge Conc ≤ 10% WQBEL	Discharge Conc ≤ 10% WQBEL	Discharge Conc < TQL	Discharge Conc ≤ 10% WQBEL	PWS Not Applicable	Discharge Conc < TQL	Discharge Conc ≤ 10% WQBEL	Discharge Conc ≤ 10% WQBEL	No WQS
Units	N/A	N/A	N/A	N/A	N/A	hg/L	N/A	hg/L	hg/L	N/A	hg/L	hg/L	µg/L	hg/L	N/A	hg/L	hg/L	hg/L	hg/L	hg/L	hg/L	hg/L	hg/L	N/A
Governing WQBEL	N/A	N/A	N/A	N/A	N/A	750	N/A	12.0	2,872	N/A	1,914	2.1	813	12.4	N/A	94.3	1,197	90.0	527		2.97	290	1,015	N/A
Pollutants	Total Dissolved Solids (PWS)	Chloride (PWS)	Bromide	Sulfate (PWS)	Fluoride (PWS)	Total Aluminum	Total Antimony	Total Arsenic	Total Barium	Total Beryllium	Total Boron	Total Cadmium	Total Chromium (III)	Hexavalent Chromium	Total Cyanide	Total Lead	Total Manganese	Total Mercury	Total Nickel	Total Phenols (Phenolics) (PWS)	Total Selenium	Total Silver	Total Zinc	Total Molybdenum

Model Results

2/2/2023

Lockwood, Benjamin

From: Heather Myers < Heather.Myers@ghd.com>

Sent: Tuesday, June 14, 2022 3:07 PM

To: Lockwood, Benjamin
Cc: Himes, Duane A

Subject: [External] Turkey Hill LLC Draft NPDES Permit No. PA0083771

Attachments: TOXCONC (150).Turkey Hill Dairy.xlsx; 3223731_169889.pdf; 3223933_169897.pdf;

3224560_169894.pdf; 3224965_169895.pdf; 3225623_169890.pdf; 3226201_169892.pdf;

3226839_169896.pdf; THD additional sampling summary.xlsx

ATTENTION: This email message is from an external sender. Do not open links or attachments from unknown sources. To report suspicious email, forward the message as an attachment to CWOPA SPAM@pa.gov.

Hi Ben.

Turkey Hill LLC and GHD are in receipt of draft NPDES permit No. PA0083771, sent via email on 4/13/22, for the discharge from the Turkey Hill Dairy facility located in Manor Township, Lancaster County. On behalf of Turkey Hill LLC (Turkey Hill), we offer the following comments:

- It has come to our attention that the laboratory reports for additional effluent sampling which were emailed to you
 on 3/10/22 did not contain the MDL for the analyzed parameters. Typically contract laboratories report to the MDL
 in order to meet DEP's Target QLs. I have attached the revised reports provided by ALS which include the MDL
 for all analyses. I have also attached a table summarizing the MDL and results for each sampling event.
- 2. Also attached is a revised TOXCONC spreadsheet which has been updated with the MDL results.
- 3. In reviewing the results of both the attached TOXCONC spreadsheet and the version included with the draft permit Fact Sheet, some issues have arisen regarding the use of this spreadsheet. Specifically, the TOXCONC spreadsheet calculates an average monthly effluent concentration (AMEC) for both Dissolved Iron and Total Manganese which is greater than the maximum value in the data set. I'm not sure how it is possible to have an average concentration greater than the maximum concentration? All of the data for these two parameters is detected, so the issue is not due to variability in detection limits or a large number of non-detects.
- 4. This same issue, however, appears with the handling of the data sets which do have non-detect data. The Total Thallium data set has a large amount of variability in the detection levels, resulting in data ranging from 0.88 μg/L to 34 μg/L. However, the AMEC for Total Thallium is calculated at 215 μg/L, which does not seem consistent with the data set.
- 5. We acknowledge there is a lot of variability in this data set, particularly in the detection levels used by the laboratory. Additionally, a review of the data noted higher values for some of the metals (Total Cobalt, Total Copper and Total Thallium) in the 1/25/22 sampling. Upon discussion with plant staff, there was a small construction project going on at that time which involved excavation of a portion of concrete floor to repair an old wastewater line from the processing area. It is believed some of the ponded wastewater at the break was discharged to the facility WWTP. The facility WWTP did not experience any issues or effluent limit exceedances due to this construction, but the construction and subsequent discharge of ponded/old wastewater could have influenced the sampling results. Therefore, Turkey Hill would like to propose collecting an additional seven (7) rounds of sampling to be collected weekly for these six parameters which have been under additional investigation. Turkey Hill will work with their contract laboratory to ensure that more consistent detection levels can be achieved in their data set. Once we have the results of this sampling we should have a data set of at least 10 sampling points with consistent detection levels that will hopefully eliminate some of the issues with the TOXCONC spreadsheet.

6. We have also reached out to Maria Schumack in Central Office with some of these same questions regarding the TOXCONC spreadsheet as she has been of assistance with prior questions we had regarding the spreadsheet. We have not heard anything yet from her in return.

We appreciate the opportunity to provide comments on this draft permit and look forward to your response. Please do not hesitate to reach out to me or Duane Himes should you need any additional information or wish to discuss in further detail.

Thanks, Heather

Heather S Myers Environmental Scientist

GHD

Proudly employee-owned | ghd.com 225 Grandview Avenue Suite 403 Camp Hill Pennsylvania 17011 USA D +1 717 585 6431 M +1 717 226 0831 E heather.myers@ghd.com

→ The Power of Commitment

Connect

Please consider the environment before printing this email

CONFIDENTIALITY NOTICE: This email, including any attachments, is confidential and may be privileged. If you are not the intended recipient please notify the sender immediately, and please delete it; you should not copy it or use it for any purpose or disclose its contents to any other person. GHD and its affiliates reserve the right to monitor and modify all email communications through their networks.